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Abstract

Using an embedded, interpreted language to control a complicated application can have significant
software-engineering benefits. But existing interpreters are designed for embedding into C code. To
embed an interpreter into a different language requires an API suited to that language. This paper
presents Lua-ML, a new API that is suited to languages that provide higher-order functions and
types. The API exploits higher-order functions and types to reduce the amount of glue code needed
to use an embedded interpreter. Where embedding in C requires a special-purpose “glue function” for
every function to be embedded, embedding in Lua-ML requires only a description of each function’s
type. Lua-ML also makes it easy to define a Lua function whose behavior depends on the number
and types of its arguments.

1 Introduction

Suppose you have an application written in a statically typed, compiled language such as C,
C++, or ML. If the application is complicated, like a web server or an optimizing compiler,
it will have lots of potential configurations and behaviors. How are you to control it?
If you use command-line arguments, you may find yourself writing an interpreter for an
increasingly complicated language of command-line arguments. If you use a configuration
file, you will find yourself defining, parsing, and interpreting its syntax.

A better idea, which we owe to Ousterhout (1990), is to create a reusable language
designed just for configuring and controlling application programs, i.e., for scripting. Mak-
ing a scripting language reusable means making it easy to embed its interpreter into an
application. An application that uses an embedded interpreter is written in two languages.
Most code is written in the original, host language (e.g., C, C++, or ML). But key parts can
be written in the embedded language. This organization has several benefits:

• Complex command-line arguments aren’t needed; the embedded language can be
used on the command line.

• A configuration file can be replaced by a program in the embedded language.
• The application can be controlled by an interactive loop that uses the embedded

language.
• The application programmer need not write code to lex, parse, or evaluate command-

line arguments or configuration files; these tasks are handled by the embedded inter-
preter.
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To gain these benefits, the major effort required is the effort of writing the glue code that
grants control of the host application to the embedded language.

The benefits above were first demonstrated by Tcl (Ousterhout, 1990), which was fol-
lowed by embedded implementations of other languages, including Python, Perl, and sev-
eral forms of Scheme (Benson, 1994; Laumann & Bormann, 1994; Jenness & Cozens,
2002; van Rossum, 2002), as well as by another language designed expressly for embed-
ding: Lua (Ierusalimschy et al., 1996a; Ierusalimschy, 2003). But to use any of these
embedded languages, you have to write your application in C (or C++). If you prefer a
statically typed, functional language like ML, this paper shows that an embedded language
can benefit you too, and it explains how to realize those benefits.

To create an embedded language, you must design not only the language but also an
interface that allows host-language application code to be scripted from within the embed-
ded language. This interface—the embedding API—is the primary subject of this paper,
which presents Lua-ML, a new API for embedding. Compared with other APIs, Lua-ML
provides two significant advances:

• Type safety is guaranteed: it is impossible for an error in glue code to lead to an
unexplained core dump. (Lua itself is also type safe.)

• In almost all cases, glue code for a function is replaced by a simple description of
the function’s type—and this description is checked for correctness at compile time.
A programmer writing an application therefore writes significantly less glue code
than a programmer writing a similar application in C.

Lua-ML is supported by two technical contributions: an adaptation of Danvy’s (1996)
type-indexed functions for partial evaluation (Section 4.1), which makes it easy to embed
host-language functions (Section 4.2); and a programming convention that enables host-
language functions to inspect or modify the state of an embedded interpreter (Section 4.3).
Type-indexed embedding functions can be combined with ideas from parsing combinators
(Fokker, 1995) to make it easy to define a Lua function whose behavior depends on the
number and types of its arguments (Section 4.4).

These ideas were first described in a workshop paper (Ramsey, 2003). This revised paper
has new examples, different treatment of related work, some notational improvements, and
new technical material on exploiting dynamic typing.

To focus attention on the API, Lua-ML does not introduce a new host or embedded
language; it uses existing languages. As an embedded language, I have chosen Lua, which
is clean, flexible, efficient, and easy to implement. Lua enjoys a modest but growing
following; its most visible users may be the developers of such popular games as Grim
Fandango, Baldur’s Gate, and World of Warcraft (Ierusalimschy et al., 2001; Ierusalim-
schy et al., 2007). Although convenient, Lua is not essential; it could be replaced by Tcl,
Perl, or some other dynamically typed language.

As a host language, I have chosen Objective Caml (Leroy et al., 2004), a popular
dialect of ML. Objective Caml provides algebraic data types, programming by pattern
matching, higher-order functions, Hindley-Milner type inference, a sophisticated system
of parameterized modules, and an object system that is compatible with type inference.
Lua-ML uses higher-order functions and types in essential ways, but Objective Caml could
be replaced by Standard ML or some other higher-order, typed language. (A similar API
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would be possible for Haskell, but significant changes would be called for: Haskell’s
type classes could be exploited to reduce glue code even further, but the API would be
complicated by the need to use monads to describe Lua functions.)

A disadvantage of using Objective Caml as a host language—one which applies equally
to other functional languages—is that Objective Caml comes with its own garbage col-
lector, which expects to have complete control of the managed heap. Unfortunately, the
original implementation of Lua also comes with its own garbage collector, which itself
expects to have complete control of the managed heap. To get two such garbage collectors
to share values is a problem beyond the current state of the art, so rather than being a thin
layer over the existing implementation, the Lua-ML API is exported by a new implementa-
tion of Lua written in Objective Caml. While the duplication of effort is regrettable, it does
create an opportunity to provide stronger type-safety guarantees than can be provided in
the original (Ramsey, 2005). And if the memory-management problem is solved in the
future, the techniques described in this paper should work equally well with a thin layer.

One question that may puzzle some readers is which language is “on top,” the host
language or the embedded language? It doesn’t matter; in practice, both orientations are
useful. In a game like Grim Fandango, even though a tremendous amount of the game
is written in Lua, the host language is “on top” in the form of an engine that repeatedly
renders the world and then calls Lua code (Mogilefsky, 1999); a user never sees Lua.
By contrast, in Don Libes’s expect tool (Libes, 1994), the embedded language is “on top”;
the main application is written as a library, and the user interface is simply the embedded
language (here, Tcl) extended with this library.

2 Embedded scripting for functional programs

It might not be clear why an embedded interpreted language could be useful to an ap-
plication written in ML. After all, languages like ML and Haskell usually have top-level
interactive loops, and there are well-studied techniques for expressing embedded-language
terms as Haskell terms (Leijen & Meijer, 2000; Rhiger, 2003), so why not just use ML or
Haskell? Why have a scripting language? My reasons appear above, but to add depth, here
I present examples of Lua-ML in action.

The major application in which Lua-ML has been used is a retargetable, optimizing
compiler for the portable assembly language C-- (Peyton Jones et al., 1999; Ramsey
& Peyton Jones, 2000). The compiler comprises over 20,000 lines of code written in
Objective Caml, plus about 1,300 lines of Lua code broken down approximately as follows:

150 Support for configuring the compiler
250 Debugging and utility code
350 The compiler driver
600 Descriptions of back ends, calling conventions, and stack-frame layout

There are significant advantages to having this code in Lua.

• It is easy to change the configuration of the optimizer, the compiler, or even the
target machine by putting a simple phrase on the command line. For example, simply
writing qc-- backend=Backend.mips allows us to cross-compile for our MIPS
machine. Cross-compilation is better than compiling natively because our MIPS
machine is very slow.
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• The Lua code is invaluable for debugging. For example, we can turn off a pass of
the compiler by a command-line assignment such as backend.expand=nil, and we
can make the compiler emit “diagnostic assembly language” by using the assignment
backend.asm=Asm.cmm.

• The “driver” code in Lua runs not only the C-- compiler but also preprocessors,
front ends, the assembler, and the linker. It can therefore be used to compile a test
case from start to finish, then do another test without restarting the compiler. The
advantage is speed. For example, to test calling conventions, we compile a suite of
several hundred test cases. Using the Lua driver, these cases compile three to five
times faster than using a Perl script in which the compiler is started separately for
each case.

