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Abstract

Homotopy type theory is an extension of Martin-Löf type theory, based on a correspondence

with homotopy theory and higher category theory. In homotopy type theory, the propositional

equality type is proof-relevant, and corresponds to paths in a space. This allows for a new

class of datatypes, called higher inductive types, which are specified by constructors not

only for points but also for paths. In this paper, we consider a programming application of

higher inductive types. Version control systems such as Darcs are based on the notion of

patches—syntactic representations of edits to a repository. We show how patch theory can

be developed in homotopy type theory. Our formulation separates formal theories of patches

from their interpretation as edits to repositories. A patch theory is presented as a higher

inductive type. Models of a patch theory are given by maps out of that type, which, being

functors, automatically preserve the structure of patches. Several standard tools of homotopy

theory come into play, demonstrating the use of these methods in a practical programming

context.

1 Introduction

Martin-Löf’s intensional type theory (MLTT) and its descendants are the basis of

proof assistants such as Agda (Norell, 2007) and Coq (Coq Development Team,

2015). Homotopy type theory is an extension of MLTT based on a correspondence

with homotopy theory and higher category theory (Hofmann & Streicher, 1998;
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2 C. Angiuli et al.

Voevodsky, 2006; Gambino & Garner, 2008; Warren, 2008; Awodey & Warren,

2009; Garner, 2009; Lumsdaine, 2009; van den Berg & Garner, 2011; Kapulkin et al.,

2012). In homotopy theory, one studies topological spaces by way of their points,

paths (between points), homotopies (paths or continuous deformations between

paths), homotopies between homotopies (paths between paths between paths), and

so on. In homotopy type theory, a space corresponds to a type A. Points of a space

correspond to elements a, b : A. Paths in a space are represented by elements of

the identity type (propositional equality), which we notate p : a =A b. Homotopies

between paths p and q correspond to elements of the iterated identity type p =a=Ab q.

Moreover, one can define all the path operations considered in homotopy theory,

including identity paths refl : a = a (reflexivity of equality), inverse paths ! p : b = a

when p : a = b (symmetry of equality), and composition of paths q ◦ p : a = c when

p : a = b and q : b = c (transitivity of equality), as well as homotopies relating these

operations (for example, refl ◦ p = p), homotopies relating those homotopies, and

so forth.

This correspondence has suggested several extensions to type theory. One is

Voevodsky’s univalence axiom (Voevodsky, 2006; Kapulkin et al., 2012), which

describes the path structure of the type universe (the type of small types). Another

is higher inductive types (Lumsdaine, 2011; Shulman, 2011; Lumsdaine & Shulman,

2013), a new class of datatypes specified by constructors not only for points but

also for paths. Higher inductive types were originally introduced to permit the

type-theoretic definition of basic topological spaces such as circles and spheres, and

have had significant applications in a line of work on using homotopy type theory

to write computer-checked proofs of theorems from homotopy theory (Licata &

Brunerie, 2013; Licata & Shulman, 2013; Univalent Foundations Program, 2013;

Hou, 2014; Licata & Finster, 2014; Cavallo, 2015; Licata & Brunerie, 2015).

The computational interpretation of homotopy type theory as a programming

language is a subject of active research, though some special cases have been solved,

and work in progress is promising (Licata & Harper, 2012; Bezem et al., 2014;

Shulman, 2015; Altenkirch & Kaposi, 2015; Barras et al., 2015; Polonsky, 2015;

Cohen et al., 2016). The main lesson of this work is that, in homotopy type theory,

proofs of equality have computational content, and can influence how a program

runs. This suggests investigating whether there are programming applications of

computationally relevant equality proofs. Some preliminary applications have been

investigated. For example, Licata & Harper (2011) apply ideas related to homotopy

type theory to modeling variable binding. Altenkirch (2014) shows that contain-

ers (Abbott et al., 2005) in homotopy type theory can be used to represent more

data structures than in MLTT, such as sets and bags. However, at present, the

programming applications are less developed than the mathematical applications.

In this paper, we present an example of using homotopy type theory to model patch

theory (Jacobson, 2009; Houston, 2012; Mimram & Di Giusto, 2013), the abstract

study of version control systems. Intuitively, a patch is a formal representation

of a change to a repository. A patch (for example, “delete file f”) applies to a

class of repositories (those in which the file f exists), and results in another class

of repositories (those in which the file f no longer exists). Such classifications of
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repositories are called patch contexts, and serve as types for patches. Patches are

closed under identity (a no-op), composition (sequencing), and inverses (undo). In

addition, patches are subject to equations called patch laws, which address both

general (e.g., composition is associative) and domain-specific considerations (e.g.,

that the order of edits to independent lines of a file can be swapped).

Then, a patch theory1 is a collection of such patch contexts, patches, and patch

laws, which together abstractly characterize a language of patches. Any correct

implementation of those patches must contain a set of repositories for each patch

context, functions between those repositories for each patch, and equations between

those functions for each patch law.

Our representation of patch theory is inspired by functorial semantics in the sense

of Lawvere (1963)—in which the axioms of an algebraic theory are represented

as a category, and any instance of that algebraic theory is precisely a structure-

preserving functor out of that category. Using homotopy type theory, we will

represent patch theories as higher inductive types whose points are patch contexts,

whose paths are patches, and whose paths between paths are patch laws; and

interpretations of a patch theory as functions out of its higher inductive type.

Because functions in homotopy type theory always respect path structure, this

guarantees that interpretations are sound for their patch theory, and in particular,

that interpretations respect patch laws.

We will consider interpretations such as patch interpreters (sending patches to

functions on repositories), patch optimizers (consolidating a sequence of patches

into a more direct, equivalent sequence), and patch histories (maintaining a list of

the patches themselves). That such functions—and others, including merging—are

definable underscores the fact that paths in homotopy type theory are proof-relevant,

i.e., that we can distinguish, manipulate, and extract computational content from

them, unlike ordinary notions of equality.

Our work shows how to apply standard concepts from homotopy theory in a prac-

tical programming setting. For example, the first patch theory we discuss is in fact the

circle. A key problem in homotopy theory is to algebraically characterize the paths in

a space using what is called a homotopy group; similarly, sometimes we characterize

an identity type (namely, the patches of a patch theory) using a derived induction

principle, in order to define operations on those paths (such as merging). We hope

that this paper will make homotopy type theory more accessible to the functional pro-

gramming community, so that programmers can begin to consider its applications.

Homotopy type theory is still under development, and one of our goals in

this paper is to guide future work on it by providing an extended programming

application. We use an informal Agda-like concrete syntax, including datatype and

pattern-matching syntax for higher inductive types, and marking implicit arguments

with braces {−}. (This is similar to the informal type theory employed in the

book Homotopy type theory (Univalent Foundations Program, 2013), but with a

1 There is an unfortunate terminological coincidence here: “Patch theory” means “the study of patches”,
just as “group theory” is the study of groups. “A patch theory” means “a specific language of patches”,
just as “a theory in first-order logic” is a specific collection of terms and formulae.
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more programming-oriented notation.) Our development using this syntax could be

translated to Agda or Coq, using techniques to simulate higher inductives, but we

have not yet implemented the examples in this paper in a proof assistant.

Because a computational interpretation of homotopy type theory is work in

progress, there is no complete operational semantics that can evaluate the programs

in this paper. However, we will use a notion of computation-up-to-paths—based

on existing work on this topic (Licata & Harper, 2012; Shulman, 2015; Altenkirch

& Kaposi, 2015; Cohen et al., 2016)—in order to compute with the programs we

define in this paper.

In Section 2, we provide a brief introduction to homotopy type theory and higher

inductive types. In Section 3, we review patch theory, and describe our approach

to representing it in homotopy type theory. In Sections 4 through 8, we discuss

successively more complex patch theories.

Section 4 is the simplest case: a patch theory with a single patch context and no

patch laws. In Section 5, we add patch laws. In Section 6, we consider a theory

requiring multiple patch contexts, because not all patches are universally applicable.

The theory in Section 7 has both patch laws and multiple patch contexts. Finally,

in Section 8, we consider a patch theory of text files, requiring both patch laws and

multiple patch contexts.

A preliminary version of this paper appeared in the Proceedings of the 2014

International Conference on Functional Programming. We have added two more patch

theories (Sections 6 and 7) in order to clarify the concepts needed in Section 8, and

discuss some results that were obtained after the final conference version was

submitted.

2 Basics of homotopy type theory

In this section, we will review some basic definitions of homotopy type theory.

Various formulations of homotopy type theory are currently in development; in this

paper, we will use the standard version appearing in Homotopy type theory (Univalent

Foundations Program, 2013), henceforth “the HoTT Book”, because we expect that

any future versions of homotopy type theory will be able to interpret it.

2.1 Paths

In type theory, there are two notions of equality. Definitional equality is a proof-

irrelevant judgement relating two terms. It is a congruence containing β-like

reductions expressing that elimination is post-inverse to introduction—for example,

(λx � e) e’ and [e’/x]e are definitionally equal. Uses of definitional equality are

not marked in the proof term or program: if e has type A, then e also has any other

type A’ that is definitionally equal to A. On the other hand, propositional equality

is a proof-relevant type relating two terms; it is often also called the identity type,

which we write e = e’. Uses of propositional equality are explicitly marked in the

program: if e has type A and p is an element of the identity type A = A’, then coe

p e has type A’.
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In homotopy type theory, the identity type is specified by its introduction rule,

called reflexivity, and elimination rule, known as path induction or J . Elements

of the identity type behave like paths in a space or morphisms in a groupoid, in

the sense that one can define a constant path refl (witnessing the reflexivity of

equality), composition of paths q ◦ p (witnessing the transitivity of equality),2 and

path inversion ! p (witnessing the symmetry of equality), among other operations.

Moreover, there are paths between paths, or homotopies, which are represented by

proofs of equality in identity types. For example, there are homotopies expressing

that the path operations satisfy the group(oid) laws:

refl ◦ p = p

p ◦ refl = p

(r ◦ q) ◦ p = r ◦ (q ◦ p)

(! p) ◦ p = refl

p ◦ (! p) = refl

Any simply typed function f : A � B determines a function

ap f : x = y � f x = f y

that takes paths x =A y to paths f x =B f y. Logically, this expresses that

propositional equality is a congruence; homotopically, it expresses that any function

has an action on paths; and categorically, it expresses that functions are functors,

preserving the path structure of types. The function ap f preserves the path

operations, in the sense that there are homotopies

ap f (refl {x}) = refl {f x}

ap f (! p) = ! (ap f p)

ap f (q ◦ p) = (ap f q) ◦ (ap f p)

It is useful to characterize types based on how far “up” their path structure

extends. A type A is a set iff any two parallel paths in A are equal—i.e., for any

two elements m,n : A, and any two proofs p,q : m = n, there is a path p = q.

Similarly, a type is a 1-groupoid iff any two paths between parallel paths are equal.

A type is a mere proposition iff any two elements are equal. A type is contractible

iff it is a mere proposition and moreover it has an element, that is, it has a unique

element up to homotopy.

2.2 Univalence

Writing Type for a type of (small) types, Voevodsky’s univalence axiom states that,

for sets A and B, the paths A =Type B are given by bijections between A and B.3 That

is, define Bijection A B to be the type of quadruples

(f : A � B, g : B � A,

p : (x : A) � g (f x) = x, q : (y : B) � f (g y) = y)

2 Composition is in function-composition, or applicative, order, (q:y=z) ◦ (p:x=y) : x=z.
3 For types that are not sets, univalence requires a notion of equivalence that generalizes bijection.

However, here we will only use it for sets.
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consisting of two functions that are mutually inverse up to paths. Then, one

consequence of univalence is that there is a function

ua : Bijection A B � A = B

which says that a bijection between A and B determines a path between A and B.

