
ar
X

iv
:1

60
5.

06
93

8v
1

 [c
s.

P
L]

 2
3

M
ay

 2
01

6

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

Under consideration for publication in J. Functional Programming 1

No value restriction is needed
for algebraic effects and handlers

Ohad Kammar�†
University of Cambridge Computer Laboratory and

University of Oxford Department of Computer Science, England
and

Matija Pretnar†
Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

Abstract

We present a straightforward, sound Hindley-Milner polymorphic type system for algebraic effects
and handlers in a call-by-value calculus, which allows typevariable generalisation of arbitrary com-
putations, not just values. This result is surprising. On the one hand, the soundness of unrestricted
call-by-value Hindley-Milner polymorphism is known to fail in the presence of computational effects
such as reference cells and continuations. On the other hand, many programming examples can be
recast to use effect handlers instead of these effects. Analysing the expressive power of effect handlers
with respect to state effects, we claim handlers cannot express reference cells, and show they can
simulate dynamically scoped state.

1 Introduction

The followingOCamlexample (Garrigue, 2004) demonstrates the problematic interaction
between Hindley-Milner polymorphism, which increases code reuse, and computational
effects, such as reference cells, in a call-by-value language:

let r = ref [] in (∗ generaliser ∶ ∀α.α list ref ∗)
r ∶= [()]; (∗ specialiseα ∶= unit ∗)
true ∶∶ !r (∗ specialiseα ∶= bool ∗)

A naı̈ve type inference algorithm would assign the typeα list ref to the term ref [].
Unrestricted, it would assign tor the type scheme∀α.α list ref. But doing so allows us
to instantiater with the unit typeα ∶= unit to store the singleton list with the unit value,
and then to instantiater with the boolean typeα ∶= bool. The result is a list whose second
element is the unit value, but appears to the type system as a list of booleans.

� Supported by the European Research Council grant ‘events causality and symmetry — the
next-generation semantics’, and the Engineering and Physical Sciences Research Council grant
‘quantum computing as a programming language’.

† The material is based upon work supported by the Air Force Office of Scientific Research, Air
Force Materiel Command, USAF under Award No. FA9550-14-1-0096.

http://arxiv.org/abs/1605.06938v1

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

2 O. Kammar and M. Pretnar

The current way to avoid this well-known unsound behaviour (Pierce, 2002; Harper & Lillibridge,
1993; Rémy, 2015) is to enforce avalue restriction: the inference algorithm will generalise
the type variables only in value terms that cannot be reducedfurther (Wright, 1995). While
this restriction can be weakened to allow some computation (Garrigue, 2004), it still rules
out sound pure programs:

let id = (fun f ↦ f) (fun x↦ x) in (∗ id is not polymorphic∗)
id (id)

The problem only arises when all three components are present: computational effects,
polymorphism, and call-by-value. Without effects, Milner’s original calculus soundly inte-
grates call-by-value with type inference (Milner, 1978). Without polymorphism, computa-
tional effects behave predictably in call-by-value languages. Without call-by-value, Leroy
(1993) combines computational effects with polymorphism without restriction. Leroy’s
language has two constructs for sequencing: a call-by-namepolymorphiclet x = c1 in c2

construct in whichc1 is re-executed whenever it is specialised inc2, and a call-by-value
monomorphicdo x ← c1 in c2 construct in whichc1 is only evaluated once, but its type
is not generalised. The situation is identical in theHaskellprogramming language, from
which we borrowed this notation.

Programming with algebraic effects and handlers (Bauer & Pretnar, 2015) is a new
approach to structuring functional programs with computational effects. The programmer
declares a collection ofalgebraic effect operationswith which she structures her effectful
code. Then, separately, she defineseffect handlersthat implement these abstract operations.
Bauer & Pretnar’sEff programming language is a strict (i.e., call-by-value) functional lan-
guage with Hindley-Milner polymorphism, in which all computational effects are treated as
algebraic effects that can be handled. There is a pre-definedcollection of effects that receive
special treatment: runtime errors and memory accesses. If these effects are not handled by
the program, the runtime will handle them, invoking the corresponding real computational
effects. AsEff combines the three problematic components (strictness, polymorphism,
effects), it currently imposes the standard value restriction on the programmer.

In this paper, we show that if only algebraic effects and handlers are present, the lan-
guage does not need a value restriction. We present a straightforward sound Hindley-
Milner polymorphic type system for a call-by-value language that incorporates compu-
tational effects in the form of algebraic effects and their handlers. In order to simplify the
presentation, we present a type system without its associated complete inference algorithm.
Doing so decouples the algorithmic concerns of finding principal types and complexity
from the semantic concern for soundness. As first-class polymorphism typically makes
type inference undecidable (Wells, 1999), our type system uses ML-style polymorphism.

The rest of the paper is structured as follows. In Sec. 2, we give a short recap of handlers
and show how they may be used to simulate global state. Next, in Sec. 3, we give a type
and effect system and sketch the proof of its soundness. We formalized the proof in the
Twelf proof assistant (Pfenning & Schürmann, 1999), extending Bauer & Pretnar’s (2014)
existing formalization ofEff ’s core calculus. In Sec. 4 we evaluate our type system and
discuss its expressivity with respect to mutable references and dynamically scoped state.
Sec. 5 concludes.

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

No value restriction is needed for algebraic effects and handlers 3

Syntax

v ∶∶= value

x variable

∣ true ∣ false boolean constants

∣ fun x↦ c function

∣ h handler

h ∶∶= handler

handler {return x↦ cr ,

op1(x;k) ↦ c1, . . . ,opn(x;k) ↦ cn}
return clause

operation clauses

c ∶∶= computation

return v return

∣ do x← c1 in c2 sequencing

∣ op(v;y.c) operation call

∣ if v then c1 else c2 conditional

∣ v1 v2 application

∣ with v handle c handling

Syntactic sugar

Sugar Elaboration
fresh variable binding

c1;c2 do ← c1 in c2
c1c2 do f ← c1 in do a← c2 in f a
if c then c1 else c2 do b← c in if b then c1 else c2
op(cp;y.ck) do p← cp in op(p;y.ck)
fun x1 x2 . . . xn ↦ c fun x1 ↦ fun x2 ↦ . . . fun xn ↦ c
op fun x↦ op(x;y.return y)

Fig. 1. an idealised calculus of effect handlers

2 Handlers of algebraic effects

Algebraic effectsare an approach to computational effects based on a premise that impure
behaviour arises from a set ofoperationssuch asget andset for mutable store,read and
print for interactive input and output, orraise for exceptions (Plotkin & Power, 2003).
This naturally gives rise tohandlersnot only of exceptions, but of any other effect, yield-
ing a novel concept that, amongst others, can capture backtracking, co-operative multi-
threading, Unix-style stream redirection, and delimited continuations (Plotkin & Pretnar,
2013; Bauer & Pretnar, 2015).

2.1 Language

We base our development on the calculus (Fig. 1) given in Pretnar’s (2015) tutorial. The
language is a variant of the fine-grained call-by-valueλ -calculus of Levyet al. (2003), in
which terms are split into inertvaluesand potentially effectfulcomputations.

