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Abstract

We have built the first family of tagless interpretations for a higher-order typed object language

in a typed metalanguage (Haskell or ML) that require no dependent types, generalized

algebraic data types, or postprocessing to eliminate tags. The statically type-preserving

interpretations include an evaluator, a compiler (or staged evaluator), a partial evaluator, and

call-by-name and call-by-value continuation-passing style (CPS) transformers. Our principal

technique is to encode de Bruijn or higher-order abstract syntax using combinator functions

rather than data constructors. In other words, we represent object terms not in an initial

algebra but using the coalgebraic structure of the λ-calculus. Our representation also simulates

inductive maps from types to types, which are required for typed partial evaluation and CPS

transformations. Our encoding of an object term abstracts uniformly over the family of ways

to interpret it, yet statically assures that the interpreters never get stuck. This family of

interpreters thus demonstrates again that it is useful to abstract over higher-kinded types.

It should also be possible to define languages with a highly refined syntactic type structure.

Ideally, such a treatment should be metacircular, in the sense that the type structure

used in the defined language should be adequate for the defining language.

(Reynolds 1972)

1 Introduction

A popular way to define and implement a language is to embed it in another

(Landin 1966). Embedding means to represent terms and values of the object

language as terms and values in the metalanguage, so as to interpret the former in

the latter (Reynolds 1972). Embedding is especially appropriate for domain-specific

languages (DSLs) because it supports rapid prototyping and integration with the

host environment (Hudak 1996).

Most interpreters suffer from various kinds of overhead, making it less efficient to

run object programs via the metalanguage than to implement the object language
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[x : t1]···
e : t2

λx. e : t1→ t2

[f : t1→ t2]···
e : t1→ t2

fix f. e : t1→ t2

e0 : t1→ t e1 : t1

e0e1 : t

n is an integer

n : �

b is a boolean

b : �

e : � e1 : t e2 : t

if e then e1 else e2 : t

e1 : � e2 : �

e1 + e2 : �

e1 : � e2 : �

e1 × e2 : �

e1 : � e2 : �

e1 � e2 : �

Fig. 1. Our typed object language.

directly on the machine running the metalanguage (Jones et al. 1993). Two major

sources of overhead are dispatching on the syntax of object terms and tagging the

types of object values. If the metalanguage supports code generation (Nielson &

Nielson 1988, 1992; Gomard & Jones 1991; Bawden 1999; Taha 1999), then the

embedding can avoid the dispatching overhead by compiling object programs, that

is, by specializing an interpreter to object programs (Futamura 1971). Specializing

an interpreter is thus a promising way to build a DSL. However, the tagging

overhead remains, especially if the object language and the metalanguage both have

a sound type system. The quest to remove all interpretive overhead, in particular

by specializing the interpreter using a Jones-optimal partial evaluator (Jones et al.

1993), has motivated much work on typed specialization (Birkedal & Welinder, 1993;

Danvy 1998; Hughes 1998; Makholm 2000; Taha et al. 2001; Danvy & López, 2003)

and type systems (see Section 1.2).

This paper shows how to eliminate tagging overhead, whether in the context

of code generation and whether in the presence of dispatching overhead. We use

metalanguage types, without such fancy features as generalized algebraic data types

(GADTs) or dependent types, to rule out ill-typed object terms statically, thus

speeding up interpretation and assuring that our interpreters do not get stuck. We

illustrate the problem of tagging overhead in this section using a simple evaluator

as example. We apply our solution first to evaluation, then to code-generation tasks

such as partial evaluation.

1.1 The tag problem

To be concrete, we use the typed object language in Figure 1 throughout this paper.

It is straightforward to create an algebraic data type, say in OCaml, to represent

object terms such as those in Figure 1. For brevity, we elide treating integers,

conditionals, and fixpoint in this section.

type var = VZ | VS of var

type exp = V of var | B of bool | L of exp | A of exp * exp

We represent each variable using a unary de Bruijn index.1 For example, we represent

the object term (λx. x) true as

let test1 = A (L (V VZ), B true)

Let us try to implement an interpreter function eval0. It takes an object term such as

test1 above and gives us its value. The first argument to eval0 is the environment,

1 We use de Bruijn indices to simplify the comparison with Pašalić et al.’s work (2002).

https://doi.org/10.1017/S0956796809007205 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007205


Tagless staged interpreters for simpler typed languages 511

initially empty, which is the list of values bound to free variables in the interpreted

code.

let rec lookup (x::env) = function VZ -> x | VS v -> lookup env v

let rec eval0 env = function

| V v -> lookup env v

| B b -> b

| L e -> fun x -> eval0 (x::env) e

| A (e1,e2) -> (eval0 env e1) (eval0 env e2)

If our OCaml-like metalanguage were untyped, the code above would be acceptable.

The L e line exhibits interpretive overhead: eval0 traverses the function body e

every time (the result of evaluating) L e is applied. Code generation can be used to

remove this interpretive overhead (Futamura 1971; Jones et al. 1993; Pašalić et al.

2002).

However, the function eval0 is ill-typed if we use OCaml or some other typed

language as the metalanguage. The line B b says that eval0 returns a boolean,

whereas the next line L e says the result is a function, but all branches of a pattern-

match form must yield values of the same type. A related problem is the type of

the environment env: a regular OCaml list cannot hold both boolean and function

values.

The usual solution is to introduce a universal type containing booleans and

functions.

type u = UB of bool | UA of (u -> u)

We can then write a typed interpreter

let rec eval env = function

| V v -> lookup env v

| B b -> UB b

| L e -> UA (fun x -> eval (x::env) e)

| A (e1,e2) -> match eval env e1 with UA f -> f (eval env e2)

whose inferred type is u list -> exp -> u. Now we can evaluate

let test1r = eval [] test1

val test1r : u = UB true

The unfortunate tag UB in the result reflects that eval is a partial function. First,

the pattern match with UA f in the line A (e1,e2) is not exhaustive, so eval can

fail if we apply a boolean, as in the ill-typed term A (B true, B false).

let test2 = A (B true, B false)

let test2r = eval [] test2

Exception: Match_failure in eval

Second, the lookup function assumes a nonempty environment, so eval can fail if

we evaluate an open term

let test3 = A (L (V (VS VZ)), B true)

let test3r = eval [] test3

Exception: Match_failure in lookup
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After all, the type exp represents object terms both well-typed and ill-typed, both

open and closed.

Although eval never fails on well-typed closed terms, this soundness is not

obvious to the metalanguage, whose type system we must still appease with the

nonexhaustive pattern matching in lookup and eval and the tags UB and UA. In

other words, the algebraic data types above fail to express in the metalanguage that

the object program is well-typed. This failure necessitates tagging and nonexhaustive

pattern-matching operations that incur a performance penalty in interpretation and

impair optimality in partial evaluation (Jones et al. 1993; Taha et al. 2001). In short,

the universal-type solution is unsatisfactory because it does not preserve the type of

the encoded term.

1.2 Solutions using fancier types

It is commonly thought that the type-preserving interpretation of a typed object

language in a typed metalanguage is difficult and requires GADTs or dependent

types (Taha et al. 2001). In fact, this problem motivated much work on GADTs

(Xi et al. 2003; Peyton Jones et al. 2006) and on dependent types (Pašalić et al.

2002; Fogarty et al. 2007), in order for the metalanguage’s type system to allow the

well-typed object term test1 but disallow the ill-typed object term test2. Yet other

fancy type systems have been proposed to distinguish closed terms like test1 from

open terms like test3 (Davies & Pfenning 2001; Nanevski 2002; Taha & Nielsen

2003; Nanevski & Pfenning 2005; Nanevski et al. to appear), so that lookup never

receives an empty environment.

1.3 Our final proposal

Following an old idea of Reynolds (1975), we represent object programs using

ordinary functions rather than data constructors. These functions comprise the

entire interpreter

let varZ env = fst env

let varS vp env = vp (snd env)

let b (bv:bool) env = bv

let lam e env = fun x -> e (x,env)

let app e1 e2 env = (e1 env) (e2 env)

We now represent our sample term (λx. x) true as

let testf1 = app (lam varZ) (b true)

This representation is almost the same as given in Section 1.1, only written with

lowercase identifiers. To evaluate an object term is to apply its representation to the

empty environment.

let testf1r = testf1 ()

val testf1r : bool = true

https://doi.org/10.1017/S0956796809007205 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007205


Tagless staged interpreters for simpler typed languages 513

The result has no tags: the interpreter patently uses no tags and no pattern matching.

The term b true evaluates to a boolean and the term lam varZ evaluates to

a function, both untagged. The app function applies lam varZ without pattern

matching. What is more, evaluating an open term such as testf3 below gives a

type error rather than a run-time error.

let testf3 = app (lam (varS varZ)) (b true)

let testf3r = testf3 ()

This expression has type unit but is here used with type ’a * ’b

The type error correctly complains that the initial environment should be a tuple

rather than (). In other words, the term is open.

