
ar
X

iv
:1

20
7.

14
57

v1
  [

cs
.C

R
]  

5 
Ju

l 2
01

2

1

Flexible Dynamic Information Flow Control in the
Presence of Exceptions

Deian Stefan1 Alejandro Russo2 John C. Mitchell1 David Mazières1

(1) Stanford University, Stanford, CA, USA
(2) Chalmers University of Technology, Gothenburg, Sweden
(e-mail: {deian,mitchell}@cs.stanford.edu, russo@chalmers.se)

Abstract

We describe a new, dynamic, floating-label approach to language-based information flow control. A labeled IO monad,
LIO, keeps track of acurrent labeland permits restricted access to IO functionality. The current label floats to exceed
the labels of all data observed and restricts what can be modified. Unlike other language-based work, LIO also
bounds the current label with acurrent clearancethat provides a form of discretionary access control. Computations
may encapsulate and pass around the results of computationswith different labels. In addition, theLIO monad
offers a simple form of labeled mutable references and exception handling. We give precise semantics and prove
confidentiality and integrity properties of a call-by-nameλ -calculus and provide an implementation in Haskell.

1 Introduction

Complex software systems are often composed of modules withdifferent provenance, trustworthiness, and
functional requirements. A central security design principle is theprinciple of least privilege,which says
that each component should be given only the privileges it needs for its intended purpose. In particular,
it is important to differentially regulate access to sensitive data in each section of code. This minimizes
the trusted computing base for each overall function of the system and limits the downside risk if any
component is either maliciously designed or compromised.

Information flow control (IFC) tracks the flow of sensitive data through a system and prohibits code
from operating on data in violation of a security policy. Significant research, development, and experi-
mental effort has been devoted to static information flow mechanisms. Static analysis has a number of
benefits, including reduced run-time overhead, fewer run-time failures, and robustness against implicit
flows (Denning & Denning, 1977). However, static analysis does not work well in environments where
new classes of users and new kinds of data are encountered at run-time. In order to address the needs of
such systems, we describe a new, dynamic, floating-label approach to language-based information flow
control and present an implementation in Haskell.

Our approach uses aLabeled type constructor to protect values by associating them withlabels. The
labels themselves are typed values manipulated at run-time, and can thus be created dynamically based on
other data such as a username. Conceptually, at each point inthe computation, the evaluation context has
a current label.We use a labeled IO monad,LIO, to keep track of the current label and permit restricted
access to IO functionality (such as a labeled file system), while ensuring that the current label accurately
represents an upper bound on the labels of all data observed or modified. Unlike other language-based
work, LIO also bounds the current label with acurrent clearance.The clearance of a region of code may
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be set in advance to impose an upper bound on the floating current label within that region. This restricts
data access, limits the amount of code that could manipulatesensitive data, and reduces opportunities to
exploit covert channels. Additionally, we introduce an operator,toLabeled, that allows the result of a
computation that would have raised the current label to be encapsulated within theLabeled type. Finally,
we present combinators for working with labeled references, and exceptions. Thanks to the flexibility
of dynamic checking,LIO implements an IFC mechanism that is more permissive than previous static
approaches (Pottier & Simonet, 2002; Li & Zdancewic, 2010; Russoet al., 2008) but provides similar se-
curity guarantees (Sabelfeld & Russo, 2009). Though purelylanguage-based, LIO explores a new design
point centered on floating labels that draw on past OS work (Zeldovichet al., 2006).

The main features of our system can be understood using the example of an online conference review
system, calledλChair. In this system, which we describe more fully later in the paper, authenticated users
can read any paper and can normally read any review. This reflects the normal practice in conference
reviewing, for example, where every member of the program committee can see submissions and their
reviews, and participate in related discussion. Users can be added dynamically and assigned to review
specific papers. As an illustration of the power of the labeling system, integrity labels are used to make
sure that only assigned reviewers can write reviews for any given paper. Conversely, confidentiality labels
are used to manage conflicts of interest. Users with a conflictof interest on a specific paper lack the
privileges, represented by confidentiality labels, to reada review. As conflicts of interest are identified,
confidentiality labels on the papers may change dynamicallyand become more restrictive.

This paper extends an earlier conference version (Stefanet al., 2011b) by including formal proofs and
extending the calculus and library implementation with exception handling. The main contributions of
this work are:

◮ We propose a new design point for IFC systems in which most values in lexical scope are protected by a
single, mutable,current label, yet one can also encapsulate and pass around the results of computations
with different labels. Label encapsulation is explicitly reflected by types in a way that prevents implicit
flows.

◮ We prove information flow and integrity properties of our design and describe LIO, an implementation
of the new model in Haskell. LIO, which can be implemented entirely as a library (relying solely on
type safety), demonstrates both the applicability and simplicity of the approach.

◮ Unlike other language-based work, our model provides a notion of clearancethat imposes an upper
bound on the program label, thus providing a form of discretionary access control on portions of the
code, i.e., restricting access to data it “needs to know”.

◮ We present a novel dynamic, yet safe, handling of exceptions. Exceptions are a key component to make
LIO a more practical IFC system.

This paper is organized as follows. Section 2 provides background on information flow control and
our Haskell LIO library. Section 3 presents a motivating scenario where to apply LIO. Formalization of
the library is given in Section 4 and the security guaranteesare detailed in Section 5. Related work is
described in Section 6. We conclude in Section 7.

2 Security Library

In this section, we give an overview of information flow control, the approach used by LIO to dynamically
enforce IFC, and the core application programming interface (API) provided by our library.
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Labels and IFC The goal of information flow control is to track the propagation of information and
control it according to a security policy. A well-known policy addressed in almost every IFC system is
non-interference:publicly-readable program results must not depend on secret inputs. A non-interfering
program is guaranteed to preserve confidentiality of sensitive data (Goguen & Meseguer, 1982); dually,
this policy can be used to preserve integrity of trustworthydata (Biba, 1977).

To enforce information flow restrictions, most systems associate labelswith every piece of data. A
label represents the level of confidentiality and integrityon data. Labels form a lattice (Denning, 1976)
with partial order⊑ (pronounced “can flow to”);⊑ is used to govern the allowed flows between differently
labeled entities. For instance, ifL1 ⊑ L2 holds, it indicates that data with labelL1 can flow into entities
labeledL2.

LIO is polymorphic in the label type, allowing different types of labels to be used. Custom label formats
can be created by providing a definition for a bounded lattice. Specifically, a label format must have a
well-defined partial order (⊑), a binary operation computing thejoin of two labels (⊔), a binary operation
computing themeetof two labels (⊓), and minimum (⊥) and maximum (⊤) elements. For any two labels
L1 andL2, the join has the property thatLi ⊑ (L1⊔L2), i = 1,2 andL1⊔L2 is the least of such elements
in the lattice; the meet has the property that(L1⊓L2) ⊑ Li , i = 1,2 andL1⊓L2 is the greatest of such
elements in the lattice. In our Haskell library, label typesare instances of theLabel type class:

class (Eq l) ⇒ Label l where

leq :: l → l → Bool -- Can flow to relation (⊑)
lub :: l → l → l -- Join operation (⊔)
glb :: l → l → l -- Meet operation (⊓)
lbot :: l -- Minimum element (⊥)
ltop :: l -- Maximum element (⊤)

Henceforth we assume that the bounded lattice property holds for the labels used in our examples.
Section 3 details disjunction category (DC) labels, a concrete label format used intλChair that satisfies
this property.

Privileges and Decentralized IFC An extension of IFC, the decentralized label model (DLM) of Myers
and Liskov (Myers & Liskov, 1997) allows for more general applications, including systems consisting of
mutually distrustful parties. In a decentralized system, acomputation is executed with a set ofprivileges
p, which, when exercised, allow the computation to “bypass” certain label restrictions. In such systems,
rather than using the standard⊑ partial order relation, a more permissive pre-order⊑p, is used in the label
comparisons. Consider, for example, a simple four-point lattice⊥ ⊑ Li ⊑ LAB, for i = A,B. Here,LA, LB,
andLAB respectively correspond to data private to userA, userB, and bothA andB. In DLM, privileges
and labels are associated such that, e.g., privilegea corresponding toLA allows userA to “ignore theA” in
labels. Thus,LAB⊑a LB, even thoughLAB 6⊑ LB. This property is very useful as it allowsA to downgrade
the data from label levelLAB to LB. Informally, when downgrading, the code exercising the privilege states
that it no longer considers the data to be confidential (in this case,A exercisinga to downgrade data from
LAB to LB). Note that downgrading does not make the data publicly readable, all parties corresponding to
the label must first perform the downgrade.

As in the case of labels, our library is polymorphic in the privilege types. Any code can exercise
privileges (that are in lexical scope) to enforce IFC using the more permissive⊑p relation. However,
our formalism is limited to non-privileged primitives and we thus do not discuss privileges further. We
refer the interested reader to the library documentation for details on privileges.
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LIO computations LIO is a language-basedfloating-labelsystem, inspired by IFC operating systems,
including HiStar (Zeldovichet al., 2006) and Asbestos (Efstathopouloset al., 2005). In a floating-label
system, the label of a computation can rise to accommodate reading sensitive data, similar to theprogram
counterof more traditional language-based systems (Sabelfeld & Myers, 2003). Specifically, in LIO, a
computationC with labelLC wishing to observe an object (e.g., a review) labeledLR can do so by first
raising its label to the join of the labels:LC⊔LR. Consider, for example, a simpleλChair review system
computation that retrieves the content of a review, and writes it to an output channel.

readReview R = do -- Initial computation label: LC
rv ← retrieveReview R -- Computation label when retrieving: LC⊔LR
printLabeledCh rv -- Computation label when printing: LC⊔LR

Here, we assume that the computation is executing on behalf of a user, Clarice, with initial labelLC and
that reviewR has labelLR. The computation label is shown in the comments as the different actions are
executed. Internally, theretrieveReview function is used to retrieve the review contentsrv; the function
raises the computation label toLC ⊔ LR to reflect the observation of sensitive review information.This
directly highlights the notion of a “floating-label”: a computation’s label effectively “floats above” the
labels of all objects it observes.

The floating label is used to restrict writes: a computation cannot write to an entity whose label is below
the computation label. In the example, the actionprintLabeledCh rv, which performs a write, does not
change the computation label. However,printLabeledCh returns an action that writes the review content
rv to standard output channel, labeledLO, only if LC⊔LR⊑ LO. In λChair, the standard output channel
label,LO, is dynamically set according to the user executing the computation;LO is set so as to allow for
printing out all but the conflicting reviews. Thus, if user Clarice has a conflict of interest with reviewR,
LO is set such thatLR 6⊑ LO.

Unlike existing language-based IFC systems, LIO also associates aclearancewith each computation.
This clearance sets an upper bound on the current floating label within some region of code. For example,
the notion of clearance can be used to prevent Clarice from retrieving (and not just printing) the contents
of a conflicting reviewR by setting the computation’s clearance toCC such thatLR 6⊑ CC. In general,
before raising the computation label, LIO combinators firstcheck that the new label will not exceed the
computation clearance. Hence, when the actionretrieveReview R attempts to raise the current label to
LC⊔LR, the computation will fail sinceLC⊔LR 6⊑CC.

More interestingly, clearance can be used to prevent malicious code from exploiting covert channels.
For example, without clearance, the following function canbe used by a user, such as Clarice, to leak
information on reviews which she is in conflict with:

leakingRetriveReview r = do -- Initial label: LC
rv ← retrieveReview r -- Retrieving: LC⊔LR (if LC⊔LR⊑CC)

covertChannel rv -- Leak review into covert channel

The functioncovertChannel leaks (part of) the sensitive review content into a covert channel, such as
the termination channel. In the latter case, the function leaks information by deciding whether or not to
diverge based on sensitive data. A simple example that leaksa bit is given below.

covertChannel rv =
if rv=="Paper..." -- If sensitive review matches "Paper..."

then forever (return rv) -- then loop forever

else return rv -- otherwise return



Flexible Dynamic Information Flow Control in the Presence of Exceptions 5

Using clearance, we prevent such leaks by setting the clearance and review labels such thatretrieveReview

fails when it attempts to raise the computation label to retrieve conflicting reviews (the additional check
LC⊔LR⊑CC will not hold).

2.1 Library Interface

LIO is a termination-insensitiveand flow-sensitive(Askarovet al., 2008; Hunt & Sands, 2006) IFC li-
brary thatdynamicallyenforces information flow restrictions. At a high level, LIOdefines a monad called
LIO, intended to be used in place ofIO. The library furthermore contains a collection ofLIO actions, many
of them similar toIO actions from standard Haskell libraries, except that they contain label checks that
enforce IFC.

To implement the notion of floating label that is bounded by a clearance, our library definesLIO as a
state monad, parametric in the label type, and usingIO as the underlying base monad. The state consists of
a current label Lcur, i.e., the computation’s floating label, and acurrent clearance Ccur, which is an upper
bound onLcur, i.e.,Lcur⊑Ccur always holds. The (slightly simplified)LIO monad is defined as:

newtype LIO l a = LIOTCB (StateT (l, l) IO a)

where the state corresponds to the current label and clearance. To allow for the execution ofLIO actions,
our library provides the functionevalLIO that takes anLIO action and returns anIO action which, when
executed, will return the result of the IFC-respecting computation. It is important to note that untrusted
LIO code cannot executeIO computations by bindingIO actions withLIO ones (to bypass IFC restrictions),
becauseLIOTCB is a private symbol. Effectively this limitsevalLIO to trusted code. Additionally, using
evalLIO, trusted programmers can easily, though cautiously, enforce IFC in parts of an otherwise IFC-
unaware program.

