Safe Zero-cost Coercions for Haskell

Joachim Breitner

Karlsruhe Institute of Technology
breitner@kit.edu

Richard A. Eisenberg

University of Pennsylvania
eir@cis.upenn.edu

Simon Peyton Jones

Microsoft Research
simonpj@microsoft.com

Stephanie Weirich

University of Pennsylvania
sweirich@cis.upenn.edu

Abstract

Generative type abstractions — present in Haskell, OCaml,
and other languages — are useful concepts to help prevent
programmer errors. They serve to create new types that are
distinct at compile time but share a run-time representation
with some base type. We present a new mechanism that
allows for zero-cost conversions between generative type
abstractions and their representations, even when such types
are deeply nested. We prove type safety in the presence of
these conversions and have implemented our work in GHC.

Categories and Subject Descriptors D.3.3 [Programming
Languages]: Language Constructs and Features—abstract
data types; F.3.3 [Logics and Meanings of Programs]: Studies
of Program Constructs—Type structure

Keywords Haskell; Coercion; Type class; Newtype deriving

1. Introduction

Modular languages support generative type abstraction, the
ability for programmers to define application-specific types,
and rely on the type system to distinguish between these new
types and their underlying representations. Type abstrac-
tion is a powerful tool for programmers, enabling both flex-
ibility (implementors can change representations) and secu-
rity (implementors can maintain invariants about represen-
tations). Typed languages provide these mechanisms with
zero run-time cost — there should be no performance penalty
for creating abstractions — using mechanisms such as ML's
module system [MTHMO97] and Haskell’s newtype declara-
tion [Mar1Q].

For example, a Haskell programmer might create an ab-
stract type for HTML data, representing them as Strings (Fig-
ure[). Although String values use the same patterns of bits in
memory as HTML values, the two types are distinct. Thatis, a

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than the author(s) must be honored. Abstracting
with credit is permitted. To copy otherwise, or republish, to post on servers or
to redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.

ICFP ’14, September 1-6, 2014, Gothenburg, Sweden.

Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2873-9 /14/09...$15.00.

http:/ /dx.doi.org/10.1145/10.1145/2628136.2628141

module Html(HTML, text, unMk, ...) where
newtype HTML = Mk String
unMk :: HTML — String
unMk (Mk s) =s
text :: String — HTML
text s = Mk (escapeSpecialCharacters s)

Figure 1. An abstraction for HTML values

String will not be accepted by a function expecting an HTML.
The constructor Mk converts a String to an HTML (see func-
tion text), while using Mk in a pattern converts in the other
direction (see function unMk). By exporting the type HTML,
but not its data constructor, module Html ensures that the
type HTML is abstract — clients cannot make arbitrary strings
into HTML - and thereby prevent cross-site scripting attacks.

Using newtype for abstraction in Haskell has always suf-
fered from an embarrassing difficulty. Suppose in the module
Html, the programmer wants to break HTML data into a list
of lines:

linesH :: HTML — [HTML]
linesH h = map Mk (lines (unMk h))

To get the resulting [HTML] we are forced to map Mk over
the list. Operationally, this map is the identity function —
the run-time representation of [String] is identical to [HTML]
— but it will carry a run-time cost nevertheless. The optimiser
in the Glasgow Haskell Compiler (GHC) is powerless to
fix the problem, because it works over a typed intermediate
language; the Mk constructor changes the type of its operand,
and hence cannot be optimised away. There is nothing that
the programmer can do to prevent this run-time cost. What
has become of the claim of zero-overhead abstraction?

In this paper we describe a robust, simple mechanism
that programmers can use to solve this problem, making the
following contributions:

* We describe the design of safe coercions (Section [2), which
introduces the function

coerce :: Coercibleab = a — b

and a new type class Coercible. This function performs a
zero-cost conversion between two types a and b that have
the same representation. The crucial question becomes

what instances of Coercible exist? We give a simple but non-

obvious strategy (Sections 2.2), expressed largely in
the familiar language of Haskell type classes.

* We formalise Coercible by translation into GHC’s interme-
diate language System FC, augmented with the concept
of roles (Section , adapted from prior work [WVPZ11].
Our new contribution is a significant simplification of the
roles idea in System FC; we formalise this simpler system
and give the usual proofs of preservation and progress in
Section

* Adding safe coercions to the source language raises new
issues for abstract types, and for the coherence of type
elaboration. We articulate the issues, and introduce role
annotations to solve them (Section[3).

* It would be too onerous to insist on programmer-supplied
role annotations for every type, so we give a role inference
algorithm in Section 5|

* To support our claim of practical utility, we have imple-
mented the whole scheme in GHC (Section[f), and evalu-
ated it against thousands of Haskell libraries (Section[9J).

Our work finally resolves a notorious and long-standing
bug in GHC (#1496), which concerns the interaction of new-
type coercions with type families (Section . While earlier
work [WVPZ11] was motivated by the same bug, it was too
complicated to implement. Our new approach finds a sweet
spot, offering a considerably simpler system in exchange for
a minor loss of expressiveness (Sections [8|and [10).

As this work demonstrates, the interactions between type
abstraction and advanced type system features, such as type
families and GADTs, are subtle. The ability to create and
enforce zero-cost type abstraction is not unique to Haskell -
notably the ML module system also provides this capability,
and more. As a result, OCaml developers are now grappling
with similar difficulties. We discuss the connection between
roles and OCaml’s variance annotations (Section [§), as well
as other related work.

2. The design and interface of Coercible

We begin by focusing exclusively on the programmer’s-eye-
view of safe coercions. We need no new syntax; rather, the
programmer simply sees a new API, provided in just two
declarations:

class Coercible a b
coerce :: Coercibleab = a — b

The type class Coercible is abstract, i.e. its methods are
not visible. It differs from other type classes in a few minor
points: The user cannot create manual instances; instances
are automatically generated by the compiler; and the visibil-
ity of instances is conditional. Generally, users can think of it
as a normal type class, which is a nice property of the design.

The key principle is this: If two types s and t are related
by Coercible s t, then s and t have bit-for-bit identical run-time
representations. Moreover, as you can see from the type of
coerce, if Coercible s t holds then coerce can convert a value
of type s to one of type t. And that’s it!

The crucial question, to which we devote the rest of
this section and the next, becomes this: exactly when does
Coercible s t hold? To whet your appetite consider these dec-
larations:
newtype Age = MkAge Int
newtype AgeRange = MkAR (Int,Int)
newtype BigAge = MkBig Age

GHC generates the following instances of Coercible:
(1) instance Coercible a a
(2) For every newtype NT x = MKNT (T x), the instances

instance Coercible (T x) b = Coercible (NT x) b
instance Coercible a (T x) = Coercible a (NT x)

which are visible if and only if the constructor MkNT is
in scope.
(3) For every type constructor TC r p n, where

* rstands for TC’s parameters at role representational,
* p for those at role phantom and
* n for those at role nominal,

the instance

instance Coercible r1 r2 =
Coercible (TC r1 pl n) (TC r2 p2 n)

Figure 2. Coercible instances

Here are some coercions that hold, so that a single call to
coerce suffices to convert between the two types:

* Coercible Int Age: we can coerce from Int to Age at zero
cost; this is simply the MkAge constructor.

Coercible Age Int: and the reverse; this is pattern match-
ing on MkAge.

Coercible [Age] [Int]: lifting the coercion over lists.

Coercible (Either Int Age) (Either Int Int): lifting the coer-
cion over Either.

Coercible (Either Int Age) (Either Age Int): this is more
complicated, because first argument of Either must be
coerced in one direction, and the second in the other.

Coercible (Int — Age) (Age — Int): all this works over
function arrows too.

* Coercible (Age, Age) AgeRange: we have to unwrap the
pair of Ages and then wrap with MkAR.

* Coercible [BigAge] [Int]: two levels of coercion.

In the rest of this section we will describe how Coercible
constraints are solved or, equivalently, which instances of
Coercible exist. (See Figurefor a concise summary.)

2.1 Coercing newtypes

Since Coercible relates a newtype with its base type, we need
Coercible instance declarations for every such newtype. The
naive instance Coercible Int Age does not work well, for rea-
sons explained in the box on page (3} so instead we generate
two instances for each newtype:

instance Coercible a Int = Coercible a Age — (Al)
instance Coercible Int b = Coercible Age b — (A2)

instance Coercible a Age = Coercible a BigAge — (B1)
instance Coercible Age b = Coercible BigAge b — (B2)

instance Coercible a AgeRange = Coercible a (Int,Int)
instance Coercible AgeRange b = Coercible (Int,Int) b

Notice that each instance unwraps just one layer of the new-
type, so we call them the “unwrapping instances”.