The force of this is to stipulate that all constructions respect bijection; for example,

if C[X] is a parameterized type (e.g., C could be List, Tree, Monoid, etc.), then given

a bijection b : Bijection A B, we have

ap C (ua b) : C[A] = C[B]

which is a bijection between C[A] and C[B]. In plain MLTT, one would need to spell

out how a bijection between types lifts to a bijection on lists or monoids over those

types; with univalence, this lifting is given by a new generic program in the form

of ap. This generic program is one of the sources of computational applications of

homotopy type theory.

We can define the identity (reflb), inverse (!b), and composition ( ◦b ) of

bijections directly (focusing on the underlying functions, and where f2 . f1 is

(λx � f2(f1(x)))):

reflb : Bijection A A

reflb = ((λx � x), (λx � x), ...)

!b : Bijection A B � Bijection B A

!b (f,g,p,q) = (g,f,q,p)

_◦b_ : Bijection B C � Bijection A B � Bijection A C

(f2,g2,p2,q2) ◦b (f1,g1,p1,q1) = (f2 . f1, g1 . g2, ...)

Applying path operations to univalence is homotopic to applying the corresponding

operations to bijections:

refl = ua reflb
! (ua b) = ua (!b b)

ua b2 ◦ ua b1 = ua (b2 ◦b b1)

When p : A = B, we write coe p : A � B for the function, defined by identity

type elimination, that “coerces” along the path p. The function coe is functorial, in

the sense that

coe refl x = x

coe (q ◦ p) x = coe q (coe p x)

coe p is a bijection, with inverse coe !p; we write coeBiject p : Bijection

A B when p : A = B. The univalence axiom additionally asserts that there is a

computation rule

coe (ua (f,g,p,q)) x = f x

That is, coercing along a path constructed by univalence applies the given bijection.

Because ! (ua (f,g,p,q)) = ua (!b (f,g,p,q)), we also have that

coe (! (ua (f,g,p,q))) x = g x
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Because of these rules, in the presence of univalence, paths can have non-trivial

computational content. A bijection (f,g,p,q) determines a path ua(f,g,p,q),

and coercing along this path applies f. Thus, two different bijections (f,g,p,q)

and (f’,g’,p’,q’) determine two paths ua(f,...) and ua(f’,...) that behave

differently when coerced along.

2.3 Paths over paths

Both simply and dependently typed functions preserve path structure, but expressing

this fact for the latter requires some additional machinery. If we have a family of

types B : A � Type, a dependently typed function f : (x : A) � B(x), and a

path p : x =A y, then for f to preserve p means that f x : B(x) and f y : B(y)

are equal. But they do not even have the same type!

Luckily, these types are equated by ap B p : B(x) = B(y), because B is itself a

path-preserving function. So we can express the equality of f x and f y as a path

in B(y) by coercing f x along ap B p:

coe (ap B p) (f x) = f y

or symmetrically, as a path in B(x):

f x = coe (! (ap B p)) (f y)

We hide this choice behind an interface by defining the type PathOver B p b1

b2 of heterogeneous equalities (McBride, 2000), or paths over paths, which classifies

paths in the type family B between b1 : B(a1) and b2 : B(a2) correlated by a

path p : a1 = a2. Then apd, the action on paths of dependent functions, has type

apd f : (p : x = y) � PathOver B p (f x) (f y)

In this paper, we will occasionally invoke lemmas characterizing PathOvers in B

for certain B. For example, if B is a constant family λx � C, then PathOver B p

b1 b2 is equivalent to the type b1 =C b2. (So when f is not dependent, ap f and

apd f have the same type, modulo this equivalence.) We refer to these lemmas as

“simplifications” because they are type-driven in a straightforward way; see Chapter

2 of the HoTT Book (2013) for proofs of related results.

2.4 Higher inductive types

Ordinary inductive types are specified by generators; for example, the natural

numbers are generated by zero and successor: zero : Nat and succ : Nat � Nat.
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Higher dimensional inductive types (or just higher inductive types) (Lumsdaine, 2011;

Shulman, 2011; Lumsdaine & Shulman, 2013) generalize inductive types by allowing

generators not only for points (terms), but also for paths. For example, one might

draw the circle like this:

This drawing has a single point, and a single non-identity loop from this base point

to itself. We define the circle as a higher inductive type with two generators:

space Circle : Type where

-- point constructor:

base : Circle

-- path constructor:

loop : base = base

The constructor base is an element of the inductive type (taking no arguments, just

like zero : Nat). The constructor loop generates a path in the circle, which is an

element of the identity type base =Circle base—think of this as “going around the

circle once clockwise”. The paths of higher inductive types are constructed from

generators, such as loop, using the path operations described above. The intuition

is that refl stands still at the base point, whereas loop ◦ loop goes around the

circle twice clockwise, and ! loop goes around the circle once counter-clockwise.

2.4.1 Circle recursion

The elimination rule for Nat, primitive recursion, expresses that the natural numbers

are inductively generated by zero and successor. Primitive recursion says that to

define a function f : Nat � X, it suffices to map the generators into X, giving x0

: X and x1 : X � X. Then, the function f satisfies the equations:

f zero = x0

f (succ n) = x1(f n)

Similarly, the circle is inductively generated by base and loop, so to define a

function from the circle into some other type, it suffices to map these generators

into that type, which means giving a point and a loop in that type. That is, to define

a function f : Circle � X, it suffices to give b’ : X and l’ : b’ =X b’.

For an inductive type, the β-reduction rules state that applying the elimination

rule to a generator computes to the corresponding branch. Thus, by analogy, the

computation rules for the circle should say that, for a function f : Circle � X

that is defined by giving b’ and l’,

f base = b’

f loop = l’ -- does not typecheck!

The second equation does not quite make sense, because f is a function
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Circle � X but loop is a path in the circle. Therefore, we use ap (discussed

above) to denote f’s action on paths:

sap f loop = l’

This computation rule preserves types because its left-hand side is a proof of f

base = f base, which by the first computation rule equals b’ = b’, which is the

type of l’.

As a first example, we write a function to “reverse” a path in the circle—to send

the path that goes around the circle n times clockwise to the path that goes around

the circle n times counter-clockwise, and vice versa. Because a path in the circle is

represented by the identity type base = base, we seek a function

revPath : (base = base) � (base = base)

such that, for example, revPath (loop ◦ loop) = ! loop ◦ ! loop and revPath

(! loop ◦ ! loop) = loop ◦ loop. We could define this function by revpath

p = ! p, but because the goal is to illustrate circle recursion, we instead give an

equivalent definition that analyzes p.

To define this function using circle recursion, we need to rephrase the problem as

constructing a function Circle � X for some type X. The key idea is to define a

function rev : Circle � Circle and then to define revPath to be ap rev. That

is, to define a function on the paths of the circle, we define a function on the circle

itself, whose action on paths is the desired function. In this case, we define

rev : Circle � Circle

rev base = base

ap rev loop = ! loop

revPath p = ap rev p

One technical issue about higher inductive types is whether the computation

rule ap f loop = l’ is a definitional equality or a propositional equality. Current

models and implementations justify only the latter, so we will take it to be a

propositional equality.

While primitive recursion suffices to define functions Nat � X, defining a de-

pendently typed function (n : Nat) � C(n) requires natural number induction,

i.e., specifying c0 : C(zero) and c1 : (n : Nat) � C(n) � C(succ n). Anal-

ogously, circle induction states that one can define a function f : (x : Circle)

� C(x) by specifying

f base = b’ : C(base)

apd f loop = l’ : PathOver C loop b’ b’

We refer the reader to Licata & Shulman (2013), Univalent Foundations Program

(2013) for topological intuition.

2.5 Computation

Although MLTT has been used as the basis for dependently typed programming

languages (Nordström et al., 1990; Norell, 2007), MLTT itself only defines typing
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and definitional equality judgments, and no operational semantics. Formally, the

purpose of definitional equality is only to give terms more types: if types A,B are

definitionally equal, then any terms of type A also have type B. For example, refl :

1 + 1 = 2 because refl : 2 = 2 and 1 + 1 is definitionally equal to 2. For this

reason, all definitional equalities are also propositional by refl.

MLTT admits a computational interpretation in the sense that two open terms

are definitionally equal exactly when their β-normal forms are equal; and that for

closed terms of type bool, head reduction suffices and always results in either true

or false. One can therefore think of closed terms as programs, head reduction

as their operational semantics, and bool as an observable type. (A related way

to extract computational meaning from proofs is to interpret the proof rules as

closed λ-terms, a technique known as realizability (Kleene, 1945; Kreisel, 1959).

Aczel (1977) has constructed realizability interpretations of MLTT; doing the same

for homotopy type theory is an open problem.)

Homotopy type theory, as defined in the HoTT Book (2013), extends the typing

judgment with univalence and higher inductive types, but does not add any defi-

nitional equalities involving non-refl paths. This breaks canonicity—the property

that all closed terms in bool are definitionally equal to either true or false—by

introducing terms like stuck:

notb = (not, not, ...) : Bijection Bool Bool -- swaps true and false

stuck = coe (ua notb) true : Bool

which are propositionally, but not definitionally, equal to false. It also breaks

MLTT’s computational interpretation, because stuck is head-normal but neither

true nor false.

It is conjectured that one can restore canonicity and the computational inter-

pretation by adding more definitional equalities; doing so is an active area of

research (Licata & Harper, 2012; Altenkirch & Kaposi, 2015; Cohen et al., 2016).

(Current attempts change how the identity type is axiomatized, in order to simplify

its definitional equalities.) But this raises the question: which propositional equalities

should be made definitional? We certainly cannot make all propositional equalities

definitional, because the former are proof-relevant (programs can distinguish them)

while the latter are not. As a concrete example, A * B and B * A are propositionally

equal types by univalence, but if we made them definitionally equal, then any term

of type A * B would also have type B * A.

However, there are many particular propositional equalities which we (and others)

conjecture are computation steps, like coe (ua (f,g,p,q)) x = f x (which would

fix stuck). A traditional computational interpretation would require such equations

to be definitional. However, we believe it is possible to describe these equalities as

computational even when some of them remain propositional—in plain MLTT, not

all definitional equalities are head reductions; in current homotopy type theory, not

all computation steps are definitional equalities. In our setting, we run programs

by giving a sequence of computational propositional equalities. For example, we

calculate
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revPath (loop ◦ loop)

= ap rev (loop ◦ loop)

= (ap rev loop) ◦ (ap rev loop)

= ! loop ◦ ! loop

where the final two steps are propositional but not definitional equalities.

3 Patch theory in homotopy type theory

Patch theory is the abstract study of version control systems by considering how their

patches behave under operations such as composing, reverting, and merging. Patch

theory allows us to separate the purely algebraic aspects of a version control system

(which patches exist, and which equations they satisfy) from its implementation

details (how repositories and patches are represented). We refer to a particular

algebraic characterization of a version control system as a theory of version control,

or a patch theory; and to an implementation of it as a model of that theory.

In a patch theory, each patch comes equipped with specified domain and

codomain contexts, representing respectively, the repository states on which a patch

is applicable, and the states resulting from such an application. For example, a patch

that deletes a file is applicable only to states in which the file exists, and results in

a state in which it does not. In addition, patches respect certain laws that relate

sequences of patches to equivalent sequences of patches—equivalent, in the sense

that the two sequences have the same effect on the state of a repository.

Others have employed a variety of mathematical formalisms to represent patch

theories, including separation logic (Swierstra & Löh, 2014), category theory (Hous-

ton, 2012; Mimram & Di Giusto, 2013), and the language of inverse semigroups

(Jacobson, 2009). In this paper, we formulate patch theory in homotopy type theory.

3.1 Patch theories as higher inductive types

In this paper, we represent patch theories as higher inductive types. The patch

contexts of a patch theory are represented as points of the corresponding type.

Patches are represented as paths between their domain and codomain patch contexts.

Patch laws are represented as paths between patches, or homotopies.

