JFP 22 (4-5): 529-573,2012. (© Cambridge University Press 2012 529
doi:10.1017/S0956796812000263

Every bit counts: The binary representation
of typed data and programs

ANDREW J. KENNEDY and DIMITRIOS VYTINIOTIS

Microsoft Research, Cambridge, CB3 0FB, UK
(e-mail: {akenn, dimitris}@microsoft.com)

Abstract

We show how the binary encoding and decoding of typed data and typed programs can be
understood, programmed and verified with the help of question—answer games. The encoding
of a value is determined by the yes/no answers to a sequence of questions about that value;
conversely, decoding is the interpretation of binary data as answers to the same question
scheme. We introduce a general framework for writing and verifying game-based codecs. We
present games in Haskell for structured, recursive, polymorphic and indexed types, building
up to a representation of well-typed terms in the simply-typed A-calculus with polymorphic
constants. The framework makes novel use of isomorphisms between types in the definition
of games. The definition of isomorphisms together with additional simple properties make
it easy to prove that codecs derived from games never encode two distinct values using the
same code, never decode two codes to the same value and interpret any bit sequence as a
valid code for a value or as a prefix of a valid code. Formal properties of the framework have
been proved using the Coq proof assistant.

1 Introduction
Let us play a guessing game:

I am a simply-typed program.! Can you guess which one?
Are you a function application? No.

You must be a function. Is your argument a Nat? Yes.

Is your body a variable? No.

Is your body a function application? No.

It must be a function. Is its argument a Nat? Yes.

Is its body a variable? Yes.

Is it bound by the nearest 1? No.

You must be Ax:Nat.Ay:Nat.x. You're right!

1A closed program in the simply-typed A-calculus with types 7 ::= Nat | 7 — 7 and terms e ::= x | e e |
Ax:t.e, identified up to o-equivalence. We have deliberately impoverished the language for simplicity
of presentation; in practice there would also be constants, primitive operations and perhaps other
constructs.

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

530 A. J. Kennedy and D. Vytiniotis

From the answer to the first question, we know that the program is not a function
application. Moreover, the program is closed, and so it must be a A-abstraction;
hence we proceed to ask new questions about the argument type and body. We
continue asking questions until we have identified the program. In this example,
we asked just seven questions. Writing 1 for yes, and 0 for no, our answers were
0100110. This is a code for the program Ax:Nat.ly:Nat.x.

By deciding a question scheme for playing our game we have thereby built
an encoder for programs. By interpreting a bit sequence as answers to that same
scheme, we have a decoder. Correct round-tripping of encoding and decoding follows
automatically. If, as in this example, we never ask ‘silly questions’ that reveal no
new information, then every bit counts in the code, a consequence of which is that
every bitstring is the code for some value, or is the prefix of a valid code. Another
way of looking at this is that the encoding scheme contains no junk.

Related ideas have previously appeared in domain-specific work; tamper-proof
bytecode (Franz et al., 2002; Haldar et al, 2002) and compact proof witnesses
in proof carrying code (Necula & Rahul, 2001). In the latter case, an astonishing
improvement of a factor of 30 in proof witness size is reported compared to previous
syntactic representations! By contrast, standard serialization techniques do not easily
guarantee tamper-proof codes, nor take advantage of semantic information to yield
more compact encodings.

Our paper identifies and formalizes a key intuition behind those works: question-
and-answer games. Moreover, we take a novel typed approach to codes, using types
for domains of values, and representing the partitioning of the domain by type
isomorphisms.

Contributions. Concretely, our contributions are as follows.

We describe a combinator library for building codecs based on question-and-answer
games. We build codecs for numeric types, and provide combinators that construct
complex games from simpler ones, producing coding schemes for structured, re-
cursive, polymorphic and indexed types that are correct by construction. A novel
component of our framework is the use of type isomorphisms, and we build a
library of combinators for building type isomorphisms, which is useful in its own
right.

We investigate the formal properties of codecs. The encoding and decoding
functions built from games satisfy a simple round-trip property, and under easily
stated assumptions on the structure of games, they satisfy the stronger every bit
counts property of the title. We relate standard notions from the literature on
coding, and have proved all theorems using the Coq proof assistant.

We develop more sophisticated codecs for abstract datatypes such as sets, multisets
and permutations, making crucial use of the semantic invariants associated with such
types.

We show how to make use of the statistical distribution of values in our game
framework by giving the concrete case for Huffman codes, in pre-computed and
adaptive variants. We also discuss the extension of our framework to arithmetic
coding.

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 531

We encode programs, building games for untyped and simply-typed terms that
yield coding schemes with the every bit counts property, i.e. without ‘junk’ in the
codes. Stated plainly: we can encode programs such that every bitstring represents
a well-typed term, or is the prefix of such a bitstring. To our knowledge, this is
the first such coding scheme for typed languages that has been proven correct. We
explain how to extend the encoding to deal with polymorphic constants. It is also
possible to use our games to generate random well-typed programs, or to enumerate
them.

Sample code. Code fragments will be presented in Haskell, and also sometimes
in Coq, with occasional use of notations from the ssreflect library (Gonthier
et al, 2011). We make use of infinite structures, utilizing laziness in Haskell and
co-induction in Cogq, but the techniques should adapt to a call-by-value setting
through the use of thunks. The complete code can be downloaded from the authors’
web pages.

Earlier work. This paper started life as a Functional Pearl in the proceedings of
ICFP 2010 (Vytiniotis & Kennedy, 2010). In this version, we have made several
presentation and restructuring modifications to add Coq code, types and theorems,
and we have introduced material: new numeric codes (Section 3), a much more
substantial study of the formal properties (Section 4), Huffman codes and arithmetic
coding (Section 7), codes for polymorphically typed programs (Section 6.3) and the
relation to parsimonious algorithms (Appendix B).

Organization. The paper is organized as follows. Section 2 introduces the idea of
games and explains how they can be used to express encoding and decoding of data.
Section 3 makes this concrete with Haskell and Coq code, and introduces many of
the game combinators and the isomorphisms used throughout the paper. Then in
Section 4 we study the formal properties of games, using Coq to state theorems.
Section 5 describes games for sets, multisets and maps and in Section 6 we finally
get to define games for untyped and typed programs, as illustrated by the guessing
game that introduced this paper. Section 7 discusses compression via Huffman and
arithmetic coding. Finally, we discuss future developments in Section 8 and present
connections to related work in Section 9. The two appendices contain a couple
of preliminary studies that deserve further investigation: Appendix A looks at the
problem of applying a filter predicate to a game, and Appendix B observes that
so-called ‘parsimonious’ sorting algorithms that ‘ask no stupid questions’ can be
turned into games that encode permutations.

2 From games to codecs

We can visualize question-and-answer games graphically as binary decision trees.

Figure 1 visualizes a (naive) game for natural numbers. Each rectangular node
contains a question, with branches to the left for yes and right for no. Circular leaf
nodes contain the final result that has been determined by a sequence of questions
asked on a path from the root. Arcs are labelled with the ‘knowledge’ at that point
in the game, characterized as subsets of the original domain.

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

532 A. J. Kennedy and D. Vytiniotis

{n|n=0}
\
=07? It !
0) nln>1)
{/1 0\
0 {1 =17 n=2)
/1 0>
1 =27 f
2} n|n=3;
{J/l 0\
2

Fig. 1. Unary game for naturals.

{0..15}
\

77 (0.7
(8. 15}/ o b
@y =3 0.3)
/1 (N

2.3} = 17 0.1
1 N
/1 ' }

> 27
!

Tl

3 2

Fig. 2. Binary game for {0..15}.

Let us dry run the game. We start at the root knowing that we are in {n | n > 0}.
First, we ask whether the number is exactly 0 or not. If the answer is yes we continue
on the left branch and immediately reach a leaf that tells us that the result is O.
If the answer is no then we continue on the right branch, knowing now that the
number in hand is in the set {n | n > 1}. The next question asks whether the number
is exactly 1 or not. If yes, we are done, otherwise we continue as before, until the
result is reached.

Figure 2 shows a more interesting game for natural numbers in {0..15}. This game
proceeds by asking whether the number in hand is greater than the median element
in the current range. For example, the first question asks for n € {0..15} whether n
is greater than 7, thereby splitting the range into disjoint parts {8..15} and {0..7}.
If n € {8..15} we play the game given by the left subtree. If n € {0..7} we play the
game given by the right subtree.

In both games, the encoding of a value can be determined by labelling all left
edges with 1 and all right edges with 0, and returning the path from the root to the
value. Conversely, to decode, we interpret the input bitstream as a path down the
tree. So in the game of Figure 1, a number n € N is encoded in unary as n zeroes
followed by a one, and in the game of Figure 2, a number n € {0..15} is encoded
as 4-bit binary, as expected. For example, the encoding of 2 is 0010 and 3 is 0011.

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 533

There is one more difference between the two games: the game of Figure 1 is infinite
whereas the game of Figure 2 is finite.

It is clear that question-and-answer games give rise to codes that are unambiguous :
any particular bitstring can be the code for just one value. Moreover, the one-
question-at-a-time nature of games ensures that no valid code is the prefix of
another valid code. In the literature on coding theory, such an encoding scheme is
called prefix-free or just a prefix code for short (Salomon, 2008). Note though that if
a prefix of a bitstring is the code for some value, the rest of that bitstring is simply
junk.

Note two properties common to the games of Figures 1 and 2: every value in
the domain is represented by some leaf node (we call such games total), and each
question strictly partitions the domain (we call such games proper). Games satisfying
both properties give rise to codecs in which any bitstring is either the code for some
value, or is the prefix of such a bitstring: every bit counts. This corresponds to the
notion of a complete code from coding theory (Salomon, 2008). In Section 4 we pin
these ideas down with theorems.

How can we actually compute with games? We have explained the basic principles
in terms of set membership and potentially infinite trees, and we need to translate
these ideas into code, in Haskell and Coq.

e We must represent infinite games without constructing all the leaf nodes
ahead-of-time. This is easy: just construct the game tree lazily, or in Coq,
corecursively.

e We need something corresponding to ‘a set of possible values’, which we have
been writing on the arcs in our diagrams. 7ypes are the answer here: precisely,
in Coq, e.g. {x:nat | 4 < x < 7}, or with additional implicit invariants, in
Haskell, e.g. ‘Ints between 4 and 7.

e We must capture the splitting of the domain into two disjoint parts. This is
solved by type isomorphisms of the form © = 1y 4 15, with 7; representing
the domain of the left subtree (corresponding to answering yes to the
question) and 7, representing the domain of the right subtree (corresponding to
no).

e Finally, we need a means of using this splitting to query the data (when
encoding), and to construct the data (when decoding). Type isomorphisms
provide a very elegant solution to this task: we simply use the maps associated
with the isomorphism.

Let us get concrete with some code!

3 Games in Haskell and Coq
We will dive straight in, with a datatype for games, in Haskell:

data Game t where
Single :: ISO t () — Game t
Split :: ISO t (Either t1 t2) — Game tl1 — Game t2 — Game t

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

534 A. J. Kennedy and D. Vytiniotis

A value of type Game t represents a game (strictly speaking, a strategy for playing
a game) for domain t. Its leaves are built with Single and represent singletons,
and its nodes are built with Split and represent a splitting of the domain into
two parts. The leaves carry a representation of an isomorphism between t and the
unit type. The nodes carry a representation of an isomorphism between t and the
discriminated union of t1 and t2, and two subtrees of type Game t1 and Game t2.’

The definition in Coq is very similar, declaring Game to be a coinductive type in
order to support infinite games:

CoInductive Game t :=
| Single : ISO t unit — Game t
| Split t1 t2 : ISO t (t1 + t2) — Game tl— Game t2— Game t.

What is I807? It is just a pair of maps witnessing an isomorphism:
data ISO t s = Iso (t — s) (s — t)
In Coq, the type also includes proofs of their left and right inverse properties:

Structure ISO t s := Iso { map:> t— s; inv: s— t;
leftInv: V x, inv (map x) = x; rightInv: V y, map (inv y) =y }.

The :> coercion notation above lets us apply the forward map of an isomorphism
implicitly, writing i x instead of map i x.

Without further ado we write a generic encoder and decoder, once and for all. We
use Bit for binary digits rather than Bool so that output is more readable:

data Bit =0 | I

In Coq, we define a coinductive type for possibly infinite lists of bits, which play the
role of Haskell’s lazy lists:

Inductive Bit := 0 | I.
CoInductive Bits := nilB | consB (b: Bit) (bs: Bits).