If we now want to solve, say, a constraint Coercible s Age,
for any type s, we can use (Al) to reduce it to the simpler
goal Coercible s Int. A more complicated, two-layer coercion
Coercible BigAge Int is readily reduced, in two such steps,
to Coercible Int Int. All we need now is for GHC to have a
built-in witness of reflexivity, expressing that any type has
the same run-time representation as itself:

instance Coercible a a

This simple scheme allows coercions that involve arbitrary
levels of wrapping or unwrapping, in either direction, with
a single call to coerce. The solution path is not fully deter-
mined, but that does not matter. For example, here are two
ways to solve Coercible BigAge Age:

Coercible BigAge Age

— Coercible BigAge Int ~— By (Al)

— Coercible Age Int — By (B2)

— Coercible Int Int — By (A2)

— solved — By reflexivity
Coercible BigAge Age

— Coercible Age Age — By (B2)

— solved — By reflexivity

Since Coercible constraints have no run-time behaviour (un-
like normal type class constraints), we have no concerns
about incoherence; any solution will do.

The newtype-unwrapping instances (i.e., (2) in Figure @)
are available only if the corresponding newtype data constructor
(Mk in our current example) is in scope; this is required to
preserve abstraction, as we explain in Section 3.1}

2.2 Coercing parameters of type constructors

As Figure [2| shows, as well as the unwrapping instances for
a newtype, we also generate one instance for each type con-
structor, including data types, newtypes the function type,
and built-in data types like tuples. We call this instance
the “lifting instance” for the type, because it lifts coercions
through the type. The shape of the instance depends on the
so-called roles of the type constructor. Each type parameter
of a type constructor has a role, determined by the way in
which the parameter is used in the definition of the type
constructor. In practice, the roles of a declared data type are
determined by a role inference algorithm (Section[5) and can
be modified by role annotations (Section B.T). Once defined,
the roles of a type constructor are the same in every scope,
regardless of whether the concrete definition of that type is
available in that scope.

Roles, a development of earlier work [WVPZII] (Sec-
tion [§), are a new concept for the programmer. In the fol-
lowing subsections, we discuss how the three possible roles,
representational, phantom and nominal, ensure that lifting in-
stances do not violate type safety by allowing coercions be-
tween types with different run-time representations.

2.2.1 Coercing representational type parameters

The most common role is representational. It is the role that is
assigned to the type parameters of ordinary newtypes and
data types like Maybe, the list type and Either. The Coercible
instances for these type constructors are:

instance Coercible a b = Coercible (Maybe a) (Maybe b)
instance Coercible a b = Coercible [a] [b]
instance (Coercible al b1, Coercible a2 b2)

= Coercible (Either al a2) (Either bl b2)

Why a single instance is not enough

Why do we create two instances for every newtype,
rather than just the single declaration

instance Coercible Int Age

to witness the fact that Int and Age have the same run-
time representation?

That would indeed allow us to convert from Int to
Age, using coerce, but what about the reverse direction?
We then might need a second function

uncoerce :: Coercibleab = b — a

although it would be tiresome for the programmer to re-
member which one to call. Alternatively, perhaps GHC
should generate two instances:

instance Coercible Int Age
instance Coercible Age Int

But how would we get from BigAge to Int? We could try
this:

down :: BigAge — Int
down x = coerce (coerce x)

Our intent here is that each invocation of coerce un-
wraps one “layer” of newtype. But this is not good, be-
cause the type inference engine cannot figure out which
type to use for the result of the inner coerce. To make the
code typecheck we would have to add a type signature:

down :: BigAge — Int
down x = coerce (coerce x :: Age)

Not very nice. Moreover we would prefer to do all
this with a single call to coerce, implying that Coercible
BigAge Int must hold. That might make us consider
adding the instance declaration

instance (Coercible a b, Coercible b ¢) = Coercible a c

to express the transitivity of Coercible. But now the prob-
lem of the un-specified intermediate type b re-appears,
and cannot be solved with a type signature.

All of these problems are nicely solved using the
instances in Figure[2]

These instances are just as you would expect: for exam-
ple, the type Maybe t1 and Maybe t2 have the same run-time
representation if and only if t1 and t2 have the same repre-
sentation.

Most primitive type constructors also have representa-
tional roles for their arguments. For example, the domain
and co-domain of arrow types are representational, giving
rise to the following Coercible instance:

instance (Coercible al b1, Coercible a2 b2)
= Coercible (al — a2) (b1 — b2)

Likewise, the type IORef has a representational parameter,
so expressions of type |ORef Int can be converted to type
IORef Age for zero cost (and outside of the IO monad).

Returning to the introduction, we can use these instances
to write linesH very directly, thus:

linesH :: HTML — [HTML]
linesH = coerce lines

In this case, the call to coerce gives rise to a constraint
Coercible (String — [String]) (HTML — [HTML]), which
gets simplified to Coercible String HTML using the instances
for arrow and list types. Then the instance for the newtype
HTML reduces it to Coercible String String, which is solved
by the reflexive instance.

2.2.2 Coercing phantom type parameters

A type parameter has a phantom role if it does not occur in the
definition of the type, or if it does, then only as a phantom
parameter of another type constructor. For example, these
declarations

data Phantom b = Phantom
data NestedPhantom b = L [Phantom b] | SomethingElse

both have parameter b at a phantom role.

When do the types Phantom t1 and Phantom t2 have the
same run-time representation? Always! Therefore, we have
the instances

instance Coercible (Phantom a) (Phantom b)
instance Coercible (NestedPhantom a) (NestedPhantom b)

and coerce can be used to change the phantom parameter
arbitrarily.

2.2.3 Coercing nominal type parameters

In contrast, the nominal role induces the strictest precondi-
tions for Coercible instances. This role is assigned to a pa-
rameter that possibly affects the run-time representation of a
type, commonly because it is passed to a type function. For
example, consider the following code

type family EncData a where
EncData String = (ByteString, Encoding)
EncData HTML = ByteString

data Encoding = ...
data EncText a = MKET (EncData a)

Even though we have Coercible HTML String, it would be
wrong to derive the instance Coercible (EncText HTML)
(EncText String), because these two types have quite dif-
ferent run-time representations! Therefore, there are no in-
stances that change a nominal parameter of a type construc-
tor.

All parameters of a type or data family have nominal role,
because they could be inspected by the type family instances.
For similar reasons, the non-uniform parameters to GADTs
are also required to be nominal.

224 Coercing multiple type parameters

A type constructor can have multiple type parameters, each
at a different role. In that case, an appropriate constraint for
each type parameter is used:

data Params r p n = Conl (Maybe r) | Con2 (EncData n)
yields the instance

instance Coercible r1 r2
= Coercible (Params r1 pl n) (Params r2 p2 n)

This instance expresses that the representational type param-
eters may change if there is a Coercible instance for them; the
phantom type parameters may change arbitrarily; and the
nominal type parameters must stay the same.

3. Abstraction and coherence

The purpose of the HTML type from the introduction is
to prevent accidentally mixing up unescaped strings and
HTML fragments. Rejecting programs that make this mis-
take is not a matter of type safety as traditionally construed,
but rather of preserving a desired abstraction.

While the previous section described how the Coercible
instances ensure that uses of coerce are type safe, this section
discusses two other properties: abstraction and class coherence.

3.1 Preserving abstraction

When the constructors of a type are in scope then we can
write code semantically equivalent to coerce by hand (al-
though it might be less efficient). In this situation, the use
of coerce should definitely be allowed. However, when the
constructors are not in scope, it turns out that we sometimes
want the lifting instance, and sometimes we do not want it.

The newtype unwrapping instance is directly controlled
by the visibility of the constructor and can be used if and
only if this is in scope. (See Sectionfor how this is accom-
plished.) For example, since the author of module Html| did
not export Mk, a client does not see the unwrapping instances
for HTML, and the abstraction is preserved.

However, we permit the use of the coercion lifting in-
stance for a type constructor even when the data construc-
tors are not available. For example, built-in types like IORef
or the function type (—) do not even have constructors that
can be in scope. Nevertheless, coercing from IORef HTML to
IORef String and from HTML — HTML to String — String
should be allowed.

Therefore the rule for the lifting instance is that it can be
used independent of the visibility of constructors. Instead, its
form — what coercions it allows — is controlled by the roles of
the type constructor’s parameters.

Library authors can control the roles assigned to type
constructors using role annotations. In many cases, the role
inferred by the type checker is sufficient, even for abstract
types. Consider a library for non-empty lists:

module NonEmptyListLib(NE, singleton, ...
data NE a = MkNE [a]
singleton :: a — NE a
...etc...

) where

The type must be exported abstractly; otherwise, the non-
empty property can be broken by its users. Nevertheless lift-
ing a coercion through NE, i.e. coercing NE HTML to NE
String, should be allowed. Therefore, the role of NE’s parame-
ter should be representational. In this case, the library author
does not have to actively set it: As it is the most permissive
type-safe role, the role inference algorithm (Section al-
ready chooses representational.

However, sometimes library authors must restrict the us-
age of the lifting coercion to ensure that the invariants of their
abstract types can be preserved. For example, consider the
data type Map k v, which implements an efficient finite map
from keys of type k to values of type v, using an internal rep-
resentation based on a balanced tree, something like this:

data Map k v = Leaf | Node k v (Map k v) (Map k v)

It would be disastrous if the user were allowed to coerce
from (Map Age v) to (Map Int v), because a valid tree with
regard to the ordering of Age might be completely bogus
when using the ordering of Int.