Representing patches as paths means that we automatically get a refl patch for

every patch context, a composite patch q ◦ p for any composable patches p,q, and

an inverse patch (! p) for any patch p. We use these paths to model the constant

patches, composite patches, and inverse patches, respectively, that we expect to

exist in every patch theory. Representing patch laws as homotopies means that the

groupoid laws for paths (associativity of composition, etc.) automatically hold for

these patch operations.

Notice that these inverse patches are two-sided inverses. That (! p) is a post-

inverse to p means that applying a patch and then its inverse is the same as no

change; however, that it is a pre-inverse means that we can apply the inverse of a

patch before the patch itself, also to no effect. We will explore this point in greater

detail later.
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3.2 Interpretations of patch theories

A patch theory is a formal specification of patch contexts, patches, and patch

laws; a version control system, however, consists of concrete repositories and

functions between them. We bridge this gap by ensuring that a version control

system faithfully implements its specification, in the sense that we can map each

patch context to the collection of repositories it classifies, each patch to a function

that updates those repositories appropriately, and each patch law to an equation

between those functions. In the terminology of functorial semantics, such a mapping

is an interpretation or model of the patch theory.

In this paper, we represent interpretations of a patch theory as functions out

of its higher inductive type R, or out of R’s identity types. For example, a version

control system is a function I : R � Type. We define such an I using R-recursion,

which (following Section 2.4.1) means we give a type for each patch context of R, a

path between types (which is, by the univalence axiom, a bijection between types)

for each generating path, and a homotopy between those paths for each generating

patch law.

This I, like all functions definable in homotopy type theory, preserves the path

structure of its domain, so if we prove a theorem about the patch theory, we can

send it to a theorem about its interpretation. This is useful because a patch theory

may have many interpretations. Other kinds of interpretations we consider are

patch optimizers, which interpret patches as simpler but equivalent compositions of

patches, and patch histories, which interpret patches as concrete changelogs, rather

than the changes themselves.

Unfortunately, not all seemingly reasonable interpretations are actually functorial.

Suppose we wanted a function countPatches which takes every (composite) patch

to the number of primitive (generating) patches it contains—then for primitive

p, countPatches (!p ◦ p) = 2, and countPatches refl = 0. But (!p ◦ p) =

refl, so countPatches would not respect patch laws, and is therefore not definable!

We will see how functoriality complicates the definitions of patch histories in

Sections 7 and 8.

3.3 Merging

For our purposes, merging is an operation on a patch theory that takes a pair

of diverging patches or span, (f1, f2), and returns a pair of converging patches or

cospan, (g1, g2), which is a reconciliation of the span in the sense that

merge(f1, f2) = (g1, g2) =⇒ g1 ◦ f1 = g2 ◦ f2 :
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In order to support distributed version control systems, we will further require

that the merge operation be symmetric,

merge(f1, f2) = (g1, g2) =⇒ merge(f2, f1) = (g2, g1)

because the order of two patches should not affect how to reconcile them.

It is always possible to define a total merge function, since for any span we may

give merge(f1, f2) = (!f1, !f2), the reconciliation that undoes both changes. This can

be used to signal a merge conflict, a situation in which we are unable to automatically

reconcile the competing changes in a sensible way, and for which human intervention

is required.

In the remainder of this paper, we will consider representations, interpretations,

and merge functions for a number of patch theories.

4 An elementary patch theory

First, we define a very simple patch theory, to illustrate our basic technique: we take

the repository to be a single integer, and the patches to be adding or subtracting

some number n from it. Because all patches apply to any repository state, we need

only a single patch context, which we call num. Patches will then be represented

as paths num = num, which represents the fact that every patch can be applied

to context num and results in context num. Suppose we have a patch add1 that

represents adding 1 to the repository. Then, because identity, inverse, and composite

paths always exist, we also have paths refl, which represents adding 0, and add1 ◦
add1, which represents adding 2, and ! add1, which represents subtracting 1, and

so on. In fact, the patches adding n for any integer n are generated by add1, because

the integers are the free group on one generator. This motivates the following higher

inductive definition of this simple Repository and its patches:

space R : Type where

-- point constructor (patch context):

num : R

-- path constructor (basic patch):

add1 : num = num

This is, of course, just a renaming of the circle!

Remark 4.1

In ordinary dependent type theory, freely defining this patch theory would require

syntax constructors for identity, composition, and inverses; e.g., using a datatype as

follows:

data Patch where

add1 : Patch

id : Patch

compose : Patch � Patch � Patch

inv : Patch � Patch

Then, to achieve the correct patch laws, one would need to impose the group laws

on this type; this could be done using a quotient type (Constable et al., 1986) to

assert that
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assoc : compose r (compose q p) = compose (compose r q) p

invr : compose p (inv p) = id

invl : compose (inv p) p = id

unitr : compose p id = p

unitl : compose id p = p

By using homotopy type theory and modeling patches as paths, however, the

patch theory automatically includes identity, inverses, composition, and the group

laws. �

4.1 Interpreter

Next, we define an interpreter, which explains how to apply a patch to a repository.

Because the intended semantics is that the repository is an integer, we would like to

interpret the repository context num as the type Int of integers. Because patches are

invertible, we would like to interpret each patch as an element of the type Bijection

Int Int.

Remark 4.2

To build intuition, consider writing the interpreter “by hand” for the quotient type

Patch defined in Remark 4.1. We would first define:

interp : Patch � Bijection Int Int

interp add1 = successor

interp id = reflb
interp (compose p2 p1) = interp p2 ◦b interp p1

interp (inv p) = !b (interp p)

where successor : Bijection Int Int is the bijection given by (λx � x+1, λx

� x-1, ...) Then, to show that this definition is well-defined on the quotient of

patches by the group laws, we would need to do a proof with five cases for the

five group laws, where in each case we appeal to the inductive hypotheses and the

corresponding group law for bijections. �

Returning to our higher inductive representation of patches, we define the

interpreter using the recursion principle for R, which is of course the same as

circle recursion, as discussed in Section 2.4.1. We want to interpret each point of

R, which represents a repository context, as the type of repositories in that context,

and each path as a bijection between the corresponding types. In this case, that

means we would like to interpret num as Int and add1 as the successor bijection.

R-recursion says that to define a function f : R � X, it suffices to find a point x0 :

X and a loop p : x0 = x0. Thus, we can represent the interpretation by a function

R � Type, because a point of Type is a type, and a loop in Type is, by univalence,

the same as a bijection! This motivates the following definition:

I : R � Type

I num = Int

ap I add1 = ua successor

interp : (num = num) � Bijection Int Int

interp p = coeBiject (ap I p)

https://doi.org/10.1017/S0956796816000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000198


Homotopical patch theory 15

Up to propositional equality, this definition satisfies the defining equations of

interp as defined in Remark 4.2. First, we can calculate that interp add1 =

successor,

interp add1

= coeBiject (ap I add1) [definition]

= coeBiject (ua successor) [ap I on add1]

= successor [coe on ua successor]

using the simplification rules for ap I on add (from higher inductive elimination)

and coe on ua b (from univalence).4

Moreover, interp takes path operations to the corresponding operations on

bijections, because it is defined via ap, and ap preserves the path operations. For

example,

interp (q ◦ p)

= coeBiject (ap I (q ◦ p))

= coeBiject (ap I q ◦ ap I p) [ap on ◦]
= (coeBiject (ap I q)) ◦b (coeBiject (ap I p))

= interp q ◦b interp p

interp refl = reflb and interp (! p) = !b (interp b) are similar. That is,

the semantics is functorial.

For example, if we apply5 a patch add1 ◦ ! add1 to a repository whose contents

are 0, we have

(interp (add1 ◦ ! add1)) 0

= ((interp add1) ◦b (interp (! add1))) 0

= ((interp add1) ◦b (!b (interp add1))) 0

= (successor ◦b !b successor) 0

= successor (!b successor 0)

= successor -1

= 0

Comparing this definition of interp with Remark 4.2, we see that the recursion

principle for the higher inductive representation of patches provides an elegant way

to express interpretations of a patch theory. We needed to give only the key case for

add1—the semantics of the basic patches is automatically lifted to patch operations,

not manually as in Remark 4.2. Moreover, we did not need to prove that bijections

satisfy the group laws—this fact is necessary for the univalence axiom to make

sense, so it is effectively part of the metatheory of homotopy type theory, rather

than of our program. This example illustrates that univalence can be used to extract

computational content from a path, by mapping the path into a path in the universe,

which by univalence can be given by a bijection.

Because R is the circle, one may wonder about the topological meaning of this

interpreter. In fact, the type family I defined here is called the universal cover of

the circle, and is discussed further in Licata & Shulman (2013) and the HoTT

4 We also use that fact that two bijections are equal iff their underlying functions are equal, because
inverses are unique up to homotopy.

5 We elide the projection from Bijection A B to A � B.
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Book (2013). The function interp p adds to its input what is called the winding

number of a path p in the circle, which can be thought of as a normal form that

counts how many times that path goes around the circle, after “detours” such as

loop ◦ ! loop have been cancelled.

Note that, although we were thinking of num as an integer and add1 as successor,

we can give a sound interpretation I in any type with a bijection on it. For example,

I’ : R � Type

I’ num = Bool

ap I’ add1 = ua notb

where notb : Bijection Bool Bool = (not, not, ...). That is, we interpret

the patches in Bool instead of Int, and we interpret add1 as adding 1 modulo 2.

This interpretation satisfies additional equations not demanded by the patch theory,

such as

ap I’ add1 ◦ ap I’ add1 = ua (notb ◦b notb) = refl

This equation does not hold in our original interpretation I, because incrementing

an integer is not self-inverse. In fact, the equational theory of R is complete for the

interpretation as Int, which in homotopy theory is known as the fact that the

fundamental group of the circle is the integers.

4.2 Merge

Next, we implement a merge operation, which satisfies the laws discussed in Section 3.

Writing Patch for num = num, and specializing the interface to the setting where we

have only one context, we need to implement the following:

merge : Patch × Patch � Patch × Patch

reconcile : (f1 f2 g1 g2 : Patch)

� merge (f1, f2) = (g1, g2)

� g1 ◦ f1 = g2 ◦ f2

symmetric : (f1 f2 g1 g2 : Patch)

� merge (f1, f2) = (g1, g2)

� merge (f2, f1) = (g2, g1)

In this simple setting, any two patches commute, essentially because addition is

commutative. Thus, we define

merge(f1, f2) = (f2, f1)

For symmetric, because g1 = f2 and g2 = f1, we need to show that merge

(f2, f1) = (f1, f2), which is true by definition.

For reconcile, we need to prove that f2 ◦ f1 = f1 ◦ f2—all loops on the

circle commute. It is not immediately obvious how to do this, because homotopy

type theory does not provide a direct induction principle for loops. That is, there

is no built-in elimination rule that allows one to, for example, analyze f1 as either

add1, or the identity, or an inverse, or a composition, because such a case-analysis

would need to respect all paths between loops, which differ from type to type.
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Instead, we must prove a derived induction principle for the type num = num from

the induction principle for R—roughly analogously to how, for the natural numbers,

course-of-values (or strong) induction is derived from mathematical induction.

Moreover, proving these induction principles is sometimes a significant mathematical

theorem. In homotopy theory, it is called calculating the homotopy groups of a

space, and even for spaces as simple as the spheres some homotopy groups are

unknown. However, we have developed some techniques for calculating homotopy

groups in type theory (Licata & Brunerie, 2013; Licata & Shulman, 2013; Univalent

Foundations Program, 2013; Licata & Finster, 2014), which can be applied here.

In this particular case, we already know that the fundamental group of the circle

is the integers. That is, the type num = num is in bijection with Int, and so the

integers give canonical representatives (add n, for n : Int) for equivalence classes

of patches in this patch theory, considered modulo the group laws. We establish

that bijection by giving functions winding and repeat that compose to the identity.

