
JFP 19 (5): 491–508, 2009. c© 2009 Cambridge University Press

doi:10.1017/S0956796809990116 Printed in the United Kingdom

491

FUNCTIONAL PEARLS

The Bird Tree

RALF HINZE

Computing Laboratory, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, England

(e-mail: ralf.hinze@comlab.ox.ac.uk)

1 Introduction

Sadly, Richard Bird is stepping down as the editor of the ‘Functional Pearls’ column.

As a farewell present, I would like to dedicate a tree to him. A woody plant is

appropriate for at least two reasons: Richard has been preoccupied with trees in

many of his pearls, and where else would you find a bird’s nest? Actually, there

is a lot of room for nests, as the tree is infinite. Figure 1 displays the first five

levels. The Bird tree, whose nodes are labelled with rational numbers, enjoys several

remarkable properties.

Firstly, it is a fractal object, in the sense that parts of it are similar to the whole.

The Bird tree can be transformed into its left subtree by first incrementing and then

reciprocalising the elements. To obtain the right subtree, we have to interchange the

order of the two steps: the elements are first reciprocalised and then incremented.

This description can be nicely captured by a co-recursive definition, given in the

purely functional programming language Haskell (Peyton Jones 2003):

bird :: Tree Rational

bird = Node 1 (1 / (bird + 1)) ((1 / bird) + 1).

The definitions that make this work are introduced in the next section. For the

moment, it suffices to know that the arithmetic operations are lifted pointwise to

trees. For instance, bird + 1 is the same as map (+1) bird .

Returning to the tree properties, the picture suggests that mirroring the tree yields

its reciprocal, mirror bird = 1 / bird , and this is indeed the case. Furthermore,

consider the sequence of rationals along the left (or the right) spine of the Bird tree.

We discover some old friends: each fraction consists of two consecutive Fibonacci

numbers. In other words, we approximate the golden ratio φ = (1 +
√

5)/2 as we

go down the right spine. The tree also contains the natural numbers. For those, we

have to descend in a zigzag fashion: right, left, right, left and so forth. On the other

hand, if we list the numerators (or denominators) level-wise, we obtain a somewhat

obscure sequence, which is not even listed in Sloane’s ‘On-Line Encyclopedia of

Integer Sequences’ (2009).1

1 I have submitted the sequences, numerators and denominators of bird and its bit-reversal permutation
tree (see Section 3) to the ‘On-Line Encyclopedia of Integer Sequences’ (preliminary A-numbers:
A162909–A162912).

https://doi.org/10.1017/S0956796809990116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990116

492 R. Hinze

1/1

1/2

2/3

3/5

5/8 4/7

3/4

4/5 5/7

1/ 3

1/4

2/7 1/5

2/5

3/7 3/8

2/1

3/ 1

5/2

8/3 7/3

4/1

5/1 7/2

3/2

4/3

7/5 5/4

5/3

7/4 8/5

Fig. 1. The Bird tree.

The most intriguing property of the Bird tree, however, is the following: Like

the Stern–Brocot tree (Graham et al. 1994) or the Calkin–Wilf tree (Calkin & Wilf

2000), it enumerates all the positive rationals. In other words, the tree contains every

positive rational exactly once.

The purpose of this pearl is twofold. First, we shall, of course, justify the claims

made above. Sections 2 and 3 work towards this goal, reviewing the main proof

technique and relating recursive and iterative tree definitions. Section 4 then shows

that the Bird tree and the Stern–Brocot tree are level-wise permutations of each

other. Second, we aim to derive a loopless algorithm for linearising the Bird tree.

Section 6 develops a general algorithm, with Section 5 preparing the ground.

2 Infinite trees, idioms and unique fixed points

In a lazy functional language such as Haskell, infinite trees are easy to define:

data Tree α = Node {root :: α, left :: Tree α, right :: Tree α}.

The type Tree α is a so-called co-inductive datatype. Its definition is similar to the

standard textbook definition of binary trees, except that there is no base constructor,

so we cannot build a finite tree. Since there is no base case, mirror is a one-liner:

mirror :: Tree α→ Tree α

mirror (Node a l r) = Node a (mirror r) (mirror l).

The function mirror like many more to come relies critically on lazy evaluation.

The definition of bird uses + and / lifted to trees. We obtain these liftings almost

for free, as Tree is a so-called applicative functor or idiom (McBride & Paterson

2008):

infixl 9 �
class Idiom φ where

pure :: α→ φ α

(�) :: φ (α→ β)→ (φ α→ φ β)

instance Idiom Tree where

pure a = t where t = Node a t t

t � u = Node ((root t) (root u)) (left t � left u) (right t � right u).

https://doi.org/10.1017/S0956796809990116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990116

Functional pearls 493

The call pure a constructs an infinite tree of as; the idiomatic application � takes a

tree of functions and a tree of arguments to a tree of results.

Every instance of Idiom must satisfy

pure id � u = u (identity)

pure (◦) � u � v � w = u � (v � w) (composition)

pure f � pure x = pure (f x) (homomorphism)

u � pure x = pure (λf → f x) � u , (interchange)

which allow us to rewrite every idiom expression into the form pure f � a1 � · · · � an.

So idioms capture the idea of applying a pure function to ‘impure’ arguments.

