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Abstract

We present a straightforward, sound Hindley-Milner polypioc type system for algebraic effects
and handlers in a call-by-value calculus, which allows tygeable generalisation of arbitrary com-
putations, not just values. This result is surprising. Gndhe hand, the soundness of unrestricted
call-by-value Hindley-Milner polymorphism is known to f&i the presence of computational effects
such as reference cells and continuations. On the other, haanty programming examples can be
recast to use effect handlers instead of these effectsysinglthe expressive power of effect handlers
with respect to state effects, we claim handlers cannotesspreference cells, and show they can
simulate dynamically scoped state.

1 Introduction

The followingOCamlexamplel(Garrigue, 2004) demonstrates the problemaécaotion
between Hindley-Milner polymorphism, which increaseseoduse, and computational
effects, such as reference cells, in a call-by-value laggua

letr=ref []in (* generalise : Va.a list ref %)
r:=[07 (* specialisex := unit *)
true::!r (* specialisex := bool *)

A naive type inference algorithm would assign the typédist ref to the termref [].
Unrestricted, it would assign tothe type schemé& a.a list ref. But doing so allows us
to instantiater with the unit typea := unit to store the singleton list with the unit value,
and then to instantiatewith the boolean typer := bool. The result is a list whose second
element is the unit value, but appears to the type systemisisod booleans.
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The currentway to avoid this well-known unsound behavi®igice, 2002; Harper & Lillibridge,
1993 Rémyl, 2015) is to enforcevalue restrictionthe inference algorithm will generalise
the type variables only in value terms that cannot be redfwréiter (Wright/ 1995). While
this restriction can be weakened to allow some computa@anrigue, 2004), it still rules
out sound pure programs:

letid = (fun f = f) (funx - x)in (* id is not polymorphicx)
id (id)

The problem only arises when all three components are pressnputational effects,
polymorphism, and call-by-value. Without effects, Milisasriginal calculus soundly inte-
grates call-by-value with type inference (Milner, 1978)thWdut polymorphism, computa-
tional effects behave predictably in call-by-value langes Without call-by-value, Leroy
(1993) combines computational effects with polymorphisithaut restriction. Leray's
language has two constructs for sequencing: a call-by-n@otyenorphiclet x = ¢, in ¢
construct in whichc, is re-executed whenever it is specialiseccjnand a call-by-value
monomorphiado X « ¢4 in ¢, construct in whiche, is only evaluated once, but its type
is not generalised. The situation is identical in thaskellprogramming language, from
which we borrowed this notation.

Programming with algebraic effects and handlers (Bauerdrfir, 2015) is a new
approach to structuring functional programs with compatet effects. The programmer
declares a collection aflgebraic effect operationsith which she structures her effectful
code. Then, separately, she defiaffect handlerthat implement these abstract operations.
Bauer & Pretnar'€ff programming language is a strict (i.e., call-by-value)dional lan-
guage with Hindley-Milner polymorphism, in which all comational effects are treated as
algebraic effects that can be handled. There is a pre-defoikedtion of effects that receive
special treatment: runtime errors and memory accessdgedéteffects are not handled by
the program, the runtime will handle them, invoking the esponding real computational
effects. Askff combines the three problematic components (strictnedgmpophism,
effects), it currently imposes the standard value regtriabn the programmer.

In this paper, we show that if only algebraic effects and thensdcare present, the lan-
guage does not need a value restriction. We present a dfoaighrd sound Hindley-
Milner polymorphic type system for a call-by-value langeayat incorporates compu-
tational effects in the form of algebraic effects and thaindilers. In order to simplify the
presentation, we present a type system without its assolaiaimplete inference algorithm.
Doing so decouples the algorithmic concerns of finding ppialctypes and complexity
from the semantic concern for soundness. As first-classnpadghism typically makes
type inference undecidable (Wells, 1999), our type systees ML-style polymorphism.

The rest of the paper is structured as follows. In Ekc. 2, wegshort recap of handlers
and show how they may be used to simulate global state. Negec[B, we give a type
and effect system and sketch the proof of its soundness. Wieafized the proof in the
Twelf proof assistant (Pfenning & Schirmann, 1999), ediegBauer & Pretnar’s (2014)
existing formalization oEff’s core calculus. In Se€l 4 we evaluate our type system and
discuss its expressivity with respect to mutable referemarel dynamically scoped state.
Sec[5 concludes.
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Syntax
V= value
X variable
| true| false boolean constants
| funxec function
| h handler
h:= handler
handler {returnx e~ c, return clause
op1(xK) - c1,...,0pn(X% k) — cn} operation clauses
c:= computation
returnv return
|  doxecrine sequencing
| op(vy.c) operation call
| ifvthenc esec, conditional
| viv application
|  withvhandlec handling

Syntactic sugar

Sugar Elaboration

_ fresh variable binding

C1;Co do_<cincy

C1Cp dof <cindoa<cyinfa

if cthency elsecy dob<cinifbthenc; esecy
op(Cp;Y-Ck) do p < cpinop(p;y.ck)
funxgXo ... xp > C funx; ~ funxo - ...funx, — ¢
op fun x - op(X;y.returny)

Fig. 1. an idealised calculus of effect handlers

2 Handlers of algebraic effects

Algebraic effectare an approach to computational effects based on a premisiertpure
behaviour arises from a set operationssuch aget andset for mutable storeread and
print for interactive input and output, anise for exceptions|(Plotkin & Power, 2003).
This naturally gives rise thandlersnot only of exceptions, but of any other effect, yield-
ing a novel concept that, amongst others, can capture laagitg, co-operative multi-
threading, Unix-style stream redirection, and delimitedtmuations|(Plotkin & Pretnar,
2013; Bauer & Pretnar, 2015).