The function winding : num = num � Int is λp � interp p 0, for interp p as

defined above. The function repeat : Int � num = num is defined by induction

on the Int, viewing Int as a datatype with three constructors: 0, + n (where n :

Nat) representing n + 1, and - n (where n : Nat) representing −(n + 1).

repeat 0 = refl

repeat (+ n) = add1 ◦ add1 ◦ ... ◦ add1 [n+1 times]

repeat (- n) = !add1 ◦ !add1 ◦ ... ◦ !add1 [n+1 times]

In fact, winding and repeat are also group homomorphisms, e.g., repeat (x +

y) = repeat x ◦ repeat y. The proof that these functions are mutually inverse

is described in Licata & Shulman (2013) and the HoTT Book (2013), which contain

the full proof that the fundamental group of the circle is the integers.

The bijection between num = num and Int induces a derived induction principle:

since any patch is equal to repeat n for some n, in order to prove P : num = num

� Type for all paths, it suffices to prove P(repeat n) for all integers n. Applying

this (twice) to the goal f2 ◦ f1 = f1 ◦ f2, it suffices to show

repeat x ◦ repeat y = repeat y ◦ repeat x

This is proved as follows:

repeat x ◦ repeat y

= repeat (x + y) [group homomorphism]

= repeat (y + x) [commutativity of addition]

= repeat y ◦ repeat x

Thus, for this patch theory, the correctness of merge follows from the fact that

the fundamental group of the circle is the integers—our first example of a software

correctness proof being a corollary of a theorem in homotopy theory!

One further point to note is that here we were able to define merge without

converting paths to integers, but to prove the reconciliation property we needed to

reason inductively, using canonical representatives of equivalence classes of paths.

This is because all patches commute, so we can define merge(x, y) = (y, x)

without analyzing the structure of x and y. In Sections 7 and 8, we will need to
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analyze the structure of patches in order to even define merging. We end this section

by showing an alternate definition of merge, which analyzes its input patches in that

way.

merge’ (p, q) =

let (a, b) = mergeI(winding p, winding q)

in (repeat a, repeat b)

mergeI : Int × Int � Int × Int

mergeI(+ (1+x), - (1+y)) =

let (a, b) = mergeI (+ x, - y)

in (a-1, b+1)

...

The function merge’ is defined by converting the given paths p and q to integers.

Paths that are equal according to the group laws are necessarily sent to equal

representatives; for example, both (add1 ◦ add1) ◦ add1 and add1 ◦ (add1 ◦
add1) are sent to 3. We may then compose this choice of representatives with any

function on integers, and the result will be guaranteed to respect the group laws.

Here, we use mergeI to recursively “merge” the two integers with cases such as

the one given above, which copies a positive successor on the left to a positive

successor on the right, and a negative successor on the right to a negative successor

on the left. (In effect, it merges “add 1 and then do x” with “subtract 1 and then

do y” by merging x and y and then moving the “add 1” to the right and the

“subtract 1” to the left.) Finally, once mergeI has computed the merge of two

chosen representatives, merge’ uses repeat to convert the resulting integers back

to paths. One can prove by induction that mergeI (x, y) = (y, x); and winding

and repeat are mutually inverse, so merge’ agrees with the original definition of

merge.

5 A patch theory with laws

In this section, we consider a patch theory with patch laws beyond the groupoid laws.

In the intended semantics of this theory, the repository consists of one document

with a fixed number n of lines, and there is one basic patch, which modifies the string

at a particular line. To fit this into a framework of bijections, we take the patch

s1 ↔ s2 @ i to mean “permute s1 and s2 at position i”. That is, applying this

patch replaces line i with s2 if it is s1, or with s1 if it is s2, or leaves it unchanged

otherwise. We add patch laws stating that edits at independent lines commute, and

that swapping s with s has no effect. We define two interpretations of this patch

theory—the intended patch interpreter, and a simple patch optimizer; we do not

consider merge in this section, because we discuss it for the more general language

in Section 8.

5.1 Definition of patches

This patch theory is represented by the following higher inductive type, where n :

Nat is fixed throughout this section:
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space R : Type where

-- point constructor (patch context):

doc : R

-- path constructor (basic patch):

_↔_@_ : (s1 s2 : String) (i : Fin n) � doc = doc

-- path-between-path constructors (patch laws):

indep : (s t u v : String) (i j : Fin n) � (i �= j) �

(s ↔ t @ i) ◦ (u ↔ v @ j)

= (u ↔ v @ j) ◦ (s ↔ t @ i)

noop : (s : String) (i : Fin n) � s ↔ s @ i = refl

The point constructor doc should be thought of as a document with n lines. The

path constructor s1 ↔ s2 @ i represents the basic patch, swapping s1 and s2 at

line number i. Fin n is the type of natural numbers less than n, which we interpret

here as line numbers in an n-line document (where we start numbering at 0).

This language also has non-trivial patch laws, which are represented by giving

generators for paths between paths. The equation noop states that swapping s

with s is the identity for all s; this is useful for justifying a simple optimizer,

which optimizes away the two string comparisons that executing s ↔ s @ i would

require. The equation indep states that edits to independent lines commute; this is

useful for defining merge (x �= y is the negation of x = y, i.e., (x = y) � void).

Because R is our first example of a type with both path and path-between-path

constructors, we go over its recursion and induction principles in detail. To define a

function f : R � X, it suffices to give

doc’ : X

swap’ : (s1 s2 : String) (i : Fin n) � doc’ = doc’

indep’ : (s t u v : String) (i j : Fin n) � (i �= j) �

(swap’ s t i) ◦ (swap’ u v j)

= (swap’ u v j) ◦ (swap’ s t i)

noop’ : (s : String) (i : Fin n) � swap’ s s i = refl

and then we have the following computation rules:

f doc = doc’

β1 : ap f (s1 ↔ s2 @ i) = swap’ s1 s2 i

β21 : PathOver (λ(x,y) � x ◦ y = y ◦ x) (β1, β1)

(ap (ap f) (indep s t u v i j neq))

(indep’ s t u v i j neq)

β22 : PathOver (λx � x = refl) β1

(ap (ap f) (noop s i))

(noop’ s i)

The first computation rule is in fact a definitional equality, while the second is a

path. The third and fourth computation rules are stated as PathOvers because their

left- and right-hand sides are in different (although propositionally equal) types. For

example, in the fourth computation rule, ap (ap f) (noop s i) has type ap f (s

↔ s @ i) = ap f refl, whereas noop’ s i has type swap’ s s i = refl. The

right-hand sides match up because ap f refl is definitionally equal to refl, and

the left-hand sides match up over the path β1, the second computation rule.

Although we use pattern-matching notation for R-recursion, keep in mind that

the types of the left-hand sides (e.g., ap (ap f) (noop s i)) are in the last two
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cases only propositionally equal, via PathOver simplifications, to the types of the

right-hand sides (e.g., noop’ s i).

The induction principle for R states that to define a function f : (x : R) �

C(x), it suffices to give

• c’ : C(doc)

• s’ : PathOver C (s1 ↔ s2 @ i) c’ c’

• A 2-dimensional PathOver as the image of indep.

• A 2-dimensional PathOver as the image of noop.

We omit the details of the final two, which are not used below.

5.2 Interpreter

Our intended patch interpreter is a function

interp : (doc = doc) � Bijection (Vec String n) (Vec String n)

As before, we generalize this to an interpretation of the whole patch theory R, and

define a function I : R � Type such that

interp p = coeBiject (ap I p)

To interpret the basic patch s1 ↔ s2 @ i, we need a corresponding bijection

that permutes two strings at a position in a length-n vector of strings, represented

by the type Vec String n.

permute : (String × String) � String � String

permute (s1,s2) s | String.equals (s1,s) = s2

permute (s1,s2) s | String.equals (s2,s) = s1

permute (s1,s2) s | _ = s

applyat : (A � A) � Fin n � Vec A n � Vec A n

applyat f i <x1,...xn> = <x1,...,f xi,...,xn>

swapat : (String × String) � Fin n � Bijection (Vec A n) (Vec A n)

swapat (s1,s2) i = (applyat (permute (s1,s2)) i, ...)

The interpretation I is defined as follows:

I : R � Type

I doc = Vec String n

ap I (s1 ↔ s2 @ i) = ua (swapat (s1,s2) i)

ap (ap I) (indep s t u v i j neq) =

GOAL5.1 : ua(swapat (s,t) i) ◦ ua(swapat (u,v) j)

= ua(swapat (u,v) j) ◦ ua(swapat (s,t) i)

ap (ap I) (noop s i) = GOAL5.2 : ua(swapat (s,s) i) = refl

We interpret doc as Vec String n. The image of s1 ↔ s2 @ i must be a path in

Type between I(doc) and I(doc)—i.e., between Vec String n and itself. For this,

we choose the bijection swapat (s1,s2) i, packed up as a path in the universe

using the univalence axiom. The metavariables GOAL5.1 and GOAL5.2 represent

goals, that is, terms that must still be provided before the program is complete.
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The image of indep and noop are the goals GOAL5.1 and GOAL5.2, with the types

written out above—which ensure that the interpretation validates the patch laws.

These goals can be solved by equational properties of bijections, combined with the

rules about the interaction of univalence with identity and composition described in

Section 2. For example, GOAL5.2 is solved by observing that swapat (s,s) i is the

identity bijection, and then using the fact that ua reflb = refl. GOAL5.1 is solved

by turning both sides into a composition of bijections using the fact that ua b2 ◦
ua b1 = ua (b2 ◦b b1) , and then proving the corresponding fact about swapat:

swapat-independent : (i �= j) �

(swapat (s,t) i) ◦b (swapat (u,v) j)

= (swapat (u,v) j) ◦b (swapat (s,t) i)

As before, we do not need to give cases for the group operations or prove the

group laws—these come for free, from functoriality.

5.3 Optimizer

We will also define an alternative interpretation of this theory, a patch optimizer, to

illustrate a benefit of domain-specific patch laws:

optimize : (p : doc = doc) � Σ(q : doc = doc). p = q

The type of optimize says that it takes a patch p and produces a patch q that

behaves the same, according to the patch laws, as p. Our goal is to optimize

s ↔ s @ i to refl, saving ourselves two unnecessary string comparisons when

the patch is applied.

We show two definitions of optimize, to illustrate some different aspects of

programming in homotopy type theory.

Program then prove. In this definition, we first write a function optimize1 : doc =

doc � doc = doc, and then prove that this function returns a path that is equal,

according to the patch laws, to its input. The idea is to apply the following function

opt0 to each patch s1 ↔ s2 @ i:

opt0 : String � String � Fin n � doc = doc

opt0 s1 s2 i = if String.equals s1 s2

then refl

else (s1 ↔ s2 @ i)

To define optimize1, we generalize the problem to defining a function opt1

that acts on all of R, and then derive optimize1 as its action on paths—the same

technique we used when reversing the circle in Section 2.4.1. This is defined as

follows:

opt1 : R � R

opt1 doc = doc

ap opt1 (s1 ↔ s2 @ i) = opt0 s1 s2 i

ap (ap opt1) (indep s t u v i j neq) =

GOAL5.3 : opt0 s t i ◦ opt0 u v j

= opt0 u v j ◦ opt0 s t i
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ap (ap opt1) (noop s i) =

GOAL5.4 : opt0 s s i = refl

We map doc to doc, and apply opt0 to s1 ↔ s2 @ i. However, to complete the

definition, we must show that the optimization respects the patch laws, via the goals

GOAL5.3 and GOAL5.4 whose types are given above. The goal GOAL5.4 is true because

String.equals s s will be true, so, after case-analysis, refl proves that opt1 s s

i = refl. The goal GOAL5.3 requires case-analyzing both String.equals s t and

String.equals u v. If both are true, the goal reduces to refl ◦ refl = refl

◦ refl, which is true by refl. If the former but not the latter is true, the goal

reduces to refl ◦ u ↔ v @ j = u ↔ v @ j ◦ refl, which is true by unit laws.

The third case is symmetric. Finally, if neither are true, then the goal holds by indep.