The current label provides a means for associating a label with every piece of data. Hence, rather than
individually labeling definitions and bindings, all symbols in scope are protected byLcur. Moreover, the
only way to read or modify differently labeled data is to execute (trusted) actions that internally access
restricted symbols and appropriately validate and adjust the current label (or clearance).

In many practical situations, it is essential to be able to manipulate differently-labeled data without
monotonically increasing the current label. For this purpose, the library additionally provides aLabeled
type for labeling values with labels other thanLcur. A Labeled, polymorphic in the label type, protects
an immutable value with a specified label irrespective of thecurrent label. This is particularly useful
as it allows a computation to delay raising its current labeluntil necessary. For example, an alternative
retrieveReview implementation can retrieve the review content, convert itto HTML, encapsulate the
markup into aLabeled value, and return theLabeled value while leaving the current label unchanged.
This approach delays the “creeping” of current label until the review content, as encapsulated byLabeled,
is actuallyneeded.

We note thatLIO can be used to protect pure values in a similar fashion toLabeled. However, the
protection provided byLabeled allows for serializing labeled values and straight forwardinspection
by trusted code (which may ignore the protecting label). Unlike LIO, Labeled is not a monad1. The
monad instance would allow a computation to use bind and return to arbitrarily manipulate labeled
values without any notion of the current label or clearance,and thus (possibly) violate the restriction

1 In fact, Labeled cannot be a functor; this would violate non-interference when considering integrity into the
security labels.
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thatLIO computations should not handle values below their current label or above their current clearance.
Moreover, theMonad instance would require a definition for a default label necessary when lifting a value
with return. Instead, our library provides several functions that allow for the creation and usage of labeled
values withinLIO. Specifically, we provide (among other) the following functions:

◮ label :: Label l ⇒l →a →LIO l (Labeled l a)

Given a labell such thatLcur⊑ l ⊑Ccur and a valuev, the actionlabel l v returns a labeled value that
protectsv with l .

◮ unlabel :: Label l ⇒Labeled l a →LIO l a

Assuming thatlv is associated to labell , the actionunlabel lv raises the current label toLcur⊔ l if
Lcur⊔ l ⊑Ccur and returns the unlabeled value. Note that the new current label is at least as high aslv’s
label, preserving the confidentiality of the value.

◮ toLabeled :: Label l ⇒l →LIO l a →LIO l (Labeled l a)

Given a labell such thatLcur⊑ l ⊑Ccur and anLIO actionm, toLabeled l m executesmwithout raising
the current label. However, instead of returning the resultdirectly, the function returns the result ofm
encapsulated in aLabeled. The label of the labeled value isl ; to preserve confidentiality (see Section 4
for further details), actionmmust not read any values with a label abovel . In monadic terms,toLabeled
is an environment-oriented action that provides a different context for a temporary bind thread.

◮ labelOf :: Label l ⇒Labeled l a →l

If lv is a labeled value with labell and valuev, labelOf lv returnsl .

Our library additionally provides labeled alternatives tomutable references, i.e.,IORefs. Specifically, we
provide labeled referencesLIORef l a that are created withnewLIORef, read withreadLIORef, and
written to withwriteLIORef. When creating or writing to a reference with labelLR, it must be the case
thatLcur⊑ LR⊑Ccur; when readingLcur is raised toLcur⊔LR, clearance permitting.

In the conference version of this work (Stefanet al., 2011b), the execution of programs stop when the
IFC constraints imposed by the⊑-relationship are not fulfilled. Similar to other dynamic IFC approaches
(e.g., (Askarov & Sabelfeld, 2009; Russo & Sabelfeld, 2009;Austin & Flanagan, 2010)), this design de-
cision restricts the possibilities for programs to recoverfrom failures. Later in this section, we show how
to extend LIO with exception handling so that programs can recover from failures or insecure actions
without compromising confidentiality or integrity of data.

The formal semantics for the functions described above are given in Section 4; in this section, we
illustrate their functionality and use through examples. Specifically, consider the previous example of
readReview. The internal functionretrieveReview takes a review identifierRand returns the review con-
tents. Internally,retrieveReview must have access to a list of reviews, which are individuallyprotected
by different labels. In this model, adding a new review to thesystem can be implemented as:

addReview R LR rv = do

r ← label LR rv -- Checks Lcur⊑ LR⊑Ccur
addToReviewList R r -- Appends labeled review to internal list

where theaddToReviewList simply adds theLabeled review to the internal list. The implementation of
retrieveReview is similar:

retrieveReview R = do -- Initial label, Lcur= LC
r ← getFromReviewList R -- Retrieving a labeled result, Lcur= LC
rv ← unlabel r -- Unlabel result, raises label to Lcur = LC⊔LR
return rv -- Returning unlabeled content, Lcur= LC⊔LR
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where thegetFromReviewList retrieves theLabeled review from the internal list andunlabel removes
the protecting label, raising the current label to reflect the observation.

We previously alluded to an alternative implementation ofretrieveReview that returns the labeled,
review content in HTML form while keeping the current label the same. This implementation can be
directly leverage the aboveretrieveReview:

retrieveReviewHtml R = do -- Outer: Initial label, Lcur= LC
r ← toLabeled (LC⊔LR) $ do -- Inner: Initial label, Lcur= LC

rv ← retrieveReview R -- Inner: Retrieve review, Lcur= LC⊔LR
return (toHtml rv) -- Inner: Return review, Lcur= LC⊔LR

return r -- Outer: Return labeled review, Lcur= LC

Note that although the current label within the inner computation is raised, the outer computation’s label
does not change—instead the marked-up review content is protected by the labelLC⊔LR. Hence, only
when the review content is actually needed,unlabel can be used to retrieve the content and raise the
computation’s label accordingly:

readReviewHtml R = do -- Initial label Lcur = LC
r ← retrieveReviewHtml R -- Retrieve labeled review, Lcur= LC
-- Perform other computations, such that Lcur = L′C
rv ← unlabel r -- Unlabel labeled review, Lcur = L′C⊔LR

printLabeledCh rv -- Print review content, Lcur= L′C⊔LR

2.1.1 Exception handling

Exception handling is common in real-world applications, and, as already noted, LIO provides support
for such constructs. Throwing an exception depends on the information present in the lexical scope.
Consequently, LIO labels an exception with the current label (Lcur) at the point where the exception is
thrown. Specifically, the primitive

throwLIO :: (Exception e) ⇒ e → LIO l a

takes an arbitrary exception and wraps it into a labeled exception type:

data LabeledException l e = ...

which itself is an instance ofException. The label of the exception is set to the current labelLcur.
Conversely, the primitive:

catch :: (Exception e) ⇒ LIO l a → (e → LIO l a) → LIO l a

can be used to execute anLIO action, using an exception handler to address the case when the computation
raises an exception. Suppose the current label and clearance areLcur andCcur, respectively. Given a
computationm, and an exception handlerhe, catch m he executesm and then:

1. if no exception is thrown, the result produced bycatch is simply the result ofm, leaving the current
label and clearance unchanged (as of the execution ofm).

2. if an exception with labell ⊑Ccur is thrown when executingm, the current label raised toLcur⊔ l and
the exception handler is invoked (if the exception type matches). Raising the current label toLcur⊔ l
before executing the exception handler indicates that the handler must not produce side-effects at
security levels lower than the one indicated by the label of the exception.
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3. if an exception with labell 6⊑Ccur is thrown, the exception label is raised toLcur⊔ l and re-thrown
(propagated to an outercatch).

It is worth remarking that primitivecatch is the only means for inspecting information related to an
exception (e.g., kind of exception, security label, etc.).

Safe propagation of exceptionsIn LIO, the standardpropagation of exceptions up the call stack until
reaching the nearest enclosingcatch can be used to leak information. Consider the following function:

condThrow :: LIORef l Bool → LIO l ()

condThrow secRef = do

sec ← readLIORef secRef

if sec then throwLIO ... else return ()

Assuming thatcondThrow is invoked with the current labelLcur andsecRef has labelLR, throwLIO raises
an exception labeledLcur⊔ LR if the secret value stored in the reference isTrue. The exception label
indicates that the exception was raised after performing a secret read.

AlthoughcondThrow cannot directly be used to leak information, it is importantto highlight that the
function throws an exception if the secret isTrue, and returns() otherwise. Hence, in the presence of
toLabeled, which restores the current label, it is important to reasonabout the propagation of excep-
tions. More specifically, if exceptions propagate until reaching the nearest enclosingcatch, the following
function can be used to leak information:

leakIntoPub :: LIORef l Bool → LIORef l Bool → LIO l ()

leakIntoPub secRef pubRef = catch (

do writeLIORef pubRef True -- Write to public reference #1

_ ← toLabeled ⊤ $ condThrow secRef -- Throw exception if secret is True

writeLIORef pubRef False -- Write to public reference #2

) (λ_ → return ()) -- Handle exception

Suppose that the function is invoked with a current labelLcur =⊥ and current clearanceCcur =⊤, secRef
is labeled⊤ andpubRef is labeled⊥. Initially, the computation can directly read and write topubRef, but
only read fromsecRef.

Note thatcatch is only used to force normal termination, i.e., execution offunctionleakIntoPub always
return(). More importantly, note that public side-effects are performed before (writeLIORef pubRef True)
and after (writeLIORef pubRef False) executing a computation on secret data (condThrow secRef).
(This is possible because the computationcondThrow secRef is enclosed in atoLabeled block, and thus
the current label remains unchanged.) Moreover, if the value of the secret referencesecRef is True, then
an exception is raised incondThrow and further propagated to the enclosingcatch without executing
the second write to the public reference (writeLIORef pubRef False). Hence, if an exception is raised
in condThrow the content ofpubRef remainsTrue. In contrast, if no exception is thrown, the content of
pubRef is set toFalse: clearly, a direct leak of the value stored insecRef.

It is important to finally note that although catch will raisethe current label when an exception raised
in the secret computation,leakIntoPub can also be enclosed bytoLabeled:

leakSecretRef :: LIORef l Bool → LIO l Bool

leakSecretRef secRef = do

pubRef ← newLIORef ⊥ True -- Create public reference

toLabeled ⊤ $ leakIntoPub secRef pubRef -- Perform attack

readLIORef pubRef -- Read "secRef" value
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This function returns the content of the secret referencesecRef without raising the current label.
Due to the feasibility of such attacks, LIO propagates exceptions up to the nearestcatch or toLabeled.

Intuitively, the correct semantics oftoLabeled are as before with the added requirement that all exceptions
be caught: regardless how the computation enclosed bytoLabeled terminates, aLabeled value must
always be returned. Conceptually this is equivalent to labeling a lifted value, i.e., a value that may be a
“normal” value or an exception. Of course, if the result ofunlabel is an exception, the exception will
propagate to the nearestcatch or toLabeled.

Considering this modification to the semantics oftoLabeled, observe that the side-effects inleakIntoPub
produced after thetoLabeled block will always be executed (even if an exception is raisedinsidecondThrow).
More generally, we close up leaks through exception propagation by simply assuring that the execution of
(possibly public) actions following atoLabeled block does not depend on the abnormal termination of a
computation insidetoLabeled.

Recovery of unsafe actionsUnlike other dynamic IFC approaches, such as (Askarov & Sabelfeld, 2009;
Sabelfeld & Russo, 2009; Austin & Flanagan, 2009; Austin & Flanagan, 2010; Devriese & Piessens, 2011)),
LIO allows untrusted programs to safely recover from failures due to IFC violation attempts (e.g., trying to
create labeled values below the current label, or read from areference labeled above the current clearance,
etc.) Having a safe handling of exceptions in place, LIO raises a labeled exception when a security
constraint is not fulfilled. This allows untrusted code to catch exceptions and handle monitor failures
gracefully. Consider, for instance, the following function that unlabels aLabeled value and returns a
Maybe value to indicate the success of such operation:

safeUnlabel :: Labeled a → LIO l (Maybe a)

safeUnlabel lv = catch ( do v ← unlabel lv -- Fails if labelOf lv 6⊑Ccur
return (Just v)

) (λ_ → return Nothing)

If the label oflv is above the current clearance, the LIO primitiveunlabel throws an exception. In this
example, however, this exception is caught (since the labelof the exception will beLcur and the exception
handler will simply returnNothing). If the label oflv is below the clearance, the current label is raised
and the unlabeled result is simply returned.

3 λChair

To demonstrate the flexibility of our dynamic information flow library, we presentλChair, a simple API
(built on the examples of Section 2) for implementing secureconference reviewing systems. In general,
a conference reviewing system should support various features (and security policies) that a program
committee can use in the review process. Minimally, it should support:

◮ Paper submission: ability to add new papers to the system.

◮ User creation: ability to dynamically add new reviewers.

◮ User login: a means for authenticating users.

◮ Review delegation: ability to assign reviewers to papers.

◮ Paper reading: means for reading papers.

◮ Review writing: means for writing reviews.

◮ Review reading: means for reading reviews.

◮ Conflict establishment: ability to restrict specific users from reading conflictingreviews.
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Even for such a minimal system, a number of security concernsmust be addressed. First, only users
assigned to a paper may write the corresponding reviews. Second, information from the review of one
paper should not leak into a different paper’s review. And, third, users should not receive any information
on the reviews of the papers with which they are in conflict.

λChair’s API provides the aforementioned security policiesby applying information flow control.
Following the examples of Section 2, we take the approach of enforcing IFC when writing to output
channels, and thus the security for the above policies correspond to that of non-interference, i.e., secret
data is not leaked into less secret channels/reviews. The alternative, clearance-restricting approach of
Section 2 can be used to enforce the security policies by confinement rather than non-interference (see
Section 5). Before delving into the details of theλChair, we first introduce the specific label format used
in the implementation.

3.1 DC Labels

λChair is implemented usingDisjunction-Category (DC) labels(Stefanet al., 2011a). DC labels can be
used to express a conjunction of restrictions on information flow that represents the interests of multiple
stake-holders. As a result, DC labels are especially suitable for systems in which participating parties do
not fully trust each other, e.g., a conference review system.