2.1 Language

We base our development on the calculus (Eig. 1) given imBrist(2015) tutorial. The
language is a variant of the fine-grained call-by-valuealculus of Levyet all (2003), in
which terms are split into inesaluesand potentially effectfutomputations



ZU064-05-FPR

polymorphic-eff 24 May 2016 1:25

4 O. Kammar and M. Pretnar

Programmers introduce effects with the constrysiv;y.c), which calls the operation
op with the parameter. The effect invocation may yield a value to the continuatiaising
the bound variablg. Programmers define the meaning of such operation callsddgsng
them in effect handlers. A handler specifies a return claused when the computation
returns a final value, and a collection of operation clawg¢s; k) — ¢, which specify how
we should execute an invocation of the operatpncalled with the parametetr and a
continuatiork. The underlying idea is that operation calls behave as Eghat propagate
outwards until they reach a handler with a matching clause.

Our handlers ardeep the additional effects in the continuation are also hashtiethe
current handler. Our handlers are dismwvarding unhandled operations propagate through
each handler until they are handled or reach the top leveieMd these design choices is
essential to the development below, but we make them to niiffés design choices.

We use the following syntactic sugar (FIg. 1): semicolorabetate to binding fresh
(dummy) variables; function calls, conditionals, and @pien calls are elaborated to call-
by-value evaluation order; function introduction may a&ast over multiple arguments;
and bare operations without a parameter or a continuatgumagnt elaborate to the cor-
respondingyeneric effec{Plotkin & Power, 2003). In our examples, we further assume t
have the typenit with the sole inhabitan().

2.2 State handlers

We represent state with an operatéen, which sets the state contents to a given parameter
and returng), andget, which takes a unit parameter and returns the state confémts
example, here is a computation that toggles the state amhsethe old value:

T %'if get () then
set false;return true
else
set true;return false

As mentioned above, the runtime Bff (Bauer & Pretnar, 2015) deals with unhandled
primitive effects, but in our calculus, the behaviour of Ggi®ns will be determined exclu-
sively by handlers, and the computatibrgets stuck when evaluated.

A simple example of a handler that can handle a stateful ctatipa is one that sets the
state to a fixed value, sdyue, and ignores all its modifications:

Hc := handler {get(_;k) — ktrue
set( 5;k) —» k()
returnx — returnx}

Whenever get operation is called, we yielt ue to the continuation, whereas att calls
are silently ignored by vyielding the expected unit valyeand doing nothing else. The
return clause of a handler states that the returned valeekemt unmodified. When we
handleT with He, we get back the resuitue, no matter how many times we cdll

A more useful handler is one that handpes andset in a way that results in the ex-
pected stateful behaviour. It uses a technique cali@dmeter-passin{Plotkin & Pretnar,
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Semantics

U
CL ~ C1

. T . "
doxecrinc ~ doxecpinc dox < returnvinc ~ c[v/x]

- - (DO-0P)
dox < op(v;y.c1)incy ~ op(V;y.dox < crincy)

iftruethency; esecy ~ ¢ if falsethency elsecy; ~ ¢

(funx- c)v ~ c[v/x]
For everyh = handler {return x - c;,op1(xk) — cy,...,0p,(X k) + cn}, define:

I
C~C

with h handle c~ with h handlec with hhandle (return v) ~ ¢;[v/X]

- - - (HANDLED-OP)
with h handleop;(v;y.c) ~ ¢[v/x, (funy~ withhhandlec)/k] (1<i=<n)

- - (UNHANDLED-OP)
with h handleop(v;y.c) ~ op(v;y.with hhandlec) (op ¢ {op1,---,0pn})

Fig. 2. operational semantics

2013), where we transform the handled computation into atfon that passes around a
parameter, in our case the state contents:

Hst := handler {get(_;k) — return (funs— (k s) s)
set(s;K) - return (fun -~ (k()) )
returnx - return (fun _ - returnx)}

We handleget with a function that takes the current state contenésd in the first
application, passes them as a resulgefto the continuation. As our handlers are deep,
the continuation is further handled into a function, which again need to supply with
the state contents. Since reading does not modify the stategain pass. We handle
set by first passing the unit result, and then applying the hahdtatinuation to the new
states as given by the parameter gft. The return clause dfist also needs to produce
a function that depends on the given state, in particulaunatfon that returns the given
value regardless of the state contents.

2.3 Operational semantics

To see how exactliist can be used to simulate state, consider the operationahsiesa
of the calculus, also copied verbatim from Pretnar’s (2@dtrial. The semantics is given
in terms of the small-step relatian~» c', defined in FiglR. As expected, there is no such
relation for values, as these are inert.
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The rules for conditionals and function application arendtad. For the sequencing
constructdox « ¢ in ¢y, we start by evaluating,. If this returns some value we bind
it to x and evaluate,. But if ¢, calls an operation, we propagate the call outwards and
defer further evaluation to the continuation of the calt,dmample:

dox; « (doxy « op(X;y.Cco)incy)inc ~»
dox; « op(X;y.dox, « Crincy)inc ~»
op(X;y.dox; « (dox, < cpincy)inc)

In our account, we gloss over the standard issues with aatesiding substitution and
implicitly assume the appropriate freshness conditionsexample, in this case, thais
fresh forc;.

To evaluatevith h handle ¢, we start by evaluating. If it returns a value, we continue
by evaluating the return clause bf If ¢ calls an operatiowp, there are two options. If
h has a matching clause fop, we start evaluating that, passing in the parameter and the
continuation. Recall that our handlers are deep, thus thém@tionk are also handled by
the current handler, seeANDLED-OP. If h does not have a matching clause, we forward
the call outwards just like in sequencing, $8¢HANDLED-OP.