Next, we prove this optimization correct using R-induction:

opt1Correct : (x : R) � x = opt1 x

opt1Correct doc = refl

apd opt1Correct (s1 ↔ s2 @ i) =

GOAL5.5 : PathOver (λx � x = opt1 x) (s1 ↔ s2 @ i) refl refl

apd (apd opt1Correct) (indep s t u v i j neq) = GOAL5.6

apd (apd opt1Correct) (noop s i) = GOAL5.7

In the case for doc, we need to give a path doc = opt1 doc, but opt1 doc is

doc, so we give refl. In the case for s1 ↔ s2 @ i, the induction principle requires

an element of the type listed above. By an argument we suppress, this PathOver

type simplifies to

s1 ↔ s2 @ i = opt0 s1 s2 i

so this is where we prove that opt0 preserves the meaning of a patch. This requires

two cases: When s1 is equal to s2, we use noop; when it is not, we use refl.

The remaining two cases require proving that this proof of correctness of opt

respects the patch laws. In each case, the goal asks us to prove the equality of two

proofs of equality of patches. That is, the goal has the form

f1 =p=doc=docq f2

where p and q are two patches, and f1 and f2 are two patch laws equating these

two patches.

In homotopy type theory, equality of points can contain interesting information—

after all, we are representing patches as equalities, or paths. Likewise, equality of

equalities is not trivial—we can choose to have some patch laws but not others, as

we have done in R. So there is no reason that equalities of equalities of equalities,

like the equation we have above, must necessarily hold.

For example, indep i�=j ◦ indep j�=i and reflexivity are both patch laws

between the patch (s ↔ t @ i) ◦ (u ↔ v @ j) and itself. (The former swaps

the order of the patches twice.) But unless we add this equation to R, there is no

proof that these patch laws are equal to each other; we could even equate certain

patch laws but not others!
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Truncation (see Chapter 7 of the HoTT Book (2013)) is a technique for trivializing

all equations of a certain “height” in a type. In this case, we could truncate by adding

the following constructor to R:

-- path-between-path-between-path constructor

-- (all proofs of patch laws are equal)

trunc : (x y : R) (p q : x = y) (f1 f2 : p = q) � f1 = f2

The trunc constructor adds a path between any two parallel patch laws f1 and f2.

Another way to say this is that trunc forces R to be a 1-groupoid, because it ensures

that any two paths between parallel paths are equal. As usual, each constructor

places additional demands on all maps out of R; for trunc, it says that we can only

define maps from R to other 1-groupoids.

Fortunately, that restriction would not prevent us from defining this patch

optimizer—opt1 maps into R (a 1-groupoid), and opt1Correct maps into an identity

type of R (and the identity types of a 1-groupoid are 1-groupoids). Thus, truncating

R would be an appropriate modification to make. (All the subsequent patch theories

we consider will turn out to be 1-groupoids, without the need for truncation.)

Program and prove. An alternative, which requires neither truncation nor proving

any equations between patch laws, is to simultaneously implement the optimizer and

prove its correctness. Once again, we define

optimize : (p : doc = doc) � Σ(q : doc = doc). p = q

as the action on paths of a function on R. However, optimize cannot be the ap of

any function, because ap takes simply typed functions to identity types, whereas the

codomain of optimize is not an identity type, and depends on the input patch p.

Instead, we will define a dependently typed function

opt : (x : R) � Σ(y : R). y = x

and define optimize essentially as the apd of opt.

Recall that apd takes a type family B : R � Type and a function f : (x : R)

� B(x) to a function (p : x = y) � PathOver B p (f x) (f y). In this case,

the type family is λx � Σ(y : R). y = x, and so

apd opt (p : doc = doc) : PathOver (λx � Σy:R. y = x) p (opt doc) (opt doc)

But this does not look like the type of optimize p!

When the family B is known, the type PathOver B p b1 b2 can be simplified in

a type-driven way to a propositionally equal one. In this case, B(x) is the Σ-type

of a constant family R with an identity type y = x. According to the appropriate

lemmas6:

simpl : PathOver (λx � Σy:R. y = x) p (doc,refl) (doc,refl)

= Σ (q : doc = doc). p = q

6 This is because a PathOver in a Σ-type is a pair of PathOvers in each component (the second over the
first), because a PathOver in a constant family λx � R is just a path q in R, and because a PathOver
in an identity type is a square in the underlying type R—specifically, PathOver (λ(x,y) � y = x)
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Comparing the left-hand side of simpl to the type of apd opt p, notice that if opt

doc = (doc,refl), then

apd opt p : PathOver (λx � Σy:R. y = x) p (doc,refl) (doc,refl)

and so coercing this along simpl will get us the type we wanted:

optimize : (p : doc = doc) � Σ(q : doc = doc). p = q

optimize p = coe simpl (apd opt p)

The upshot is that we can define optimize once we have defined an opt such

that opt doc = (doc,refl). We do this using R-induction as follows:

opt doc = (doc, refl)

apd opt (s1 ↔ s2 @ i) = coe (! simpl)

(if String.equals s1 s2

then (refl , noop s1 i)

else (s1 ↔ s2 @ i , refl))

apd (apd opt) _ = <contractibility>

In the second clause, we need a term of type

PathOver (λx � Σy:R. y = x) p (doc,refl) (doc,refl)

We obtain one by coercing along (! simpl) a term of type

Σ(q : doc = doc). (s1 ↔ s2 @ i) = q

We choose a term implementing our optimization—replace the input patch s1 ↔
s2 @ i with refl when the strings are equal, and leave it unchanged otherwise—and

pairing each output with a proof that it is equal to the input s1 ↔ s2 @ i.

For each of the noop and indep cases, we need to give a homotopy between two

specific paths between two specific points in the type Σy:R. y = x (for some x).

However, the type Σy:R. y = x is in fact contractible—it is equivalent to unit,

because any pair (y, p) can be transformed into (x, refl) by coercing y to

x along p (see Lemma 3.11.8 of the HoTT Book (2013)). The identity types of

any contractible type are mere propositions, so any two paths are connected by a

homotopy. Thus, we can complete the noop and indep cases simply by appealing

to these facts and the contractibility of Σy:R. y = x.

Singleton Types and Computation. The type Σy:A. x = y is traditionally called a

singleton type, written S(x), because it consists of those points in A which are equal

to x (along with a proof that x = y). One may well wonder what is the point of

writing a function into a singleton type:

(p,q) refl refl is a square

which is the same as a path between p and q (this is what motivates the choice of (doc,refl) and
(doc,refl) as the endpoints of the PathOver).
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optimize : (p : doc = doc) � S(p)

when all the elements of S(p) are equal? Isn’t this just a triviality, because it must

be the identity function?

The answer is no, because the point y and the path x = y can both contain

meaningful computational content. Consider defining various sorting algorithms in

plain MLTT. We can express the correctness of a sorting algorithm by comparing it

to a reference solution:

bubblesort : Nat List � Nat List

quicksort : Nat List � Nat List

quicksortCorrect : (xs : Nat List) � bubblesort xs = quicksort xs

qs : (xs : Nat List) � S(bubblesort xs)

qs xs = (quicksort xs, quicksortCorrect xs)

Since all sorting algorithms are extensionally equal, they all have type (xs : Nat

List) � S(bubblesort xs). Indeed, there is no way inside MLTT to distinguish

extensionally equal functions—there is no predicate satisfied by one but failed by

the other. Yet, we consider it useful to define quicksort, because it computes in a

different way than bubblesort, and quicksortCorrect is of mathematical interest

even though it returns refl for every xs.

Likewise, even though optimize is equal to the identity function—as is every

function of type (a : A) � S(a)—we expect, based on work on the computational

interpretation of homotopy type theory, that it will compute differently. That is,

optimize (s ↔ s @ i) will evaluate to refl and not s ↔ s @ i, even though

these paths are homotopic by noop s s i. That homotopy is a prime example of a

non-computational propositional equality, as we discussed in Section 2.5.

6 A patch theory with multiple contexts

The patch theories of Sections 4 and 5 only had one patch context each, because

their patches were all applicable to every repository state. Realistic patch theories do

not share this property—for example, deleting a line requires a file to be non-empty.

In this section, we develop a very simple patch theory requiring multiple patch

contexts, for a natural number repository that can be incremented or decremented.

In Section 4, compositions of the single path constructor add1 : num = num and

its inverse allow us to add or subtract arbitrary numbers from the integer repository.

In a natural number repository, we cannot subtract a number larger than the current

contents. Our solution is to maintain a lower bound on the number in the repository.

We define R as follows:

space R : Type where

-- point constructor (patch context):

doc : Nat � R

-- path constructor (basic patch):

add1 : (n : Nat) � doc n = doc n+1

R has Nat-indexed contexts, and a patch from doc n to doc n+1 for each n.

Whereas doc in Section 4 classified all repositories, here doc n classifies those
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repositories whose contents are at least n, and thus, can safely be decremented n

times.

How does this solve the problem? Ignoring compositions of patches for the

moment, we need only rule out applying the patch ! (add1 n) to a repository

containing 0. But add1 n is a patch from doc n to doc n+1, so its inverse is a

patch from doc n+1 to doc n, and any repository whose contents are at least n+1

for some n cannot contain 0. In general, any patch whose behavior is to subtract m

from a repository must be a patch from doc n+m to doc n, and so it cannot apply

to any repository whose contents are less than m.

6.1 Interpreter

As before, we want to define an interp function implementing patches—terms

of type doc n = doc m—as bijections between the types implementing the patch

contexts doc n and doc m. (In Sections 4 and 5, we only had one patch context, so

a single type implemented all repositories.)

Following the intuition developed above, we interpret doc n as the type of natural

numbers which are AtLeast n; that is, numbers m paired with a proof that n � m.

data _�_ : Nat � Nat � Type where

z� : (n : Nat) � 0 � n

s� : {n m : Nat} � n � m � n+1 � m+1

AtLeast : Nat � Type

AtLeast n = Σ (m : Nat). n � m

We then interpret add1 n : doc n = doc n+1 as a function AtLeast n �

AtLeast n+1 sending m (such that n � m) to m+1 (which thus satisfies n+1 �
m+1).

increment : (n : Nat) � Bijection (AtLeast n) (AtLeast n+1)

increment n = (λ(m,pf) � (m+1, s� pf), ...)

The fact that this function is a bijection allows us to define I : R � Type as in the

previous sections, and therefore interp as well:

I : R � Type

I (doc n) = AtLeast n

ap I (add1 n) = ua (increment n)

interp : {n m : Nat} � (doc n = doc m) � Bijection (AtLeast n) (AtLeast m)

interp p = coeBiject (ap I p)

Notice that, because we must model patches as bijections, we could not have

circumvented the issue of subtracting from zero by modeling ! add1 as saturating

subtraction. Indeed, saturating subtraction is not a Bijection Nat Nat, because it

sends both 1 and 0 to the same value.

6.2 Contractibility

As usual, paths in R are automatically endowed with identities, inverses, and

composition. Nevertheless, doc n = doc n+1 has no more elements than we put
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in—all paths of that type are homotopic to add1 n. Intuitively, this is because !

(add1 n) goes “backwards” from doc n+1 to doc n, so any sequence of composi-

tions yielding a path doc n = doc n+1 must have one more add1 n than ! (add1

n). For example,

add1 n ◦ ! (add1 n) ◦ add1 n : doc n = doc n+1

but groupoid laws equate this to add1 n. Hence, the type doc n = doc m uniquely

determines a patch, up to homotopy.