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

4 O. Kammar and M. Pretnar

Programmers introduce effects with the constructop(v;y.c), which calls the operation
op with the parameterv. The effect invocation may yield a value to the continuationc using
the bound variabley. Programmers define the meaning of such operation calls by enclosing
them in effect handlers. A handler specifies a return clause,used when the computation
returns a final value, and a collection of operation clausesop(x;k) ↦ c, which specify how
we should execute an invocation of the operationop called with the parameterx and a
continuationk. The underlying idea is that operation calls behave as signals that propagate
outwards until they reach a handler with a matching clause.

Our handlers aredeep: the additional effects in the continuation are also handled by the
current handler. Our handlers are alsoforwarding: unhandled operations propagate through
each handler until they are handled or reach the top level. None of these design choices is
essential to the development below, but we make them to mirror Eff ’s design choices.

We use the following syntactic sugar (Fig. 1): semicolons elaborate to binding fresh
(dummy) variables; function calls, conditionals, and operation calls are elaborated to call-
by-value evaluation order; function introduction may abstract over multiple arguments;
and bare operations without a parameter or a continuation argument elaborate to the cor-
respondinggeneric effect(Plotkin & Power, 2003). In our examples, we further assume to
have the typeunit with the sole inhabitant().

2.2 State handlers

We represent state with an operationset, which sets the state contents to a given parameter
and returns(), andget, which takes a unit parameter and returns the state contents. For
example, here is a computation that toggles the state and returns the old value:

T
def
= if get () then

set false;return true

else

set true;return false

As mentioned above, the runtime ofEff (Bauer & Pretnar, 2015) deals with unhandled
primitive effects, but in our calculus, the behaviour of operations will be determined exclu-
sively by handlers, and the computationT gets stuck when evaluated.

A simple example of a handler that can handle a stateful computation is one that sets the
state to a fixed value, saytrue, and ignores all its modifications:

HC ∶= handler {get(;k) ↦ k true
set(s;k) ↦ k ()
return x ↦ return x}

Whenever aget operation is called, we yieldtrue to the continuation, whereas allset calls
are silently ignored by yielding the expected unit value() and doing nothing else. The
return clause of a handler states that the returned values are kept unmodified. When we
handleT with HC, we get back the resulttrue, no matter how many times we callT.

A more useful handler is one that handlesget andset in a way that results in the ex-
pected stateful behaviour. It uses a technique calledparameter-passing(Plotkin & Pretnar,

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

No value restriction is needed for algebraic effects and handlers 5

Semantics

c1 ❀ c′1
do x← c1 in c2 ❀ do x← c′1 in c2 do x← return v in c ❀ c[v/x]

do x← op(v;y.c1) in c2 ❀ op(v;y.do x← c1 in c2)
(DO-OP)

if true then c1 else c2 ❀ c1 if false then c1 else c2 ❀ c2

(fun x↦ c)v ❀ c[v/x]
For everyh= handler {return x↦ cr ,op1(x;k) ↦ c1, . . . ,opn(x;k) ↦ cn}, define:

c❀ c′

with h handle c❀ with h handle c′ with h handle (return v)❀ cr [v/x]

with h handle opi(v;y.c)❀ ci[v/x,(fun y↦ with h handle c)/k] (1≤ i ≤ n) (HANDLED-OP)

with h handle op(v;y.c)❀ op(v;y.with h handle c) (op /∈ {op1, . . . ,opn})
(UNHANDLED-OP)

Fig. 2. operational semantics

2013), where we transform the handled computation into a function that passes around a
parameter, in our case the state contents:

HST ∶= handler {get(;k) ↦ return (fun s↦ (k s) s)
set(s′;k) ↦ return (fun ↦ (k ()) s

′)
return x ↦ return (fun ↦ return x)}

We handleget with a function that takes the current state contentss and in the first
application, passes them as a result ofget to the continuation. As our handlers are deep,
the continuation is further handled into a function, which we again need to supply with
the state contents. Since reading does not modify the state,we again passs. We handle
set by first passing the unit result, and then applying the handled continuation to the new
states′ as given by the parameter ofset. The return clause ofHST also needs to produce
a function that depends on the given state, in particular, a function that returns the given
value regardless of the state contents.

2.3 Operational semantics

To see how exactlyHST can be used to simulate state, consider the operational semantics
of the calculus, also copied verbatim from Pretnar’s (2015)tutorial. The semantics is given
in terms of the small-step relationc❀ c′, defined in Fig. 2. As expected, there is no such
relation for values, as these are inert.

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

6 O. Kammar and M. Pretnar

The rules for conditionals and function application are standard. For the sequencing
construct,do x← c1 in c2, we start by evaluatingc1. If this returns some valuev, we bind
it to x and evaluatec2. But if c1 calls an operation, we propagate the call outwards and
defer further evaluation to the continuation of the call, for example:

do x1 ← (do x2 ← op(x;y.c2) in c1) in c ❀

do x1 ← op(x;y.do x2 ← c2 in c1) in c ❀

op(x;y.do x1 ← (do x2 ← c2 in c1) in c)
In our account, we gloss over the standard issues with capture-avoiding substitution and
implicitly assume the appropriate freshness conditions. For example, in this case, thaty is
fresh forc1.

To evaluatewith h handle c, we start by evaluatingc. If it returns a value, we continue
by evaluating the return clause ofh. If c calls an operationop, there are two options. If
h has a matching clause forop, we start evaluating that, passing in the parameter and the
continuation. Recall that our handlers are deep, thus the continuationk are also handled by
the current handler, seeHANDLED-OP. If h does not have a matching clause, we forward
the call outwards just like in sequencing, seeUNHANDLED-OP.

Let us return to the state handlerHST. If we use it on a stateful computation, no effects
occur as the handled computation returns a function waitingfor an initial state. To run it,
we need to apply this function to the initial state. Let us abbreviate such an application by:

⟨c,s⟩ ∶= (with HST handle c) s

(note that we use the syntactic sugar for call-by-value function calls from Fig. 1).
Even though our calculus is pure, we can show the handlerHST simulates global state in

the following way. Let
st
❀ be the usual small-step semantics for global state, i.e.:

⟨get(),s⟩ st
❀ ⟨return s,s⟩ ⟨set(s′),s⟩ st

❀ ⟨return (),s′⟩

⟨c1,s⟩ st
❀ ⟨c′1,s′⟩

⟨do x← c1 in c2,s⟩ st
❀ ⟨do x← c′1 in c2,s

′⟩
etc.

We can prove that for each⟨c1,s⟩ st
❀ ⟨c′1,s′⟩, we have⟨c1,s⟩ ❀+ ⟨c′1,s′⟩, and therefore

effect handlers simulate the operational semantics for global state. For example:

⟨get(),s⟩❀ (with HST handle (get(();y.return y))) s

❀ (fun s
′ ↦ ((fun y↦ with HST handle (return y)) s

′) s
′) s

❀ ((fun y↦ with HST handle (return y)) s) s

❀ (with HST handle (return s)) s

= ⟨return s,s⟩
Similarly, we can prove:

⟨set(s′),s⟩❀+ ⟨return (),s′⟩

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

No value restriction is needed for algebraic effects and handlers 7

Types

A,B ∶∶= value type

α type variable

∣ bool boolean type

∣ A→C function type

∣ C⇒ D handler type

C,D ∶∶=A! Σ computation type

∀α⃗.A scheme

Σ ∶∶={op1 ∶ A1 → B1, . . . ,opn ∶ An → Bn} effect signature

Θ ∶∶={α1, . . . ,αn} type variable environment

Γ ∶∶=∅ ∣ Γ,x ∶ A monomorphic environment

Ξ ∶∶=∅ ∣ Ξ,x ∶ ∀α⃗ .A polymorphic environment

Fig. 3. types and effects

For the third transition, case-split on the possible transitions⟨c1,s⟩❀ ⟨c′1,s′⟩.
In summary, theHST handler faithfully simulates state. For more details on simulating

state, see Bauer & Pretnar (2014) and Danvy (2006). Therefore, even though our calculus is
pure, it faithfully simulates impure computation. By giving an unrestricted Hindley-Milner
type system to this calculus, we now show that the effects expressible by effect handlers
interact well with polymorphism.