Let us return to the state handldgr. If we use it on a stateful computation, no effects
occur as the handled computation returns a function waftingn initial state. To run it,
we need to apply this function to the initial state. Let usralslate such an application by:

(c,s) := (with Hgt handlec) s

(note that we use the syntactic sugar for call-by-valuetionealls from Fig[l).
Even though our calculus is pure, we can show the hamtijgesimulates global state in
the following way. LetS be the usual small-step semantics for global state, i.e.:

(get(),s) 3 (returns,s) (set(s),s) 3 (return (),s)

(c1,8) 3 (c1,8)

(dox < cqincy,s) 3 (dox < cjincy,s)
etc.
We can prove that for eadft;,s) > (¢}, ), we have{cy,s) ~ (c},s), and therefore
effect handlers simulate the operational semantics fdrajlstate. For example:
(get(),s) ~ (with Hgt handle (get(();y.returny))) s
~ (fun's » ((funy — with Hg handle (returny)) s) s) s
~ ((funy ~ with Hgt handle (returny)) s) s
~» (with Hgt handle (returns)) s
= (returns,s)

Similarly, we can prove:

(set(s),s) ~" (return(),s)
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Types
AB:= value type
a type variable
| bool boolean type
| A-C function type
| c=D handler type
C,D::=AlZ computation type
Ya.A scheme
> :ii={opy:A1 — By,...,opy: Ay = By} effect signature
0 u={0oy,...,0n} type variable environment
r u=g|rx:A monomorphic environment
= =@ | = x:Va.A polymorphic environment

Fig. 3. types and effects

For the third transition, case-split on the possible trEmmss (c;,s) ~ (cy, s ).

In summary, theHst handler faithfully simulates state. For more details onusating
state, see Bauer & Prethar (2014) and Danvy (?006). Thexgfaen though our calculusis
pure, it faithfully simulates impure computation. By gigian unrestricted Hindley-Milner
type system to this calculus, we now show that the effectsemgible by effect handlers
interact well with polymorphism.

3 Type system

The type and effect system (Fig$[3—4) closely follows Rae{@015). It comprises two
kinds of types: values are typed with simple tygesvhile the types of computations are
additionally annotated with finite sets of operati@rike in an effect system of Lucassen & Gifford
(1988).

We modify Pretnar’s system in two ways. The first modificai®ominor. We generalise
the type system to allow for more flexiblecal operation signatures, where operations
may have different types when handled by different handéersn Kammaet all (2013).

In contrast, Pretnar’s account posits a global assignnfgmtealefined types to the effect
operations, and the effect annotati@henly list which operations may be present. Local
signatures allow the same operation symbol to appear ioidigarts of the program with
different types. Local signatures also give the calcultangfer theoretical properties, such
as strong normalisation and simpler denotational sengrtickammaet all.

The second modification is our main contribution. We incogp@Hindley-Milner poly-
morphism in a standard way, without any value restrictior.i¥dicate these latter modi-
fications byshadingin the figures. Amongst these:

e Local effect signatureZ are finite mappings from operations to pairs of value
typesA, B, whose action we denote lfgp : A — B) € . We denote the restriction
of a signature to the set of operations disjoint from a givenAet {op; | 1 <i < n}
by Z\ A
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Well-formed value types:

aeo OFA OFC OFC OFD
Ok a O F bool OFA-C OFC=D
Well-formed computation types, schemes, and effect signes:
OFA OFX 0,0 A [OFA O F Bili<i<n
OFAZ OF Va.A OF {op1: A1 = By,...,0p,: Ay — Bn}
Well-formed monomorphic and polymorphic contexts:
[Ol—A](XZA)Er [OF Va-A](x:Vd.A)eE
OFT OF=
Value judgement{®;=;I" = v: Al, assuming® - = T A
(x:A)erl (x:Va.B)e= [OF Ali<ig)a
O:SIHx:A ©;=;T = x: B[A/aili<i<|d ©:=;T I true: bool

O;= M x:AFc:C
©;=:T I false: bool G;=;N=funx—c:A-C

©;Z;Mx:Ak¢ :B!Y

UwﬁAﬁBﬂeZ Qiﬁxkkzaﬁmfkq:mf]
s\{opj|1<i<n}cs

©;=;T - handler {returnx - ¢;,op1(XK) = c1,...,0pn(X;K) » cy} : AlZ = B!

Computation judgement|©®;=; - c: Al Z|, assuming® - =T, A:

O, T-Vv:A O;=;Tc: (Va.A)!S O;=,x: Ya.Al Fc,:B!S

1<izn

;=T —returnv:AlZ ©;=;N'doxeciincy: B!l

(op:Agp = Bgp) €X O, 5 Mv:iAy ©;=;INy: By -Cc:AlZ
O;=;T Fop(vy.c): Al X

©;=; —vVv: bool ©;=;N~c:C 6;=N=cy:C
O;=;I —ifvthencyelsecy : C

O, =lNFvi:A-C Q= MN=w:A O6;5TM=vi:C=D O;=N'=c:C
;= Fr=vivp:C ©;=;T +withvhandlec: D

Schemejudgemer‘@;z; F—c:(Ya.A)!z|, assuming® - =T, (Vad.A),3:

0,d;=;T —c:AlZ
O;Z;Tc:(Va.A)lz

(GEN)

Fig. 4. a polymorphic type and effect system
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¢ We extend types wittype variablesx and addype variable environmen®®, which
are just finite sets of type variables.