Here’s an example of interpreted Lua code from the driver. Like cc, qc-- translates each
file named on the command line. The translation puts each file through a sequence of forms,
each of which is identified by a file’s extension. For example, a C file might be put through
the sequence .c, .i, .c--, .s, and .o; a Tiger file might be put through the sequence
.tig, .c--, .s, and .o. Function CMD.translate files loops through each of the files
and calls CMD.translate, which takes a form in a sequence, performs a translation step,
and returns a list containing the next form(s) in the sequence. If translation is supposed to
stop on reaching a certain form, say a .s file, a flag is set in the table Options.stop, and
the Lua function CMD.translate files stops translation upon reaching such a form.

function CMD.translate_files(files)

local i = 1

while files[i] do

local ext = CMD.canonical_extension(files[i])

if not Options.stop[ext] then

CMD.translate_files(CMD.translate(files[i]))

end

i = i+1

end

end

To translate from one form to the next, CMD.translate looks at a filename’s extension
and calls the appropriate entry in a table called CMD.compilertab. Most entries make
calls to external programs such as the assembler or linker; the interesting entry is this Lua
function, which compiles a C-- program:

function CMD.compilertab[".c--"](file)

local asm = CMD.outfilename(file, ".s")

Compile.file(backend, Options.globals, file, asm)

return { asm }

end

The examples above show simple interpreted codes that could equally well have been
written in a non-embedded interpreter such as /usr/bin/perl or /bin/sh. The next
function, Compile.file, also written in Lua, is the first to use embedded ML values,
which are highlighted with gray backgrounds. Most important of these values are the
functions that parse the input, typecheck it, translate it with the standard optimizer opt,
and emit it as assembly language.
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function Compile.file(backend, emitglobals, file, out)

local ast = Driver.parse(file)

local opt = { apply = Compile.run_optimizer

, action = Opt.standard(backend)

}

Driver.compile(backend.target, opt, emitglobals, ast, backend.asm)

backend.emit(backend.asm, out)

end

The driver code is convenient to write in Lua but is seldom changed. The advantages
of being able to change configuration on the command line come from describing a back
end in Lua. The description is a record of stages, each of which is essentially a function
from procedures to procedures. Here is a record for the Intel x86, written using Lua’s
curly-brace-and-comma syntax for records:

Backend.x86 =

{ target = Targets.x86

, widen = Backplane.seq

{ Widen.x86_floats, Widen.store_const(32),

Stages.assert("proper widths") }

, placevars = Placevar.context(Placevar.x86, "x86")

, preopt = Optimize.remove_nops

, expand = Expander.x86

, liveness = Liveness.liveness

, ralloc = Ralloc.color

, freeze = X86.layout

, rmvfp = Stages.replace_vfp

, asm = Asm.x86

, emit = Driver.assemble

}

As shown by highlighting, almost every stage in the Lua record is actually implemented in
the host language, Objective Caml—but the stages are composed using Lua. The advantage
is that by putting an appropriate Lua assignment on the compiler’s command line, we can
omit or change any stage, including the assembly-language emitter.

I hope these examples suggest to you that an embedded interpreter is useful. But the
main concern of this paper is not with the advantages of an embedded interpreter but with
the code needed to make ML values accessible to it. Such code is called glue code. When
an interpreter is embedded into C, it is common to need a hand-written “glue function” for
each function to be embedded. The glue function is actually the middle step of a three-step
process:

(1) Write (or import) an underyling C function
(2) Wrap that function in a glue function that can be embedded.
(3) “Register” the wrapper to make it available to the embedded language, often as the

value of a global variable. Code for registration is also considered glue code.

For example, the following C code is adapted from Jeske’s (1998) HZ game engine. The
underlying C functions are highlighted; the two functions given here are wrappers. Al-
though the underlying C functions have different types, every wrapper function has the
same type: void (*)(void).
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static void C_setpalette(void) {

lua_Object file = lua_getparam(1);

if (lua_isstring(file))

I_vid_setpalette(lua_getstring(file));

}

static void C_followsprite() {

lua_Object objnum = lua_getparam(1);

if (!lua_isuserdata(objnum))

lua_error("incorrect argument 1...");

mainViewPort->followSprite(

(Sprite *)lua_getuserdata(objnum));

}

Finally, the registration step assigns these functions to the values of the Lua global variables
C setpalette and C followsprite; this code is also written in C:

void register_luafunctions() {

lua_register("C_setpalette", C_setpalette);

lua_register("C_followsprite", C_followsprite);

}

It is characteristic of an interpreter embedded in C that each function needs a hand-written
glue function and that each glue function needs hand-written code to check and convert
each parameter and result. For comparison, here is some glue code that uses the Lua-ML
API. It is excerpted from the Driver module used in the Quick C-- example above.
As indicated by the type of register module, which is shown in the box, registration
puts values into a named global table rather than directly into global variables; the code is
written in Objective Caml:

register_module : string -> (string * value) list -> state -> unit

register_module "Driver"

[ "assemble", efunc (asm **->> unit) (fun a -> a#emit);

"parse" , efunc (string **->> ast) Driver.parse;

"compile" , efunc (target **-> optimize proc **-> bool **->

ast **-> asm **->> unit) Driver.compile;

] session

This simplicity is typical. In Lua-ML, the wrapper for an embedded function f is the
function efunc applied to a description of f’s type and to f itself. As in C, each wrapper
has the same type (value), but it is not necessary to write glue functions by hand, and
we can embed more functions and more complicated functions using far less code than
is needed using the C API. (The code required to register the resulting wrappers, by
contrast, is essentially the same.) A more thorough comparison appears in Section 5, but
first I explain what Lua-ML looks like and how it achieves its simple embeddings.

3 The Lua language and Lua-ML API

The distinctive benefits of Lua-ML come from the part of the API that is used to integrate
application-specific code into the embedded interpreter. To put these benefits in context,
I summarize the Lua language and the Lua-ML API.
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3.1 Sketch of the language and its interpreter

The Lua language is typical of small, dynamically typed languages, but it is more carefully
crafted than most. Lua-ML implements the Lua language version 2.5, which is described by
Ierusalimschy et al. (1996b) Version 2.5 is relatively old, but it is mature and efficient, and
it omits some complexities of later versions. In this paper, I sometimes compare Lua 2.5
with Lua 5.0, which was released in Spring of 2003.

Lua is a dynamically typed language with six types: nil, string, number, function, table,
and userdata. Nil is a singleton type containing only the value nil. A table is a mutable
hash table in which any value except nil may be used as a key. By convention, tables are
also used to represent lists, sets, and arrays. Userdata is a catchall type, which enables an
application program to add new types to the interpreter. Except for table, the built-in types
are immutable; userdata may be mutable at the application’s discretion. Lua’s datatypes
are fairly typical of small languages, except that reserving a type for extensions (userdata)
is unusual.

Like most languages in its class, Lua is an imperative language that distinguishes state-
ments from expressions. In addition to statements and expressions, there is one other
significant syntactic category: top-level chunk, which may be a statement or a function
definition. Functions may be defined only at top level; Lua 2.5 has first-class, non-nested
functions. (Lua 5.0 has nested functions.)

Lua has one unusual feature that complicates embedding: a Lua function may accept
a variable number of parameters and return a variable number of results. Moreover, the
number of actual parameters in a call need not match the number of formal parameters a
function expects. If there is a mismatch, the parameters are adjusted: if a function receives
more actual parameters than it expects, the extra actual parameters are dropped, and if a
function receives fewer actual parameters than it expects, extra formal parameters are set
to nil. A similar adjustment is applied to results.

The use of Lua-ML in an application is typical of embedded languages. Given an em-
bedded interpreter, an application can create many sessions, each of which has its own
private mutable state. This state is represented by a value in the host language, Objective
Caml. The state includes a table of global variables. In Lua-ML, an interpreter is created at
compile time; the application supplies a (possibly empty) set of libraries to an ML module
called MakeInterp, which returns an interpreter module we will call Interp. A session is
created at run time by calling Interp.mk. The session’s type is Interp.state or simply
state.

Application code can add and remove global Lua variables and change their values, all
by manipulating the global-variable table in the session’s state. Functions are treated the
same as variables: a Lua function is simply a variable whose value is a function.

An interpreter is passive: it evaluates code only at the request of the host application.
Evaluation requires both code and a session. The API provides functions that evaluate
sequences of top-level chunks, which may be located in strings or files.