To prove this result, we first show that R is contractible. It suffices to exhibit a

point in R, the center of contraction, together with a proof that every point in R is

equal to the center:

(x : R) � center = x

In this case, we choose the center to be doc 0. We prove R is contractible by

R-induction, which means that it suffices to show that, for any number n, we

can construct a path doc 0 = doc n by composing add1 with itself n times, and

moreover, that this choice of paths itself respects paths in R.

toPath : (n : Nat) � doc 0 = doc n

toPath 0 = refl

toPath (n+1) = add1 n ◦ toPath n

isContr : (x : R) � doc 0 = x

isContr (doc n) = toPath n

apd isContr (add1 n) = refl

: PathOver (λx � doc 0 = x) (add1 n) (toPath n) (toPath n+1)

This last PathOver simplifies to

add1 n ◦ toPath n = toPath n+1

which, once we expand the definition of toPath n+1, is true by refl.

Since R is contractible, it is also a mere proposition, and so by Lemma 3.11.10

of the HoTT Book (2013), all its identity types are contractible. In particular, this

implies doc n = doc m has exactly one patch up to homotopy.

We can prove this fact directly, using the action on paths of isContr,

apd isContr : {a b : R} (p : a = b)

� PathOver (λx � doc 0 = x) p

(isContr a) (isContr b)

If we specialize this to paths doc n = doc m, we get

apd isContr {doc n} {doc m}

: (p : doc n = doc m) � PathOver (λx � doc 0 = x) p (toPath n) (toPath m)

This PathOver reduces to p ◦ toPath n = toPath m, yielding

apd isContr {doc n} {doc m} : (p : doc n = doc m) � p ◦ toPath n = toPath m

Precomposing both sides with ! (toPath n), we obtain a proof that all paths p :

doc n = doc m are homotopic to toPath m ◦ ! (toPath n):

(p : doc n = doc m) � p = toPath m ◦ ! (toPath n)
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Patch Histories. A major feature of version control is the ability to clone a repository,

a process which duplicates a repository by downloading its complete history of

patches, and replaying that history in order to rebuild the current contents of that

repository.

In the patch theory of Section 4, a complete sequence of patches is a term p :

num = num, and replaying that sequence of patches amounts to applying interp p,

which is a Bijection Int Int, to some starting Int.

In contrast, a sequence of patches in R has type doc n = doc m for some n

and m, and is only applicable to a repository state classified by doc n. To define

the concept of a complete history in this patch theory, we must fix some common

domain context to which all repositories are initialized. We choose doc 0, because

no generating patches have it as a codomain, so it is in a sense the “least patched”

repository state. Then, a complete patch in R is a term of type:

Σ(n : Nat). doc 0 = doc n

Since doc 0 = doc n is contractible, pairs of this type are uniquely determined by

their first projection. In other words, the type of complete patches is in bijection

with Nat—patches applicable to doc 0 are characterized precisely by the index n of

their codomain context doc n. One direction of this bijection is fst; the other is

toPath.

Just as in Section 4.2, we used a bijection between num = num and Int to obtain

a derived induction principle for num = num, here we can use a bijection between

complete patches and Nat, which we call the type of complete histories, to give a

derived induction principle for complete patches.

It is not an accident that the indexing type of the patch contexts is in bijection with

complete patches—this is automatically the case in any contractible patch theory,

for the same reason as above. In fact, the patch theories we consider in Sections 7

and 8 are both contractible, because (as in the present theory) their patch laws and

patch applicability require fairly precise invariants about the repository’s contents.

7 A patch theory with laws and multiple contexts

In this section, we consider a patch theory with both patch laws and multiple patch

contexts, as a simple setting to consider the issues that will arise in the more realistic

patch theory of Section 8.

The previous patch theory we considered had one primitive patch applicable to

each patch context. Here, we allow exactly two primitive patches at each patch

context, add true and add false, which correspond to incrementing one of two

natural numbers constituting the repository. We expect patch histories for this theory

to be sequences of booleans indicating the sequence of applied patches, so we index

the contexts by Bool Lists.

space R’ : Type where

-- point constructor (patch context):

doc : Bool List � R’

-- path constructor (basic patch):

add : (x : Bool) {xs : Bool List} � doc xs = doc x::xs
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Notice that the codomain of the add x patch is its domain history xs prepended

with x. This patch theory can be visualized as a tree, where the nodes are histories

and the paths label the edges; for example:

In such a semantics, any two patches commute: incrementing the same number

twice commutes trivially, and incrementing each number in turn commutes because

the numbers are independent.

We would like to capture this fact in R’ by adding patch laws saying that any two

patches commute. As in Section 5, this patch law should take the form of a path-

between-path constructor in R’. But the patch contexts prevent us from equating

differing sequences of patches—they do not even have the same type:

add true ◦ add false : doc xs = doc true::(false::xs)

add false ◦ add true : doc xs = doc false::(true::xs)

7.1 Definition of patches

The issue is that the Bool List patch histories record the exact sequence of

patches applied; we cannot equate any sequences of patches without equating the

corresponding patch histories. In other words, for patch composition to commute,

we must quotient the Bool Lists by permutation.

This yields the type of boolean multisets, lists quotiented by “Ex”change of

adjacent elements, defined as the following quotient higher inductive type:

space MS : Type where

-- point constructors:

[] : MS

_::_ : Bool � MS � MS

-- path constructor:

Ex : (x y : Bool) (xs : MS) � x::(y::xs) = y::(x::xs)

Then, we can index patch contexts by MSes, rather than Bool Lists. As before,

patches prepend a boolean to the context.

space R : Type where

-- point constructor (patch context):

doc : MS � R

-- path constructor (basic patch):

add : (x : Bool) {xs : MS} � doc xs = doc x::xs

-- pathover-between-path constructor (patch law):

ex : (x y : Bool) {xs : MS} �

PathOver (λs � doc xs = doc s) (Ex x y xs)

(add x ◦ add y) (add y ◦ add x)

The ex constructor implements the patch law stating that patch composition

is commutative. (ex x y) is a PathOver because although the codomains of
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(add x ◦ add y) and (add y ◦ add x) differ—they are doc x::(y::xs) and

doc y::(x::xs)—their codomains’ indices are equal as multisets by virtue of Ex x

y xs.

7.2 Interpreter

As we saw in Section 6, it is not possible to model patches incrementing a natural

number as bijections on Nat. By analogy with the interpretation discussed there,

we would like to interpret doc xs as the type AtLeast t × AtLeast f, where t

(resp., f) is the number of times true (resp., false) occurs in xs. First, we write a

function to compute these numbers:

replay : MS � Nat × Nat

replay [] = (0, 0)

replay (true::xs) = ((fst (replay xs))+1, snd (replay xs))

replay (false::xs) = (fst (replay xs), (snd (replay xs))+1)

ap replay (Ex true true xs) = refl

ap replay (Ex true false xs) = refl

ap replay (Ex false true xs) = refl

ap replay (Ex false false xs) = refl

The action of replay on Ex x y xs is a proof that replay respects the equations

on multisets. In each case, this is immediately true by unfolding the definition of

replay; for example:

ap replay (Ex true false xs) = refl :

((fst (replay xs))+1, (snd (replay xs))+1)

= ((fst (replay xs))+1, (snd (replay xs))+1)

Then, we define the interpretation:

I : R � Type

I (doc xs) = AtLeast (fst (replay xs)) × AtLeast (snd (replay xs))

ap I (add true) = ua incr-t

ap I (add false) = ua incr-f

apdP (ap I) (ex x y) = GOAL7.1

This interpretation sends add true xs to the bijection which increments the first

number and leaves the second the same, and vice versa. This map is a bijection

because it is a bijection in each coordinate, between AtLeast t and AtLeast t+1

in the first, and between AtLeast f and itself in the second.

pairBiject : Bijection A B � Bijection A’ B’ � Bijection (A × A’) (B × B’)

pairBiject (f,g,p,q) (f’,g’,p’,q’) =

(λ(x,x’) � (f x,f’ x’), λ(y,y’) � (g x,g’ x’), ...)

incr-t : {t f : Nat} �

Bijection (AtLeast t × AtLeast f) (AtLeast t+1 × AtLeast f)

incr-t = pairBiject (increment t) reflb
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incr-f : {t f : Nat} �

Bijection (AtLeast t × AtLeast f) (AtLeast t × AtLeast f+1)

incr-f = pairBiject reflb (increment f)

In the last clause of I, apdP is the action of a function on a PathOver, unlike apd,

which is the action of a function on an ordinary path. (If we define PathOvers as

ordinary paths using coe, as described in Section 2.3, then this is just apd.) The goal

GOAL7.1 says that I respects the (ex x y) PathOver; Unfolding the definitions,

this amounts to saying that I sends the commuting triangle ex x y to a commuting

triangle:

As we saw above, replay respects the Ex x y xs law exactly, so I does as well.

Thus, GOAL7.1 amounts to a proof that ap I sends (add x ◦ add y) and (add y

◦ add x) to equal paths in the universe, that is, they induce equal bijections.

Since multisets are quotiented by permutations, the Nat × Nat representation

computed by replay above is in fact isomorphic to MS. Nevertheless, we opt to

use the MS representation to index the patch contexts, since it precisely captures

the structure of composable sequences of primitive patches in R. Specifically, the

elements of MS maintain an explicit log of the order in which patches were applied,

even though the paths in MS identify those logs which differ only by permutation.

In contrast, such a log is not maintained at all by the Nat × Nat representation.

7.3 Contractibility

In a patch theory with multiple contexts, the type of merge is somewhat complicated.

If we restrict merge to operate on complete patches, then it takes a span of patches

with domain doc [], and returns a cospan reuniting them:

We can write the type of merge as follows:

merge : {s1 s2 : MS} (doc [] = doc s1) � (doc [] = doc s2) �

Σ(s : MS). (doc s1 = doc s) × (doc s2 = doc s)

In Section 4, the implementation of merge was straightforward, but proving merge

laws required a derived induction principle obtained from the bijection between
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patches and Ints. In this section, we will establish a bijection between complete

patches and patch histories (here, boolean multisets) not only for the purpose of

proving merge laws, but also defining merge itself.

Namely, if R is contractible, then

Σ(s : MS). doc [] = doc s

is isomorphic to MS, because the patch itself is uniquely determined by s. Let toPath

be the function which computes a complete patch from a MS, and cod its inverse,

which projects the codomain index from a complete patch. (It is possible to define

cod without directly projecting from the type index, as we will see in Section 8.3.)

Then, to define merge on complete patches, it would suffice to define a merge

operation on histories,

mergeH : MS � MS � MS

and coerce complete patches to and from MS:

merge p1 p2 =

let s = mergeH (cod p1) (cod p2)

in (s, ((toPath s) ◦ !p1, (toPath s) ◦ !p2))

In the remainder of this section, we will put aside the issue of defining mergeH,

and instead establish the bijection described above, by proving that R is contractible.

This result is somewhat difficult; in fact, one might even expect R to have non-trivial

loops of the form:

The bottom of this loop, ap doc (Ex x y []), originates from an equation in

MS. The patch law ex x y trivializes this loop by equating the two sides, over the

bottom path.

The first ingredient of the proof is toPath, which computes a path doc [] = doc

s for each multiset s.

toPath : (xs : MS) � doc [] = doc xs

toPath [] = refl

toPath (x::xs) = add x ◦ toPath xs

apd toPath (Ex x y xs) = GOAL7.2

: PathOver (λs � doc [] = doc s) (Ex x y xs)

(toPath (x::(y::xs))) (toPath (y::(x::xs)))

Here, GOAL7.2 stands for a proof that toPath respects equality of multisets. After
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expanding the definition of toPath, the goal GOAL7.2 states that the following

triangle commutes:

Cancelling the two instances of toPath xs, we get

ap doc (Ex x y xs) ◦ add x ◦ add y = add y ◦ add x

But this is exactly the type of ex x y, once we expand the PathOver. This completes

our definition of toPath.

Morally, this subgoal—that toPath respects the path constructor of MS—verifies

that ex fills loops of the form discussed above. Indeed,

apd toPath : {xs ys : MS} (p : xs = ys)

� PathOver (λs � doc [] = doc s) p (toPath xs) (toPath ys)

is a proof that, whenever xs and ys are equal multisets, then there is a commuting

triangle bounded by toPath xs, doc xs = doc ys, and toPath ys.