¢ We introducescheme¥ a.A, whered denotes a finite set ¢ft |-many type variables
ranged over byy;.

e We introducekinding judgement® F X to explicitly keep track of the free type
variables inX. The shorthan® - X,Y, Z stands for the conjuncticB - X, @ Y,
andO - Z.

e Typing judgement®;=;I = M : X include the standard monomorphic environ-
mentsl” which are a unigque assignment of types to variables. We éxterse with
type variable environment andpolymorphic environments, which are a unique
assignment of schemes to variables. We assume that no leac@bappear in both
r andEE] These polymorphic variables can be specialised at any type.

e We addscheme judgementghose effect annotation is outside the scope of the
quantifier. The kinding assumptidd = X~ ensures that none of the type variables
d appears irE. Itis at this point that the decision of the inference altori which
type variablesd to generalise over takes effect. Our choice to separatarsche
judgements from type judgements simplifies the let-rule, mwakes it very similar
to its standard, monomorphic counterpart.

The remaining kinding and typing rules are standard. Firzéagd call-by-value func-
tions take values and perform computations. An operatieadation is well-typed if the
type assigned to it by the local sighature must agree withytbe of the given parameter
valuev, and with the type of argument the continuatoexpects. A handler is well-typed
if the type of result the return clause expects matches wightype of computation the
handler can handle, and each operation clause is well-twbed the parameter type and
continuation type match the local signature the handleheamlle. Both clauses can cause
additional effects, and their effect annotation must idelthese operations, as well as any
effect operations the handler does not explicitly handiffecting the fact that our handlers
are forwarding. Thus, the rule also requires the type aretetif both clauses to agree.
The fact that our handlers are deep is reflected by the typgeeatdntinuation: the effects
the continuation may cause have already been handled, ahd sontinuation may cause
effects in the resulting signature and of the resultingrretype.

For the given effect system, we then have:

Theorem (Safety) If - c: AlZ holds, then either:

@) c~ ¢ for some ¢ : Al'S;
(i) c =returnv for some—v:A; or
(i) ¢ = op(v;y.c') for some(op : Ay, = Bop) €2, Vi Ay, andy: By, ¢t Al

In particular, wherk = @, evaluation will not get stuck before returning a value.
Pr oof

1 This separation into two environments is not strictly neeeg as a monomorphic environment
I may be identified with a polymorphic environment where eagdingjfier ranges over an empty
tuple of type variables. We choose to separate the two tdigighwhich parts of the language
interact with polymorphism.
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We prove progress and preservation lemmata separatelydugtion. We formalize@i
the calculus and the safety theorem in the Twelf proof amsisPfenning & Schiirmann,
1999). Our formalization extends Bauer & Pretnar's (202dgting formalization of Eff’'s
core calculus with type schemes and polymorphism. The cod®mpatible with ver-
sion 1.7.1 of Twelf. We summarise the crucial step, nameadyipg type and effect preser-
vation under theo-oP transition.

Assume that the reduct mo-or is well-typed, and invert its type derivation:

(op:Ayp =2 Byp) €EZ 0 V:IA,, ©,0;y:B,Hci:AlL
0,0 Fop(v;y.c1): Al :
OFop(v;y.c): (Va.A)! S O;x:Va.AFc,:BIZ
Ok dox«<op(v;y.cy)inc, : B! Z

TheGENTrule ensures that none of the type variable$ eppear irk. Becausg includes
op:A,, — By, none of these variables appeaAiy, and we may strengthen the derivation
of ©,d Fv: A, to aderivation o® - v: A,,. As a consequence, the following derivation
is valid:

©,0;y: By, it AlS :
©;y:By i (Va.A)IZ O;x:Va.Alcy:BIZ
(op: A =2 By,) EZ O VEIA, ©;y: By, - dox«ciinc i B!'X
Ok op(v;y.dox«ciincy):B!Z

Therefore, the reduction ino-oP preserves both the type and the effect annotatiorill
The Safety Theorem is robust under the following standari@tians in the calculus:

coar se annotations. We can make the signatubeglobal, and only keep track of which
operations are used, as.in Pretnar (2015). The types inltiisigsignature cannot use
any type variables. The soundness proof remains essgmﬂi&ihangeﬁi Due to the lack
of type variables in the global signature, there is no neaénhfmse a side-condition on
the well-formedness of the effect annotation in ¢ rule
It may seem this coarser system is a restriction of our cusgstem, where the type
information for each operation has to agree in all effectodations, and hence it is
sound by the Safety Theorem. This is not the case. In thiseoaystem, the signatures
on function types are not annotated with the types of theadjmers. If those types were
fully written out, they would involve the global signatuteading to potential mutual
recursion between signatures and function types. For ebeaiipve elaborate the global
signatureX = {op : unit — (unit — unit)}, we would get:

> = {op : unit = (unit - (unit!Z))}

2 https://github.com/matijapretnar/twelf-eff/tree/val-restriction-local-sig
https://github.com/matijapretnar/twelf-eff/tree/val-restriction-global-sig
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where left arrow is part of the signature syntax and recaivesffect annotation on the
co-domain. This recursion is not a mere formality. The tgpe-effect system with local
signatures we have described ensures well-typed termsntaien cf.. Kammaet all.
(2013). When we switch to a global signature, we can usetadfegrations with higher-
order return types to express well-typed diverging conputa. With the above global
signatureX = {op : unit — (unit — unit)}, consider the handler

H :=handler {returnx ~ returnx,
op(-;k) = k(fun_—op() ()}
In the coarse type system, we can derive the judgement:

FH : (unit!{op}) = (unit! @)

If we handle the simple looking computatiénop () () : unit!{op} with H, we get a
diverging computation:

with H handleop () () ~" with H handle (fun _+ op () ()) ()
~+ with H handleop () ()