To prevent that difficulty, the author specifies

type role Map nominal representational

As explained in Section 2.2} we now have the desirable and
useful lifting instance

instance Coercible a b = Coercible (Map k a) (Map k b)

which allows the coercion from Map k HTML to Map k
String.

Note that in the declaration of Map the parameters k and
v are used in exactly the same way, so this distinction cannot
be made by the compiler; it can only be specified by the pro-
grammer. However, the compiler ensures that programmer-
specified role annotations cannot subvert the type system: if
the annotation specifies an unsafe role, the compiler will re-
ject the program.

3.2 Preserving class coherence

Another property of Haskell, independent of type-safety, is
the coherence of type classes. There should only ever be one
class instance for a particular class and type. We call this
desirable property coherence. Without extra checks, Coercible
could be used to create incoherence.

Consider this (non-Haskell98) data type, which reifies a
Show instance as a value:

data HowToShow a where
MKHTS :: Show a = HowToShow a

showH :: HowToShow a — a — String
showH MKHTS x = show x

Here showH pattern-matches on a HowToShow value, and
uses the instance stored inside it to obtain the show method.
If we are not careful, the following code would break the
coherence of the Show type class:

instance Show HTML where
show (Mk s) = "HTML:" 44 show s

stringShow :: HowToShow String
stringShow = MKHTS

htmIShow :: HowToShow HTML
htmIShow = MKHTS

badShow :: HowToShow HTML
badShow = coerce stringShow

A> showH stringShow "Hello"

"Hello"

A> showH htmlIShow (Mk "Hello")
"HTML:Hello"

A> showH badShow (Mk "Hello")
"Hello"

In the final example we were applying show to a value of type
HTML, but the Show instance for String (coerced to (Show
HTML)) was used.

To avoid this confusion, the parameters of a type class
are all assigned a nominal role by default. Accordingly, the
parameter of HowToShow is also assigned a nominal role
by default, preventing the coercion between (HowToShow
HTML) and (HowToShow String).

Metavariables:

coercion
data type N newtype
data constructor

x term o, B type c
C axiom D
F typefamily K

e u=Acgeley|edy]| - terms
T,ou=a|T | Yaxt|H|F(T) types
K n=x K — Ko kinds
H 2= (=2)[=)(~5)IT type constants
T ==D|N algebraic data types
¢ n=Tpo proposition
v, = coercions
| (7) | (t,0)p | sym7 [71572 equivalence
H(7) [F(7) | 1172 | Ve congruence
| c| C(T) assumptions
| nth’ 7 | left+y | righty | Y@t decomposition
| sub vy sub-roling
p ==N|R|P roles
I' »=g|Lax|T,cp|T,xT typing contexts

Q =g|Qap role contexts

Figure 3. An excerpt of the grammar of System FC

4. Ensuring type safety: System FC with roles

Haskell is a large and complicated language. How do we
know that the ideas sketched above in source-language terms
are actually sound? What, precisely, do roles mean, and when
precisely are two types equal? In this section we answer these
questions for GHC’s small, statically-typed intermediate lan-
guage, GHC Core. Every Haskell program is translated into
Core, and we can typecheck Core to reassure ourselves that
the (large, complicated) front end accepts only good pro-
grams.

Core is an implementation of a calculus called System FC,
itself an extension of the classical Girard/Reynolds System
F. The version of FC that we develop in this paper derives
from much prior workE] However, for clarity we give a self-
contained description of the system and do not assume fa-
miliarity with previous versions.

Figure | gives the syntax of System FC. The starting point
is an entirely conventional lambda calculus in the style of
System F. We therefore elide most of the syntax of terms e,
giving the typing judgement for terms in the extended ver-
sion of this paper [BEPW14] . Types T are also conventional,
except that we add (saturated) type-family applications F(7),
to reflect their addition to source Haskell [CKP05, (CKPMO05].
Types are classified by kinds x in the usual way; the kinding
judgement I' - T : x on types is conventional and appears
in the extended version of this paper. To avoid clutter we use
only monomorphic kinds, but it is easy to add kind polymor-
phism along the lines of [YWC™12], and our implementation
does so.

1 Several versions of System FC are described in published work.
Some of these variants have had decorations to the FC name, such
as FC, or FE We do not make these distinctions in the present work,

referring instead to all of these systems —in fact, one evolving system
—as “FC”.

4.1 Roles and casts

FC’s distinctive feature is a type-safe cast (e>y) (Figure),
which uses a coercion <y to cast a term from one type to
another. A coercion v is a witness or proof of the equality
of two types. Coercions are classified by the judgement
IEy:t~po

given in Figure 4} and pronounced “in type environment I
the coercion y witnesses that the types T and ¢ both have
kind «, and are equal at role p”. The notion of being “equal
at role p” is the important feature of this paper; it is a de-
velopment of earlier work, as Section [8| describes. There are
precisely three roles (see Figure @, written N, R, and P, with
the following meaning:

Nominal equality, written ~y, is the equality that the type
checker reasons about. When a Haskell programmer says
that two Haskell types are the “same”, we mean that the
types are nominally equal. Thus, we can say that Int ~y
Int. Type families introduce new nominal equalities. So, if
we have type instance F Int = Bool, then F Int ~) Bool.

Representational equality, written ~g, holds between two
types that share the same run-time representation. Be-
cause all types that are nominally equal also share the
same representation, nominal equality is a subset of rep-
resentational equality. Continuing the example from the
introduction, HTML ~g String.

Phantom equality, written ~p, holds between any two types,
whatsoever. It may seem odd that we produce and con-
sume proofs of this “equality”, but doing so keeps the
system uniform and easier to reason about. The idea of
phantom equality is new in this work, and it allows for
zero-cost conversions among types with phantom param-
eters.

We can now give the typing judgement for type-safe cast:

F"E’l’l’l
FF’Y:Tl ~R T2

TM_CAST
Theby:m -

The coercion y must be a proof of representational equality,
as witnessed by the R subscript to the result of the coercion
typing premise. This makes good sense: we can treat an
expression of one type 7; as an expression of some other type
T, if and only if those types share a representation.

4.2 Coercions

Coercions (FigureB) and their typing rules (Figure @) are the
heart of System FC. The basic typing judgement for coercions
isI' = 7 : T ~j 0. When this judgement holds, it is easy to
prove that T and o must have the same kind x. However,
kinds are not very relevant to the focus of this work, and so
we often omit the kind annotation in our presentation. It can
always be recovered by using the (syntax-directed) kinding
judgement on types.

We can understand the typing rules in Figure {4} by think-
ing about the equalities that they define.

4.2.1 Nominal implies representational

If we have a proof that two types are nominally equal, then
they are certainly representationally equal. This intuition is
expressed by the sub operator, and the rule CO_SUB.

T'F1t:x

————— CO_REFL
TE(t):t~NT -
Fyio~

Thyio~pt Co_SYm

IEsymy:t~p0

FTFyiit~ o
FF’}/ziTzNPTg,

TEY1872:11 ~p T3

Co_TRANS

FEy:it~po
p is a prefix of roles(H)
I'FHT:x I'Ho:x

— — — Co_TYCONAPP
I'+H(¥):HT ~g Ho

TFy:t~NCO

F}—F(T):f _ rl—F(f’):K Co_TYFAM
T F(7):F(T) ~n F(@)

rl_’)’llTlNPUl

rt'YZ:TZNNUZ -

r 1T K T 0103 1 K Co_APP
I'Emmian~p oo

laxkEy:1T~

KT p O CO_FORALL

['FVaxy :Vaxt ~p Vaxo

T'Ft:x I'Fo:x
IF{(t,o)p:T~p0C

CO_PHANTOM

ct~yo €7

CO_VAR
FkciTtr~po -

C: [wK].op ~p 02 I'tt:x
THC(T):oy[t/« ~p oo [T/4]
I't9:HT ~g Ho
p is a prefix of roles(H)
H is not a newtype

Co_AXIOM

: Co_NTH
[nth' 9: 1 ~p, 0
r}_’)’Z’L‘sz ~N 0102
7 :x I'Fop:x CO_LEFT
I'lefty:t ~y o
rl_’)/STsz ~N 0102
TI—T2:1.< Thop:x CO_RIGHT
T'H rlght’)/ Ty ~N 02
Iy :Vaxt ~p Vax.o
TF1:x
CoO_INST

I'Fy@t:7t/a] ~p oq[T/a]

Tyt ~NCO
T'kFsuby:T~go

Co_SuB

Figure 4. Formation rules for coercions

4.2.2 Equality is an equivalence relation

Equality is an equivalence relation at all three roles. Sym-
metry (rule CO_SYM) and transitivity (CO_TRANS) work for
any role p. Reflexivity is more interesting: CO_REFL is a proof
of nominal equality only. From this we can easily get repre-
sentational reflexivity using sub. But what does “phantom”
reflexivity mean? It is a proof term that any two types T and
o are equal at role P, and we need a new coercion form to
express that, written as (7, o)p (rule CO_PHANTOM).