We single out two special cases that we will need time and again: map f t =

pure f � t and zip g t u = pure g � t � u . The function zip lifts a binary operator to

an idiomatic structure; for instance, (�) = zip (,) turns a pair of trees into a tree of

pairs. In general, pure f �a1 �· · ·�an lifts an n-ary function pointwise to an idiomatic

structure. Using this ‘idiom’ we can define a generic instance of Num:2

instance (Idiom φ,Num α)⇒ Num (φ α) where

(+) = zip (+)

(−) = zip (−)

(∗) = zip (∗)
negate = map negate

fromInteger = pure ◦ fromInteger .

In this pearl, we consider two idioms, infinite trees and streams. In both cases, the

familiar arithmetic laws also hold for the lifted operators.

Every structure comes equipped with structure-preserving maps; so do idioms: a

map h :: φ α→ ψ α is an idiom homomorphism iff

h (pure a) = pure a (1)

h (x � y) = h x � h y . (2)

The map mirror is an example of an idiom homomorphism; it is even an idiom

isomorphism, since mirror ◦ mirror = id . This fact greatly simplifies reasoning, as

we can, for instance, effortlessly rewrite mirror ((1 / bird) + 1) = mirror (pure (+) �
(pure (/)�pure 1�bird)�pure 1) to pure (+)�(pure (/)�pure 1�mirror bird)�pure 1 =

(1 / mirror bird) + 1.

This is all very well, but how do we prove the idiom and the homomorphism

laws in the first place? It turns out that the type of infinite trees enjoys an attractive

and easy-to-use proof principle. Consider the recursion equation x = Node a l r ,

where l and r possibly contain the variable x but not the expressions root x ,

left x or right x . Equations of this syntactic form possess a unique solution. (Rutten

(2003) shows an analogous statement for streams; the proof, however, can be readily

adapted to infinite trees.) Uniqueness can be exploited to prove that two infinite

2 Unfortunately, this doesn’t quite work with the Standard Haskell libraries, as Num has two superclasses,
Eq and Show , which can’t sensibly be defined generically.

https://doi.org/10.1017/S0956796809990116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990116

494 R. Hinze

trees are equal: if they satisfy the same recursion equation, then they are. The proof

of 1 / bird = mirror bird illustrates the idea:

1 / bird

= { definition of bird }
1 /Node 1 (1 / (bird + 1)) ((1 / bird) + 1)

= { arithmetic }
Node 1 ((1 / (1 / bird)) + 1) (1 / ((1 / bird) + 1))

⊂ { x = Node 1 ((1 / x) + 1) (1 / (x + 1)) has a unique solution }
Node 1 ((1 / mirror bird) + 1) (1 / (mirror bird + 1))

= { mirror is an idiom homomorphism }
Node 1 (mirror ((1 / bird) + 1)) (mirror (1 / (bird + 1)))

= { definition of mirror and bird }
mirror bird .

The link ⊂ indicates that the proof rests on the unique fixed-point principle; the

recursion equation is given within the curly braces. The upper part shows that

1 / bird satisfies the equation x = Node 1 ((1 / x) + 1) (1 / (x + 1)); the lower part

establishes that mirror bird satisfies the same equation. The symbol ⊂ links the two

parts, effectively proving the equality of both expressions. As regards contents, the

proof relies on the facts that 1 is a fixed point of the reciprocal function and that

reciprocal is an involution.

Exercise 1 Using the unique fixed-point principle, show that ‘Tree’ satisfies the idiom

laws and that ‘mirror’ is an idiom homomorphism.

3 Recursion and iteration

The combinator recurse captures recursive or top-down tree constructions; the

functions f and g are repeatedly mapped over the whole tree:

recurse :: (α→ α)→ (α→ α)→ (α→ Tree α)

recurse f g a = t where t = Node a (map f t) (map g t).

Thus, an alternative definition of bird is recurse (recip ◦ succ) (succ ◦ recip) 1, where

recip is the reciprocal function and succ is the successor function.

We can also construct a tree in an iterative or bottom-up fashion; the functions f

and g are repeatedly applied to the given initial seed a:

iterate :: (α→ α)→ (α→ α)→ (α→ Tree α)

iterate f g a = loop a where loop x = Node x (loop (f x)) (loop (g x)).

The type α can be seen as a type of states and the infinite tree as an enumeration

of the state space. One could argue that iterate is more natural than recurse. This

intuition is backed up by the fact that map h ◦ iterate f g is the unfold of the Tree

co-datatype.

https://doi.org/10.1017/S0956796809990116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990116

Functional pearls 495

[]

[0]

[0,0]

[0,0,0] [0,0,1]

[0,1]

[0,1,0] [0,1,1]

[1]

[1,0]

[1,0,0] [1,0,1]

[1,1]

[1,1,0] [1,1,1]

(a) recurse ([0]++) ([1]++) []

[]

[0]

[0,0]

[0,0,0] [1,0,0]

[1,0]

[0,1,0] [1,1,0]

[1]

[0,1]

[0,0,1] [1,0,1]

[1,1]

[0,1,1] [1,1,1]

(b) iterate ([0]++) ([1]++) []

Fig. 2. A tree that contains all bit strings and its bit-reversal permutation tree.