3 Type system

The type and effect system (Figs. 3–4) closely follows Pretnar (2015). It comprises two
kinds of types: values are typed with simple typesA, while the types of computations are
additionally annotated with finite sets of operationsΣ like in an effect system of Lucassen & Gifford
(1988).

We modify Pretnar’s system in two ways. The first modificationis minor. We generalise
the type system to allow for more flexiblelocal operation signaturesΣ, where operations
may have different types when handled by different handlers, as in Kammaret al. (2013).
In contrast, Pretnar’s account posits a global assignment of predefined types to the effect
operations, and the effect annotationsΣ only list which operations may be present. Local
signatures allow the same operation symbol to appear in disjoint parts of the program with
different types. Local signatures also give the calculus stronger theoretical properties, such
as strong normalisation and simpler denotational semantics, cf. Kammaret al..

The second modification is our main contribution. We incorporate Hindley-Milner poly-
morphism in a standard way, without any value restriction. We indicate these latter modi-
fications byshadingin the figures. Amongst these:

• Local effect signaturesΣ are finite mappings from operationsop to pairs of value
typesA, B, whose action we denote by(op ∶ A→ B) ∈ Σ. We denote the restriction
of a signatureΣ to the set of operations disjoint from a given set∆ = {opi ∣ 1≤ i ≤ n}
by Σ\∆.

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

8 O. Kammar and M. Pretnar

Well-formed value types:

α ∈ Θ
Θ ⊢ α Θ ⊢ bool

Θ ⊢ A Θ ⊢C

Θ ⊢ A→C

Θ ⊢C Θ ⊢ D

Θ ⊢C ⇒ D

Well-formed computation types, schemes, and effect signatures:

Θ ⊢ A Θ ⊢ Σ
Θ ⊢ A! Σ

Θ, α⃗ ⊢ A

Θ ⊢∀α⃗.A

[Θ ⊢ Ai Θ ⊢ Bi]1≤i≤n

Θ ⊢ {op1 ∶ A1 → B1, . . . ,opn ∶ An → Bn}
Well-formed monomorphic and polymorphic contexts:

[Θ ⊢ A](x∶A)∈Γ

Θ ⊢ Γ
[Θ ⊢∀α⃗.A](x∶∀α⃗ .A)∈Ξ

Θ ⊢ Ξ

Value judgementsΘ;Ξ;Γ ⊢ v ∶ A , assumingΘ ⊢ Ξ,Γ,A:

(x ∶ A) ∈ Γ

Θ;Ξ;Γ ⊢ x ∶ A

(x ∶ ∀α⃗ .B) ∈ Ξ [Θ ⊢ Ai]1≤i≤∣α⃗∣
Θ;Ξ;Γ ⊢ x ∶ B[Ai/αi]1≤i≤∣α⃗∣ Θ;Ξ;Γ ⊢ true ∶ bool

Θ;Ξ;Γ ⊢ false ∶ bool

Θ;Ξ;Γ,x ∶ A⊢ c ∶C

Θ;Ξ;Γ ⊢ fun x↦ c ∶ A→C

Θ;Ξ;Γ,x ∶ A⊢ cr ∶ B! Σ′

[(opi ∶ Ai → Bi) ∈ Σ Θ;Ξ;Γ,x ∶ Ai ,k ∶ Bi → B! Σ′
⊢ ci ∶ B! Σ′]

1≤i≤n
Σ\{opi ∣ 1≤ i ≤ n} ⊆ Σ′

Θ;Ξ;Γ ⊢ handler {return x↦ cr ,op1(x;k)↦ c1, . . . ,opn(x;k)↦ cn} ∶ A! Σ ⇒ B! Σ′

Computation judgementsΘ;Ξ;Γ ⊢ c ∶ A! Σ , assumingΘ ⊢ Ξ,Γ,A:

Θ;Ξ;Γ ⊢ v ∶ A

Θ;Ξ;Γ ⊢ return v ∶ A! Σ

Θ;Ξ;Γ ⊢ c1 ∶ (∀α⃗ .A) ! Σ Θ;Ξ,x ∶ ∀α⃗ .A;Γ ⊢ c2 ∶ B! Σ

Θ;Ξ;Γ ⊢ do x← c1 in c2 ∶ B! Σ

(op ∶ Aop → Bop) ∈ Σ Θ;Ξ;Γ ⊢ v ∶ Aop Θ;Ξ;Γ,y ∶ Bop ⊢ c ∶ A! Σ

Θ;Ξ;Γ ⊢ op(v;y.c) ∶ A! Σ

Θ;Ξ;Γ ⊢ v ∶ bool Θ;Ξ;Γ ⊢ c1 ∶C Θ;Ξ;Γ ⊢ c2 ∶C

Θ;Ξ;Γ ⊢ if v then c1 else c2 ∶C

Θ;Ξ;Γ ⊢ v1 ∶ A→C Θ;Ξ;Γ ⊢ v2 ∶ A

Θ;Ξ;Γ ⊢ v1v2 ∶C

Θ;Ξ;Γ ⊢ v ∶C ⇒ D Θ;Ξ;Γ ⊢ c ∶C

Θ;Ξ;Γ ⊢ with v handle c ∶ D

Scheme judgementΘ;Ξ;Γ ⊢ c ∶ (∀α⃗ .A) ! Σ , assumingΘ ⊢ Ξ,Γ,(∀α⃗.A),Σ:

Θ, α⃗;Ξ;Γ ⊢ c ∶ A! Σ
Θ;Ξ;Γ ⊢ c ∶ (∀α⃗.A) ! Σ

(GEN)

Fig. 4. a polymorphic type and effect system

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

No value restriction is needed for algebraic effects and handlers 9

• We extend types withtype variablesα and addtype variable environmentsΘ, which
are just finite sets of type variables.

• We introduceschemes∀α⃗.A, whereα⃗ denotes a finite set of∣α⃗∣-many type variables
ranged over byαi .

• We introducekinding judgementsΘ ⊢ X to explicitly keep track of the free type
variables inX. The shorthandΘ ⊢ X,Y,Z stands for the conjunctionΘ ⊢ X, Θ ⊢Y,
andΘ ⊢ Z.

• Typing judgementsΘ;Ξ;Γ ⊢ M ∶ X include the standard monomorphic environ-
mentsΓ which are a unique assignment of types to variables. We extend those with
type variable environmentsΘ andpolymorphic environmentsΞ, which are a unique
assignment of schemes to variables. We assume that no variable can appear in both
Γ andΞ.1 These polymorphic variables can be specialised at any type.