4.2.3 Axioms for equality

Each newtype declaration, and each type-family instance,
gives rise to an FC axiom; newtypes give rise to representa-
tional axioms, and type-family instances give rise to nominal
axiomsE] For example, the declarations

newtype HTML = Mk String
type family F [a] = Maybe a

produce the axioms
C1 : HTML ~g String
Cy : [a:*].F ([a]) ~n Maybea

Axiom C; states that HTML is representationally equal to
String (since they are distinct types, but share a common
representation), while C; states that F([c]) is nominally equal
to Maybe o (meaning that the two are considered to be the
same type by the type checker). In Cp, the notation “[a:%].”
binds « in the types being equated. Uses of these axioms are
governed by the rule CO_AXIOM. Axioms must always ap-
pear fully applied, and we assume that they live in a global
context, separate from the local context I'.

4.2.4 Equality can be abstracted

Just as one can abstract over types and values in System F,
one can also abstract over equality proofs in FC. To this end,
FC terms (Figure [3) include coercion abstraction Ac:¢.e and
application e<y. These are the introduction and elimination
forms for the coercion-abstraction arrow (=), just as ordi-
nary value abstraction and application are the introduction
and elimination forms for ordinary arrow (—) (see the ex-
tended version of this paper).

A coercion abstraction binds a coercion variable c:¢. These
variables can occur only in coercions; see the entirely conven-
tional rule CO_VAR. Coercion variables can also be bound in
the patterns of a case expression, which supports the imple-
mentation of generalised algebraic data types (GADTs).

4.2.5 Equality is congruent

Several rules witness that, ignoring roles, equality is congru-
ent — for example, if ¢ ~, T then Maybe o ~, Maybe 7. How-
ever, the roles in these rules deserve some study, as they are
the key to understanding the whole system.

Congruence of type application Before diving into the rules
themselves, it is helpful to consider some examples of how
we want congruence and roles to interact. Let’s consider
the definitions in Figure E} With these definitions in hand,
what equalities should be derivable? (Recall the intuitive
meanings of the different roles in Section [4.1})

1. Should Maybe HTML ~g Maybe String hold?
Yes, it should. The type parameter to Maybe has a repre-
sentational role, so it makes sense that two Maybes built

2For simplicity, we are restricting ourselves to open type families.
Closed type families [EVPW14] are readily accommodated.

newtype HTML = Mk String
type family F a

type instance F String = Int
type instance F HTML = Bool

data T a = MKT (F a)

Figure 5. Congruence and roles example code

out of representationally equal types should be represen-
tationally equal.

2. Should Maybe HTML ~p Maybe String hold?
Certainly not. These two types are entirely distinct to
Haskell programmers and its type checker.

3. Should THTML ~g T String hold?
Certainly not. We can see, by unfolding the definition for
T, that the representations of the two types are different.

4. Should « HTML ~g « String hold, for a type variable a?
It depends on the instantiation of a! If x becomes Maybe,
then “yes”; if « becomes T, then “no”. Since we may be
abstracting over a, we do not know which of the two will
happen, so we take the conservative stance and say that
a« HTML ~g a String does not hold.

This last point is critical. The alternative is to express «a’s
argument roles in its kind, but that leads to a much more
complicated system; see related work in Section[8] A distin-
guishing feature of this paper is the substantial simplification
we obtain by attributing roles only to the arguments to type
constants (H, in the grammar), and not to abstracted type
variables. We thereby lose a little expressiveness, but we have
not found that to be a big problem in practice. See Section[8.1]
for an example of an easily fixed problem case.

To support both (1) and (4) requires two coercion forms
and corresponding typing rules:

* The coercion form H(7) has an explicit type constant at its
head. This form always proves a representational equal-
ity, and it requires input coercions of the roles designated
by the roles of H's parameters (rule CO_TYCONAPP). The
roles function gives the list of roles assigned to H’s pa-
rameters, as explained in Section We allow p to be a
prefix of roles(H) to accommodate partially-applied type
constants.

The coercion form 71 v, does not have an explicit type
constant, so we must use the conservative treatment of
roles discussed above. Rule CO_APP therefore requires
72 to be a nominal coercion, though the role of y; carries
through to y1 2.

What if we wish to prove a nominal equality such as
Maybe (F String) ~N Maybe Int? We can’t use the H(7) form,
which proves only representational equality, but we can use
the 71 72 form. The leftmost coercion would just be (Maybe).

Congruence of type family application Rule CO_TYFAM
proves the equality of two type-family applications. It re-
quires nominal coercions among all the arguments. Why? Be-
cause type families can inspect their (type) arguments and
branch on them. We would not want to be able to prove any
equality between F String and F HTML.

Congruence of polymorphic types The rule CO_FORALL
works for any role p; polymorphism and roles do not interact.

4.2.6 Equality can be decomposed

If we have a proof of Maybe ¢ ~, Maybe 7, should we be able
to get a proof of 0 ~, T, by decomposing the equality? Yes,
in this case, but we must be careful here as well.

Rule CO_NTH is almost an inverse to CO_TYCONAPP.
The difference is that CO_NTH prohibits decomposing equal-
ities among newtypes. Why? Because nth witnesses injectiv-
ity and newtypes are not injective! For example, consider
these definitions:

data Phant a = MkPhant
newtype App a b = MkApp (a b)

Here, roles(App) = R, N. (The roles are inferred during com-
pilation; see Section E}) Yet, we can see the following chain of
equalities:

App Phant Int ~g Phant Int ~g Phant Bool ~g App Phant Bool
By transitivity, we can derive a coercion 7y witnessing
App Phant Int ~g App Phant Bool

If we could use nth? on v, we would get Int ~ Bool: disas-
ter! We eliminate this possibility by preventing nth on new-
types.

ypThe rules CO_LEFT and CO_RIGHT are almost inverses to
CO_APP. The difference is that both CO_LEFT and CO_RIGHT
require and produce only nominal coercions. We need a new
newtype to see why this must be so:

newtype EitherInt a = MKEI (Either a Int)

This definition yields an axiom showing that, for all a,
EitherInt a ~g (Either a Int). Suppose we could apply left
and right to coercions formed from this axiom. Using left
would get us a proof of Eitherlnt ~g (Either a), which could
then be used to show, say, (Either Char) ~g (Either Bool) and
then (using nth) Char ~y Bool. Using right would get us a
proof of a ~p Int, for any a. These are both clearly disastrous.
So, we forbid using these coercion formers on representa-
tional coercions@

Thankfully, polymorphism and roles play well together,
and the CO_INST rule (inverse to CO_FORALL) shows quite
straightforwardly that, if two polytypes are equal, then so are
the instantiated types.

There is no decomposition form for type family applica-
tions: knowing that F(T) is equal to F(7) tells us nothing
whatsoever about the relationship between T and 7.

4.3 Role attribution for type constants

In System FC we assume an unwritten global environment of
top-level constants: data types, type families, axioms, and so
on. For a data type H, for example, this environment will give
the kind of H, the types of H’s data constructors, and the roles
of H’s parameters. Clearly this global environment must be
internally consistent. For example, a data constructor K must
return a value of type DT where D is a data type; K's type
must be well-kinded, and that kind must be consistent with
D’s kind.

3We note in passing that the forms left and right are present
merely to increase expressivity. They are not needed anywhere in
the metatheory to prove type soundness. Though originally part of
FC, they were omitted in previous versions [WVPZ11] and even in
the implementation. Haskell users then found that some desirable
program were no longer type-checking. Thus, these forms were re-
introduced.

“p are appropriate roles for H.”

V&, B,7 st K:VakY /g =0 — Dw:
VistTeroVTE ¢:

xp, PN F T :5 ROLES_DATA
pED
C:[xx].Nx ~R O apko:R ROLES. NEWTYPE
pPEN
RRE(=) RRE(=) ppE ()
“Assuming (Q, T can be used at role p.”
A/ /
wp € Q Fsp RTY_VAR
QFa:p
P is a prefix of roles(H)
QFT:p
RTY_Ty A
OFHT:R ~TyConArp
—— RTY_TYCON
OFH:N -
QFT:p QFo:N RTY_APP
QFto:p
QuNFT:0 pry RoRALL
QFVYaxt:p
QOFT:N
—————— RTY_TYFaMm
QFF@):p -

——— RTY_PHANTOM
QkFT1:P -

01 < p2| “ppisa sub-role of pp.”

N<p <P p<p

Figure 6. Rules asserting a correct assignment of roles to
data types

All of this is standard except for roles. It is essential that
the roles of D’s parameters, roles(D), are consistent with D’s
definition. For example, it would be utterly wrong for the
global environment to claim that roles(Maybe) = P, because
then we could prove that MaybeInt ~r Maybe Bool using
Co_TyYCONAPP.