The goal of this section is to turn a recursive definition, such as the one for bird ,

into an iterative one, which can be executed manually to grow a tree. Before we

tackle this problem, we note that both recurse and iterate satisfy a fusion law:

map h ◦ recurse f1 g1 = recurse f2 g2 ◦ h

⇑
h ◦ f1 = f2 ◦ h ∧ h ◦ g1 = g2 ◦ h

⇓
map h ◦ iterate f1 g1 = iterate f2 g2 ◦ h .

Exercise 2 Prove the fusion laws, and then use fusion to give an alternative proof that

1 / bird = mirror bird .

How are recurse f g a and iterate f g a related? Consider Figure 2, which displays

the trees recurse ([0]++) ([1]++) [] and iterate ([0]++) ([1]++) []. Since f and g are

applied in different orders – inside out and outside in – each level of recurse f g a is

the bit-reversal permutation of the corresponding level of iterate f g a . For brevity’s

sake, one tree is called the bit-reversal permutation tree of the other. Can we transform

an instance of recurse into an instance of iterate? Yes, if the two functions are pre-

or post-multiplications of elements of some given monoid. Let us introduce a suitable

type class:

infixr 5 ·
class Monoid α where

ε :: α

(·) :: α→ α→ α.

https://doi.org/10.1017/S0956796809990116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990116

496 R. Hinze

The recursion–iteration lemma then states

recurse (a·) (b·) ε = iterate (·a) (·b) ε, (3)

where a and b are elements of some monoid (M , ·, ε). To establish the lemma, we

show that iterate (·a) (·b) ε satisfies the defining equation of recurse (a·) (b·) ε, that

is t = Node ε (map (a·) t) (map (b·) t):

iterate (·a) (·b) ε

= { definition of iterate }
Node ε (iterate (·a) (·b) (ε · a)) (iterate (·a) (·b) (ε · b))

= { ε · x = x = x · ε }
Node ε (iterate (·a) (·b) (a · ε)) (iterate (·a) (·b) (b · ε))

= { fusion: (x ·) ◦ (·y) = (·y) ◦ (x ·) }
Node ε (map (a·) (iterate (·a) (·b) ε)) (map (b·) (iterate (·a) (·b) ε)).

At first sight, it seems that the applicability of the lemma is somewhat hampered

by the requirement on the form of the two arguments. However, since endomorphisms,

functions of type τ→τ for some τ, form a monoid, we can easily rewrite an arbitrary

instance of recurse into the required form (� is function application below, the

‘apply’ of the identity idiom):

recurse (recip ◦ succ) (succ ◦ recip) 1

= { fusion: id � x = x and (�x) ◦ (f ◦) = f ◦ (�x) }
recurse (recip ◦ succ ◦) (succ ◦ recip ◦) id � 1

= { recursion-iteration lemma }
iterate (◦ recip ◦ succ) (◦ succ ◦ recip) id � 1.

Hooray, we have succeeded in transforming bird into an iterative form! Well,

not quite; one could argue that using functions as the ‘internal state’ is cheating.

Fortunately, we can provide a concrete representation of these functions by viewing

a rational as a pair of numbers. To this end, we introduce a type of vectors:

data Vector =
(

Integer
Integer

)
; i =

(
1
1

)
.

The function rat maps the concrete to the abstract representation:

rat :: Vector → Rational

rat
(

a
b

)
= a ÷ b,

where ÷ constructs a rational from two integers.

Both recip and succ can be easily expressed as vector transformations. In fact,

since they correspond to linear transformations, we can phrase them as matrix

multiplications:

data Matrix =
(

Integer Integer
Integer Integer

)
.

https://doi.org/10.1017/S0956796809990116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990116

Functional pearls 497

We assume the standard vector and matrix operations and take the opportunity to

introduce a handful of matrices that we need later on:

I =
(

1 0
0 1

)
; F =

(
0 1
1 0

)
; =

(
0 1
1 1

)
; =

(
1 0
1 1

)
; =

(
1 1
0 1

)
; =

(
1 1
1 0

)
.

Now, the concrete counterpart of recip is (F∗) and that of succ is (∗). Here, ∗ is

matrix multiplication. As an aside, F is mnemonic for flip, as F ∗X flips X vertically,

and X ∗ F flips X horizontally:

rat ◦ (F∗) = recip ◦ rat (4)

rat ◦
(
∗
)

= succ ◦ rat (5)

Since square matrices with matrix multiplication form a monoid, we can redo the

derivation above in more concrete terms:

recurse (recip ◦ succ) (succ ◦ recip) 1

= { fusion: rat i = 1, (4) and (5) }
map rat

(
recurse ((F∗) ◦ (∗)) ((∗) ◦ (F∗)) i

)
= { (X∗) ◦ (Y∗) = ((X ∗ Y)∗), F ∗ = and ∗ F = }

map rat
(
recurse

(
∗
) (

∗
)

i
)

= { fusion: I ∗ v = v and (∗v) ◦ (X∗) = (X∗) ◦ (∗v) }
map rat

(
map (∗i)

(
recurse

(
∗
) (

∗
)

I
))

= { functor and define mediant = rat ◦ (∗i) }
map mediant

(
recurse

(
∗
) (

∗
)

I
)

= { recursion-iteration lemma }
map mediant

(
iterate

(
∗

) (
∗

)
I
)
.

