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Abstract

We describe a new, dynamic, floating-label approach to lagetbased information flow control. A labeled 10 monad,
LI0, keeps track of aurrent labeland permits restricted access to IO functionality. Theenirtabel floats to exceed
the labels of all data observed and restricts what can befieddiUnlike other language-based work, LIO also
bounds the current label witharrent clearancehat provides a form of discretionary access control. Cdatmns
may encapsulate and pass around the results of computatitmglifferent labels. In addition, th&I0 monad
offers a simple form of labeled mutable references and eigepandling. We give precise semantics and prove
confidentiality and integrity properties of a call-by-namealculus and provide an implementation in Haskell.

1 Introduction

Complex software systems are often composed of modulesghfii#nent provenance, trustworthiness, and
functional requirements. A central security design ppieis theprinciple of least privilegewhich says
that each component should be given only the privilegesdatiador its intended purpose. In particular,
it is important to differentially regulate access to sewsitiata in each section of code. This minimizes
the trusted computing base for each overall function of tretesn and limits the downside risk if any
component is either maliciously designed or compromised.

Information flow control (IFC) tracks the flow of sensitivetdahrough a system and prohibits code
from operating on data in violation of a security policy. Sfgcant research, development, and experi-
mental effort has been devoted to static information flow maeisms. Static analysis has a number of
benefits, including reduced run-time overhead, fewer nme-failures, and robustness against implicit
flows (Denning & Denning, 1977). However, static analysieslaot work well in environments where
new classes of users and new kinds of data are encountenaad-fitre. In order to address the needs of
such systems, we describe a new, dynamic, floating-labebapp to language-based information flow
control and present an implementation in Haskell.

Our approach useslabeled type constructor to protect values by associating them lalikls. The
labels themselves are typed values manipulated at run-éingecan thus be created dynamically based on
other data such as a username. Conceptually, at each ptiet @omputation, the evaluation context has
acurrent label.We use a labeled IO monatI0, to keep track of the current label and permit restricted
access to 10 functionality (such as a labeled file systemileveéimsuring that the current label accurately
represents an upper bound on the labels of all data observeddified. Unlike other language-based
work, LI0 also bounds the current label wittcarrent clearanceThe clearance of a region of code may



http://arxiv.org/abs/1207.1457v1

2 D. Stefan, A. Russo, J. C. Mitchell, and D. Magis

be set in advance to impose an upper bound on the floatingntuateel within that region. This restricts
data access, limits the amount of code that could manipséatsitive data, and reduces opportunities to
exploit covert channels. Additionally, we introduce an igter, toLabeled, that allows the result of a
computation that would have raised the current label to lbagsulated within theabeled type. Finally,

we present combinators for working with labeled refereneesl exceptions. Thanks to the flexibility
of dynamic checkingL.I0 implements an IFC mechanism that is more permissive tharique static
approaches (Pottier & Simonet, 2002; Li & Zdancewic, 2010s80et al, 2008) but provides similar se-
curity guarantee$ (Sabelfeld & Russo, 2009). Though puasiguage-based, LIO explores a new design
point centered on floating labels that draw on past OS world&ech et al, 2006).

The main features of our system can be understood using #rep& of an online conference review
system, called Chair. In this system, which we describe more fully latetia paper, authenticated users
can read any paper and can normally read any review. Thicteflee normal practice in conference
reviewing, for example, where every member of the programrodgtee can see submissions and their
reviews, and participate in related discussion. Users eaadaded dynamically and assigned to review
specific papers. As an illustration of the power of the lalgpBystem, integrity labels are used to make
sure that only assigned reviewers can write reviews for amgngpaper. Conversely, confidentiality labels
are used to manage conflicts of interest. Users with a comfligtterest on a specific paper lack the
privileges, represented by confidentiality labels, to raadview. As conflicts of interest are identified,
confidentiality labels on the papers may change dynamiealitybecome more restrictive.

This paper extends an earlier conference version (Sttfah 2011b) by including formal proofs and
extending the calculus and library implementation withegt@n handling. The main contributions of
this work are:

» We propose a new design point for IFC systems in which mosiegih lexical scope are protected by a
single, mutablecurrent labe] yet one can also encapsulate and pass around the resuitspfitations
with different labels. Label encapsulation is explicitgflected by types in a way that prevents implicit
flows.

» We prove information flow and integrity properties of ouridgesand describe LIO, an implementation
of the new model in Haskell. LIO, which can be implementedrehtas a library (relying solely on
type safety), demonstrates both the applicability and kaity of the approach.

» Unlike other language-based work, our model provides esonaif clearancethat imposes an upper
bound on the program label, thus providing a form of disorary access control on portions of the
code, i.e., restricting access to data it “needs to know”.

» We present a novel dynamic, yet safe, handling of exceptexseptions are a key component to make
LIO a more practical IFC system.

This paper is organized as follows. Sectidn 2 provides bakyd on information flow control and
our Haskell LIO library. Sectiohl3 presents a motivatingnsx@® where to apply LIO. Formalization of
the library is given in Sectiof] 4 and the security guaranggesdetailed in Sectid 5. Related work is
described in Sectidd 6. We conclude in Secfibn 7.

2 Security Library

In this section, we give an overview of information flow canitthe approach used by LIO to dynamically
enforce IFC, and the core application programming interf#®I) provided by our library.
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Labels and IFC The goal of information flow control is to track the propagatiof information and
control it according to a security policy. A well-known pojiaddressed in almost every IFC system is
non-interferencepublicly-readable program results must not depend on segrets. A non-interfering
program is guaranteed to preserve confidentiality of seasitata (Goguen & Meseguer, 1982); dually,
this policy can be used to preserve integrity of trustworthsa [Biba, 1977).

To enforce information flow restrictions, most systems eisde labelswith every piece of data. A
label represents the level of confidentiality and integoitydata. Labels form a lattice (Denning, 1976)
with partial ordeiC (pronounced “can flow to”) is used to govern the allowed flows between differently
labeled entities. For instance,lif C L, holds, it indicates that data with lable] can flow into entities
labeledL,.

LIO is polymorphicin the label type, allowing different tgp of labels to be used. Custom label formats
can be created by providing a definition for a bounded lat8mecifically, a label format must have a
well-defined partial ordel), a binary operation computing ti@n of two labels (), a binary operation
computing themeetof two labels (1), and minimum (L) and maximum (") elements. For any two labels
L, andLy, the join has the property thaf C (L1 LIL,),i = 1,2 andL; LIL; is the least of such elements
in the lattice; the meet has the property thiat M L,) C Lj,i = 1,2 andL; MLy is the greatest of such
elements in the lattice. In our Haskell library, label tyjpes instances of thebel type class:

class (Eq 1) = Label 1 where

leq :: 1 — 1 — Bool -- Can flow to relation (C)
lub 1511 -- Join operation (L)
glb ::1 —>1—1 -- Meet operation (M)
lbot :: 1 -- Minimum element (L)
ltop :: 1 -- Mazimum element (T)

Henceforth we assume that the bounded lattice propertyshioldthe labels used in our examples.
Sectior B details disjunction category (DC) labels, a ceteclabel format used imtChair that satisfies
this property.

Privileges and Decentralized IFC An extension of IFC, the decentralized label model (DLM) ofévis
and Liskov|(Myers & Liskov, 1997) allows for more general Aggtions, including systems consisting of
mutually distrustful parties. In a decentralized systermomputation is executed with a setivileges

p, which, when exercised, allow the computation to “bypagstain label restrictions. In such systems,
rather than using the standardpartial order relation, a more permissive pre-ordgris used in the label
comparisons. Consider, for example, a simple four-pottit . C L; C Lag, fori = A B. Here,La, Lg,
andLag respectively correspond to data private to usenserB, and bothA andB. In DLM, privileges
and labels are associated such that, e.qg., privéegeresponding th 4 allows useA to “ignore theA” in
labels. Thuslag Ca Lg, even thoughiag Z Lg. This property is very useful as it allowsto downgrade
the data from label levelag to Lg. Informally, when downgrading, the code exercising theij@ge states
that it no longer considers the data to be confidential (i thiseA exercisinga to downgrade data from
Lag to Lg). Note that downgrading does not make the data publiclyakelad all parties corresponding to
the label must first perform the downgrade.

As in the case of labels, our library is polymorphic in thevijege types. Any code can exercise
privileges (that are in lexical scope) to enforce IFC using inore permissive, relation. However,
our formalism is limited to non-privileged primitives andewthus do not discuss privileges further. We
refer the interested reader to the library documentatiodétails on privileges.
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LIO computations LIO is a language-basdtbating-labelsystem, inspired by IFC operating systems,
including HiStar [(Zeldovictet al,, 2006) and Asbesto§ (Efstathopouésl, 2005). In a floating-label
system, the label of a computation can rise to accommodadng sensitive data, similar to tipgogram
counterof more traditional language-based systems (Sabelfeld &B\200B). Specifically, in LIO, a
computationC with label L¢c wishing to observe an object (e.g., a review) labdladcan do so by first
raising its label to the join of the labelsi LI Lg. Consider, for example, a simpdChair review system
computation that retrieves the content of a review, andaiittto an output channel.

readReview R = do -- Inittal computation label: Lc
rv ¢ retrieveReview R  -- Computation label when retrieving: LcULR
printLabeledCh rv -— Computation label when printing: LcULR

Here, we assume that the computation is executing on behal@iser, Clarice, with initial labdlc and
that reviewR has labelLr. The computation label is shown in the comments as the difteactions are
executed. Internally, theetrieveReview function is used to retrieve the review contentsthe function
raises the computation label kg LI L to reflect the observation of sensitive review informatidhis
directly highlights the notion of a “floating-label”: a comation’s label effectively “floats above” the
labels of all objects it observes.

The floating label is used to restrict writes: a computatiammt write to an entity whose label is below
the computation label. In the example, the acpomtLabeledCh rv, Which performs a write, does not
change the computation label. HowewgarintLabeledCh returns an action that writes the review content
rv to standard output channel, labeleg, only if Lc LILg C Lo. In AChair, the standard output channel
label, Lo, is dynamically set according to the user executing the adatjpn;Lo is set so as to allow for
printing out all but the conflicting reviews. Thus, if usera@te has a conflict of interest with reviewy
Lo is set such thatg Z Lo.

Unlike existing language-based IFC systems, LIO also datescaclearancewith each computation.
This clearance sets an upper bound on the current floatietphathin some region of code. For example,
the notion of clearance can be used to prevent Clarice frameviang (and not just printing) the contents
of a conflicting reviewR by setting the computation’s clearanceGg such thatLg IZ Cc. In general,
before raising the computation label, LIO combinators fitetck that the new label will not exceed the
computation clearance. Hence, when the actitrieveReview R attempts to raise the current label to
Lc LILR, the computation will fail sincéc LLg Z Cc.

More interestingly, clearance can be used to prevent makctode from exploiting covert channels.
For example, without clearance, the following function ¢@nused by a user, such as Clarice, to leak
information on reviews which she is in conflict with:

leakingRetriveReview r = do -- Inttial label: L¢
rv < retrieveReview r -— Retrieving: LcULr (if LcULRECc)
covertChannel rv -— Leak revtew into covert channel

The functioncovertChannel leaks (part of) the sensitive review content into a covednetel, such as
the termination channel. In the latter case, the functiakdanformation by deciding whether or not to
diverge based on sensitive data. A simple example that akss given below.

covertChannel rv =
if rv=="Paper..." -- If sensitive review matches "Paper..."
then forever (return rv) -- then loop forever
else return rv -- otherwise return
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Using clearance, we prevent such leaks by setting the cleaand review labels such thatrieveReview
fails when it attempts to raise the computation label taeetr conflicting reviews (the additional check
Lc LUILR E Cc will not hold).