Policies are expressed by leveraging the notions ofprincipals. In our system, a principal is a string that
represents a source of authority such as a user, group, role,etc. A DC label, written〈S, I〉, consists of two
Boolean formulasSandI over principals. Bothcomponents SandI are minimal formulas in conjunctive
normal form (CNF), with positive terms and clauses sorted togive each formula a unique representation.
ComponentSprotects secrecy by specifying the principals that are allowed (or whose consent is needed)
to observe the data. Dually,I protects integrity by specifying principals who created, vouches for, and
may currently modify the data.

Data may flow between differently labeled entities, but onlyin such a way as to accumulate additional
secrecy restrictions or be stripped in integrity ones, not vice versa. Specifically, the⊑-relation for DC
labels is defined as:

Definition 1(DC label⊑ relation)
For any two DC labels〈S1, I1〉 and〈S2, I2〉,

S2 =⇒ S1 I1 =⇒ I2

〈S1, I1〉 ⊑ 〈S2, I2〉

In other words, data labeled〈S1, I1〉 can flow to an entity labeled〈S2, I2〉 if and only if the secrecy of the
data, and integrity of the entity are preserved. Intuitively, the⊑ relation imposes the restriction that any
set of principals who can observe data afterwards must also have been able to observe it earlier. Dually,
the integrity of the entity is preserved by requiring that the source label impose more restrictions than that
of the destination.

The join and meet for DC labels directly follows from the definition. The join and meet of any two
DC labelsL1 = 〈S1, I1〉 and L2 = 〈S2, I2〉 are respectively:L1 ⊔ L2 = 〈S1∧S2, I1∨ I2〉 and L1 ⊓ L2 =

〈S1∨S2, I1∧ I2〉, where each component of the resulting labels is reduced to CNF.
Intuitively, the secrecy component of the join protects thesecrecy ofL1 and L2 by specifying that

both set of principals, those appearing inS1 and those inS2, must consent for data labeledS1∧S2 to be
observed. Conversely, the integrity component of the join,I1∨ I2, specifies that either principals ofI1 or
I2 could have created and modify the data. Dual properties holdfor the meetL1⊓L2.
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We note that our implementation of DC labels forms a bounded lattice. The least restrictive component
corresponds to the Boolean valueTrue; the most restrictive component corresponds to the Booleanvalue
False. These interpretations allow for a sound definition of the top⊤ and bottom⊥ elements for the DC
label lattice:⊤ = 〈False,True〉, and⊥ = 〈True,False〉. Additionally, in our model, public entities have
the default, oremptylabel,Lpub = 〈True,True〉. It is intuitive that data labeled〈S, I〉 can be written to
a public network with labelLpub, only with the permission of a set of principals satisfying the Boolean
formulaS. Conversely, data read from the network can be labeled〈S, I〉 only with the permission of a set
of principals satisfyingI .

3.2 DC Labels inλChair

We now describe the data structures and the role of DC labels (from now on just labels) inλChair.
Intuitively, the λChair API provides administrators and reviewers with functions for querying review
entries and modifying user accounts. Hence,λChair is implemented as a state monadRevLIO (whose
value constrctorRevLIOTCB is not exported to untrusted code) that stores information on reviews and
users, withLIO as the underlying monad.

The λChairsystem relies on two principal types corresponding topapers and reviews. We identify
papers and reviews according to the unique paper identifier/number. As such, for theith paper the principal
associated with the paper isPi, while the principal associated with the corresponding review isRi .

Review entries A review entry is defined as a record consisting of a paper number, a reference to the
corresponding paper, and a reference to the shared review ‘notebook’. For simplicity, all reviewers append
their review to the same review notebook. The type for such entries is:

data ReviewEnt = ReviewEnt { paperId :: Id -- Paper number

, paper :: DCRef Paper -- Paper content

, review :: DCRef Review } -- Notebook

whereDCRef is a labeled reference using DC labels, i.e.,type DCRef = LIORef DCLabel. Note that this
differs from the examples of Section 2, where the reviews were simplyLabeled values.

Users A reviewer, or user, has a unique user name, password, and twodisjoint sets of paper ids (in our
implementation these are simple lists). One set corresponds to the user’s conflicting papers, the second set
corresponds to the papers the user has been assigned to review. Concretely, we define a user as value of
type:

data User = User { name :: Name -- User name

, password :: Password -- Password

, conflicts :: [Id] -- Conflicting papers

, assignments :: [Id] } -- Paper assigned to review

A user is authenticated given a user name and password as credentials. Following authentication, the
code of the reviewer, who is assigned to papers 1, . . . ,n, is executed with the current label initially set
to 〈True, R1∧·· ·∧Rn〉, whereRi is the principal corresponding to review entryi. The current clearance
is set to⊤ = 〈False, True〉. The secrecy component in the clearance allows the executing code to read
any data; the integrity component of the current label allowthe process to only write to assigned reviews
(detailed below).
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Reading and writing papers After logging in, users are allowed to read and print out any paper by
supplying the paper id. The label of the referencepaper in the ith review entry is set to〈True, Pi〉.
The secrecy component does not restrict any computation from observing the paper by reading the
reference content (the paper). However, the integrity component restricts the modification of theith paper
to computations that own principalPi and can therefore run withPi in the integrity component of its current
label. Only a trusted administrator and the paper submission code is allowed to own such principals. As a
consequence, computations executing on behalf of a reviewer cannot modify the paper since the current
label assigned by the trusted login procedure never includesPi in its integrity component.

Reading and writing reviews A reviewer’s code is also allowed to access the review notebook content
of arbitrary review entries. Once a review has been read, however, its content must not be leaked into
another paper’s review notebook. We fulfill this requirement by identifying, using labels, when a given
piece of code reads a certain review. Concretely, we label the referencereview of the ith review entry as
〈Ri , Ri〉. As a consequence, when a computation wishes to read the review for entryi, it must raise2 it
current label so as to include the principalRi in its components (clearance permitted). Once a computation
has beentaintedas such, it will not be able to modify the contents of another paper’sreview. Such tainted
computations will have a label with principalRi in the secrecy component (as a conjunction) and integrity
component (as a disjunction). Consider, for instance, a computation performing a review of paperi such
that the current label isLi = 〈Ri , Ri〉. If the computation subsequently reads a different review labeled
L j =

〈
Rj , Rj

〉
, the current label is set toL =

〈
Ri ∧Rj , Ri ∨Rj

〉
. To write to the either reviewi or j it

must be that the current label flows to the review labels, i.e., L⊑ Li or L⊑ L j . It is clear that neither flow
restrictions are satisfied, and thus such illegal writes areprevented.

Conflicts Following thereadReview examples of Section 2, we restrict the reading, or more specifically,
printing of a review by those reviewers in conflict with the paper. Although every user is allowed to
retrieve a review, they cannot observe the result unless they write it to an output channel. Hence, code
running on behalf of a user (determined after logging in) canonly write to the output channel (using
printLabelCh) if the current labelL can flow to the output channel labelLo. Using the set of conflicting
paper ids, for every user, we dynamically assign the output channel labelLo = 〈So, True〉, whereSo =

R1∧·· · ∧Rn∧ (Rn+1∨#CONFLICT)∧·· · ∧ (RN ∨#CONFLICT) andRi , i = n+1, . . . ,N are the principals
corresponding toall the review entries in the system (at the point of the print) that the authenticated user is
in conflict with. Here,#CONFLICT corresponds to a principal that none of the users own (similar to Pi used
in the labels of paper references). For each conflicting paper i, we use the disjunctionRi ∨ #CONFLICT

in the channel secrecy component to guarantee that a computation tainted withRi cannot write to the
channel. Suppose a computation running on behalf of a reviewer in conflict with theith paper reads
reviewRi . In this situation, the current label is set toL = 〈Ri ∧·· · , · · ·〉. Subsequent attempts to write to
the output channel will be disallowed sinceL 6⊑ Lo. ForL ⊑ Lo to hold, there must be a clause inLo that
implies Ri. However, when in conflict, the only clause in the secrecy component that containsRi in the
Ri ∨#CONFLICT (and clearlyRi ∨#CONFLICT =⇒ Ri does not hold).

2 We loosely use the term “raise” to mean moving up the securitylattice – this implies more secret, and of lower
integrity in the DC label lattice.
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3.3 Implementation

Having established the underlying data structures and labeling patterns, we present theλChair API. As the
main goal ofλChair is to demonstrate the flexibility and power of our dynamic information flow library,
we do not extend our example to a full-fledged system; the API can, however, be used to build relatively
complex review systems. Below, we present the details of theλChair functions, which return actions in the
RevLIO monad. As previously noted, this monad is a state monad withLIO as the base monad, threading
the system users, review entries, and name of the current user through the computation.

System administrator interface A λChair administrator is provided with several functions that dynam-
ically change the system state. From these functions, we detail the most interesting cases below.

◮ addPaper :: Paper →RevLIO Id

Given a paper, it creates a new review entry for the paper and return the paper id. Internally,addPaper
uses a function similar toaddReview of Section 2.

◮ addUser :: Name →Password →RevLIO ()

Given a unique user name and password, it adds the new user.

◮ addAssignment :: Name →Id →RevLIO ()

Given a user name and paper id, it assigns the user to review the corresponding paper. The user must
not be already in conflict with the paper.

◮ addConflict :: Name →Id →RevLIO ()

Given a user name and paper id, it marks the user as being in conflict with the paper. As above, it must
be the case that the user is not already assigned to review thepaper.

◮ asUser :: Name →RevLIO () →RevLIO ()

Given a user name, and user-constructed piece of code, it first authenticates the user and then executes
the provided code with the current label and clearance of theuser as described in Section 3.2. After the
code is executed, the current label and clearance are restored and any information flow violations are
reported.

Reviewer interface The reviewer, or user, composes an untrustedRevLIO computation (or action) that
the trusted code executes usingasUser. Such actions may be composed using the following interface:

◮ findPaper :: String →RevLIO Id

Given a paper title, it returns its paper id, or fails if the paper is not found.

◮ readPaper :: Id →RevLIO Paper

Given a paper id, the function returns an action which, when executed, returns the paper content.

◮ readReview :: Id →RevLIO ()

Given a paper id, the function returns an action which, when executed, prints the review to the standard
output. Its implementation is similar to the example of Section 2, except that it operates on references.

◮ appendToReview :: Id→Content→RevLIO ()

Given a paper id and a review content, the function returns anaction which, when executed, appends the
supplied content to the review entry. Since there is no direct observation of the current review content,
and to avoid label creep, the function, internally, usestoLabeled.

Figure 1 shows a simple example using theλChair API. In this example, Alice is assigned to review
two papers. She does so by reading each paper (for the second,she also reads the existing reviews) and
appending to the review “notebook”. Bob, on the other hand, is added to the system after Alice’s code is
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module Admin where

import Alice

import Bob

main = evalRevLIO $ do

-- Adding users to system

addUser "Alice" "password"

-- Adding papers to system

p1 ← addPaper "Flexible Dynamic..."

p2 ← addPaper "A Static..."

-- Assign reviewers

addAssignment "Alice" p1

addAssignment "Alice" p2

-- Executing Alice’s code

asUser "Alice" $ aliceCode

-- Adding new users to system

addUser "Bob" "password"

-- Assign reviewers and conflicts

addAssignment "Bob" p2

addConflict "Bob" p1

-- Executing Bob’s code

asUser "Bob" $ bobCode

module Alice where

aliceCode = do

p1 ← findPaper "Flexible Dynamic..."

p2 ← findPaper "A Static..."

readPaper p1

appendToReview p1 "Interesting work!"

readPaper p2

readReview p2

appendToReview p2 "What about adding

new users?"

return ()

module Bob where

bobCode = do

p1 ← findPaper "Flexible Dynamic..."

p2 ← findPaper "A Static..."

appendToReview p2 "Hmm, IFC.."

readReview p1 -- IFC violation attempt

-- (exception raised)

return ()

Fig. 1: An example of code usingλChair API.

executed. Bob first writes a review for the second paper and then attempts to violate IFC by trying to read
(and write to the output channel) the reviews of the first paper. Though his review is appended to the correct
paper, reading the review of the first paper is suppressed. Ofcourse, the IFC violation attempt results in
an exception. Though in this case Bob does not catch the exception, and the exception is propagated to the
trusted API callasUser which handles the exceptions. Note, however, that Bob can safely recover from
such IFC violation attempts. More specifically, the linereadReview p1 can be replaced by:

catch (readReview p1)

(λ_ → writeToBobsLog "In conflict!" )

In this case, Bob’s computation will terminate gracefully and simply write to log when he attempts to read
the first paper’s review.

4 Formal Semantics for LIO

This section formalizes our library for a call-by-nameλ -calculus extended with Booleans, unit values,
pairs, recursion, references, exceptions, and theLIO monadic operations. Figure 1 provides the formal
syntax of the considered language. Syntactic categoriesv, e, andτ represent values, expressions, and types,
respectively. Values are side-effect free while expressions denote (possible) side-effecting computations.
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Figure 1 Formal syntax for values, expressions, and types.