3.2 How values cross the interface

In Lua-ML, a Lua value is represented by a value in the host language (Objective Caml).
Both embedded values and host values are managed by the host’s garbage collector, so the
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API need not mention memory management. An embedded value has type value, which
is exposed to an application as follows:

type value

= Nil

| Number of float

| String of string

| Function of srcloc * funty

| Userdata of userdata

| Table of table

and funty = value list -> value list

and table = (value, value) Luahash.t

This declaration defines value to be one of the six Lua types, and it defines funty and
table to be a function type and a hash table, respectively. The type funty doesn’t mention
state, which should surprise you, because a Lua function can inspect and modify the
state of a session. All is revealed in Section 4.3. Type constructor Luahash.t is exported
by a hash-table abstraction that is part of the Lua-ML API. Types srcloc and userdata

are abstract types, the declarations of which are not shown. The type srcloc represents
the source location at which a function is defined; it is used for debugging. The type
userdata represents application-specific data, such as an open file handle (Ierusalimschy
et al., 2000) or a set of bigrams used in spam filtering (Siefkes et al., 2004). In Lua-
ML, the userdata type is defined by composing application-specific libraries; the design
provides extensibility and separate compilation while preserving type safety, but the details
are beyond the scope of this paper (Ramsey, 2005).

Because Lua-ML exposes the representation of a Lua value, functions that convert be-
tween Lua values and ML values are not required—but they are very convenient. Lua-ML
provides conversion functions in type-specific pairs: embed and project. The embed func-
tion maps from Caml to Lua, and it always succeeds; project maps from Lua to Caml,
and it fails (by raising an exception) if the Lua value has the wrong type. For example,
one might convert a Caml floating-point value to a Lua value by calling float.embed,
or convert a Lua number to a Caml floating-point value by calling float.project. The
main innovation in Lua-ML is that it provides higher-order functions that can create an
unlimited supply of conversion functions. The details are the topic of Section 4.1.

The primary reason to use Lua-ML is to embed application-specific code and data into
a Lua interpreter. In using any embedded language, most of the work is in writing the
glue code that makes host-language functions available in the embedded interpreter, or
more precisely, in a given session. In Lua-ML, an application programmer could define a
new Lua function by writing an ML function that takes a list of values as arguments and
returns a list of values as results. (Such a function’s access to a session’s state is discussed
in Section 4.3.) But it is much more convenient to define an ordinary ML function and to
convert it to a Lua function by using the embed member of an embedding/projection pair,
as is done at the end of the previous section by using efunc to embed such functions as
Driver.parse and Driver.compile.

4 Technical contributions of Lua-ML

Lua-ML’s advantages stem from its handling of functions.

• Because embedding can be extended to an unbounded number of types, including
function types, a function can be embedded with almost no glue code (Section 4.1).
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• Objective Caml and Lua use different models of functions, and each language
reacts differently to a function call in which arguments are missing. These dif-
ferences are cleverly hidden by the embedding/projection pairs for function types
(Section 4.2).

• Although about 95% of embedded Caml functions ignore the state of the Lua session
in which they are embedded, a few need access to this state. Lua-ML supports both
kinds of functions without complicating the API (Section 4.3).

• Lua-ML supports a form of type-based dispatch, which makes it relatively easy
to define a Lua function whose behavior depends on the number and types of its
arguments (Section 4.4).

4.1 Embedding and projection

This section describes the implementation of embedding and projection functions.
To represent an embedding/projection pair, we define type (’a, ’b) ep: an embed func-
tion for converting a value of type ’a to a value of type ’b and a project function for the
opposite conversion. For the special case where we are embedding into a Lua value, we
define type ’a map.

type (’a, ’b) ep = { embed : ’a -> ’b; project : ’b -> ’a }

type ’a map = (’a, value) ep

One example pair is float, which has type float map and is mentioned in Section 3.2
above. The value float.embed is the function (fun x -> Number x), which takes the
Caml number x to the corresponding Lua value, which is built by applying the Number

constructor to x.1

Defining float.project, which converts from a Lua value to a floating-point number,
is more complicated, because Lua accepts a string where a floating-point value is expected,
provided the string represents a floating-point number. The function float.project is

float.project : value -> float
function

| Number x -> x

| String s when is_float_literal s -> float_of_string s

| v -> raise (Projection (v, "float"))

This function maps a Lua number to the same Caml number. It also maps a Lua string s to
the floating-point number represented by s, provided that s satisfies is float literal,
which checks to see that s is an appropriate string. If it gets any other kind of value, it raises
the Projection exception, indicating that the value cannot be converted to a floating-point
number. In Lua-ML, every dynamic type error raises Projection.

To provide a small set of conversion functions is not new. What Lua-ML adds is the abil-
ity to create pairs of conversion functions for arbitrarily many ML types. In other words,
embedding and projection are a type-indexed family of functions. The idea is inspired by
Danvy (1996), who uses a similar family to implement partial evaluation. Danvy (1998)
credits Yang (1999) and Andrzej Filinski with originating this family, which has also been
independently adapted by Benton (2005) for use in embedded interpreters.

1 The η-expansion is necessary because in Objective Caml, unlike in Haskell or Standard ML, a datatype
constructor cannot be used as a function.
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type ’a map = { embed : ’a -> value; project : value -> ’a }

val float : float map

val int : int map

val bool : bool map

val string : string map

val userdata : userdata map

val unit : unit map

val value : value map

val table : table map

val list : ’a map -> ’a list map

val option : ’a map -> ’a option map

val default : ’a -> ’a map -> ’a map

Table 1. Constructors for embedding/projection pairs

We build a type-indexed family of functions using a library of combinators:

• For a base type, such as float, we provide a suitable embedding/projection pair.
Lua-ML includes pairs for float, int, bool, string, unit, userdata, table,
and value.

• For a unary type constructor, such as list, we provide a higher-order function
that maps an embedding/projection pair to an embedding/projection pair. Lua-ML
includes such functions for the list and option type constructors.

• For a type constructor of two or more arguments, we continue in a similar vein.
Such constructors are rare, except for the arrow constructor, which describes a func-
tion type. The arrow needs careful treatment because Lua and Caml treat partial
application differently.

Table 1 gives the types of these functions.
To use a particular member of the type-indexed family, we pick a type—for example,

list of integers—and to get an embedding/projection pair, we write a function application
whose structure follows the structure of the type. Because of the syntactic rules of ML, the
syntax of such an application can be startling: for example, if we pick the type int list,
the function application is written list int. In both cases, we have the same structure:
a type constructor or function list is applied to a type or value int. But in the type
language, application is written backwards, with the argument first and the function in
postfix position. In the term language, by contrast, application is written with the function
first, in prefix position.

The arrow type constructor, written -> in the type language, is neither prefix nor postfix;
it is infix and right associative. In order that the corresponding function in the term lan-
guage also be infix and right associative, I have given it the name **->. (The rules of Caml
require that any infix, right-associative operator have a name beginning with **. Had I used
Standard ML, I could have chosen a name like --> and made it infix and right-associative
via an explicit fixity declaration.) In some contexts, as explained in Section 4.2, we use a
different form of the arrow constructor, named **->>.

https://doi.org/10.1017/S0956796811000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000219


Embedding an interpreted language 595

The implementations of the functions in Table 1 are more interesting than you might
expect, because the domains of values used in Caml and Lua are substantially different.
For example, Lua lacks the int, bool, list, and option types, and Lua’s most important
data type, the table, is seldom used in Caml functions. To account for such differences
requires suitable programming conventions, and the conventions are embodied in embed-
ding/projection pairs. By embodying conventions in pairs, we make it easy to add new
conventions and to use consistent conventions throughout a program.

One such convention is shown above: a string can represent a floating-point number.
Here are some others:

• Any Lua value can be interpreted as a Boolean; nil represents falsehood, and every
non-nil value represents truth. This convention is embodied by the bool pair, which
has type bool map.

bool : bool map
let bool =

{ embed = (fun b -> if b then Number 1.0 else Nil);

project = (fun v -> v <> Nil);

}

• A number may be used where a string is expected.
• A list should be represented as a Lua table, where the elements of a list of length n

are stored with keys 1, 2, . . . , n.

These conventions, code for which is shown in Appendix, are part of the idiom of Lua
2.5 and 5.0. Some, like the Boolean and list conventions, have syntactic and semantic
support in the Lua language. Another common convention is that a function may allow
nil to stand for a default argument. We support this convention with the default func-
tion, which has type ’a -> ’a map -> ’a map; the pair default v t behaves just like the
pair t, except it projects nil to v.

For Lua-ML, we also invented new conventions. For example, ML has a built-in type
constructor option. A value of type ’a option may be None, which means the absence
of any value, or it may be Some x, which means the value x, where x has type ’a. In our
convention, the Lua value nil stands for None, and any other value stands for Some of that
value. This convention fails if a value v of type ’a is itself embedded in Lua as nil, since
the convention projects nil as None, not as Some v. For example, the value Some None of
type ’a option option would embed as nil and then project as None.