In fact, by a variation on_Landin’s (1964) knot, we can exprasvariant of they-
combinator, such that for a functidnthat is purey f behaves like the fixed-point df
when invoked on pure arguments.

no annotations. We can remove all the effect annotati@gfom type judgements and fix
a single, global signatur®. The advantage of having an effect system is the additional
guarantee in claud@l] of the Safety Theorem, which ensures that any unhandle@deper
tion must appear ia. Without annotations, any operation may be called. Thitesgss
a restriction of the coarse variation, where each effecbtation is the entire signature.
Consequently, it is sound.

additional language features. To the calculus with coarse annotations, we cansidet-
tural subtypingand staticeffect instanceffurther discussed in Sdc. 4.2). The soundness
proof remains essentially unchanEast these modifications are orthogonal to polymor-
phism. Similarly, we can replace deep handlers with shatioes, as in Kammaat al.
(2013) and Kiselyoet al. (2013). As the chandgare again orthogonal to polymor-
phism, we may reasonably assume a similar soundness @itk for a calculus that
incorporates all of the above: subtyping, instances, awdugh two separate syntactic
constructs, both deep and shallow handlers.

4 Expressivity

There is currently no simple type system integrating refeeecells with polymorphism
without the value restriction. This non-existence corgdise simplicity of our type sys-
tem, and calls into question both its degree of feature rategn and its expressiveness.
First, we evaluate the degree and smoothness of the irtaréetween polymorphism and

4 https://github.com/matijapretnar/twelf-eff/tree/val-restriction-instances

https://github.com/matijapretnar/twelf-eff/tree/val-restriction-shallow
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other features in our calculus. Then, we highlight the déffece in expressiveness between
effect handlers and reference cells. As a basis for our atialuand comparison, we use
Leroy’s (1992) set of example programs for analysing théulisess of a polymorphic type
system for reference cells.

4.1 Evaluation
Algebraic effects allow us to lace a piece of code with openatin the signature
{get : unit - a,set : @ — unit}
The scheme assigned to the handigf, which handles them away;, is
Hst: Va,B.a!{get:unit— B,set: B-unit} = (f-0a!z)! @

It takes a computation of type that interacts with a state of tyge and handles it to a
pure function of typg8 — a! @. The rightmost indicates that no effects can occur when
producing the function.
This handler can handle computations with different tydesate, for example:
(with Hgt handleset ()) ();
(with Hst handleget ()) true

We can also use effects in polymorphic code:

do f « if get () thenreturnfunxy return x
esereturnfunxy - returny
in (f (funbw returnb)
(fun b set b;returnb))
(f truefalse)
In our call-by-value semantics, if we wrap this computatiith the state handler, the
memory look-up inf’s definition will only occur once.
To demonstrate that the polymorphic, effectful, and higtheofeatures interact well, we
hypothetically extend our calculus with pairs and listse Hypothesised extension may
include primitives such as the empty lisi, a list cons(::) and tail-recursive iteration

foldl, which we expect to interact smoothly with polymorphismu$twe can usélst to
implement functional features in an imperative style.

doimp_map« fun f xs—
with Hgt handle (foldl (fun x— set (f x:: get ())

0

XS
reverséget ())
[ ] (x initial statex) in ...

The scheme assigned to innpap is
imp_map: VaB.(a - B!Z) - (alist— Blist!Z)! @
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for any Z. This implementation is imperative in style, but not impge&per se as all
operations are handled by high-order functions. The fondthp_map can also be partially
applied and retain its polymorphism, for example, in

dolist_id « imp_map idin
donil «listid[]in...

we have the scheme assignments:

list.id: Va.a list —» a list!' @
nil :Ya.a list

Most importantly, the following program is well-typed:
doid « (fun f » f) (funx+ x) in
doid' —id (id)in...

and both functions are assigned the polymorphic t¥ypea — a!Z. Such mixed-variance
polymorphism is ruled out by all current value restrictions

4.2 Reference cells

We believe it is impossible to implement full blown refereraells using effect handlers

without other language features. We can increase modulgrinhtroducing instances (Bauer & Preinar,
2015, 2014 Pretnar, 2014). These may be thought of as fass @tomic names. With

instances, each effect instanicand an operation symbop determine an operatiaop.

In handlers, each operation claug®p(x; k) — c specifies which instance, dynamically

given by the valuev, of the statically chosen effect operation symbel the handler

handles. At runtime, invocations of the same operatipbut with different instances will

not be caught by this handler and will be forwarded.

Instances allow us to pass a cell around by passing an iresthotthey are still less
expressive than having the ability to allocate arbitramigny new cells dynamically. For
example, we do not know how to implement even the simplestenb{’s (1992) bench-
marks:

domakeref « funx— ref xin ...

We believe it is impossible to encode general referencdsowitadditional language fea-
tures.Eff provides such a mechanism, which can both gendrashinstances and at-
tach them to a statefuksource(Bauer & Pretnar, 2015), allowing one to directly im-
plement a makeef analogue: makeef creates a fresh instances that Ilgas and set
operations associated with it. Only code that knows whairts&ance is, can handle these
effects. However, it is not easy to find a corresponding type: effect system for fresh
instances (Bauer & Pretnar, 2014; Prethar, 2014), let adgralymorphic one.