In sum, using ordinary functions rather than data constructors to represent

well-typed terms, we achieve a tagless evaluator for a typed object language in a

metalanguage with a simple type system (Hindley 1969; Milner 1978). We call this

approach final (in contrast to initial ), because we represent each object term not by

its abstract syntax but by its denotation in a semantic algebra. This representation

makes it trivial to implement a primitive recursive function over object terms, such

as an evaluator. Or, as a referee puts it aptly, our proposal is “a way to write a

typed fold function over a typed term.”

We emphasize “typed” and “fold” in the previous sentence. We use a typed version

of Mogensen’s (1995) encoding of the recursive type of terms (Böhm & Berarducci

1985), which makes it much easier to write folds over terms than term functions

that are not primitive recursive (or, compositional). In contrast, Mogensen’s (1992)

earlier encoding of the sum type of terms does not privilege folds. In exchange,

we statically express object types in the metalanguage and prevent both kinds of

run-time errors in Section 1.1, due to evaluating ill-typed or open terms. Because the

new interpreter uses no universal type or pattern matching, it never gives a run-time

error, and is in fact total. Because this safety is obvious not just to us but also to the

metalanguage implementation, we avoid the serious performance penalty (Pašalić

et al. 2002) that arises from error checking at run time.

Our solution does not involve Church-encoding the universal type. The Church

encoding of the type u in Section 1.1 requires two continuations; the function app

in the interpreter above would have to provide both to the encoding of e1. The

continuation corresponding to the UB case of u must either raise an error or loop.

For a well-typed object term, that error continuation is never invoked, yet it must

be supplied. In contrast, our interpreter has no error continuation at all.

The evaluator above is wired directly into functions such as b, lam, and app,

whose names appear free in testf1 above. In the rest of this paper, we explain how

to abstract over these functions’ definitions and apply different folds to the same

object language, so as to process the same term using many other interpreters: we

can

• evaluate the term to a value in the metalanguage;

• measure the length of the term;

• compile the term, with staging support such as in MetaOCaml

(http://www.metaocaml.org);
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• partially evaluate the term, online; and

• transform the term to continuation-passing style (CPS), even call-by-name

(CBN) CPS in a call-by-value (CBV) metalanguage, so as to isolate the

evaluation order of the object language from that of the metalanguage.

We have programmed all our interpreters and examples in OCaml (and, for staging,

MetaOCaml) and standard Haskell. The complete code is available at http://

okmij.org/ftp/tagless-final/ to supplement the paper. Except for the basic

definitions in Section 2.1, we show our examples in (Meta)OCaml even though some

of our claims are more obvious in Haskell, for consistency and because MetaOCaml

provides convenient, typed staging facilities.

1.4 Contributions

We attack the problem of tagless (staged) type-preserving interpretation exactly as

it was posed by Pašalić et al. (2002) and Xi et al. (2003). We use their running

examples and achieve the result they call desirable. Our contributions are as follows.

1. We build the first family of interpreters, each instantiating the same signature,

that evaluate (Section 2), compile (Section 3), and partially evaluate (Section 4)

a typed higher-order object language in a typed metalanguage, in direct and

continuation-passing styles (Section 5).

2. These interpreters use no type tags and need no advanced type-system features

such as GADTs, dependent types, or intensional type analysis. Yet the type

system of the metalanguage assures statically that each object program is

well-typed and closed, and that each interpreter preserves types and never gets

stuck. In particular, our (online) partial evaluator and CPS transformers avoid

GADTs in their implementation and stay portable across Haskell 98 and ML,

by expressing in their interface an inductive map from input types to output

types.

3. Our clean, comparable implementations using OCaml modules and Haskell

type classes show how to parametrize our final representation of object terms

over multiple ways to assign them meanings.

4. We point a clear way to extend the object language with more features such as

state (Section 5.4). Our term encoding is contravariant in the object language,

so extending the language does not invalidate terms already encoded.

5. We show how to use higher-kinded abstraction to build embedded DSLs.

Our code is surprisingly simple and obvious in hindsight, but it has been cited as

a difficult problem (Thiemann 1999 and Sumii & Kobayashi 2001 notwithstanding)

to interpret a typed object language in a typed metalanguage without tagging or

type-system extensions. For example, Taha et al. (2001) say that “expressing such an

interpreter in a statically typed programming language is a rather subtle matter. In

fact, it is only recently that some work on programming type-indexed values in ML

(Yang 2004) has given a hint of how such a function can be expressed.” We discuss

related work in Section 6.
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To reiterate, we do not propose any new language feature or even any new

programming technique. Rather, we solve a problem that was stated in the published

record as open and likely unsolvable in ML or Haskell 98 without extensions, by a

novel combination of simple types and techniques already described in the literature

that use features present in mainstream functional languages. In particular, we

follow Yang’s (2004) encoding of type-indexed values, Sperber’s (1996) and Asai’s

(2001) construction of dynamic terms alongside static terms, and Thiemann’s (1999)

deforestation of syntax constructors. These techniques require just a Hindley-Milner

type system with either module functors or constructor classes, as realized in all

variants of ML and Haskell. The simplicity of our solution and its use of only

mainstream features are virtues that make it more practical to build typed, embedded

DSLs.

However we represent an object term, the representation can be created either by

hand (for example, by entering object terms at a metalanguage interpreter’s prompt)

or by parsing and type-checking text. It is known how to write such a type checker

for a higher-order object language such as ours, whether using fancy types (Pašalić et

al. 2002; Guillemette & Monier 2006) or not (Baars & Swierstra 2002). We ourselves

have implemented a type checker for our object language (in the accompanying

source file IncopeTypecheck.hs), which maps an ordinary syntax tree to (either a

type error or) a finally encoded object term that can then be interpreted in multiple

ways without repeated type checking. We leave this problem aside in the rest of this

paper.

2 The object language and its tagless interpreters

Figure 1 shows our object language, a simply typed λ-calculus with fixpoint, integers,

booleans, and comparison. The language is similar to Plotkin’s PCF (1977). It is also

close to Xi et al.’s (2003), without their polymorphic lift but with more constants

so as to more conveniently express examples. In contrast to Section 1, in the rest of

the paper we use higher-order abstract syntax (HOAS) (Miller & Nadathur 1987;

Pfenning & Elliott 1988) rather than de Bruijn indices to encode binding and ensure

that our object programs are closed. We find HOAS to be more convenient, but we

have also implemented our approach using de Bruijn indices (in Section 2.3 and the

accompanying source file incope-dB.ml).

2.1 How to make encoding flexible: abstract the interpreter

We embed our language in (Meta)OCaml and Haskell. In Haskell, the functions

that construct object terms are methods in a type class Symantics (with a parameter

repr of kind * -> *). The class is named so because its interface gives the syntax

of the object language and its instances give the semantics.

class Symantics repr where

int :: Int -> repr Int

bool :: Bool -> repr Bool
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module type Symantics = sig

type (’s, ’dv) repr

val int : int -> (’c, int) repr

val bool: bool -> (’c, bool) repr

val lam : ((’c, ’da) repr -> (’c, ’db) repr) -> (’c, ’da -> ’db) repr

val app : (’c, ’da -> ’db) repr -> (’c, ’da) repr -> (’c, ’db) repr

val fix : (’x -> ’x) -> ((’c, ’da -> ’db) repr as ’x)

val add : (’c, int) repr -> (’c, int) repr -> (’c, int) repr

val mul : (’c, int) repr -> (’c, int) repr -> (’c, int) repr

val leq : (’c, int) repr -> (’c, int) repr -> (’c, bool) repr

val if_ : (’c, bool) repr

-> (unit -> ’x) -> (unit -> ’x) -> ((’c, ’da) repr as ’x)

end

Fig. 2. A simple (Meta)OCaml embedding of our object language.

lam :: (repr a -> repr b) -> repr (a -> b)

app :: repr (a -> b) -> repr a -> repr b

fix :: (repr a -> repr a) -> repr a

add :: repr Int -> repr Int -> repr Int

mul :: repr Int -> repr Int -> repr Int

leq :: repr Int -> repr Int -> repr Bool

if_ :: repr Bool -> repr a -> repr a -> repr a

For example, we encode the term test1, or (λx. x) true, from Section 1.1 above as

app (lam (\x -> x)) (bool True), whose inferred type is Symantics repr =>

repr Bool. For another example, the classical power function is

testpowfix () = lam (\x -> fix (\self -> lam (\n ->

if_ (leq n (int 0)) (int 1)

(mul x (app self (add n (int (-1))))))))

and the partial application λx. power x 7 is

testpowfix7 () = lam (\x -> app (app (testpowfix ()) x) (int 7))

The dummy argument () above is to avoid the monomorphism restriction, to

keep the type of testpowfix and testpowfix7 polymorphic in repr. Instead of

supplying this dummy argument, we could have given the terms explicit polymorphic

signatures. We however prefer for Haskell to infer the object types for us. We could

also avoid the dummy argument by switching off the monomorphism restriction

with a compiler flag. The methods add, mul, and leq are quite similar, and so are

int and bool. Therefore, we often elide all but one method of each group. The

accompanying code has the complete implementations.