An encoder for type t takes a game of type Game t and a value of type t, and
produces a list of bits of type Bit. The Coq code is similar, using the CoFixpoint
construct as enc produces a value of coinductive type.

enc :: Game t — t — [Bit] CoFixpoint enc t (g: Game t) :=
enc g x = case g of match g with
Single _ — [] | Single _= fun x= nilB
Split (Iso ask _) gl g2 — | Split _ _ i gl g2= fun x=
case ask x of match i x with
Left y > I : encgly | inl y= consB I (enc gl y)
Right y — 0 : enc g2 y | inr y= consB 0 (enc g2 y)
end end.

2 The type variables t1 and t2 are existential variables, not part of vanilla Haskell 98, but supported by
all modern Haskell compilers. Note that we use GADT-style syntax for defining the Game datatype —
that is just an aesthetic choice.

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 535

How does it work? If the game we are playing is a Single leaf, then t must be a
singleton, so we need no bits to encode t, and just return the empty list. If the game
is a Split node, we ask how x of type t can become either a value of type t1 or
t2, for some types t1 and t2 that split type t disjointly in two parts. Depending on
the answer we output I or 0 and continue playing either the subgame gl or g2.

A decoder is also simple to write:

dec :: Game t — [Bit] Fixpoint dec t (g: Game t) 1 :=
— Maybe (t, [Bit]) match g with
dec g 1 = case g of | Single i= Some(inv i tt, 1)
Single (Iso _ bld) — | Split _ _ i gl g2=
Just (bld O, 1) match 1 with
Split (Iso _ bld) gl g2 — | nil = Nomne
case 1 of [I::1 =
[l — Nothing if dec g1 1 is Some(y, r)
I:1-—> then Some(inv i (inl _ y), r)
do (y,r) < dec gl 1 else None
Just(bld (Left y), r) | 0::1 =
0:1— if dec g2 1 is Some(y, r)
do (y,r) « dec g2 1 then Some(inv i (inr _ y), r)
Just(bld (Right y), r) else None
end end.

The decoder accepts a Game t and a bitstring of type [Bit], assumed to be finite.
If the input bitstring is too short to decode a value then dec returns Nothing.
Otherwise it returns a decoded value and the suffix of the input list that was not
consumed. If the game is Single, then dec returns the unique value in t by applying
the inverse map of the isomorphism on the unit value. No bits are consumed, as no
questions need answering! If the game is Split and the input list is non-empty then
dec decodes the rest of the bitstring using either subgame g1 or g2, depending on
whether the first bit is I or 0, building a value of type t using the inverse map of
the isomorphism.

3.1 Number games

These simple definitions already suffice for a range of numeric encodings. We define
aliases Nat and Pos for the Haskell type Int to document when our integers are
non-negative or positive; in our Coq development these are precise types nat and
positive. Mostly, we present only Haskell code, but sometimes precede the code
with a more precise Coq typing, in a shaded box.

Unary naturals. The game of Figure 1 can be expressed as follows:

geNatGame (k:nat) : Game { x:nat | x >= k }

geNatGame :: Nat — Game Nat

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

536 A. J. Kennedy and D. Vytiniotis

geNatGame k = Split (splitIso (== k))
(Single (singleIso k))
(geNatGame (k+1))

The function geNatGame returns a game for natural numbers greater than or equal
to its parameter k. It consists of a Split node whose left subtree is a Singleton
node for k, and whose right subtree is a game for values greater than or equal to k+1.
The isomorphisms singleIso and splitIso are used to express singleton values
and partitioning by some predicate, respectively. Their signatures and definitions are
presented in Figures 3 and 4, along with some other basic isomorphisms that we
shall use throughout the paper.

In this game, the isomorphisms just add clutter to the code: one might ask why
we did not define a Game type with elements at the leaves and simple predicates in
the nodes. But isomorphisms show their true colours when they are used to map
between different representations rather than just different refinements of the same
underlying type.

Unary naturals, revisited. Consider this alternative game for natural numbers:

unitGame :: Game ()
unitGame = Single (Iso id id)

unaryNatGame :: Game Nat
unaryNatGame = Split succIso unitGame unaryNatGame

This time we are exploiting the isomorphism N = 1 + IN, presented in Figure 3.
Let us see how it is used in the game. When encoding a natural number n, we
ask whether it is zero or not using the forward map of the isomorphism to get
answers of the form Left () or Right (n— 1), capturing both the yes/no ‘answer’
to the question and data with which to continue playing the game. If the answer
is Left () then we just play the trivial unitGame on the value (), otherwise we
have Right (n— 1) and play the very same unaryNatGame for the value n—1. When
decoding, we apply the inverse map of the isomorphism to build data with Left ()
or Right x as determined by the next bit in the input stream.
We can test our game using the generic enc and dec functions:

> enc unaryNatGame 3
[0,0,0,1]

> enc unaryNatGame 2
[0,0,1]

> dec unaryNatGame [0,0,I]
Just (2,[1)

Finite ranges. How about the range encoding for natural numbers, sketched in
Figure 2? That is easy:

rangeGame (m n : nat) : Game { x | m <= x <= n }.

rangeGame :: Nat — Nat — Game Nat
rangeGame m n | m == n = Single (singleIso m)

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts

singlelIso (k: t) : ISO { x | x = k } unit

singlelso :: a — IS0 a ()
singleIso x = Iso (const ()) (const x)

splitIso (p: t— bool) : IS0 t ({y | p y = true} + {y | p y = false})

splitIso :: (a — Bool) — ISO a (Either a a)
splitIso p = Iso ask bld
where ask x = if p x then Left x else Right x
bld (Left y) =y
bld (Right y) =y

leftIso (i: ISO t (t1+t2)) : ISO {x:t | is_inl (i x) } t1.

leftIso :: ISO t (Either t1 t2) — ISO t ti1
leftIso (Iso ask bld) = Iso (getLeft oask) (bldo Left)
where getLeft (Left x) = x

rightIso (i: ISO t (t1+t2)) : ISO {x:t | "is_inl (i x) } t2.

rightIso :: IS0 t (Either t1 t2) — ISO t t2
rightIso (Iso ask bld) = Iso (getRight o ask) (bld o Right)
where getRight (Right x) = x

boolIso : ISO bool (unit + unit).

boolIso :: ISO Bool (Either (O ()
boolIso = Iso ask bld
where ask True = Left (); ask False = Right ()
bld (Left ()) = True; bld (Right ()) = False
succIso : ISO nat (unit + nat).
succIso :: ISO Nat (Either () Nat)
succIso = Iso ask bld
where ask n = if n==0 then Left () else Right (n-1)
bld (Left ()) = 0; bld (Right n) = n + 1
natPosIso : ISO nat positive.
natPosIso :: ISO Nat Pos
natPosIso = Iso succ pred

Fig. 3. Some useful isomorphisms (I).

rangeGame m n = Split (splitIso (> mid))
(rangeGame (mid+1) n)

537

(rangeGame m mid) where mid = (m + n) ‘div‘ 2

Let us try it out:

> enc (rangeGame 0 15) 5
[0,1,0,1]

> dec (rangeGame O 15) [0,I,0,I]
Just (5,[])

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

538 A. J. Kennedy and D. Vytiniotis

parityIso : ISO nat (nat + nat).

parityIso :: ISO Nat (Either Nat Nat)
paritylso = Iso ask bld
where ask n = if even n then Right (n ‘div‘ 2) else Left (n ‘div‘ 2)
bld (Left m) =m * 2 + 1; bld (Right m) = m * 2

listIso : ISO (list t) (unit + t * list t).

listIso :: ISO [t] (Either () (t,[t]))
listIso = Iso ask bld
where ask [] = Left (); ask (x:xs) = Right (x,xs)
bld (Left ()) = []; bld (Right (x,xs)) = x:xs
nonemptyIso : ISO { x:1list t | x<>nil } (t * list t).
nonemptyIso :: ISO [t] (t,[t])
nonemptyIlso = Iso ask bld
where ask (x:xs) = (x,xs)
bld (x,xs) = x:xs

depListIso : ISO (list t) { n:nat & {xs:list t | length xs = n} }.

depListIso :: ISO [t] (Nat,[t])
depListIso = Iso ask bld where ask xs = (length xs, xs)
bld (n,xs) = xs

Fig. 4. Some useful isomorphisms (II).

Binary naturals. The range encoding results in a logarithmic coding scheme, but
only works for naturals in a finite range. Can we give a general logarithmic scheme
for arbitrary-size naturals? Yes, and here is the protocol: we first ask if the number n
is zero or not, making use of succIso again. If yes, we are done. If not, we ask
whether n — 1 is divisible by 2 or not, making use of parityIso from Figure 4 that
captures the isomorphism IN = N + IN.

Here is the code:

binNatGame :: Game Nat
binNatGame = Split succIso unitGame $
Split parityIso binNatGame binNatGame

The $ sign above is just Haskell infix notation for function application. We can test
this game; for example:

> enc binNatGame 8
(o,1,0,0,0,0,I11

> dec binNatGame [0,I,0,0,0,0,I]
Just (8, [1)

> enc binNatGame 16
(o,1,0,0,0,0,0,0,I1]

After staring at the output for a few moments one observes that the encoding takes
double the bits (plus one) that one would expect for a logarithmic code. This is

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 539

because before every step, an extra bit is consumed to check whether the number is
zero or not. The final extra I terminates the code.

3.2 Game combinators

To build games for structured types we provide combinators that construct complex
games from simple ones.

Constant. Our first combinator is trivial, making use of the isomorphism between
the unit type and singletons. In Haskell, it is up to the programmer to ensure that
the encoder for constGame k is only ever applied to the value k; in Coq, a proof is
of course required, as indicated by the game’s type:

constGame (k: t) : Game {x | x = k}

constGame :: t — Game t
constGame k = Single (singlelIso k)

Conditional. An idiom that we have seen already is the use of Split with splitIso
wrapping up a predicate. It is worth capturing this pattern with a trivial conditional
game:

condGame (p: t— bool)
Game {x | p x = true}— Game {x | p x = false} > Game t

condGame :: (t — Bool) — Game t — Game t — Game t
condGame p = Split (splitIso p)

Cast. The combinator (+>) transforms a game for t into a game for s, given
that s is isomorphic to t.

(+>) :: Game t — ISO s t — Game s
(Single j) +> i = Single (i ‘seqlso‘ j)
(Split j gl g2) +> i = Split (i ‘seqlso‘ j) gl g2

What is seqIso? It is a combinator on isomorphisms, which wires two isomorphisms
together. In fact, combining isomorphisms together in many ways is generally useful,
so we define a small library of isomorphism combinators. Their signatures are given
in Figure 5 and their implementation (and proof in Coq) is entirely straightforward.

Choice. It is dead easy to construct a game for the sum of two types, if we are
given games for each. The sumGame combinator is so simple that it hardly has a
reason to exist as a separate definition:

sumGame :: Game t — Game s — Game (Either t s)
sumGame = Split idIso

Composition. Suppose, we are given a game g; of type Game t and a game g, of
type Game s. How can we build a game for the product (t,s)? A simple strategy is
to play g;, the game for t, and at the leaves play g,, the game for s. The prodGame
combinator achieves this, as follows:

prodGame :: Game t — Game s — Game (t,s)

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

540 A. J. Kennedy and D. Vytiniotis

idIso :: ISO a a

invIso :: ISO a b — ISO b a

|[A=BAB=C=A4=C|

seqlso :: ISO ab — ISO b c — IS0 ac
|[A=BAC=D=AxC=BxD|

prodIso :: ISO a b — IS0 ¢ d — IS0 (a,c) (b,d)
|[A=BAC=D=A+C=B+D|

sumIso :: ISO a b — IS0 ¢ d — ISO (Either a c) (Either b d)

AXB=ZBxA

swapProdIso :: ISO (a,b) (b,a)

swapSumIso :: ISO (Either a b) (Either b a)
|A><(B><C)%(A><B)><C|

assocProdI :: ISO (a,(b,c)) ((a,b),c)
|A+(B+C)%(A+B)+C|

assocSumIso :: ISO (Either a (Either b c)) (Either (Either a b) c)
1xA=A4

prodLUnitIso :: ISO ((),a) a

prodRUnitIso :: ISO (a,()) a
|A><(B+C)%(A><B)+(A><C)|

prodRSumIso :: ISO (a,Either b c) (Either (a,b) (a,c))
[(B+C)x A= (BxA)+(CxA4)|

prodLSumIso :: ISO (Either b c,a) (Either (b,a) (c,a))
Fig. 5. Isomorphism combinator signatures.

prodGame (Single i) g2 =
g2 +> prodIso i idIso ‘seqlso‘ prodLUnitIso
prodGame (Split i gla glb) g2 =
Split (prodIso i idIso ‘seqlso‘ prodLSumIso)
(prodGame gla g2)
(prodGame glb g2)

If the game for t is a singleton node, then we play g2, which is the game for s.
However, that will return a Game s, whereas we would like a Game (t,s). But from
the type of the Single constructor we know that t is the unit type (), and so we
coerce g2 to the appropriate type using combinators from Figure 5 to construct an

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 541

isomorphism between s and ((),s). In the case of a Split node, we are given
an isomorphism iso of type ISO t (Either t1 t2) for unknown types t1 and
t2, and we create a new Split node whose subtrees are constructed recursively,
and whose isomorphism of type ISO (t,s) (Either (t1,s) (t2,s)) is again
constructed using the combinators from Figure 5.