To build an embedding/projection pair for type ’a option, we need such a pair (here
called t) for type ’a:

option : ’a map -> ’a option map
let option t =

{ embed = (function None -> Nil | Some x -> t.embed x);

project = (function Nil -> None | v -> Some (t.project v));

}

The option function has type ’a map -> ’a option map.
Another convention helps embed and project polymorphic functions. For example, Ob-

jective Caml’s list-reversal function, List.rev, has type ’a list -> ’a list: it is a
polymorphic function that can reverse a list containing any type of value. But Lua does not
have parametric polymorphism, so what is the embedding/projection pair that corresponds
to the type variable ’a? It is the value pair, which embeds and projects using the identity
function. The Lua function
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efunc (list value **->> list value) List.rev

reverses any Lua list, no matter what Lua values the list contains. It instantiates List.rev
at the type value list -> value list. As discussed above, this type has the same struc-
ture as the phrase list value **->> list value in the term language; only the syntax
is different.

Most programming conventions are easily embodied in simple embedding/projection
pairs such as those shown above. The big exception is the convention for functions.

4.2 Conventional uses of functions

In Objective Caml, a function of multiple arguments is conventionally defined in its curried
form, i.e., as a function that returns another function. For example, the library function
String.index has type string -> (char -> int). We normally write such a type as
string -> char -> int, because the type arrow is right-associative. To apply such a
function, we write (String.index "hello") ’e’, or because function application is
left-associative, simply String.index "hello" ’e’. In Objective Caml, there is no real
difference between a function that takes two arguments and a function that takes one
argument and returns a new function. But in Lua, there is a big difference! The difference
can be explained by considering what happens when a function is applied to only some of
its arguments, i.e., when it is partially applied.

In Caml, a partially applied function, such as String.index "hello", creates a clo-
sure, which represents a new function that is returned. This new function, when itself
applied to an argument such as ’e’, behaves as would String.index applied to the
two arguments "hello" and ’e’. In Lua, a partially applied function is adjusted, which
means that any “missing” arguments are filled in with nils. In Lua, therefore, the expression
String.index("hello", ’e’) is not the same as String.index("hello")(’e’),2

which is equivalent to String.index("hello", nil)(’e’). Although curried calls such
as the last two expressions are permitted in Lua, the first, uncurried form is conventional.
Other languages in which currying is supported but not conventional include Perl and
Scheme.

When embedding a multi-argument Caml function into Lua, we have to convert it from
curried to uncurried form. We convert a function by describing its type using the **-> and
result operators, whose types are shown in Table 2. (One can retain the curried form by
using the Lua-ML operator -->, which is infix, left-associative, and has type ’a map ->

’b map -> (’a -> ’b) map, but we use this operator rarely. Its implementation is shown
in Appendix.)

The conversion inductively builds a map to an uncurried function, or mapf. The mapf

type constructor is abstract; a value of type (t1 -> · · · -> tn -> t) mapf represents the
ability to uncurry a function of type t1 -> · · · -> tn -> t. The inductive conversion works
right to left. In the base case, result is applied to an embedding/projection pair for t, the
result type of the function. For example, if the function to be converted returns a value of
type int, the value result int has type int mapf. Each induction step uses the **->

2 This syntax is available in Lua 5.0, which provides first-class, nested functions, but in Lua 2.5, which does not
allow nested functions, such an expression is not even syntactically correct.
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type ’a mapf (* map to an uncurried function of type ’a *)

val **-> : ’a map -> ’b mapf -> (’a -> ’b) mapf

val result : ’a map -> ’a mapf

val func : ’a mapf -> ’a map

val efunc : ’a mapf -> ’a

val **->> : ’a map -> ’b map -> (’a -> ’b) mapf

val results : (’a -> value list) -> (value list -> ’a) -> ’a mapf

N.B. t **->> t′ � t **-> result t′ and efunc t � (func t).embed.

Table 2. Embedding and projection for functions

operator to combine the embedding/projection pair for a ti with the current map to an
uncurried function. During the induction, i goes from n down to 1. When **-> has been
applied to t1, the induction is complete, and the func operator is used to convert the value
from type (t1 -> · · · -> tn -> t) mapf to type (t1 -> · · · -> tn -> t) map. This value is an
embedding/projection pair that converts between curried and uncurried forms.3

In practice, the conversion is simple. For example, if we have a Caml function of type
t -> u -> v -> w, we turn it into a Lua function of three arguments by using the embed-
ding/projection pair produced by func (t **-> u **-> v **-> result w). In examples
and programs, we use the abbreviation v **->> w as a shorthand for v **-> result w.
We also use the abbreviation efunc m as a shorthand for (func m).embed. In this section,
however, we show the underlying mechanism by making result and .embed explicit.

The representation of a value of type ’a mapf, which is not exposed in the API, is an
embedding/projection pair between ’a and value list -> value list. The function-
conversion operations that work with mapf are a bit tricky. The simplest is func: embed-
ding adds a source-code location srcloc and applies Function, while projection strips
Function and ignores srcloc.

type ’a mapf = (’a, value list -> value list) ep

func : ’a mapf -> ’a map

let func (arrow : ’a mapf) : (’a map) =

{ embed = (fun (f : ’a) -> Function (caml_fun, arrow.embed f));

project =

(function

| Function (_, f) -> (arrow.project f : ’a)

| v -> raise (Projection (v, "function")));

}

Value caml fun of type srcloc identifies the function as an embedded function. A func-
tion translated from Lua source code has a srcloc field indicating its source-code location.

A value of type ’a mapf that is passed to func must have been built inductively using
**-> and result. The details are a bit technical, but because the resulting embedding
and projection functions are novel, they are worth presenting anyway. The **-> operation

3 The types in Table 2 suggest that func and result might be inverses or half-inverses, but they are not. I have
been unable to discover any interesting laws relating func and result.
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converts between curried Caml functions and uncurried Lua functions. It builds an embed-
ding/projection pair inductively from firstarg, which is an embedding/projection pair
for the first argument, and from lastargs, which is an embedding/projection pair for a
function that takes one less argument. To build firstarg **-> lastargs, we need an
embedding (apply) and a projection (unapply).

**-> : ’a map -> ’b mapf -> (’a -> ’b) mapf

apply : (’a -> ’b) -> (value list -> value list)

unapply : (value list -> value list) -> (’a -> ’b)

let ( **-> ) (firstarg : ’a map) (lastargs : ’b mapf) : (’a -> ’b) mapf =

let apply (f : ’a -> ’b) = fun actuals ->

let v, vs = match actuals with [] -> Nil, []

| h :: t -> h, t in

let f_v = f (firstarg.project v) in

lastargs.embed f_v vs

in

let unapply (f_lua : value list -> value list) =

fun (v : ’a) ->

lastargs.project (fun vs -> f_lua (firstarg.embed v :: vs))

in

{ embed = apply; project = unapply }

The apply function takes a Caml function f of type ’a -> ’b and converts it to a Lua
function of type value list -> value list. This converted function takes its actual
arguments actuals, puts the first argument in v, and puts any remaining arguments in vs.
(This code also implements adjustment: if the list of arguments is empty, it is as if the first
argument had been Nil.) Because the Caml function f is curried, it can be partially applied
to the first argument v to produce f v, which has type ’b. Function f v is then converted
to a Lua function (by lastargs.embed) and applied to the remaining arguments.

The projection function unapply takes a Lua function f lua and converts it to a Caml
function of type ’a -> ’b. The Caml function takes its first argument v and must return a
value of type ’b. The Caml function therefore converts v to Lua using firstarg.embed,
then builds a new, anonymous Lua function. This anonymous function takes the remaining
arguments vs and applies f lua to all the arguments. The anonymous Lua function is then
converted to a Caml value of type ’b by using lastargs.project.

The base case for the conversion of functions is a pair for a function that takes no
arguments and returns results. In Lua, it is possible to return a list of results, but in Caml,
it is not. If a Caml function wants to return multiple results, it must wrap them in a tuple,
and if the function wants to return zero results, it must return the empty tuple. To deal with
this mismatch in languages, the base case for conversion of a function requires conversions
between the Caml return type ’a and the Lua return type value list.

results : (’a -> value list) -> (value list -> ’a) -> ’a mapf

let results a_to_values a_of_values =

{ embed = (fun (a:’a) -> fun lua_args -> a_to_values a);

project = (fun f_lua -> (a_of_values (f_lua []) : ’a));

}
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To embed a Caml result as a no-argument Lua function, we take the result a and produce
a Lua function that ignores its arguments, converts a to a list of Lua values, and returns
the list. To project a Lua function f lua as a result, we apply f lua to the empty list of
arguments, take the list of Lua results, and convert that list to a Caml value.