Now, we can prove that R is contractible with center doc []:

isContr : (r : R) � doc [] = r

isContr (doc xs) = toPath xs

apd isContr (add x {xs}) = refl

: PathOver (λs � doc [] = s) (add x) (toPath xs) (toPath x::xs)

apdP (apd isContr) (ex x y) = GOAL7.3

The second clause demands that isContr respect add x. This is a trivial commuting

triangle, because toPath x::xs is by definition exactly add x ◦ toPath xs. In the

third clause, GOAL7.3 involves paths over paths-over-paths; essentially, it proves that

apd isContr, which assigns a commuting triangle to every path, respects the patch

law ex x y, itself a commuting triangle.

The fact that a path-indexed commuting triangle respects another commuting

triangle is a commuting tetrahedron. Below we have drawn an unfolded version

of that tetrahedron; to assemble it, join all three points labeled doc [] as the

apex. The interior of the tetrahedron proves that the top-left and top-right triangles

are correlated by the base of the tetrahedron (the middle triangle). We have a

machine-checked proof that this tetrahedron commutes7 but will not discuss it

here.

7 https://github.com/dlicata335/hott-agda/blob/homotopical-patch-theory-paper/
programming/PatchWithHistories.agda
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8 A patch theory for text files

Finally, we consider a patch theory for a text file (a vector of Strings), with primitive

patches to insert a string s as the lth line (ADD s@l), or remove the lth line (RM l).

The patch contexts for this theory must at least specify the number of lines in

the file, since patches only apply when the specified line number exists—one cannot

apply RM l to a file with fewer than l lines. Thus, our first cut at defining this patch

theory is to index patch contexts by the file length, and define RM l as a path from

doc n+1 to doc n, for any n+1 at least l.

Unfortunately, patches in such a theory cannot be interpreted as bijections between

n-line files, since deleting a line is not a Bijection (Vec n+1 String) (Vec n

String). (An inverse to this function would have to invent the contents of the

deleted line.)

Instead, we will index the patch contexts by histories, in this case, sequences of

ADD s@l and RM l for which all the line numbers are within bounds. That is, file

lengths determine which histories are well-formed, and histories determine which

patches are well-formed!

8.1 Definition of patches

Let History m n be the type of patch histories which, given m-line files, produce

n-line files. As with MS in Section 7, we define History m n as a quotient higher

inductive type, and equate sequences of patches effecting the same change on files.

For example, two ADDitions in sequence can be commuted by shifting their line

numbers appropriately.

space History : Nat � Nat � Type where

-- point constructors:

[] : {m : Nat} � History m m

https://doi.org/10.1017/S0956796816000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000198


Homotopical patch theory 35

ADD_@_::_ : {m n : Nat} (s : String) (l : Fin n+1) �

History m n � History m n+1

RM_::_ : {m n : Nat} (l : Fin n+1) �

History m n+1 � History m n

-- path constructors:

ADD-ADD-< : {m n : Nat} (l1 : Fin n+1) (l2 : Fin n+2)

(s1 s2 : String) (h : History m n) � l1 < l2 �

(ADD s2@l2 :: ADD s1@l1 :: h)

= (ADD s1@l1 :: ADD s2@(l2-1) :: h)

ADD-ADD-� : {n : Nat} (l1 : Fin n+1) (l2 : Fin n+2)

(s1 s2 : String) (h : History m n) � l1 � l2 �

(ADD s2@l2 :: ADD s1@l1 :: h)

= (ADD s1@(l1+1)) :: ADD s2@l2 :: h)

(For the sake of clarity, we have omitted some coercions between different Fin

types.) To simplify the code, we have also omitted path constructors commuting

ADD-RM, RM-ADD, and RM-RM, which can be defined in exactly the same fashion.

We index patch contexts by complete histories, which in this case are elements of

History 0 n, since they are applicable to empty (length-0) files.

space R : Type where

-- point constructor (patch context):

doc : {n : Nat} � History 0 n � R

-- path constructors (basic patches):

addP : {n : Nat} (s : String) (l : Fin n+1)

(h : History 0 n) � doc h = doc (ADD s@l :: h)

rmP : {n : Nat} (l : Fin n+1)

(h : History 0 n+1) � doc h = doc (RM l :: h)

-- pathover-between-path constructors (patch laws):

addP-addP-< : {n : Nat} (l1 : Fin n+1) (l2 : Fin n+2)

(s1 s2 : String) (h : History 0 n) � (pf : l1 < l2) �

PathOver (λx � doc h = doc x) (ADD-ADD-< l1 l2 s1 s2 h pf)

(addP s2 l2 ◦ addP s1 l1)

(addP s1 l1 ◦ addP s2 (l2-1))

addP-addP-� : {n : Nat} (l1 : Fin n+1) (l2 : Fin n+2)

(s1 s2 : String) (h : History 0 n) � (pf : l1 � l2) �

PathOver (λx � doc h = doc x) (ADD-ADD-� l1 l2 s1 s2 h pf)

(addP s2 l2 ◦ addP s1 l1)

(addP s1 (l1+1) ◦ addP s2 l2)

As in Section 7, the final two constructors stipulate patch laws, over the equations

in History 0 n to which they correspond. For example, when l1 < l2, the first

patch law equates the patches

addP s2 l2 ◦ addP s1 l1 : doc h = doc (ADD s2@l2 :: ADD s1@l1 :: h)

addP s1 l1 ◦ addP s2 (l2-1) : doc h = doc (ADD s1@l1 :: ADD s2@(l2-1) :: h)

in the type family λx � doc h = doc x, over the fact that the ADD-ADD-< law

equates their codomains’ histories in History 0 n+2.
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8.2 Interpreter

Our previous examples of patch contexts determined bounds on the repository’s

contents—in Section 6, doc n classified numbers at least n, and in Section 7, doc

xs classified pairs of numbers pairwise at least replay xs.

In contrast, a History 0 n precisely classifies the repository’s contents—exactly

one text file can be obtained by applying the specified sequence of patches to the

empty file. So while in Section 6 doc n is interpreted as the type of numbers AtLeast

n, here we will interpret doc h as the type of text files exactly replay h—that is,

as the singleton type S(replay h). (Recall from Section 5.3 that for x:A, we define

S(x) as Σ(y:A).x = y.)

To compute the file specified by a complete history, we must first implement the

primitive patches as functions add and rm on vectors of Strings.

add : {n : Nat} (s : String) (l : Fin n+1) � Vec String n � Vec String n+1

rm : {n : Nat} (l : Fin n+1) � Vec String n+1 � Vec String n

We use add and rm to define replay as follows:

replay : {n : Nat} � History 0 n � Vec String n

replay [] = []

replay (ADD s@l :: h) = add s l (replay h)

replay (RM l :: h) = rm l (replay h)

ap replay (ADD-ADD-< l1 l2 s1 s2 h pf) =

GOAL8.1 : add s2 l2 (add s1 l1 (replay h))

= add s1 l1 (add s2 (l2-1) (replay h))

ap replay (ADD-ADD-� l1 l2 s1 s2 h pf) =

GOAL8.2 : add s2 l2 (add s1 l1 (replay h))

= add s1 l1+1 (add s2 l2 (replay h))

Because we have laws equating some histories, GOAL8.1 and GOAL8.2 demand that

replay sends equal histories to equal files, which amounts to showing that add

satisfies the same laws as ADD.

If we interpret doc h as the type S(replay h), then we must interpret a patch p

: doc h = doc h’ as a bijection between S(replay h) and S(replay h’). We can

restrict any function f : A � B to a function between singleton types, as follows:

toSingleton : (f : A � B) � {M : A} � S(M) � S(f M)

toSingleton f (x,p) = (f x, ap f p)

We model ADD s@l as toSingleton (add s l), and RM l as toSingleton

(rm l). These functions are automatically bijections, because any function between

contractible types is a bijection. (Name the proof of this fact singleBiject.) Putting

it all together, we interpret R as follows:

I : R � Type

I (doc h) = S(replay h)

ap I (addP s l h) = ua (singleBiject (toSingleton (add s l)))

ap I (rmP l h) = ua (singleBiject (toSingleton (rm l)))
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apdP (ap I) (addP-addP-< l1 l2 s1 s2 h pf) = <replay respects this law>

apdP (ap I) (addP-addP-� l1 l2 s1 s2 h pf) = <replay respects this law>

Typechecking ap I (addP s l h) requires unfolding the definition of replay:

it must have type Bijection S(replay h) S(replay (ADD s@l :: h)), but by

definition, the latter type is S(add s l (replay h)).

Then, as before, we can derive the interpretation of patches:

interp : {n1 n2 : Nat} {h1 : History 0 n1}

{h2 : History 0 n2} � (doc h1 = doc h2)

� Bijection (I (doc h1)) (I (doc h2))

interp p = coeBiject (ap I p)

such that interp (addP s l h) is add s l, and interp (rmP l h) is rm l.

8.3 Histories

Because R’s patch contexts uniquely determine file contents, the type of a complete

patch p : doc [] = doc h fully specifies its effect! This type information is quite

large, and moreover redundant at runtime, in the sense that interp can compute

the effect of p without reference to the type indices. Thus, we hope it is possible to

discard the patch contexts at runtime, through some erasure mechanism.

What if, instead of computing the file created by p, we want to compute the

complete history h, it corresponds to (without simply projecting h from the type)?

Notably, we must compute this information from p itself and not interp p, because

we cannot inspect the intensions of functions S(file) � S(file’).

We can do so by means of an alternate interpretation of R—just as we computed

changes induced on repositories by interpreting patch contexts as singleton files, we

can compute the changes induced on complete histories by interpreting each doc h

as S(h):

I’ : R � Type

I’ (doc h) = S(h)

ap I’ (addP s l h) =

ua (singleBiject (toSingleton (λh � ADD s@l :: h))

ap I’ (rmP l h) =

ua (singleBiject (toSingleton (λh � RM l :: h)))

apdP (ap I’) (addP-addP-< l1 l2 s1 s2 h p) =

ADD-ADD-< l1 l2 s1 s2 h p

apdP (ap I’) (addP-addP-� l1 l2 s1 s2 h p) =

ADD-ADD-� l1 l2 s1 s2 h p

interpH : doc h = doc h’ � S(h) � S(h’)

interpH p = coeBiject (ap I’ p)

As desired, interpH takes a patch p : doc h = doc h’ to a function which,

when applied to the unique element of S(h), produces the unique element of S(h’).

In particular, if p is a complete patch, then fst (interpH p ([],refl)) produces

the history h’. As with interp, interpH proceeds recursively on the structure of p,

without relying on its type information.
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8.4 Merge

As in Section 7.3, we restrict the merge operation to complete patches:

merge : {n1 n2 : Nat} {h1 : History 0 n1} {h2 : History 0 n2}

(doc [] = doc h1) � (doc [] = doc h2) �

Σ(n’ : Nat). Σ(h’ : History 0 n’).

(doc h1 = doc h’) × (doc h2 = doc h’)

Such a function reconciles all pairs of complete patches. This may seem impossible,

as some patches ordinarily give rise to merge conflicts: For example, given addP s

0 and addP s’ 0, neither [s,s’] nor [s’,s] is obviously preferable. However, we

can always merge conflicting patches by simply undoing both patches. (Of course, a

user-friendly interface would ideally recognize this situation and instead prompt the

user to manually resolve the conflict.)

In the remainder of this section, we will show how a merge operation mergeH for

complete histories, and a proof mergeH satisfies the merge laws, suffices to define a

merge satisfying the merge laws. Merging complete histories can be accomplished

with standard techniques; for example, using replay to convert complete histories

into files, defining merging directly on files, and computing a reconciliation which

creates the merged file.