Lists. What can we do with prodGame? We can build more complex combinators,
such as the following recursive 1istGame that encodes lists:

listGame :: Game t — Game [t]
listGame g = Split listIso unitGame (prodGame g (listGame g))

It takes a game for t and produces a game for lists of t. The question asked
by listIso is whether the list is empty or not. If empty then we play the left
subgame — a singleton node — and if non-empty then we play the right subgame,
consisting of a game for the head of the list followed by the list game for the tail of
the list. This is just the product prodGame g (listGame g).

An aside: guarded corecursion in Coq. The 1listGame is the first game we have
seen that does not transcribe directly into Coq. If we attempt to type-check

CoFixpoint listGame g :=
Split listIso unitGame (prodGame g (listGame g)) .

then we get an error. This is because Coq can not tell through pure syntactic
means that 1istGame is productive, in other words, will continue to produce values
through recursive calls. This problem affects most recursive games, except for very
simple ones such as unaryNatGame and binNatGame. There is no easy work-around,
although for some games, including 1istGame, it is possible to inline definitions and
unroll recursion a little by hand, thereby exposing sufficient syntax to convince the
Coq type-checker that the recursion is ‘guarded’ — the syntactic condition that it uses
to assure productivity. The problem of guardedness — and similar issues affecting
ordinary structural recursion — continue to be the focus of much research effort in
the dependently typed programming community, and so it is hoped that some future
version of Coq might offer a solution to this problem.

Composition by interleaving. Recall that prodGame pastes copies of the second
game in the leaves of the first game. However, if the first component of a pair is
an infinite stream, and we would like an online decoder, then prodGame is useless
since it requires the first value to be decoded in its entirety before we can go on in
decoding the second component. An alternative approach is to interleave the bits
of the two games. We illustrate this graphically, starting with example games given
below:

| |

Al Bl
/\ / N\
oy A, B, B3
/ N\
062/ \063 ﬁl ﬁz

Interleaving the two games, starting with the left-hand game gives:

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

542 A. J. Kennedy and D. Vytiniotis

Ay
By / \

B
A

Ve AN Az By
o, By a1, B2 / \ /N
B, By o,f3 o3,f3
/N /N

o2, P %2, 2 o3, 1 o3, 2

The ilGame below does that by playing a bit from the game on the left, but
always ‘“flipping’ the order of the games in the recursive calls. Its definition is similar
to prodGame, with isomorphism plumbing adjusted appropriately:

ilGame :: Game t — Game s — Game (t,s)
ilGame (Single i) g2 = g2 +> prodIso i idIso ‘seqIlso‘ prodLUnitIso
ilGame (Split i gla gib) g2 =
Split (swapProdIso ‘seqlso‘ prodIso idIso i ‘seqlso‘ prodRSumIso)
(ilGame g2 gla)
(ilGame g2 glb)

The precise encoding of products of course differs between ilGame and prodGame,
although it will use exactly the same number of bits.

Dependent composition. Suppose that, after having decoded a value x of type t,
we wish to play a game whose strategy depends on x. For example, given a game
for natural numbers, and a game for lists of a particular size, we could create a
game for arbitrary lists paired up with their size. We can do this with the help of a
dependent composition game combinator.

depGame :: Game t — (t — Game s) — Game (t,s)
depGame (Single i@(Iso _ inv)) f =
f (dnv ()) +> prodIso i idIso ‘seqIlso‘ prodLUnitIso
depGame (Split i@(Iso _ inv) gla glb) f
= Split (prodIso i idIso ‘seqlso‘ prodLSumIso)
(depGame gla (f o inv o Left))
(depGame gilb (f o inv o Right))

The definition of depGame resembles the definition of prodGame, but note how in
the Single case we apply the f function to the singleton value to determine the
game we must play next.

The type of the depGame combinator is especially illuminating in Coq:

depGame: V t s, Game t— (V x:t, Game (s x)) — Game { x:t & s x }

Here, the second game has a dependent function type (a I1 type) whose result is a
game whose type can depend on the value of the argument; the resulting game is
for a dependent pair type (a X type) the type of whose second component depends
on the value of the first component.

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 543

As might be expected, the original prodGame can be expressed very easily in terms
of the more general depGame:

prodGameAlt :: Game t — Game s — Game (t,s)
prodGameAlt gl g2 = depGame gl (const g2)

Finally, note that the Haskell type of depGame looks similar to the type of monadic
bind — it is interesting future work to explore the monadic structure of games.

Lists, revisited. We can use depGame to create an alternative encoding for lists.
Suppose we are given a function vecGame that builds a game for lists of a given
length:

vecGame (g: Game t) n : Game { xs: list t | length xs = n }

vecGame :: Game t — Nat — Game [t]
vecGame g O = constGame []
vecGame g n = prodGame g (vecGame g (n - 1)) +> nonemptyIso

We can then define a game for lists paired with their length, and use the isomorphism
depListIso from Figure 4 to derive a new game for lists, as follows:

listGameAlt :: Game Nat — Game t — Game [t]
listGameAlt natGame g = depGame natGame (vecGame g) +> depListIso

The game is parameterized on a Game Nat used to encode the length. It is interesting
to observe that 1istGameAlt unaryNatGame will use exactly the same number of
bits as our original 1istGame: in effect, the latter encodes the length of the list as a
unary representation interleaved with the elements of the list.

Numbers, revisited. We have described two games for representing an arbitrary-
sized number n € IN: the O(n) game unaryNatGame, and the O(log(n)) game
binNatGame. The latter seems somewhat wasteful in that it uses two bits for every
bit in the standard binary representation of n. This prompted Elias (1975) to propose
a family of codes for (positive) natural numbers based on prefixing their standard
binary encoding by some (hopefully efficient) representation of the number of bits in
the binary encoding, observing that the most significant bit is always a one, and so
can be omitted. So, for example, the number 34 is represented as h00010, where the
bitstring b represents the number five by some means or other. See Salomon (2008)
and MacKay (2003) for modern expositions.

Elias-style codes can be implemented very slickly using games:

eliasGame :: Game Nat — Game Pos
eliasGame natGame = depGame natGame binGame +> binIso

constGame 1

Split parityIso (binGame (n-1)) (binGame (n-1))
binIso = Iso (ip — (log2 p, p)) snd

log2 1 =0

log2 p =1 + log2 (p ‘div‘ 2)

where binGame 0

binGame n

Let BIN, be the set {x € N | 2" < x < 2""!} in other words, those positive
integers whose standard binary encoding contains n + 1 bits. Then binGame n is a

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

544 A. J. Kennedy and D. Vytiniotis

game for BIN,, which cunningly re-uses parityIso as the isomorphism BIN, ; =
BIN,, 4+ BIN,. (Note that, in contrast to the original presentation by Elias, this
representation is little endian, or least significant bit first.) The binIso code expresses
the isomorphism between Nt and Xn € N.BIN,,.

We can instantiate natGame with unaryNatGame to get the y-code described by
Elias:3

gammaGame :: Game Pos
gammaGame = eliasGame unaryNatGame

To represent a number in the y-code, we first encode in unary the number of bits
required for its standard binary representation, followed by the bits (least significant
first) of the binary representation, dropping the most significant bit (msb). So,
for example, the number 34 has binary representation 100010, dropping the most
significant bit and writing it in little endian form produces 01000, and so its y-
code is 000001 01000. Observe that gammaGame uses the same number of bits as
our binNatGame from Section 3.1: in effect, the latter encodes the length of the
binary as a unary representation interleaved with the bits of the binary.

So we have not yet improved on binNatGame! But now we can bootstrap. First,
observe that we can use the y-code defined above to obtain the d-code of Elias:

deltaGame :: Game Pos
deltaGame = eliasGame (gammaGame +> natPosIso)

For example, the number 34 would be represented as 001 01 01000. Why? Because 34
in little endian binary without msb is 01000, which has five bits, and we now use
the y-code — after applying the isomorphism IN = IN™ because y works for positive
numbers only — to encode 5 € N as 001 01.

Finally, we can apply the power of recursion to implement the limiting case of
bootstrapping — called the w-code by Elias for obvious reasons — in a single line!

omegaGame :: Game Pos
omegaGame = condGame (== 1) (constGame 1) (eliasGame omegaGame)

Let us try it out:

> enc omegaGame 34
(o,o0,0,1,0,1,0,0,1,0,0,01

So the w encoding of 34 is 0001 0 10 01000. The last five bits 01000 are the little
endian, msb-dropped representation of 34. The next two bits 10 are the little endian,
msb-dropped representation of 5. The next single bit O is the little endian, msb-
dropped representation of 2. Finally, the first four bits are a unary encoding of
the number of subsequent groups of bits — in the code above, this is the result of
the condGame switch on each iteration through omegaGame. The observant reader
will note that the type of eliasGame does not quite match its use in omegaGame.

3 Elias used « for unary, § for standard binary and continued with y for this code

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 545

However, an alternative valid ‘typing’ for eliasGame is {n |n > 1} — {n|n > 2},
and it is at this refined type that it is used in omegaGame.

Is omegaGame any use in practice? Perhaps not — often, the range of numbers
is bounded and so rangeGame would be the best fit, or for unbounded numbers
binNatGame would be ‘good enough’. Nevertheless, examples such as omegaGame
illustrate the ability of games to provide crisp, easily analysed definitions of codecs.
The usual description of algorithms for encoding and decoding the @ code is very
much more long winded.

4 Properties of games

We now turn to the formal properties of game-based codecs. Basic correctness
follows from the validity of isomorphisms, and termination and the every bit counts
property of the title follow from some easily stated requirements on games.

We present the statements of all theorems in this section in Coq. The results
apply to Haskell code, with a couple of provisos. First, results concerning precise
Coq types such asnat or{ x | x > 5 } apply only to the appropriate subdomain
of the less precise Haskell type. For example, all bets are off when feeding a
negative value of Haskell type Int to enc unaryNatGame. Furthermore, nothing is
said about the encoding of infinite values, such as enc (listGame natGame) ones
where ones is the infinite stream of 1’s. Note, though, that we do model infinite
games in Coq (through a CoInductive type), and also the possibly non-terminating
behaviour of enc (through the type Bits of finite and infinite lists of bits). In order
to capture termination of the encoder, we write enc g x = fromList 1, where 1 is
of type list Bit, and fromList embeds finite lists into the Bits type, as follows:

Definition fromList := fold_right consB nilB.
We will also make use of the following definition of list prefix:

Notation "1 C k" := (3 1’, 1 ++ 1’ =k)

4.1 Correctness

We are interested only in lossless codes, so at the very least we expect a precise
round-trip property: encoding followed by decoding should return us to where we
started. In fact, for a correctly constructed game we can prove the following more
general theorem, which asserts that if x encodes to a finite bitstring 1, then the
decoding of 1 ++ e returns x together with the suffix e.

Theorem Roundtrip: V 1 t (g: Game t) x,
enc g x = fromList 1>V e, dec g (1 ++ e) = Some (x, e).

The proof is by induction on 1 and makes use of the leftInv property from the
isomorphisms embedded in the games.

This general theorem packages up several facts about the codecs induced by
games. The first of these is simply that the encoding function is injective: no two
values are assigned the same code word.

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

546 A. J. Kennedy and D. Vytiniotis

Table 1. Code zoo

(a) (b) (c) (d) (e) ()
Fixed Variable Uniquely
Symbol length length decodable Prefix-free = Redundant Complete

A 00 0 0 0 0 0
B 01 10 01 100 100 100
C 10 101 011 101 101 101
D 11 111 0111 111 111/110 11

Corollary Injectivity: V 1 t (g: Game t) x y,
(enc g x = fromList 1 A enc g y = fromList 1) - x = y.

Clearly, injectivity is a necessary property of an encoding function, but it is not
sufficient. Consider the zoo of codecs for a four-element type shown in Table 1. The
first of these is a simple two-bit fixed-length code. The second is a more interesting
variable-length code. As a self-contained code, it satisfies the basic requirement of
injectivity. But if the code is extended to sequences of symbols simply by appending
their code words, then it becomes ambiguous. For example, consider the bitstring
1010: we cannot tell whether it represents the sequence CA or the sequence BB.
In the literature on coding theory, a variable-length code for symbols is said to be
uniquely decodable (UD) if its extension to sequences is injective (MacKay, 2003;
Salomon, 2008).