To embed the same object language in (Meta)OCaml, we replace the Symantics

type class and its instances by a module signature Symantics and its implemen-

tations. Figure 2 shows a simple signature that suffices until Section 4. The two

differences are: the additional type parameter ’c, an environment classifier (Taha &

Nielsen 2003) required by MetaOCaml for code generation in Section 3; and the
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module EX(S: Symantics) = struct

open S

let test1 () = app (lam (fun x -> x)) (bool true)

let testpowfix () =

lam (fun x -> fix (fun self -> lam (fun n ->

if_ (leq n (int 0)) (fun () -> int 1)

(fun () -> mul x (app self (add n (int (-1))))))))

let testpowfix7 = lam (fun x -> app (app (testpowfix ()) x) (int 7))

end

Fig. 3. Examples using the embedding in Figure 2 of our object language.

η-expanded type for fix and thunk types in if_ since OCaml is a call-by-value

language. We shorten some of the types using OCaml’s as syntax.

The functor EX in Figure 3 encodes our running examples test1 and the power

function (testpowfix). The dummy argument to test1 and testpowfix is an

artifact of MetaOCaml: in order for us to run a piece of generated code, it must

be polymorphic in its environment classifier (the type variable ’c in Figure 2), so

we must define our object terms as syntactic values to satisfy the value restriction.

(Alternatively, we could have used OCaml’s rank-2 record types to maintain the

necessary polymorphism.)

Thus, we represent an object expression in OCaml as a functor from Symantics

to a semantic domain. This is essentially the same as the constraint Symantics repr

=> in the Haskell embedding.

Comparing Symantics with Figure 1 shows how to represent every well-typed

object term in the metalanguage. We formalize this representation by defining H

and M, two inductive maps from terms and types in our object language to terms

and types in Haskell and OCaml

H(�) = Int M(�) = int

H(�) = Bool M(�) = bool

H(t1→ t2) = H(t1) ->H(t2) M(t1→ t2) = M(t1) ->M(t2) (1)

H(x) = x M(x) = x

H(λx. e) = lam (\x -> H(e)) M(λx. e) = lam (fun x-> M(e))

H(fix f. e) = fix (\f -> H(e)) M(fix f. e) = fix (fun f-> M(e))

H(e1e2) = app H(e1) H(e2) M(e1e2) = app M(e1) M(e2)

H(n) = int n M(n) = int n

H(true) = bool True M(true) = bool true

H(false) = bool False M(false) = bool false

H(if e then e1 else e2) = if_ H(e) H(e1) H(e2)

M(if e then e1 else e2) = if_ M(e) (fun () -> M(e1)) (fun () -> M(e2))

H(e1 + e2) = add H(e1) H(e2) M(e1 + e2) = add M(e1) M(e2)

H(e1 × e2) = mul H(e1) H(e2) M(e1 × e2) = mul M(e1) M(e2)

H(e1 � e2) = leq H(e1) H(e2) M(e1 � e2) = leq M(e1) M(e2) (2)
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These definitions assume that our object language, Haskell, and OCaml use the same

variable names x and integer literals n. If Γ is a typing context x1 : t1, . . . , xn : tn in

the object language, then we define the metalanguage contexts

repr H(Γ) = x1 : repr H(t1), . . . , xn : repr H(tn), (3)

(’c,M(Γ)) repr = x1 : (’c,M(t1)) repr, . . . , xn : (’c,M(tn)) repr. (4)

The following proposition states the trivial but fundamental fact that this repre-

sentation preserves types.

Proposition 1

If an object term e has the type t in the context Γ, then the Haskell term H(e) has

the type repr H(t) in the context

repr : �→ �, Symantics repr, repr H(Γ),

and the OCaml term M(e) has the type (’c,M(t)) repr in the context

S:Symantics, open S, ’c : �, (’c,M(Γ)) repr.

Proof

By structural induction on the derivation in the object language that e has type t

in Γ. �

Corollary 2

If a closed object term e has the type t, then the Haskell term H(e) has the type

forall repr. Symantics repr => repr H(t)

and the OCaml functor

functor (S:Symantics) -> struct open S let term () = M(e) end

has the signature

functor (S:Symantics) -> sig val term: unit -> (’c,M(t)) S.repr end.

Conversely, the type system of the metalanguage checks that the represented

object term is well-typed and closed. If we err, say replace int 7 with bool True

in testpowfix7, the type checker will complain there that the expected type Int

does not match the inferred Bool. Similarly, the object term λx. xx and its encoding

lam (\x -> app x x) both fail occurs-checks in type checking. Both Haskell’s and

MetaOCaml’s type checkers also flag syntactically invalid object terms, such as if

we forget app somewhere above. Because our encoding of terms and types are

so straightforward and metacircular, these error messages from the metalanguage

implementation are just about as readable as those for “native” type errors such as

fun x -> x x.

2.2 Two tagless interpreters

Now that our term representation is independent of any particular interpreter, we

are ready to present a series of interpreters. Each interpreter is an instance of the
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Symantics class in Haskell and a module implementing the Symantics signature in

OCaml.

The first interpreter evaluates an object term to its value in the metalanguage.

The module R below is metacircular in that it runs each object-language operation

by executing the corresponding metalanguage operation.

module R = struct

type (’c,’dv) repr = ’dv (* no wrappers *)

let int (x:int) = x

let bool (b:bool) = b

let lam f = f

let app e1 e2 = e1 e2

let fix f = let rec self n = f self n in self

let add e1 e2 = e1 + e2

let mul e1 e2 = e1 * e2

let leq e1 e2 = e1 <= e2

let if_ eb et ee = if eb then et () else ee ()

end

As in Section 1.3, this interpreter is patently tagless, using neither a universal type

nor any pattern matching: the operation add is really OCaml’s addition, and app

is OCaml’s application. To run our examples, we instantiate the EX functor from

Section 2.1 with R.

module EXR = EX(R)

Thus, EXR.test1 () evaluates to the untagged boolean value true. It is obvious to

the compiler that pattern matching cannot fail, because there is no pattern matching.

Evaluation can only fail to yield a value due to interpreting fix. The soundness of

the object language’s type system with respect to the dynamic semantics specified

by a definitional interpreter follows from the soundness of the metalanguage’s type

system.

Proposition 3

If a closed object term e has type t, and the OCaml module I implements the

signature Symantics, then under the OCaml module definition

module RESULT =

(functor (S:Symantics) -> struct open S let term () = M(e) end)

(I)

evaluating the expression RESULT.term () never gets stuck: it either does not

terminate or evaluates to a value of type (’c,M(t)) I.repr (polymorphic over ’c).

Proof

By Corollary 2 and the type soundness of (this fragment of) OCaml. �
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Corollary 4
If a closed object term e has type t, then under the OCaml module definition

module RESULT =

(functor (S:Symantics) -> struct open S let term () = M(e) end)

(R)

evaluating the expression RESULT.term () never gets stuck: it either does not

terminate or evaluates to a value of type M(t).

For variety, we show another interpreter L, which measures the length of each object

term, defined as the number of term constructors.

module L = struct

type (’c,’dv) repr = int

let int (x:int) = 1

let bool (b:bool) = 1

let lam f = f 0 + 1

let app e1 e2 = e1 + e2 + 1

let fix f = f 0 + 1

let add e1 e2 = e1 + e2 + 1

let mul e1 e2 = e1 + e2 + 1

let leq e1 e2 = e1 + e2 + 1

let if_ eb et ee = eb + et () + ee () + 1

end

Now the OCaml expression let module E = EX(L) in E.test1 () evaluates to 3.

This interpreter is not only tagless but also total. It “evaluates” even seemingly

divergent terms; for instance, app (fix (fun self -> self)) (int 1) evaluates

to 3.

2.3 Higher-order abstract syntax versus de Bruijn indices

Because Haskell and ML allow case analysis on λ-bound variables, one might worry

that our HOAS representation of the object language allows exotic terms and is

thus inadequate. To the contrary, because the representation of an object term

is parametrically polymorphic over the type constructor repr of the interpreter, λ-

bound object variables cannot be case-analyzed. We thus follow Washburn & Weirich

(2008) in “enforcing term parametricity with type parametricity” to represent and

fold over abstract syntax.