In practice, a Caml function almost always corresponds to a Lua function that returns
exactly one result. The Lua-ML API supports this common case with two abbreviations:
the result combinator takes an embedding/projection pair r for a single result of type ’a,
and the **->> combinator applies **-> to a value returned by result.

result : ’a map -> ’a mapf

let result r = results (fun v -> [r.embed v]) (fun l -> r.project (take1 l))

let ( **->> ) t t’ = t **-> result t’

Function take1 returns the first element from a list of Lua values, unless that list is empty,
in which case it returns Lua’s Nil. This computation is another example of adjustment.

It is easy to use results to provide other cases, such as a function that returns a Caml
pair as a list of two Lua values or a function that returns the Caml unit as an empty list of
Lua values. But unlike the n-argument case for functions, the n-result case for tuples cannot
be programmed inductively. Instead, it is necessary to write a different application of
results for every n. In our application, this necessity has not been burdensome, because
the only case of interest has been pairs (n = 2), for which we provide a convenience
function. Aside from functions that return pairs, only seven functions use results, and
none of them fit the simple return-tuple model. Four of the seven perform some kind of
evaluation, so they return the same list of results as the Lua code they evaluate. The other
three are the library functions next, nextvar, and strfind, each of which may return a
different number of results depending on the arguments with which it is called.

The typical client of the Lua-ML API uses the three functions func, **->, and **->>

(result is typically used only to define **->>). These functions create a natural mapping
between Caml functions and Lua functions. Using this mapping, Caml code defines and
uses functions in curried style, which is natural for Caml. Lua code defines and uses
functions in uncurried style, which is natural for Lua. The only awkward bit is having
to use **->> instead of **-> to identify the result of a function. Programmers soon learn
the difference, however, because if the **-> arrow is used by mistake, Caml’s type checker
complains.

4.3 Functions and the interpreter’s state

A Lua function can modify the state of a session, for example, by changing the value of
a global variable. In a pure language, such a function would have a type like state ->

value list -> state * value list. In an impure language, a more natural type would
be state -> value list -> value list. At a call site, one would apply the function to
a state and to arguments, and the function would return results, possibly also having side
effects on the state. But surprisingly, the type state -> value list -> value list does
not work well with embedding and projection.

The source of the difficulty is twofold: most embedded functions don’t use state, and
we don’t hand-write a glue function for each embedded function.
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• Our compiler has 194 embedded functions, of which only 10 use state. Another
eight functions use an embedding/projection pair that needs access to state. Most of
the state users either interpret Lua code in the context of a state, or they read or set
global variables. If we ignore Lua-library functions and consider only application-
specific functions, only 1 of 105 functions uses state directly.

• If each embedded function requires a hand-written glue function, then it is easy for
the hand-written function to ignore state as required. But it is not so easy to do so
when creating embedding/projection pairs by applying higher-order functions.

If a Caml function f does not expect a state, when we embed f into a Lua function of
type state -> value list -> value list, we can change the body of func to use not
the function arrow.embed f but instead the function fun s -> arrow.embed f. Pass-
ing f to arrow.embed converts f to a function of type value list -> value list, and
wrapping this function in fun s -> ... yields a function of type state -> value list

-> value list. (To embed the rare Caml function that uses state, we can provide an
operation impure func of type ’a mapf -> (state -> ’a) map.) The sticky part is to
project a Lua function into a Caml function that does not expect a state. We are given
a function fl’ of type state -> value list -> value list. To project fl’ to a Caml
function that does not expect a state, we must partially apply fl’ to some state, then project
the result. But no suitable state is available!

In an early implementation of Lua-ML, I tried to solve this problem by applying fl’

to the empty state; I thought that because the underlying Caml function did not expect
a state, any state would do. This code worked for a surprisingly long time, but I had
overlooked higher-order functions. For example, suppose we embed List.map, which
has type (’a -> ’b) -> ’a list -> ’b list. List.map expects no state: if we apply
it to function f and list l, it returns a new list containing the results of applying f to each
element of l. But when we embed List.map, we create a function that projects each of
List.map’s arguments from the type value to the Caml type that List.map expects for
that argument. And just because List.map does not expect a state, there is no reason
to think that its argument expects no state. In fact, every function compiled from Lua
source does expect a state, and when we pass such a function to List.map, things go
wrong.

An obvious way to correct the projection problem is to pass the state explicitly to
each projection function: with each embedding function of type ’a -> ’b, we can pair
a projection function of type state -> ’b -> ’a. But the mapf type becomes horrifying:

type ’a mapf = (* don’t try this at home *)

{ embedf : ’a -> (state -> value list -> value list);

projectf : state -> (state -> value list -> value list) -> ’a;

}

This design works correctly, but the loss of symmetry is discouraging. And passing state
explicitly makes the code much uglier. When only one in a hundred application-specific
functions needs state, such ugliness cannot be justified.

The solution is to represent a Lua function internally not as a Caml value of type state
-> value list -> value list but as a value of type value list -> value list. For
the rare Caml function that expects a state, we partially apply the function to the relevant
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state before the function is converted to a Lua value. Exactly when to partially apply a
function to the state depends on how the function is defined.

• If a function is defined in Lua, the interpreter reads the function’s definition and
builds a closure of type state -> value list -> value list. The interpreter has
access to the state of the session in which it is running, so it partially applies the
closure as soon as it is built.

• If a function is defined in Caml, it can’t be used until it is registered with a session.
Registration might involve putting the function in a global variable, or in a table
that is stored in a global variable, or indeed in any Lua data structure—but it always
requires access to a session’s state. So in the rare, general case, a function can be
partially applied to the state at the time that it is registered. Such a function can
easily be registered with multiple sessions, because each partial application creates
a closure that captures a different state.

By capturing the state in a closure instead of passing it explicitly at a call site, we realize
several benefits: the API matches the common case, the code for embedding and projection
is clean, the design is correct, and the general case is accomodated easily. The same trick
can also be used to build embedding/projection pairs that have access to state. For example,
our optimizing compiler can project a Lua function into an “optimization stage,” in which
case it uses the state of the session to find a name by which the stage should be known.

4.4 Beyond static typing

The combinators shown above provide plenty of tools for embedding existing ML func-
tions into Lua. But existing ML functions don’t take full advantage of Lua’s dynamic
typing. In a dynamically typed language, there’s no need to restrict a function to just one
type, or even to a fixed number of arguments. The Lua I/O library exploits this capability:

• The I/O library sends output to a “current output” file, which is changed by writeto.

— Passing a string to writeto opens the file named by that string, makes that file
the current output, and returns a “handle” on that file.

— Passing a handle to writeto makes the handled file the current output.
— Passing nil to writeto makes standard output the current output.

• The write function writes any number of strings.

— When write’s first argument is a file, it writes the remaining arguments to that
file.

— When write’s first argument is not a file, it writes all arguments to the current
output file.

In effect, functions such as write and writeto are overloaded based on the types of their
arguments. Because Lua-ML is dynamically typed, the implementations of such functions
must dispatch dynamically on the types of their arguments. Such code can be written by
pattern matching on the ML type value, but writing glue functions to do pattern matching
is just what we are trying to avoid! Lua-ML therefore provides three mechanisms to help
programmers define Lua functions that make decisions based on the number and types of
their parameters.
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val dots_arrow : ’a map -> ’b map -> (’a list -> ’b) mapf

val ( *****-> ): ’a map -> ’b map -> (’a list -> ’b) mapf (* synonym *)

type alt (* alternative variant of a function *)

val alt : ’a mapf -> ’a -> alt

val choose : alt list -> value

val ( <|> ) : ’a map -> ’a map -> ’a map

val ( <@ ) : ’a map -> (’a -> ’b) -> ’b map

Table 3. Constructors for defining dynamically typed Lua functions

• To define a function that accepts a variable number of arguments, Lua-ML provides
the dots arrow combinator. Because an application of dots arrow is easier to read
if it is infix, we usually abbreviate it using the name *****->>.

• To choose among several potential actions based on types and number of arguments,
Lua-ML provides the alt and choose combinators.

• To enable a single ML argument to be represented by multiple Lua types, Lua-
ML provides the <|> and <@ combinators, which are based on monadic parsing
combinators.

These combinators and their types are summarized in Table 3. I show examples of each,
then their implementations.