If we unfold the definition of mediant , we obtain

mediant :: Matrix → Rational

mediant
(

a b
c d

)
= (a + b)÷ (c + d) .

The rational a+b/c+d is the so-called mediant of a/c and b/d, hence the name of the

function. The matrix (a b
c d) can be seen as representing the interval (a/c,

b/d), which

contains the mediant if a/c � b/d.

The iterative formulation of bird explains why the Fibonacci numbers appear on

the two spines. The initial state is (1 0
0 1); the state is updated as follows:

(
b a + b
d c + d

)
=

(
a b
c d

)
∗ ←�

(
a b
c d

)
�→

(
a b
c d

)
∗ =

(
a + b a
c + d c

)
.

Each row implements the iterative Fibonacci algorithm, which maintains two

consecutive Fibonacci numbers. After n steps, we obtain

n
=

(
Fn−1 Fn

Fn Fn+1

)
n

=
(

Fn+1 Fn

Fn Fn−1

)
,

where Fn is the nth Fibonacci number with F−n = (−1)n+1 ∗ Fn .

https://doi.org/10.1017/S0956796809990116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990116

498 R. Hinze

1/1

1/2

1/3

1/4

1/5
2/7

2/5

3/8
3/7

2/3

3/5

4/7
5/8

3/4

5/7
4/5

2/1

3/2

4/3

5/4
7/5

5/3

8/5
7/4

3/1

5/2

7/3
8/3

4/1

7/2
5/1

Fig. 3. The Stern-Brocot tree

Exercise 3 Formalise the claim above. You may want to peek at Section 5 first, which

introduces infinite lists. (Hint: define a function spine :: Tree α→ Stream α that maps

a tree on to its left or right spine.)

4 The Stern–Brocot tree

There are many ways to enumerate the positive rationals. Probably the oldest method

was found around 1850 by the German mathematicians Eisenstein and Stern. It is

deceptively simple: start with the two ‘boundary rationals’ 0/1 and 1/0, which are not

included in the enumeration, and then repeatedly insert the mediant a+b/c+d between

two adjacent rationals a/c and b/d.

Since the number of inserted rationals doubles with every step, the process can be

pictured by an infinite binary tree, the so-called Stern–Brocot tree3 (see Figure 3).

Quite remarkably, each level shown is a permutation of the corresponding level of

the Bird tree. The purpose of this section is to verify this observation, which implies

that the Bird tree also contains every positive rational once.

Before we work out the relationship, let us turn the informal description of

the Stern–Brocot tree into a program. This is most easily accomplished if we first

construct a tree of intervals, represented by 2×2 matrices, and then map the intervals

to their mediants. The start interval is now (0 1
1 0); the interval is updated as follows:

(
a b
c d

)
∗ =

(
a a + b
c c + d

)
←�

(
a b
c d

)
�→

(
a + b b
c + d d

)
=

(
a b
c d

)
∗ .

The left bound of the left descendent is the original left bound; the right bound is

the mediant of the two original bounds. Likewise for the right descendent.

So the verbal description corresponds to an iterative construction, in which the

state is an interval. Using a derivation inverse to the one in the preceding section,

we can turn the verbal description into a compact co-recursive definition:

map mediant
(
iterate

(
∗

) (
∗

)
F

)
= { fusion: I ∗ F = F, F ∗ = ∗ F and F ∗ = ∗ F }

map mediant
(
map (∗F)

(
iterate

(
∗

) (
∗

)
I
))

3 The French clockmaker Brocot discovered the method around 1860, independent of Eisenstein and
Stern.

https://doi.org/10.1017/S0956796809990116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990116

Functional pearls 499

= { functor and mediant ◦ (∗F) = mediant }
map mediant

(
iterate

(
∗

) (
∗

)
I
)

= { recursion-iteration lemma }
map mediant

(
recurse

(
∗
) (

∗
)

I
)

= { fusion: I ∗ v = v and (∗v) ◦ (X∗) = (X∗) ◦ (∗v) }
map rat

(
recurse

(
∗
) (

∗
)

i
)

= { F ∗ ∗ F = }
map rat

(
recurse

(
F ∗ ∗ F∗

) (
∗
)

i
)

= { fusion: rat i = 1, (4) and (5) }
recurse (recip ◦ succ ◦ recip) succ 1.

If we unfold the definitions, we obtain the following co-recursive program:

stern-brocot :: Tree Rational

stern-brocot = Node 1 (1 / (1 / stern-brocot + 1)) (stern-brocot + 1).

The definition is tantalisingly close to the definition of bird . As an aside,

the derivation above also provides a formula for the bit-reversal permutation

tree of stern-brocot, the so-called Calkin–Wilf or Eisenstein–Stern tree. We

simply replace recurse by iterate, obtaining iterate (recip ◦ succ ◦ recip)

succ 1.

We have already observed that bird and stern-brocot are level-wise permuta-

tions of each other. Looking a bit closer, we notice that the natural numbers

are located on the right spine of the Stern–Brocot tree, whereas the Fibonacci

fractions that approach the golden ratio 1/1,
2/1,

3/2,
5/3,

5/8, etc. appear on a

zigzag path. Recalling that it was the other way round in the Bird tree, we

conjecture

odd-mirror bird = stern-brocot (6)

odd-mirror stern-brocot = bird , (7)

where odd-mirror swaps the immediate subtrees of a node but only on odd

levels:

even-mirror, odd-mirror :: Tree α→ Tree α

odd-mirror (Node a l r) = Node a (even-mirror l) (even-mirror r)

even-mirror (Node a l r) = Node a (odd-mirror r) (odd-mirror l).