Although the rest of this paper continues to represent binding using HOAS,

our approach is compatible with de Bruijn indices. The accompanying source file

incope-dB.ml implements this alternative, starting with the Symantics signature

and the R evaluator in Figure 4. In this encoding of the object language, vz represents

the innermost variable, vs vz represents the second-to-innermost variable, and so

on. The new type argument ’h to repr tracks the type of the environment as a

nested tuple, each of whose components is a value of type (’c,’dv) vr representing

a variable of type ’dv. The evaluator R interprets each object term as a function

from its environment to its value.
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module type Symantics = sig

type (’c,’h,’dv) repr

type (’c,’dv) vr (* variable representation *)

val vz : (’c, (’c,’d) vr * ’h, ’d) repr

val vs : (’c, ’h, ’d) repr -> (’c, _ * ’h, ’d) repr

val int : int -> (’c,’h,int) repr

val bool: bool -> (’c,’h,bool) repr

val lam : (’c, (’c,’da) vr * ’h, ’db) repr -> (’c,’h,’da->’db) repr

val app : (’c,’h,’da->’db) repr -> (’c,’h,’da) repr -> (’c,’h,’db) repr

val fix : (’c, (’c,’da->’db) vr * ’h, ’da->’db) repr

-> (’c, ’h, ’da->’db) repr

val add : (’c,’h,int) repr -> (’c,’h,int) repr -> (’c,’h,int) repr

val mul : (’c,’h,int) repr -> (’c,’h,int) repr -> (’c,’h,int) repr

val leq : (’c,’h,int) repr -> (’c,’h,int) repr -> (’c,’h,bool) repr

val if_ : (’c,’h,bool) repr

-> (unit -> ’x) -> (unit -> ’x) -> ((’c,’h,’da) repr as ’x)

end

module R = struct

type (’c,’h,’dv) repr = ’h -> ’dv

type (’c,’d) vr = ’d

let vz (x,_) = x

let vs v (_,h) = v h

let int (x:int) h = x

let bool (b:bool) h = b

let lam f h = fun x -> f (x,h)

let app e1 e2 h = (e1 h) (e2 h)

let fix f h = let rec self n = f (self,h) n in self

let add e1 e2 h = e1 h + e2 h

let mul e1 e2 h = e1 h * e2 h

let leq e1 e2 h = e1 h <= e2 h

let if_ eb et ee h = if eb h then et () h else ee () h

end

Fig. 4. Embedding and evaluating our object language using de Bruijn indices.

3 A tagless compiler (or, a staged interpreter)

Besides immediate evaluation, we can compile our object language into OCaml

code using MetaOCaml’s staging facilities. MetaOCaml represents future-stage

expressions of type t as values of type (’c, t) code, where ’c is the environment

classifier (Taha & Nielsen 2003; Calcagno et al. 2004). Code values are created by a

bracket form .<e>., which quotes the expression e for evaluation at a future stage.

The escape .~e must occur within a bracket and specifies that the expression e must

be evaluated at the current stage; its result, which must be a code value, is spliced

into the code being built by the enclosing bracket. The run form .!e evaluates the

future-stage code value e by compiling and linking it at run time. Bracket, escape,
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and run are akin (modulo hygiene) to quasi-quotation, unquotation, and eval of

Lisp.

To turn the evaluator R into a simple compiler, we bracket the computation on

values to be performed at run time, then escape the code generation from terms to

be performed at compile time. Adding these stage annotations yields the compiler

module C = struct

type (’c,’dv) repr = (’c,’dv) code

let int (x:int) = .<x>.

let bool (b:bool) = .<b>.

let lam f = .<fun x -> .~(f .<x>.)>.

let app e1 e2 = .<.~e1 .~e2>.

let fix f = .<let rec self n = .~(f .<self>.) n in self>.

let add e1 e2 = .<.~e1 + .~e2>.

let mul e1 e2 = .<.~e1 * .~e2>.

let leq e1 e2 = .<.~e1 <= .~e2>.

let if_ eb et ee = .<if .~eb then .~(et ()) else .~(ee ())>.

end

This is a straightforward staging of module R. This compiler produces unoptimized

code. For example, interpreting our test1 with

let module E = EX(C) in E.test1 ()

gives the code value .<(fun x_6 -> x_6) true>. of inferred type (’c, bool)

C.repr. Interpreting testpowfix7 with

let module E = EX(C) in E.testpowfix7

gives a code value with many apparent β- and η-redexes

.<fun x_1 -> (fun x_2 -> let rec self_3 = fun n_4 ->

(fun x_5 -> if x_5 <= 0 then 1 else x_2 * self_3 (x_5 + (-1)))

n_4 in self_3) x_1 7>.

This compiler does not incur any interpretive overhead: the code produced for λx. x

is simply fun x_6 -> x_6 and does not call the interpreter, unlike the recursive calls

to eval0 and eval in the L e lines in Section 1.1. The resulting code obviously

contains no tags and no pattern matching. The environment classifiers here, like the

tuple types in Section 1.3, make it a type error to run an open expression.

Proposition 5

If an object term e has the type t in the context x1 :t1, . . . , xn :tn, then in a MetaOCaml

environment

open C, x1 �→ .<y1>., . . . , xn �→ .<yn>.

where each yi is a future-stage variable of type M(ti), the MetaOCaml term M(e)

evaluates to a code value, of type (’c,M(t)) code (polymorphic over ’c), that

contains no pattern-matching operations.
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Proof

By structural induction on the typing derivation of e. �

Corollary 6

If a closed object term e has type t, then under the OCaml module definition

module RESULT =

(functor (S:Symantics) -> struct open S let term () = M(e) end)

(C)

the expression RESULT.term () evaluates to a code value, of type (’c,M(t)) code

(polymorphic over ’c), that contains no pattern-matching operations.

We have also implemented this compiler in Haskell. Since Haskell has no

convenient facility for typed staging, we emulate it by defining a data type ByteCode

with constructors such as Var, Lam, App, Fix, and INT. (Alternatively, we could use

Template Haskell (Sheard & Peyton Jones 2002), as our staging facility: ByteCode

can be mapped to the abstract syntax of Template Haskell. The output of our

compiler would then be assuredly type-correct Template Haskell.) Whereas our

representation of object terms uses HOAS, our bytecode uses integer-named variables

to be realistic. We then define

newtype C t = C (Int -> (ByteCode t, Int))

where Int is the counter for creating fresh variable names. We define the compiler

by making C an instance of the class Symantics. The implementation is quite

similar (but slightly more verbose) than the MetaOCaml code given above. (The

implementation uses GADTs because we also wanted to write a typed interpreter

for the ByteCode data type.) The accompanying code gives the full details.

4 A tagless partial evaluator

Surprisingly, this Symantics interface extends to encompass an online partial

evaluator that uses no universal type and no tags for object types. We present

this partial evaluator in a sequence of three attempts to express the types of

residualization and binding-time analysis. Our partial evaluator is a modular

extension of the evaluator in Section 2.2 and the compiler in Section 3, in that

it uses the former to reduce static terms and the latter to build dynamic terms.

4.1 Avoiding polymorphic lift

Roughly, a partial evaluator interprets each object term to yield either a static

(present-stage) term (using the evaluator R) or a dynamic (future-stage) term (using

the compiler C). To distinguish between static and dynamic terms, we might try to

define repr in the partial evaluator as follows. In the phase tags S0 and D0, the digit

zero indicates our initial attempt.

type (’c,’dv) repr = S0 of (’c,’dv) R.repr | D0 of (’c,’dv) C.repr
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To extract a dynamic term from this type, we create the function

let abstrI0 (e : (’c,int) repr) : (’c,int) C.repr =

match e with S0 e -> C.int e | D0 e -> e

and a similar function abstrB0 for dynamic boolean terms. Here, C.int is used to

convert a static term (of type (’c,int) R.repr, which is just int) to a dynamic

term. We can now define the following components required by the Symantics

signature:

let int (x:int) = S0 (R.int x)

let bool (x:bool) = S0 (R.bool x)

let add e1 e2 = match (e1,e2) with

| (S0 e1, S0 e2) -> S0 (R.add e1 e2)

| _ -> D0 (C.add (abstrI0 e1) (abstrI0 e2))

Integer and boolean literals are immediate, present-stage values. Addition yields

a static term (using R.add) if and only if both operands are static; otherwise we

extract the dynamic terms from the operands and add them using C.add.

Whereas mul and leq are as easy to define as add, we encounter a problem

with if_. Suppose that the first argument to if_ is a dynamic term (of type

(’c,bool) C.repr), the second a static term (of type (’c,’a) R.repr), and

the third a dynamic term (of type (’c,’a) C.repr). We then need to convert

the static term to dynamic, but there is no polymorphic “lift” function, of type

’a -> (’c,’a) C.repr, to send a value to a future stage (Taha & Nielsen 2003;

Xi et al. 2003).

Our Symantics signature only includes separate lifting methods bool and int,

not a polymorphic lifting method, for good reason: When compiling to a first-

order target language such as machine code, booleans, integers, and functions may

well be represented differently. Compiling a polymorphic lift function thus requires

intensional type analysis. To avoid needing polymorphic lift, we turn to Sperber’s

(1996) and Asai’s (2001) technique of building a dynamic term alongside every static

term (Sumii & Kobayashi 2001).