A variable number of arguments Like Icon, Lisp, Perl, and Python, Lua provides a
mechanism by which a function may receive its first few arguments in named parameters
and the remaining arguments in a list. Assuming that every “remaining” argument has the
same ML type ’a, we can use dots arrow for a function that accepts a variable number
of arguments.

val dots_arrow : ’a map -> ’b map -> (’a list -> ’b) mapf

The result of type (’a list -> ’b) mapf can be extended with **-> and converted with
func or efunc as usual.

One function that uses dots arrow is format, which is the Lua analog of C’s sprintf.
The ML implementation of format has ML type string -> value list -> string,
and it is embedded into Lua as follows:

register_globals : (string * value) list -> state -> unit

format : string -> value list -> string

let ( *****->> ) = dots_arrow in

register_globals

[ "format", efunc (string **-> value *****->> string) format ] session

The dots arrow combinator is also useful in conjunction with type-based dispatch.

Type-based function dispatch The combinators alt and choose enable a programmer
to define a Lua function by giving a list of variant implementations. Each variant may
accept a different number of parameters, parameters of different types, or both. When
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the Lua function is called, the embedding/projection pair selects the first variant that is
appropriate to the Lua types of the actual parameters. A variant is represented by a value
of type alt.

type alt (* an alternative variant of a function *)

val alt : ’a mapf -> ’a -> alt

val choose : alt list -> value

In this interface, alt resembles efunc. Like efunc, alt takes a type description of type
’a mapf and a curried function of type ’a, but instead of returning a value it returns
an alt. To get a value, one applies choose to a list of alts. This value represents a
function that, when called, selects the first of the alts whose type description matches the
dynamic types of the actual parameters. If none of the alts matches, the function raises an
exception.

As an example, here is the implementation of writeto. The field io.currentout,
which is mutable, represents the current output; outfile is the embedding/projection pair
for an output file.

writeto : value

to_file : out_channel -> out_channel

to_string : string -> out_channel

to_nil : unit -> out_channel

to_other : ’a -> ’blet writeto =

let to_file file = (io.currentout <- file; file) in

let to_string name = to_file (open_out name) in

let to_nil () = (close_out io.currentout; to_file stdout) in

let to_other _ = 〈fail with an error message〉 in

choose

[ alt (outfile **->> outfile) to_file;

alt (string **->> outfile) to_string;

alt (unit **->> outfile) to_nil;

alt (value **->> value) to_other ]

As another example, write combines type-based dispatch with a variable number of
arguments. If the first argument is a file, it writes to that file; otherwise, it writes to the
current output.

write_strings : out_channel -> string list -> int

write : value
let write_strings f l =

(List.iter (output_string file) l; flush f; 1)

let write = choose

[ alt (string *****->> int) (fun l -> write_strings io.currentout l);

alt (outfile **-> string *****->> int) write_strings ]

We write the first alternative in η-expanded form because io.currentout refers to the
contents of a mutable field, which should be evaluated when write is called, not when
write is defined.

Multiple Lua types for a single argument When our C-- compiler places parameters
in machine registers, it chooses a register (e.g., floating-point or integer) based on the
results of applying predicates to the kind and width of that parameter (Olinsky et al., 2006).
The kind is a string that classifies the parameter’s type, and the width is an integer giv-
ing the parameter’s size in bits. For example, on the SPARC, a kind of "float" and a
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width of 64 might satisfy the predicate for placement in a pair of 32-bit floating-point
registers.

In our ML code, we define predicates for common cases: checking for equality of a kind
or a width. The always-true predicate is also common. Each predicate has type string ->

int -> bool.
let is_kind k’ = fun k w -> k = k’

let is_width w’ = fun k w -> w = w’

let is_any = fun k w -> true

These functions are exported into Lua-ML, but in a large specification, applications of
is kind, is width, and is any introduce syntactic noise. We therefore use the following
programming convention:

• If a string s is supplied where a predicate is expected, that string is taken to represent
the predicate is kind s.

• If an integer n is supplied where a predicate is expected, that integer is taken to
represent the predicate is width n.

• If the value nil is supplied where a predicate is expected, it is taken to represent the
predicate is any.

And of course, a function can be supplied where a predicate is expected.
To implement this convention, we define an embedding/projection pair for predicates

such that we can project a string, an integer, nil, or a function into a predicate. We could,
of course, write such a pair directly, but again it would require the sort of pattern matching
on value that we are trying to avoid. Instead, we introduce two new combinators for pairs:
an “or” combinator and a continuation combinator.
val ( <|> ) : ’a map -> ’a map -> ’a map

val ( <@ ) : ’a map -> (’a -> ’b) -> ’b map

The idea is borrowed from parsing combinators; the notation is that of Fokker, (1995). The
choice operator <|> combines two maps. To project, the map t <|> t’ projects using t

if possible; otherwise, the map projects using t’. To embed, the map t <|> t’ embeds
using t’.

We use the continuation operator <@ to apply a function to a value after projection. To
project, the map t <@ f applies f to the result of projecting with t. Because function f

cannot, in general, be inverted, the map t <@ f is not capable of embedding. It is therefore
useful only on the left-hand side of the <|> operator.

Using these two operators, we implement our choice-predicate convention:

choice_pred : (string -> int -> bool) map
let choice_pred =

(string <@ is_kind) <|>

(int <@ is_width) <|>

(unit <@ (fun () -> is_any)) <|>

func (string **-> int **->> bool)

Implementation The implementations of the functions in Table 3 are straightforward. In
structure, the function dots arrow resembles results, but it also uses ideas from **->.
Because it consumes all the arguments it sees, it is simpler than either: it does not have to
“peel off” one argument or implement Lua’s adjustment.

https://doi.org/10.1017/S0956796811000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000219


Embedding an interpreted language 605

let string = { is = (function String _ -> true | Number _ -> true

| _ -> false); ... }

let bool = { is = (fun _ -> true); ... }

let option t = { is = (function Nil -> true | v -> t.is v); ... }

let func arrow = { is = (function Function(_, _) -> true | _ -> false); ... }

let results r = { is = (function [] -> true | _ :: _ -> false); ... }

let dots_arrow varargs answer = { is = List.for_all varargs.is; ... }

let ( **-> ) firstarg lastargs =

{ is = fun args ->

let h, t = match args with [] -> Nil, [] | h :: t -> h, t in

firstarg.is h && lastargs.is t; ... }

Fig. 1. Definitions of is for combinators that build embedding/projection pairs.

let dots_arrow (varargs : ’a map) (answer : ’b map) : (’a list -> ’b) mapf =

let apply (f : ’a list -> ’b) =

fun (args : value list) ->

[answer.embed (f (List.map varargs.project args))] in

let unapply (f’ : value list -> value list) =

fun (args : ’a list) ->

answer.project (take1 (f’ (List.map varargs.embed args))) in

{ embed = apply; project = unapply }

The implementations of choose and <|> require a new tactic: try each alternative in
turn until you find one that works. But to implement this tactic requires that the ’a map

abstraction contain additional information beyond just the functions embed and project.
(You might think you could apply the project function and then try the next alternative
if the Projection exception is raised, but the problem is that you don’t know where
Projection is raised, so you don’t know if it indicates that you’ve chosen the wrong al-
ternative or that something is wrong elsewhere.) The additional information takes the form
of an is predicate. The full definitions of type constructors map and mapf are therefore as
follows:

type ’a map =

{ embed : ’a -> value;

project : value -> ’a;

is : value -> bool;

}

type ’a mapf =

{ embed : ’a -> (value list -> value list);

project : (value list -> value list) -> ’a;

is : value list -> bool;

}

The is predicate for a value, in type ’a map, tells whether that value can be projected
into ML type ’a. The predicate for a function, in type ’a mapf, tells whether a list of
arguments would be accepted by that function. Writing the predicates is straightforward;
Figure 1 shows the is predicates for all the embedding/projection pairs used above.

A programmer must remember that an is predicate dispatches on the Lua type of a
value, not on the ML type that a function might be expecting. For example, because all

https://doi.org/10.1017/S0956796811000219 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796811000219


606 N. Ramsey

Lua functions have the same Lua type, it is impossible to dispatch on the exact type of
a function; the best one can do is dispatch on the distinction between function and non-
function. A similar limitation applies to lists.