Since odd-mirror and even-mirror are involutions, it suffices to prove one of the

equations above; we pick the first one (6). Let us introduce some shortcuts so that

the expressions still fit on one line: We abbreviate map recip by r , map (recip ◦ succ)

by rs and so forth. Furthermore, e is shorthand for even-mirror bird and likewise o

for odd-mirror bird . Finally, we abbreviate stern-brocot by sb:

o

= { definition of bird and odd-mirror, naturality of even-mirror }
Node 1 (rs e) (sr e)

https://doi.org/10.1017/S0956796809990116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990116

500 R. Hinze

= { definition of bird and even-mirror, naturality of odd-mirror }
Node 1 (rs (Node 1 (sr o) (rs o))) (sr (Node 1 (sr o) (rs o)))

= { definition of rs and sr }
Node 1 (Node 1/2 (rssr o) (rsrs o)) (Node 2/1 (srsr o) (srrs o))

⊂ { x = Node 1 (Node 1/2 (rssr x) (rsrs x)) (Node 2/1 (srsr x) (srrs x)) }
Node 1 (Node 1/2 (rssr sb) (rsrs sb)) (Node 2/1 (srsr sb) (srrs sb))

= { recip is an involution: rssr = rsrrsr and srrs = ss }
Node 1 (Node 1/2 (rsrrsr sb) (rsrs sb)) (Node 2/1 (srsr sb) (ss sb))

= { definition of rsr and s }
Node 1 (rsr (Node 1 (rsr sb) (s sb))) (s (Node 1 (rsr sb) (s sb)))

= { definition of sb }
Node 1 (rsr sb) (s sb)

= { definition of sb }
sb.

5 Linearising the Stern–Brocot tree

Now, let us consider linearising the Bird tree. As a warm-up exercise, this section

demonstrates how to linearise the Stern–Brocot tree. This has been done several

times before (Gibbons et al. 2006; Backhouse & Ferreira 2008), but we believe that

the co-data framework is particularly suited to this task, so it is worthwhile to

repeat the exercise. Technically, we aim to derive a loopless algorithm (Bird 2006)

for enumerating the elements of stern-brocot. An enumeration is called loopless if

the next element is computed from the previous one in constant time and, for this

pearl, in constant space.

Since we have to transform an infinite tree into an infinite list, let us introduce a

tailor-made co-datatype for the latter (Hinze 2008):

data Stream α = Cons {head :: α, tail :: Stream α}

infixr 5 ≺
(≺) :: α→ Stream α→ Stream α

a ≺ s = Cons a s .

The type of streams is similar to Haskell’s predefined type of lists, except that there

is no empty list constructor, so we cannot form a finite list.

Like infinite trees, streams are an idiom, which means that we can effortlessly lift

functions to streams:

instance Idiom Stream where

pure a = s where s = a ≺ s

s � t = (head s) (head t) ≺ (tail s) � (tail t).

Like infinite trees, streams can be built recursively or iteratively. We overload recurse

https://doi.org/10.1017/S0956796809990116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990116

Functional pearls 501

and iterate to also denote the combinators on streams:

recurse :: (α→ α)→ (α→ Stream α)

recurse f a = s where s = a ≺ map f s

iterate :: (α→ α)→ (α→ Stream α)

iterate f a = a ≺ iterate f (f a).

Unlike the tree combinators, recurse and iterate construct exactly the same stream:

we have recurse f a = iterate f a .

Exercise 4 Show that iterate f a satisfies the recursion equation of recurse f a. (Hint:

Formulate a fusion law first.)

To convert a tree to a stream, we define a helper function that chops the root off

a tree:

stream :: Tree α→ Stream α

stream t = root t ≺ stream (chop t)

chop :: Tree α→ Tree α

chop t = Node (root (left t)) (right t) (chop (left t)).

In a sense, root is the counterpart of head and chop is the counterpart of tail .

Infinite trees and streams are both very regular structures, so it probably comes as

little surprise that stream is an idiom isomorphism.

Exercise 5 Show that ‘stream’ is an idiom isomorphism and that ‘chop’ is an idiom

homomorphism.

Let’s have a closer look at the workings of stream: it outputs the elements of its

argument tree level by level. However, since chop repeatedly swaps the left and

the right subtree, each level is output in bit-reversal permutation order. In other

words, stream stern-brocot actually linearises the Calkin–Wilf tree. We return to

this point later on. The enumeration stream t is not loopless: to produce the next

element, stream t takes time linear in the depth of the element in the tree and space

proportional to the width of the current level. So turning stream stern-brocot into a

loopless algorithm requires some effort.

As a first step towards this goal, let us disentangle stern-brocot into a tree of

numerators and denominators. Given the specification

num ÷ den = stern-brocot, (8)

where ÷ is lifted to trees, we reason as follows:

num ÷ den

= { specification and definition of stern-brocot }
Node 1 (1 / (1 / (num ÷ den) + 1)) (num ÷ den + 1)

= { arithmetic }
Node (1÷ 1) (num ÷ (num + den)) ((num + den)÷ den)

https://doi.org/10.1017/S0956796809990116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990116

502 R. Hinze

= { definition of ÷ lifted to trees }
(Node 1 num (num + den))÷ (Node 1 (num + den) den) .