We use the judgement p |= H, to mean “p are suitable
roles for the parameters of H”, and in our proof of type
safety, we assume that roles(H) |= H for all H. The rules
for this judgement and two auxiliary judgements appear in
Figure|6| Note that this judgement defines a relation between
roles and data types. Our role inference algorithm (Section|p)
determines the most permissible roles for this relation, but
often other, less permissive roles, such as those specified by
role annotations, are also included by this relation.

Start with ROLES_NEWTYPE. Recall that a newtype decla-
ration for N gives rise to an axiom C : [#:k].N& ~g o. The
rule says that roles p are acceptable for N if each parameter
«; is used in ¢ in a way consistent with p;, expressed using
the auxiliary judgement azp - o : R.

The key auxiliary judgement () = 7 : p checks that the
type variables in T are used in a way consistent with their
roles specified in (), when considered at role p. More pre-

cisely, if a:0" € Q and if 07 ~p 03 then T[oy/a] ~p T[on/a].
Unlike in many typing judgements, the role p (as well as
) is an input to this judgement, not an output. With this
in mind, the rules for the auxiliary judgement are straight-
forward. For example, RTY_TYFAM says that the argument
types of a type family application are used at nominal role.
The variable rule, RTY_VAR, allows a variable to be assigned
a more restrictive role (via the sub-role judgement) than re-
quired, which is needed both for multiple occurrences of the
same variable, and to account for role signatures. Note that
rules RTY_TYCONAPP and RTY_APP overlap - this judge-
ment is not syntax-directed.

Returning to our original judgement p = H, ROLES_DATA
deals with algebraic data types D, by checking roles in each
of its data constructors K. The type of a constructor is param-
eterised by universal type variables «, existential type vari-
ables B, coercions (with types ¢), and term-level arguments
(with types 7). For each constructor, we must examine each
proposition ¢ and each term-level argument type o, checking
to make sure that each is used at a representational role. Why
check for a representational role specifically? Because roles is
used in CO_TYCONAPP, which produces a representational
coercion. In other words, we must make sure that each term-
level argument appears at a representational role within the
type of each constructor K for CO_TYCONAPP to be sound.

Finally (—) and (=) have representational roles: func-
tions care about representational equality but never branch
on the nominal identity of a type. (For example, functions al-
ways treat HTML and String identically.) We also see that the
roles of the arguments to an equality proposition match the
role of the proposition. This fact comes from the congruence
of the respective equality relations.

These definitions lead to a powerful theorem:

Theorem (Roles assignments are flexible). Ifp = H, where H
is a data type or newtype, and p' is such that p} < p; (for p; € p
and p} € p'), then g’ |= H.

Proof. Straightforward inductionon Q F 7 : p. O

This theorem states that, given a sound role assignment
for H, any more restrictive role assignment is also sound.
This property of our system here is one of its distinguishing
characteristics from our prior work on roles — see Section
for discussion.

44 Metatheory

The preceding discussion gave several non-obvious exam-
ples where admitting too many coercions would lead to un-
soundness. However, we must have enough coercions to al-
low us to make progress when evaluating a program. (We
do not have space to elaborate, but a key example is the use
of nth in rule S_KPUSH, presented in the extended version
of this paper.) Happily, we can be confident that we have
enough coercions, but not too many, because we prove the
usual progress and preservation theorems for System FC.
The structure of the proofs follows broadly that in previous
work, such as [WVPZI1] or [YWCT12].

A key step in the proof of progress is to prove consistency;
that is, that no coercion can exist between, say, Int and Bool.
This is done by defining a non-deterministic, role-directed
rewrite relation on types and showing that the rewrite sys-
tem is confluent and preserves type constants (other than
newtypes) appearing in the heads of types. We then prove
that, if a coercion exists between two types 11 and 1, these
two types both rewrite to a type ¢. We conclude then that 7

and 1, if headed by a non-newtype type constant, must be
headed by the same such constant.

Alas, the rewrite relation is not confluent! The non-linear
patterns allowed in type families (that is, with a repeated
variable on the left-hand side), combined with non-termina-
tion, break the confluence property (previous work gives full
details [EVPW14]). However, losing confluence does not nec-
essarily threaten consistency — it just threatens the particular
proof technique we use. However, a more powerful proof ap-
pears to be an open problem in the term rewriting commu-
nityE] For the purposes of our proof we dodge this difficulty
by restricting type families to have only linear patterns, thus
leading to confluence; consistency of the full system remains
an open problem.

The full proof of type safety appears in the extended ver-
sion of this paper; it exhibits no new proof techniques.

5. Roles on type constructors

In System FC we assume that, for every type constant H, the
global enviroment specifies roles(H), the roles of H's param-
eters. However, there is some flexibility about this role as-
signment; the only requirement for type soundness is that
roles(H) = H.

In GHC, the roles of a type constructor are determined
first by any role annotations provided by the programmer.
If these are missing, the type checker calculates the default
roles using the inference algorithm described below.

5.1 Role inference

A type constructor’s roles are assigned depending on its
nature:

* Primitive type constructors like (—) and (~) have pre-
defined roles (Figure 6).

* Type families (Section[2.2.3) and type classes (Section 3.2)
have nominal roles for all parameters.

* For a data type or newtype T GHC infers the roles for T’s
type parameters, possibly modified by role annotations

(Section[3.3).

The role inference algorithm is quite straightforward. At a
high level, it simply starts with the role information of the
built-in constants (—), (=), and (~,), and propagates the
roles until it finds a fixpoint. In the description of the algo-
rithm, we assume a mutable environment; roles(H) pulls a
list of roles from this environment. Only after the algorithm
is complete will roles(H) = H hold.

1. Populate roles(T) (for all T) with user-supplied annota-
tions; omitted role annotations default to phantom. (See
Section[5.2]for discussion about this choice of default.)

2. For every data type D, every constructor for that data
type K, and every coercion type and term-level argument
type o to that constructor: run walk(D, 7).

3. For every newtype N with representation type o, run
walk(N, 7).

4. If the role of any parameter to any type constant changed
in the previous steps, go to step

4 Specifically, we believe that a positive answer to open problem
#79 of the Rewriting Techniques and Applications (RTA) conference
would lead to a proof of consistency; see http://www.win.tue.nl/
rtaloop/problems/79.html,

http://www.win.tue.nl/rtaloop/problems/79.html
http://www.win.tue.nl/rtaloop/problems/79.html

5. For every T, check roles(T) against a user-supplied anno-
tation, if any. If these disagree, reject the program. Other-
wise, roles(T) |= T holds.

The procedure walk(T,¢) is defined as follows, matching
from top to bottom:

walk(T,)
walk(T,HT)

:=mark the « parameter to T as R.
:=let p = roles(H);
forevery i, 0 < i < length (7):
if p; = N, then
mark all variables free in 7; as N;
else if p; = R, then walk(T, ;).
:=walk(T, 77);
mark all variables free in 7, as N.
walk(T,F(T)) :=mark all variables free in the T as N.
walk(T,V B:x.7) :=walk(T, 7).

walk(T, 7 1)

When marking, we must follow these two rules:

1. If a variable to be marked does not appear as a type-level
argument to the data type T in question, ignore it.

2. Never allow a variable previously marked N to be marked
R. If such a mark is requested, ignore it.

The first rule above deals with existential and local (V-bound)
type variables, and the second one deals with the case where
a variable is used both in a nominal and in a representational
context. In this case, we wish the variable to be marked N,
not R.

Theorem. The role inference algorithm always terminates.

Theorem (Role inference is sound). After running the role
inference algorithm, roles(H) |= H will hold for all H.

Theorem (Role inference is optimal). After running the role
inference algorithm, any loosening of roles (a change from p to p’,
where p < o' and p # p') would violate roles(H) = H.

Proofs of these theorems appear in the extended version of
this paper.

5.2 The role of role inference

According to the specification of sound role assignments in
Figure [0} a type constructor H can potentially have several
different sound role assignments. For example, assigning
Maybe’s parameter to have a representational role is type-
safe, but assigning a nominal role would be, too. Note that
nominal roles are always sound for data types, according to
the definition in Figure @ However, as we saw in the de-
scription of the role inference algorithm, we choose default
roles for data types to be as permissive as possible — in other
words, the default role for a data type constructor parame-
ter starts at phantom and only change when constrained by
the algorithm. Here, we discuss this design decision and its
consequences.

What if we had no role inference whatsoever and required
programmers to annotate every data type? In this case, the
burden on programmers seems drastic and migration to this
system overwhelming, requiring all existing data type decla-
rations to be annotated with roles.

Alternatively, we could specify that all unnanotated roles
default to nominal (thus removing the need for role infer-
ence). This choice would lead to greater abstraction safety by
default — we would not have to worry that the implementor
of Map is unaware of roles and forgets a critical role annota-
tion.