2.1 Library Interface

LIO is a termination-insensitivand flow-sensitiveg(/Askarovet al, 2008; Hunt & Sands, 2006) IFC li-
brary thatdynamicallyenforces information flow restrictions. At a high level, L&tefines a monad called
LI0, intended to be used in placemf. The library furthermore contains a collectioniab actions, many

of them similar tozo actions from standard Haskell libraries, except that theytain label checks that
enforce IFC.

To implement the notion of floating label that is bounded byeai@nce, our library defingso as a
state monad, parametric in the label type, and usirgs the underlying base monad. The state consists of
acurrent label lgyy, i.€., the computation’s floating label, and@rent clearance g, which is an upper
bound oLy, i.e.,Lcyr C Ceyr always holds. The (slightly simplified)lo monad is defined as:

newtype LIO 1 a = LIOTCB (StateT (1, 1) IO a)

where the state corresponds to the current label and clearaa allow for the execution afto actions,
our library provides the functioavalL10 that takes am10 action and returns aro action which, when
executed, will return the result of the IFC-respecting catapon. It is important to note that untrusted
LIO code cannot execut® computations by bindingp actions withL.10 ones (to bypass IFC restrictions),
becausa.10TCB is a private symbol. Effectively this limitsvaiL10 to trusted code. Additionally, using
evallLIO, trusted programmers can easily, though cautiously, eaftfC in parts of an otherwise IFC-
unaware program.

The current label provides a means for associating a lalibleviery piece of data. Hence, rather than
individually labeling definitions and bindings, all symbah scope are protected hy,,. Moreover, the
only way to read or modify differently labeled data is to extec(trusted) actions that internally access
restricted symbols and appropriately validate and adjesttrrent label (or clearance).

In many practical situations, it is essential to be able tmimaate differently-labeled data without
monotonically increasing the current label. For this pwmdhe library additionally providesiabeled
type for labeling values with labels other thhg,.. A Labeled, polymorphic in the label type, protects
an immutable value with a specified label irrespective of¢heent label. This is particularly useful
as it allows a computation to delay raising its current lab@il necessary. For example, an alternative
retrieveReview iImplementation can retrieve the review content, convett IHTML, encapsulate the
markup into aLabeled value, and return theabeled value while leaving the current label unchanged.
This approach delays the “creeping” of current label uhglteview content, as encapsulated.biyeled,
is actuallyneeded

We note that.1o can be used to protect pure values in a similar fashioneteled. However, the
protection provided by.abeled allows for serializing labeled values and straight forwarsipection
by trusted code (which may ignore the protecting label).iként.10, Labeled is not a mondd The
monad instance would allow a computation to use bind andrrettw arbitrarily manipulate labeled
values without any notion of the current label or cleararzs®] thus (possibly) violate the restriction

1 In fact, Labeled cannot be a functor; this would violate non-interferenceemiconsidering integrity into the
security labels.
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thatL1o computations should not handle values below their curedsgllor above their current clearance.
Moreover, thelonad instance would require a definition for a default label neaggswhen lifting a value
with return. Instead, our library provides several functions thatafior the creation and usage of labeled
values withinL1o. Specifically, we provide (among other) the following fupots:
» label :: Label 1 =1 —a —LI0 1 (Labeled 1 a)
Given a label such thatq, C | C Cyyr and a valuey, the actioniabel | v returns a labeled value that
protectsv with |.
» unlabel :: Label 1 =Labeled 1 a —LI0O 1 a
Assuming thativ is associated to labé¢] the actionuniabel 1v raises the current label to, U1 if
LeurUl E Ceoyr and returns the unlabeled value. Note that the new currbetiaat least as high as’s
label, preserving the confidentiality of the value.
» tolLabeled :: Label 1 =1 —LI0O 1 a —LI0O 1 (Labeled 1 a)
Given a label such that ¢, C | C C¢yr and ar.Io actionm, toLabeled | m executesn without raising
the current label. However, instead of returning the rediuétctly, the function returns the result of
encapsulated inBabeled. The label of the labeled valuelisto preserve confidentiality (see Sectidn 4
for further details), actiommust not read any values with a label abbva monadic terms;oLabeled
is an environment-oriented action that provides a diffecemtext for a temporary bind thread.

» labelOf :: Label 1 =Labeled 1 a —1

If 1v is a labeled value with labéland valuev, 1abel0f 1v returnsl.

Our library additionally provides labeled alternativesriatable references, i.eQrefs. Specifically, we
provide labeled referencesoref 1 a that are created withewLIORef, read withreadLIORef, and
written to withwriteLIORef. When creating or writing to a reference with lah@l it must be the case
thatLcyr C Lg C Ceyur; Wwhen readind .y is raised td_cy, LI LR, clearance permitting.

In the conference version of this work (Stefiral, 2011b), the execution of programs stop when the
IFC constraints imposed by the-relationship are not fulfilled. Similar to other dynamicdRapproaches
(e.g., (Askarov & Sabelfeld, 2009; Russo & Sabelfeld, 2080%stin & Flanagan, 2010)), this design de-
cision restricts the possibilities for programs to recdvem failures. Later in this section, we show how
to extend LIO with exception handling so that programs cawver from failures or insecure actions
without compromising confidentiality or integrity of data.

The formal semantics for the functions described above mengn Sectior[ Y4; in this section, we
illustrate their functionality and use through exampleged&fically, consider the previous example of
readReview. The internal functioretrieveReview takes a review identifigR and returns the review con-
tents. InternallyretrieveReview must have access to a list of reviews, which are individuyaibtected
by different labels. In this model, adding a new review toskistem can be implemented as:

addReview R LR rv = do
r < label LR rv -— Checks LcyrCE LR C Ceyr
addToReviewList R r -- Appends labeled review to internal list

where theaddToReviewList Simply adds theabeled review to the internal list. The implementation of

retrieveReview IS Similar:

retrieveReview R = do -- Initial label, Leyr=Lc
r ¢ getFromReviewlList R -- Retrieving a labeled result, Lecur=Lc
rv < unlabel r -- Unlabel result, raises label to Lgyr=LcULR

return rv -- Returning unlabeled content, Lecur=LcULR
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where thegetFromReviewList retrieves the.abeled review from the internal list andniabel removes
the protecting label, raising the current label to refleetdbservation.

We previously alluded to an alternative implementationré@frieveReview that returns the labeled,
review content in HTML form while keeping the current labketsame. This implementation can be
directly leverage the abow@trieveReview:

retrieveReviewHtml R = do -— QOuter: Initial label, Leur=Lc
r + tolabeled (LcLILR) $ do —-— Inner: Initial label, Leyr=Lc
rv < retrieveReview R -- Inner: Retrieve review, Lcyr=LcULR
return (toHtml rv) —-- Inner: Return review, Lcur=LcULR
return r -- Outer: Return labeled review, Lcyr=Lc

Note that although the current label within the inner comapiah is raised, the outer computation’s label
does not change—instead the marked-up review content teqteal by the labelc LI Lg. Hence, only
when the review content is actually needefiiabel can be used to retrieve the content and raise the
computation’s label accordingly:

readReviewHtml R = do -— Initial label Leuyr=Lc
r < retrieveReviewHtml R -- Retrieve labeled review, Lgyr=Lc
-— Perform other computations, such that Lcur:Lé:
rv < unlabel r -- Unlabel labeled review, Lcur:Lé:I_ILR
printLabeledCh rv -- Print review content, Leyr= L’CULR

2.1.1 Exception handling

Exception handling is common in real-world applicationsd,aas already noted, LIO provides support
for such constructs. Throwing an exception depends on tfegnration present in the lexical scope.
Consequently, LIO labels an exception with the currentll§bg,,) at the point where the exception is
thrown. Specifically, the primitive

throwLIO :: (Exception e) = e — LIO 1 a

takes an arbitrary exception and wraps it into a labeled@iaetype:
data LabeledException 1 e =

which itself is an instance @ception. The label of the exception is set to the current ldhg).
Conversely, the primitive:

catch :: (Exception e) = LI0 1 a — (e — LI0O 1 a) — LIO1 a

can be used to execute BID action, using an exception handler to address the case Waeomputation
raises an exception. Suppose the current label and cleaaet.,, and C, respectively. Given a
computatiom, and an exception handles, catch m he executes and then:

1. if no exception is thrown, the result produceddaych is simply the result of, leaving the current
label and clearance unchanged (as of the executiah of

2. if an exception with labdIC C, is thrown when executing, the current label raised tq LIl and
the exception handler is invoked (if the exception type . Raising the current labelltg, L
before executing the exception handler indicates that émelller must not produce side-effects at
security levels lower than the one indicated by the labehefexception.
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3. if an exception with labdl Z Cc, is thrown, the exception label is raisedLltg, L/l and re-thrown
(propagated to an outestch).

It is worth remarking that primitiveatch is the only means for inspecting information related to an
exception (e.g., kind of exception, security label, etc.).

Safe propagation of exceptionsin LI1O, the standarghropagation of exceptions up the call stack until
reaching the nearest enclosirgtch can be used to leak information. Consider the following fiorc

condThrow :: LIORef 1 Bool — LIO 1 ()
condThrow secRef = do

sec < readLIORef secRef

if sec then throwLIO ... else return ()

Assuming thatondThrow is invoked with the current labél.,; andsecref has labelg, throwLI0 raises
an exception labeled¢yr LU Lg if the secret value stored in the referencerise. The exception label
indicates that the exception was raised after performirarees read.

Although condThrow cannot directly be used to leak information, it is importenhighlight that the
function throws an exception if the secretrisue, and returng) otherwise. Hence, in the presence of
toLabeled, Which restores the current label, it is important to reagbaut the propagation of excep-
tions. More specifically, if exceptions propagate untilatéiag the nearest enclosingtch, the following
function can be used to leak information:

leakIntoPub :: LIORef 1 Bool — LIORef 1 Bool — LIO 1 ()

leakIntoPub secRef pubRef = catch (

do writeLIORef pubRef True -— Write to public reference #1
_ < tolabeled T $ condThrow secRef -- Throw ezception if secret is True
writeLIORef pubRef False -— Write to public reference #2

) (A_ — return ()) -- Handle exzception

Suppose that the function is invoked with a current ldgl= | and current clearan€®; = T, secRef
is labeledT andpubref is labeled L. Initially, the computation can directly read and writept®Ref, but
only read fromsecRef.

Note thatcatch is only used to force normal termination, i.e., executiofuottionieakIntoPub always
return(). More importantly, note that public side-effects are perfed beforefriteLI0Ref pubRef True)
and after ¢riteLIORef pubRef False) executing a computation on secret datanfThrow secRef).
(This is possible because the computatieidThrow secRef iS enclosed in @aoLabeled block, and thus
the current label remains unchanged.) Moreover, if theevalithe secret refereneecref is True, then
an exception is raised inondThrow and further propagated to the enclosiigch without executing
the second write to the public refereneeiteLI0ORef pubRef False). Hence, if an exception is raised
in condThrow the content obubRef remainsTrue. In contrast, if no exception is thrown, the content of
pubRef IS set toFalse: clearly, a direct leak of the value storedsiécref.

It is important to finally note that although catch will raigee current label when an exception raised
in the secret computationgakIntoPub can also be enclosed byLabeled:

leakSecretRef :: LIORef 1 Bool — LIO 1 Bool

leakSecretRef secRef = do
pubRef < newLIORef | True -- Create public reference
tolLabeled T $ leakIntoPub secRef pubRef -- Perform attack
readLIORef pubRef -— Read "secRef" walue
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This function returns the content of the secret referameref without raising the current label.

Due to the feasibility of such attacks, LIO propagates etioap up to the neareshtch Or toLabeled.
Intuitively, the correct semantics eéLabeled are as before with the added requirement that all exceptions
be caught: regardless how the computation enclosetbobyveled terminates, da.abeled value must
always be returned. Conceptually this is equivalent toliage lifted value, i.e., a value that may be a
“normal” value or an exception. Of course, if the resultuaiabel is an exception, the exception will
propagate to the nearesttch Or toLabeled.