Thus, num and den defined by

num = Node 1 num (num + den)

den = Node 1 (num + den) den

satisfy the specification. The two definitions are pleasingly symmetric; in fact, we

have den = chop num . In other words, we can confine ourselves to linearising den;

that is we seek to express chop den in terms of den and possibly num . To see what

we are aiming for, let us unroll chop den:

chop den = Node 2 den (den + chop den).

This is almost the sum of num and den:

num + den − chop den = Node 0 (2 ∗ num) (num + den − chop den) .

The difference between num +den and chop den equals 2∗x , where x is the solution

of x = Node 0 num x . Have we made any progress? Somewhat surprisingly, the

answer is yes. By a stroke of good luck, the unique solution x of the equation above

is num mod den , as a quick calculation shows:

num mod den

= { definition of num and definition of den }
(Node 1 num (num + den)) mod (Node 1 (num + den) den)

= { definition of mod lifted to trees }
Node (1 mod 1) (num mod (num + den)) ((num + den) mod den)

= { properties of mod }
Node 0 num (num mod den) .

As an intermediate summary, we have derived

fusc = 1 ≺ fusc′

fusc′ = 1 ≺ fusc + fusc′ − 2 ∗ (fusc mod fusc′),

where fusc = stream num is the stream of numerators and fusc′ = stream den =

tail fusc is the stream of denominators. (The name fusc is due to Dijkstra (1976).)

Both streams are given by recursive definitions. It is a simple exercise to turn them

into iterative definitions. Tupling fusc and fusc′ using (�) = zip (,), we obtain

fusc � fusc′

= { definition of fusc and definition of fusc′ }
(1 ≺ fusc′) � (1 ≺ fusc + fusc′ − 2 ∗ (fusc mod fusc′))

= { definition of � and definition of zip }
(1, 1) ≺ fusc′ � (fusc + fusc′ − 2 ∗ (fusc mod fusc′))

https://doi.org/10.1017/S0956796809990116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990116

Functional pearls 503

= { idioms, and introduce step (n , d) = (d , n + d − 2 ∗ (n mod d)) }
(1, 1) ≺ map step (fusc � fusc′) .

Since iterate f a is the unique solution of the recursion equation x = a ≺ map f x ,

we have fusc � fusc′ = iterate step (1, 1). The following calculations summarise our

findings:

stream stern-brocot

= { see above }
stream (num ÷ den)

= { stream is an idiom homomorphism }
stream num ÷ stream den

= { see above }
fusc ÷ fusc′

= { idioms, and introduce rat ′ (n , d) = n ÷ d }
map rat ′ (fusc � fusc′)

= { see above }
map rat ′ (iterate step (1, 1)).

As a final step, we can additionally fuse rat ′ with iterate, employing the following

formula:

1 / (�n ÷ d�+ 1− {n ÷ d}) = d ÷ (n + d − 2 ∗ (n mod d)).

Here, �r� denotes the integral part of r and {r} its fractional part, such that

r = �r�+ {r}. Continuing the calculation, we obtain

= { fusion, and introduce next r = 1 / (�r�+ 1− {r}) }
iterate next 1.

This intriguing algorithm is attributed to Newman (Aigner & Ziegler 2004); the

formula for step is apparently due to Stay (Sloane 2009; sequence A002487).

Can we derive a similar algorithm for stream bird? The answer is probably no.

The next section explains why.

6 Linearising the Bird tree and some others

Now that we have warmed up, let’s become more ambitious: the goal of this

section is to derive a loopless algorithm for enumerating the elements of the infinite

tree ab = recurse (a·) (b·) ε, where a and b are elements of some given monoid.

Unfortunately, we will not quite achieve our goal: the step function will run in

amortised constant time, based on the assumption that the monoid operation ‘·’ runs

in constant time. Or put differently, it will use a constant number of ‘·’ operations

amortised over time.

Now, the call stream ab yields

ε ≺ a ≺ b ≺ a · a ≺ b · a ≺ a · b ≺ b · b ≺ a · a · a ≺ · · · .

https://doi.org/10.1017/S0956796809990116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990116

504 R. Hinze

On the face of it, calculating the next element in stream ab corresponds to the binary

increment: bi · a · w becomes ai · b · w , and bi becomes ai+1.

In contrast to the binary increment, we can’t examine the elements, since we are not

working with the free monoid – after all, the elements a and b could be functions. Of

course, if we don’t make any additional assumptions about the underlying structure,

then we simply can’t calculate the next from the previous element. In order to

support incremental computations, we assume that each element has an inverse;

that is we are working with a group rather than a monoid:

class (Monoid α)⇒ Group α where

inverse :: α→ α

(^) :: α→ Integer → α.

The class Group additionally supports exponentiation, which we assume defaults to a

logarithmic implementation. We abbreviate a^n by an ; in particular, inverse a = a−1.