Fortunately, a second corollary of the round-trip theorem is that codecs induced
by games are UD. Here, t"n is the n-fold product of t (defined in the NaryFunctions
module from Coq’s standard library), and encvec is the n-fold appending of enc
applied to the elements of t n.

Corollary UD: V t n (g: Game t) 1 (v w: t°n),
(encvec g v = fromList 1 A encvec g w = fromList 1) > v = w.

Now consider codec (c) in Table 1. It is UD, as the initial zero in each code word
acts as a kind of ‘punctuation’. However, it is necessary for the decoder to ‘look
ahead’ in order to determine the end-point of each symbol’s code word. The one-
question-at-a-time nature of our games prevents such look-ahead, and thus ensures
that codes are prefix-fiee (or a prefix code for short), meaning that no prefix of a
valid code can itself be a valid code. It is easy to see that codec (d) in Table 1
has this property. For prefix codes, we can stop decoding at the first successfully
decoded value: no look-ahead is required.

Corollary Prefix: V 1 1’ t (g: Game t) x vy,
(1C1° A enc g x = fromList 1 A enc g y = fromList 1’) —» x = y.

An important result from the theory of codes states that for any UD code there
exists a prefix code with the same code lengths. Hence, we are not losing out by
restricting ourselves to prefix codes.

It is worth pausing for a moment to return to the game binNatGame from
Section 3. Observe that the ‘standard’ binary encoding for natural numbers is not

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 547

option nat

= Some (7?
/ Nption nat \ {Some 0}
Some 0 = Some 1?

/ Nption nat \ {Some 0, Some 1}

Some 1 = Some 2?

Some 2
Fig. 6. Game for optional naturals.

a prefix code (it is not even UD). For example, the encoding of 3 is 11 and the
encoding of 7 is 111. The extra bits inserted by binNatGame are necessary to convert
the standard encoding to one which is a prefix code. The anticipated downside is the
insertion of ‘punctuation’ bits that double the size of the encoding, but nevertheless
keep it O(logn).

4.2 Termination

Thus far our main theorem and its corollaries assume that the encoder terminates.
Although in traditional coding theory termination of encoding for any value is taken
for granted, it does not follow automatically for our game-based codecs.

Figure 6 presents a somewhat odd game for the Coq type option nat. At every
step i, the game asks whether the value in hand is Some i, or any other value in the
type option nat. Note that when asked to encode a value None the encoder will
simply play the game for ever, diverging.

That is certainly no good! The flaw in the game is that not every value is
represented: there is no leaf for the None value. So to guarantee termination of
encoding, we can require games to be total, meaning that every element in the
domain is represented by some leaf node. Given a game g of type Game t and
value x of type t, we write g ~» x, read ‘g generates x’, and defined inductively as

follows:
81 > X1 g2 > X2

Singlei ~» invitt Splitig g ~» invi(inl xy) Splitig g ~» invi (inr x;)
The definition of total game is then easy:
Definition Total t (g: Game t) :=V x, g ~» x.

The reader can check that, with the exception of the game in Figure 6, the games
presented so far are total; furthermore the combinators on games preserve totality.
We can then prove that if a game is total then enc terminates on all inputs.

Theorem Termination: V t (g: Game t),
Total g«>V x, 3 1, enc g x = fromList 1.

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

548 A. J. Kennedy and D. Vytiniotis

The proof uses an auxiliary lemma which states that for any x, if g ~» x then enc g x
terminates. The proof proceeds by induction on the structure of the derivation
of g ~» x.

4.3 Redundancy

Now consider codec (e) in Table 1, in which symbol D is assigned two codes, 110 and
111. The third bit of this code is wasted, as the first two bits uniquely determine the
value. Of course the encoding function enc induced by a game must produce just
one code, but can the decoding function dec accept more than one code for a single
value? Fortunately, construction of games from type isomorphisms guarantees not
only that two values will never be assigned the same code, but also that two codes
cannot represent the same value. We show this by first proving a reverse-round-trip

property:

Theorem ReverseRoundtrip: V 1 t (g: Game t) x s,
dec g 1 = Some (x, s) >3 p, enc g x = fromList p A p ++ s = 1.

The proof is by induction on the length of 1, making use of the rightInv property
from the isomorphisms embedded in the games.
Injectivity of decoding is a simple corollary.

Corollary DecInjectivity: V t (g: Game t) 1 1’ x,
(dec g 1 = Some (x, nil) A dec g 1’ = Some (x, nil)) > 1 = 1°.

4.4 Every bit counts

Study once more the prefix code (d) in Table 1. As with codec (e), it is clear that
the final bit in the code 111 for D is redundant, and can be interpreted as asking
the same question twice:

1_D
: —p2

/
| =D? . @

/ \
+A? 0Cer
\
\\6\\/\ 0 B

We can implement this codec in Haskell (and more contortedly, in Coq) as follows:

data Sym = A | B | C | D deriving (Eq, Show)
voidGame :: Game t -- precondition: t is uninhabited
voidGame = condGame (const True) voidGame voidGame

badSymGame :: Game Sym

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 549

badSymGame =
condGame (/= A)
(condGame (== D)
(condGame (== D) (constGame D) voidGame)
(condGame (== C) (constGame C) (constGame B)))
(constGame A)

It may take a little head scratching to work out what is going on! The first
time that (== D) is encountered, the game partitions the possible values into {D}
and {B,C}. But it then asks the same ‘question’ in the left-hand branch, even though
we are now in a singleton set, so this time partitioning the values into {D} and {}.
The right-hand branch is dead, i.e. we have a domain that is not inhabited — hence
the use of voidGame in the code.

Here is a session that illustrates the badSymGame behaviour:

> enc badSymGame D
[I,1,1]

> dec badSymGame [I,I,I]
Just (D, [1)

> dec badSymGame [I,I,0]
Nothing

For domains more complex than Sym, such ‘stupid questions’ are harder to spot.
Suppose, for example, that in the game for programs described in the introduction,
the first question had been ‘Are you a variable?” Because we know that the program
under inspection is closed, this question is silly, and we already know that the answer
is no.

We call a game proper if every isomorphism in Split nodes is a proper
splitting of the domain; or, equivalently, if for every subgame in the game tree,
its type is inhabited. It is immediate that voidGame is not a proper game and
consequently badSymGame is not proper either.

For proper games, we can show that decoding only fails if the input is simply
incomplete, i.c. it is the prefix of some valid bitstring.

Theorem ProperFailure: V t (g: Game t), (Proper g A Total g) —
V 1, dec g1 = None— 31 x, 3 1°, enc g x = fromList 1> A 1 LC 1°.

In literature on coding theory, a UD code is said to be complete if adding any
code word to the code table results in a non-UD codec. Equivalently, every finite
bitstring is either a prefix of a valid code or has a prefix which is a valid code.
The final codec (f) in Table 1 is complete, as are many coding schemes such as
the well-known Huffman coding. Completeness is a straightforward corollary of the
ReverseRoundtrip and ProperFailure theorems.

Corollary Completeness: V t (g: Game t), (Proper g A Total g) —
V1,3 x,3 1’, enc g x = fromList 1> A (1°’C1 VvV 1C1°).

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

550 A. J. Kennedy and D. Vytiniotis

Table 2. Summary of formal properties of game-based codecs

Properties of game Properties of codec

Correctly constructed Round trips, is uniquely decodable, prefix-free
Total Encoder always terminates
Proper and total Complete: every bit counts

4.5 On infinite games

The careful reader will have observed that the Completeness theorem requires not
only that the game be proper, but also total. Consider the following variation of the
infinite binNatGame from Section 3.1.

CoFixpoint badNatGame: Game nat :=
Split parityIso badNatGame badNatGame.

The question asked splits the input set of all natural numbers into two disjoint and
inhabited sets: the even and the odd ones. However, there are no singleton nodes in
badNatGame and hence Completeness cannot hold for this game.

As a final observation, note that even in a total and proper game with infinitely
many leaves (such as the natural numbers game in Figure 1) there will be an infinite
number of bit strings on which the decoder fails. By Konig’s lemma, in such a
game there must exist at least one infinite path, and the decoder will fail on all
prefixes of that path. For example, any finite sequence consisting only of zeroes will
cause dec unaryNatGame to fail.

We have now reached the end of our study of the formal properties of game-
derived codecs. Table 2 summarizes the relationship between properties of games
and properties of the codec generated by the game.

5 Sets and maps

So far we have considered primitive and structured datatypes such as natural
numbers, lists and trees, for which games can be constructed in a type-directed
fashion. Indeed, we could even use generic programming techniques (Hinze et al.,
2006; Gibbons, 2007) to generate games (and thereby codecs) automatically for such
types. (The advanced number games, on the other hand, required some ingenuity.)

But what about other structures such as sets, multisets or maps, in which implicit
invariants or equivalences hold, and which our games could be made aware of? For
example, consider encoding sets of natural numbers using lists. We know (a) that
duplicate elements do not occur, and (b) that the order does not matter. We could
use listGame binNatGame for this type. It would satisfy the basic round-tripping
property; however, bits would be ‘wasted’ in assigning distinct codes to equivalent
values such as [1,2] and [2,1], and in assigning codes to non-values such as [1,1].

In this section we show how to encode sets, multisets and maps efficiently.
First (Section 5.1), we consider the specific case of sets and multisets of natural
numbers, for which it is possible to hand craft ‘delta’ encodings. Next (Section 5.2),

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 551

we show that, surprisingly, it is possible to construct generic games for sets, multisets
and finite maps, for any domain for which we already have a game. In Appendix B
we construct games for permutations, and identify an interesting connection between
proper games and the notion of a parsimonious algorithm, producing codes for
permutations that are derived from parsimonious sorting algorithms.

5.1 Hand-crafted games

What is a good code for the multiset {3, 6, 5,6} ? We might start by ordering the values
to obtain [3,5, 6, 6] (the Haskell multiset library provides a function toAscList that
does just this), and then encode this ‘canonical representation’ using the standard
game listGame binNatGame. But wait! When encoding the second element, we are
wasting the codes for values 0, 1 and 2, as none of them can possibly follow 3
in the ordering. So instead of encoding the value 5 for the second element of the
ordered list, we encode 2, the difference between the first two elements. Doing the
same thing for the other elements, we obtain the list [3, 2, 1,0], which we can encode
using listGame binNatGame without wasting any bits. To decode, we reverse the
process by adding the differences.

The same idea can be applied to sets, except that the delta is smaller by one, taking
account of the fact that the difference between successive elements is never zero.

In Haskell, we implement diff and undiff functions that respectively compute
and apply difference lists.

diff :: (Nat — Nat — Nat) — [Nat] — [Nat]
diff sub [1 = []
diff sub (x:xs) = x : diff’ x xs
where diff’ base [] = []
diff’ base (x:xs) = sub x base : diff’ x xs

undiff :: (Nat — Nat — Nat) — [Nat] — [Nat]
undiff add [] = []
undiff add (x:xs) = x : undiff’ x xs
where undiff’ base [] = []
undiff’ base (x:xs) = base’ : undiff’ base’ xs
where base’ = add base x

The functions are parameterized on subtraction and addition operations, and are
instantiated with appropriate concrete operations to obtain games for finite multisets
and sets of natural numbers, as follows:

natMultisetGame :: Game Nat — Game (MS.MultiSet Nat)
natMultisetGame g = listGame g +> Iso (diff (-) o MS.toAscList)
(MS.fromList o undiff (+))

natSetGame :: Game Nat — Game (Set Nat)
natSetGame g = listGame g +> Iso (diff (1 x y — x-y-1) o toAscList)
(fromList o undiff (4 x y — x+y+1))

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

552 A. J. Kennedy and D. Vytiniotis

In the code above, MS refers to the MultiSet package that can be downloaded from
Hackage, toAscList enumerates the elements of a set or multiset in ascending order
and fromList transforms a list into a set or multiset.

Here is the set game in action, using our binary encoding of natural numbers on
the set {3,6,5}.

> enc (listGame binNatGame) [3,6,5]
(o,o0,o0,o0,0,1,0,0,1,0,1,1,0,0,0,0,I,1I,I]

> let 1 = enc (natSetGame binNatGame) (fromList [3,6,5])
> 1

(o,o0,o0,0,0,1,0,0,0,1,0,1,11

> dec (natSetGame binNatGame) 1

Just (fromList [3,5,6],[1)

As expected, the encoding is more compact than a vanilla list representation.

5.2 Generic games

What if we want to encode sets of pairs, or sets of sets, or sets of A-terms? It turns
out that we can in fact implement a generic set-game combinator, that, given a
game for some element type, will return a game for sets of that element. Similar
combinators can be implemented for multisets and finite maps.