Considering this modification to the semanticséfabeled, observe that the side-effectsligakIntoPub
produced after theoLabeled block will always be executed (even if an exception is raissitiecondThrow).
More generally, we close up leaks through exception profi@yhy simply assuring that the execution of
(possibly public) actions following @oLabeled block does not depend on the abnormal termination of a
computation insideoLabeled.

Recovery of unsafe actionsUnlike other dynamic IFC approaches, such as (Askarov & B&lie2009;
[Sabelfeld & Russo, 20009; Austin & Flanagan, 2009; Austin &rfdgan, 2010; Devriese & Piessens, 2011)),
LIO allows untrusted programs to safely recover from fakidue to IFC violation attempts (e.g., trying to
create labeled values below the current label, or read froefeaence labeled above the current clearance,
etc.) Having a safe handling of exceptions in place, LIOasia labeled exception when a security
constraint is not fulfilled. This allows untrusted code tdcbaexceptions and handle monitor failures
gracefully. Consider, for instance, the following functithat unlabels aabeled value and returns a
Maybe Value to indicate the success of such operation:

safeUnlabel :: Labeled a — LI0 1 (Maybe a)
safeUnlabel 1lv = catch ( do v < unlabel lv -- Fails if labelOf lv [ZCeyr
return (Just v)
) (A_ — return Nothing)

If the label of1v is above the current clearance, the LIO primitir@abel throws an exception. In this
example, however, this exception is caught (since the lafltble exception will be.¢,; and the exception
handler will simply returniothing). If the label ofiv is below the clearance, the current label is raised
and the unlabeled result is simply returned.

3 AChair

To demonstrate the flexibility of our dynamic informationidibrary, we presend Chair, a simple API
(built on the examples of Sectidh 2) for implementing seameference reviewing systems. In general,
a conference reviewing system should support various ifeat{and security policies) that a program
committee can use in the review process. Minimally, it sH@uipport:

Paper submissiarability to add new papers to the system.

User creation ability to dynamically add new reviewers.

User login a means for authenticating users.

Review delegatiarability to assign reviewers to papers.

Paper readingmeans for reading papers.

Review writing means for writing reviews.

Review readingmeans for reading reviews.

Conflict establishmenability to restrict specific users from reading conflictiyiews.

vVVvVvvVYyVvVyVYYVYY
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Even for such a minimal system, a number of security concennst be addressed. First, only users
assigned to a paper may write the corresponding reviewangsemformation from the review of one
paper should not leak into a different paper’s review. Ahiddt users should not receive any information
on the reviews of the papers with which they are in conflict.

AChair's API provides the aforementioned security polidigsapplying information flow control.
Following the examples of Sectidn 2, we take the approachidreing IFC when writing to output
channels, and thus the security for the above policies spored to that of non-interference, i.e., secret
data is not leaked into less secret channels/reviews. Ttheative, clearance-restricting approach of
Section 2 can be used to enforce the security policies by memfnt rather than non-interference (see
Sectior[b). Before delving into the details of th€hair, we first introduce the specific label format used
in the implementation.

3.1 DC Labels

AChair is implemented usinBisjunction-Category (DC) labeléStefanet al, 2011a). DC labels can be
used to express a conjunction of restrictions on infornmaflimv that represents the interests of multiple
stake-holders. As a result, DC labels are especially deifab systems in which participating parties do
not fully trust each other, e.g., a conference review system

Policies are expressed by leveraging the notiongioicipals In our system, a principal is a string that
represents a source of authority such as a user, groupetoled DC label, written'S,1), consists of two
Boolean formulasandl over principals. Botlitomponents &ndl are minimal formulas in conjunctive
normal form (CNF), with positive terms and clauses sortegite each formula a unique representation.
Componens protects secrecy by specifying the principals that arenadtb(or whose consent is needed)
to observe the data. Dually,protects integrity by specifying principals who createdushes for, and
may currently modify the data.

Data may flow between differently labeled entities, but dnlguch a way as to accumulate additional
secrecy restrictions or be stripped in integrity ones, nic¢ versa. Specifically, the-relation for DC
labels is defined as:

Definition 1(DC labelC relation)
For any two DC labelgS;, 1;) and(S, 15),

S =S h =1
(S1,11) C (S, 12)

In other words, data labelé®;, 1) can flow to an entity labele¢5,, I,) if and only if the secrecy of the
data, and integrity of the entity are preserved. Intuitivéie C relation imposes the restriction that any
set of principals who can observe data afterwards must a@ge been able to observe it earlier. Dually,
the integrity of the entity is preserved by requiring tha ource label impose more restrictions than that
of the destination.

The join and meet for DC labels directly follows from the défom. The join and meet of any two
DC labelsL; = (S;,11) and L, = (S, 12) are respectivelyL; ULy, = (A S, 11V IR) andLiMLy =
(S1V S,11 A l), where each component of the resulting labels is reducedite C

Intuitively, the secrecy component of the join protects sieerecy ofL; and L, by specifying that
both set of principals, those appearingghand those irs,, must consent for data label&A S, to be
observed. Conversely, the integrity component of the jQiw,l,, specifies that either principals bf or
I> could have created and modify the data. Dual propertiesfoolithe meet.; M1L>.
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We note that our implementation of DC labels forms a boundtité. The least restrictive component
corresponds to the Boolean vallieie ; the most restrictive component corresponds to the Boolehre
False These interpretations allow for a sound definition of the Toand bottomL elements for the DC
label lattice: T = (False True), and L = (True, False. Additionally, in our model, public entities have
the default, oremptylabel, Loy, = (True, True). It is intuitive that data labeledS, 1) can be written to
a public network with labelp,p, only with the permission of a set of principals satisfyihg Boolean
formulaS. Conversely, data read from the network can be lab&ed only with the permission of a set
of principals satisfying.

3.2 DC Labels inA Chair

We now describe the data structures and the role of DC lalf@s (now on just labels) im Chair.
Intuitively, the AChair API provides administrators and reviewers with fiores for querying review
entries and modifying user accounts. Hent€hair is implemented as a state moma€L10 (whose
value constrctorevLIOTCB is not exported to untrusted code) that stores informatiomeviews and
users, withL.10 as the underlying monad.

The A Chairsystem relies on two principal types correspondingapers and reviews. We identify
papers and reviews according to the unique paper identifierber. As such, for thigh paper the principal
associated with the paperRs while the principal associated with the correspondingensvs R;.

Review entries A review entry is defined as a record consisting of a paper munsoreference to the
corresponding paper, and a reference to the shared revigebook’. For simplicity, all reviewers append
their review to the same review notebook. The type for su¢hemnis:

data ReviewEnt = ReviewEnt { paperId :: Id —-— Paper number
, paper :: DCRef Paper —-- Paper content
, review :: DCRef Review } -- Notebook

whereDcRref is a labeled reference using DC labels, itgpe DCRef = LIORef DCLabel. Note that this
differs from the examples of Sectibh 2, where the reviewsvgénplyLabeled values.

Users A reviewer, or user, has a unique user name, password, andisyent sets of paper ids (in our
implementation these are simple lists). One set corresptorttie user’s conflicting papers, the second set
corresponds to the papers the user has been assigned tw. I@uigcretely, we define a user as value of

type:

data User = User { name :: Name -- User name
, password :: Password -- Password
, conflicts c: [Id] -= Conflicting papers
, assignments :: [Id] }  -- Paper assigned to review

A user is authenticated given a user name and password antieds. Following authentication, the
code of the reviewer, who is assigned to papers.1n, is executed with the current label initially set
to (True, Ry A--- ARy), whereR,; is the principal corresponding to review entryThe current clearance
is set toT = (False True). The secrecy component in the clearance allows the exgcttide to read
any data; the integrity component of the current label atlogvprocess to only write to assigned reviews
(detailed below).
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Reading and writing papers After logging in, users are allowed to read and print out aapgr by
supplying the paper id. The label of the referepager in the ith review entry is set tdTrue, R).
The secrecy component does not restrict any computation fsbserving the paper by reading the
reference content (the paper). However, the integrity aomapt restricts the modification of tith paper

to computations that own principBland can therefore run wifh in the integrity component of its current
label. Only a trusted administrator and the paper subnrisside is allowed to own such principals. As a
consequence, computations executing on behalf of a revieavanot modify the paper since the current
label assigned by the trusted login procedure never inslRda its integrity component.

Reading and writing reviews A reviewer’s code is also allowed to access the review natkloontent
of arbitrary review entries. Once a review has been readghenyits content must not be leaked into
another paper’s review notebook. We fulfill this requiretey identifying, using labels, when a given
piece of code reads a certain review. Concretely, we lalgeldferenceeview of theith review entry as
(R, R). As a consequence, when a computation wishes to read trewémi entryi, it must raisé,it
current label so as to include the principin its components (clearance permitted). Once a computatio
has beemaintedas such, it will not be able to modify the contents of anottegrgy’sreview. Such tainted
computations will have a label with princip] in the secrecy component (as a conjunction) and integrity
component (as a disjunction). Consider, for instance, gpetation performing a review of papesuch
that the current label i5; = (R, R). If the computation subsequently reads a different revedveled

L; = (Rj, Rj), the current label is set tb = (R ARj, R VR;). To write to the either review or j it
must be that the current label flows to the review labels,li.&. L orL C Lj. Itis clear that neither flow
restrictions are satisfied, and thus such illegal writepaggented.

Conflicts Following thereadReview examples of Sectidd 2, we restrict the reading, or more fipalty,
printing of a review by those reviewers in conflict with theppa Although every user is allowed to
retrieve a review, they cannot observe the result unlessvii¢e it to an output channel. Hence, code
running on behalf of a user (determined after logging in) oaly write to the output channel (using
printLabelCh) if the current labeL can flow to the output channel labg). Using the set of conflicting
paper ids, for every user, we dynamically assign the outpahnel label, = (S, True), whereS, =
Ri A+ ARy A (Rap1 V#CONFLICT) A--- A (Ry V#CONFLICT) andR;, i = n+1,...,N are the principals
corresponding tall the review entries in the system (at the point of the prird} the authenticated user is
in conflict with. Here #CONFLICT corresponds to a principal that none of the users own (sitail@ used

in the labels of paper references). For each conflicting ppgpee use the disjunctioR; V #CONFLICT

in the channel secrecy component to guarantee that a cotigoutainted withR; cannot write to the
channel. Suppose a computation running on behalf of a reviégwconflict with theith paper reads
reviewR;. In this situation, the current label is setlte= (RiA---, ---). Subsequent attempts to write to
the output channel will be disallowed sincéZ L. ForL C L, to hold, there must be a clauselip that
implies R;. However, when in conflict, the only clause in the secrecy poment that containg; in the

R,V #CONFLICT (and clearlyR; V #CONFLICT — R; does not hold).

2 We loosely use the term “raise” to mean moving up the seciattice — this implies more secret, and of lower
integrity in the DC label lattice.
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3.3 Implementation

Having established the underlying data structures anditepgatterns, we present tA&Chair API. As the
main goal ofA Chair is to demonstrate the flexibility and power of our dyi@mformation flow library,
we do not extend our example to a full-fledged system; the AR] bowever, be used to build relatively
complex review systems. Below, we present the details of @leair functions, which return actions in the
RevLIO monad. As previously noted, this monad is a state monadwrittas the base monad, threading
the system users, review entries, and name of the currentrusegh the computation.

System administrator interface A A Chair administrator is provided with several functiong ttiygnam-
ically change the system state. From these functions, vl de¢ most interesting cases below.

» addPaper :: Paper —RevLIO Id
Given a paper, it creates a new review entry for the paper etudr the paper id. InternallyddPaper
uses a function similar taddreview of Sectio 2.

» addUser :: Name —Password —RevLIO ()
Given a unique user name and password, it adds the new user.

» addAssignment :: Name —Id —RevLIO ()
Given a user name and paper id, it assigns the user to reveeaotinesponding paper. The user must
not be already in conflict with the paper.