4.2 Delaying binding-time analysis

We start building the partial evaluator anew and switch to the data type

type (’c,’dv) repr = P1 of (’c,’dv) R.repr option * (’c,’dv) C.repr

so that a partially evaluated term always contains a dynamic component and

sometimes contains a static component. The two alternative constructors of an

option value, Some and None, tag each partially evaluated term to indicate whether

its value is known statically at the present stage. This tag is not an object type tag:

all pattern matching below is exhaustive. Now that the future-stage component is

always available, we can define the polymorphic function

let abstr1 (P1 (_,dyn) : (’c,’dv) repr) : (’c,’dv) C.repr = dyn
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to extract it without needing polymorphic lift into C. We then try to define the term

combinators—and get as far as the first-order constructs of our object language,

including if_.

let int (x:int) = P1 (Some (R.int x), C.int x)

let add e1 e2 = match (e1,e2) with

| (P1 (Some n1, _), P1 (Some n2, _)) -> int (R.add n1 n2)

| _ -> P1 (None, C.add (abstr1 e1) (abstr1 e2))

let if_ eb et ee = match eb with

| P1 (Some s, _) -> if s then et () else ee ()

| _ -> P1 (None, C.if_ (abstr1 eb) (fun () -> abstr1 (et ()))

(fun () -> abstr1 (ee ())))

However, we stumble on functions. Given how we just defined repr, a partially

evaluated object function, such as the identity λx. x (of type �→ �) embedded

in OCaml as lam (fun x -> x) (of type (’c,int->int) repr), consists of a

dynamic part (of type (’c,int->int) C.repr) and optionally a static part (of type

(’c,int->int) R.repr). The dynamic part is useful when this function is passed to

another function that is only dynamically known, as in λk. k(λx. x). The static part is

useful when this function is applied to a static argument, as in (λx. x)1. Neither part,

however, lets us partially evaluate the function, that is, compute as much as possible

statically when it is applied to a mix of static and dynamic inputs. For example,

the partial evaluator should turn λn. (λx. x)n into λn. n by substituting n for x in

the body of λx. x even though n is not statically known. The same static function,

applied to different static arguments, can give both static and dynamic results: we

want to simplify (λy. x× y)0 to 0 but (λy. x× y)1 to x.

To enable these simplifications, we delay binding-time analysis for a static function

until it is applied, that is, until lam f appears as the argument of app. To do so, we

have to incorporate f as is into lam f: the type (’c,’a->’b) repr should be one

of

S1 of (’c,’a) repr -> (’c,’b) repr | E1 of (’c,’a->’b) C.repr

P1 of ((’c,’a) repr -> (’c,’b) repr) option * (’c,’a->’b) C.repr

unlike (’c,int) repr or (’c,bool) repr. That is, we need a nonparametric

data type, something akin to type-indexed functions and type-indexed types, which

Oliveira & Gibbons (2005) dub the typecase design pattern. Thus, typed partial

evaluation, like typed CPS transformation (see Section 5.1), inductively defines a

map from source types to target types that performs case distinction on the source

type. In Haskell, typecase can be implemented using either GADTs or type-class

functional dependencies (Oliveira & Gibbons 2005). The accompanying code shows

both approaches (Incope.hs and incope1.hs), neither of which is portable to

OCaml. In addition, the problem of nonexhaustive pattern-matching reappears in

the GADT approach because GHC 6.8 and prior cannot see that a particular type

of GADT value precludes certain constructors. Although this is an implementation

issue of GHC, it indicates that assuring exhaustive pattern match with GADTs
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module type Symantics = sig

type (’c,’sv,’dv) repr

val int : int -> (’c,int,int) repr

val bool: bool -> (’c,bool,bool) repr

val lam : ((’c,’sa,’da) repr -> (’c,’sb,’db) repr as ’x)

-> (’c,’x,’da -> ’db) repr

val app : (’c,’x,’da -> ’db) repr

-> ((’c,’sa,’da) repr -> (’c,’sb,’db) repr as ’x)

val fix : (’x -> ’x) -> ((’c, (’c,’sa,’da) repr -> (’c,’sb,’db) repr,

’da -> ’db) repr as ’x)

val add : (’c,int,int) repr -> (’c,int,int) repr -> (’c,int,int) repr

val mul : (’c,int,int) repr -> (’c,int,int) repr -> (’c,int,int) repr

val leq : (’c,int,int) repr -> (’c,int,int) repr -> (’c,bool,bool) repr

val if_ : (’c,bool,bool) repr

-> (unit -> ’x) -> (unit -> ’x) -> ((’c,’sa,’da) repr as ’x)

end

Fig. 5. A (Meta)OCaml embedding of our object language that supports partial evaluation.

requires nontrivial reasoning (beyond the abilities of GHC at the moment); certainly

GADTs fail to make it syntactically apparent that pattern matching is exhaustive.

4.3 The “final” solution

The problem in the last section is that we want to write

type (’c,’dv) repr = P1 of (’c,’dv) static option * (’c,’dv) C.repr

where static is the type function defined by

(’c,int) static = (’c,int) R.repr

(’c,bool) static = (’c,bool) R.repr

(’c,’a->’b) static = (’c,’a) repr -> (’c,’b) repr

Although we can use type classes to define this type function in Haskell, that is not

portable to OCaml. However, the three typecase alternatives of static are already

present in existing methods of Symantics. Thus emerges a simple and portable

solution, if a long-winded one: we bake static into the signature Symantics. In

Figure 2, the repr type constructor took two arguments (’c,’dv); in Figure 5, we

add an argument ’sv for the type (’c,’dv) static.

The interpreters R, L, and C in Sections 2.2 and 3 only use the old type arguments

’c and ’dv, which are treated by the new signature in the same way. Hence, all

that needs to change in these interpreters to match the new signature is to add a

phantom type argument ’sv to repr. For example, the compiler C now begins

module C = struct

type (’c,’sv,’dv) repr = (’c,’dv) code

with the rest the same.
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module P = struct

type (’c,’sv,’dv) repr = {st: ’sv option; dy: (’c,’dv) code}

let abstr {dy = x} = x

let pdyn x = {st = None; dy = x}

let int (x:int ) = {st = Some (R.int x); dy = C.int x}

let bool (x:bool) = {st = Some (R.bool x); dy = C.bool x}

let add e1 e2 = match e1, e2 with

| {st = Some 0}, e | e, {st = Some 0} -> e

| {st = Some m}, {st = Some n} -> int (R.add m n)

| _ -> pdyn (C.add (abstr e1) (abstr e2))

let if_ eb et ee = match eb with

| {st = Some b} -> if b then et () else ee ()

| _ -> pdyn (C.if_ (abstr eb) (fun () -> abstr (et ()))

(fun () -> abstr (ee ())))

let lam f = {st = Some f; dy = C.lam (fun x -> abstr (f (pdyn x)))}

let app ef ea = match ef with

| {st = Some f} -> f ea

| _ -> pdyn (C.app (abstr ef) (abstr ea))

let fix f = let fdyn = C.fix (fun x -> abstr (f (pdyn x)))

in let rec self = function

| {st = Some _} as e -> app (f (lam self)) e

| e -> pdyn (C.app fdyn (abstr e))

in {st = Some self; dy = fdyn}

end

Fig. 6. Our partial evaluator (mul and leq are elided).

Figure 6 shows the partial evaluator P. Its type repr expresses the definition

for static given at the start of this section, with ’sv taking the crucial place of

(’c,’dv) static. The function abstr extracts a future-stage code value from the

result of partial evaluation. Conversely, the function pdyn injects a code value into

the repr type. Thus, abstr and pdyn are like the reify and reflect functions defined

in normalization by evaluation (Danvy 1996), but as in Section 4.2, we build dynamic

terms alongside any static ones to express how the lift function is indexed by the

dynamic type. Analogously, we now build a static type alongside the dynamic type

to express how the static type is indexed by the dynamic type. Thus we establish

a bijection static between static and dynamic types, without defining at the type

level the injection–projection pairs customarily used to establish such bijections for

interpreters (Benton 2005; Ramsey 2005), partial evaluation (Danvy 1996), and type-

level functions (Oliveira & Gibbons 2005). This emulation of type-indexed types is

related to intensional type analysis (Harper & Morrisett 1995; Hinze et al. 2004),

but intensional type analysis cannot handle our fix (Xi et al. 2003).

The static portion of the interpretation of lam f is Some f, which just wraps the

HOAS function f. The interpretation of app ef ea checks to see if ef is such a

wrapped HOAS function. If it is, we apply f to the concrete argument ea, so as to

perform static computations (see the example below). If ef has only a dynamic part,

we residualize.
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To illustrate how to add optimizations, we improve add (and mul, elided) to

simplify the generated code using the monoid (and ring) structure of int: not only

is addition performed statically (using R) when both operands are statically known,

but it is eliminated when one operand is statically 0; similarly for multiplication

by 0 or 1. Although our basic machinery for partial evaluation is independent of

such algebraic simplifications, it makes them easy to add and to abstract over the

specific domains (such as monoid or ring) where they apply. These simplifications

and abstractions help a lot in a large language with more base types and primitive

operations. Incidentally, the accompanying code actually contains a more general

implementation mechanism for such features, inspired in part by previous work in

generative linear algebra (Carette & Kiselyov 2005).