Given the is predicate, the implementation of type-based dispatch is simple. A value of
type alt represents an alternative variant of a function. It is represented by the function
itself, of type value list -> value list, together with a predicate that says when that
function should be used. If no predicate is satisfied, choose raises an exception.

type alt = (value list -> value list) * (value list -> bool)

let alt t f = (t.embed f, t.is)

let choose alts =

let run args =

let f = try fst (List.find (fun (_, is) -> is args) alts)

with Not_found ->

let args = (list value).embed args in

raise (Projection (args, "arguments matching alts")) in

f args in

Function (caml_fun, run)

The implementations of <|> and <@ are even more straightforward.

let ( <|> ) t t’ =

{ project = (fun v -> if t.is v then t.project v else t’.project v);

embed = t’.embed;

is = (fun v -> t.is v || t’.is v);

}

let ( <@ ) t k =

{ project = (fun v -> k (t.project v));

embed = (fun _ -> assert false);

is = t.is;

}

5 Related work

Lua-ML’s embedding and projection combinators are a type-indexed family of functions.
Type-indexed families have been used to address a variety of other problems; Section 5.1
points to some of the most closely related work. Section 5.2 compares and contrasts Lua-
ML with three other, related APIs for embedded languages. Finally, Section 6 briefly
compares Lua-ML with related tools that work by generating glue code.

5.1 Type-indexed families of functions

As mentioned in Section 4.1, other researchers developed the technique of using higher-
order functions to create type-indexed families (Danvy, 1996; Danvy, 1998; Yang, 1999),
and Benton (2005) independently applied this technique to embedding and projection.
Haskell enables another technique: one can create an indexed family using type classes. For
example, Liang et al. (1995) use type classes to code embedding and projection functions
for “extensible union types.” Unfortunately, the mapping based on type classes supports
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only single-argument, single-result functions. My students and I have attempted to gen-
eralize this mapping, but we have been unable to devise type classes that implement the
currying and uncurrying transformations described in Section 4. Compared with explicit
higher-order functions, type classes can also make it hard to see what is going on; for this
reason, some readers prefer explicit functions.

Blume (2001) uses an elaborate type-indexing scheme to make representations of C data
structures available to Standard ML programs. This scheme defines a family of ML func-
tions indexed by C types; the functions are used to read and mutate C data structures. The
family includes some very clever encodings; for example, Blume presents ML type and
value constructors that are used only to code the (integer) size of a C array as an ML type.

5.2 Comparable APIs

Lua-ML is motivated by earlier work with embedded interpreters. To see how well the
ideas fit with this earlier work, this section compares Lua-ML with three other APIs:
Lua 2.5, Lua 5.0, and Tcl 7.3. Lua 2.5 implements the same language as Lua-ML, but in C.
Lua 5.0 implements a more recent version of that language. Tcl 7.3 implements a very
different language, but is worth comparing because Tcl was the first language designed to
be embedded.

All four APIs have many similarities: an interpreter supports multiple sessions, each
of which is represented as an abstract value in the host language4; each API provides
evaluation functions, which the host program uses to control evaluation; and each API
provides some conversion and testing functions for base types.

The APIs also have many differences. The differences that matter for embedding and
projection are in the parts of the API that specify the treatment of values in the embedded
language: how memory is managed, to what degree values and their representations are
exposed, what different kinds of values there are, how embedded host functions get their
arguments and results, and how application-specific data is embedded and projected.

Memory management Choices about memory management influence every part of an
API, including embedding and projection. The key choice, which is made for both host and
embedded language, is whether memory for values is managed automatically. In Lua-ML,
the host garbage collector manages both host and embedded values, so the API need not
mention memory management. In Lua 2.5 and Lua 5.0, C host values are not managed
automatically, but embedded Lua values are managed by a garbage collector. The API
must make it possible to keep track of roots and internal pointers. In Tcl 7.3, memory for
both host and embedded values is managed explicitly with malloc and free. This choice
adds significantly to the complexity of the API, which must specify who allocates and
deallocates each embedded value.

Exposure of values A choice that affects both what embedding and projection functions
must be provided and what those functions’ interfaces look like is the degree to which
values are exposed.

4 There is one exception: in Lua 2.5, there is only one session, and this session and its state are implicit.
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• The least exposed choice is to store all values in the state of a session and to allow
them to be manipulated only through API functions, including functions for embed-
ding, projection, and type-testing (like is). In Lua 5.0, which uses this choice, values
are stored on the session’s stack, and an API function refers to a value by its stack
index.

• A more exposed choice is to allow values to escape the interpreter but to give
them an abstract type, as is done in Lua 2.5. Escaping values can be passed among
host-language functions and saved in host-language data structures, but they cannot
otherwise be manipulated except through API functions. Functions for embedding,
projection, and type-testing are required, but they have the convenience of receiving
and returning values, not indices.

• The most exposed choice is not only to allow values to escape but also to expose
their representations, as is done in Lua-ML and Tcl 7.3. Functions for embedding,
projection, and type-testing are not required; they are mere conveniences.

Exposure should be influenced by memory management. In particular, if embedded values
are managed automatically and host values are not, the less exposure, the better. When
values are hidden in the interpreter’s state, it is easy to implement garbage collection,
because all roots are part of this state. When values escape, some mechanism must be
provided to identify escaped values that should be treated as roots for garbage collection.
In Lua 2.5, this mechanism adds significant complexity to the API and to host programs.

Kinds of values An API’s functionality for embedding and projection is affected by the
kinds of values that are available. The simplest case is Tcl 7.3, which has only one kind of
value: the string. Tcl’s API includes functions that project a string to an integer, a floating-
point number, or a Boolean. It includes no embedding functions; perhaps to avoid issues
of allocation, embedding is done with sprintf. Because there is only one kind of value,
there are no type-testing functions: instead, it is up to the client to know from context what
each string represents.

The Lua language has three different kinds of values: immutable, atomic values, such
as numbers and strings; mutable, structured tables; and functions. Atomic values are easily
supported and are treated similiarly in Lua 2.5, Lua 5.0, and Lua-ML: in each case, the API
provides an embedding function, a projection function, and a type-testing (is) function.

Tables present more interesting choices. In Lua-ML, if it is necessary to preserve identity
in the presence of mutation, a table must be projected into (and embedded from) a Caml
value of type table. If a table will not be mutated, or if mutations can be ignored, other
projections are possible; for example, Lua-ML provides a convenience function, of type
’a map -> (string * ’a) list map, that projects a table as a list of key-value pairs. The
Lua 2.5 and Lua 5.0 APIs provide no embedding or projection functions for tables, only
functions that manipulate elements of tables.

The most interesting value to embed and project is a function. As shown below, the
critical differences between APIs manifest in the way such a function deals with arguments
and results.

Arguments and results of embedded functions In Lua-ML, a host Caml function that
is embedded into Lua gets its parameters and results in the usual host-language way.
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In Lua 2.5, Lua 5.0, and Tcl 7.3, by contrast, a function can be embedded and projected
only by means of a glue function that gets arguments from the interpreter using the in-
terpreter’s API. Section 2 above shows some examples of hand-written glue functions.
Here, we provide an apples-to-apples comparison of glue code required to embed the two-
argument arc-tangent function. In Lua-ML, we use the combinators described in
Section 4:

embedded_atan2 : value

let embedded_atan2 = efunc (float **-> float **->> float) atan2

In Lua 2.5, we require a hand-written glue function that gets its arguments from the Lua
stack and returns its results by pushing them onto the stack (on top of the arguments).
A function may indicate an error by calling the API function lua error, which uses
longjmp to achieve the effect of raising an exception. Here is the glue function written
in C:

void embedded_atan2(void) {

if (!lua_isnumber(lua_getparam(1)))

lua_error("first arg not a number");

if (!lua_isnumber(lua_getparam(2)))

lua_error("second arg not a number");

lua_pushnumber(

atan2(lua_getnumber(lua_getparam(1)), lua_getnumber(lua_getparam(2))));

}

In Lua 5.0, the example has a similar flavor, except that the state of the session is passed
explicitly throughout.

In Tcl 7.3, a glue function is passed a list of string-valued arguments in the form of
C variables argc and argv. The glue function has a side effect on the result component
of the interpreter’s state, and it returns a termination code, which provides a way to work
around the lack of exceptions in C. Here is the glue function used to embed atan2 into
Tcl 7.3, again written in C:

int embedded_atan2(ClientData d, Tcl_Interp *i, int argc, char *argv[]) {

double x, y;

if (argc != 3) {

i->result = "wrong # of args";

return TCL_ERROR;

}

if (Tcl_GetDouble(i, argv[1], &x) != TCL_OK)

return TCL_ERROR;

if (Tcl_GetDouble(i, argv[2], &y) != TCL_OK)

return TCL_ERROR;

sprintf(i->result, "%f", atan2(x,y));

return TCL_OK;

}

In these four APIs, we see three ways of dealing with arguments and results:

• In Tcl, each conversion procedure returns a termination code, not a value. A result
from one conversion procedure cannot usefully be passed to another conversion
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procedure, so they cannot be composed. Instead, the types enforce an assembly-
language style of programming, in which each intermediate result must be named
and procedures are executed for side effect.