Value: v ::= true | false | () | l | a | X | x | λx.e | (e,e)

| fix e | Lb v e | (e)LIO | Xl | •

Expression: e ::= v | e e| πi e | if ethen eelse e

| let x= ein e | return e | e>>= e

| label e e| unlabel e | toLabeled e e

| newLIORef e e| readLIORef e | writeLIORef e e

| throwLIO e | catch e e

| lowerClr e | getLabel | getClearance

| labelOf e | labelOfRef e

Type: τ ::= Bool | () | τ→ τ | (τ,τ) | ℓ
| Labeled ℓ τ | LIO ℓ τ | Ref ℓ τ | X

Store: φ :Address→ Labeled ℓ τ

Values In the syntax categoryv, symboltrue andfalse represent Boolean values. Symbol() represents
the unit value. Symboll denotes security labels. Symbola represents memory addresses in a given
store. SymbolX represents exceptions. Values include variables (x), functions(λx.e), tuples(e,e), and
recursive functions(fix e). Four special syntax nodes are added to this category:Lb v e, (e)LIO, Xl , and
•. NodeLb v edenotes the run-time representation of a labeled value. Node (e)LIO denotes the run-time
representation of a monadicLIO computation. Similarly nodeXl denotes the run-time representation of a
labeled exception. Node• represents an erased value (explained in Section 5). We notethat none of these
special nodes appear in programs written by users and they are merely introduced for technical reasons.

Expressions Expressions are composed of values(v), function applications(e e), pair projections(πi e),
conditional branches (if e then e else e), and local definitions(let x = e in e). Additionally, ex-
pressions may involve operations related to monadic computations in theLIO monad. More precisely,
return e ande >>= e represent the monadic return and bind operations. Monadic operations related to
the manipulation of labeled values inside theLIO monad are given bylabel, unlabel, andtoLabeled.
Expressionlabel e1 e2 creates a labeled value that guardse2 with label e1. Expressionunlabel e ac-
quires the content of the labeled valueewhile in aLIO computation. ExpressiontoLabeled e1 e2 creates
a labeled value, with labele1, of the result obtained by evaluating theLIO computatione2. Non-proper
morphisms related to creating, reading, and writing of references are respectively captured by expressions
newLIORef, readLIORef, andwriteLIORef. LIO operations may raise exceptions by callingthrowLIO

and catch exceptions withcatch. ExpressionlowerClr e allows lowering of the current clearance to
e. ExpressionsgetLabel andgetClearance return the current label and current clearance of anLIO

computation, respectively. Finally, expressionslabelOf e and labelOfRef e respectively obtain the
security label of labeled values and references.

Types We consider standard types for Booleans(Bool), unit (()), pairs(τ,τ), and function(τ → τ)
values. Typeℓ describes security labels. TypeLabeled ℓ τ describes labeled values of typeτ, where the
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Figure 2 Operational semantics for LIO (part I).

E ::= · · · | return E | E >>= e | labelOf E | labelOfRef E

(RETURN)

〈Σ,E[return v]〉 −→ 〈Σ,E[(v)LIO]〉
(BIND-1)

〈Σ,E[(Xl )
LIO >>= e]〉 −→ 〈Σ,E[(Xl )

LIO]〉

(BIND-2)

v 6= Xl

〈Σ,E[(v)LIO >>= e]〉 −→ 〈Σ,E[e v]〉

(CLAB)

l = Σ.lbl
〈Σ,E[getLabel]〉 −→ 〈Σ,E[return l ]〉

(CCLR)

l = Σ.clr
〈Σ,E[getClearance]〉 −→ 〈Σ,E[return l ]〉

(GLAB)

〈Σ,E[labelOf (Lb l e)]〉 −→ 〈Σ,E[l ]〉

(GLABR)

e= Σ.φ(a)
〈Σ,E[labelOfRef a]〉 −→ 〈Σ,E[labelOf e]〉

label is of typeℓ. TypeLIO ℓ τ represents monadicLIO computations, with a result typeτ and the security
labels of typeℓ. TypeRef ℓ τ describes labeled references, with labels of typeℓ, to values of typeτ. Type
X describes unlabeled exceptions3.

4.1 Dynamic semantics for LIO

TheLIO monad presented in Section 2 is implemented as a state monad.Without loss of generality, we
simplify the formalization and description of expressionsby making the state of the monad part of a
run-time environment. More precisely, for a givenLIO computation, the symbolΣ denotes a run-time
environment that contains the current label, writtenΣ.lbl, the current clearance, writtenΣ.clr, and store,
written Σ.φ . We represent the store as a mapping from memory addresses (a) into labeled values (Lb l e).
A run-time environmentΣ andLIO computation form aconfiguration〈Σ,e〉. Given a configuration〈Σ,e〉,
the current label, clearance, and store when starting evaluation e is given byΣ.lbl, Σ.clr, andΣ.φ ,
respectively.

The relation〈Σ,e〉 −→ 〈Σ′,e′〉 represents a single evaluation step from expressione, under the run-time
environmentΣ, to expressione′ and run-time environmentΣ′—we say thate reduces toe′ in one step. We
write−→∗ for the reflexive and transitive closure of−→. The evaluation relation is defined in terms of a
structured operational semantics via evaluation contexts(Felleisen, 1988).

The reduction rules for standardλ -calculus are self-explanatory and presented in Appendix A. More
interestingly, Figures 2 and 3 present the non-standard evaluation contexts and reduction rules for our
language. These rules guarantee that programs written using our approach fulfill non-interference, i.e.,
confidential information is not leaked, and confinement, i.e., a computation cannot access data above its
clearance.

3 For simplicity, we assume the set of exceptions is limited toa single type.
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Figure 3 Operational semantics for LIO (part II).

E ::= · · · | label E e| unlabel E | toLabeled E e | newLIORef E e

| readLIORef E | writeLIORef E e | throwLIO E | catch E e | lowerClr E

(LAB)

Σ.lbl⊑ l ⊑ Σ.clr
〈Σ,E[label l e]〉 −→ 〈Σ,E[return (Lb l e)]〉

(UNLAB)

l ′ = Σ.lbl⊔ l l ′ ⊑ Σ.clr Σ′ = Σ[lbl 7→ l ′]

〈Σ,E[unlabel (Lb l e)]〉 −→ 〈Σ′,E[return e]〉

(TOLAB-1)

Σ.lbl⊑ l ⊑ Σ.clr
〈Σ,e〉 −→∗ 〈Σ′,(v)LIO〉 Σ′.lbl⊑ l Σ′′ = Σ′[lbl 7→ Σ.lbl,clr 7→ Σ.clr]

〈Σ,E[toLabeled l e]〉 −→ 〈Σ′′,E[label l v]〉

(TOLAB-2)

Σ.lbl⊑ l ⊑ Σ.clr
〈Σ,e〉 −→∗ 〈Σ′,(v)LIO〉 Σ′.lbl 6⊑ l Σ′′ = Σ′[lbl 7→ Σ.lbl,clr 7→ Σ.clr] l ′′ = l ⊔Σ′.lbl

〈Σ,E[toLabeled l e]〉 −→ 〈Σ′′,E[label l X ′l ′′ ]〉

(NREF)

Σ.lbl⊑ l ⊑ Σ.clr Σ′ = Σ.φ [a 7→ Lb l e]

〈Σ,E[newLIORef l e]〉 −→ 〈Σ′,E[return a]〉
a fresh

(RREF)

Σ.φ(a) = Lb l e l′ = Σ.lbl⊔ l l ′ ⊑ Σ.clr Σ′ = Σ[lbl 7→ l ′]

〈Σ,E[readLIORef a]〉 −→ 〈Σ′,E[return e]〉

(WREF)

Σ.φ(a) = Lb l e Σ.lbl⊑ l ⊑ Σ.clr Σ′ = Σ.φ [a 7→ Lb l e′]

〈Σ,E[writeLIORef a e′]〉 −→ 〈Σ′,E[return ()]〉

(THROW)

l = Σ.lbl
〈Σ,E[throwLIO X]〉 −→ 〈Σ,E[(Xl )

LIO]〉

(CATCH-1)

l ′ = Σ.lbl⊔ l l ′ ⊑ Σ.clr Σ′ = Σ[lbl 7→ l ′]

〈Σ,E[catch (Xl )
LIO e]〉 −→ 〈Σ′,E[e X]〉

(CATCH-2)

v 6= Xl

〈Σ,E[catch (v)LIO e]〉 −→ 〈Σ,E[(v)LIO]〉

(LWCLR)

Σ.lbl⊑ l ⊑ Σ.clr Σ′ = Σ[clr 7→ l ]

〈Σ,E[lowerClr l ]〉 −→ 〈Σ′,E[return ()]〉

Rules in Figure 2 are self-explanatory, e.g., the evaluation rules forreturn and(>>=) are standard and
labeled exceptions are propagated by (>>=) (rule (BIND-1)). Rule (LAB) of Figure 3 generates a labeled
value if and only if the label is between the current label andclearance of theLIO computation. Rule
(UNLAB) provides a method for accessing the contente of a labeled valueLb l e in LIO computations.
When the content of a labeled value is retrieved and used in anLIO computation, the current label is raised
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(Σ′ = Σ[lbl 7→ l ′], wherel ′ = Σ.lbl⊔ l ), capturing the fact that the remaining computation might depend
one. Of course, the current label should not exceed clearance (l ′ ⊑ Σ.clr).

The reduction oftoLabeled deserves some attention. ExpressiontoLabeled l e is used to execute a
computatione to completion4 (〈Σ,e〉 −→∗ 〈Σ′,(v)LIO〉) and wrap the resultv into a labeled value whose
label is l . Specifying labell is the responsibility of the programmer. We note, however, that the label
l needs to be an upper bound on the current label for the evaluation of computatione (Σ′.lbl ⊑ l ), a
restriction imposed in (TOLAB-1). The reason for this is due to the fact that security labels are protected
by the current label, effectively making them public information accessible to any computation within
scope (see rules (GLAB) and (GLABR)). As a consequence, atoLabeled that does not impose an upper
bound on the sensitivity of the data observed bye is susceptible to attacks. To illustrate this point, consider
a computation with current label isl0, that takes two (confidential) labeled values with respective labels
l1 andl2 such thatl i 6⊑ l0, i = 1,2. (Recall that the current label and clearance of a givenLIO computation
can be changed dynamically.) Further, suppose thattoLabeled does not take an upper-bound on the
computation’s observations. Directly, the following program can be used to leak sensitive information:

leak lV1 lV2 = do -- Initial label Lcur = l0
lV3 ← toLabeled $ do -- Label of lV3 may be:

v1 ← unlabel lV1 -- Read first value, raise label to Lcur = l1
if v1 then return True -- If value is, leave current label Lcur = l1

else unlabel lV2 -- Otherwise, the current label to Lcur = l2
return (labelOf lV3) -- Can be l1 or l2

Note that, if the returned value of the inner computation canhave the labell1 or l2 (remember that
labels are effectively public information), information is directly leaked! Hence, to prevent such leaks,
programmers must provide an upper-bound on the current label obtained whene finishes computing.
Since our approach is dynamic, flow-sensitive, and sound, this may require non-trivial static analysis in
order to automatically determine the label for each call oftoLabeled (Russo & Sabelfeld, 2010).

However, if the inner computation does read data more sensitive thanl , such that the end current label
Σ′.lbl 6⊑ l , rule (TOLAB-2) specifies that an exception labeled with the join of the upper-boundl andΣ′

must be raised when performing an unlabel—hence, we return alabeled value that encloses an exception.
Note that an exception isnot raised at the point of evaluatingtoLabeled, but rather when the labeled
value is unlabeled, and the current label is raised (see (UNLAB )).

When creating a reference,newLIORef l e produces a labeled value that guardse with label l and
stores it in the memory store (Σ′ = Σ.φ [a 7→ Lb l e]). The result of this operation is the memory addressa
(return a). Observe that references are created only if the reference’s label (l ) is between the current label
and clearance label (Σ.lbl ⊑ l ⊑ Σ.clr). As in (LAB), the restrictionl ⊑ Σ.clr assures that programs
cannot manipulate or access data beyond their clearance. Section 5 further details such confinement
guarantees. Rule (RREF) obtains the contente of a labeled valueLb l e stored in at addressa. This rule
raises the current label to the security levell ′ (Σ′ = Σ[lbl 7→ l ′] wherel ′ = Σ.lbl⊔ l ). As in the previous
rule, (RREF) enforces that the result of reading a reference is below theclearance (l ′⊑Σ.clr). Finally, rule
(WREF) updates the memory store with a new value for the reference (Σ′= Σ.φ [a 7→ Lb l e′]) as long as the
label of the reference is above the current label and it does not exceed the clearance (Σ.lbl⊑ l ⊑ Σ.clr).

4 By using big-step semantics instead of an evaluation context of the formtoLabeled l E, the rules do not need
to rely on the use of trusted primitives or a stack for (savingand) restoring the current label and clearance when
executingtoLabeled.



Flexible Dynamic Information Flow Control in the Presence of Exceptions 19

If consideringΣ.lbl as a dynamic version of thepc the restriction that the label of the reference must be
above the current label (Σ.lbl⊑ l ) is similar to the one imposed by (Pottier & Simonet, 2002).

Throwing and catching exceptions is standard. AnLIO computation may raise an exception according
to rule (THROW). The label of the raised exception is set to the current label. To handle exceptions raised
in a computatione1, a computation can execute the computation ascatch e1 e2, wheree2 corresponds
to the exception handler. If no exception is raised, then rule (CATCH-2) simply propagates the value.
However, if an exception is raised, and according to rule (CATCH-1), the current label is raised (clearance
permitting) to the label of the exception and the exception handler is applied to the unlabeled exception.
It is important to note that although our formalization of exceptions is limited to a single type, exceptions
in LIO can encode information, similar to our encoding of thecurrent label at the point of the throw.

Rule (LWCLR) allows a computation to lower the current clearance tol . This operation is particularly
useful when trying to contain the access to some data as well as the effects produced by computations
executed bytoLabeled. Rules (CLAB) and (CCLR) obtain the current label and clearance from the run-
time environment. Finally, rules (GLAB) and (GLABR) return the labels of labeled values and references.
Observe that, regardless of the current label and clearanceof the run-time environment, these two rules
always succeed—hence “labels are public”.