Any partial evaluator must decide how much to unfold recursion statically:

unfolding too little can degrade the residual code, whereas unfolding too much risks

nontermination. Our partial evaluator is no exception, because our object language

includes fix. The code in Figure 6 takes the näıve approach of “going all the way,”

that is, whenever the argument is static, we unfold fix rather than residualize it. A

conservative alternative is to unfold recursion only once, then residualize:

let fix f = f (pdyn (C.fix (fun x -> abstr (f (pdyn x)))))

Many sophisticated approaches have been developed to decide how much to unfold

(Jones et al. 1989, 1993), but this issue is orthogonal to our presentation. A separate

concern in our treatment of fix is possible code bloat in the residual program,

which calls for let-insertion (Bondorf & Danvy 1991).

Given this implementation of P, our running example

let module E = EX(P) in E.test1 ()

evaluates to

{P.st = Some true; P.dy = .<true>.}

of type (’a, bool, bool) P.repr. Unlike with C in Section 3, a β-reduction has

been statically performed to yield true. More interestingly, whereas testpowfix7

compiles to a code value with many β-redexes in Section 3, the partial evaluation

let module E = EX(P) in E.testpowfix7

gives the desired result

{P.st = Some <fun>;

P.dy = .<fun x -> x * (x * (x * (x * (x * (x * x)))))>.}

If the object program does not use fix, then the output of P is β-normal. Also,

P is correct in that, if interpreting an object term using P terminates, then the dy

component of the output is equivalent to the interpretation of the same object term

using C, modulo α-renaming, β-reduction, and algebraic simplification. To prove this

correctness by structural induction on the object term, we need to strengthen the

induction hypothesis to assert that the st component, if not None, is consistent with

the dy component.
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All pattern matching in P is syntactically exhaustive, so it is patent to the

metalanguage implementation that P never gets stuck. Further, P uses pattern

matching only to check if a value is known statically, never to check what type a

value has dynamically. In other words, our partial evaluator tags phases (with Some

and None) but not object types, so it is patent that the output of P never gets stuck.

Our partial evaluator owes much to Thiemann (1999) and Sumii & Kobayashi

(2001), who deforested the object term representation and expressed a partial

evaluator as a collection of term combinators in a typed metalanguage. Like

us, Sumii & Kobayashi follow Sperber (1996) and Asai (2001) in building static

and dynamic terms in tandem, to combine offline and online partial evaluation.

Mogensen’s earlier self-reducers for the untyped λ-calculus (1992, 1995) also build

static and dynamic terms in tandem. However, they build a static term for every

object term, even a bound variable, so they move some work from app to pdyn (in

terms of Figure 6) and remain untyped. In contrast, we follow Sperber, Asai, and

Sumii and Kobayashi in leaving the static term optional, so as to perform lifting

without juggling explicit type indices in the encoding of an object term. The idea

of generating static and dynamic components alongside each other is part of the

tradition that developed partial evaluators such as Schism (Consel 1993, Section 5).

Our contribution to the literature on partial evaluation is to use mere Hindley-

Milner types in the metalanguage to assure statically and patently that partially

evaluating a well-typed object program not only never gets stuck but also, if it

terminates, produces a well-typed output program that never gets stuck. Moreover,

thanks to the online binding-time analysis performed by our partial evaluator (in

contrast to Thiemann’s), these types form an instance of a general Symantics

signature that encompasses other interpreters such as evaluation and compilation.

This early and manifest assurance of type safety contrasts, for example, with compiler

generator (cogen) of Birkedal & Welinder (1993) for ML, which transforms a

program into its tagless generating extension. Because that cogen uses a universal

type, the fact that it never generates an ill-typed generating extension from a

well-typed input program is only manifest when each generating extension is type

checked, and the fact that the generating extension never generates an ill-typed

residual program from well-typed static input is only manifest when each residual

program is type checked. Similarly, the fact that the partial evaluator of Fiore for

(2002) and that of Balat et al. (2004), both of which use delimited control operators,

never turn well-typed code into ill-typed code is not assured by the metalanguage,

whether or not as part of a typed family of interpreter modules.

Our partial evaluator reuses the compiler C and the evaluator R by composing

them. This situation is simpler than Sperber & Thiemann’s composition of a partial

evaluator and a compiler (1997), but the general ideas are similar.

5 Continuation-passing style

Our approach accommodates several variants, including a call-by-name CPS inter-

preter and a call-by-value CPS transformation. Of course, CPS is a well-studied

topic, and Thiemann’s work on program generation (1999) already includes a CPS
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evaluator expressed using combinator functions rather than data constructors. We

focus here on expressing CPS transformations as part of a larger, typed family of

interpreters.

5.1 Call-by-name CPS interpreters

The object language generally inherits the evaluation strategy from the metalanguage

—CBV in OCaml, CBN in Haskell.2 To represent a CBN object language in a

CBV metalanguage, Reynolds (1972, 1974) and Plotkin (1975) introduce CPS to

make the evaluation strategy of a definitional interpreter indifferent to that of the

metalanguage. To achieve the same indifference in the typed setting, we build a CBN

CPS interpreter for our object language in OCaml.

The interpretation of an object term is a function mapping a continuation k to

the answer returned by k.

let int (x:int) = fun k -> k x

let add e1 e2 = fun k -> e1 (fun v1 -> e2 (fun v2 -> k (v1 + v2)))

In both int and add, the interpretation has type (int -> ’w) -> ’w, where ’w is

the (polymorphic) answer type.

Unlike CBV CPS, the CBN CPS interprets abstraction and application as follows:

let lam f = fun k -> k f

let app e1 e2 = fun k -> e1 (fun f -> f e2 k)

Characteristic of CBN, app e1 e2 does not evaluate the argument e2 by applying

it to the continuation k. Rather, it passes e2 unevaluated to the abstraction.

Interpreting λx. x + 1 yields type

((((int -> ’w1) -> ’w1) -> (int -> ’w1) -> ’w1) -> ’w2) -> ’w2

We would like to collect those interpretation functions into a module with

signature Symantics, to include the CBN CPS interpreter within our general

framework. Alas, as in Section 4.2, the type of an object term inductively determines

the type of its interpretation: the interpretation of an object term of type t may

not have type (t->’w)->’w, because t may be a function type. Again we simulate a

type function with a typecase distinction, by changing the type arguments to repr.

Luckily, the type function static needed for the partial evaluator in Section 4.3 is

precisely the same type function we need for CBN CPS, so our CBN interpreter can

match the Symantics signature in Section 4.3, without even using the ’dv argument

to repr.

module RCN = struct

type (’c,’sv,’dv) repr = {ko: ’w. (’sv -> ’w) -> ’w}

let int (x:int) = {ko = fun k -> k x}

let add e1 e2 = {ko = fun k ->

e1.ko (fun v1 -> e2.ko (fun v2 -> k (v1 + v2)))}

2 To be more precise, most Haskell implementations use call-by-need, which is observationally equivalent
to call-by-name because sharing is not observable (Ariola et al. 1995).
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let if_ eb et ee = {ko = fun k ->

eb.ko (fun vb -> if vb then (et ()).ko k else (ee ()).ko k)}

let lam f = {ko = fun k -> k f}

let app e1 e2 = {ko = fun k -> e1.ko (fun f -> (f e2).ko k)}

let fix f = let rec fx f n = app (f (lam (fx f))) n in lam (fx f)

let run x = x.ko (fun v -> v)

end

This interpreter RCN is fully polymorphic over the answer type, using higher-rank

polymorphism through OCaml record types. To avoid this higher-rank polymor-

phism in the core language, we could also define RCN as a functor parameterized

over the answer type.

module RCN(W: sig type w end) = struct

type (’c,’sv,’dv) repr = (’sv -> W.w) -> W.w ...

This alternative is more cumbersome to use because the functor needs to be applied

once for each answer type, but it translates to, for example, Standard ML, whose

core language does not support higher-rank polymorphism.

Because RCN has the signature Symantics, we can instantiate our previous

examples with it, and all works as expected. More interesting is the example

(λx. 1)
(
(fix f. f) 2

)
, which terminates under CBN but not CBV.

module EXS(S: Symantics) = struct open S

let diverg () = app (lam (fun x -> int 1))

(app (fix (fun f->f)) (int 2))

end

Interpreting EXS with the R interpreter of Section 2.2 does not terminate.

let module M = EXS(R) in M.diverg ()

In contrast, the CBN interpreter gives the result 1.

let module M = EXS(RCN) in RCN.run (M.diverg ())

5.2 CBV CPS transformers

Changing one definition turns our CBN CPS interpreter into CBV.

module RCV = struct include RCN

let lam f = {ko = fun k -> k

(fun e -> e.ko (fun v -> f {ko = fun k -> k v}))}

end

Now an applied abstraction evaluates its argument before proceeding. The in-

terpreter RCV is useful for CBV evaluation of the object language whether the

metalanguage is CBV or CBN. To match the same Symantics signature as RCN

above, RCV uses Reynolds’s (1974) CBV CPS transformation, in which variables

denote computations (that is, functions from continuations), rather than Plotkin’s

(1975), in which variables denote values.
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We turn to a more general approach to CBV CPS: a CPS transformer that turns

any implementation of Symantics into a CPS version of that evaluator. This functor

on interpreters performs Plotkin’s (1975) textbook CPS transformation on the object

language.

module CPST(S: Symantics) = struct

let int i = S.lam (fun k -> S.app k (S.int i))

let add e1 e2 = S.lam (fun k -> S.app e1 (S.lam (fun v1 ->

S.app e2 (S.lam (fun v2 ->

S.app k (S.add v1 v2))))))

let lam f = S.lam (fun k -> S.app k

(S.lam (fun x -> f (S.lam (fun k -> S.app k x)))))

let app e1 e2 = S.lam (fun k -> S.app e1 (S.lam (fun f ->

S.app e2 (S.lam (fun v ->

S.app (S.app f v) k)))))

let fix = S.fix

end

This (abbreviated) code explicitly maps CPS interpretations to (direct) interpreta-

tions performed by the base interpreter S.