Now, to get from bi · a · w to ai · b · w , we simply pre-multiply the former

element with (ai · b) · (bi · a)−1. If the current element is bi , then we cannot reuse

any information, and we compute ai+1 afresh. Still, there is no way to inspect the

elements, so we have to maintain some information: the number i of leading bs

and whether the current element contains only bs. It turns out that the calculations

are slightly more attractive, if we maintain the number of leading as of the next

element. Given this information, the next element can be computed as follows:

〈c, i , x〉 | c = ai

| otherwise = ai · b · a−1 · b−i · x .

The required pieces of information can be easily defined using infinite trees:

rim = Node True (pure False) rim

carry ′ = Node 1 0 (1 + carry ′).

Abbreviating map (x ·) s by x · s , we have ab = Node ε (a · ab) (b · ab). Only the

elements on the right spine of ab contain only bs. Consequently, rim ’s right spine is

labelled with Trues, and all the other elements are False. To motivate the definition

of carry ′, let’s unfold chop ab:

chop ab

= { definition of chop }
Node (root (left ab)) (right ab) (chop (left ab))

= { definition of ab }
Node a (b · ab) (chop (a · ab))

= { chop is an idiom homomorphism }
Node a (b · ab) (a · chop ab).

The root contains one leading a , the left subtree none and each element of the right

subtree one more than the corresponding element in the entire tree. The definition

of carry ′ exactly captures this description.

https://doi.org/10.1017/S0956796809990116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990116

Functional pearls 505

Lifting the ternary operation 〈−, −, −〉 to infinite trees, we claim that 〈rim , carry ′,

ab〉 = chop ab. The proof makes essential use of the shift property

〈c, i + 1, x〉 = a · 〈c, i , b−1 · x〉, (9)

which expresses the straightforward fact that we can pull an a to the front if

the next element has at least one leading a . Turning to the proof, we show that

〈rim , carry ′, ab〉 satisfies the same recursion equation as chop as , namely x =

Node a (b · ab) (a · x):

〈rim , carry ′, ab〉
= { definition of rim , definition of carry ′ and definition of ab }
〈Node True (pure False) rim , Node 1 0 (carry ′ + 1), Node ε (a · ab) (b · ab)〉

= { definition of 〈−, −, −〉 lifted to trees }
Node 〈True, 1, ε〉 〈pure False, 0, a · ab〉 〈rim , carry ′ + 1, b · ab〉

= { definition of 〈−, −, −〉 and (9) }
Node a (b · a−1 · a · ab) (a · 〈rim , carry ′, b−1 · b · ab〉)

= { inverses }
Node a (b · ab) (a · 〈rim , carry ′, ab〉.

So we have reduced the problem of linearising ab to the problem of linearising rim

and carry ′. Are we any better off? Certainly, rim isn’t difficult to enumerate, but what

about carry ′? By a second stroke of good luck, there is an intriguing cross-connection

to the Stern–Brocot tree: carry ′ = �stern-brocot� = �num / den� = num div den . Here

is the straightforward proof:

num div den

= { definition of num and definition of den }
(Node 1 num (num + den)) div (Node 1 (num + den) den)

= { definition of div lifted to trees }
Node (1 div 1) (num div (num + den)) ((num + den) div den)

= { definition of div and num � 1 � den }
Node 1 0 ((num div den) + 1).

Exercise 6 Show that rim = den 1, where is equality lifted to trees, that is

has type (Eq α)⇒ Tree α→ Tree α→ Tree Bool .

In other words, we can reuse the results of the previous section to solve the more

general problem of turning ab into a stream:

stream ab

= { definition of stream }
root ab ≺ stream (chop ab)

= { see above and Exercise 6 }

https://doi.org/10.1017/S0956796809990116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990116

506 R. Hinze

ε ≺ stream 〈den 1, num div den , ab〉
= { introduce ⊗ with (n , d)⊗ x = 〈d 1, n div d , x〉 }

ε ≺ stream ((num � den)⊗ ab)

= { stream is an idiom homomorphism }
ε ≺ stream (num � den)⊗ stream ab

= { Section 5 }
ε ≺ iterate step (1, 1)⊗ stream ab.

All that is left to do is to express stream ab = ε ≺ iterate step (1, 1)⊗ stream ab as

an iteration. This is easy to achieve using tupling. Let q = (1, 1); then

iterate step q � stream ab

= { definition of iterate and property of stream ab }
(q ≺ map step (iterate step q)) � (ε ≺ iterate step q ⊗ stream ab)

= { definition of � and definition of zip }
(q , ε) ≺ map step (iterate step q) � (iterate step q ⊗ stream ab)

= { idioms and introduce step ′ (x , y) = (step x , x ⊗ y) }
(q , ε) ≺ map step ′ (iterate step q � stream ab).

Recalling that iterate f e is the unique solution of the equation x = e ≺ map f x , we

have established that iterate step q � stream ab = iterate step ′ (q , ε) and furthermore

that stream ab = map snd (iterate step ′ (q , ε)).

The following definition summarises the derivation – we have additionally inlined

the definitions and flattened the nested pair (q , ε) to a triple:

loopless :: (Group α)⇒ α→ α→ Stream α

loopless a b = map (λ(x , y , z)→ z) (iterate step3 (1, 1, ε))

where

step3 (n , d , x) = (d , n + d − 2 ∗ m , x ′)

where (i ,m) = divMod n d

x ′ | d 1 = ai

| otherwise = ai · b · a−1 · b−i · x .