As a final example, recall the problematic reference celimgla which cannot be
directly expressed in our calculus:

dor « ref []in
r:=[05

true::!r
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We can express a computation that writesa list value and readslsool list value:

set [()];

true:: get ()
However, this computation has the effect annotation
{set : unit list - unit, get : unit — bool list}

which is incompatible with the type of the state handfigi. Other handlers for the state
operations may have a compatible type. For example, thearldstate handleHro
which ignores any memory updates:

Hro := handler {return x —fun _~ returnx
get(;k) »funs— kss
set(_;k) »funs- k () s}
It has the scheme
Hro: Va,B,y.a!{get :unit—> B,set:y—unit} = (- a'!2)! @

and can be applied to the above computation without run-éimas.

4.3 Dynamically scoped state

As we saw in Sed. 212, we can simulate global state using thdléieHst, and this state
can be handled locally to give a pure computation. While waakcknow whether effect
handlers can simulate reference cells or not, we will nowattarise the handlétst as
expressing the notion afynamically scopedtate.

In order to explain what we mean by dynamically scoped statd to make the discus-
sion precise, we consider the calculus presented in_Figisalfine-grained call-by-value
variation on the dynamic scope calculi of Kiselyetval. (2006) and Moreat (1998).

We assume a set of parameters ranged ovgrthat name dynamically scoped memory
cells. These cells can be dereferencexl,dr assigned top := v, just like ref cells. The
rebinding construatilet p < vin c declares that in executirg) all references t@ will be
bound to this occurrence @f and shadow other binding declarations that may be in place.

For example, assuming we have a type of integers the follpwade will evaluate to
return 2.

dof « dletp < Oin
return (fun _—
p:=1+!p)in
dletp < 1in

(s

'p
The reason is that the state changes inside the functiondyindmically to the closest
enclosing rebinding, which is the second one.

Fig.[8 describes the (Felleisen-style) operational seicafur this calculus. We kept the

style of semantics as close as possible to Kisebtoald.'s (2006) to make it clear we use
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Syntax
= pla|r]... parameter
v o= value
X variable
| true | false boolean constants
| 0O unit value
| funx-c function
c = computation
returnv return
| dox«<cyinc sequencing
| if vthency elsec,  conditional
| V1V application
| Ip dereferencing
| p:i=vVv assignment
| dlet p < vinc rebinding

Fig. 5. a calculus for dynamically scoped state

Auxiliary definitions
Evaluation contexts:

E := []|E[dox«[]inc]|E[dlet pevin[]]
Parameter binding:

bp([ 1) := @  bp(E[dox [ Jinc]) := bp(E)  bp(E[dlet p—vin[]]) := bp(E) U {p}

Semantics
. dyn . dyn
E[dox « returnvin c] ~~ E[c[v/x]] E[if truethen c; elsecy] ~~ E[c1]
. dyn dyn
E[if falsethen c; elsecy] ~~ E[c;] E[(funx c)v] ~~ E[c[v/x]]

d
E[dlet p— vinreturnV'] 2l E[returnVv']

— - (p ¢ bp(E))
E[dlet p— VvinE[!p]] ~~ E[dlet p« vinE [returnv]]

(p ¢ bp(E"))

E[dlet p—vinE[p:=V]] ] E[dlet p <V in Ereturn ()]]

Fig. 6. semantics for dynamically scoped state
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Term-level translation
[X]:=X [true]:=true [false] :=false [funxe c]:=funx [c]

[viva]:=[v1][v2] [returnv]:=return[v] [doxecrinc]:=dox«[ci]in[cy]

['p] :=get_p() [p:=v]:=set_p([V]) [dlet p—vinc]:= (with H§T[c] handle) [v]
where:

HgT := handler {get_p(_;k) ~return (funs~ (k s) s)
set_p(s:k) ~return (fun_- (k () s)
returnx e~ return (fun_— returnx)}

Fig. 7. handlers expressing dynamically scoped state

the same notion of dynamic scope, and our theoretical tezatotosely mirrors their own.
The semantics use the set of parameters bound in a giverxc&ntéenoted by b(E). The
three transitions specific to dynamic scope are shaded, &ifiglly evaluated computation
removes a preceding parameter binding, as it will no longeused. For the other two
transitions, the side conditigm¢ bp( E') ensures the uniqueness of the decomposition into
the contexg’ by locating the closest rebinding pf The semantics of dereferencing returns
the value associated to this closest rebinding, while theasgics of assignment modifies
it. In our design, assignment evaluates to the unit valueiatiag from| Kiselyovet all's
semantics. This purely cosmetic change does not alter theenaf dynamically scope
state we are dealing with, and makes the relationship Mdghtighter.

The example above evaluates as follows:

dof « dletp < 0in

return (fun _ - do f —return (fun_r

: p:=1+!p)in
= 1+! d .
dietp — 1in PPN 2 diepe1in
£ 0): f (),
Ip , 'P
dletp < 1in .
dyn (fun_n—» dyn dIetp<—1|n . dynt
s = 141p) (); ~rs p:=1+lp; ~~» return2
p‘_ p ’ |p
'p

Fig.[d shows how effect handlers express dynamically scepae. Using Felleisen’s
(1990) terminology, it is anacrotranslation. First, it does not use any information cobelct
globally as itis defined homomorphically over the syntaxheflanguage. Second, it keeps
the common core of the two languages unchanged, transkatirglean value to itself, a
function to a function, and so forth. The translation isigin&orward: it translates deref-
erencing and assignments poas specially named effectget_p andset_p. Rebinding
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amounts to handling witldst, and passing the translated rebinding value as the initial
value.
This translation simulates dynamic allocation:

d
Theorem (Simulation) For all ¢ oA ¢, we havdc]~" [c'].

Pr oof
First, extend the translations to evaluation contexts, smav that[E[c]] = [E][[c]].
Then, show the translation respects capture avoiding isulfis: [c[v/x]] = [c][[V]/x].