The module returned by CPST does not define repr and thus does not have

signature Symantics. The reason is again the type of lam f. Whereas int and add

return the (abbreviated) type (’c, ..., (int -> ’w) -> ’w) S.repr, the type

of lam (add (int 1)) is

(’c, ..., ((int -> (int -> ’w1) -> ’w1) -> ’w2) -> ’w2) S.repr

Hence, to write the type equation defining CPST.repr we again need a type function

with a typecase distinction, similar to static in Section 4.3. Alas, the type function

we need is not identical to static, so again we need to change the type arguments

to repr in the Symantics signature. As in Section 4.3, the terms in previous

implementations of Symantics stay unchanged, but the repr type equations in

those implementations have to take a new (phantom) type argument. The verbosity

of these types is the only difficulty in defining a replacement signature for Symantics

which captures that of CPST as well.

For brevity, we just use the module returned by CPST as is. Because it does not

match the signature Symantics, we cannot apply the EX functor to it. Nevertheless,

we can write the tests.

module T = struct

module M = CPST(C)

open M

let test1 () =

app (lam (fun x -> x)) (bool true) (* same as before *)

let testpowfix () = ... (* same as before *)

let testpowfix7 = (* same as before *)

lam (fun x -> app (app (testpowfix ()) x) (int 7))

end
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module type Symantics1 = sig

type ’c dint

type ’c dbool

type (’c,’da,’db) darr

type (’c,’dv) repr

val int : int -> (’c, ’c dint) repr

val bool: bool -> (’c, ’c dbool) repr

val lam : ((’c,’da) repr -> (’c,’db) repr) -> (’c, (’c,’da,’db) darr) repr

val app : (’c, (’c,’da,’db) darr) repr -> (’c, ’da) repr -> (’c, ’db) repr

val fix : (’x -> ’x) -> ((’c, (’c,’da,’db) darr) repr as ’x)

val add : (’c, ’c dint) repr -> (’c, ’c dint) repr -> (’c, ’c dint) repr

val mul : (’c, ’c dint) repr -> (’c, ’c dint) repr -> (’c, ’c dint) repr

val leq : (’c, ’c dint) repr -> (’c, ’c dint) repr -> (’c, ’c dbool) repr

val if_ : (’c, ’c dbool) repr

-> (unit -> ’x) -> (unit -> ’x) -> ((’c, ’da) repr as ’x)

end

Fig. 7. A (Meta)OCaml embedding that abstracts over an inductive map on object types.

We instantiate CPST with the desired base interpreter C, then use the result M to

interpret object terms. Those terms are exactly as before. Having to textually copy

the terms is the price we pay for this simplified treatment.

With CPST instantiated by the compiler C above, T.test1 gives

.<fun x_5 -> (fun x_2 -> x_2 (fun x_3 x_4 -> x_4 x_3))

(fun x_6 -> (fun x_1 -> x_1 true)

(fun x_7 -> x_6 x_7 x_5))>.

This output is a näıve CPS transformation of (λx. x) true, containing several apparent

β-redexes. To reduce these redexes, we just change T to instantiate CPST with P

instead.

{P.st = Some <fun>; P.dy = .<fun x_5 -> x_5 true>.}

5.3 Abstracting over an inductive map on object types

Having seen that each CPS interpreter above matches a differently modified

Symantics signature, one may wonder whether Symantics can be generalized to

encompass them all. The answer is yes: the Symantics1 signature in Figure 7

abstracts our representation of object terms not only over the type constructor repr

but also over the three branches that make up an inductive map, such as static in

Section 4.3, from object types to metalanguage types. The first two branches (for the

object types � and �) become the abstract types dint and dbool, whereas the third

branch (for object types t1→ t2) becomes the new abstract type constructor darr.

Almost every interpreter in this paper can be made to match the Symantics1

signature without changing any terms, by defining dint, dbool, darr, and repr

suitably. For example, the types in the evaluator R and the CBV CPS transformer

CPST should be changed as follows:
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module R = struct

type ’c dint = int

type ’c dbool = bool

type (’c,’da,’db) darr = ’da -> ’db

type (’c,’dv) repr = ’dv ...

module CPST(S: Symantics1)(W: sig type ’c dw end) = struct open W

type ’c dint = ’c S.dint

type ’c dbool = ’c S.dbool

type (’c,’da,’db) darr =

(’c, ’da, (’c, (’c, ’db, ’c dw) S.darr, ’c dw) S.darr) S.darr

type (’c,’dv) repr =

(’c, (’c, (’c, ’dv, ’c dw) S.darr, ’c dw) S.darr) S.repr ...

Modified thus, CPST produces modules that match Symantics1 and can be not only

evaluated or compiled but also transformed using CPST again. The accompanying

source file inco.ml shows the details, including one-pass CPS transformations in

the higher-order style of Danvy & Filinski (1992).

The abstract type constructors in Figure 7 exemplify the amount of polymorphism

that our technique requires of the metalanguage in order to represent a given object

language. Generally, our technique represents term constructions (such as +) by

applying abstract functions (such as add) and represents type constructions (such

as →) and typing judgments (namely ‘:’) by applying abstract type constructors

(such as darr and repr). Therefore, it requires the metalanguage to support enough

polymorphism to abstract over the interpretation of each inference rule for well-typed

terms and well-kinded types. For example, to encode System F’s term generalization

rule

[α : �]
···

e : t

Λα. e : ∀α. t,
the metalanguage must let terms (representing Λα. e) abstract over terms (interpret-

ing Λ) that are polymorphic both over type constructors of kind �→� (representing

t with α free) and over polymorphic terms of type ∀α:� . . . (representing e with α

free). These uses of higher-rank and higher-kind polymorphism let us type check

and compile object terms separately from interpreters. This observation is consistent

with the role of polymorphism in the separate compilation of modules (Shao 1998).

The only interpreter in this paper that does not fit Symantics1 is the partial

evaluator P. It does not fit because it uses two inductive maps on object types—both

’sv and ’dv in Figure 5. We could define a Symantics2 signature to abstract over

two inductive maps over object types; it would include four abstract types and two

abstract type constructors in addition to repr. It would then be easy to turn P into

a functor that returns a Symantics2 module, but the input to P can still only match

Symantics1. This escalation points to a need for either record-kind polymorphism

(so that ’dv in Figure 7 may be more than just one type) or type-indexed types (so

that we do not need to emulate them in the first place).
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!state : ts

e : ts

state← e : ts

e1 : t1

[x : t1]···
e2 : t2

case e1 of x. e2 : t2

Fig. 8. Extending our typed object language with mutable state of type ts.

5.4 State and imperative features

We can modify a CBN or CBV CPS transformation to pass a piece of state

along with the continuation. This technique lets us support mutable state (or more

generally any monadic effect) by representing it using continuations (Filinski 1994).

As Figure 8 shows, we extend our object language with three imperative features.

1. “!state” gets the current state;

2. “state ← e” sets the state to the value of e and returns the previous value of

the state;

3. the let-form “case e1 of x. e2” evaluates e1 before e2 even if e2 does not use x

and even if evaluation is CBN.

The form “case e1 of x. e2” is equivalent to “let” in Moggi’s monadic metalanguage

(1991). If x does not appear in e2, then it is same as the more familiar sequencing

form “e1; e2”. We embed this extended object language into OCaml by extending

the Symantics signature in Figure 5.

module type SymSI = sig

include Symantics

type state

type ’c states (* static version of the state *)

val lapp : ((’c,’sa,’da) repr as ’x) -> (’x -> ’y)

-> ((’c,’sb,’db) repr as ’y)

val deref : unit -> (’c, ’c states, state) repr

val set : ((’c, ’c states, state) repr as ’x) -> ’x

end

In HOAS, we write the term “case e1 of x. e2” as lapp e1 (fun x -> e2); the type

of lapp is that of function application with the two arguments swapped. We can

encode the term “case !state of x. (state← 2; x + !state)” as the OCaml functor

module EXSI_INT(S: SymSI

with type state = int and type ’c states = int) = struct open S

let test1 () = lapp (deref ()) (fun x ->

lapp (set (int 2)) (fun _ -> add x (deref ())))

end

The accompanying source code shows several more tests, including a test for higher-

order state and a power function that uses state as the accumulator.