• We addscheme judgementswhose effect annotation is outside the scope of the
quantifier. The kinding assumptionΘ ⊢ Σ ensures that none of the type variables
α⃗ appears inΣ. It is at this point that the decision of the inference algorithm which
type variablesα⃗ to generalise over takes effect. Our choice to separate scheme
judgements from type judgements simplifies the let-rule, and makes it very similar
to its standard, monomorphic counterpart.

The remaining kinding and typing rules are standard. Fine-grained call-by-value func-
tions take values and perform computations. An operation invocation is well-typed if the
type assigned to it by the local signature must agree with thetype of the given parameter
valuev, and with the type of argument the continuationc expects. A handler is well-typed
if the type of result the return clause expects matches with the type of computation the
handler can handle, and each operation clause is well-typedwhen the parameter type and
continuation type match the local signature the handler canhandle. Both clauses can cause
additional effects, and their effect annotation must include these operations, as well as any
effect operations the handler does not explicitly handle, reflecting the fact that our handlers
are forwarding. Thus, the rule also requires the type and effect of both clauses to agree.
The fact that our handlers are deep is reflected by the type of the continuation: the effects
the continuation may cause have already been handled, and sothe continuation may cause
effects in the resulting signature and of the resulting return type.

For the given effect system, we then have:

Theorem (Safety). If ⊢ c ∶ A! Σ holds, then either:

(i) c ❀ c′ for some⊢ c′ ∶ A! Σ;
(ii) c = return v for some⊢ v ∶ A; or
(iii) c = op(v;y.c′) for some(op ∶ Aop → Bop) ∈ Σ, ⊢ v ∶ Aop, and y∶ Bop ⊢ c′ ∶ A! Σ.

In particular, whenΣ = ∅, evaluation will not get stuck before returning a value.
Proof

1 This separation into two environments is not strictly necessary, as a monomorphic environment
Γ may be identified with a polymorphic environment where each quantifier ranges over an empty
tuple of type variables. We choose to separate the two to highlight which parts of the language
interact with polymorphism.

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

10 O. Kammar and M. Pretnar

We prove progress and preservation lemmata separately by induction. We formalized2

the calculus and the safety theorem in the Twelf proof assistant (Pfenning & Schürmann,
1999). Our formalization extends Bauer & Pretnar’s (2014) existing formalization of Eff’s
core calculus with type schemes and polymorphism. The code is compatible with ver-
sion 1.7.1 of Twelf. We summarise the crucial step, namely proving type and effect preser-
vation under theDO-OP transition.

Assume that the reduct inDO-OP is well-typed, and invert its type derivation:

(op ∶ Aop → Bop) ∈ Σ

⋮

Θ, α⃗ ⊢ v ∶ Aop

⋮

Θ, α⃗;y ∶ Bop ⊢ c1 ∶ A! Σ

Θ, α⃗ ⊢ op(v;y.c1) ∶ A!Σ

Θ ⊢ op(v;y.c1) ∶ (∀α⃗.A) ! Σ

⋮

Θ;x ∶ ∀α⃗.A⊢ c2 ∶ B! Σ

Θ ⊢ do x← op(v;y.c1) in c2 ∶ B! Σ

TheGEN rule ensures that none of the type variables inα⃗ appear inΣ. BecauseΣ includes
op ∶Aop →Bop, none of these variables appear inAop, and we may strengthen the derivation
of Θ, α⃗ ⊢ v ∶Aop to a derivation ofΘ ⊢ v ∶Aop. As a consequence, the following derivation
is valid:

(op ∶ Aop → Bop) ∈ Σ

⋮

Θ ⊢ v ∶ Aop

⋮

Θ, α⃗;y ∶ Bop ⊢ c1 ∶ A! Σ

Θ;y ∶ Bop ⊢ c1 ∶ (∀α⃗ .A) ! Σ

⋮

Θ;x ∶ ∀α⃗.A⊢ c2 ∶ B! Σ

Θ;y ∶ Bop ⊢ do x← c1 in c2 ∶ B! Σ

Θ ⊢ op(v;y.do x← c1 in c2) ∶ B! Σ

Therefore, the reduction inDO-OP preserves both the type and the effect annotation.�
The Safety Theorem is robust under the following standard variations in the calculus:

coarse annotations. We can make the signatureΣ global, and only keep track of which
operations are used, as in Pretnar (2015). The types in this global signature cannot use
any type variables. The soundness proof remains essentially unchanged3. Due to the lack
of type variables in the global signature, there is no need toimpose a side-condition on
the well-formedness of the effect annotation in theGEN rule
It may seem this coarser system is a restriction of our current system, where the type
information for each operation has to agree in all effect annotations, and hence it is
sound by the Safety Theorem. This is not the case. In this coarser system, the signatures
on function types are not annotated with the types of the operations. If those types were
fully written out, they would involve the global signature,leading to potential mutual
recursion between signatures and function types. For example, if we elaborate the global
signatureΣ = {op ∶ unit→ (unit→ unit)}, we would get:

Σ = {op ∶ unit→ (unit→ (unit ! Σ))}

2
https://github.com/matijapretnar/twelf-eff/tree/val-restriction-local-sig

3
https://github.com/matijapretnar/twelf-eff/tree/val-restriction-global-sig

https://github.com/matijapretnar/twelf-eff/tree/val-restriction-local-sig
https://github.com/matijapretnar/twelf-eff/tree/val-restriction-global-sig

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

No value restriction is needed for algebraic effects and handlers 11

where left arrow is part of the signature syntax and receivesno effect annotation on the
co-domain. This recursion is not a mere formality. The type-and-effect system with local
signatures we have described ensures well-typed terms terminate, cf. Kammaret al.
(2013). When we switch to a global signature, we can use effect operations with higher-
order return types to express well-typed diverging computations. With the above global
signatureΣ = {op ∶ unit→ (unit→ unit)}, consider the handler

H ∶= handler {return x↦ return x,
op(;k)↦ k(fun ↦ op()())}

In the coarse type system, we can derive the judgement:

⊢ H ∶ (unit !{op})⇒ (unit !∅)
If we handle the simple looking computation⊢ op()() ∶ unit !{op} with H, we get a
diverging computation:

with H handle op()()❀+ with H handle (fun ↦ op()())()
❀ with H handle op()()

In fact, by a variation on Landin’s (1964) knot, we can express a variant of theY-
combinator, such that for a functionf that is pure,Y f behaves like the fixed-point off
when invoked on pure arguments.

no annotations. We can remove all the effect annotationsΣ from type judgements and fix
a single, global signatureΣ. The advantage of having an effect system is the additional
guarantee in clause(iii) of the Safety Theorem, which ensures that any unhandled opera-
tion must appear inΣ. Without annotations, any operation may be called. This system is
a restriction of the coarse variation, where each effect annotation is the entire signature.
Consequently, it is sound.

additional language features. To the calculus with coarse annotations, we can addstruc-
tural subtypingand staticeffect instances(further discussed in Sec. 4.2). The soundness
proof remains essentially unchanged4 as these modifications are orthogonal to polymor-
phism. Similarly, we can replace deep handlers with shallowones, as in Kammaret al.
(2013) and Kiselyovet al. (2013). As the changes5 are again orthogonal to polymor-
phism, we may reasonably assume a similar soundness result to hold for a calculus that
incorporates all of the above: subtyping, instances, and, through two separate syntactic
constructs, both deep and shallow handlers.