To define merge, we use interpH to convert complete patches to complete histories,

then compute the merge of those histories with mergeH. The merge of two complete

histories h1 and h2 is a single history h’ which has each as a prefix—that is, h’

reconciles h1 and h2 because it is an extension of both. Thus, mergeH has the type:

mergeH : {n1 n2 : Nat}

(h1 : History 0 n1) (h2 : History 0 n2) �

Σ(n’ : Nat). Σ(h’ : History 0 n’).

Extension h1 h’ × Extension h2 h’

where Extension h h’ is a proof that h’ extends h:

Extension : {n1 n2 : Nat} � History 0 n1

� History 0 n2 � Type

Extension h h’ = Σ(s : History n1 n2). h ++ s = h’

Here, ++ : History n1 n2 � History n2 n3 � History n1 n3 appends two

histories.

We complete the definition of merge by converting extensions back into paths.

First, we convert complete histories to complete patches in the usual way:

toPath : {n : Nat} (h : History 0 n) � doc [] = doc h

toPath [] = refl

toPath (ADD s@l :: h’) = addP s l ◦ toPath h’

toPath (RM l :: h’) = rmP l ◦ toPath h’

Then, we convert an Extension h h’ into a path by composing paths from doc h

to doc [] and back to doc h’:

extToPath : {n n’ : Nat}

{h : History 0 n} {h’ : History 0 n’} �

Extension h h’ � doc h = doc h’

extToPath _ = (toPath h’) ◦ !(toPath h)

https://doi.org/10.1017/S0956796816000198 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796816000198


Homotopical patch theory 39

extToPath completely ignores the extension itself; intuitively, this is possible because

extensions are more informative than paths. Putting all the pieces together, we define

merge as follows:

merge p1 p2 =

let (n’,(h’,(e1,e2))) =

mergeH (interpH p1 []) (interpH p2 [])

in (n’, (h’, (extToPath e1, extToPath e2)))

We can prove the merge laws by observing that R is contractible, because then

Σ(n : Nat). Σ(h : History 0 n). doc [] = doc h

is equivalent to

Σ(n : Nat). History 0 n

and univalence dictates that all constructions respect equivalence of types. Therefore,

since complete histories are equivalent to complete patches, not only does defining

a merge on the former automatically result in a merge on the latter, but the merge

laws on the former automatically imply the merge laws on the latter. We have a

machine-checked proof8 that (a generalized form of) R is contractible, but will not

discuss the details here.

But since we manually constructed merge from mergeH without an appeal to

univalence, we will finish the story by proving the merge laws for merge manually

as well. For this patch theory, the merge laws are

reconcile : {n n1 n2 : Nat} {h : History 0 n}

{h1 : History 0 n1} {h2 : History 0 n2}

� (p1 : doc [] = doc h1) � (p2 : doc [] = doc h2)

� (q1 : doc h1 = doc h) � (q2 : doc h2 = doc h)

� merge p1 p2 = (n, (h, (q1, q2)))

� q1 ◦ p1 = q2 ◦ p2

symmetric : {n n1 n2 : Nat} {h : History 0 n}

{h1 : History 0 n1} {h2 : History 0 n2}

� (p1 : doc [] = doc h1) � (p2 : doc [] = doc h2)

� (q1 : doc h1 = doc h) � (q2 : doc h2 = doc h)

� merge p1 p2 = (n, (h, (q1, q2)))

� merge p2 p1 = (n, (h, (q2, q1)))

The reconcile law follows from the contractibility of R—the type of merge specifies

that p1, p2, q1, and q2 form a square, and by contractibility, all squares in R commute.

The symmetric law is not automatic, but rather requires mergeH to be symmetric

as well:

symmetricH : {n n1 n2 : Nat} {h : History 0 n}

� (h1 : History 0 n1) (h2 : History 0 n2)

� {e1 : Extension h1 h} {e2 : Extension h2 h’}

� mergeH h1 h2 = (n, (h, (e1, e2)))

� mergeH h2 h1 = (n, (h, (e2, e1)))

8 https://github.com/dlicata335/hott-agda/blob/homotopical-patch-theory-paper/
programming/PatchWithHistories2.agda
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The first two components of merge p1 p2 and merge p2 p1 are equal since

symmetricH says the same of mergeH; the last two components, a pair of paths, are

swapped because they depend only on the last two components of the corresponding

mergeHs, which symmetricH ensures are also swapped.

9 Related work

The first version control system designed around a theory of patches was Darcs

(Roundy, 2005; Darcs Project, 2013). For each patch, Darcs computes a (one- or

two-sided) inverse patch, and for each composable pair of patches, it attempts to

compute a composable pair known as its commutation. The commutation of the

composable pair (f, g) is another composable pair (g′, f′) such that f′ ◦ g′ is parallel

to g ◦ f and has the same effect on a repository state. Additionally, g′ has the same

effect as g but in the domain context of f, and f′ has the same effect as f but

in the codomain context of g′. This commutation operation is expected to obey

certain laws. Not all patches may be commuted in this way, but those that can

may be arbitrarily reordered. Darcs uses this ability to invert and reorder patches

to implement operations such as merging and the “cherry-picking” of non-terminal

patches from other repositories.

Several efforts have been made to formalize Darcs’s patch theory by making

precise the laws that patch inverses and commutations should satisfy (Sittampalam,

2005; Roundy, 2009). Dagit (2009) has explored using features of the rich (but not

fully dependent) type system of the programming language Haskell to enforce some

properties of Darcs’s patch theory statically. Closely related to Darcs is an experi-

mental version control system called Camp (Commute And Merge Patches) (Camp

Project, 2010), which aims to have its patch theory as well as its implementation

verified in the proof assistant Coq (Lynagh, 2012).

Jacobson (2009) explores the interpretation of patch theories similar to that of

Darcs in inverse semigroups. These are sets equipped with an associative binary

operation such that for each element s there is a unique s∗ with ss∗s = s and

s∗ss∗ = s∗. Sets with partial bijections form an inverse semigroup that is used to

interpret patch theories. The partiality of the maps is used to interpret the domain

of applicability of patches, which are thus invertible where they are defined. There

is an equivalence between the categories of inverse semigroups and of inductive

groupoids, so Jacobson’s semantics can be recast in the language of groupoids.

A different approach to interpreting patch theories using mathematical structures

results from dropping the requirement of patch invertibility. In this case, patch

theories may be interpreted in categories, using the pushout construction to interpret

merging. This approach has been explored by Houston (2012) and by Mimram &

Di Giusto (2013). The latter explicitly construct the category that is the free finite

conservative co-completion of a given category of contexts and patches, where the

adjoined pushouts signal merge conflicts. The Pijul project (Pijul Project, 2015) is

currently developing a distributed version control system based on these ideas.

Löh et al. (2007) use the algebra of sets to characterize the repository states

associated to a patch and predicate logic to characterize the effects of patch
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application. This approach is simplified and extended by Swierstra & Löh (2014)

using the framework of separation logic (Reynolds, 2002), where Hoare triples are

used to encode patch applicability and effects and the frame rule is used to specify

the part of a repository state that is affected by a patch. This facilitates reasoning

about when patches may be composed and when they are independent and thus

may be reordered or merged.

10 Conclusion

In this paper, we have defined a number of patch theories within homotopy type

theory. We represent patch theories as higher inductive types whose points represent

patch contexts, whose paths represent patches between patch contexts, and whose

paths between paths represent patch laws. This representation automatically endows

patches with a groupoid structure—identity, composition, and inverses, with the

corresponding laws—for free, so defining a patch theory requires specifying only the

patch contexts, generating patches, and domain-specific patch laws.

We implement a patch theory by mapping it into a univalent universe, thereby

sending patch contexts to sets of repositories, and patches to bijections between

those sets. Because all functions in homotopy type theory respect paths, such

implementations—indeed, all patch operations, like optimizations or merges—

automatically satisfy the patch laws. Defining implementations in this way makes

essential use of the univalence axiom, which adds a path in the universe for each

bijection between sets.

It is possible to use the same guiding principles to define patch theories in a

dependently typed programming language lacking univalence and higher inductive

types. In Remarks 4.1 and 4.2, we illustrated this for a very simple example. One way

to replicate this construction for other patch theories would be to copy and paste

the general operations (constructors for identity, inverse, and composition, and their

laws) between datatypes; a better way would be to use the abstraction mechanisms

already present in dependently typed programming languages to avoid the repetition.

For example, one could define a generic datatype of patches, parameterized by a

signature describing the repository contexts, the primitive patches, and the equations

specific to the primitive patches; the generic datatype would provide identity, inverse,

composition, and their laws. Then, to mimic the higher inductive eliminators, one

would need a type family identifying other types that have the structure necessary

to map into them from a patch theory—a type equipped with a binary relation that

has identity, inverse, and composition operations, satisfying the necessary laws.

However, in more abstract terms, such a type family amounts to defining groupoids

inside of type theory—the datatype of patches is a construction of the free groupoid

on some generators for objects (repository contexts), morphisms (patches), and

equations between morphisms (patch laws); and the mapping-out principle for

patch theories is the universal property of free groupoids. These constructions are

built into homotopy type theory—all types are groupoids, and higher inductive

types specify free ones—so we can avoid both explicitly defining free groupoids,
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and proving that types we map those groupoids into are equipped with a groupoid

structure.

A second advantage is that, when programming inside a language where types

denote groupoids, many types and terms are simpler than when programming with

a construction of groupoids inside of a host language. For example, to refer to the

product of two groupoids or the functor category, we need only refer to the product

and function types, and to write maps between groupoids, we can use λ-terms that

simultaneously specify the action both on objects and on morphisms, rather than

defining functors by a combinator library (which is effectively in de Bruijn form).

On the other hand, the disadvantage of working with a language of groupoids is

that some definitions and operations may not fit naturally into such a framework.

For example, modeling patch theories as groupoids forces all patches to have full

inverses. While patches typically have post-inverses which undo them, they typically

do not have pre-inverses: you cannot delete a file before it is created! In order to

represent patches as paths, we had to either choose a theory whose patches were

already invertible (Sections 4 and 5), or else restrict the types of patches in order

to make them invertible (Sections 6– 8). One solution to this problem is to take

the more explicit approach sketched above by using a library for categories inside

of homotopy type theory (see Chapter 9 of the HoTT Book (2013)). Another is

to scale the language-based approach we studied here to non-invertible patches by

using a directed homotopy type theory, following the preliminary work by Licata &

Harper (2011).

Another difficulty with modeling patches as paths in a higher inductive type arises

when one wants to case-analyze paths to define functions like merging. Unlike in

the explicit approach sketched above, where the type of morphisms in a groupoid is

a separate type with its own elimination principles, neither path induction nor the

induction principle for the patch theory apply directly. Instead, we need to prove

derived induction principles, often by establishing bijections with ordinary inductive

types (Licata & Shulman, 2013; Univalent Foundations Program, 2013). While this

showcases how to apply homotopy-theoretic techniques to programming problems,

it is generally more challenging than defining maps out of either ordinary inductive

types or quotient types.

Our representation of patch theories requires points, paths, and homotopies;

reasoning about these patch theories can require paths between homotopies (e.g.,

the commuting tetrahedron in Section 7). Because we only use three dimensions

of structure, it might be advantageous to work inside a dimensionally truncated

homotopy type theory (Licata & Harper, 2012), or explicitly truncate all types (as

discussed in Section 5.3).

The computational interpretation of homotopy type theory remains open, but

we believe that programming applications will lend insight into the problem.

Our work has led us to consider a model of computation in which some steps

are propositional equalities, rather than restricting reduction to a subrelation of

definitional equality. However, not all propositional equalities are computational—

the patch optimizer in Section 5.3 illustrates that propositionally equal terms can

compute differently, even though no predicate within homotopy type theory can
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distinguish them. This is analogous to how, in a non-homotopical type theory with

function extensionality (Altenkirch et al., 2007), extensionally equal functions may

compute in different ways on the same argument. Accordingly, functions may contain

meaningful computational content even when they map into or out of contractible

types.
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