Addressing IFC violation attempts Most of the evaluation rules in Figure 3 have a premise that imposes
an information flow restriction. For example, rule (LAB) imposes the restriction that no labeled values may
be labeled with a label below the current label or above the current clearance. As previously mentioned,
rather than imposing that the evaluation of a misbehaving program gets “stuck”, we allow untrusted code
to recover by throwing a monitor exception. Specifically, weintroduce a “violation rule” for each rule
that consists on the rule’s premise being negated and alwaysevaluating to athrowLIO. For example, the
violation rule for rule (LAB) is given by:

(¬LAB)

¬(Σ.lbl⊑ l ⊑ Σ.clr)
〈Σ,E[label l e]〉 −→ 〈Σ,E[throwLIO X]〉

The remaining rules are similar and omitted for brevity.

4.2 Static semantics for LIO

Figure 4 shows the typing rules for a subset of the terms and expressions; the remaining rules are shown
in Appendix A. The typing rules are standard and we thereforedo not describe them further. We note,
however, that, unlike previous work (Russoet al., 2008; Devriese & Piessens, 2011), we do not require
the use of any sophisticated features from Haskell’s type-system, a direct consequence of our dynamic
approach.

5 Soundness

In this section we show thatLIO computations satisfy two security policies: non-interference and confine-
ment. Non-interference shows that secrets are not leaked, while confinement establishes that certain pieces
of code cannot manipulate or have access to certain data. Thelatter policy is similar to the confinement
policies presented in (Leroy & Rouaix, 1998; Banerjee & Naumann, 2005).
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Figure 4 Typing rules for subset of terms and expressions.

⊢ l : ℓ
Γ(a) = Labeled ℓ τ

Γ ⊢ a : Ref ℓ τ
Γ ⊢ X : X

Γ ⊢ e1 : ℓ Γ ⊢ e2 : τ
Γ ⊢ Lb e1 e2 : Labeled ℓ τ

Γ ⊢ e : τ
Γ ⊢ (e)LIO : LIO ℓ τ

Γ ⊢ e : ℓ Γ ⊢ X : X

Γ ⊢ Xe : τ
Γ ⊢ • : τ

Γ ⊢ e1 : ℓ Γ ⊢ e2 : τ
Γ ⊢ label e1 e2 : LIO ℓ (Labeled ℓ τ)

Γ ⊢ e : Labeled ℓ τ
Γ ⊢ unlabel e : LIO ℓ τ

Γ ⊢ e1 : ℓ Γ ⊢ e2 : LIO ℓ τ
Γ ⊢ toLabeled e1 e2 : LIO ℓ (Labeled ℓ τ)

Γ ⊢ e1 : ℓ Γ ⊢ e2 : τ
Γ ⊢ newLIORef e1 e2 : LIO ℓ (Ref ℓ τ)

Γ ⊢ e : Ref ℓ τ
Γ ⊢ readLIORef e : LIO ℓ τ

Γ ⊢ e1 : Ref ℓ τ Γ ⊢ e2 : τ
Γ ⊢ writeLIORef e1 e2 : LIO ℓ ()

Γ ⊢ e : X

Γ ⊢ throwLIO e : LIO ℓ τ

Γ ⊢ e1 : LIO ℓ τ Γ ⊢ e2 : X→ LIO ℓ τ
Γ ⊢ catch e1 e2 : LIO ℓ τ

Γ ⊢ e : ℓ

Γ ⊢ lowerClr e : LIO ℓ ()
⊢ getLabel : LIO ℓ ℓ

⊢ getClearance : LIO ℓ ℓ
Γ ⊢ e : Lb ℓ τ

Γ ⊢ labelOf e : ℓ

Γ ⊢ e : Ref ℓ τ
Γ ⊢ labelOfRef e : ℓ

5.1 Non-interference

As in (Li & Zdancewic, 2010; Russoet al., 2008), we prove the non-interference property by using the
technique ofterm erasure. Intuitively, data at security levels where the attacker cannot observe information
can be safely rewritten to the syntax node•. For the rest of the paper, we assume that the attacker can
observe data up to security levelL. The syntactic term•, denoting an erased expression, may be associated
to any type (recall Figure 9). FunctionεL is responsible for performing the rewriting for data at security
level not lower thanL. In most of the cases, the erasure function is simply appliedhomomorphically (e.g.,
εL(if E then e else e′) = if εL(E) then εL(e) else εL(e′)). In the case of data constructors, it is
simply the identity function. The definition ofεL for expressions and evaluation contexts are shown in
Appendix B. Figure 5 shows the definition ofεL for terms, configurations, and bind. The three interesting
cases for this function are whenεL is applied to a labeled value, a given configuration, or bind.In such
cases, term erasing could indeed modify the behavior of the program. A labeled value is erased if the label
assigned to it is above5 L (εL(Lb l e) = Lb l •, if l 6⊑ L). Similarly, the computation performed in a certain
configuration is erased if the current label is aboveL (εL(〈Σ,e〉) = 〈εL(Σ),•〉 if Σ.lbl 6⊑ L). Finally, if εL

is applied to a bind-expression where the action evaluates to a labeled exception with labell andl 6⊑ L,
then the expression is fully erase to(•)LIO.

5 We loosely use the word “above” to mean6⊑, since labels may not be comparable.
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Figure 5 Erasure function for terms, memory store, configurations and bind-expression.

εL(true) = true εL(false) = false εL(()) = () εL(l) = l εL(a) = a εL(x) = x

εL(λx.e) = λx.εL(e) εL((e,e)) = (εL(e),εL(e)) εL(fix e) = fix εL(e)

εL(Lb l e) =

{
Lb l • l 6⊑ L
Lb l εL(e) otherwise

εL((e)
LIO) = (εL(e))

LIO εL(•) = •

εL(Σ.φ) = {(x,εL(Σ.φ(x)) : x∈ dom(Σ.φ)}
εL(Σ) = Σ[φ 7→ εL(Σ.φ)]

εL(〈Σ,e〉) =
{
〈εL(Σ),•〉 Σ.lbl 6⊑ L
〈εL(Σ),εL(e)〉 otherwise

εL(X) = X εL(Xl ) =

{
• l 6⊑ L
Xl otherwise

εL(e1 >>= e2) =

{
(•)LIO e1 = (Xl )

LIO andl 6⊑ L
εL(e1) >>= εL(e2) otherwise

Following the definition of the erasure function, we introduce a new evaluation relation−→L as follows:

Definition 2(−→L)

〈Σ,e〉 −→ 〈Σ′,e′〉
〈Σ,e〉 −→L εL(〈Σ′,e′〉)

Expressions under this relationship are evaluated in the same way as before, with the exception that,
after one evaluation step, the erasure function is applied to the resulting configuration, i.e., run-time
environment and expression. In that manner, the relation−→L guarantees that confidential data, i.e., data
not below levelL, is erased as soon as it is created. We write−→∗L for the reflexive and transitive closure
of −→L.

〈Σ,e〉 −−−−→∗ 〈Σ′,e′〉


yεL



yεL

εL(〈Σ,e〉) −−−−→∗L εL(〈Σ′,e′〉)

Fig. 6: Simulation between−→∗ and−→∗L.

Most results that prove non-interference pursue the
goal of establishing a relationship between−→∗ and−→∗L
through the erasure function, as highlighted in Figure 6.
Informally, the diagram establishes that erasing all secret
data, i.e., data not belowL, and then taking evaluation
steps in−→L is the same as taking steps in−→ and then
erasing all the secret values in the resulting configuration.
Observe that if information from some level aboveL is
leaked bye, then erasing all secret data and then taking
evaluation steps in−→L might not be the same as taking
steps in−→ and then erasing all the secret values in the resulting configuration.

For simplicity, we assume that the address space of the memory store is split into different security
levels and that allocation is deterministic. In that manner, the address returned when creating a reference
with level l depends only on the references with levell already in the store. These assumptions are valid
in our language since, similar to traditional references inHaskell, we do not provide any mechanisms for
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deallocation or inspection of addresses in the API. However, when memory allocation is an observable
channel, the library could be adapted in order to deal with non-opaque pointers (Hedin & Sands, 2006).

We start by showing that the evaluation relationships−→ and−→L are deterministic. Firstly, however,
we note thate= e′ means syntactic equality between expressionse ande′ and equality between run-time
environments, writtenΣ = Σ′, is defined as the point-wise equality between mappingsΣ andΣ′.

Proposition 1(Determinacy of−→)
◮ For any expressione and run-time environmentΣ such that〈Σ,e〉 −→ 〈Σ′,e′′〉, there is a unique

terme′ and unique evaluation contextE such thate= E[e′].
◮ If 〈Σ,e〉 −→ 〈Σ′,e′〉 and〈Σ,e〉 −→ 〈Σ′′,e′′〉, thene′ = e′′ andΣ′ = Σ′′.

Proof
By induction on expressions and evaluation contexts.

Proposition 2(Determinacy of−→L)
If 〈Σ,e〉 −→L 〈Σ′,e′〉 and〈Σ,e〉 −→L 〈Σ′′,e′′〉, thene′ = e′′ andΣ′ = Σ′′.

Proof
From Proposition 1 and definition ofεL.

The following proposition shows that the erasure function is homomorphic to the application of evalu-
ation contexts and substitution as well as that it is idempotent.

Proposition 3(Properties of erasure function)
1. εL(E[e]) = εL(E)[εL(e)] 4. εL(εL(E)) = εL(E)
2. εL([e2/x]e1) = [εL(e2)/x]εL(e1) 5. εL(εL(Σ)) = εL(Σ)
3. εL(εL(e)) = εL(e) 6. εL(εL(〈Σ,e〉)) = εL(〈Σ,e〉)

Proof
Most cases follow by induction on expressions and evaluation contexts, see Appendix C for details.

The next lemma establishes a simulation between−→ and−→L for expressions that do not execute
toLabeled.

Lemma 1(Single-step simulation withouttoLabeled )
If Γ ⊢ e : τ and〈Σ,e〉 −→ 〈Σ′,e′〉 wheretoLabeled is not executed, thenΓ ⊢ e′ : τ andεL(〈Σ,e〉) −→L

εL(〈Σ′,e′〉).

Proof
Part of the lemma shows subject reduction, which is proved byshowing that a reduction step does not
change the types of references in the storeΣ.φ and then applying induction on the typing derivations.
The simulation follows by induction on evaluation contextsand case analysis on terms and expressions.
Details are presented in Appendix C.

Using this lemma, we then show that the simulation is preserved when performing several evaluation
steps.

Lemma 2(Simulation for expressions not executingtoLabeled )
If Γ⊢ e: τ, 〈Σ,e〉−→∗ 〈Σ′,e′〉where there are no executions oftoLabeled, thenΓ⊢ e′ : τ andεL(〈Σ,e〉)−→∗L
εL(〈Σ′,e′〉).

Proof
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By induction on−→ and application of Lemma 1.

The reason for highlighting the distinction between expressions executingtoLabeled and those not
executing it is due to the fact that the evaluation oftoLabeled involves big-step semantics (recall rules
(TOLAB-1) and (TOLAB-2) in Figure 3). However, the next lemma shows the simulation between−→∗

and−→∗L for any expressione.

Lemma 3(Simulation)
If Γ ⊢ e : τ and〈Σ,e〉 −→∗ 〈Σ′,e′〉 thenεL(〈Σ,e〉)−→∗L εL(〈Σ′,e′〉).

Proof
Lemma 2 shows the multi-step simulation for expressions that do not executetoLabeled. Thus, to show
the general multi-step simulation, we first prove thattoLabeled preserves the simulation by induction
on the number of executedtoLabeled. The general simulation follows directly. The interested reader is
referred to Appendix C.

Figure 7 L-equivalence for expressions.

e≈L e′ l ⊑ L

Lb l e≈L Lb l e′
l 6⊑ L

Lb l e≈L Lb l e′

We defineL-equivalence between expressions. Intuitively, two expressions areL-equivalent if they are
syntactically equal, modulo labeled values whose labels donot flow to L. We use≈L to representL-
equivalence for expressions. Figure 7 shows the definition for labeled values. Considering the simple
lattice: L ⊑ M ⊑ H and an attacker at levelL, it holds thatLb H 8≈L Lb H 9, but it does not hold that
Lb L 2≈L Lb L 3 or Lb H 8≈L Lb M 8. Recall that labels are protected by the current label, andthus
(usually) observable by an attacker — unlike the expressions they protect, labels must be the same even if
they are aboveL. The rest of≈L is defined as syntactic equality between constants (e.g.,true≈L true) or
homomorphisms (e.g.,if ethen e1 else e2≈L if e′ then e′1 else e′2 if e≈L e′, e1≈L e′1, ande2≈L e′2).

Since our language encompasses side-effecting expressions, it is also necessary to defineL-equivalence
between memory stores. Specifically, we say that two run-time environments areL-equivalent if an at-
tacker at levelL cannot distinguish them:

Definition 3(L-equivalence for stores)

l ⊑ L∨ l ′ ⊑ L ∀a.Σ.φ(a) = Lb l e≈L Σ′.φ(a) = Lb l ′ e′

Σ.φ ≈L Σ′.φ
Note that theL-equivalence ignores the store references with labels above L. Similarly, we defineL-
equivalence for configurations.

Definition 4(L-equivalence for configurations)

e≈L e′ Σ.φ ≈L Σ′.φ Σ.lbl= Σ′.lbl Σ.clr= Σ′.clr Σ.lbl⊑ L

〈Σ,e〉 ≈L 〈Σ′,e′〉

Σ.φ ≈L Σ′.φ Σ.lbl 6⊑ L Σ′.lbl 6⊑ L

〈Σ,e〉 ≈L 〈Σ′,e′〉
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In the above definition, it is worth remarking that we do not require≈L for expressions when the current
label does not flow toL. This omission comes from the fact thate ande′ would be reduced to• when
applying our simulation between−→∗ and−→∗L (recall Figure 5).