First of all, we need an ordering on elements to derive a canonical list represen-
tation for the set. Conveniently, the game for the element type itself gives rise to
natural comparison and sorting functions:

compareByGame :: Game a — (a — a — Ordering)
compareByGame (Single _) x y = EQ
compareByGame (Split (Iso ask bld) gl g2) x y =
case (ask x, ask y) of
(Left x1 , Left yl1) — compareByGame gl x1 y1
(Right x2, Right y2) — compareByGame g2 x2 y2
(Left x1, Right y2) — LT
(Right x2, Left y1) — GT
sortByGame :: Game a — [a] — [a]
sortByGame g = sortBy (compareByGame g)

The compareByGame function takes a game and returns a total order for its elements
corresponding to a breadth-first traversal of the game tree.

We can then use a variant of our old friend 1istGame on a sorted list, but at
each successive element adapt the element game so that ‘impossible’ elements are
excluded. To do this, we write a function removeLE that removes from a game all
elements smaller than or equal to a particular element, with respect to the ordering
induced by the game. If the resulting game would be empty, then the function
returns Nothing.

removelE :: Game a — a — Maybe (Game a)
removelLE (Single _) x = Nothing

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 553

removelLE (Split iso@(Iso ask bld) gl g2) x =
case ask x of
Left x1 — Just $ case removelE gl x1 of
Nothing — g2 +> rightlIso iso
Just g1’ — Split iso gl’ g2
Right x2 — fmap (ig — g +> rightIso iso) (removelE g2 x2)

Let us now look in detail at how removeLE operates on an element x. If the node
is Single, then we must have reached the (unique) element x, and so removing it
would produce an empty game; hence we return Nothing. Otherwise, it is a Split
node. If by asking x the question posed by iso we find that it lives in the right
subtree g2, then we simply apply removeLE recursively on g2, and return it as result,
modulo an appropriate isomorphism (see Figure 3), as all elements in the left subtree
gl must be smaller than x according to the ordering. If the element lives in the Left
subtree then we recurse there; if no elements remain then we simply return the right
subtree g2, otherwise we build a Split node updated with the resulting left subtree.
The code for 1istGame can then be adapted to handle sets:

setGame :: Ord a = Game a — Game (Set a)
setGame g = setGame’ g +> Iso (sortByGame g o toList) fromList
where setGame’ g = Split listIso unitGame $
depGame g $ ix —
case removelE g x of
Just g’ — setGame’ g’
Nothing — constGame []

Note the dependent composition which takes the value x played by game g,
removes all values no bigger than it from the game, and then recurses. (Incidentally,
the Ord a type-class requirement comes from the Set type and has nothing to
do with our games. The ordering induced by g can be entirely different from the
ordering provided for Ord.)

It is straightforward to implement a function removeLT that removes from a game
all items strictly smaller than some value, and then use this to implement a game
for multisets. Also easy is a game for finite maps implemented as association lists,
since the indices form a set.

6 Codes for programs

We are now ready to return to the problem posed in the introduction: how to
construct games for programs. As with the types described in the previous section,
the challenge is to devise games that are proper, so that any string of bits represents
a well-typed program, or is the prefix of such a code.

6.1 No types

First, let us play a game for the untyped A-calculus, declared as a Haskell datatype
using de Bruijn indexing for variables:

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

554 A. J. Kennedy and D. Vytiniotis

data Exp = Var Nat | Lam Exp | App Exp Exp

For any natural number n, the game expGame n asks questions of expressions
whose free variables are in the range 0 to n — 1.

expGame :: Nat — Game Exp
expGame O = appLamG 0
expGame n = Split (Iso ask bld) (rangeGame 0 (n-1)) (appLamG n)

where ask (Var i) = Left i
ask e = Right e
bld (Left i) = Var i
bld (Right e) = e

If n is zero, then the expression cannot be a variable, so expGame immediately
delegates to appLamG that deals with expressions known to be non-variables.
Otherwise, the game is Split between variables (handled by rangeGame from
Section 2) and non-variables (handled by appLamG). The auxiliary game appLamG n
works by splitting between application and lambda nodes:

appLamG n = Split (Iso ask bld) (prodGame (expGame n) (expGame n))
(expGame (n+1))
Left (el,e2)

where ask (App el e2)

ask (Lam e) = Right e
bld (Left (el,e2)) = App el e2
bld (Right e) = Lam e

For application terms we play prodGame for the applicand and applicator. For
the body of a A-expression the game expGame (n+1) is played, incrementing n by
one to account for the bound variable.

Let us run the game on the expression I K, where I = Ax.x and K = Ax.Ay.x.

> let tmI = Lam (Var 0)

> let tmK = Lam (Lam (Var 1))

> enc (expGame 0) (App tmI tmK)
(o,1,0,1,1,1,0,1]

> dec (expGame 0) it

Just (App (Lam (Var 0)) (Lam (Lam (Var 1))),[1)

It is easy to validate by inspection the isomorphisms used in expGame. It is also
straightforward to prove that the game is total and proper.

6.2 Simple types

We now move to the simply-typed A-calculus, whose typing rules are shown in
conventional form in Figure 7. In Haskell, we define a datatype Ty for types and Exp
for expressions, differing from the untyped language only in that A-abstractions are
annotated with the type of the argument:

data Ty = TyNat | TyArr Ty Ty deriving (Eq, Show)
data Exp = Var Nat | Lam Ty Exp | App Exp Exp

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 555

xtel I'ke 11> 1 I'ke 114 Ixtike:n,
VAR APp Lam
I'Fx:1 I'kele 1 I'Fixtie: 11 > 1

Fig. 7. Simply-typed A-calculus.

Type environments are just lists of types, indexed de Bruijn style. A complete
program would typically be typed under some initial environment containing types
for primitive constants and operations, such as [TyNat, TyArr TyNat TyNat]
listing the types for zero and successor. For simplicity we have not included such
constants in the term syntax but included a base type TyNat so that the set of types
is inhabited. Note that, though no closed values can inhabit TyNat, we may still well
have well-typed abstractions of type TyArr TyNat TyNat.

It is easy to write a function typeOf that determines the type of an open expression
under some type environment — assuming that it is well typed to start with.

type Env = [Ty]

typeOf :: Env — Exp — Ty

typeOf env (Var i) = env !! i

typeOf env (App e _) let TyArr _ t = typeOf env e in t
typeOf env (Lam t e) = TyArr t (typeOf (t:env) e)

We would like to construct a game for expressions that have type t under some
environment env. If possible, we would like the game to be proper. But wait: there
are combinations of env and t for which no expression even exists, such as the
empty environment and the type TyNat. We could perhaps impose an ‘inhabitation’
precondition on the parameters of the game. But this only pushes the problem
into the game itself, with subgames solving inhabitation problems lest they ask
superfluous questions and so be non-proper. As it happens, type inhabitation for the
simply-typed A-calculus is decidable but PSPACE-complete (Serensen & Urzyczyn,
2006), which serves to scare us off!

We can make things easier for ourselves by solving a different problem: fix the
type environment env (as before), but instead of fixing the type as previously, we
will instead fix a pattern of the form ty — --- — 1, — ? where ‘7" is a wildcard
standing for any type. It is easy to show that for any environment env and pattern
there exists an expression typeable under env whose type matches the pattern.

We can define such patterns using a datatype Pat, and write a function that
determines whether or not a type matches a pattern.

data Pat = Any | PArr Ty Pat

matches :: Pat — Ty — Bool

matches Any _ = True

matches (PArr t p) (TyArr tl1 t2) = tl==t && matches p t2
matches = False

Now let us play some games. Types are easy:

tyG :: Game Ty
tyG = Split (Iso ask bld) unitGame (prodGame tyG tyG)

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

556 A. J. Kennedy and D. Vytiniotis

where ask TyNat = Left ()
ask (TyArr t1 t2) = Right (t1,t2)
bld (Left ()) = TyNat
bld (Right (t1,t2)) = TyArr t1 t2

To define a game for typed expressions we start with a game for variables. The
function varGame below accepts a predicate Ty — Bool and an environment, and
returns a game for all those indices (of type Nat) whose type in the environment
matches the predicate.

varGame :: (Ty — Bool) — Env — Maybe (Game Nat)

varGame f [] = Nothing

varGame f (t:env) = case varGame f env of

Nothing — if f t then Just (constGame O) else Nothing

Just g — if f t then Just (Split succIso unitGame g)
else Just (g +> Iso pred succ)

Note that varGame returns Nothing when no variable in the environment satisfies
the predicate. In all other cases, it traverses the input environment. If the first type
in the input environment matches the predicate and there is a possibility for a match
in the rest of the input environment varGame returns a Split that witnesses this
possible choice. It is easy to see that when varGame returns some game, that game
will be proper.

The function expGame accepts an environment and a pattern and returns a game
for all expressions that are well typed under the environment and whose type
matches the pattern.

expGame (env:Env) (p:Pat)
Game { e | 3 t, typeOf env e = t &% matches p t = true }
expGame :: Env — Pat — Game Exp
expGame env p
= case varGame (matches p) env of
Nothing — appLamG
Just varG — Split varIso varG appLamG
where applLamG = Split appLamIso appG (lamG p)
appG = depGame (expGame env Any) $ le —
expGame env (PArr (typeOf env e) p)
lamG (PArr t p) = prodGame (constGame t) $
expGame (t:env) p
lamG Any = depGame tyG $ it —
expGame (t:env) Any

varIso = Iso ask bld where
ask (Var x) = Left x; ask e = Right
bld (Left x) = Var x; bld (Right e)
appLamIso = Iso ask bld where
ask (App el e2) = Left (e2,el); ask (Lam t e) = Right (t,e)

(0]

I
(0]

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 557

bld (Left (e2,el)) = App el e2; bld (Right (t,e)) = Lam t e

The expGame function first determines whether the expression can possibly be
a variable, by calling varGame. If this is not possible (case Nothing), the game
proceeds with appLamG that will determine whether the non-variable expression is an
application or a A-abstraction. If the expression can be a variable (case Just varG)
then we may immediately Split with varIso by asking if the expression is a variable
or not — if not we may play appLamG as in the first case. The appLamG game uses
appLamIso to ask whether the expression is an application, and then plays game
appG; or a A-abstraction, and then plays game 1amG. The appG performs a dependent
composition: After playing a game for the argument of the application, it binds the
argument value to e and plays expGame for the function value, using the type of
e to create a pattern for the function value. Correspondingly, the ask function of
appLamIso returns Left (e2,el) for applications App el e2 (the converse holds
for bld) precisely because the code for the argument of the application e2 precedes
the code for the function el. The 1amG game analyses the pattern argument. If it
is an arrow pattern we play a composition of the constant game for the type given
by the pattern with the game for the body of the A-abstraction in the extended
environment. On the other hand, if the pattern is Any we first play game tyG for the
argument type, bind the type to t and play expGame for the body of the abstraction
using t to extend the environment.

That was it! Let us test expGame on the example expression from Section 1:
Ax:Nat.ly :Nat.x.

> let ex = Lam TyNat (Lam TyNat (Var 1))
> enc (expGame [] Any) ex
(o,1,0,0,1,1,0]

> dec (expGame [] Any) it

Just (Lam TyNat (Lam TyNat (Var 1)), []1)

Compare the code with that obtained in the introduction. A perfect match — we
have been using the same question scheme!

By carefully examining the isomorphisms used in the game we can determine
that expGame is proper, in the sense of Section 4.4. It is also possible to prove that
every environment-pattern pair is represented, and so the game is total. Hence by the
Completeness theorem, every bitstring represents (or is the prefix of a representation
of) some well-typed term.

Non-proper games for programs. Given the effort we went to in order to obtain a
complete codec, it is worth considering whether we can avoid the bother of ‘patterns’
at the expense of losing completeness. Given any environment and type we will
construct a game for expressions typeable in that environment with that type. The
function expGameCheck below does that.

expGameCheck (env:Env) (t:Ty) : Game { e | 3 t, typeOf env e = t }

expGameCheck :: Env — Ty — Game Exp
expGameCheck env t
= case varGame (== t) env of

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

558 A. J. Kennedy and D. Vytiniotis

Nothing — appLamG t
Just varG — Split varIso varG (appLamG t)

where appLamG (TyArr t1 t2)
= let ask (App el e2)

Left (e2,el)

ask (Lam t e) = Right e
bld (Left (e2,el)) = App el e2
bld (Right e) = Lam t1 e

in Split (Iso ask bld) appG (lamG t1 t2)

appLamG TyNat
= appG +> Iso (A(App el e2)—(e2,el))
(A(e2,el) >App el e2)
appG = depGame (expGame env Any) $ le —
expGameCheck env (TyArr (typeOf env e) t)
lamG t1 t2 = expGameCheck (tl:env) t2

Similar to expGame, expGameCheck first determines whether the expression can
be a variable or not and uses the variable game or the appLamG next. The
appLamG game in turn pattern matches on the input type. If the input type is
TyNat then we know that the expression can not possibly be a A-abstraction
and hence play the appG game. On the other hand, if the input type is an
arrow type TyArr t1 t2 then the expression may be either an application or
an abstraction. The application game appG as before plays a game for the argu-
ment of an application, binds it to e and recursively calls expGameCheck using
the type of e. Interestingly, we use expGame env Any to determine the type
of the argument — alternatively we could perform a dependent composition where
the first thing would be to play a game for the argument type, and subsequently
use that type to play a game for the argument and the function. The lamG game is
straightforward.