» addConflict :: Name —Id —RevLIO (O
Given a user name and paper id, it marks the user as being flictarnth the paper. As above, it must
be the case that the user is not already assigned to revigvafes.

» asUser :: Name —RevLIO () —RevLIO ()
Given a user name, and user-constructed piece of codet @fitisenticates the user and then executes
the provided code with the current label and clearance afisiee as described in Sectionl3.2. After the
code is executed, the current label and clearance areedstod any information flow violations are
reported.

Reviewer interface The reviewer, or user, composes an untrugied.10 computation (or action) that
the trusted code executes usizgser. Such actions may be composed using the following interface

» findPaper :: String —RevLIO Id
Given a paper title, it returns its paper id, or fails if thgpais not found.

» readPaper :: Id —RevLIO Paper
Given a paper id, the function returns an action which, wheteted, returns the paper content.

» readReview :: Id —RevLIO ()
Given a paper id, the function returns an action which, wherteted, prints the review to the standard
output. Its implementation is similar to the example of &d#l, except that it operates on references.

» appendToReview :: Id—Content—RevLIO ()
Given a paper id and a review content, the function returraction which, when executed, appends the
supplied content to the review entry. Since there is no tobservation of the current review content,
and to avoid label creep, the function, internally, usekabeled.
Figure[d shows a simple example using #h@hair API. In this example, Alice is assigned to review
two papers. She does so by reading each paper (for the sestundlso reads the existing reviews) and
appending to the review “notebook”. Bob, on the other hamdgdded to the system after Alice’s code is
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module Admin where

import Alice
import Bob

main = evalRevLIO $ do
-- Adding users to system
addUser "Alice" "password"
-- Adding papers to system
pl < addPaper "Flexible Dynamic..."
p2 < addPaper "A Static..."
-- Assign reviewers
addAssignment "Alice" pl
addAssignment "Alice" p2

-- Ezecuting Alice’s code
asUser "Alice" $ aliceCode

-- Adding new users to system
addUser "Bob" "password"
-- Assign reviewers and conflicts

module Alice where

aliceCode = do

pl < findPaper "Flexible Dynamic..."

p2 < findPaper "A Static..."

readPaper pl

appendToReview pl "Interesting work!"

readPaper p2

readReview p2

appendToReview p2 "What about adding
new users?"

return ()

module Bob where

bobCode = do

pl < findPaper "Flexible Dynamic..."
p2 < findPaper "A Static..."
appendToReview p2 "Hmm, IFC.."
readReview pl -- IFC wiolation attempt

addAssignment "Bob" p2
addConflict "Bob" pl return ()

-— (exception raised)

-- Ezecuting Bob’s code
asUser "Bob" $ bobCode

Fig. 1: An example of code usilgChair API.

executed. Bob first writes a review for the second paper agrddttempts to violate IFC by trying to read
(and write to the output channel) the reviews of the first paffeough his review is appended to the correct
paper, reading the review of the first paper is suppressedo@te, the IFC violation attempt results in
an exception. Though in this case Bob does not catch the #aneand the exception is propagated to the
trusted API callasuser which handles the exceptions. Note, however, that Bob cielys@cover from
such IFC violation attempts. More specifically, the lir@dreview pi can be replaced by:

catch (readReview pl)
(A_ — writeToBobsLog "In conflict!" )

In this case, Bob’s computation will terminate gracefulylaimply write to log when he attempts to read
the first paper’s review.

4 Formal Semantics for LIO

This section formalizes our library for a call-by-namecalculus extended with Booleans, unit values,
pairs, recursion, references, exceptions, and.ttiemonadic operations. Figuié 1 provides the formal
syntax of the considered language. Syntactic categgreieandt represent values, expressions, and types,
respectively. Values are side-effect free while expressaenote (possible) side-effecting computations.
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Figure 1 Formal syntax for values, expressions, and types.

Value: vi= true|false| O |l |a|X|x|Axe]|(ee)
|fixe|Lbve| (e | X |e
Expression: ex=v|ee|me|if etheneelsee

|let x=eine|returne|e>>=¢e

| label e €| unlabel €| toLabeled e e

| newLIORef € €| readLIORef €| writeLIORef € €
| throwLIOe| catchee

| lowerClr e| getLabel | getClearance

| 1abelOf e | labelOfRef €

Type: Ti=Bool|O|T—T1|(T,T)|¢
| Labeled ¢ T |LIOL T |Ref £ T |X
Store: @ :Address— Labeled { T

Values In the syntax categony symboltrue andfalse represent Boolean values. Symlidlrepresents
the unit value. Symbol denotes security labels. Symbalrepresents memory addresses in a given
store. SymboK represents exceptions. Values include variabigsfgnctions(Ax.e), tuples(e,e), and
recursive functiongfix e). Four special syntax nodes are added to this categary:e, (e)**°, X, and

¢. NodeLb v edenotes the run-time representation of a labeled valuee®t° denotes the run-time
representation of a monadi@0 computation. Similarly nod¥, denotes the run-time representation of a
labeled exception. Noderepresents an erased value (explained in Selction 5). Wethraitaone of these
special nodes appear in programs written by users and teapenely introduced for technical reasons.

Expressions Expressions are composed of valges function applicationge €), pair projectiong s e),
conditional branchesif e then e else €), and local definitionglet x = e in €). Additionally, ex-
pressions may involve operations related to monadic coatiputs in theLI0 monad. More precisely,
return e ande >>= e represent the monadic return and bind operations. Mongmications related to
the manipulation of labeled values inside tt® monad are given b¥abel, unlabel, andtoLabeled.
Expressioniabel e; e, creates a labeled value that guaedswith labele;. Expressioninlabel e ac-
quires the content of the labeled vakmhile in aLI0 computation. ExpressiotbLabeled €; €, creates
a labeled value, with labed;, of the result obtained by evaluating the0 computatiore,. Non-proper
morphisms related to creating, reading, and writing ofnezfees are respectively captured by expressions
newLIORef, readLIORef, andwriteLIORef. LIO operations may raise exceptions by callingowLI0
and catch exceptions witbatch. ExpressionlowerClr e allows lowering of the current clearance to
e. ExpressiongetLabel andgetClearance return the current label and current clearance of.am
computation, respectively. Finally, expressidrgel0f e and labelOfRef e respectively obtain the
security label of labeled values and references.

Types We consider standard types for BooledBso1l), unit (()), pairs(t,T), and function(t — 1)
values. Type describes security labels. Typabeled ¢ T describes labeled values of typgwhere the
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Figure 2 Operational semantics for LIO (part I).

E:= ---|returnE | E >>= €| 1abelOf E | 1abel0fRef E

(RETURN) (BIND-1)
(2, E[returnV]) — (2, E[(V)™]) (ZE[(X)™ >>=€]) — (Z,E[(X)™])
(BIND-2) (cLAB)

V£ X | =5.1bl
(Z,E[(v)"™ >>=¢]) — (X, E[e V) (Z,E[getLabel]) — (X,E[returnl])

(cCLR)
| =.clr (GLAB)

3 Elgotcloarance) — (2. Ejrotaral] (3,E[1abel0f (Lbl €)]) — (=, E[I])

(cLAaBR)
e=2.¢(a)
(¥,E[label0fRef a]) — (Z,E[label0f €])

label is of typel. TypeLIO ¢ T represents monadid 0 computations, with a result tygeand the security
labels of typel. TypeRef ¢ T describes labeled references, with labels of #;de values of typa. Type
X describes unlabeled exceptiﬁns

4.1 Dynamic semantics for LIO

TheLI0 monad presented in Sectibh 2 is implemented as a state méfitadut loss of generality, we
simplify the formalization and description of expressidiysmaking the state of the monad part of a
run-time environment. More precisely, for a giveh0 computation, the symbd denotes a run-time
environment that contains the current label, writtelb1, the current clearance, writténclr, and store,
written >.¢@. We represent the store as a mapping from memory addregsat(labeled valuedf | e).

A run-time environmenk andLI0 computation form &onfiguration(Z,e). Given a configuratiog, ),
the current label, clearance, and store when starting atiaiue is given by>.1bl, >.clr, and 2.,
respectively.

The relation(Z,e) — (¥, €) represents a single evaluation step from expressiander the run-time
environmeng, to expressio®’ and run-time environmeY—we say that reduces t& in one step. We
write —* for the reflexive and transitive closure ef+. The evaluation relation is defined in terms of a
structured operational semantics via evaluation con{@&eth )

The reduction rules for standaidcalculus are self-explanatory and presented in AppendliMare
interestingly, FigureB]2 arfld 3 present the non-standardi&ian contexts and reduction rules for our
language. These rules guarantee that programs writteg esinapproach fulfill non-interference, i.e.,
confidential information is not leaked, and confinement, ae&computation cannot access data above its
clearance.

3 For simplicity, we assume the set of exceptions is limited single type.
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Figure 3 Operational semantics for LIO (part II).

E:= --- | label E e| unlabel E | toLabeled E €| newLIORef E e
| readLIORef E | writeLIORef E €| throwLIOE | catch E e| lowerClr E

(LAB) (UNLAB)
S1b1C I CSclr I"=3%1b1Ul I"'CS.clr 3 =3[1bl ]
(3,E[1abel |l €]) — (Z,E[return (Lbl €)]) (Z,E[unlabel (Lbl e)]) — (¥',E[return €])
(ToLAB-1)

Z1blC I C Z.clr
(z,8) —" (&, (vy™®)  TaipvlCl| " =3/[1b1+ Z.1b1,clr s Z.clr]

(3,E[toLabeled | €]) — (" E[label | v])

(TOLAB-2)
21blC | C Z.clr

,8) — ,(V .1bl =2|1bl+— 2.1bl,clr — 2.clr =112.1bl
Z * Z/ LIO Z/ I z// Z/ Z Z I// I Z/
(Z,E[toLabeled | €]) — (Z",E[label | X/,])

(NREF)
SIb1CICSclr =3 ¢a—Lble

(Z,E[newLIORef | €]) — (' E[return a))

a fresh

(RREF)
Sp@=Lble I'=z1vlul I'CZclr ¥ =31b1r1]
(%,E[readLIORef a]) — (X' E[return €])
(WREF)

Sp@=Lble Z1b1CICZclr Y =3¢la~Lblé]
(3,E[writeLIORef a €]) — (Z',E[return ()])

(THROW) (cATCH-1)
| =%.1bl I"=%1b1ul I'CZclr ¥ =Z[1bl1"]
(%,E[throwLI0 X]) — (Z,E[(X)"°]) (Z,E[catch (X)) €]) — (¥',E[e X))
(CATCH-2) (LWCLR)
V# X SIbICICSclr ¥ =3Z[clr—|]
(Z,E[catch (V)" €]) — (Z,E[(v)""]) (Z,E[lowerClrl]) — (¥ E[return ()])

Rules in Figur€R are self-explanatory, e.g., the evalnatites forreturn and(>>=) are standard and
labeled exceptions are propagated by=) (rule (8IND-1)). Rule (LaB) of Figure[3 generates a labeled
value if and only if the label is between the current label alghrance of th&I0 computation. Rule
(UNLAB) provides a method for accessing the conteaf a labeled valuéb | e in LI0O computations.
When the content of a labeled value is retrieved and usediia@oomputation, the current label is raised
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(2 =Z[1bl — 1], wherel” = Z.1b1 LIl), capturing the fact that the remaining computation migigehd
one. Of course, the current label should not exceed cleardhEeX.c1r).