However, we choose to use the most permissive roles by
default for several reasons. First, for convenience: this choice
increases the availability of coerce (as only those types with
annotations would be Coercible otherwise), and it supports
backward compatibility with the Generalized Newtype De-
riving (GND) feature (see Section /).

Furthermore, our choice of using phantom as the default
also means that the majority of programmers do not need
to learn about roles. They will not need role annotations
in their code. Users of coerce will need to consider roles,
as will library implementors who use class-based invariants
(see Section [3.1). Other users are unaffected by roles and will
not be burdened by them.

Our choices in the design of the role system, and the de-
fault of phantom in particular, has generated vigorous de-
bate’| This discussion is healthy for the Haskell community.
The difficulty with abstraction is not new: with GND, it has
always been possible to lift coercions through data types, po-
tentially violating their class-based invariants. The features
described in this paper make this subversion both more con-
venient (through the use of coerce) and, more importantly,
now preventable (through the use of role annotations).

6. Implementing Coercible

We have described the source-language view of Coercible
(SectionsE} , and System FC, the intermediate language
into which the source language is elaborated (Section%b. In
this section we link the two by describing how the source-
language use of Coercible is translated into Core.

6.1 Coercible and coerce

When the compiler transforms Haskell to Core, type classes
become ordinary types and type class constraints turn into
ordinary value arguments [WB89]. In particular, type classes
typically become simple product types with one field per
method.

The same holds for the type class Coercible a b, which has
one method, namely the witness of representational equality
a ~gr b. As that type cannot be expressed in Haskell, the
actual definition of Coercible is built in:

data Coercible a b = MkCoercible (a ~g b)

The definition of coerce, which is also only possible in Core,
pattern-matches on MkCoercible to get hold of the equality
witness, and then uses Core’s primitive cast operation:

coerce :: forall « 3. Coercible x f — « — B
coerce = A « B. A (c :: Coercible o B) (x :: «). case c of
MkCoercible eq — x > eq

Since type applications are explicit in Core, coerce now takes
four arguments: the types to cast from and to, the coercion
witness, and finally the value to cast.

The data type Coercible also serves to box the primitive,
unboxed type ~pg, just as Int serves to box the primitive,
unboxed type Int#:

data Int = I# Int#

All boxed types are represented uniformly by a heap pointer.
In GHC all constraints (such as Eq a or Coercible a b) are
boxed, so that they can be treated uniformly, and even poly-
morphically [YWCT12|J. In contrast, an unboxed type is rep-

5To read some of this debate, see the thread beginning with this post:
http://www.haskell.org /pipermail /libraries /2014- March /022321.html

http://www.haskell.org/pipermail/libraries/2014-March/022321.html

resented by a non-pointer bit field, such as a 32 or 64-bit int
in the case of Int# [PLI1].

A witness of (unboxed) type ~r carries no information:
we never actually inspect an equality proof at run-time. So
the type ~g can be represented by a zero-width bit-field — that
is, by nothing at all. This implementation trick, of boxing
a zero-bit witness, is exactly analogous to the wrapping of
boxed nominal equalities used to implement deferred type
errors [VPMal2].

Since Coercible is a regular data type, you might worry
about bogus programs like this, which uses recursion to con-
struct an unsound witness co whose value is bottom:

looksUnsound :: forall x B. @« — P
looksUnsound = \& f x —
let co :: Coercible x B = co in
coerce & 3 co x

However, since coerce evaluates the Coercible argument (see
the definition of coerce above), looksUnsound will simply di-
verge. Again, this follows the behaviour of deferred type er-
rors [VPMal2].

In uses of coerce, the Coercible argument will be con-
structed from the instances which, as described below (Sec-
tion [6.4), are guaranteed to be acyclic. The usual simplifica-
tion machinery of GHC then ensures that these are inlined,
causing the case to cancel with the MkCoercible constructor,
leaving only the cast x > eq, which is operationally free.

6.2 On-demand instance generation

The language of Section 2| suggests that we generate Haskell
instance declarations for Coercible, based on type declara-
tions. Although this is a useful way to explain the design to
a programmer (who is already familiar with type classes and
instance declarations), GHC'’s implementation is much sim-
pler and more direct.

Rather than generate and compile instance declarations,
the constraint solver treats Coercible constraints specially:
to solve a Coercible constraint, the solver uses the rules of
Section [2| directly to decompose the constraint into simpler
sub-goals. This approach makes it easy to implement the
non-standard visibility rules of Coercible instances (see Sec-
tion , by simply not applying the newtype-unwrapping
rule if the constructor is not in scope.

6.3 The higher rank instance

Consider this declaration, whose constructor uses a higher-
rank type:

newtype Sel = MkSel (forall a. [a] — a)

We would expect its newtype-unwrapping instance to take
the form

instance Coercible (forall a. [a] — a) b = Coercible Sel b
instance Coercible a (forall a. [a] — a) = Coercible a Sel

These declarations are illegal in source Haskell, even with
all GHC extensions enabled. Nevertheless, we can generate
internally and work with them in the solver just fine. This
leads to constraints of the form

Coercible (forall a. s) (forall b. t)

which need special support in the solver. It already supports
solving (nominal) type equalities of the form (forall a. s) ~
(forall b. t), by generating a fresh type variable c and solving
s[c/a] ~ t[c/b]. We generalised this functionality to handle
representational type equalities as well.

6.4 Preventing circular reasoning and diverging
instances

For most type classes, like Show, it is perfectly fine (and
useful) to use a not-yet solved type class constraint to solve
another, even though this can lead to cycles [LP05]. Consider
the following code and execution:

newtype Fix a = MkFix (a (Fix a))
deriving instance Show (a (Fix a)) = Show (Fix a)

A> show (MkFix (Just (MkFix (Just (MkFix Nothing)))))
"MkFix (Just (MkFix (Just (MkFix Nothing))))"

There are two Show instances at work: one for Show (Maybe a),
which uses the instance of Show a; and one for Show (Fix a),
which uses the the instance Show (a (Fix a)). Plugging them
together to solve Show (Fix Maybe), we see that this instance
calls, by way of Show (Maybe (Fix Maybe)), itself. Neverthe-
less, the result is perfectly well-behaved and indeed termi-
nates.

But with Coercible, such circular reasoning would be
problematic; we could then seemingly write the bogus func-
tion looksUnsoundH:

newtype Id a = MkId a
cl::a — FixlId

cl = coerce

c2:: Fixld - b

c2 = coerce
looksUnsoundH ::a — b
looksUnsoundH = c2ocl

With the usual constraint solving, this code would type
check: to solve the constraint Coercible a (Fix Id), we need
to solve Coercible a (Id (Fix Id)), which requires Coercible
a (Fix Id). This is a constraint we already looked at, so the
constraint solver would normally consider all required con-
straints solved and accept the program.

Fortunately, there is no soundness problem here. Circu-
lar constraint-solving leads to a recursive definition of the
Coercible constraints, exactly like the (Core) looksUnsound
in Section and looksUnsoundH will diverge just like
looksUnsound. Nevertheless, unlike normal type classes, a
recursive definition of Coercible is never useful, so it is more
helpful to reject it statically. GHC therefore uses the existing
depth-counter of the solver to spot and reject recursion of
Coercible constraints.

6.5 Coercible and rewrite rules
What if a client of module Html writes this?

....(map unMk hs)...

She cannot use coerce because HTML is an abstract type,
so the type system would (rightly) reject an attempt to use
coerce (Section. However, since HTML is a newtype, one
might hope that GHC’s optimiser would transform (map
unMk) to coerce. The optimiser must respect type soundness,
but (by design) it does not respect abstraction boundaries:
dissolving abstractions is one key to high performance.

The correctness of transforming (map unMk) to coerce de-
pends on a theorem about map, which a compiler can hardly
be expected to identify and prove all by itself. Fortunately
GHC already comes with a mechanism that allows a library
author to specify rewrite rules for their code [PTHOT]. The au-
thor takes the proof obligation that the rewrite is semantics-
preserving, while GHC simply applies the rewrite whenever
possible. In this case the programmer could write

{—+# RULES "map/co” map coerce = coerce #—}

In our example, the programmer wrote (map unMk). The
definition unMk in module Html does not mention coerce, but
both produce the same System FC code (a cast). So via cross-
module inlining (more dissolution of abstraction boundaries)
unMk will be inlined, transforming the call to the equivalent
of (map coerce), and that in turn fires the rewrite rule. Indeed
even a nested call like map (map unMk) will also be turned
into a single call of coerce by this same process applied twice.

The bottom line is this: the author of a map-like func-
tion someMap can accompany someMap with a RULE, and
thereby optimise calls of someMap that do nothing into a sim-
ple call to coerce.

Could we dispense with a user-visible coerce function
altogether, instead using map-like functions and RULEs as
above? No: doing so would replace the zero-cost guarantee
with best-effort optimisation; it would burden the author
of every map-like function with the obligation to write a
suitable RULE; it would be much less convenient to use in
deeply-nested cases; and there might simply be no suitable
map-like function available.