There are no obvious empty types in this game — why is it non-proper? Con-
sider the case when the environment is empty and the expected type is TyNat.
According to expGameCheck, the game to be played will be the appG game for
applications. But there can not be any closed expressions of type TyNat to start
with, and the game can not possibly have any leaves — something that we failed
to check. We have asked a silly question (by playing appG) on an uninhabited
type!

In other words, the expGameCheck game is non-proper and hence its codec
is not complete — not every bit ‘counts’’ On the other hand, it is definitely
a useful game and enjoys all other properties we have been discussing in this
paper.

It is natural to ask whether a non-proper game such as expGameCheck can be
transformed into a proper game such as expGame. It turns out that in some cases
this is possible; this is discussed in some detail in Appendix A.

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 559

6.3 Beyond simple types

So far we have constructed complete codecs for the untyped and simply-typed
lambda calculus. What about other language features and richer types, such as
recursion, algebraic datatypes, polymorphism, even dependent types?

In this section we consider a modest extension: the provision of constants, at
top level, with closed polymorphic types. Given appropriate additions to the syntax
of types, it is thereby possible to support language constructs such as tuples and
algebraic datatypes, as their introduction and elimination forms can be supported
via constants, e.g. pair: Vafi.o — § — o x 8 for constructing pairs. It is then a small
step to supporting open polymorphic types and ML-style let polymorphism. Going
beyond this — to System F, for example — whilst maintaining completeness of the
encoding is an open problem.

Suppose we have a type syntax that includes type variables, say 7 ::= o | int |
T X 7|1 — 1, represented by the datatype shown below:

data Ty = TyVar Nat | TyInt | TyArr Ty Ty | TyProd Ty Ty

Type schemes written Va.t are assumed to be closed, and with quantified variables
& all occurring, in that order, in 7. This lets us omit the quantifier prefix from the
encoding. Environments I" now map variables to closed type schemes. The type
system itself is identical to that of Figure 7 except that the rule for variables includes
explicit instantiation of bound type variables:

xVartel

——INsT
'k x; :t[z/4]

The corresponding game for variables must encode the instantiation 7 in addition
to the index of x in the environment. But to be a complete codec, it must not
redundantly encode any type in 7 that is already determined by the pattern that
is matched by the instantiated type. For example, suppose we wish to encode
pairintint—int and we have in our hand the pattern int — ?. Given the type
scheme Voaff.o — f — o X f for pair, we know from the pattern that o must be
instantiated to int and so we should omit this from the encoding, only recording
the instantiation of f, namely int — int.
The match operation used in varGame has the following signature:

matches :: Pat — Ty — Maybe [Game Tyl

Then matches p t returns Nothing if type scheme t does not match p, and
returns Just gs if it does match, with gs providing a game for each of the types in
the instantiation.

Construction of this game is delicate. Suppose again that p is int — ? and we
wish to find a type scheme that matches this pattern. The type scheme Vof.o —
(f — int) clearly does match, but it requires the variable o to be instanti-
ated to int and leaves f undetermined. In this case, matches p t would return
Just [constGame IntTy, tyGame].

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

560 A. J. Kennedy and D. Vytiniotis

7 Compression

All the coding schemes described thus far have ignored the expected distribution of
values in the domain. Even a codec that is complete does not necessarily lead to
compact encodings in practice. For example, the unary encoding of natural numbers
does not waste bits, yet is optimal only for natural numbers distributed according
to the probabilities p(0) = 1,p(1) = §,p(2) = § and so on.

In this section we consider two well-known compression schemes, Huffman coding
and arithmetic coding (MacKay, 2003; Salomon, 2008). For Huffman, we present
a function that constructs a game from a predetermined probability distribution,
and also an adaptive scheme in which the codec is updated according to symbols
already seen. Arithmetic coding is more challenging, as it is not a prefix code in the
sense that we use here. Here, we sketch an approach based on building probability
information into the structure of the games themselves.

7.1 Huffman codes

To implement Huffman coding we will need a type for relative frequencies and for
priority queues. We use the following definitions:

type Frequency = Int
type PQ a = [(Frequency,a)]

A priority queue is a list of pairs, assigning integer frequencies to elements,
maintained in increasing order of frequency. We assume an easy to implement

interface:
newltem :: Frequency — a — PQ a — PQ a
incItem :: Eg a = a —» PQ a — PQ a

Function newItem adds a new item to a priority queue, and incItem increments the
frequency of an already present element.

Our algorithm is going to work as follows. We maintain a priority queue of
type PQ (Set a, Game a) whose elements consist of a set of values of type a
paired with a game for the type corresponding to exactly that set. Our idea now
is to pick the two elements with the lowest frequencies, combining them by taking
the union of the (disjoint) sets and combining their games to produce a game for
the union. The priority queue is then updated, and the process is repeated until the
priority queue contains only a single set and game for elements of that set. The code
is as follows:

bldHuff :: Ord a = PQ (Set a, Game a) — Game a
bldHuff [(_,(_,g))] = g
bldHuff ((wi,(sl,gl)):(w2,(s2,g2)):q)
= bldHuff $ newItem w (s, Split iso gl g2) q
where iso = splitIso (Ax — member x sl1)
w=wl + w2
s = s1 ‘union‘ s2

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 561

We assume that the priority queue is not empty to start with. In the second line of
the definition, we pick the sets s1 and s2 with the lowest frequencies, wi and w2,
respectively. We create the set s as the union of two disjoint sets and a new
frequency w, which is the sum of their frequencies. Now, from game gl for set s1
and game g2 for set s2 we need to create a game for the union s. But that is
easy! We simply have to introduce a Split node, where the question to be asked is
whether an element x, belonging to the union s, belongs in s1 or not.

We are almost there: given a priority queue of type PQ a that assigns frequencies
to distinct values, we create a priority queue of type PQ (Set a, Game a) for
disjoint singleton sets and constant games, and then call our bldHuff function to
build the game for all values:

huffman :: Ord a = PQ a — Game a
huffman q = bldHuff [(w, (singleton x, constGame x)) | (w,x) « q]

Static Huffman. It is now easy to build a game for sequences of values that assumes
a static distribution for each value in the sequence:

staticHuff :: Ord a = PQ a — Game [a]
staticHuff dist = listGame (huffman dist)

Let us test this out using two distributions for letters and space: a uniform one,
and the standard Scrabble™ distribution (with space given a weight of 5):

uniform :: PQ Char
uniform = zip (repeat 1) " ABCDEFGHIJKLMNOPQRSTUVWXYZ"

scrabble :: PQ Char

scrabble = zip
[1,1,1,1,1,2,2,2,2,2,2,2,2,2,3,4,4,4,4,5,6,6,6,8,9,9,12]
"ZXQKJYWVPMHFCBGUSLD TRNOIAE"

As might be expected, the Scrabble distribution beats the uniform one, even on a
short but well known quotation:

> let tobe = "TO BE OR NOT TO BE THAT IS THE QUESTION"
> length (enc (staticHuff uniform) tobe)

235

> length (enc (staticHuff scrabble) tobe)

204

Dynamic Huffman. We now consider adaptive Huffman codes (also known as
dynamic), where the frequency table (and hence the coding scheme) is updated each
time we encounter a new character in our input string. That is remarkably easy as
well, thanks to our dependent composition combinator:

dynHuff :: Ord a = PQ a — Game [a]
dynHuff q = Split listIso unitGame $
depGame (huffman q) (Ax — dynHuff (incItem x q))

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

562 A. J. Kennedy and D. Vytiniotis

In dynHuff, either the list is empty, or there is a head and tail, in which case we play
depGame, using huffGame q to encode the head element, and recurse on the tail
However, note that instead of q, we use incItem q. This ensures that we dynamically
update the frequency table as we read an element — and as a consequence the coding
scheme itself.

Let us test it!

> length (enc (dynamicHuff uniform) tobe)
214

Even when the initial distribution is uniform, the adaptive algorithm does nearly as
well as the static algorithm with the Scrabble distribution; on a longer piece of text
it would be much closer.

7.2 Arithmetic coding

Given a particular distribution of values, Huffman coding is the best we can do,
but only if the probabilities are negative powers of two, such as % or % Consider a
two-element type such as B: Huffman coding must assign one-bit code words to F
and to T, even if F occurs 90% of the time and T occurs 10% of the time. If we are
encoding a sequence of values of the same type then we can improve compression by
clumping values together, in effect doing Huffman on a product, such as IB x B x IB.
Then we might represent FFF by a one-bit code word 0, and TTT by a much longer
code word 11101; we can, in fact, generate exactly these code words using huffman.
If we take this to ‘the limit’, then we will achieve an optimal code for any probability
distribution.

There is a better way of achieving the same compression ratio, called arithmetic
coding. The idea is very elegant: take a representation of the real interval [0, 1), and
divide it up amongst the values according to their probabilities. In our example, F
would occupy the interval [0,0.90) and T would occupy [0.90,1.00). A sequence
of values is encoded by successively dividing subintervals in the same way. In our
example, FFF would be represented by [0,0.729) and TTT by [0.999, 1.0). Once the
entire input has been processed, the output is any number that uniquely identifies the
current interval, i.e. any number inside the current interval. The number is encoded
as a binary expansion.

It is not possible to use our games for the machinery of arithmetic coding. In
any case, there are many efficient implementations already, including a slick one in
Haskell (Bird & Gibbons, 2003). But the tree-like dividing of intervals does suggest
a generalization of our games: attach probabilities, or relative frequencies, to the
branches of Split nodes, and then use arithmetic coding as a ‘back-end’ in new
versions of the enc and dec functions. Instead of emitting O or 1, we divide the reals
according to the frequencies.

Games are easily modified:

data Game t where
Single :: ISO t () — Game t
Split :: ISO t (Either tl1 t2) — Int — Game t1 —
Int — Game t2 — Game t

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 563

We can then define a biased game for booleans, as above:
biasedBool = Split boolIso 1 unitGame 9 unitGame
Let us test it on vectors of length 6:

> enc (vecGame biasedBool 6) [False,False,False,False,False,False]
(]

> enc (vecGame biasedBool 6) [False,False,False,False,False,True]
[0,1,1]

> enc (vecGame biasedBool 6) [False,False,True,False,False,Truel
(0,0,1,1,0,1]

> enc (vecGame biasedBool 6) [True,False,True,False,False,Truel
(o,o0,0,0,0,0,I1]

> enc (vecGame biasedBool 6) [True,True,True,True,True,True]
(o,o0,o0,o0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]

As we increase the number of True values in the list, the encoding gets longer and
longer, reflecting the relative rarity of True in our distribution. Also observe that
arithmetic coding is not a prefix code; indeed, the representation for six successive
False values is the empty list, reflecting the fact that the number O is sufficient to
uniquely identify the interval [0,0.99).

It is fairly straightforward to generalize our binary trees to m-ary ones, with
isomorphisms on nodes of the form T = T; + --- + T,. It would of course be
valuable to model the distributions adaptively, somehow updating the frequencies in
the game as it is played. Also, most work on arithmetic coding is confined to streams
of symbols, whereas in our representation we get arithmetic coding ‘for free’ for
whatever types are modelled using games. Of particular interest is the case of typed
programs (Cheney, 2000). All of these features are the subject of future research.

8 Discussion
8.1 Practicality

There is no reason to believe that the game-based approach is suitable only for
theoretical investigations but not for ‘real’ implementations. To test this hypothesis
we intend to apply the technique to a reasonably sized compiler intermediate
language such as Haskell Core (Sulzmann et al., 2007) or NET CIL (ECMA, 2006).
(We have already created a complete codec for ML-style let polymorphism.)

A natural question is: what is the cost of using our tree-based representation of
games to implement encoding and decoding? First of all it is worth noting that
for simple games, the encoding and decoding functions can be specialized by hand,
eliminating game construction completely. For a trivial example, consider inlining
unaryNatGame into enc, performing a few simplifications, to obtain the following
code:

encUnaryNat x = case x of 0 — I : []
n — 0 : encUnaryNat (n-1)

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

564 A. J. Kennedy and D. Vytiniotis

For more complex games, this is not so easy. Furthermore, determining their
space complexity is somewhat tricky: as we navigate down the tree, pointers to
thunks representing both the left and the right subtrees are kept around, although
only one of two pointers is relevant. An optimization would involve embedding
the next game to be played inside the isomorphism, by making the ask functions
return not only a splitting but also, for each alternative (left or right), the next
game to play. Hence, only the absolutely relevant parts of the game would be kept
around during encoding and decoding. This representation could then be subject
to the optimizations described in stream fusion work (Coutts et al., 2007). For this
paper though our goal has been to explain the semantics of games and not their
optimization and hence we used the easier-to-grasp definition of a game as just a
familiar tree datatype.