The reduction otoLabeled deserves some attention. Expressionabeled | € is used to execute a
computatiore to completioﬁ ((Z,e) —* (', (v)*™)) and wrap the result into a labeled value whose
label isl. Specifying label is the responsibility of the programmer. We note, howevet the label
| needs to be an upper bound on the current label for the ei@luat computatiore (£'.1b1 C 1), a
restriction imposed inTOLAB-1). The reason for this is due to the fact that security ket protected
by the current label, effectively making them public infation accessible to any computation within
scope (see ruless( AB) and GLABR)). As a consequencetalabeled that does notimpose an upper
bound on the sensitivity of the data observeclig/susceptible to attacks. To illustrate this point, coesid
a computation with current label g, that takes two (confidential) labeled values with respedtbels
I; andl, such that; IZ lg,i = 1,2. (Recall that the current label and clearance of a gividncomputation
can be changed dynamically.) Further, suppose thatbeled does not take an upper-bound on the
computation’s observations. Directly, the following prag can be used to leak sensitive information:

leak 1V1 1V2 = do -- Initzal label Leyr=lp
1V3 < tolabeled $ do -— Label of 1V3 may be:
vl < unlabel 1V1 -- Read first value, raise label to Leyr=I1
if vl then return True -- If walue ts, leave current label Ley=1I1
else unlabel 1V2 -- Otherwise, the current label to Leyr=Io
return (labelOf 1V3) -- Can be l1 or |y

Note that, if the returned value of the inner computation lbave the label; or |, (remember that
labels are effectively public information), informatios directly leaked! Hence, to prevent such leaks,
programmers must provide an upper-bound on the current tdiiained where finishes computing.
Since our approach is dynamic, flow-sensitive, and sounslntlay require non-trivial static analysis in
order to automatically determine the label for each catldifabeled (Russo & Sabelfeld, 2010).

However, if the inner computation does read data more $em#itanl, such that the end current label
>/.1b1 iZ 1, rule (TOLAB-2) specifies that an exception labeled with the join of theargound ands’
must be raised when performing an unlabel—hence, we retiafveted value that encloses an exception.
Note that an exception isot raised at the point of evaluatingLabeled, but rather when the labeled
value is unlabeled, and the current label is raised (s&eA4B)).

When creating a referenceewLIORef | e produces a labeled value that guasdwith label | and
stores it in the memory stor&/(= Z.¢[a+— Lb | €]). The result of this operation is the memory addiess
(return a). Observe that references are created only if the refeielat®l () is between the current label
and clearance labek(1bl C | C 2.c1r). As in (LAB), the restriction C Z.c1r assures that programs
cannot manipulate or access data beyond their clearanctor8@ further details such confinement
guarantees. RUleRREF) obtains the conterd of a labeled valuéb | e stored in at address This rule
raises the current label to the security leNdl’ = Z[1b1 +— |'] wherel’ = Z.1b1U1). As in the previous
rule, (RREF) enforces that the result of reading a reference is belowitizzancel( C Z.c1r). Finally, rule
(WREF) updates the memory store with a new value for the referetice E.¢[a+— Lb | €']) as long as the
label of the reference is above the current label and it doesxteed the clearancE.{b1 C | C X.clr).

4 By using big-step semantics instead of an evaluation coufethe formtoLabeled | E, the rules do not need
to rely on the use of trusted primitives or a stack for (saand) restoring the current label and clearance when
executingtoLabeled.
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If consideringz.1b1 as a dynamic version of the: the restriction that the label of the reference must be
above the current labet(1bl C I) is similar to the one imposed by (Pottier & Simonet, 2002).

Throwing and catching exceptions is standard.IA0 computation may raise an exception according
to rule (THROW). The label of the raised exception is set to the current|dlochandle exceptions raised
in a computatiore;, a computation can execute the computatioraisch e; €, wheree, corresponds
to the exception handler. If no exception is raised, ther faATCH-2) simply propagates the value.
However, if an exception is raised, and according to rakerCH-1), the current label is raised (clearance
permitting) to the label of the exception and the exceptiandter is applied to the unlabeled exception.
Itis important to note that although our formalization otegtions is limited to a single type, exceptions
in LIO can encode information, similar to our encoding of thkerent label at the point of the throw.

Rule (L(wCLR) allows a computation to lower the current clearanck fthis operation is particularly
useful when trying to contain the access to some data as wéfieaeffects produced by computations
executed bytoLabeled. Rules CLAB) and (CCLR) obtain the current label and clearance from the run-
time environment. Finally, ruless_AB) and GLABR) return the labels of labeled values and references.
Observe that, regardless of the current label and cleamfite run-time environment, these two rules
always succeed—hence “labels are public”.

Addressing IFC violation attempts Most of the evaluation rules in Figuré 3 have a premise thpbses

an information flow restriction. For example, rulek) imposes the restriction that no labeled values may
be labeled with a label below the current label or above thieeaticlearance. As previously mentioned,
rather than imposing that the evaluation of a misbehavioggam gets “stuck”, we allow untrusted code
to recover by throwing a monitor exception. Specifically, wegoduce a “violation rule” for each rule
that consists on the rule’s premise being negated and alaysating to e&hrowLI0. For example, the
violation rule for rule (LaB) is given by:

(=LAB)
—(Z.1b1C I C Z.clr)

(%,E[1abel | €]) — (%, E[throwLIO X])

The remaining rules are similar and omitted for brevity.

4.2 Static semantics for LIO

Figure[4 shows the typing rules for a subset of the terms apckesgions; the remaining rules are shown
in Appendix[A. The typing rules are standard and we thereflar@ot describe them further. We note,
however, that, unlike previous work (Russbal, 2008; Devriese & Piessens, 2011), we do not require
the use of any sophisticated features from Haskell's tystesn, a direct consequence of our dynamic
approach.

5 Soundness

In this section we show thafl0 computations satisfy two security policies: non-integfeze and confine-
ment. Non-interference shows that secrets are not leakeld @onfinement establishes that certain pieces
of code cannot manipulate or have access to certain datdaftbepolicy is similar to the confinement
policies presented in (Leroy & Rouaix, 1998; Banerjee & Naam 2005).
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Figure 4 Typing rules for subset of terms and expressions.

(@) =Labeled (T F-e :¢ Nl-e:t Ml-e:1
[l B4 M=X:X
Ma:Ref (T MFLbe; e:Labeled /T M-(e)™:LI0¢T
M-e:? MEX:X FL MN-e : ¢ N-e:t1
o T
M=Xe: T I+labele; €:LI0Y (Labeled ¢ T)
lFe:Labeled/ T MEe i/ MFe:LI0/T
I Funlabele:LIO(T I toLabeled e € :LI0 ¢ (Labeled ¢ T)
Ml-e /¢ N-e:t1 [Fe:Ref/lT
I - newLIORef € € :LIO0/ (Ref £ T) I FreadLIORef e:LIO/ T
e :Ref/lT et N-e: X
NFwriteLIORefe; e :LI0Y () I throwlLIOe:LIO/T
Ml-e :LIOYT Mle:X—LI0/T Ml-e:?
F getLabel :LIO /¢ ¢
[Fcatche; e :LIO/T I lowerClre:LI0Y ()
le:LblT Ml-e:ReflT

- getClearance:LI0O (/¢ T
It labelOfe:? [+ 1labelOfRefe:/

5.1 Non-interference

As in (Li & Zdancewic, 201D Russet al, 2008), we prove the non-interference property by using the
technique oferm erasurelntuitively, data at security levels where the attackemz observe information
can be safely rewritten to the syntax nogld-or the rest of the paper, we assume that the attacker can
observe data up to security lexelThe syntactic term, denoting an erased expression, may be associated
to any type (recall Figurgl 9). Functian is responsible for performing the rewriting for data at ségu
level not lower thari. In most of the cases, the erasure function is simply appleedomorphically (e.g.,
€.(if E then e else €) = if g (E) then & (e) else g (€)). In the case of data constructors, it is
simply the identity function. The definition & for expressions and evaluation contexts are shown in
AppendiXB. Figuréb shows the definition &f for terms, configurations, and bind. The three interesting
cases for this function are when is applied to a labeled value, a given configuration, or bindsuch
cases, term erasing could indeed modify the behavior ofrthgram. A labeled value is erased if the label
assigned to it is aboé_ (eL(Lble)=Lbl e, if | ZL). Similarly, the computation performed in a certain
configuration is erased if the current label is abbve, ((Z,€)) = (g (Z),e) if Z.1b1 [Z L). Finally, if &

is applied to a bind-expression where the action evaluatadabeled exception with labelandl Z L,

then the expression is fully erase(®.

5 We loosely use the word “above” to megn since labels may not be comparable.
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Figure 5 Erasure function for terms, memory store, configuratiorsland-expression.

£ (true) = true & (false) = false e (0)=0 e(l)=I g(a)=a &(x) =x
e(Axe) =Ax.g(e) e ((ee) =(e(e),e(e) & (fixe)=fix g (e)
e (Lble)= { is : ;L © 'Ot%eLrwise eL((0)™) = (& (€)™ EL(s) =
& (Z.9) ={(xe(Z.0(x)) : xe domZ.¢)} f((56) = { (eL(X),0) 21bl1ZL
e.(3) =3[p & (2.0)] LASE T (al(z),e(e))  otherwise
e IZL
a(X) =X a.(X) = { X otherwise

(o)t e =(X)*andl ZL

8L(e1 >>=6) = { SL(el) >>= €|_(ez) otherwise

Following the definition of the erasure function, we intrada new evaluation relation—| as follows:

Definition 2(— )

(z,6) — (T €)
(Z,e> —L £|_(<Z/,e’))

Expressions under this relationship are evaluated in theesaay as before, with the exception that,
after one evaluation step, the erasure function is appbetthé resulting configuration, i.e., run-time
environment and expression. In that manner, the relation guarantees that confidential data, i.e., data
not below level, is erased as soon as it is created. We wite] for the reflexive and transitive closure
of —L.

Most results that prove non-interference pursue the
goal of establishing a relationship betweer* and—:{

through the erasure function, as highlighted in Fiddre 6. (z,e) (2 d)
Informally, the diagram establishes that erasing all gdecre

data, i.e., data not belol, and then taking evaluation lgL lgL
steps in—_ is the same as taking steps- and then e ((Z.8) e ((2,€))

erasing all the secret values in the resulting configuration

Observe that if information from some level abdves e . ; ;
. ._Fig. 6: Simulation betweea—* and—|.

leaked bye, then erasing all secret data and then taking

evaluation steps ir— | might not be the same as taking

steps in— and then erasing all the secret values in the resulting canafiign.

For simplicity, we assume that the address space of the nyestare is split into different security
levels and that allocation is deterministic. In that manties address returned when creating a reference
with levell depends only on the references with lelivalready in the store. These assumptions are valid
in our language since, similar to traditional referencedaskell, we do not provide any mechanisms for
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deallocation or inspection of addresses in the API. Howevben memory allocation is an observable
channel, the library could be adapted in order to deal witlh-apaque pointers (Hedin & Sands, 2D06).
We start by showing that the evaluation relationships and—| are deterministic. Firstly, however,
we note that = € means syntactic equality between expresseaisde’ and equality between run-time
environments, writted = ¥, is defined as the point-wise equality between mappihgsds’.

Proposition 1(Determinacy of—)
» For any expressior and run-time environmer# such that(,e) — (2’,€’), there is a unique
terme and unique evaluation contetsuch thae = E[€].
» If (Z,e) — (¥',€)and(Z,e) — (Z",€'), thend =€ andZ’ = %".

Proof
By induction on expressions and evaluation contextd.]

Proposition 2(Determinacy of—)
If (Z,e) — (¥',€)and(Z,e) — (X",€"), thend = ¢ and¥’ =%".

Proof
From Propositiofill and definition ef. [

The following proposition shows that the erasure functhamomorphic to the application of evalu-
ation contexts and substitution as well as that it is idempbt

Proposition 3(Properties of erasure functign

1.e.(E[e]) = eL(E)[eL(e)] 4.e.(eL(E)) = a(E)
2.e.([ex/Xer) = [eL(e2)/X]eL(er)  5.a(eL(X)) =&(2)
3.e.(eL(e) =eL(e) 6.e.(eL((Z,€)) =eL({Z,€))
Proof

Most cases follow by induction on expressions and evalnatimtexts, see AppendiX C for details. [J

The next lemma establishes a simulation betweenand — for expressions that do not execute
toLabeled.