7. Generalized Newtype Deriving done right

As mentioned before, newtype is a great tool to make pro-
grams more likely to be correct, by having the type checker
enforce certain invariants or abstractions. But newtypes can
also lead to tedious boilerplate. Assume the programmer
needs an instance of the type class Monoid for her type
HTML. The underlying type String already comes with a
suitable instance for Monoid. Nevertheless, she has to write
quite a bit of code to convert that instance into one for HTML:

instance Monoid HTML where
mempty = Mk mempty
mappend (Mk a) (Mk b) = Mk (mappend a b)
mconcat xs = Mk (mconcat (map unMk xs))

Note that this definition is not only verbose, but also non-
trivial, as invocations of Mk and unMk have to be put in the
right places, possibly via some higher order functions like
map — all just to say “just use the underlying instance”!

This task is greatly simplified with Coercible: Instead of
wrapping and unwrapping arguments and results, she can
directly coerce the method of the base type’s instance itself:

instance Monoid HTML where
mempty = coerce (mempty :: String)
mappend = coerce (mappend :: String — String — String)
mconcat = coerce (mconcat :: [String] — String)

The code is pure boilerplate: apply coerce to the method, in-
stantiated at the base type by a type signature. And because
it is boilerplate, the compiler can do it for her; all she has to
do is to declare which instances of the base type should be
lifted to the new type by listing them in the deriving clause:

newtype HTML = Mk String deriving Monoid

This is not a new feature: GHC has provided this Generalized
Newtype Deriving (GND) for many years. But, the implemen-
tation was “magic” — GND would produce code that a user
could not write herself. Now, the feature can be explained
easily and fully via coerce.

Furthermore, GND was previously unsound [WVPZ11].
When combined with other extensions of GHC, such as type
families [CKPO05, [CKPMO05] or GADTs [CHO3|, GND could
be exploited to completely break the type system: Figure [7]

newtype Id1 a = MklId1 a
newtype Id2 a = Mkld2 (Id1 a) deriving (UnsafeCast b)

type family Discern a b
type instance Discern (Id1 a
type instance Discern (I1d2 a

class UnsafeCast to from where
unsafe :: from — Discern from to

instance UnsafeCast b (Id1 a) where
unsafe (Mkld1l x) = x

unsafeCoerce ::a — b
unsafeCoerce x = unsafe (Mkld2 (Mkld1 x))

Figure 7. The above implementation of unsafeCoerce com-
piles (with appropriate flags) in GHC 7.6.3 but does not in
GHC7.8.1.

shows how this notorious bug can allow any type to be
coerced to any other. The clause “deriving (UnsafeCast b)” is
the bogus use of GND, and now will generate the instance

instance UnsafeCast b ¢ = UnsafeCast b (1d2 c) where
unsafe = coerce (unsafe :: ¢ — Discern c b)

which will rightly be rejected because Discern’s first parame-
ter has a nominal role. Indeed, preventing abuse of GND was
the entire subject of the previous work [WVPZ11] the current
paper is based on.

Similarly, it was possible to use GND to break invariants
of abstract data types. The addition of coerce makes it yet
easier to break such abstractions. As discussed in Section
these abuses can now be prevented via role annotations.

8. Related work

Prior work discusses the relationship between roles in FC
and languages with generativity and abstraction, type-indexed
constructs, and universes in dependent type theory. We do
not repeat that discussion here. Instead we use this section
to clarify the relationship between this paper and [WVPZ11],
as well as make connections to other systems.

8.1 Prior version of roles

The idea of roles was initially developed in [WVPZ11] as a so-
lution to the Generalized Newtype Deriving problem. That
work introduces the equality relations ~r and ~ (called
“type equality” and “code equality” resp. in [WVPZII]).
However, the system presented in [WVPZ11] was quite inva-
sive: it required annotating every sub-tree of every kind with
a role. Kinds in GHC are already quite complicated because
of kind polymorphism, and a new form of role-annotated
kinds would be more complex still.

In this paper, we present a substantially simplified version
of the roles system of [WVPZ11], requiring role information
only on the parameters to data types. Our new design keeps
roles and kinds modularly separate, so that roles can be
handled almost entirely separately (both intellectually and
in the implementation) from kinds. The key simplification is
to “assume the worst” about higher-kinded parameters, by
assuming that their arguments are all nominal. In exchange
we give up some expressiveness; specifically, we give up the
ability to abstract over type constructors with non-nominal
argument roles (see Section [10).

Furthermore, the observation that it is sound to “assume
the worst” and use parameterised types with less permissive
roles opens the door to role annotations. In this work, pro-
grammers are allowed to deliberately specify less permissive
roles, giving them the ability to preserve type abstractions.

Surprisingly, this flexibility means that our version of
roles actually increases expressiveness compared to [WVPZII]
in some places. In [WVPZ11] a role is part of a type’s kind, so
a type expecting a higher-kinded argument (such as Monad)
would also have to specify the roles expected by its argu-
ment. Therefore if Monad is applicable to Maybe, it would
not also be applicable to a type T whose parameter has a
nominal role. In the current work, however, there is no prob-
lem because Maybe and T have the same kind.

Besides the simplification discussed above, this paper
makes two other changes to the specification of roles pre-
sented in [WVPZ11].

* The treatment of the phantom role is entirely novel; the
rule CO_PHANTOM has no analogue in prior work.

* The coercion formation rules (Figure [are refactored so
that the role on the coercion is an output of the (syntax-
directed) judgement instead of an input. This is motivated
by the implementation (which does not know the role
at which coercions should be checked) and requires the
addition of the CO_SUB rule.

There are, of course, other minor differences between this
system and [WVPZ11] in keeping with the evolution of Sys-
tem FC. The main significant change, unrelated to roles, is the
re-introduction of left and right coercions; see Section[4.2.6]

One important non-difference relates to the linear-pattern
requirement. Section describes that our language is re-
stricted to have only linear patterns in its type families. (GHC,
on the other hand, allows non-linear patterns as well.) This
restriction exists in the language in [WVPZ11] as well. Sec-
tion 4.2.2 of [WVPZ11] defines so-called Good contexts as
having certain properties. Condition 1 in this definition sub-
tly implies that all type families have linear patterns — if a
type family had a non-linear pattern, it would be impossi-
ble, in general, to establish this condition. The fact that the
definition of Good implies linear patterns came as a surprise,
further explored in [EVPW14]. The language described in the
present paper clarifies this restriction, but it is not a new re-
striction.

Finally, because this system has been implemented in
GHC, this paper discusses more details related to compi-
lation from source Haskell. In particular, the role inference
algorithm of Section[]is a new contribution of this work.

8.2 OCaml and variance annotations

The interactions between sub-typing, type abstraction, and
various type system extensions such as GADTs and param-
eter constraints also appear in the OCaml language. In that
context, variance annotations act like roles; they ensure that
subtype coercions between compatible types are safe. For ex-
ample, the type & list of immutable lists is covariant in the
parameter a: if 0 < T then ¢ 1list < T list. Variances form
a lattice, with invariant, the most restrictive, at the bottom;
covariant and contravariant incomparable; and bivariant at the
top, allowing sub-typing in both directions. It is tempting to
identify invariant with nominal and bivariant with phantom,
but the exact connection is unclear. Scherer and Rémy [SR13]
show that GADT parameters are not always invariant.

Exploration of the interactions between type abstraction,
GADTs, and other features have recently revealed a sound-
ness issue in OCam[] that has been confirmed to date back
several years. Garrigue discusses these issues [Gar13]. His
proposed solution is to “assume that nothing is known about
abstract types when they are used in parameter constraints
and GADT return types” — akin to assigning nominal roles.
However, this solution is too conservative, and in practice
the OCaml 4.01 compiler relies on no fewer than six flags
to describe the variance of type parameters. However, lack-
ing anything equivalent to Core and its tractable metatheory,
the OCaml developers cannot demonstrate the soundness of
their solution in the way that we have done here.

What is clear, however, is that generative type abstraction
interacts in interesting and non-trivial ways with type equal-
ity and sub-typing. Roles and type-safe coercion solve an im-
mediate practical problem in Haskell, but we believe that the
ideas have broader applicability in advanced type systems.

9. Roles in Practice

We have described a mechanism to allow safe coercions
among distinct types, and we have reimplemented GHC's
previously unsafe GeneralizedNewtypeDeriving extension
in terms of these safe coercions. Naturally, this change causes
some code that was previously accepted to be rejected. Given
that Haskell has a large user base and a good deal of produc-
tion code, how does this change affect the community?

Advance testing During the development of this feature,
we tested it against several popular Haskell packages avail-
able through Hackage, an online Haskell open-source distri-
bution site. These tests were all encouraging and did not find
any instances of hard-to-repair code in the wild.