To deal with the mismatch between Felleisen-style and sstefi semantics, show that for

all evaluation contextg, if ¢ 2 c then[E][c] ~" [E][c’]. It therefore suffices to prove
the theorem for each of the transitions in . 6 specialiedsl:=[ ].

For each of the common constructs of the two calculi, the fpimommediate, for
example:

[dox < returnvinc]=dox < return[v]in[c]~ [c][[v]/x] = [c[v/x]]
The next remaining transition amounts to handling a terhtiomputation:
[dlet p — vinreturnv'] = (with H§T handlereturn[v']) [v]
~ (fun _ e return [V']) [v] ~ return [V']

For the final two transition, show that, for all contei&sparameterp ¢ bp(E), opera-
tionsop that is eitheget_p or set_p, andx fresh forE, we have:

[ETlop(v;x.€)]~" op(v;x.[ET[c])
And finally, calculate:

[dlet p < vin E[!p]] =(with HQT handle[E][get_p(();x.returnx)) [v]
~* (with HgT handleget_p(();x.[E][returnx])) [V]
~"(fun s ((fun x — with HgT handle[E][returnx]) s) s) [V]
~"with HE; handle[E][return x] [v]
=[dlet p < vin E[return v]]

A similar calculation for assignment completes the proof. |

This translation, while being straightforward, also press the type system. Figl 8
presents the types for the calculus. The only notable feaguhat, like Kiselyowet all, we
assume a global signature assigning to each parameter.aAyplee signature is global,
these (monomorphic) types do not contain any type variables

Fig.[Q presents the kind and (Hindley-Milner polymorphig)é system for the calcu-
lus. The kind system ensures well-kinded signatures asgjggs without type variables.
Typing judgement®; =; T |—§y” c : A refer to the fixed, ambient, well-kinded parameter
signaturex. The typing rules specific to dynamically scoped state (stadnsure that we
may only dereference, assign to, and rebind a parametecordance with the ambient
signature. The assignment rule also highlights our detitioascribe the unit type to
assignment, in a minor deviation fram Kiselyeval. The GEN) rule is now completely
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Types
AB == value type
a type variable
|  bool boolean type
| unit unit type
| A-B function type
Va.A scheme
> ii= {p1:As,...,Pn:An} parameter signature
S} = {0g,...,0n} type variable environment
r n= @M x:A monomorphic environment
= = @ | = x:VYa.A polymorphic environment

Fig. 8. polymorphic types for dynamically scoped state

unrestricted, ensured by the assumption that the typetsigndoes not involve type vari-
ables.

Fig.[10 extends the translation to types. The parameteagiges translates into an
effect signature containing the distinct pair of effectsresponding to this parameter,
namelyget_p andset_p, with the appropriate type. Function types may cause amgeff
in this translated signatuf& ]. This translation is therefore not-well-definedzitontains
any function types, thepz | refers tof A — B], which refers td ] again.

There are at least three ways around this issue. The singakgton, presented in the
top half of Fig[10 is to restricE to groundtypes, i.e., prohibit storing functions.

A less restrictive solution is to use the coarser type sy$teraffect handlers that does
not track effect annotations at all, and defide— B| := |A| — | B], as in the bottom half
of Fig.[Z0. This solution works well, as the effegist_p andput_p maintain their type.

A more sophisticated potential solution is to use equi-rgiga effect signatures. At this
pointin time, such a type-and-effect system has not beeeldged, but we do not foresee
any serious obstacles in developing it: its denotationaks#ics would involve a recursive
domain equation in the same spirit as in Bauer & Pretnar (R014

The fact that higher-order parameter types merit domadosttic semantics is not sur-
prising, as such parameters allow non-terminating prograie say that a typd is
inhabitedif there exists a closed valuﬂegyn V:iA

Proposition. If £ contains a higher-order type parametép : A —» B) €  for some
inhabited type A, then there is a term ¢ satisfying:

dyny
e

Proof
Let |—gy” v: Abe an inhabitant of\, and take:

c:=dletp« (funaw (!p)a)in
('p)v
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Well-formed types, parameter signatures, and schemes:
aeo oA  or%c
oFYqg 0 " bool O - unit orFYasc
[denAi]lsisn eva |_dynA
OFY {p1:An....pn:An} oY va.A
Well-formed polymorphic and monomorphic environments:
dyn \, » d
[0-Y"Va Alcvan)es [0 " Alxayer
oY= orYr
Value judgementi®; =; I |—§y“v : Al, assuming® F¥" = 1 A 3
(x:A) el (x:vaB) ez  [0FY Aliic
0.5 ¥ x: O = 9" x: BIA /i l1<i<|q| 0:=:T ¥ true: bool
.= x:AFYc:
.= ¥ false:bool  O;ZT Y™ () : unit 0= ¥ funx-c:A>B

Computation judgement®; =; T »—gy” c: A[, assuming® I—g =MAZL

o= FYv:A O FY e i (VaA)  OZx:VaAr-Yc:B

(3;:;Fl—z "returnv: A G;E;Fl—gyndow—clmcz:B

O Fvibool O -P"¢:Cc O FY"g:C

[CH=ME I—Z "if vthen cpesecy:C

O - v:A5B Oy, A (p:A) ez

(O »—gy” ViV : B [CH=HN I—dyn

Ip:A

(p:A)eX O;=; T I—dyn

;= I—gyn p:=V:unit

(p:A)es O Fv: o5 -Me:
;= I—gyndlet p<vinc:B

Scheme judgemeﬂe;E;F I—gync: (V&.A)l assuming® l—dy =,r,(Va.A),x:

0.&=r-Y"c: A
O F"c: (Va.A)

(GEN)

Fig. 9. a polymorphic type system for dynamically scopetesta
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Type-level translation with effect annotations