Lemma 1(Single-step simulation withodbLabeled)
If T'-e:1and(X,e) — (¥ &) wheretoLabeled is not executed, theh + € : T ande ((Z,€)) —
e((Z'.€)).

Proof

Part of the lemma shows subject reduction, which is provedhmwing that a reduction step does not
change the types of references in the stbre and then applying induction on the typing derivations.
The simulation follows by induction on evaluation conteatal case analysis on terms and expressions.
Details are presented in Appendik C. O

Using this lemma, we then show that the simulation is prestwhen performing several evaluation
steps.

Lemma A Simulation for expressions not executitwf.abeled)
Ifr-e:1,(Z,e) —* (¥, €) where there are no executionstefLabeled, thenl - € : T ande ((Z,€)) —;
e((Z'.€)).

Proof
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By induction on— and application of Lemnid 1. O

The reason for highlighting the distinction between expig@ss executingoLabeled and those not
executing it is due to the fact that the evaluatiortefabeled involves big-step semantics (recall rules
(ToLAB-1) and ((OLAB-2) in Figure[B). However, the next lemma shows the simutetietween—*
and— for any expressioe.

Lemma JSimulatior)

If FFe:Tand(Z,e) —* (¥',€) theng ((Z,€)) — &L ((¥',€)).

Proof

Lemmd2 shows the multi-step simulation for expressionsdbanot executeoLabeled. Thus, to show
the general multi-step simulation, we first prove that.abeled preserves the simulation by induction
on the number of executedLabeled. The general simulation follows directly. The interestedder is
referred to AppendikIC. [

Figure 7 L-equivalence for expressions.

Lble~_ Lblé Lble~_ Lblé

We definel-equivalence between expressions. Intuitively, two esgimns aré -equivalent if they are
syntactically equal, modulo labeled values whose labelsatoflow to L. We usex| to represent.-
equivalence for expressions. Figlile 7 shows the definitwrabeled values. Considering the simple
lattice:L C M C H and an attacker at levél it holds thatLb H 8 ~; Lb H 9, but it does not hold that
LbL2=; LbL 3o0rLb H 8= Lb M 8. Recall that labels are protected by the current label,thud
(usually) observable by an attacker — unlike the expresdiogy protect, labels must be the same even if
they are abovk. The rest ok is defined as syntactic equality between constants (ezge ~| true) or
homomorphisms (e.gif ethen e; else &~ if € then €] else €, if e~ €, &1 = €, andey ~| €)).

Since our language encompasses side-effecting exprestisalso necessary to defiheequivalence
between memory stores. Specifically, we say that two rue-gmvironments ark-equivalent if an at-
tacker at level cannot distinguish them:

Definition 3(L-equivalence for storgs

ICLVI'CL VaX.p(@=Lble~ . ¢ =Lbl ¢
T~ Y.
Note that thel -equivalence ignores the store references with labelseabo®imilarly, we definel-
equivalence for configurations.

Definition 4(L-equivalence for configuratiohs

~ € o~ Y@ Z1bl=31bl Zclr=3%.clr Z1blCL
(Z.6) =L (Z'.€)

S~ Y9  ZIbliZL 1l ZL
<Za e> <L <Z/ae(>
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In the above definition, it is worth remarking that we do najuiee ~| for expressions when the current
label does not flow td.. This omission comes from the fact thmainde’ would be reduced te when
applying our simulation between—* and— (recall Figurdb).

The next theorem shows the non-interference policy. Itrd&dly states that given two inputs with
possibly secret information, the result of the computatmdistinguishable to an attacker. In other
words, there is no information-flow from confidential datatdputs observable by the attacker.

Theorem INon-interference

Given a computatioe (with noe, ( )", Lb, or X|) wherel - e: Labeled ¢ T — LI0 ¢ (Labeled ¢ T'),
environments; andX, whereX;.¢p = ,.¢ = 0, security label, an attacker at level such that C L,
then

Veie. (M -6 :Labeled £ T)i—12A (6 =Lbl €)i—12A (Z1,€1) ~L (Z2,€2)
A(Z1,e @) —" (21, (V1)) A (22,8 &) — (25, (V2)™)
= (21, (V1)) =L (25, (v2)™")
Proof
From LemmaB and determinacy ef+; . The details are shown in AppendiX C. (I

Observe that even though we assume that the input labeledsealande, are observable by the attacker
(I C L), they might contain confidential data. For instarsegould be of the fornib | (Lb I’ true) where

'z L.

5.2 Confinement

In this section we present the formal guaranteesiiatcomputations cannot modify data below their
current label or above their current clearance.
We start by proving that the current label of &I0 computation does not decrease.

Proposition 4(Monotonicity of the current labgl
Ifr'-e:tand(Z,e) —* (¥',€), thenZ.1bl C ¥'.1b1.

Proof
By induction on expressions, evaluation contexts, andaglurules. [

Similarly, we show that the current clearance of.d computation never increases.

Proposition 5(Monotonicity of the current clearange
Ifr'-e:tand(Z,e) —* (¥',€), then?'.clr C Z.clr.

Proof
By induction on expressions, evaluation contexts, andatalurules. [

Propositio % and]5 are crucial to assert that onceIancomputation reads confidential data, it cannot
lower its current label to leak it. Similarly, a computatishould not be able to arbitrarily increase its
clearance; doing so would allow it to read any data with n@ascestrictions.

Before delving into the confinement theorems, we first defistoee modifier that removes all store
elements with a label that does not flowl to

Definition 5(Label-based reference-cell remoyal
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Modifier (X.¢), retains all the labeled references with a label belousually the current label:

(Z.9)y =Z.9\{(a,Lbl'e):acdomZ.) Al' Z I}
And, dually, a store modifier that removes all store elembatsw a given clearande

Definition 6(Clearance-based reference-cell remgval

(Z.o)y =Z.9\{(aLbl' e :acdomZ.g) Al Z 1}

This store modifier retains all the labeled references witbal that is not belov, usually the current
clearance. We now present the first confinement theorem.

Theorem ZStore confinemeht
Given labelsl andlc, a computatiore (with no e, a, ( ), Lb, or X/) such that™ +e: LI0O ¢ 7, and
environmeng&[1bl — |, clr — Ic] wherel C I, then

(Z,6) =" (Z,(V") = (Z.9)u=C.QuAZQ. = .0,

Proof
By contradiction on creating and modifying labeled refeeswith labels not boded by the current label
and clearance, using Propositidihs 4 ghd 507

Intuitively, this theorem states that no new referencel witabel not bounded by the initial current label
and current clearance can be created. And, computaii®ionfined to modifying references betwden
andlc.

Our second confinement theorem states that a return labalee omes either from some part of the
store (recall that labeled values can be nested) or mighbb®uated when its security level is between
the current label and clearance.

Theorem JLabeled creation confinemejt
Given labeld, I, andly, a computatior (with noe, a, ()", Lb, orX;) wherel' - e: LI0 ¢ (Labeled /1),
and environmeni[1bl — |, clr — I¢| such that C I, then

(z,8) —* (&', (Lbly &)™) = ICI,Clcv3(a,lbl; ) €Z.o.lbly e €Al Cle

Here, operatoé is defined as the syntactic appearance of the left-hand ssipreinto the right-hand side
operand.

Proof
By induction on expressions and evaluation contexts antjuRiopositiongl4 arld 5. O

6 Related Work

Heintze and Riecke (Heintze & Riecke, 1998) consider sgcfor lambda-calculus where lambda-terms
are explicitly annotated with security labels, for a tygstem that guarantees non-interference. One
of the key aspects of their work consists of an operator whidées the security annotation of a term
in a similar manner to our raise of the current label when malating labeled values. Similar ideas of
floating labels have been used by many operating systemsgdstck to the High-Water-Mark security
model [Landwehr, 1981) of the ADEPT-50 in the late 1960s.e5¢ts|(Efstathopoulaat al, 2005) first
combined floating labels with the Decentralized label m¢iilers & Liskov, 1997).
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Abadi et al. |(Abadet al,, 1999) develop the dependency core calculus (DCC) based@mrachy of
monads to guarantee non-interference. In their calcuhey, define a monadic type that “protects” (the
confidentiality of) side-effect-free values at differentarity levels. Though not a monad, dutbeled
type similarly protects pure values at various securitelevTo manipulate such values, DCC uses a
non-standard typing rule for the bind operator; the essefi¢tkis operator, in a dynamic setting with
side-effectful computations, is captured in our libraryotigh the interaction of dfabeled, unlabel,
andLIO.

Tse and Zdancewit (Tse & Zdancewic, 2004) translate DCC$teByF and show that non-interference
can be stated using the parametricity theorem for Systerhd-atlithors also provide a Haskell implemen-
tation for a two-point lattice. Their implementation enesceach security level as an abstract data type
constructed from functions and binding operations to cosemmmputations with permitted flows. Since
they consider the same non-standard features fobihé operation as in DCC, they provide as many
definitions forbind as different type of values produced by it. Moreover, theipiementation needs to
be compiled with the flagfallow-undecidable-instances, in GHC. Our work, in contrast, defines
only one bind operation farI0, without the need for such compiler extensions.

Harrison and Hook show how to implement an abstract opeyatystem calledseparation kernel
(Harrison, 2005b). Programs running under this multi-tdieg operating system satisfy non-interference.
To achieve this, the authors rely on the state monad to repréisreads, monad transformers to present
parallel composition, and the resumption monad to achi@rancunication between threads. Conse-
quently, non-interference is enforced by the scheduletdmpntation, which only allow signaling threads
at the same, or higher, security level as the thread thadsthe signal. The authors use monads differently
from us; their goal is to construct secure kernels rather iravide information-flow security as a library.
Our library is simpler and more suitable for writing sequaimirograms in Haskell. Extending our library
to include concurrency is stated as a future work.

Crary et al.[(Craryet al, 2005) design a monadic calculus for non-interference fogams with mu-
table state. Similar to our work, their language distingasbetween term and expressions, where terms
are pure and expressions are (possibly) effectful comipusatTheir calculus mainly tracks information
flow by statically approximating the security levels of effe produced by expressions. Compared to
their work, we only need to make approximations of the siffieets of a given computation when using
toLabeled; the state of.I0 keeps track of the dynamic security level upper bound of nleskedata.
Overall, our dynamic approach is more flexible and permésian their proposed type-system.

Pottier and Simonet (Pottier & Simonet, 2002; Simonet, 2@&3igned FlowCaml, a compiler to en-
force non-interference for OCaml programs. Rather thadempnting a compiler from scratch, and more
similar to our approach, the seminal work by Li and Zdancefkic Zdancewic, 2006) presents an
implementation of information-flow security as a libranmy, Haskell, using a generalization of monads
called Arrows|(Hughes, 2000). Extending their work, Tsaile{chung Tsaét al, 2007) further consider
side-effects and concurrency. Contributing to librargdshapproaches, Russo et al. (Russal, 2008)
eliminate the need for Arrows by showing an IFC library basekély on monads. Their library defines
monadic types to track information-flow in pure and sidesetfiul computations. Compared to our dy-
namic IFC library, Russo et al.’s library is slightly lessrméssive and leverages Haskell's type-system
to statically enforce non-interference. However, we nbtg pur library has similar (though dynamic)
functions provided by their SeclO library; similar tmlabel, they provide a function that maps pure
labeled values into side-effectful computations; sinmitetoLabeled, they provide a function that allows
reading/writing secret files into computations relatedubliz data.