• In Lua 2.5 and 5.0, the result of calling a conversion procedure may be passed
directly to another procedure. Thus, conversion procedures can be composed at a
call site where they are applied.

• In Lua-ML, conversion procedures can be composed before being applied. Such a
composition is used declaratively to describe a function’s type, and the ML code for
the function itself need not contain any calls to conversion procedures.

Embedding application-specific data Lua-ML, Lua 2.5 and 5.0, and Tcl use very differ-
ent techniques for embedding data of application-specific types. In Lua-ML, each applica-
tion-specific type is declared in a library. Libraries are compiled separately and combined
using ML modules (Ramsey, 2005). The combined libraries define the userdata type used
in the interpreter, and they provide an embedding/projection pair for each application-
specific type. The design provides extensibility and separate compilation while preserving
type safety; the details are beyond the scope of this paper.

In Lua 2.5, a value of application-specific type is represented by a C value of type void *

and by an accompanying tag, which is a small integer. The tag is used to distinguish
different application-specific types. A tag and pointer may be converted to a Lua value
of type userdata, from which the same tag and pointer can be extracted. Type safety
is ultimately left up to the programmer, but unsafe code can easily be isolated in an
application-specific conversion routine. In Lua 5.0, a value of application-specific type
is associated not with a tag but with a metatable, but the same programming techniques
work.

In Tcl 7.3, a value of application-specific type must be represented as a string. Tcl lacks
the equivalent of Lua’s tag: the API provides no help in distinguishing an application-
specific string from any other string, and making sure such strings are unique and are used
safely is entirely up to the application.

Summary The crucial properties of Lua-ML’s API are that memory for embedded values
is managed automatically, embedding/projection pairs can be composed, and the compiler
checks that the type of an embedded host-language function is consistent with the corre-
sponding glue code. It is convenient that the API allows embedded values to escape, but
there is no significant benefit to exposing their representation.

What may be surprising is that Lua-ML’s design could be carried over into an API
written in C. It would be possible to take a description of a C function’s type and use
that description to create a glue function dynamically. (Because Lua values are managed
by a garbage collector, encoding a closure would be straightforward.) Such a glue function
could get at its arguments using C’s stdarg.h (varargs) mechanism. The main difficulty is
that the type of the C function would have to be consistent with its description, and it would
be impossible to guarantee this consistency, even with run-time checks. Because errors
would be so difficult to diagnose, I expect that embedding and projection with higher-order
functions would not be very useful in C.
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strindex : int map

init : state -> unit
let strindex =

{ embed = (fun n -> int.embed (n + 1));

project = (fun v -> int.project v - 1);

is = int.is;

}

let init = register_globals

[ "strlen", efunc (string **->> int) String.length;

"strlower", efunc (string **->> string) String.lowercase;

"strupper", efunc (string **->> string) String.uppercase;

"ascii", efunc (string **-> default 0 strindex **->> int)

(fun s i -> Char.code (String.get s i));

"strsub", efunc (string **-> strindex **-> option strindex **->> string)

(fun s start optlast ->

let maxlast = String.length s - 1 in

let last = match optlast with

| None -> maxlast

| Some n -> min n maxlast in

let len = last - start + 1 in

String.sub s start len);

... (* many more functions omitted *)

]

Fig. 2. Example embeddings from the Lua string library.

6 Experience and discussion

We have used Lua-ML to configure and control an optimizing compiler. The glue code
for almost every application-specific function is just a type description, as for atan2 in
Section 5.2. The glue code for the Lua libraries is more elaborate, because we use the
Caml libraries to implement the Lua libraries, and the semantics can differ. For example,
Figure 2 shows the embedding of some representative functions from the Lua string library.

Figure 2 begins with strindex, an embedding/projection pair that embodies a program-
ming convention for strings: Lua strings are 1-indexed, while Caml strings are 0-indexed.
Function init is the registration function. The first three functions registered require
no glue code, because their incarnations in the Lua and Caml libraries have the same
semantics. The fourth Lua function, ascii, has no counterpart in the Caml library, but
it is easy to implement in Caml, especially using default to handle the default parameter.
The last function, strsub, requires lots of glue code, because in Caml, the third parameter
is a length, but in Lua, it is an optional position. This example is atypical and is about as
bad as it gets—a cost of choosing existing, incompatible host and embedded languages.

The type-dispatch techniques described in Section 4.4 are ample for our needs. By using
these techniques, we removed from the ML code all but one case-dispatch on value; the
single remaining dispatch is in the implementation of the function type from the Lua
library, which returns a string that represents the type of a Lua value. Although satisfying,
combinators for type-based dispatch are not essential for an embedded interpreter. Indeed,
perhaps because our interfaces were designed for ML and not for Lua, we use these
combinators rarely; most uses appear as examples in this paper.
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Higher-order functions and types provide great flexibility to the designer of an API for an
embedded language. We have exploited that flexibility to make embedding most functions
as easy as writing their types. The main idea is that Danvy’s (1996) type-indexed family
of functions can be adapted to convert values. Making it work requires some trickery in
the embedding of functions, plus careful handling of functions that need access to an
interpreter’s state. The same ideas can be applied in other contexts in which a statically
typed language needs to manipulate data whose type is not known until run time, such as
Blume’s (2001) foreign-function interface.

These ideas don’t require much code. The parts of Lua-ML discussed here take about
400 lines of Objective Caml; the whole system fits in 3,800 lines. In size, Lua-ML is
comparable to the C implementation of Lua 2.5, which is about 6,000 lines.

Performance is also roughly comparable. Although details of performance are beside the
point of this paper, it should reassure readers to in end-to-end measurements of individual
Lua programs executed by both Lua 2.5 and Lua-ML, the the C code outperforms the Caml
version, but not by much. Mostly, what matters is hash-table performance.

Others have avoided writing glue code by generating it automatically. For example,
toLua (Celes, 2003) reads a “cleaned” version of a C header file and generates glue
code for the functions declared in that file. “Cleaning” must be done by hand. SWIG
(Beazley, 1996) is more ambitious; version 1.3.16 generates glue code for nine scripting
languages. These program generators offer some of the benefits of Lua-ML, but at much
greater cost. The toLua tool is 8,000 lines of C, and the SWIG system is about 30,000 lines
of C; its C parser alone is 4,500 lines. Eliminating glue code using higher-order functions
and types takes a fraction of this effort and is easier for users to extend.

Appendix. More conversion functions

This appendix presents implementations of more of Lua-ML’s conversion functions.
A number may be used where a string is expected.

string : string map
let string =

{ embed = (fun s -> String s);

project =

function String s -> s

| Number x -> string_of_float x

| v -> raise (Projection (v, "string"));

is = (function String _ | Number _ -> true | _ -> false);

}

If desired, the --> operator can be used to create a curried Lua function.

--> : (’a map -> ’b map) -> (’a -> ’b) map
let ( --> ) arg res =

{ embed =

(fun f -> Function (caml_fun, (fun args ->

[res.embed (f (arg.project (take1 args)))])));

project =

(function

| Function (_, f) ->

(fun x -> res.project (take1 (f [arg.embed x])))
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| v -> raise (Projection (v, "function")));

is = (function Function (_, _) -> true | _ -> false);

}

A list of length n is represented as a table with keys 1..n.

list : ’a map -> ’a list map
let list (ty : ’a map) =

let table l = (* convert list to table *)

let n = List.length l in

let t = Table.create n in

let rec set_elems next = function

| [] -> ()

| e :: es ->

( Table.bind t (Number next) (ty.embed e);

set_elems (next +. 1.0) es )

in (set_elems 1.0 l; Table t)

in

let untable (t:table) = (* convert table to list *)

let n = Luahash.population t in

let get_i i =

Table.find t (Number (Pervasives.float i)) in

let rec elems i =

if i > n then []

else ty.project (get_i i) :: elems (i + 1) in

elems 1

in { embed = table;

project =

(function

| Table t -> untable t

| v -> raise (Projection (v, "list")));

is = (function Table t -> true | _ -> false);

}

We frequently allow nil to stand for the empty list, for which convention we define a
convenience function optlist.

optlist : ’a map -> ’a list map
let optlist ty = default [] (list ty)
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