8.2 Test generation

Test generation tools such as Quickcheck (Claessen & Hughes, 2000) are a po-
tential application of game-based decoding, since generating bitstrings amounts to
generating programs.

The usual breadth-first-search algorithm on trees can be adapted to enumerate all
values represented by a game tree, as follows:

subGames (Single _) = []
subGames (Split i gl g2) = [gl +> leftIso i, g2 +> rightIso i]

gather ((Single (Iso _ bld):xs):xss) = bld () : gather (xs:xss)
gather ((x:xs):xss) = gather (xs:xss)

gather ([]:xss) = gather xss

gather [] = []

enumerate :: Game t — [t]
enumerate t = gather $
takeWhile (not onull) $
iterate (concatMap subGames) [t]

Here it is in action, enumerating all sets of natural numbers in the range 0 to 3.

> enumerate (setGame (rangeGame 0 3))

[fromList [],fromList [0],fromList [3],fromList [2],fromList [1],
fromList [0,1],fromList [0,2],fromList [2,3],fromList [0,3],
fromList [1,2],fromList [0,1,2],fromList [0,2,3],fromList [1,3],
fromList [0,1,3],fromList [1,2,3],fromList [0,1,2,3]]

When applied to the games discussed in Section 6, this provides a very easy way
to enumerate well-typed programs. It is also possible to generate random well-typed
programs, given an appropriate game. The advantage over other approaches, such
as the generic programming model of Yakushev & Jeuring (2009), or the tailored-
typing-rule method of Palka et al. (2011), is that no backtracking is required,

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 565

because all branches of proper games are inhabited. On the other hand, it would be
desirable to control the distribution of generated programs, perhaps by maintaining
probability information in the game as sketched in Section 7.2. This is a topic for
further research.

8.3 Program development and verification in Coq

Our attempts to encode everything in this paper in Coq tripped over Coq’s limited
support for co-recursion, namely the requirement that recursive calls be guarded by
constructors of coinductive datatypes (Bertot & Casteran, 2004). In many games
for recursive types, the recursive call was under a use of a combinator such as
prodGame, which was itself guarded. Whereas it is easy to show on paper that the
resulting co-fixpoint is well defined (because it is productive), Coq does not admit
such definitions. On the positive side, using the proof obligation generation facilities
of Program (Sozeau, 2006) was a very pleasant experience. Our Coq code in many
cases has been a slightly more verbose version of the Haskell code (due to the more
limited type inference), but the isomorphism obligations could be proven on the
side. Our overall conclusion from the experience is that Coq itself can become a very
effective development platform but it would benefit from better support for more
general patterns of recursion, co-recursion and type inference.

9 Related work

Our work has strong connections to Kennedy’s pickler combinators (Kennedy,
2004). There, a codec was represented by a pair of encoder and decoder functions,
with codecs for complex types built from simple ones using combinators. The
basic round-trip property was considered informally, but stronger properties were
not studied. Before developing the game-based codecs, we implemented by hand
encoding and decoding functions for the simply-typed A-calculus. Compared to the
game presented in Section 6, the code was more verbose — partly because out of
necessity both encoder and decoder used the same ‘logic’. In our opinion, games
are more succint representations of codecs, and their correctness is easier to verify
than the correctness of codecs written with pickler combinators, as games require
only local reasoning about isomorphisms. Note that other related work (Duan et al.,
2005) identifies and formally proves similar round-trip properties for encoders and
decoders in several encryption schemes.

Parsing and pretty-printing operations are related to each other in a similar
way to decoding and encoding functions, and also benefit from being implemented
by a single piece of code. Rendel & Ostermann (2010) propose an interface of
‘syntactic descriptions’ from which both parsers and pretty-printers are built. They
build a library of isomorphism combinators somewhat similar to ours — though the
isomorphisms are only partial, being defined on a subset of the domain.

One can think of games as yet another technique for datatype-generic pro-
gramming (Gibbons, 2007), where one of the most prominent applications is
generic marshalling and unmarshalling. Many of the approaches to datatype-generic

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

566 A. J. Kennedy and D. Vytiniotis

programming (Hinze et al,, 2006) are based on the structural representations of
datatypes, typically as fixpoints of functors consisting of sums and products. It
is straightforward to derive automatically a default ‘structural’ game for recursive
and polymorphic types. On the other hand, games are convenient for expressing
semantic aspects of the values to be encoded and decoded, such as naturals in a
given range. Moreover, the state of a game and therefore the codes themselves can
be modified as the game progresses, which is harder (but not impossible, perhaps
through generic views; Holdermans et al., 2006) in datatype-generic programming
techniques. Finally, our definition of advanced games is somewhat low level because
we have to explicitly map from the constructors of a datatype to left and right
injections — it would be interesting to determine whether some generic structural
representation could help program our games at an even higher level of abstraction.

Another related area of work is data description languages, which associate
the semantics of types to their low-level representations (Fisher et al., 2006). The
interpetation of a datatype is a coding scheme for values of that datatype. There,
the emphasis is on avoiding manually having to write encode and decode functions.
Our goal is slightly different; more related to the properties of the resulting coding
schemes and their verification rather than the ability to automatically derive encoders
and decoders from data descriptions.

Though we have not seen games used for writing and verifying encoders and
decoders, tree-like structures have been proposed as representations of mathematical
functions. For instance, some related work (Ghani et al., 2009) represents contin-
uous functions on streams as binary trees. In our case, thanks to the embedded
isomorphisms, the tree structures represent at the same time both the encode and
the decode functions.

The idea of compact codes for (syntactically) well-formed programs is itself old,
dating at least back to the work of Contla (1985) and Cameron (1988). More
recently, researchers have investigated codes for typed program compression, some
claiming high compression ratios for complete (and hence tamper proof) codecs
for low-level bytecode (Franz et al., 2002; Haldar et al., 2002). Although that work
is not formalized, it is governed by the design principle of only asking questions
that ‘make sense’. That is precisely what our properness property expresses, which
provably leads to complete codecs. Some of these ideas have also been recently
applied for compression of Javascript code as abstract syntax trees (Burtscher et al.,
2010).

Finally, closely related is the idea behind oracle-based checking (Necula & Rahul,
2001) in proof carrying code (Necula & Lee, 1998). The motivation there is to
eliminate proof search for untrusted software and reduce the size of proof encodings.
In oracle-based checking, the bitstring oracle guides the proof checker in order to
eliminate search and unambiguously determine a proof witness. Results report an
improvement of a factor of 30 in the size of proof witnesses compared to their naive
syntactic representations. Although not explicitly stated in this way, oracle-based
checking really amounts to a game for well-typed terms in a variant of LF. Oracle-
based coding appeared again in recent work (Nielsen & Henglein, 2011), where it
is used for the efficient representation of regular expression parse trees. The codes

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 567

obtained there for parse trees represent the ‘choices’ that a parsing algorithm would
perform to associate a regular expression with a certain parse tree. It is an interesting
direction for future work to express the set of bit-coded parse trees as a game for
parse trees.

Appendix A Filtering games

Much of the ingenuity required to construct proper games and hence complete codecs
comes from the necessity to work in a subset of a domain, such as lists without
duplicates (for sets), or well-typed terms. In this section we consider the possibility
of taking a game for an easily-described domain and filtering it by some predicate
to obtain a game for the subset.

Non-proper filtering. We first study a filtering function that results in a non-proper
game. Using voidGame from Section 4.4 we can write filterGame, which accepts a
game and a predicate on t and returns a game for those elements of t that satisfy
the predicate.

filterGame (p: t— bool): Game t— Game {x | p x = true}

filterGame :: (t — Bool) — Game t — Game t
filterGame p g@(Single (Iso _ bld)) =
if p (bld ()) then g else voidGame
filterGame p (Split (Iso ask bld) gl g2)
= Split (Iso ask bld) (filterGame (pobldoLeft) gl)
(filterGame (p o bld o Right) g2)

It works by inserting voidGame in place of all singleton nodes that do not satisfy the
filter predicate. We may, for instance, filter a game for natural numbers to obtain a
game for the even natural numbers.

> enc (filterGame even binNatGame) 2
[0,I,I]

> dec (filterGame even binNatGame) [0,I,I]
Just (2,[1)

If we attempt to encode an odd number, we never get an answer:

> enc (filterGame even binNatGame) 3
(o,o0,o0,0,1,0,o0,0
,0
,0,0,0,0,0,0,0,0,0,0,0,0,Interrupted.

>

What happened here is that we have entered the voidGame game. Naturally, since
the game is no longer proper, decoding can fail:

> dec (filterGame even binNatGame) (enc binNatGame 3)
> Nothing

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

568 A. J. Kennedy and D. Vytiniotis

Moreover, for the above bitstring, no suffix is sufficient to convert it to a valid
code — we have entered the voidGame non-proper world.

What is so convenient about the non-proper filterGame implementation? First,
the structure of the original encoding is intact with only some codes being removed.
Secondly, it avoids hard inhabitation questions that may involve theorem proving
or search.

Proper finite filtering. Now let us recover properness, with the following variant on
filtering:

filterFinGame (p: t— bool): Game t— option (Game {x | p x = truel})
filterFinGame :: (t — Bool) — Game t — Maybe (Game t)
filterFinGame p g@(Single (Iso _ bld)) =
if p (bld ()) then Just g else Nothing
filterFinGame p (Split iso@(Iso ask bld) gl g2)
= case (filterFinGame (p o bld o Left) gi,
filterFinGame (p o bld oRight) g2) of
(Nothing, Nothing) — Nothing
(Just gl’, Nothing) — Just $ gl’ +> leftIso iso
(Nothing, Just g2’) — Just $ g2’ +> rightlIso iso
(Just gl’, Just g2’) — Just $ Split iso gl’ g2’

The result of applying filterFinGame is of type Maybe (Game t). If no elements
in the original game satisfy the predicate, then filterFinGame returns Nothing,
otherwise it returns Just a game for those elements of t satisfying the predicate. In
contrast to filterGame, though, filterFinGame preserves properness: if the input
game is proper, then the result game is too. It does this by eliminating Split nodes
whose subgames would be empty.

There is a limitation, though, as its name suggests: filterFinGame works only
on finite games. This can be inferred from the observation that filterFinGame
explores the game tree in a depth-first manner. Nevertheless, for such finite games
we can use it profitably to obtain efficient encodings:

> enc (fromJust (filterFinGame even (rangeGame 0 7))) 4
(1,0]

Compare this to the original encoding before filtering:

> enc (rangeGame 0 7) 4
(1,0,0]

Proper infinite filtering. What about infinite domains, as is typically the case
for recursive types? Can we implement a filter on games that produces proper
games for such types? The answer is yes, if we are willing to drastically change the
original encoding that the game expressed, and if that original game has infinitely
many leaves that satisfy the filter predicate. Here is the idea, not given here in
detail for reasons of space, but implemented in the accompanying code as function
filterInfGame: perform a breadth-first traversal of the original game, and each
time you encounter a new singleton node (that satisfies the predicate) insert it into
a right-spined tree:

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 569

The ability to become proper in this way can help us recover proper games for
simply-typed expressions of a given type in a given environment, from the weaker
games that expGameCheck of Section 6.2 produces, if we have a precondition that
there exists one expression of the given type in the given environment. If there exists
one expression of the given type in the given environment, there exist infinitely many,
and hence the expGameCheck game has infinitely many inhabitants. Consequently,
it is possible to rebalance it in the described way to obtain a proper game for
simply-typed expressions!

expGameCheckProper env t
= filterInfGame (const True) (expGameCheck env t)

Appendix B Permutations and sorting

In this appendix we continue the thread begun in Section 5 and study the encoding
of another datatype with semantic content: the permutation. Formally, a permutation
p on elements 1..n is just a bijective mapping on integers 1.n. As an example, the
mapping 1+— 2,2+— 1,3+ 3 is such a permutation.

How would we go about representing and encoding/decoding a permutation? We
could start by representing a permutation in the standard way, as a list of n distinct
integers in the range 1..n. For the permutation above this list is simply [2,1,3].
Following the pattern applied in Section 5.2 to sets, multisets and finite maps, we
could then use rangeGame 1 n for the first element of the list, and then remove
elements from this game as the list is traversed.