Flexible Dynamic Information Flow Control in the Presendeeaceptions 27

Morgenstern et all (Morgenstern & Licata, 2010) encodedwuthaization- and IFC-aware program-
ming language in Agda. Their encoding, however, does nosiden computations with side-effects.
More closely related, Devriese and Piesséns (Devriese gsBies, 2011) used monad transformers and
parametrized monads (Atkey, 2006) to enforce non-interfee, both dynamically and statically. How-
ever, their work focuses on modularity (separating IFC m#ment from underlying user API), using
type-class level tricks that make it difficult to understasrdors triggered by insecurities. Moreover,
compared to our work, where programmers write standardéllastde, their work requires one to firstly
encode programs as values of a specific type.

Compared to other language-based works, LIO uses the notictearance. The work of Bell and
La Padulal(Bell & Padula, 1976) formalized clearance as athon the current label of a particular users’
processes. In the 1980s, clearance became a requiremaigtieassurance secure systems purchased by
the US Department of Defense (Department of Defense,| 1885k recently, HiStar (Zeldovickt al, 2006)
re-cast clearance as a bound on the label of any resourdeai®athe process (where raising a process’s
label is but one means of creating a something with a highml)aWe adopt HiStar’s more stringent
notion of clearance, which prevents software from copyiatadt cannot read and facilitates bounding
the time during which possibly untrustworthy software capleit covert channels.

Simultaneously to this work, Hedin and Sabelfeld have régg@ublished a dynamic information-flow
monitor for a core part of Javascript which handles except[bledin & Sabelfeld, 2012). Their approach
needs to explicitly mark in the code (through non-standamstructors) which exceptions are thrown
under a secret branch. Our approach, in contrast, simgesan exception labeled with the current label.

7 Conclusion

We propose a new design point for IFC systems in which mosiegin lexical scope are protected by a
single, mutablecurrent labe] yet one can also encapsulate and pass around the resuttsipfitations
with different labels. Unlike other language-based wotlt, model provides a notion aflearancethat
imposes an upper bound on the program label, thus providfognaof discretionary access control on
portions of the code.

We prove information flow and integrity properties of ouridesand describe LIO, an implementation
of the new model in Haskell. LIO, which can be implementedrelytas a library, demonstrates both the
applicability and simplicity of the approach. We show theaailities of the library to perform secure
side-effects (e.g., references) as well as safely handleptions. Our non-interference theorem proves
the conventional property that lower-level results do regehd on higher-level inputs — the label system
prevents inappropriate flow of information. We also provafsement theorems that show the effect of
clearance on the behavior of code. In effect, lowering thargince imposes a discretionary form of access
control by preventing subsequent code (within that scope) faccessing higher-level information.

As an illustration of the benefits and expressive power af slgstem, we describe a reviewing system
that uses LIO labels to manage integrity and confidentiatitan environment where users and labels
are added dynamically. Although we have use LIO for Alighair API and even built a relatively large
web-framework that securely integrates untrusted thadypapplications, we believe that changes in the
constructs are likely to occur as the language matures fiititeer supports our library-based approach to
language-based security.
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A Standard Static and Dynamic Semantics

For completeness, in this section, we provide the evalnaiitd typing rules for standard terms and
expressions. Figulld 8 defines the set of evaluation condextgeduction rules for standard constructs
in our language. Substitutiofie; /X| &) is defined in the usual way: homomorphic on all operators and
renaming bound names to avoid captures. Figlre 9 deschibégting rules for terms; Figurell0 describes
the typing rules for expressions.

Figure 8 Operational semantics for standard terms.

E:=[]|LbEe|Ee|mE|if E theneelsee

(Ax.e1) &]) — (Z,E[[ez/X]ea])

fix g) — (Z,E[e (fix €)])

T (e1,&)]) — (Z,E[a])

if true then e else &]) — (X, E[ey])
if false then € else &]) — (Z,E[ey])
let x=¢; in &) — (Z,E[[e1/Xe2])

Figure 9 Typing rules for standard terms.

Frx)=rt Nx—1jke:n
F true : Bool I false :Bool FO:0
MEx:t FEAxe: 11— 1
NFe:n N-e:m NlN-e:7—r MN-e:1 -
o T
ME (e, e):(11,T2) MN-fixe:t M-(e)°:LI0(T

Figure 10 Typing rules for standard expressions.

NlFe:t1— 10 N-e:n M-e:(11,12) [~e;:Bool lke:1 N-e:1

lFee:1n FrEme:r Fif e;theneyelsees: T
Ml-e:ny Mx—nlke: 1w NlN-e:t
MlFletx=@ ine: 1, [+returne:LIO/T

e :LI0MT Nle:11—=LI00D
lFe >>=6:LI0/T
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B Erasure function

In this section we define the erasure functinintroduced in Sectiofl5 for the remaining expressions
(Figure[11) and evaluation contexts (Figre 12).

Figure 11 Erasure function for expressions.

e(ee=c¢e(e) e(e e(me =re(e

& (if etheneelsee) =if g (e) then & (€) else & (€)

& (letx=eine)=1let x=¢.(e) in & (€) & (returne) = return & (e)
€. (label e € = label g (€) & () € (unlabel €) = unlabel g (€)

& (toLabeled e € = toLabeled £ (€) & (€) € (newLIORef € € = newLIORef € (€) & (€)
€ (readLIORef €) = readLIORef & (€) & (writeLIORef e € =writeLIORef £ (€) & (€)
& (throwLIO e) = throwLIO € (€) & (catche e =catche (e) & (e)

& (lowerClr €) = lowerClr & (€) &L (getLabel) = getLabel
£ (getClearance) = getClearance £ (1abelOf €) = 1labelOf & (€)

€ (1abelOfRef €) = labelOfRef & (€)

Figure 12 Erasure function for evaluation contexts.

& (LbEe=Lbe(E)e(e) & (Ee=e(E)e(e e(mE)=m & (E)
& (if Etheneelsee) =1if & (E) then g (e) else €. (e) & (return E) = return & (E)
g (E>>=e) =g (E)>=¢(e) & (label E €) = label g (E) &.(e)
& (unlabel E) =unlabel g (E) € (toLabeled E €) = toLabeled & (E) &.(€)
€ (newLIORef E €) = newLIORef & (E) & (€) € (readLIORef E) = readLIORef & (E)
€ (writeLIORef E €) = writeLIORef & (E) &.(€) &L (throwLI0 E) = throwLIO & (E)
& (catchE € =catch g (E) & (e) & (lowerClr E) = lowerClr g (E)

£ (1abel0f E) = 1labelOf & (E) £ (1abelOfRef E) = 1labelOfRef & (E)
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C Detailed proofs

In this section, we provide expand the proof details for #sults in Sectiofl5.

Proposition 3(Properties of erasure functign

1.&.(E[€]) = e (E)[eL(e)] 4.¢(e.(E))=¢e(E)

2.8 ([e/Xler) = [eL(e2)/XleL(er)  5.e(e(2)) =e(2)
3.e.(eL(e) =eL(e) 6.e.(eL((Z,€)) =eL({Z,€))
Proof

All follow from the definition of the erasure functiog , and induction on expressions and evaluation
contexts,

1. By induction on expressions and evaluation contexts. Wevsseveral cases of the base case
analysis on evaluation contexts.

(a) LetE:=Lb|[] ey, itfollowsthate (E):=Lb|[] & (), andeL (E[e]) =€ (Lbe @) =Lbe () .(ep) =
eL(E)[e(e)].

(b) LetE :=[] ep, it follows thate (E) :=[] eL(en), andeL(E[€]) = e.(e &) = €L(e) e.(en) =
eL(E)lec(e))-

(c) LetE:=rg [], it follows thate (E) := 15 [], ande (E[e])) = e.(5e) =15 e.(e) = &L (E)[eL(€)].

2. By expansion ([ex/x]e1) = L((Ax.e1) &), from whichwe have (Ax.e)) &.(e2) = [eL(e2)/X|eL(e1).

3. Directly from definition of the erasure function and intdan on expressions.

4. Directly from definition of the erasure function and intdan on expressions and evaluation con-
texts.

5. Directly from definition of the erasure function on stoaesl property 3 above.

6. Directly from definition of the erasure function on configtions and properties 3 and 5, above.

U

Lemma 1(Single-step simulation withodbLabeled)

If M'-e:1and(Z,e) — (¥ &) wheretoLabeled is not executed, theh - € : T andg ((Z,€)) —
e((Z'.€)).

Proof

Part of the lemma shows subject reduction, which is provedhmwing that a reduction step does not
change the types of references in the skggand then applying induction on the typing derivations.

It remains then to show the simulation, which follows by intlon on evaluation contexts and cases
analysis on terms and expressions. For clarity, we omittivé@ment in cases where it is not essential.
Unless otherwise stated, we assume thabl C L C 2.clr, the proof for the case wheteis below the
current label is straight forward since theerases any expression in a configuration to a hole. Conyersel
the case where is above the current clerance is identical to the case wheaseequal to the current
clearance.

We show the simulation for several exemplary/interestages, the remaining cases follow similarly.
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» CaseE[(Ax.er) e] — E[[e2/Xe]:

= & (E)[eL(ez/Xler)] = &L (E[[e2/Xler])
by Propositiorh B.
» Case(Z, E[returnV]) — (X, E[(V)""]):
— Z.1blCL:

&L((Z,E[returnV]))

(eL(2).8
(eL(Z),&L(E)[return & (V)])
L((eL(Z), e (E)[(eL(v)™]))
(eL(Z),aL(E)[(eL(v)™])
(eL(2),eL(BE)[eL((v)™)])

= (eL(2), &L (E[(V)™])) = e ((Z, E[(v)"]))
by definition ofe. and Propositioh]3.

L(E[returnV]))

m
I I
o™

™M

— Z1b1ZL:

& ((Z,E[returnV])) = (g.(),e)
—La((e(D).e) = (e (D).9) = a(EEW™)

by definition ofe,. and Propositioh]3.

This illustrates the approach used to prove simulation aftrnases. Moreover, it shows the trivial
case forz.1b1 [Z L.

> Case(L,E[(X)"" >>=¢€]) — (%,E[(X)"])
— | CL:

e(2), &L (E[(X)™])) = eL ((Z, E[(X)*]))
by definition ofe. and Propositioh]3.
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— lZL:
eL((Z.E[(X)™ >>=¢]))
= (aL(2),eL(E)[(e)"])
—ra((ec(2), a(E)[(e)™]))
= (eL(2),eL(E)[(«)™])
= (eL(2), e (E)[(eL(X)™])
= (eL(2), e (E)[eL((X)™)])
= (eL(2), L (E[(X)™])) = eL ((Z, E[(X)"]))
by definition ofe. and Propositioh]3.
» Case

Z1blC I C Zclr _
(Z,E[1abell €]) — (X,E[return (Lble)])’

— | CL:

& ((Z,E[1labell €]))
(eL(2),eL(E)[1abell g (e)])
L((eL(2),&L(E)[return (Lbl g (e))]))
(eL(2),&L(E)[return (Lbl g (e))])
(2),
(

m
| I

&.(2),&.(E)eL(return (Lbl €))])
e (

3 E[return (Lble)]))

— |l ZL:

& ((Z,E[1abell €]))
(eL(2),eL(E)[1abell g (€)])
L((eL(2),&L(E)[return (Lb | & .(€))]))
(eL(Z),&L(E)[return (Lb | e)])
(
(

m
I I

)
e (Z), e (E)[eL(return (Lbl e))])
& ((Z,E[return (Lb |l e)]))

» Case
I"'=%1b1ul  I'EZclr ¥ =Z1bl—1]

(2,E[unlabel (Lb | €)]) — (¥ E[returne])
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— | CL:

(2,E[unlabel (Lble)]))
(eL(Z),&.(E[unlabel (Lbl e)]))
(eL(Z),€L(E)[unlabel (Lb | & (e))])
((21)), &L(eL(E)[return (e())])
(e.(2Y), &L (E)[return & (€)])
(
(
(
(

e

—~

&L

(&L Zl) & (E)[eL(return €)])
= (g.(Z1), & (E[return €]))

&L
=& (

3),&é.(E[return €]))
3/ E[return€]))

whereg (21) = & (Z[1b1 + I']), and thus it directly follows that, (=1) = & (¥').
— |l ZL:

&L ((Z,E[unlabel (Lbl €)]))
(eL.(Z), &L (E[unlabel (Lbl e)]))

(
(e(z
L({ec(
(ec(
(

),&L(E)[unlabel (Lbl e)])
1

0’)
I I

1), &L (E)[return e]))
eL(a(z),e)
=& ((Z,E[return€]))

The last steps holds, as in the second casefirn, becaus&’.1bl IZ L and any term is erased
to e. Similarly, & (1) = g (2’) follows as before.