[a]:=a [bool] := bool [A- B]:=[A] - [B]![Z] [Va.A]:=Va.[A]
[@]:=0 [T]:={x:TA]| (x:A) €T} [Z]:={x:Va.[A]| (x:Va.A)eT}

[Z]:={get_p: unit » [A],set_p:[A] - unit | (p: A) € =}
providedZ is ground.
Type-level translation without effect annotations
la]:=a | bool] := bool |[A-B]:=|A] - |B] |[Va.Al:=Va.lA] |®]:=0
[F]:={x:[A]| (x:A)eT} [Z]:={x:Va.|A]|(x:Va.A)eTl}
for the ambient effect signature:

|Z]:={get_p: unit—> |A] ;set_p:|A] - unit| (p:A) € 3}

Fig. 10. handlers types system expressing dynamicallyestefate

Then:
dyn dletp < (funaw~ (!p)a)in dyn, dletp < (funa~ (Ip)a)in
C ~» A~ =
(funaw (Ip)a)v ('p)v
as required. |

Moreover, every parametép : A — B) lets us define a form of a fixed-point combinator
Y:((A-B) - A—- B) - (A—- B) by a variant of Landin’s knot, provided the functions
passed to this combinator and their arguments do not inymlve

The two proposed translations are correct:

Theorem (Type Preservation)For every®;=;T" n—‘;y“ c:Aand®;z;I n—‘;y“ v:A, we
have:

o If Zis ground, thed®T;[=Z];[TTH[c]:

[Al'[Z]and[OT;[ZT; [T H[v]: [A].
o |O;|Z[iIT I+ Tcl:[Aland|©];|=Z];IT]

= {v]: A

Proof
For the first part only, first show that & is ground, thef A] = A, and so ifZ is a well-
kinded ground signature, th¢ ]| is well-defined and well-kinded.

Then the proofs of both parts follow the same lines. By mutudiction on the kinding
judgements, show that well-kinded types, schemes, an@xtrttanslate into well-kinded
types, schemes, and contexts, respectively. Then showdkiatranslations respect type-
level substitution:

[B[Ai/ai]lsisn] = [B][[Ai-l/ai]lsisn
and similarly for the coarse translation.
Finally, by mutual induction on typing judgements for vawd computations, and on
scheming judgements, show the hypothesis. We mention belinteresting cases.
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For dereferencing a celb : A) € Z, by the translation’s definition,
(get_p:unit — [A]) €[]

Use this fact to derive thgtp] has the typg¢A]. Use a similar argument for assignment.
Next, show that for al(p: A) € Z:

[OL =TT T+ HEr : (BIZ]) = (([A] = (BIZI)![Z])

and use this fact, together with the induction hypothesegite a valid derivation for

[dlet p < vinc]. ]
In summary, the handlddst expresses dynamically scoped state, in both terms and
types.

5 Conclusion and further work

Unexpectedly, Hindley-Milner polymorphism integratesagthly and robustly with ex-
isting type and effect systems for algebraic effects anddleas. However, combining
reference cell allocation with polymorphism remains anropeblem, as does incorpo-
rating dynamic generation of instances as useéffn ConsequentlyEff still uses the
value restriction. Our contribution is to identify a largdaiss of languages in which effects
and polymorphism coexist naturally.

For type-system cognoscenti, these results may not come@splete surprise. First,
using effect systems to ensure soundness has been prohesed & Weis,| 1991) before
Wright's value restriction. Second, even if we consider tioe-effect-annotated safety
result, we do not believe the type system can encode thegmabic effects: local ref-
erence cells and continuations. Nonetheless, previousico$ require apecialisedand
sometimes subtle, type system. In the algebraic settirdinggolymorphism to existing
systems is strikingly natural.

This result arose as part of a broader (denotational) secriawnéstigation of effects and
polymorphism, which does not yet account for referencescille hope that an algebraic
understanding of locality (Statan, 2013; Fiore & Statorl4)0and scope and polymorphic
arities (Wuet all, 12014) will explain the interaction between referencescelhd poly-
morphism. The robustness of type safety leads us to beliewelard extensions, such
as type inference, principal types, and impredicative amdpolymorphism will not pose
problems. The latter is particularly interesting, as it c@nve as an effect system with
effect variables (Lindley & Cheney, 2012; Leijen, 2014;Ree, 2014).

We want to investigate the expressive difference betwefestdiandlers and delimited
control, and polymorphism forms another comparison axes défer a thorough compari-
son, as there are several notions of delimited controlt(sfifftO, with or without answer-
type modification) and several proposals for polymorphietgystems (Asai & Kameyama,
2007; Gunteet all, 11995; Kiselyowet al, [2006), and as delimited control is subtle. That
said, there are two immediate points of comparison betweémited control and effect
handlers.

First, Kiselyovet al''s translation of dynamic scope into delimited control riegsisome
complication in order to preserve the type. This complaratis caused by their effect
system for delimited control tracking, the return type of tomputation enclosed by the
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nearest rebinding. When an access to a dynamically scofi@scapes the current binding
in scope the type expected in the nearest rebinding may ehaesulting in a type error
of their translated program. The example on page 14 denatastsuch a shift from a
function type to an integer type. In contrast, our effecteysonly tracks the local type for
each effect operation, and the translation from dynamjicaibped state to effect handlers
extends smoothly to types.

Second, these systems include a form of a purity restriaifovalue restriction. As a
consequence, they cannot type purely functional compurtatike the final example in the
Evaluation Subsectidn 4.1. In contrast, the type systemgmed here allows unrestricted
Hindley-Milner polymorphism in both purely functional aeffectful code.
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