The next theorem shows the non-interference policy. It essentially states that given two inputs with
possibly secret information, the result of the computationis indistinguishable to an attacker. In other
words, there is no information-flow from confidential data tooutputs observable by the attacker.

Theorem 1(Non-interference)
Given a computatione (with no •, ( )LIO, Lb, or Xl ) whereΓ ⊢ e : Labeled ℓ τ → LIO ℓ (Labeled ℓ τ ′),
environmentsΣ1 andΣ2 whereΣ1.φ = Σ2.φ = /0, security labell , an attacker at levelL such thatl ⊑ L,
then

∀e1e2.(Γ ⊢ ei : Labeled ℓ τ)i=1,2∧ (ei = Lb l e′i)i=1,2∧〈Σ1,e1〉 ≈L 〈Σ2,e2〉

∧ 〈Σ1,e e1〉 −→
∗ 〈Σ′1,(v1)

LIO〉∧ 〈Σ2,e e2〉 −→
∗ 〈Σ′2,(v2)

LIO〉

=⇒ 〈Σ′1,(v1)
LIO〉 ≈L 〈Σ′2,(v2)

LIO〉

Proof
From Lemma 3 and determinacy of−→∗L. The details are shown in Appendix C.

Observe that even though we assume that the input labeled valuese1 ande2 are observable by the attacker
(l ⊑ L), they might contain confidential data. For instance,e1 could be of the formLb l (Lb l ′ true) where
l ′ 6⊑ L.

5.2 Confinement

In this section we present the formal guarantees thatLIO computations cannot modify data below their
current label or above their current clearance.

We start by proving that the current label of anLIO computation does not decrease.

Proposition 4(Monotonicity of the current label)
If Γ ⊢ e : τ and〈Σ,e〉 −→∗ 〈Σ′,e′〉, thenΣ.lbl⊑ Σ′.lbl.

Proof
By induction on expressions, evaluation contexts, and reduction rules.

Similarly, we show that the current clearance of anLIO computation never increases.

Proposition 5(Monotonicity of the current clearance)
If Γ ⊢ e : τ and〈Σ,e〉 −→∗ 〈Σ′,e′〉, thenΣ′.clr⊑ Σ.clr.

Proof
By induction on expressions, evaluation contexts, and reduction rules.

Proposition 4 and 5 are crucial to assert that once anLIO computation reads confidential data, it cannot
lower its current label to leak it. Similarly, a computationshould not be able to arbitrarily increase its
clearance; doing so would allow it to read any data with no access restrictions.

Before delving into the confinement theorems, we first define astore modifier that removes all store
elements with a label that does not flow tol .

Definition 5(Label-based reference-cell removal)
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Modifier (Σ.φ)↓l retains all the labeled references with a label belowl , usually the current label:

(Σ.φ)↓l = Σ.φ \ {(a,Lb l ′ e) : a∈ dom(Σ.φ)∧ l ′ 6⊑ l}

And, dually, a store modifier that removes all store elementsbelow a given clearancel .

Definition 6(Clearance-based reference-cell removal)

(Σ.φ)↑l = Σ.φ \ {(a,Lb l ′ e) : a∈ dom(Σ.φ)∧ l 6⊑ l ′}

This store modifier retains all the labeled references with alabel that is not belowl , usually the current
clearance. We now present the first confinement theorem.

Theorem 2(Store confinement)
Given labelsl and lc, a computatione (with no •, a, ( )LIO, Lb, or Xl ′ ) such thatΓ ⊢ e : LIO ℓ τ, and
environmentΣ[lbl 7→ l ,clr 7→ lc] wherel ⊑ lc, then

〈Σ,e〉 −→∗ 〈Σ′,(v)LIO〉 =⇒ (Σ.φ)↓l = (Σ′.φ)↓l ∧ (Σ.φ)↑lc = (Σ′.φ)↑lc

Proof
By contradiction on creating and modifying labeled references with labels not boded by the current label
and clearance, using Propositions 4 and 5.

Intuitively, this theorem states that no new references with a label not bounded by the initial current label
and current clearance can be created. And, computatione is confined to modifying references betweenl
andlc.

Our second confinement theorem states that a return labeled value comes either from some part of the
store (recall that labeled values can be nested) or might be computed when its security level is between
the current label and clearance.

Theorem 3(Labeled creation confinement)
Given labelsl , lc, andlv, a computatione(with no•, a, ( )LIO, Lb, orXl ′ ) whereΓ⊢ e: LIO ℓ (Labeled ℓ τ),
and environmentΣ[lbl 7→ l ,clr 7→ lc] such thatl ⊑ lc, then

〈Σ,e〉 −→∗ 〈Σ′,(Lb lv e1)
LIO〉 =⇒ l ⊑ lv⊑ lc∨∃(a,Lb l1 e′1) ∈ Σ.φ .Lb lv e1 ǫ̃ e′1∧ l1⊑ lc

Here, operator̃ǫ is defined as the syntactic appearance of the left-hand expression into the right-hand side
operand.

Proof
By induction on expressions and evaluation contexts and using Propositions 4 and 5.

6 Related Work

Heintze and Riecke (Heintze & Riecke, 1998) consider security for lambda-calculus where lambda-terms
are explicitly annotated with security labels, for a type-system that guarantees non-interference. One
of the key aspects of their work consists of an operator whichraises the security annotation of a term
in a similar manner to our raise of the current label when manipulating labeled values. Similar ideas of
floating labels have been used by many operating systems, dating back to the High-Water-Mark security
model (Landwehr, 1981) of the ADEPT-50 in the late 1960s. Asbestos (Efstathopouloset al., 2005) first
combined floating labels with the Decentralized label model(Myers & Liskov, 1997).
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Abadi et al. (Abadiet al., 1999) develop the dependency core calculus (DCC) based on ahierarchy of
monads to guarantee non-interference. In their calculus, they define a monadic type that “protects” (the
confidentiality of) side-effect-free values at different security levels. Though not a monad, ourLabeled

type similarly protects pure values at various security levels. To manipulate such values, DCC uses a
non-standard typing rule for the bind operator; the essenceof this operator, in a dynamic setting with
side-effectful computations, is captured in our library through the interaction of ofLabeled, unlabel,
andLIO.

Tse and Zdancewic (Tse & Zdancewic, 2004) translate DCC to System F and show that non-interference
can be stated using the parametricity theorem for System F. The authors also provide a Haskell implemen-
tation for a two-point lattice. Their implementation encodes each security level as an abstract data type
constructed from functions and binding operations to compose computations with permitted flows. Since
they consider the same non-standard features for thebind operation as in DCC, they provide as many
definitions forbind as different type of values produced by it. Moreover, their implementation needs to
be compiled with the flag-fallow-undecidable-instances, in GHC. Our work, in contrast, defines
only one bind operation forLIO, without the need for such compiler extensions.

Harrison and Hook show how to implement an abstract operating system calledseparation kernel
(Harrison, 2005). Programs running under this multi-threading operating system satisfy non-interference.
To achieve this, the authors rely on the state monad to represent threads, monad transformers to present
parallel composition, and the resumption monad to achieve communication between threads. Conse-
quently, non-interference is enforced by the scheduler implementation, which only allow signaling threads
at the same, or higher, security level as the thread that issued the signal. The authors use monads differently
from us; their goal is to construct secure kernels rather than provide information-flow security as a library.
Our library is simpler and more suitable for writing sequential programs in Haskell. Extending our library
to include concurrency is stated as a future work.

Crary et al. (Craryet al., 2005) design a monadic calculus for non-interference for programs with mu-
table state. Similar to our work, their language distinguishes between term and expressions, where terms
are pure and expressions are (possibly) effectful computations. Their calculus mainly tracks information
flow by statically approximating the security levels of effects produced by expressions. Compared to
their work, we only need to make approximations of the side-effects of a given computation when using
toLabeled; the state ofLIO keeps track of the dynamic security level upper bound of observed data.
Overall, our dynamic approach is more flexible and permissive than their proposed type-system.

Pottier and Simonet (Pottier & Simonet, 2002; Simonet, 2003) designed FlowCaml, a compiler to en-
force non-interference for OCaml programs. Rather than implementing a compiler from scratch, and more
similar to our approach, the seminal work by Li and Zdancewic(Li & Zdancewic, 2006) presents an
implementation of information-flow security as a library, in Haskell, using a generalization of monads
called Arrows (Hughes, 2000). Extending their work, Tsai etal. (chung Tsaiet al., 2007) further consider
side-effects and concurrency. Contributing to library-based approaches, Russo et al. (Russoet al., 2008)
eliminate the need for Arrows by showing an IFC library basedsolely on monads. Their library defines
monadic types to track information-flow in pure and side-effectful computations. Compared to our dy-
namic IFC library, Russo et al.’s library is slightly less permissive and leverages Haskell’s type-system
to statically enforce non-interference. However, we note that our library has similar (though dynamic)
functions provided by their SecIO library; similar tounlabel, they provide a function that maps pure
labeled values into side-effectful computations; similarto toLabeled, they provide a function that allows
reading/writing secret files into computations related to public data.
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Morgenstern et al. (Morgenstern & Licata, 2010) encoded an authorization- and IFC-aware program-
ming language in Agda. Their encoding, however, does not consider computations with side-effects.
More closely related, Devriese and Piessens (Devriese & Piessens, 2011) used monad transformers and
parametrized monads (Atkey, 2006) to enforce non-interference, both dynamically and statically. How-
ever, their work focuses on modularity (separating IFC enforcement from underlying user API), using
type-class level tricks that make it difficult to understanderrors triggered by insecurities. Moreover,
compared to our work, where programmers write standard Haskell code, their work requires one to firstly
encode programs as values of a specific type.

Compared to other language-based works, LIO uses the notionof clearance. The work of Bell and
La Padula (Bell & Padula, 1976) formalized clearance as a bound on the current label of a particular users’
processes. In the 1980s, clearance became a requirement forhigh-assurance secure systems purchased by
the US Department of Defense (Department of Defense, 1985).More recently, HiStar (Zeldovichet al., 2006)
re-cast clearance as a bound on the label of any resource created by the process (where raising a process’s
label is but one means of creating a something with a higher label). We adopt HiStar’s more stringent
notion of clearance, which prevents software from copying data it cannot read and facilitates bounding
the time during which possibly untrustworthy software can exploit covert channels.

Simultaneously to this work, Hedin and Sabelfeld have recently published a dynamic information-flow
monitor for a core part of Javascript which handles exceptions (Hedin & Sabelfeld, 2012). Their approach
needs to explicitly mark in the code (through non-standard constructors) which exceptions are thrown
under a secret branch. Our approach, in contrast, simple raises an exception labeled with the current label.

7 Conclusion

We propose a new design point for IFC systems in which most values in lexical scope are protected by a
single, mutable,current label, yet one can also encapsulate and pass around the results of computations
with different labels. Unlike other language-based work, our model provides a notion ofclearancethat
imposes an upper bound on the program label, thus providing aform of discretionary access control on
portions of the code.

We prove information flow and integrity properties of our design and describe LIO, an implementation
of the new model in Haskell. LIO, which can be implemented entirely as a library, demonstrates both the
applicability and simplicity of the approach. We show the capabilities of the library to perform secure
side-effects (e.g., references) as well as safely handle exceptions. Our non-interference theorem proves
the conventional property that lower-level results do not depend on higher-level inputs – the label system
prevents inappropriate flow of information. We also prove confinement theorems that show the effect of
clearance on the behavior of code. In effect, lowering the clearance imposes a discretionary form of access
control by preventing subsequent code (within that scope) from accessing higher-level information.

As an illustration of the benefits and expressive power of this system, we describe a reviewing system
that uses LIO labels to manage integrity and confidentialityin an environment where users and labels
are added dynamically. Although we have use LIO for theλChair API and even built a relatively large
web-framework that securely integrates untrusted third-party applications, we believe that changes in the
constructs are likely to occur as the language matures. Thisfurther supports our library-based approach to
language-based security.
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A Standard Static and Dynamic Semantics

For completeness, in this section, we provide the evaluation and typing rules for standard terms and
expressions. Figure 8 defines the set of evaluation contextsand reduction rules for standard constructs
in our language. Substitution([e1/x] e2) is defined in the usual way: homomorphic on all operators and
renaming bound names to avoid captures. Figure 9 describes the typing rules for terms; Figure 10 describes
the typing rules for expressions.

Figure 8 Operational semantics for standard terms.

E ::= [·] | Lb E e | E e| πi E | if E then eelse e

〈Σ,E[(λx.e1) e2]〉 −→ 〈Σ,E[[e2/x]e1]〉

〈Σ,E[fix e]〉 −→ 〈Σ,E[e (fix e)]〉

〈Σ,E[πi (e1,e2)]〉 −→ 〈Σ,E[ei ]〉

〈Σ,E[if true then e1 else e2]〉 −→ 〈Σ,E[e1]〉

〈Σ,E[if false then e1 else e2]〉 −→ 〈Σ,E[e2]〉

〈Σ,E[let x= e1 in e2]〉 −→ 〈Σ,E[[e1/x]e2]〉

Figure 9 Typing rules for standard terms.

⊢ true : Bool ⊢ false : Bool ⊢ () : ()
Γ(x) = τ
Γ ⊢ x : τ

Γ[x 7→ τ1] ⊢ e : τ2

Γ ⊢ λx.e : τ1→ τ2

Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ (e1,e2) : (τ1,τ2)

Γ ⊢ e : τ→ τ
Γ ⊢ fix e : τ

Γ ⊢ e : τ
Γ ⊢ (e)LIO : LIO ℓ τ

Γ ⊢ • : τ

Figure 10 Typing rules for standard expressions.