4 Expressivity

There is currently no simple type system integrating reference cells with polymorphism
without the value restriction. This non-existence contrasts the simplicity of our type sys-
tem, and calls into question both its degree of feature integration and its expressiveness.
First, we evaluate the degree and smoothness of the interaction between polymorphism and

4
https://github.com/matijapretnar/twelf-eff/tree/val-restriction-instances

5
https://github.com/matijapretnar/twelf-eff/tree/val-restriction-shallow

https://github.com/matijapretnar/twelf-eff/tree/val-restriction-instances
https://github.com/matijapretnar/twelf-eff/tree/val-restriction-shallow

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

12 O. Kammar and M. Pretnar

other features in our calculus. Then, we highlight the difference in expressiveness between
effect handlers and reference cells. As a basis for our evaluation and comparison, we use
Leroy’s (1992) set of example programs for analysing the usefulness of a polymorphic type
system for reference cells.

4.1 Evaluation

Algebraic effects allow us to lace a piece of code with operations in the signature

{get ∶ unit→ α,set ∶ α → unit}
The scheme assigned to the handlerHST, which handles them away, is

HST ∶ ∀α,β .α !{get ∶ unit→ β ,set ∶ β → unit}⇒ (β → α !∅) !∅

It takes a computation of typeα that interacts with a state of typeβ , and handles it to a
pure function of typeβ → α !∅. The rightmost∅ indicates that no effects can occur when
producing the function.

This handler can handle computations with different types of state, for example:

(with HST handle set ()) ();
(with HST handle get ()) true

We can also use effects in polymorphic code:

do f ← if get () then return fun xy↦ return x

else return fun xy↦ return y

in (f (fun b↦ return b)
(fun b↦ set b;return b))
(f true false)

In our call-by-value semantics, if we wrap this computationwith the state handler, the
memory look-up inf ’s definition will only occur once.

To demonstrate that the polymorphic, effectful, and high-order features interact well, we
hypothetically extend our calculus with pairs and lists. The hypothesised extension may
include primitives such as the empty list[], a list cons(∶∶) and tail-recursive iteration
foldl, which we expect to interact smoothly with polymorphism. Thus we can useHST to
implement functional features in an imperative style.

do imp map← fun f xs↦
with HST handle (foldl (fun x↦ set(f x ∶∶ get ())

()
xs;

reverse(get ())
[] (∗ initial state∗) in . . .

The scheme assigned to impmap is

imp map∶ ∀αβ .(α → β ! Σ)→ (α list→ β list ! Σ) !∅

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

No value restriction is needed for algebraic effects and handlers 13

for any Σ. This implementation is imperative in style, but not imperative per se, as all
operations are handled by high-order functions. The function imp map can also be partially
applied and retain its polymorphism, for example, in

do list id ← imp map idin
do nil ← list id [] in . . .

we have the scheme assignments:

list id ∶ ∀α.α list→ α list !∅
nil ∶ ∀α.α list

Most importantly, the following program is well-typed:

do id ← (fun f ↦ f) (fun x↦ x) in

do id
′
← id (id) in . . .

and both functions are assigned the polymorphic type∀α.α → α!Σ. Such mixed-variance
polymorphism is ruled out by all current value restrictions.

4.2 Reference cells

We believe it is impossible to implement full blown reference cells using effect handlers
without other language features. We can increase modularity by introducing instances (Bauer & Pretnar,
2015, 2014; Pretnar, 2014). These may be thought of as first class atomic names. With
instances, each effect instanceι and an operation symbolop determine an operationι#op.
In handlers, each operation clausev#op(x;k) ↦ c specifies which instance, dynamically
given by the valuev, of the statically chosen effect operation symbolop the handler
handles. At runtime, invocations of the same operationop but with different instances will
not be caught by this handler and will be forwarded.

Instances allow us to pass a cell around by passing an instance, but they are still less
expressive than having the ability to allocate arbitrarilymany new cells dynamically. For
example, we do not know how to implement even the simplest of Leroy’s (1992) bench-
marks:

do makeref← fun x↦ ref x in . . .

We believe it is impossible to encode general references without additional language fea-
tures.Eff provides such a mechanism, which can both generatefresh instances and at-
tach them to a statefulresource(Bauer & Pretnar, 2015), allowing one to directly im-
plement a makeref analogue: makeref creates a fresh instances that hasget and set

operations associated with it. Only code that knows what theinstance is, can handle these
effects. However, it is not easy to find a corresponding type and effect system for fresh
instances (Bauer & Pretnar, 2014; Pretnar, 2014), let alonea polymorphic one.

As a final example, recall the problematic reference cell example which cannot be
directly expressed in our calculus:

do r ← ref [] in

r ∶= [()];
true ∶∶ !r

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

14 O. Kammar and M. Pretnar

We can express a computation that writes aunit list value and reads abool list value:

set [()];
true ∶∶ get ()

However, this computation has the effect annotation

{set ∶ unit list→ unit,get ∶ unit→ bool list}
which is incompatible with the type of the state handlerHST. Other handlers for the state
operations may have a compatible type. For example, the read-only state handlerHRO

which ignores any memory updates:

HRO ∶= handler {return x↦ fun ↦ return x

get(;k)↦ fun s↦ k s s

set(;k)↦ fun s↦ k () s}
It has the scheme

HRO ∶ ∀α,β ,γ.α !{get ∶ unit→ β ,set ∶ γ → unit}⇒ (β → α !∅) !∅

and can be applied to the above computation without run-timeerrors.

4.3 Dynamically scoped state

As we saw in Sec. 2.2, we can simulate global state using the handlerHST, and this state
can be handled locally to give a pure computation. While we donot know whether effect
handlers can simulate reference cells or not, we will now characterise the handlerHST as
expressing the notion ofdynamically scopedstate.

In order to explain what we mean by dynamically scoped state,and to make the discus-
sion precise, we consider the calculus presented in Fig. 5. It is a fine-grained call-by-value
variation on the dynamic scope calculi of Kiselyovet al. (2006) and Moreau (1998).

We assume a set of parameters ranged over byp that name dynamically scoped memory
cells. These cells can be dereferenced, !p, or assigned to,p ∶= v, just like ref cells. The
rebinding constructdlet p← v in c declares that in executingc, all references top will be
bound to this occurrence ofp, and shadow other binding declarations that may be in place.

For example, assuming we have a type of integers the following code will evaluate to
return 2.

do f ← dlet p← 0 in
return (fun ↦

p ∶= 1+!p) in
dlet p← 1 in

f ();
!p

The reason is that the state changes inside the function binddynamically to the closest
enclosing rebinding, which is the second one.