Compiling all of Hackage As of 30 September 2013, 3,234
packages on Hackage compiled with GHC 7.6.3, the last re-
leased version without roles. The development version of
GHC at that time included roles. A total of only four pack-
ages failed to compile directly due to GND faﬂure[] Of these,
three of the failures were legitimate — the use of GND was in-
deed unsafe. For example, one case involved coercing a type
variable passed into a type family; the author implicitly as-
sumed that a newtype and its representation type were al-
ways considered equivalent with respect to the type family.
Only one package failed to compile because of the gap in ex-
pressiveness between the roles in [WVPZ11]] and those here.
No other Hackage package depends on this one, indicating
it is not a key part of the Haskell open-source fabric. See Sec-
tion[I0l for discussion of the failure.

These data were gathered almost two months after the im-
plementation of roles was pushed into the development ver-
sion of GHC, so active maintainers may have made changes
to their packages before the study took place. Indeed, we
are aware of a few packages that needed manual updates.
In these cases, instances previously derived using GND had
to be written by hand, but quite straightforwardly.

6 http://caml.inria.fr/mantis /view.php?id=5985

"These data come from Bryan O’Sullivan’s work, described
here: |http://www.haskell.org/pipermail /ghc-devs/2013-September/
002693.html That posting includes 3 additional GND failures; these
were due to an implementation bug, since fixed.

http://caml.inria.fr/mantis/view.php?id=5985
http://www.haskell.org/pipermail/ghc-devs/2013-September/002693.html
http://www.haskell.org/pipermail/ghc-devs/2013-September/002693.html

10. Future directions

As of the date of writing (May 2014), roles seem not to have
caused an undue burden to the community. The first release
candidate for GHC 7.8 was released on 3 February 2014,
followed by the full release on 9 April, and package authors
have been updating their work to be compatible for some
time. The authors of this paper are unaware of any major
problems that Haskellers have had in updating existing code,
despite hundreds of packages being available for GHC 7.8

However, we are aware that some users wish to use roles
in higher-order scenarios that are currently impossible. We
focus on one such scenario, as it is representative of all exam-
ples we have seen, including the package that did not com-
pile when testing all of Hackage (Section|9).

Imagine adding the join method to the Monad class, as
follows:

class Monad m where

join :: foralla. m (ma) - ma

With this definition, GND would still work in many cases.
For example, if we define

newtype M a = Mk (Maybe a)
deriving Monad

GND will work without a problem. We would need to show
Coercible (Maybe (Maybe a) — Maybe a) (M (Ma) - M
a), which is straightforward.

More complicated constructions run into trouble, though.
Take this definition, written to restrict a monad’s interface:

newtype Restr m a = Mk (m a)
deriving Monad

To perform GND in this scenario, we must prove Coercible
(m (ma) — m a) (Restr m (Restr m a) — Restr ma). In
solving for this constraint, we eventually simplify to Coercible
(m (m a)) (m (Restr m a). At this point, we are stuck, be-
cause we do not have any information about the role of m’s
parameter, so we must assume it is nominal. The GND fea-
ture is thus not available here. Similar problems arise when
trying to use GND on monad transformers, a relatively com-
mon idiom.

How would this scenario play out under the system pro-
posed in [WVPZ11]]? This particular problem wouldn’t exist
—m’skind could have the right roles —but a different problem
would. A type’s kind also stores its roles in [WVPZ11]. This
means that Monad instances could be defined only for types
that expect a representational parameter. Yet, it is sometimes
convenient to define a Monad instance for a data type whose
parameter is properly assigned a nominal role. The fact that
the system described in this paper can accept Monad in-
stances both for types with representational parameters and
nominal parameters is a direct consequence of the Role assign-
ments are flexible theorem (Section , which does not hold
of the system in [WVPZ11]].

Looking forward, there is a proposal to indeed add join to
Monad, and so we want to be able to allow the use of GND on
this enhanced Monad class. We have started to formulate so-
lutions to this problem and have hope that we can overcome
this barrier without modifications to the core language.

8 Package authors have the option of specifying which compilers
their package is known to work with. Of the 555 packages listed
as working with one of the GHC 7.6 versions, 183 also are listed as
compatible with GHC 7.8. These packages include 43 that use the
GND extension.

11. Conclusion

Our focus has been on Haskell, for the sake of concrete-
ness, but we believe that this work is important beyond the
Haskell community. Any language that offers both generative
type abstraction and type-level computation must deal with
their interaction, and those interactions are extremely subtle.
We have described one sound and tractable way to combine
the two, including the source language changes, type infer-
ence, core calculus, and metatheory. In doing so we have
given a concrete foundation for others to build upon.

Acknowledgments

Thanks to Antal Spector-Zabusky for contributing to this
version of FC; and to Edward Kmett and Dimitrios Vytinio-
tis for discussion and feedback. This material is based upon
work supported by the National Science Foundation under
grant nos. CCF-1116620 and CCF-1319880. The first author
was supported by the Deutsche Telekom Stiftung.

References

[BEPW14] Joachim Breitner, Richard A. Eisenberg, Simon Peyton
Jones, and Stephanie Weirich, Safe zero-cost coercions for
Haskell (extended version), Tech. Report MS-CIS-14-07,
University of Pennsylvania, 2014.

[CHO3] James Cheney and Ralf Hinze, First-class phantom types,
Tech. report, Cornell University, 2003.

[CKPO5] Manuel M. T. Chakravarty, Gabriele Keller, and Si-
mon Peyton Jones, Associated type synonyms, ICFP, ACM,
2005, pp. 241-253.

[CKPMO05] Manuel M. T. Chakravarty, Gabriele Keller, Simon Pey-
ton Jones, and Simon Marlow, Associated types with class,
POPL, ACM, 2005, pp. 1-13.

[EVPW14] Richard A. Eisenberg, Dimitrios Vytiniotis, Simon Pey-
ton Jones, and Stephanie Weirich, Closed type families
with overlapping equations, POPL, ACM, 2014, pp. 671-
683.

[Gar13] Jacques Garrigue, On variance, injectivity, and abstraction,
OCaml Meeting, Boston., September 2013.

[LPO5] Ralf Lémmel and Simon Peyton Jones, Scrap your boiler-
plate with class: Extensible generic functions, ICFP, 2005.

[Mar10] Simon Marlow (editor), Haskell 2010 language report,
2010.

[MTHMOY7] Robin Milner, Mads Tofte, Robert Harper, and David
MacQueen, The definition of Standard ML (revised), 1997.

[PLI1] Simon Peyton Jones and] Launchbury, Unboxed values as
first class citizens, FPCA, LNCS, vol. 523, 1991, pp. 636—
666.

[PTHO1] Simon Peyton Jones, Andrew Tolmach, and Tony Hoare,
Playing by the rules: rewriting as a practical optimisation
technique in GHC, Haskell Workshop, 2001, pp. 203-233.

[SR13] Gabriel Scherer and Didier Rémy, GADTs meet subtyping,
ESOP, 2013, pp. 554-573.

[VPMal2] Dimitrios Vytiniotis, Simon Peyton Jones, and José Pe-
dro Magalhaes, Equality proofs and deferred type errors: A
compiler pearl, ICFP, ACM, 2012, pp. 341-352.

[WB89] Philip Wadler and Stephen Blott, How to make ad-hoc
polymorphism less ad-hoc, POPL, ACM, 1989, pp. 60-76.
[WVPZ11] Stephanie Weirich, Dimitrios Vytiniotis, Simon Peyton
Jones, and Steve Zdancewic, Generative type abstraction
and type-level computation, POPL, ACM, 2011, pp. 227-
240.

[YWC™12] Brent A. Yorgey, Stephanie Weirich, Julien Cretin, Simon
Peyton Jones, Dimitrios Vytiniotis, and José Pedro Ma-
galhaes, Giving Haskell a promotion, TLDI, ACM, 2012,
pp- 53-66.

	Introduction
	The design and interface of [style=Haskell, breaklines=true, breakatwhitespace=true]-Coercible-
	Coercing newtypes
	Coercing parameters of type constructors
	Coercing representational type parameters
	Coercing phantom type parameters
	Coercing nominal type parameters
	Coercing multiple type parameters

	Abstraction and coherence
	Preserving abstraction
	Preserving class coherence

	Ensuring type safety: System FC with roles
	Roles and casts
	Coercions
	Nominal implies representational
	Equality is an equivalence relation
	Axioms for equality
	Equality can be abstracted
	Equality is congruent
	Equality can be decomposed

	Role attribution for type constants
	Metatheory

	Roles on type constructors
	Role inference
	The role of role inference

	Implementing [style=Haskell, breaklines=true, breakatwhitespace=true]-Coercible-
	[style=Haskell, breaklines=true, breakatwhitespace=true]-Coercible- and [style=Haskell, breaklines=true, breakatwhitespace=true]-coerce-
	On-demand instance generation
	The higher rank instance
	Preventing circular reasoning and diverging instances
	[style=Haskell, breaklines=true, breakatwhitespace=true]-Coercible- and rewrite rules

	Generalized Newtype Deriving done right
	Related work
	Prior version of roles
	OCaml and variance annotations

	Roles in Practice
	Future directions
	Conclusion