Γ ⊢ e1 : τ1→ τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2

Γ ⊢ e : (τ1,τ2)

Γ ⊢ πi e : τi

Γ ⊢ e1 : Bool Γ ⊢ e2 : τ Γ ⊢ e3 : τ
Γ ⊢ if e1 then e2 else e3 : τ

Γ ⊢ e1 : τ1 Γ[x 7→ τ1] ⊢ e2 : τ2

Γ ⊢ let x= e1 in e2 : τ2

Γ ⊢ e : τ
Γ ⊢ return e : LIO ℓ τ

Γ ⊢ e1 : LIO ℓ τ1 Γ ⊢ e2 : τ1→ LIO ℓ τ2

Γ ⊢ e1 >>= e2 : LIO ℓ τ2
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B Erasure function

In this section we define the erasure functionεL, introduced in Section 5 for the remaining expressions
(Figure 11) and evaluation contexts (Figure 12).

Figure 11Erasure function for expressions.

εL(e e) = εL(e) εL(e) εL(πi e) = πi εL(e)

εL(if ethen eelse e) = if εL(e) then εL(e) else εL(e)

εL(let x= ein e) = let x= εL(e) in εL(e) εL(return e) = return εL(e)

εL(label e e) = label εL(e) εL(e) εL(unlabel e) = unlabel εL(e)

εL(toLabeled e e) = toLabeled εL(e) εL(e) εL(newLIORef e e) = newLIORef εL(e) εL(e)

εL(readLIORef e) = readLIORef εL(e) εL(writeLIORef e e) = writeLIORef εL(e) εL(e)

εL(throwLIO e) = throwLIO εL(e) εL(catch e e) = catch εL(e) εL(e)

εL(lowerClr e) = lowerClr εL(e) εL(getLabel) = getLabel

εL(getClearance) = getClearance εL(labelOf e) = labelOf εL(e)

εL(labelOfRef e) = labelOfRef εL(e)

Figure 12Erasure function for evaluation contexts.

εL(Lb E e) = Lb εL(E) εL(e) εL(E e) = εL(E) εL(e) εL(πi E) = πi εL(E)

εL(if E then eelse e) = if εL(E) then εL(e) else εL(e) εL(return E) = return εL(E)

εL(E >>= e) = εL(E) >>= εL(e) εL(label E e) = label εL(E) εL(e)

εL(unlabel E) = unlabel εL(E) εL(toLabeled E e) = toLabeled εL(E) εL(e)

εL(newLIORef E e) = newLIORef εL(E) εL(e) εL(readLIORef E) = readLIORef εL(E)

εL(writeLIORefE e) = writeLIORef εL(E) εL(e) εL(throwLIO E) = throwLIO εL(E)

εL(catch E e) = catch εL(E) εL(e) εL(lowerClr E) = lowerClr εL(E)

εL(labelOf E) = labelOf εL(E) εL(labelOfRefE) = labelOfRef εL(E)
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C Detailed proofs

In this section, we provide expand the proof details for the results in Section 5.

Proposition 3(Properties of erasure function)

1. εL(E[e]) = εL(E)[εL(e)] 4. εL(εL(E)) = εL(E)
2. εL([e2/x]e1) = [εL(e2)/x]εL(e1) 5. εL(εL(Σ)) = εL(Σ)
3. εL(εL(e)) = εL(e) 6. εL(εL(〈Σ,e〉)) = εL(〈Σ,e〉)

Proof

All follow from the definition of the erasure functionεL, and induction on expressions and evaluation
contexts,

1. By induction on expressions and evaluation contexts. We show several cases of the base case
analysis on evaluation contexts.

(a) LetE := Lb [ ] e0, it follows thatεL(E) := Lb [ ] εL(e0), andεL(E[e])= εL(Lb e e0)= Lb εL(e) εL(e0)=

εL(E)[εL(e)].
(b) Let E := [ ] e0, it follows thatεL(E) := [ ] εL(e0), andεL(E[e]) = εL(e e0) = εL(e) εL(e0) =

εL(E)[εL(e)].
(c) LetE := πi [ ], it follows thatεL(E) := πi [ ], andεL(E[e]) = εL(πi e) = πi εL(e) = εL(E)[εL(e)].

2. By expansionεL([e2/x]e1)= εL((λx.e1) e2), from which we haveεL(λx.e1) εL(e2)= [εL(e2)/x]εL(e1).

3. Directly from definition of the erasure function and induction on expressions.

4. Directly from definition of the erasure function and induction on expressions and evaluation con-
texts.

5. Directly from definition of the erasure function on storesand property 3 above.

6. Directly from definition of the erasure function on configurations and properties 3 and 5, above.

Lemma 1(Single-step simulation withouttoLabeled )

If Γ ⊢ e : τ and〈Σ,e〉 −→ 〈Σ′,e′〉 wheretoLabeled is not executed, thenΓ ⊢ e′ : τ andεL(〈Σ,e〉) −→L

εL(〈Σ′,e′〉).

Proof

Part of the lemma shows subject reduction, which is proved byshowing that a reduction step does not
change the types of references in the storeΣ.φ and then applying induction on the typing derivations.

It remains then to show the simulation, which follows by induction on evaluation contexts and cases
analysis on terms and expressions. For clarity, we omit the environment in cases where it is not essential.
Unless otherwise stated, we assume thatΣ.lbl⊑ L⊑ Σ.clr, the proof for the case whereL is below the
current label is straight forward since theεL erases any expression in a configuration to a hole. Conversely,
the case whereL is above the current clerance is identical to the case whereL is equal to the current
clearance.

We show the simulation for several exemplary/interesting cases, the remaining cases follow similarly.
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◮ CaseE[(λx.e1) e2]−→ E[[e2/x]e1]:

εL(E[(λx.e1) e2]) = εL(E)[εL((λx.e1) e2)]

= εL(E)[(λx.εL(e1)) εL(e2)]

−→L εL(εL(E)[[εL(e2)/x]εL(e1)])

= εL(εL(E))[εL([εL(e2)/x]εL(e1))]

= εL(E)[εL([εL(e2)/x]εL(e1))]

= εL(E)[[εL(e2)/x]εL(e1)]

= εL(E)[εL([e2/x]e1)] = εL(E[[e2/x]e1])

by Proposition 3.

◮ Case〈Σ,E[return v]〉 −→ 〈Σ,E[(v)LIO]〉:

— Σ.lbl⊑ L:

εL(〈Σ,E[return v]〉)

= 〈εL(Σ),εL(E[return v])〉

= 〈εL(Σ),εL(E)[return εL(v)]〉

−→L εL(〈εL(Σ),εL(E)[(εL(v))
LIO]〉)

= 〈εL(Σ),εL(E)[(εL(v))
LIO]〉

= 〈εL(Σ),εL(E)[εL((v)
LIO)]〉

= 〈εL(Σ),εL(E[(v)
LIO])〉= εL(〈Σ,E[(v)LIO]〉)

by definition ofεL and Proposition 3.

— Σ.lbl 6⊑ L:

εL(〈Σ,E[return v]〉) = 〈εL(Σ),•〉
−→L εL(〈εL(Σ),•〉) = 〈εL(Σ),•〉= εL(〈Σ,E[(v)LIO]〉)

by definition ofεL and Proposition 3.

This illustrates the approach used to prove simulation of most cases. Moreover, it shows the trivial
case forΣ.lbl 6⊑ L.

◮ Case〈Σ,E[(Xl )
LIO >>= e]〉 −→ 〈Σ,E[(Xl )

LIO]〉

— l ⊑ L:

εL(〈Σ,E[(Xl )
LIO >>= e]〉)

= 〈εL(Σ),εL(E)[(εL(Xl ))
LIO >>= εL(e)]〉

= 〈εL(Σ),εL(E)[(Xl )
LIO >>= εL(e)]〉

−→L εL(〈εL(Σ),εL(E)[(Xl )
LIO]〉)

= 〈εL(Σ),εL(E)[(εL(Xl ))
LIO]〉

= 〈εL(Σ),εL(E)[εL((Xl )
LIO)]〉

= 〈εL(Σ),εL(E[(Xl )
LIO])〉= εL(〈Σ,E[(Xl )

LIO]〉)

by definition ofεL and Proposition 3.
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— l 6⊑ L:

εL(〈Σ,E[(Xl )
LIO >>= e]〉)

= 〈εL(Σ),εL(E)[(•)
LIO]〉

−→L εL(〈εL(Σ),εL(E)[(•)
LIO]〉)

= 〈εL(Σ),εL(E)[(•)
LIO]〉

= 〈εL(Σ),εL(E)[(εL(Xl ))
LIO]〉

= 〈εL(Σ),εL(E)[εL((Xl )
LIO)]〉

= 〈εL(Σ),εL(E[(Xl )
LIO])〉= εL(〈Σ,E[(Xl )

LIO]〉)

by definition ofεL and Proposition 3.

◮ Case
Σ.lbl⊑ l ⊑ Σ.clr

〈Σ,E[label l e]〉 −→ 〈Σ,E[return (Lb l e)]〉
:

— l ⊑ L:

εL(〈Σ,E[label l e]〉)

= 〈εL(Σ),εL(E)[label l εL(e)]〉

−→L εL(〈εL(Σ),εL(E)[return (Lb l εL(e))]〉)

= 〈εL(Σ),εL(E)[return (Lb l εL(e))]〉

= 〈εL(Σ),εL(E)[εL(return (Lb l e))]〉

= εL(〈Σ,E[return (Lb l e)]〉)

— l 6⊑ L:

εL(〈Σ,E[label l e]〉)

= 〈εL(Σ),εL(E)[label l εL(e)]〉

−→L εL(〈εL(Σ),εL(E)[return (Lb l εL(e))]〉)

= 〈εL(Σ),εL(E)[return (Lb l •)]〉

= 〈εL(Σ),εL(E)[εL(return (Lb l e))]〉

= εL(〈Σ,E[return (Lb l e)]〉)

◮ Case
l ′ = Σ.lbl⊔ l l ′ ⊑ Σ.clr Σ′ = Σ[lbl 7→ l ′]

〈Σ,E[unlabel (Lb l e)]〉 −→ 〈Σ′,E[return e]〉
:
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— l ⊑ L:

εL(〈Σ,E[unlabel (Lb l e)]〉)

= 〈εL(Σ),εL(E[unlabel (Lb l e)])〉

= 〈εL(Σ),εL(E)[unlabel (Lb l εL(e))]〉

−→L 〈εL(εL(Σ1)),εL(εL(E)[return (εL(e))])〉

= 〈εL(Σ1),εL(E)[return εL(e)]〉

= 〈εL(Σ1),εL(E)[εL(return e)]〉

= 〈εL(Σ1),εL(E[return e])〉

= 〈εL(Σ′),εL(E[return e])〉

= εL(〈Σ′,E[return e]〉)

whereεL(Σ1) = εL(Σ[lbl 7→ l ′]), and thus it directly follows thatεL(Σ1) = εL(Σ′).
— l 6⊑ L:

εL(〈Σ,E[unlabel (Lb l e)]〉)

= 〈εL(Σ),εL(E[unlabel (Lb l e)])〉

= 〈εL(Σ),εL(E)[unlabel (Lb l •)]〉

−→L εL(〈εL(Σ1),εL(E)[return •]〉)

= 〈εL(εL(Σ1)),•〉

= εL(〈Σ′,E[return e]〉)

The last steps holds, as in the second case ofreturn, becauseΣ′.lbl 6⊑ L and any term is erased
to •. Similarly, εL(Σ1) = εL(Σ′) follows as before.

◮ We show an example case of the “violating rules”:
l 6⊑ Σ.clr

〈Σ,E[unlabel (Lb l e)]〉 −→ 〈Σ,E[throwLIO X]〉
:

— l ⊑ L:

εL(〈Σ,E[unlabel (Lb l e)]〉)

= 〈εL(Σ),εL(E[unlabel (Lb l e)])〉

= 〈εL(Σ),εL(E)[unlabel (Lb l εL(e))]〉

−→L 〈εL(εL(Σ)),εL(εL(E)[throwLIO X])〉

〈εL(Σ),εL(E)[throwLIO εL(X)]〉

〈εL(Σ),εL(E)[throwLIO X]〉

〈εL(Σ),εL(E)[εL(throwLIO X)]〉

= εL(〈Σ,E[throwLIO X]〉)
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— l 6⊑ L:

εL(〈Σ,E[unlabel (Lb l e)]〉)

= 〈εL(Σ),εL(E[unlabel (Lb l e)])〉

= 〈εL(Σ),εL(E)[unlabel (Lb l •)]〉

−→L 〈εL(εL(Σ)),εL(εL(E)[throwLIO X])〉

〈εL(Σ),εL(E)[throwLIO εL(X)]〉

〈εL(Σ),εL(E)[throwLIO X]〉

〈εL(Σ),εL(E)[εL(throwLIO X)]〉

= εL(〈Σ,E[throwLIO X]〉)

◮ Case
Σ.lbl⊑ l ⊑ Σ.clr Σ′ = Σ.φ [a 7→ Lb l e]

〈Σ,E[newLIORef l e]〉 −→ 〈Σ′,E[return a]〉
a fresh:

— l ⊑ L:

εL(〈Σ,E[newLIORef l e]〉)

= 〈εL(Σ),εL(E[newLIORef l e])〉

= 〈εL(Σ),εL(E)[newLIORef l εL(e)]

−→L 〈εL(εL(Σ1)),εL(εL(E)[return εL(a)])〉

= 〈εL(Σ1),εL(E[return a])〉

= εL(〈Σ′,E[return a]〉)〉,

whereεL(Σ1) = εL(Σ).φ [a 7→ Lb l e], and soεL(Σ1) = εL(Σ′) follows directly.
— l 6⊑ L: as above. However, in this case,εL(Σ1) = εL(Σ).φ [a 7→ Lb l •]. From εL(Σ1).φ(a) =

εL(Lb l •) = εL(Lb l e) = εL(Σ′).φ(a) it follows thatεL(Σ1) = εL(Σ′).