Fig. 6 describes the (Felleisen-style) operational semantics for this calculus. We kept the
style of semantics as close as possible to Kiselyovet al.’s (2006) to make it clear we use

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

No value restriction is needed for algebraic effects and handlers 15

Syntax

p ∶∶= p ∣ q ∣ r ∣ . . . parameter

v ∶∶= value

x variable

∣ true ∣ false boolean constants

∣ () unit value

∣ fun x↦ c function

c ∶∶= computation

return v return

∣ do x← c1 in c2 sequencing

∣ if v then c1 else c2 conditional

∣ v1 v2 application

∣ !p dereferencing

∣ p ∶= v assignment

∣ dlet p← v in c rebinding

Fig. 5. a calculus for dynamically scoped state

Auxiliary definitions
Evaluation contexts:

E ∶∶= [] ∣ E[do x← [] in c] ∣ E[dlet p← v in []]
Parameter binding:

bp([]) ∶= ∅ bp(E[do x← [] in c]) ∶= bp(E) bp(E[dlet p← v in []]) ∶= bp(E)∪{p}
Semantics

E[do x← return v in c] dyn
⟿ E[c[v/x]] E[if true then c1 else c2]

dyn
⟿ E[c1]

E[if false then c1 else c2]
dyn
⟿ E[c2] E[(fun x↦ c)v] dyn

⟿ E[c[v/x]]

E[dlet p← v in return v′] dyn
⟿ E[return v′]

E[dlet p← v in E′[!p]] dyn
⟿ E[dlet p← v in E′[return v]]

(p∉ bp(E′))

E[dlet p← v in E′[p ∶= v′]] dyn
⟿ E[dlet p← v′ in E′[return ()]]

(p∉ bp(E′))

Fig. 6. semantics for dynamically scoped state

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

16 O. Kammar and M. Pretnar

Term-level translation

⌈x⌉ ∶= x ⌈true⌉ ∶= true ⌈false⌉ ∶= false ⌈fun x↦ c⌉ ∶= fun x↦ ⌈c⌉
⌈v1 v2⌉ ∶= ⌈v1⌉ ⌈v2⌉ ⌈return v⌉ ∶= return ⌈v⌉ ⌈do x← c1 in c2⌉ ∶= do x← ⌈c1⌉ in ⌈c2⌉

⌈!p⌉ ∶= get p() ⌈p ∶= v⌉ ∶= set p(⌈v⌉) ⌈dlet p← v in c⌉ ∶= (with H
p
ST⌈c⌉ handle) ⌈v⌉

where:

H
p
ST ∶= handler {get p(;k)↦return (fun s↦ (k s) s)

set p(s′;k)↦return (fun ↦ (k ()) s′)
return x ↦return (fun ↦ return x)}

Fig. 7. handlers expressing dynamically scoped state

the same notion of dynamic scope, and our theoretical treatment closely mirrors their own.
The semantics use the set of parameters bound in a given context E, denoted by bp(E). The
three transitions specific to dynamic scope are shaded. First, a fully evaluated computation
removes a preceding parameter binding, as it will no longer be used. For the other two
transitions, the side conditionp∉ bp(E′) ensures the uniqueness of the decomposition into
the contextE′ by locating the closest rebinding ofp. The semantics of dereferencing returns
the value associated to this closest rebinding, while the semantics of assignment modifies
it. In our design, assignment evaluates to the unit value, deviating from Kiselyovet al.’s
semantics. This purely cosmetic change does not alter the nature of dynamically scope
state we are dealing with, and makes the relationship withHST tighter.

The example above evaluates as follows:

do f ← dlet p← 0 in
return (fun ↦

p ∶= 1+!p) in
dlet p← 1 in

f ();
!p

dyn
⟿

do f ← return (fun ↦

p ∶= 1+!p) in
dlet p← 1 in

f ();
!p

dyn
⟿

dlet p← 1 in
(fun ↦

p ∶= 1+!p) ();
!p

dyn
⟿

dlet p← 1 in
p ∶= 1+!p;
!p

dyn
⟿

+ return 2

Fig. 7 shows how effect handlers express dynamically scopedstate. Using Felleisen’s
(1990) terminology, it is amacrotranslation. First, it does not use any information collected
globally as it is defined homomorphically over the syntax of the language. Second, it keeps
the common core of the two languages unchanged, translatinga boolean value to itself, a
function to a function, and so forth. The translation is straightforward: it translates deref-
erencing and assignments top as specially named effects,get p andset p. Rebinding

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

No value restriction is needed for algebraic effects and handlers 17

amounts to handling withHST, and passing the translated rebinding value as the initial
value.

This translation simulates dynamic allocation:

Theorem (Simulation). For all c
dyn
⟿ c′, we have⌈c⌉❀+ ⌈c′⌉.

Proof
First, extend the translations to evaluation contexts, andshow that⌈E[c]⌉ = ⌈E⌉[⌈c⌉].
Then, show the translation respects capture avoiding substitution: ⌈c[v/x]⌉ = ⌈c⌉[⌈v⌉/x].
To deal with the mismatch between Felleisen-style and small-step semantics, show that for

all evaluation contextsE, if c
dyn
⟿ c′ then⌈E⌉[c]❀+ ⌈E⌉[c′]. It therefore suffices to prove

the theorem for each of the transitions in Fig. 6 specialisedto E ∶= [].
For each of the common constructs of the two calculi, the proof is immediate, for

example:

⌈do x← return v in c⌉ = do x← return ⌈v⌉ in ⌈c⌉❀ ⌈c⌉[⌈v⌉/x] = ⌈c[v/x]⌉
The next remaining transition amounts to handling a terminal computation:

⌈dlet p← v in return v
′⌉ = (with H

p
ST handle return ⌈v′⌉) ⌈v⌉

❀

+ (fun ↦ return ⌈v′⌉) ⌈v⌉❀ return ⌈v′⌉
For the final two transition, show that, for all contextsE, parametersp∉ bp(E), opera-

tionsop that is eitherget p or set p, andx fresh forE, we have:

⌈E⌉[op(v;x.c)]❀∗
op(v;x.⌈E⌉[c])

And finally, calculate:

⌈dlet p← v in E[!p]⌉ =(with H
p
ST handle ⌈E⌉[get p(();x.return x)) ⌈v⌉

❀

∗(with H
p
ST handle get p(();x.⌈E⌉[return x])) ⌈v⌉

❀

+(fun s↦ ((fun x↦ with H
p
ST handle ⌈E⌉[return x]) s) s) ⌈v⌉

❀

+with H
p
ST handle ⌈E⌉[return x] ⌈v⌉

=⌈dlet p← v in E[return v]⌉
A similar calculation for assignment completes the proof. �

This translation, while being straightforward, also preserves the type system. Fig. 8
presents the types for the calculus. The only notable feature is that, like Kiselyovet al., we
assume a global signature assigning to each parameter a type. As the signature is global,
these (monomorphic) types do not contain any type variables.

Fig. 9 presents the kind and (Hindley-Milner polymorphic) type system for the calcu-
lus. The kind system ensures well-kinded signatures assigntypes without type variables.

Typing judgementsΘ;Ξ;Γ ⊢
dyn
Σ c ∶ A refer to the fixed, ambient, well-kinded parameter

signatureΣ. The typing rules specific to dynamically scoped state (shaded) ensure that we
may only dereference, assign to, and rebind a parameter in accordance with the ambient
signature. The assignment rule also highlights our decision to ascribe the unit type to
assignment, in a minor deviation from Kiselyovet al.. The (GEN) rule is now completely

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

18 O. Kammar and M. Pretnar

Types

A,B ∶∶= value type

α type variable

∣ bool boolean type

∣ unit unit type

∣ A→ B function type

∀α⃗.A scheme

Σ ∶∶= {p1 ∶ A1, . . . , pn ∶ An} parameter signature

Θ ∶∶= {α1, . . . ,αn} type variable environment

Γ ∶∶= ∅ ∣ Γ,x ∶ A monomorphic environment

Ξ ∶∶= ∅ ∣ Ξ,x ∶ ∀α⃗ .A polymorphic environment

Fig. 8. polymorphic types for dynamically scoped state

unrestricted, ensured by the assumption that the type signature does not involve type vari-
ables.