» We show an example case of the “violating rules”:
| Z>.clr

(%, E[unlabel (Lb | €)]) —> (2, E[throwL10 X])

— | CL:

(%,E[unlabel (Lbl e)]))

= (&.(Z), &L (E[unlabel (Lbl e)]))

= (&L(X),&L(E)[unlabel (Lb | g (€))])
( £|_(£|_(E)[thrOWLIO X]))

E)[throwLI0 & (X)])

E)[throwLI0 X])

E)[&L(throwLI0 X)])

,E[throwLIO0 X]))

I F
=

T MMM
~ T T 3
My o>
m ~
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— lZL:
&L((Z,E[unlabel (Lbl €)]))
(eL(2), & (E[unlabel (Lbl e)]))
(eL(Z),&L(E)[unlabel (Lbl e)])
L(eL(X)),eL(eL(E)[throwLIO X]))
(
(
(

o™

%L

™M

{ );

(&L(X), &L (E)[throwLIO0 & (X)])

<8|_ Z) 8|_( )[thrOWLIO X])

(eL(2), & (E)[eL(throwLIO X)])
= & ((Z,E[throwLIO0 X]))

SIb1CICSclr =3 ¢a—Lble
» Case - afresh
(%,E[newLIORef | €]) — (¥',E[return a))

— | CL:

& ((Z,E[newLI0Ref | €]))
(&L(%), &L (E[newLIORef | €]))

(
(&L(2),&L(E)[newLIORef | g (€)]
L(eL(Z1)), e (L (E)[return & (a)]))
(
(=,

—~
™

(
(eL(Z1), &L (E[return a)))
& ((Z',E[return a]))),

wheree (Z1) = g (Z).gla Lb | €], and sce (21) = & (') follows directly.
— | Z L: as above. However, in this casg(Z') = g (Z).¢[a— Lb | o]. Fromeg (Z1).@(a)
e (Lbl @) =g (Lble) =& (¥).¢(a) it follows thate (Z1) = g ().

» Case

I"'==1b1Ul  I'CZclr ¥ =31bl1]
(Z,E[catch (X)) €]) — (Z',E[e X))
— | CL:

&L((Z,E[catch (X)) €]))

E[catch (X)) eL(e)]))

=(a Z)va(E) catch (X)) e_(e)])
1

|
—~ o~
)
™M
~—
o
=
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whereg (21) = & (Z[1b1 + I')), and directlys, (Z1) = g (/).

— |l ZL:

3 E[catch (X)) €]))
(2),eL(E[catch (X)) &.(€)]))
(2),€L(E)[catch (o)™eL(€) )

€L(Zl) eL(E)[e(e) o))
(
(

(

The last steps holds sin@.1b1 Z L and any term is erased 0 As before g (Z1) = & (¥)
trivialy holds.

O

Lemma JSimulatior)
If M-e:Tand(Z,e) —* (¥, €) thene ((Z,€)) — eL((¥',€)).

Proof

Lemmal2 shows the multi-step simulation for expressions dioanot executesoLabeled. Thus, to
show the general multi-step simulation we must first show thd.abeled preserves the simulation.
The general simulation follows directly.

The proof for the simulation afoLabeled follows by induction on the number of executes.abeled.
The base case consists of a singtd.abeled. Specifically, for a computation with a single executed
toLabeled, we have:

<Za e> —" <Zlve(>7
that can be expanded into
(Z,6) —" (Zo,E[toLabeled | eg]) — (25, E[label | v]) —* (Z',€),

where (2o, e9) —* (2§, (v)"™°), andZj = 2[1bl — Zo.1bl,clr — 2g.clr]. The expansion highlights
the first occurrence of #oLabeled, and sogy, ande’ do not have any additionablLabeleds. From this
observation it is clear that the simulation of the base cabevis directly by Lemm&]2. Specifically, to
show the simulation forfoLAB-1)

20.1b1C | C 3g.clr
(Zo,€0) —" (2, (V)™) SH1b1C | 34 = Zp[1bl > Zo.1bl, clr — Zg.clr]
(Zo,E[toLabeled | gg]) — (25, E[label | V])

3
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whereey does not have anyoLabeled we need only show the simulation of the conclusion; the simul
tion of the big step in the premise follows directly from Lemlz We show this below:

& ((Zo,E[toLabeled | (en)"°]))
,&L(E[toLabeled| (e9)""°]))

,EL(E)[label| 8|_(V)]>
,&L(E[label l v]))
=& ((Zp,E[1abel | v]))

)
)
54)), &L (eL(E)[Label | & (v)]))
)
)

Correspondingly, the simulation of th&g, E[1abel | v]) —* (',€) step follows directly by Lemmid 2.
The simulations of foLAB-2) follows similarly.

It is worth noting that the simulation oB(ND-1), as proved in Lemnid 1, holds for exception labels,
irrespective of the current label. This is a necessary ¢mmdivhen a computation executesLabeled
as the current label and exception label may not always beetimne.

Our inductive hypothesis states that the simulation of

(z,6) —* (T €),
holds for the case whetLabeled is executed times. With this assumption, the simulation of
<Za e> —" <Zlve(>7

with k4 1 toLabeled executions, follows in a similar manner to the base casecifigadly, searching for
the firsttoLabeled and expanding, we have:

first big-step second big-step

(3,6) —* (3p,E[toLabeled | go]) —* (Z',€)

where at mosk toLabeleds could have been executed in the first big-step, the innepatationey, or
the second big-step. The simulation of all these executiepssfollows by application of the inductive
hypothesis. [

Theorem INon-interference
Given a computatioe (with noe, ( )", Lb, or X|) wherel - e: Labeled ¢ T — LI0 ¢ (Labeled ¢ T'),
environments; andX, whereX;.¢p = ,.¢ = 0, security label, an attacker at level such that C L,
then
Verey. (M@ :Labeled £ T)i—12A (6 =Lbl &)i—12A (Z1,€1) ~L (Z2, &)
A(Z1e @) —" (Z1,(v1)™) A (22,6 &) —" (25, (v2)™)
= (I3, (1)) =L (23, (v2)™)

Proof
From Lemma&gB, for = 1,2, we have

e ((Zi,e (Lol €))) — e ((f,(vi)™)),
wherev; = Lb |; € orv; = X». First we highlight that:
e((z.e) =a((Z,€) = (Z,6) =~ (¥,€)
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Note that the converse is not necessarily true, since thesstoay differ in the references with labels
abovelL. Then, from the determinacy ef—, given in Propositiofi]2, and since the starting environment
configurations are the same (observe {Bate (Lbl €})) ~ (2Z,e(Lbl €,)) = & ((Z1,e(Lble}))) =
eL((Z2,e (Lb | €))) sinceX;.¢p = Zp.¢ = 0), it must be that the end environment configurations aéso b
the same, i.e.e ((Z7, (V1)) = &L((Z5, (v2)")). The L-equivalence directly follows from the above

observation.
For completeness, we detail the following cases:

» CaseX;.1bl [Z L: We have
eL((Zi.e (Lb | €)) = (aL(%i),0) —{ (L(Z). ) = & (. ()™)).

From the determinacy of—, it must be that the end environment configurations are theesa
from which it directly follows that(%}, (v1)"°) = (25, (v2)).
» CaseXj.1bl C LAZ.1bl Z L: We have

eL((Zi,e(Lble)) = (e(Zi),e(e) (Lol eL(€))) —{ (eL(Zi), ) = &L (27, ()™)).
As before, since the initial environment configurationstaeesame, from the determinacy-ef>

we end with the same configuration, which directly corresjsanL-equivalence.
» Casej.1bl1C LAZ.1bl C L: We have

eL((Zi,e (Ll €))) = (e.(%i).ec(e) (Lb | a(€))) — (a(Zi), (v)™).

From the determinacy of—, it must be that_ (XZ7) = £.(35) andé&_(v1) = &.(v2), and directly
(Z3, (V1)) =L (25, (v2)).

O

Theorem ZStore confinemeht
Given labelsl andl¢, a computatiore (with no e, a, ( ), Lb, or X/) such thatr - e:LI0 ¢ 7, and
environmeng&[1bl — |, clr — I¢] wherel C I, then

(2,6 —" (T, (v)") = (Z.0u = QurZ0mn. = 0,

Proof
By contradiction. We show the case of creating new refermahe case of modifying an existing reference
follows similarly. Suppose that

> (Z.0) # (Z.9)y. Then,3(a,Lb |y €a) € (X.¢);.(a,Lb |y €a) & (Z.¢);; andl Z l,. Moreover,
(by Propositiod #) there must be a step at which point the refarence is created’,e) —*
(Za,E[newLIORef |y €a]) —* (X', (v)"™), such that(Z.¢); = (Za.¢);. However, by GREF) it
must be that C |,,. Hence, we have a contradiction.

> (Z.0), # (X.@)n.- ThenI(a,Lbly ) € (X'.¢)11..(a,Lb ly €a) & (X.9)4, andly £ Ic. Moreover,
(by Propositior b) there must be a step at which point the refarence is created’, e) —*
(Za,E[newLIORef |y €]) —* (¥, (v)™), such thalZ.9)q, = (Za.@)11.. However, by UREF) it
must be thal, C |;. Hence, we have a contradiction.

O

Theorem JLabeled creation confinemejt
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Given labeld, I, andly, a computatior (with noe, a, ()™, Lb, orX;) wherel' - e: LI0 ¢ (Labeled 1),
and environmeni[1bl — |, clr — I¢| such that C I, then

(£,8) —" (Z (Lblyg)™) = ICIyClcvI(albly ) eZ.olbly e e AL C e

Here, operatoé is defined as the syntactic appearance of the left-hand gsipreinto the right-hand side
operand.

Proof

Sincee cannot contail.bs, the final labeled value must be created or retrieved fremstibre. By induction
on expressions and evaluation contexts and using Propass#tian@} it must be that the label of the value
is bounded by the initial current label and clearance orabeled value appears syntactically in the store.
The proof follows by case analysis on how@eled value can be obtained.

Suppose the value is created, i.8(a,Lb |, €)) € Z.@.Lb Iy e; € € Al1 C I¢ Then, there must be an
intermediate step where the labeled value is created. Bdly; (>,€) —* (X1,E[label |, &1]) —*

(2, (Lb Iy &1)™). (Recall thattoLabeled also reduces t@abel, thus we need only handle this case.)
Hence, from rule (laB) it must be tha&;.1b1 C |, C X;.c1r and by Propositiors 4 and 5 it must be that
IClyCle.

Suppose that the value is not created wtitéibel. Then,3(a,Lb |1 €) € Z.9.Lb Iy e, € € andl; C I.
Thel; C I must hold since there must be an intermediate step wheretbeence is read. Specifically,
(Z,€) —* (¥1,E[readLIORef a]) — (X7,E[return €}]) —* (¥, (Lb Iy €1)"). From rule RREF) it
must be that; C Z;.c1r and by Propositionl5 it directly follows that C |.. Because our semantics
does not have the evaluation contBxt=---| Lb e E, the values of references are not always evaluated
and thus the labeled valus |, e; must syntactically appear i . For example, ife; = 2, it holds that
€1 € AX.if X then (Lb Iy 2) else (Lb |y 3), but note; € Ax.if X then (Lbly (14 1)) else (Lb |y 3) for
somel,. O
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