Assuming that the operation ‘·’ has a constant running time, the function step3 takes

Θ(log log(n + 1)) steps to produce the (n + 1)st element from the nth element: the

exponent i in the definition of step3 is at most �lg(n+ 1)�, and fast exponentiation

uses at most 2�lg(i + 1) − 1� multiplications. The amortised running time of step3

would be, however, constant, even if exponentiation were implemented naively; step3

would then perform the same number of steps as the binary increment.

Linearising the Bird tree is now simply a matter of applying loopless . First of all,

the set of all invertible square matrices forms a group, the so-called general linear

group GLn(�) – if the coefficients are drawn from �. Since and have the

determinant −1, they are both invertible in GL2(�), and we have

https://doi.org/10.1017/S0956796809990116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990116

Functional pearls 507

stream bird

= { Section 3 }
stream (map mediant (recurse (∗) (∗) I))

= { stream is an idiom homomorphism }
map mediant (stream (recurse (∗) (∗) I))

= { see above }
map mediant (loopless) .

Done! Well, not quite: because of the way stream is defined, the program above

actually enumerates the elements of the bit-reversal permutation tree of bird . We

should really linearise recurse (∗) (∗) I instead of recurse (∗) (∗) I. Of course,

loopless can be adapted to work with pre- instead of post-multiplications, but

fortunately, there is a more modular approach. Using matrix transposition (−)� we

can put recurse (∗) (∗) I into the required form:

stream (map mediant (recurse (∗) (∗) I))

= { I� = I,
�

= and
�

= }
stream (map mediant (recurse (∗ �

) (∗ �
) I�))

= { fusion: (X ∗ Y)� = Y� ∗ X� }
stream (map mediant (map transpose (recurse (∗) (∗) I)))

= { functor and see above }
map (mediant ◦ transpose) (loopless).

Can we improve the running time of the final program? If we managed to determine

Xi in constant time, then loopless could be turned into a true loopless algorithm.

Recall the findings of Section 3:

n
=

(
Fn−1 Fn

Fn Fn+1

)
n

=
(

1 0
n 1

)
n

=
(

1 n
0 1

)
n

=
(

Fn+1 Fn

Fn Fn−1

)
.

The Stern–Brocot tree and the Calkin–Wilf tree can indeed be enumerated looplessly,

as both involve only and – Backhouse and Ferreira derive these special cases

in (2008). However, since we can’t compute the Fibonacci numbers in constant time,

this doesn’t work for the Bird tree. Indeed, the fastest algorithm for computing Fn

involves calculating
n

using fast exponentiation.

Acknowledgments

Thanks are due to Roland Backhouse, Jeremy Gibbons, Daniel James and Tom

Harper for carefully proofreading a previous version of this paper. I am furthermore

grateful to the anonymous referees for many helpful suggestions, in particular, for

insisting on a roadmap. Finally, I would like to thank Richard for many years of

inspiration and support.

https://doi.org/10.1017/S0956796809990116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990116

508 R. Hinze

References

Aigner, M. & Ziegler, G. M. (2004) Proofs from THE BOOK , 3rd edn. Springer-Verlag.

Backhouse, R. & Ferreira, J. F. (2008) Recounting the rationals: Twice!, In The 9th

International Conference on Mathematics of Program Construction (MPC ’08), Audebaud,

P. & Paulin-Mohring, C. (eds), Lecture Notes in Computer Science, vol. 5133. Springer,

pp. 79–91.

Bird, R. S. (2006) Loopless functional algorithms. In The 8th International Conference on

Mathematics of Program Construction (MPC ’06), Uustalu, T. (ed.), Lecture Notes in

Computer Science, vol. 4014. Springer, pp. 90–114.

Calkin, N. & Wilf, H. (2000) Recounting the rationals, Am. Math. Monthly, 107 (4): 360–363.

Dijkstra, E. W. (1976) EWD 570: An exercise for Dr. R. M. Burstall. In Selected Writings

on Computing: A Personal Perspective, Dijkstra, E. W. Springer, pp. 215–216. ISBN 0–387–

90652–5.

Gibbons, J., Lester, D. & Bird, R. (2006) Functional pearl: Enumerating the rationals,

J. Funct. Program., 16 (3): 281–291.

Graham, R. L., Knuth, D. E. & Patashnik, O. (1994) Concrete Mathematics, 2nd ed. Addison-

Wesley.

Hinze, R. (2008) Functional pearl: Streams and unique fixed points. In Proceedings of the

13th ACM SIGPLAN International Conference on Functional Programming (ICFP ’08),

Thiemann, P. (ed.). ACM Press, pp. 189–200.

McBride, C. & Paterson, R. (2008) Functional pearl: Applicative programming with effects,

J. Funct. Program., 18 (1): 1–13.

Peyton Jones, S. (2003) Haskell 98 Language and Libraries. Cambridge University Press.

Rutten, J. (2003) Fundamental study: Behavioural differential equations: A coinductive

calculus of streams, automata, and power series, Theoret. Comp. Sci., 308: 1–53.

Sloane, N. J. A. (2009) The on-line encyclopedia of integer sequences [online]. Available at:

http://www.research.att.com/∼njas/sequences/ (Accessed 17 July 2009).

https://doi.org/10.1017/S0956796809990116 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796809990116