◮ Case
l ′ = Σ.lbl⊔ l l ′ ⊑ Σ.clr Σ′ = Σ[lbl 7→ l ′]

〈Σ,E[catch (Xl )
LIO e]〉 −→ 〈Σ′,E[e X]〉

:

— l ⊑ L:

εL(〈Σ,E[catch (Xl )
LIO e]〉)

= 〈εL(Σ),εL(E[catch (Xl )
LIO εL(e)])〉

= 〈εL(Σ),εL(E)[catch (Xl )
LIO εL(e)]〉

−→L 〈εL(εL(Σ1)),εL(εL(E)[εL(e) X])〉

= 〈εL(Σ1),εL(E)[εL(e) εL(X)]〉

= 〈εL(Σ1),εL(E)[εL(e) X]〉

= 〈εL(Σ1),εL(E)[εL(e X)]〉

= 〈εL(Σ1),εL(E[e X])〉

= 〈εL(Σ′),εL(E[e X])〉

= εL(〈Σ′,E[e X]〉)
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whereεL(Σ1) = εL(Σ[lbl 7→ l ′]), and directlyεL(Σ1) = εL(Σ′).
— l 6⊑ L:

εL(〈Σ,E[catch (Xl )
LIO e]〉)

= 〈εL(Σ),εL(E[catch (Xl )
LIO εL(e)])〉

= 〈εL(Σ),εL(E)[catch (•)LIOεL(e) ]〉

−→L εL(〈εL(Σ1),εL(E)[εL(e) •]〉)

= 〈εL(Σ1),•〉

= εL(〈Σ′,E[e X]〉)

The last steps holds sinceΣ1.lbl 6⊑ L and any term is erased to•. As before,εL(Σ1) = εL(Σ′)
trivialy holds.

Lemma 3(Simulation)

If Γ ⊢ e : τ and〈Σ,e〉 −→∗ 〈Σ′,e′〉 thenεL(〈Σ,e〉)−→∗L εL(〈Σ′,e′〉).

Proof

Lemma 2 shows the multi-step simulation for expressions that do not executetoLabeled. Thus, to
show the general multi-step simulation we must first show that toLabeled preserves the simulation.
The general simulation follows directly.

The proof for the simulation oftoLabeled follows by induction on the number of executedtoLabeled.
The base case consists of a singletoLabeled. Specifically, for a computation with a single executed
toLabeled, we have:

〈Σ,e〉 −→∗ 〈Σ′,e′〉,

that can be expanded into

〈Σ,e〉 −→∗ 〈Σ0,E[toLabeled l e0]〉 −→ 〈Σ′′0,E[label l v]〉 −→∗ 〈Σ′,e′〉,

where〈Σ0,e0〉 −→
∗ 〈Σ′0,(v)LIO〉, andΣ′′0 = Σ′0[lbl 7→ Σ0.lbl,clr 7→ Σ0.clr]. The expansion highlights

the first occurrence of atoLabeled, and soe0, ande′ do not have any additionaltoLabeleds. From this
observation it is clear that the simulation of the base case follows directly by Lemma 2. Specifically, to
show the simulation for (TOLAB-1)

Σ0.lbl⊑ l ⊑ Σ0.clr

〈Σ0,e0〉 −→
∗ 〈Σ′0,(v)

LIO〉 Σ′0.lbl⊑ l Σ′′0 = Σ′0[lbl 7→ Σ0.lbl,clr 7→ Σ0.clr]

〈Σ0,E[toLabeled l e0]〉 −→ 〈Σ′′0,E[label l v]〉
,
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wheree0 does not have anytoLabeled we need only show the simulation of the conclusion; the simula-
tion of the big step in the premise follows directly from Lemma 2. We show this below:

εL(〈Σ0,E[toLabeled l (e0)
LIO]〉)

= 〈εL(Σ0),εL(E[toLabeled l (e0)
LIO])〉

= 〈εL(Σ0),εL(E)[toLabeled l (εL(e0))
LIO]〉

−→L 〈εL(εL(Σ′′0)),εL(εL(E)[label l εL(v)])〉

= 〈εL(Σ′′0),εL(E)[label l εL(v)]〉

= 〈εL(Σ′′0),εL(E[label l v])〉

= εL(〈Σ′′0,E[label l v]〉)

Correspondingly, the simulation of the〈Σ′′0,E[label l v]〉 −→∗ 〈Σ′,e′〉 step follows directly by Lemma 2.
The simulations of (TOLAB-2) follows similarly.

It is worth noting that the simulation of (BIND-1), as proved in Lemma 1, holds for exception labels,
irrespective of the current label. This is a necessary condition when a computation executestoLabeled
as the current label and exception label may not always be thesame.

Our inductive hypothesis states that the simulation of

〈Σ,e〉 −→∗ 〈Σ′,e′〉,

holds for the case wheretoLabeled is executedk times. With this assumption, the simulation of

〈Σ,e〉 −→∗ 〈Σ′,e′〉,

with k+1toLabeled executions, follows in a similar manner to the base case. Specifically, searching for
the firsttoLabeled and expanding, we have:

first big-step
︷ ︸︸ ︷

〈Σ,e〉 −→∗ 〈Σ0,E[

second big-step
︷ ︸︸ ︷

toLabeled l e0]〉 −→
∗ 〈Σ′,e′〉

where at mostk toLabeleds could have been executed in the first big-step, the inner computatione0, or
the second big-step. The simulation of all these execution steps follows by application of the inductive
hypothesis.

Theorem 1(Non-interference)
Given a computatione (with no •, ( )LIO, Lb, or Xl ) whereΓ ⊢ e : Labeled ℓ τ → LIO ℓ (Labeled ℓ τ ′),
environmentsΣ1 andΣ2 whereΣ1.φ = Σ2.φ = /0, security labell , an attacker at levelL such thatl ⊑ L,
then

∀e1e2.(Γ ⊢ ei : Labeled ℓ τ)i=1,2∧ (ei = Lb l e′i)i=1,2∧〈Σ1,e1〉 ≈L 〈Σ2,e2〉

∧ 〈Σ1,e e1〉 −→
∗ 〈Σ′1,(v1)

LIO〉∧ 〈Σ2,e e2〉 −→
∗ 〈Σ′2,(v2)

LIO〉

=⇒ 〈Σ′1,(v1)
LIO〉 ≈L 〈Σ′2,(v2)

LIO〉

Proof
From Lemma 3, fori = 1,2, we have

εL(〈Σi ,e (Lb l e′i)〉)−→
∗
L εL(〈Σ′i ,(vi)

LIO〉),

wherevi = Lb l i e′′i or vi = Xl ′′ . First we highlight that:

εL(〈Σ,e〉) = εL(〈Σ′,e′〉) =⇒ 〈Σ,e〉 ≈L 〈Σ′,e′〉
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Note that the converse is not necessarily true, since the stores may differ in the references with labels
aboveL. Then, from the determinacy of−→L, given in Proposition 2, and since the starting environment
configurations are the same (observe that〈Σ1,e(Lb l e′1)〉 ≈L 〈Σ2,e (Lb l e′2)〉 =⇒ εL(〈Σ1,e(Lb l e′1)〉) =
εL(〈Σ2,e (Lb l e′2)〉) sinceΣ1.φ = Σ2.φ = /0), it must be that the end environment configurations also be
the same, i.e.,εL(〈Σ′1,(v1)

LIO〉) = εL(〈Σ′2,(v2)
LIO〉). The L-equivalence directly follows from the above

observation.
For completeness, we detail the following cases:

◮ CaseΣi .lbl 6⊑ L: We have

εL(〈Σi ,e (Lb l e′i)〉) = 〈εL(Σi),•〉 −→
∗
L 〈εL(Σ′i),•〉= εL(〈Σ′i ,(vi)

LIO〉).

From the determinacy of−→L, it must be that the end environment configurations are the same,
from which it directly follows that〈Σ′1,(v1)

LIO〉 ≈L 〈Σ′2,(v2)
LIO〉.

◮ CaseΣi .lbl⊑ L∧Σ′i .lbl 6⊑ L: We have

εL(〈Σi ,e (Lb l e′i)〉) = 〈εL(Σi),εL(e) (Lb l εL(e
′
i))〉 −→

∗
L 〈εL(Σ′i),•〉= εL(〈Σ′i ,(vi)

LIO〉).

As before, since the initial environment configurations arethe same, from the determinacy of−→L

we end with the same configuration, which directly corresponds toL-equivalence.
◮ CaseΣi .lbl⊑ L∧Σ′i .lbl⊑ L: We have

εL(〈Σi ,e (Lb l e′i)〉) = 〈εL(Σi),εL(e) (Lb l εL(e
′
i))〉 −→

∗
L 〈εL(Σ′i),(vi)

LIO〉.

From the determinacy of−→L, it must be thatεL(Σ′1) = εL(Σ′2) andεL(v1) = εL(v2), and directly
〈Σ′1,(v1)

LIO〉 ≈L 〈Σ′2,(v2)
LIO〉.

Theorem 2(Store confinement)
Given labelsl and lc, a computatione (with no •, a, ( )LIO, Lb, or Xl ′ ) such thatΓ ⊢ e : LIO ℓ τ, and
environmentΣ[lbl 7→ l ,clr 7→ lc] wherel ⊑ lc, then

〈Σ,e〉 −→∗ 〈Σ′,(v)LIO〉 =⇒ (Σ.φ)↓l = (Σ′.φ)↓l ∧ (Σ.φ)↑lc = (Σ′.φ)↑lc

Proof
By contradiction. We show the case of creating new referneces, the case of modifying an existing reference
follows similarly. Suppose that

◮ (Σ.φ)↓l 6= (Σ′.φ)↓l . Then,∃(a,Lb lv ea) ∈ (Σ′.φ)↓l .(a,Lb lv ea) 6∈ (Σ.φ)↓l and l 6⊑ lv. Moreover,
(by Proposition 4) there must be a step at which point the new reference is created:〈Σ′,e〉 −→∗

〈Σa,E[newLIORef lv ea]〉 −→
∗ 〈Σ′,(v)LIO〉, such that(Σ.φ)↓l = (Σa.φ)↓l . However, by (NREF) it

must be thatl ⊑ lv. Hence, we have a contradiction.
◮ (Σ.φ)↑lc 6= (Σ′.φ)↑lc. Then,∃(a,Lb lv ea) ∈ (Σ′.φ)↑lc.(a,Lb lv ea) 6∈ (Σ.φ)↑lc andlv 6⊑ lc. Moreover,

(by Proposition 5) there must be a step at which point the new reference is created:〈Σ′,e〉 −→∗

〈Σa,E[newLIORef lv ea]〉 −→
∗ 〈Σ′,(v)LIO〉, such that(Σ.φ)↑lc = (Σa.φ)↑lc. However, by (NREF) it

must be thatlv⊑ lc. Hence, we have a contradiction.

Theorem 3(Labeled creation confinement)
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Given labelsl , lc, andlv, a computatione(with no•, a, ( )LIO, Lb, orXl ′ ) whereΓ⊢ e: LIO ℓ (Labeled ℓ τ),
and environmentΣ[lbl 7→ l ,clr 7→ lc] such thatl ⊑ lc, then

〈Σ,e〉 −→∗ 〈Σ′,(Lb lv e1)
LIO〉 =⇒ l ⊑ lv⊑ lc∨∃(a,Lb l1 e′1) ∈ Σ.φ .Lb lv e1 ǫ̃ e′1∧ l1⊑ lc

Here, operator̃ǫ is defined as the syntactic appearance of the left-hand expression into the right-hand side
operand.

Proof
Sinceecannot containLbs, the final labeled value must be created or retrieved from the store. By induction
on expressions and evaluation contexts and using Propositions 4 and 5 it must be that the label of the value
is bounded by the initial current label and clearance or the labeled value appears syntactically in the store.
The proof follows by case analysis on how aLabeled value can be obtained.

Suppose the value is created, i.e.,6 ∃(a,Lb l1 e′1) ∈ Σ.φ .Lb lv e1 ǫ̃ e′1∧ l1 ⊑ lc Then, there must be an
intermediate step where the labeled value is created. Specifically, 〈Σ,e〉 −→∗ 〈Σ1,E[label lv e1]〉 −→

∗

〈Σ′,(Lb lv e1)
LIO〉. (Recall thattoLabeled also reduces tolabel, thus we need only handle this case.)

Hence, from rule (LAB) it must be thatΣ1.lbl⊑ lv⊑ Σ1.clr and by Propositions 4 and 5 it must be that
l ⊑ lv⊑ lc.

Suppose that the value is not created withlabel. Then,∃(a,Lb l1 e′1) ∈ Σ.φ .Lb lv e1 ǫ̃ e′1 andl1 ⊑ lc.
The l1 ⊑ lc must hold since there must be an intermediate step where the reference is read. Specifically,
〈Σ,e〉 −→∗ 〈Σ1,E[readLIORef a]〉 −→ 〈Σ′1,E[return e′1]〉 −→

∗ 〈Σ′,(Lb lv e1)
LIO〉. From rule (RREF) it

must be thatl1 ⊑ Σ1.clr and by Proposition 5 it directly follows thatl1 ⊑ lc. Because our semantics
does not have the evaluation contextE ::= · · · | Lb e E, the values of references are not always evaluated
and thus the labeled valueLb lv e1 must syntactically appear ine′1. For example, ife1 = 2, it holds that
e1 ǫ̃ λx.if x then (Lb lv 2) else (Lb lw 3), but note1 ǫ̃ λx.if x then (Lb lv (1+1)) else (Lb lw 3) for
somelw.
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