Fig. 10 extends the translation to types. The parameter signatureΣ translates into an
effect signature containing the distinct pair of effects corresponding to this parameter,
namelyget p andset p, with the appropriate type. Function types may cause any effect
in this translated signature⌈Σ⌉. This translation is therefore not-well-defined: ifΣ contains
any function types, then⌈Σ⌉ refers to⌈A→ B⌉, which refers to⌈Σ⌉ again.

There are at least three ways around this issue. The simplestsolution, presented in the
top half of Fig. 10 is to restrictΣ to groundtypes, i.e., prohibit storing functions.

A less restrictive solution is to use the coarser type systemfor effect handlers that does
not track effect annotations at all, and define⌊A→ B⌋ ∶= ⌊A⌋→ ⌊B⌋, as in the bottom half
of Fig. 10. This solution works well, as the effectsget p andput p maintain their type.

A more sophisticated potential solution is to use equi-recursive effect signatures. At this
point in time, such a type-and-effect system has not been developed, but we do not foresee
any serious obstacles in developing it: its denotational semantics would involve a recursive
domain equation in the same spirit as in Bauer & Pretnar (2014).

The fact that higher-order parameter types merit domain-theoretic semantics is not sur-
prising, as such parameters allow non-terminating programs. We say that a typeA is

inhabitedif there exists a closed value⊢
dyn
Σ v ∶ A.

Proposition. If Σ contains a higher-order type parameter(p ∶ A → B) ∈ Σ for some
inhabited type A, then there is a term c satisfying:

c
dyn
⟿

+ c

Proof
Let⊢

dyn
Σ v ∶ A be an inhabitant ofA, and take:

c ∶= dletp← (fun a↦ (!p)a) in
(!p)v

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

No value restriction is needed for algebraic effects and handlers 19

Well-formed types, parameter signatures, and schemes:

α ∈ Θ

Θ ⊢
dyn α Θ ⊢

dyn
bool Θ ⊢

dyn
unit

Θ ⊢
dyn A Θ ⊢

dyn C

Θ ⊢
dyn A→C

[⊢dyn Ai]1≤i≤n

Θ ⊢
dyn {p1 ∶ A1, . . . , pn ∶ An}

Θ, α⃗ ⊢
dyn A

Θ ⊢
dyn

∀α⃗.A

Well-formed polymorphic and monomorphic environments:

[Θ ⊢
dyn

∀α⃗ .A](x∶∀α⃗.A)∈Ξ

Θ ⊢
dyn Ξ

[Θ ⊢
dyn A](x∶A)∈Γ

Θ ⊢
dyn Γ

Value judgementsΘ;Ξ;Γ ⊢
dyn
Σ v ∶ A , assumingΘ ⊢

dyn Ξ,Γ,A,Σ:

(x ∶ A) ∈ Γ

Θ;Ξ;Γ ⊢
dyn
Σ x ∶ A

(x ∶ ∀α⃗.B) ∈ Ξ [Θ ⊢
dyn Ai]1≤i≤∣α⃗∣

Θ;Ξ;Γ ⊢
dyn
Σ x ∶ B[Ai/αi]1≤i≤∣α⃗∣ Θ;Ξ;Γ ⊢

dyn
Σ true ∶ bool

Θ;Ξ;Γ ⊢
dyn
Σ false ∶ bool Θ;Ξ;Γ ⊢

dyn
Σ () ∶ unit

Θ;Ξ;Γ,x ∶ A⊢
dyn
Σ c ∶ B

Θ;Ξ;Γ ⊢
dyn
Σ fun x↦ c ∶ A→ B

Computation judgementsΘ;Ξ;Γ ⊢
dyn
Σ c ∶ A , assumingΘ ⊢

dyn
Σ Ξ,Γ,A,Σ:

Θ;Ξ;Γ ⊢
dyn
Σ v ∶ A

Θ;Ξ;Γ ⊢
dyn
Σ return v ∶ A

Θ;Ξ;Γ ⊢
dyn
Σ c1 ∶ (∀α⃗.A) Θ;Ξ,x ∶ ∀α⃗ .A;Γ ⊢

dyn
Σ c2 ∶ B

Θ;Ξ;Γ ⊢
dyn
Σ do x← c1 in c2 ∶ B

Θ;Ξ;Γ ⊢
dyn
Σ v ∶ bool Θ;Ξ;Γ ⊢

dyn
Σ c1 ∶C Θ;Ξ;Γ ⊢

dyn
Σ c2 ∶C

Θ;Ξ;Γ ⊢
dyn
Σ if v then c1 else c2 ∶C

Θ;Ξ;Γ ⊢
dyn
Σ v1 ∶ A→ B Θ;Ξ;Γ ⊢

dyn
Σ v2 ∶ A

Θ;Ξ;Γ ⊢
dyn
Σ v1v2 ∶ B

(p ∶ A) ∈ Σ

Θ;Ξ;Γ ⊢
dyn
Σ !p ∶ A

(p ∶ A) ∈ Σ Θ;Ξ;Γ ⊢
dyn
Σ v ∶ A

Θ;Ξ;Γ ⊢
dyn
Σ p ∶= v ∶ unit

(p ∶ A) ∈ Σ Θ;Ξ;Γ ⊢
dyn
Σ v ∶ A Θ;Ξ;Γ ⊢

dyn
Σ c ∶ B

Θ;Ξ;Γ ⊢
dyn
Σ dlet p← v in c ∶ B

Scheme judgementΘ;Ξ;Γ ⊢
dyn
Σ c ∶ (∀α⃗.A) , assumingΘ ⊢

dyn
Σ Ξ,Γ,(∀α⃗ .A),Σ:

Θ, α⃗ ;Ξ;Γ ⊢
dyn
Σ c ∶ A

Θ;Ξ;Γ ⊢
dyn
Σ c ∶ (∀α⃗.A)

(GEN)

Fig. 9. a polymorphic type system for dynamically scoped state

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

20 O. Kammar and M. Pretnar

Type-level translation with effect annotations

⌈α⌉ ∶= α ⌈bool⌉ ∶= bool ⌈A→ B⌉ ∶= ⌈A⌉→ ⌈B⌉ !⌈Σ⌉ ⌈∀α⃗.A⌉ ∶= ∀α⃗.⌈A⌉

⌈Θ⌉ ∶= Θ ⌈Γ⌉ ∶= {x ∶ ⌈A⌉ ∣ (x ∶ A) ∈ Γ} ⌈Ξ⌉ ∶= {x ∶ ∀α⃗.⌈A⌉ ∣ (x ∶ ∀α⃗.A) ∈ Γ}

⌈Σ⌉ ∶= {get p ∶ unit→ ⌈A⌉,set p ∶ ⌈A⌉→ unit ∣ (p ∶ A) ∈ Σ}
providedΣ is ground.