But there is an interesting alternative which makes use of sorting. First, represent
the permutation as a list of distinct elements as before. We may now try to sort this
list using a comparison-based sorting algorithm, and encode a trace of the results
from each comparison test as a sequence of bits. For any permutation, the final
sorted list is, of course, [1..n], which is not interesting. But, for a given sorting
algorithm the trace of the algorithm could provide a code for the permutation.

Using our isomorphism-based games this idea is easy to implement. Crucially, we
do not implement the sorting algorithm for a concrete type of functions on arrays,
or lists, or whatever, but instead parameterize it both on a type ¢ of computations,
and on the operations of comparing two elements, transposing two elements and
completing the sort. The comparison and transposition operations can be packaged
conveniently in a type class:

class Permutator c where
iflt :: Nat - Nat - ¢ - ¢c —» ¢
swapThen :: Nat — Nat — ¢ — ¢

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

570 A. J. Kennedy and D. Vytiniotis

The intention of the ifLt operation is that ifLt i j c1 c2 compares the
elements at indices i and j, and then takes branch c1 if the element at i is smaller
than the element at j, otherwise it takes branch c2. The swapThen i j c operation
exchanges the elements at indices i and j, and then proceeds with computation c.

Here is bubble sort expressed using these primitives:

bubble :: Permutator ¢ = Nat —» ¢ — ¢
bubble n finish = bub False 0 (n-1) where
bub swapped k m =
if k==m
then (if swapped then bub False 0 (m-1) else finish)
else ifLt k (k+1)
(bub swapped (k+1) m)
(swapThen k (k+1) (bub True (k+1) m))

In addition to the implicit parameterization on ifLt and swapThen, the computation
finish is executed once the sort algorithm has completed. It is assumed that elements
from indices O to n-1 are to be sorted.

Although our purpose is to write codecs for permutations, we can use the sorting
algorithm for (obviously) sorting, by declaring an instance of Permutator for the
type [a] — r, as follows:

swap :: Nat — Nat — [a] — [a]
swap 1 j p = [if k==i then p !! j else
if k==j then p !! i else
p!'' k| k « [0..length p-1]]

instance Ord a = Permutator ([a] — r) where
iflt 1 j1lrs=1f s!!i <s!!j then 1l s elser s
swapThen i j £ = foswap 1 j

bubbleSort :: Ord a = [a] — [a]
bubbleSort s = bubble (length s) id s

Alternatively, we can define an instance of Permutator for games on permutations.
The idea is simple. At any point during the game, we will be ‘asking questions’ of
a permutation p that is drawn from a set of possible permutations P. Permutations
(of length n) are represented as lists of length n with an extra invariant that their
contents are distinct elements in the range [1..n]:

type Perm = [Nat]

Now observe that given distinct indices i and j, the isomorphism P = {p € P | p(i) <
p(j)} + {p € P | p(i) > p(j)} holds (note the strict inequalities in both sides due to
the fact that all elements in the range of the permutation are distinct), partitioning
permutations into those that preserve the ‘order’ of the ith and jth elements, and
those that invert the order. In Haskell, we write:

compareIso :: Nat — Nat — ISO Perm (Either Perm Perm)

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 571

comparelso i j = splitIso (Up — p!!i < p!!j)

Furthermore, observe that P = {(i < j)op | p € P}, where i < j denotes the
permutation consisting of the transposition of elements i and j. In Haskell:

swapIso :: Nat — Nat — IS0 Perm Perm
swapIso i j = Iso (swap i j) (swap i j)

Now we can declare Game Perm to be an instance of Permutator, with the
branching combinator ifLt implemented by Splitting through the compareIso
isomorphism, and swapThen implemented by coercing a game through the swapIso
isomorphism.

instance Permutator (Game Perm) where
ifLt 1 j = Split (comparelso i j)
swapThen i j g = g +> swaplso 1 j

The final piece in the jigsaw is the finish parameter to bubble, which we instantiate
with a singleton game containing the identity permutation:

bubbleGame :: Nat — Game Perm
bubbleGame n = bubble n (constGame [1..n])

And now we can test it!

> enc (bubbleGame 4) [1,2,3,4]
[I,1,1]

> enc (bubbleGame 4) [1,3,2,4]
[1,0,I,1,1]

> dec (bubbleGame 4) [I,0,I,I,I]
Just ([1,3,2,4]1,[1)

Observe how the code for the identity permutation has just three bits, because
bubble sort traverses the list only once, reporting the result of three comparisons;
on the other hand, the code for the permutation [1,3,2,4] has five bits, because
bubble sort traverses the list twice, reporting the results of three comparisons on the
first pass and two on the second. Of course it is possible to use different in-place,
comparison-based sorting algorithms to induce permutation codecs whose codes are
distributed differently; we have done this for Quicksort, which is included in the
code available online. As a side note, in Quicksort not all compare operations are
followed by a potential swap, which is the reason for the separation of the two
operations in our Permutator class. For the purposes of bubble sort we could get
away with just a single compare-and-swap primitive.

Correctness of the comparelIso and swapIso isomorphisms implies correctness
of the codec. But what about the completeness, or ‘every bit counts’ property that
we formalized in Section 4? For this to hold, every instance of the compareIso
isomorphism must be a proper partitioning of the set of permutations. Rather
beautifully, this corresponds to a property of sorting algorithms that Knuth and
others call parsimony: a parsimonious sorting algorithm invokes the comparison

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

572 A. J. Kennedy and D. Vytiniotis

operation only on elements whose order it cannot determine from previous com-
parisons. Most sorting algorithms are parsimonious; a terrible implementation of
bubble sort that uniformly performs n traversals is not parsimonious. In Knuth’s
words, a parsimonious algorithm ‘asks no stupid questions’ (Section 15 in Knuth,
1992).

So we have the following connection: given a sorting algorithm sort implemented
parametrically as above, if sort is parsimonious then sort n (constGame [1..n])
implements a complete codec for permutations of size n.

Acknowledgments

The authors appreciated the lively discussions on this topic at the ‘Type Systems
Wrestling” event held weekly at MSR Cambridge. Special thanks to Johannes
Borgstrom and the anonymous ICFP 2010 reviewers for their helpful feedback.
Thanks to Chung-Kil Hur for some last minute Coq wizardry. Finally, we would
like to thank the reviewers of the journal submission for their many suggestions;
they encouraged us to include Coq codes and theorems, which we believe strengthens
the work considerably.

References

Bertot, Y. & Casteran, P. (2004) Interactive Theorem Proving and Program Development.
Springer-Verlag.

Bird, R. & Gibbons, J. (2003) Arithmetic coding with folds and unfolds. In Advanced
Functional Programming 4, Jeuring, J. & Peyton Jones, S. (eds), Lecture Notes in Computer
Science, vol. 2638. Springer-Verlag, pp. 1-26.

Burtscher, M., Livshits, B., Sinha, G. & Zorn, B. (2010 June) JSZap: Compressing JavaScript
code. In Proceedings of the USENIX Conference on Web Application Development. Berkeley,
CA: USENIX Association.

Cameron, R. D. (1988) Source encoding using syntactic information source models. IEEE
Trans. Inf. Theory 34(4), 843-850.

Cheney, J. (2000) Statistical models for term compression. In DCC '00: Proceedings of the
Conference on Data Compression. Washington, DC: IEEE Computer Society, p. 550.

Claessen, K. & Hughes, J. (2000) Quickcheck: A lightweight tool for random testing of Haskell
programs. In ICFP '00: Proceedings of the 5th ACM SIGPLAN International Conference
on Functional Programming. New York: ACM, pp. 268-279.

Contla, J. F. (1985) Compact coding of syntactically correct source programs. Softw. Pract.
Exper. 15, 625-636.

Coutts, D., Leshchinskiy, R. & Stewart, D. (2007) Stream fusion: From lists to streams
to nothing at all. In ICFP '07: Proceedings of the 12th ACM SIGPLAN International
Conference on Functional Programming. New York: ACM, pp. 315-326.

Duan, J., Hurd, J., Li, G, Owens, S., Slind, K. & Zhang, J. (2005) Functional correctness proofs
of encryption algorithms. In Logic for Programming, Artificial Intelligence and Reasoning
(LPAR), LNCS, vol. 3835. Springer, pp. 519-533.

ECMA. (2006) Standard ECMA-335: Common Language Infrastructure (CLI). Geneva,
Switzerland: ECMA International.

Elias, P. (1975) Universal codeword sets and representations of the integers. IEEE Trans. Inf.
Theory 21(2), 197-203.

Fisher, K., Mandelbaum, Y. & Walker, D. (2006) The next 700 data description languages.
SIGPLAN Not. 41(1), 2—-15.

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

Every bit counts 573

Franz, M., Haldar, V., Krintz, C. & Stork, C. H. (2002) Tamper-Proof Annotations by
Construction. Tech. Rep. 02-10. Department of Information and Computer Science,
University of California, Irvine.

Ghani, N., Hancock, P. & Pattinson, D. (2009) Representations of stream processors using
nested fixed points. Logical Methods Comput. Sci. 5(3), 1-17.

Gibbons, J. (2007) Datatype-generic programming. In Datatype-Generic Programming,
Backhouse, R., Gibbons, J., Hinze, R. & Jeuring, J. (eds), LNCS, vol. 4719. Berlin,
Heidelberg: Springer, pp. 1-71.

Gonthier, G., Mahboubi, A. & Tassi, E. (2011) 4 Small Scale Reflection Extension for the Coq
System. Tech. Rep. 6455. INRIA.

Haldar, V., Stork, C. H. & Franz, M. (2002) The source is the proof. In NSPW '02: Proceedings
of the 2002 Workshop on New Security Paradigms. New York: ACM, pp. 69-73.

Hinze, R., Jeuring, J. & Loh, A. (2006) Comparing approaches to generic programming in
Haskell. Spring Sch. Datatype-Generic Program, LNCS, vol. 4719, pp. 72-149.

Holdermans, S., Jeuring, J., Loh, A. & Rodriguez, A. (2006) Generic views on data types. In
Proceedings of the 8th International Conference on Mathematics of Program Construction,
MPCO06, volume 4014 of LNCS. Springer, pp. 209-234.

Kennedy, A. J. (2004) Functional pearl: Pickler combinators. J. Funct. Program. 14(6), 727—
739.

Knuth, D. E. (1992) Axioms and Hulls, LNCS, vol. 606. Springer-Verlag.

MacKay, D. J. C. (2003) Information Theory, Inference and Learning Algorithms. Cambridge
University Press.

Necula, G. C. & Lee, P. (1998) The design and implementation of a certifying compiler. In
PLDI *98: Proceedings of the ACM SIGPLAN 1998 Conference on Programming Language
Design and Implementation. New York: ACM, pp. 333-344.

Necula, G. C. & Rahul, S. P. (2001) Oracle-based checking of untrusted software. In POPL’01:
Proceedings of the 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. New York: ACM, pp. 142-154.

Nielsen, L. & Henglein, F. (2011) Bit-coded regular expression parsing. In Proceedings of the
Sth Int’l Conference on Language and Automata Theory and Applications (LATA), LNCS,
vol. 6638. Springer, pp. 402-413.

Palka, M. H., Claessen, K., Russo, A. & Hughes, J. (2011) Testing an optimising compiler
by generating random lambda terms. In Proceedings of the 6th International Workshop on
Automation of Software Test (AST), AST ’11. New York: ACM, pp. 91-97.

Rendel, T. & Ostermann, K. (2010) Invertible syntax descriptions: unifying parsing and pretty
printing. SIGPLAN Not. 45, 1-12.

Salomon, D. (2008) A Concise Introduction to Data Compression, Undergraduate Topics in
Computer Science. Springer.

Serensen, M. H. & Urzyczyn, P. (2006) Lectures on the Curry-Howard Isomorphism (Studies
in Logic and the Foundations of Mathematics, Volume 149). New York: Elsevier Science.
Sozeau, M. (2006) Subset coercions in Coq. In Selected Papers from the International Workshop

on Types for Proofs and Programs (TYPES ’06). Springer, pp. 237-252.

Sulzmann, M., Chakravarty, M. & Peyton Jones, S. (2007) System F with type equality
coercions. In ACM SIGPLAN International Workshop on Types in Language Design and
Implementation (TLDI). ACM, pp. 53-66.

Vytiniotis, D. & Kennedy, A. J. (2010) Functional pearl: Every bit counts. In ACM SIGPLAN
International Conference on Functional Programming (ICFP). ACM, pp. 15-26.

Yakushev, A. R. & Jeuring, J. (2009) Enumerating well-typed terms generically. In Proceedings
of the 5th Int’l Conference on Approaches and Applications of Inductive Programming
(AAIP), LNCS, vol. 5812. Springer, pp. 41-52.

https://doi.org/10.1017/50956796812000263 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796812000263