The state-passing interpreter extends the CBN CPS interpreter RCN of Section 5.1.

https://doi.org/10.1017/S0956796809007205 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809007205


536 J. Carette et al.

module RCPS(ST: sig

type state

type ’c states

type (’c,’sv,’dv) repr =

{ko: ’w. (’sv -> ’c states -> ’w) -> ’c states -> ’w}

end) = struct include ST ...

let lapp e2 e1 = {ko = fun k ->

e2.ko (fun v -> (app (lam e1) {ko = fun k -> k v}).ko k)}

let deref () = {ko = fun k s -> k s s}

let set e = {ko = fun k -> e.ko (fun v s -> k s v)}

let get_res x = fun s0 -> x.ko (fun v s -> v) s0

end

The implementations of int, app, lam, and so on are identical to those of RCN

and elided. New are the extended type repr, which now includes the state, and the

functions lapp, deref, and set representing imperative features. The interpreter

is still CBN, so evaluating app ef ea might not evaluate ea, but evaluating

lapp ea ef always does. For first-order state, such as of type �, we instantiate

the interpreter as

module RCPSI = RCPS(struct

type state = int

type ’c states = int

type (’c,’sv,’dv) repr =

{ko: ’w. (’sv -> ’c states -> ’w) -> ’c states -> ’w}

end)

If the state has a higher-order type, then the types state and ’c states are no

longer the same, and ’c states is mutually recursive with the type

(’c,’sv,’dv) repr, as demonstrated in the accompanying source code.

Because the SymSI signature extends Symantics, any encoding of a term in

the pure object language (that is, any functor that takes a Symantics module as

argument) can also be used as a term in the extended object language (for example,

applied to an implementation of SymSI). In particular, RCPSI matches the Symantics

signature and implements the unextended object language: we can pass RCPSI to

the functor EX (Figure 2) and run the example test1 from there. The main use for

RCPSI is to interpret the extended language.

module EXPSI_INT = EXSI_INT(RCPSI)

let cpsitesti1 = RCPSI.get_res (EXPSI_INT.test1 ()) 100

val cpsitesti1 : int = 102

We reiterate that this implementation adding state and imperative features is very

close to the CPS interpreter and uses no new technique. We can also add mutable

references to the object language using mutable references of the metalanguage, as

shown in the accompanying code. Yet another way to add side effects to the object

language is to write a monadic interpreter (for a specific monad or a general class of
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monads), which can be structured as a module matching the Symantics1 signature

in Figure 7.

6 Related work

Our initial motivation came from several papers that justify advanced type systems,

in particular GADTs, by embedded interpreters (Taha et al. 2001; Pašalić et al.

2002; Xi et al. 2003; Peyton Jones et al. 2006) and CPS transformations (Chen & Xi

2003; Shao et al. 2005; Guillemette & Monnier 2006). We admire all this technical

machinery, but these motivating examples do not need it. Although GADTs may

indeed be simpler and more flexible, they are unavailable in mainstream ML, and

their implementation in GHC 6.8 fails to detect exhaustive pattern matching. We

also wanted to find the minimal set of widespread language features needed for

tagless type-preserving interpretation.

The simply typed λ-calculus can interpret itself, provided we use universal types

(Taha et al. 2001). The ensuing tagging overhead motivated Makholm (2000) and

Taha et al. (2001) to propose tag elimination, which however does not statically

guarantee that all tags will be removed (Pašalić et al. 2002).

Taha et al. (2001), Pašalić et al. (2002), Xi et al. (2003), and Peyton Jones et al.

(2006) seem to argue that a typed interpreter of a typed language cannot be tagless

without advanced types, based on the premise that the only way to encode a typed

language in a typed language is to use a sum type (at some level of the hierarchy).

While the logic is sound, we (following Yang 2004) showed that the premise is not

valid.

Danvy & López (2003) discuss Jones optimality at length and apply HOAS

to typed self-interpretation. However, their source language is untyped. Therefore,

their object-term encoding has tags, and their interpreter can raise run-time errors.

Nevertheless, HOAS lets the partial evaluator remove all the tags. In contrast, our

object encoding and interpreters do not have tags to start with and obviously cannot

raise run-time errors.

Our separation between the Symantics interface and its many implementations

codifies the common practice of implementing an embedded DSL by specifying an

abstract syntax of object-language pervasives, such as addition and application, then

providing multiple interpretations of them. The techniques we use to form such a

family of interpreters find their origins in Holst’s language triplets (1988), though

in an untyped setting. Jones & Nielson (1994) also prefigured this separation when

they decomposed a denotational definition of an untyped object language into a

core semantics (which we call abstract syntax) and multiple interpretations.

In the typed setting, Nielson (1988) expressed families of program analyses on

typed object languages using a typed λ-calculus as a metalanguage; however, the

embeddings of the object language and the analyses are not type-checked in the

metalanguage, unlike with our Symantics signature. When implementing a typed,

embedded DSL, it is also common practice to use phantom types to rule out ill-typed

object terms, as done in Lava (Bjesse et al. 1998) and by Rhiger (2001). However,

these two approaches are not tagless because they still use universal types, such as
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Lava’s Bit and NumSig, and Rhiger’s Raw (his Figure 2.2) and Term (his Chapter 3),

which incur the attendant overhead of pattern matching. The universal type also

greatly complicates the soundness and completeness proofs of embedding (Rhiger

2001), whereas our proofs are trivial. Rhiger’s approach does not support typed CPS

transformation (his Section 3.3.4).

Thiemann & Sperber (1997) implemented a set of binding-time polymorphic

combinators in Gofer, using many constructor classes. By merging all their classes

into one and dropping polymorphic lift, they could have invented Symantics.

We are not the first to implement a typed interpreter for a typed language.

Läufer & Odersky (1993) use type classes to implement a metacircular interpreter of

a typed version of the SK language, which is quite different from our object language.

Their interpreter appears to be tagless, but they could not have implemented a

compiler or partial evaluator in the same way, since they rely heavily on injection–

projection pairs.

Using Haskell, Guillemette & Monnier (2006) implement a CPS transformation

for HOAS terms and statically assure that it preserves object types. They represent

proofs of type preservation as terms of a GADT, which is not sound (as they

admit in Section 4.2) without a separate totality check because any type is trivially

inhabited by a nonterminating term in Haskell. In contrast, our CPS transformations

use simpler types than GADTs and assure type preservation at the (terminating)

type level rather than the term level of the metalanguage. Guillemette & Monnier

review other type-preserving CPS transformations (mainly in the context of typed

intermediate languages), in particular Shao et al.’s (2005) and Chen & Xi’s (2003).

These approaches use de Bruijn indices and fancier type systems with type-level

functions, GADTs, or type-equality proofs.

We encode terms in elimination form, as a coalgebraic structure. Pfenning & Lee

(1991) first described this basic idea and applied it to metacircular interpretation.

Our approach, however, can be implemented in mainstream ML and supports type

inference, typed CPS transformation and partial evaluation. In contrast, Pfenning &

Lee conclude that partial evaluation and program transformations “do not seem to

be expressible” even using their extension to Fω , perhaps because their avoidance of

general recursive types compels them to include the polymorphic lift that we avoid

in Section 4.1.

We could not find work that establishes that the typed λ-calculus has a final

coalgebra structure. Honsell & Lenisa (1995, 1999) investigate the untyped λ-calculus

along this line. Honsell & Lenisa’s bibliography (1999) refers to the foundational

work in this important area. Particularly intriguing is the link to the coinductive

aspects of Böhm trees, as pointed out by Berarducci (1996) and Jacobs (2007,

Example 4.3.4).

Other researchers have very recently realized that it is useful to abstract over

higher-kinded types, like our repr. Moors et al. (2008) put the same power to work

in Scala. Hofer et al. (2008) also use Scala and note that they are influenced by

our work (Carette et al. 2007). Where we have concentrated on multiple efficient

interpretations of the same language, they have concentrated on composing the

languages and interpretations.
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7 Conclusions

We solve the problem of embedding a typed object language in a typed meta-

language without using GADTs, dependent types, or a universal type. Our family

of interpreters includes an evaluator, a compiler, a partial evaluator, and CPS

transformers. It is patent that they never get stuck, because we represent object types

as metalanguage types. This work improves the safety and reduces the overhead of

embedding DSLs in practical metalanguages such as Haskell and ML.

Our main idea is to represent object programs not in an initial algebra but

using the existing coalgebraic structure of the λ-calculus. More generally, to squeeze

more invariants out of a type system as simple as Hindley-Milner, we shift the

burden of representation and computation from consumers to producers: encoding

object terms as calls to metalanguage functions (Section 1.3); build dynamic terms

alongside static ones (Section 4.1); simulating type functions for partial evaluation

(Section 4.3) and CPS transformation (Section 5.1). This shift also underlies fusion,

functionalization, and amortized complexity analysis. When the metalanguage does

provide higher-rank and higher-kind polymorphism, we can type check and compile

an object term separately from any interpreters it may be plugged into.
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