Type-level translation without effect annotations

⌊α⌋ ∶= α ⌊bool⌋ ∶= bool ⌊A→ B⌋ ∶= ⌊A⌋→ ⌊B⌋ ⌊∀α⃗ .A⌋ ∶= ∀α⃗ .⌊A⌋ ⌊Θ⌋ ∶= Θ

⌊Γ⌋ ∶= {x ∶ ⌊A⌋ ∣ (x ∶ A) ∈ Γ} ⌊Ξ⌋ ∶= {x ∶ ∀α⃗.⌊A⌋ ∣ (x ∶ ∀α⃗ .A) ∈ Γ}
for the ambient effect signature:

⌊Σ⌋ ∶= {get p ∶ unit→ ⌊A⌋,set p ∶ ⌊A⌋→ unit ∣ (p ∶ A) ∈ Σ}

Fig. 10. handlers types system expressing dynamically scoped state

Then:

c
dyn
⟿

dletp← (fun a↦ (!p)a) in
(fun a↦ (!p)a)v

dyn
⟿

+ dletp← (fun a↦ (!p)a) in
(!p)v

= c

as required. �

Moreover, every parameter(p ∶ A→ B) lets us define a form of a fixed-point combinator
Y ∶ ((A→ B)→ A→ B)→ (A→ B) by a variant of Landin’s knot, provided the functions
passed to this combinator and their arguments do not involvep.

The two proposed translations are correct:

Theorem (Type Preservation). For everyΘ;Ξ;Γ ⊢
dyn
Σ c ∶ A and Θ;Ξ;Γ ⊢

dyn
Σ v ∶ A, we

have:

• If Σ is ground, then⌈Θ⌉;⌈Ξ⌉;⌈Γ⌉⊢ ⌈c⌉ ∶ ⌈A⌉ ! ⌈Σ⌉ and⌈Θ⌉;⌈Ξ⌉;⌈Γ⌉⊢ ⌈v⌉ ∶ ⌈A⌉.
• ⌊Θ⌋;⌊Ξ⌋;⌊Γ⌋⊢ ⌈c⌉ ∶ ⌊A⌋ and⌊Θ⌋;⌊Ξ⌋;⌊Γ⌋⊢ ⌈v⌉ ∶ ⌊A⌋.

Proof
For the first part only, first show that ifA is ground, then⌈A⌉ = A, and so ifΣ is a well-
kinded ground signature, then⌈Σ⌉ is well-defined and well-kinded.

Then the proofs of both parts follow the same lines. By mutualinduction on the kinding
judgements, show that well-kinded types, schemes, and contexts translate into well-kinded
types, schemes, and contexts, respectively. Then show thatboth translations respect type-
level substitution:

⌈B[Ai/αi]1≤i≤n⌉ = ⌈B⌉[⌈Ai⌉/αi]1≤i≤n

and similarly for the coarse translation.
Finally, by mutual induction on typing judgements for values and computations, and on

scheming judgements, show the hypothesis. We mention only the interesting cases.

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

No value restriction is needed for algebraic effects and handlers 21

For dereferencing a cell(p ∶ A) ∈ Σ, by the translation’s definition,

(get p ∶ unit→ ⌈A⌉) ∈ ⌈Σ⌉
Use this fact to derive that⌈!p⌉ has the type⌈A⌉. Use a similar argument for assignment.

Next, show that for all(p ∶ A) ∈ Σ:

⌈Θ⌉;⌈Ξ⌉;⌈Γ⌉⊢ H
p
ST ∶ (B!⌈Σ⌉)⇒ ((⌈A⌉→ (B!⌈Σ⌉)) !⌈Σ⌉)

and use this fact, together with the induction hypotheses, to give a valid derivation for
⌈dlet p← v in c⌉. �

In summary, the handlerHST expresses dynamically scoped state, in both terms and
types.

5 Conclusion and further work

Unexpectedly, Hindley-Milner polymorphism integrates smoothly and robustly with ex-
isting type and effect systems for algebraic effects and handlers. However, combining
reference cell allocation with polymorphism remains an open problem, as does incorpo-
rating dynamic generation of instances as used inEff . Consequently,Eff still uses the
value restriction. Our contribution is to identify a largerclass of languages in which effects
and polymorphism coexist naturally.

For type-system cognoscenti, these results may not come as acomplete surprise. First,
using effect systems to ensure soundness has been proposed (Leroy & Weis, 1991) before
Wright’s value restriction. Second, even if we consider thenon-effect-annotated safety
result, we do not believe the type system can encode the problematic effects: local ref-
erence cells and continuations. Nonetheless, previous solutions require aspecialised, and
sometimes subtle, type system. In the algebraic setting, adding polymorphism to existing
systems is strikingly natural.

This result arose as part of a broader (denotational) semantic investigation of effects and
polymorphism, which does not yet account for reference cells. We hope that an algebraic
understanding of locality (Staton, 2013; Fiore & Staton, 2014) and scope and polymorphic
arities (Wuet al., 2014) will explain the interaction between reference cells and poly-
morphism. The robustness of type safety leads us to believe standard extensions, such
as type inference, principal types, and impredicative and row polymorphism will not pose
problems. The latter is particularly interesting, as it canserve as an effect system with
effect variables (Lindley & Cheney, 2012; Leijen, 2014; Pretnar, 2014).

We want to investigate the expressive difference between effect handlers and delimited
control, and polymorphism forms another comparison axis. We defer a thorough compari-
son, as there are several notions of delimited control (shift, shift0, with or without answer-
type modification) and several proposals for polymorphic type systems (Asai & Kameyama,
2007; Gunteret al., 1995; Kiselyovet al., 2006), and as delimited control is subtle. That
said, there are two immediate points of comparison between delimited control and effect
handlers.

First, Kiselyovet al.’s translation of dynamic scope into delimited control requires some
complication in order to preserve the type. This complication is caused by their effect
system for delimited control tracking, the return type of the computation enclosed by the

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

22 O. Kammar and M. Pretnar

nearest rebinding. When an access to a dynamically scoped cell escapes the current binding
in scope the type expected in the nearest rebinding may change, resulting in a type error
of their translated program. The example on page 14 demonstrates such a shift from a
function type to an integer type. In contrast, our effect system only tracks the local type for
each effect operation, and the translation from dynamically scoped state to effect handlers
extends smoothly to types.

Second, these systems include a form of a purity restrictionor value restriction. As a
consequence, they cannot type purely functional computations like the final example in the
Evaluation Subsection 4.1. In contrast, the type system proposed here allows unrestricted
Hindley-Milner polymorphism in both purely functional andeffectful code.

Acknowledgments Omitted for peer review.

Bibliography

Asai, Kenichi, & Kameyama, Yukiyoshi. (2007).Programming languages and systems:
5th asian symposium, aplas 2007, singapore, november 29-december 1, 2007.
proceedings. Berlin, Heidelberg: Springer Berlin Heidelberg. Chap. Polymorphic
Delimited Continuations, pages 239–254.

Bauer, Andrej, & Pretnar, Matija. (2014). An effect system for algebraic effects and
handlers.Logical methods in computer science, 10(4).

Bauer, Andrej, & Pretnar, Matija. (2015). Programming withalgebraic effects and
handlers.J. log. algebr. meth. program., 84(1), 108–123.

Danvy, Olivier. (2006). An analytical approach to programs as data objects. Dsc
dissertation, Department of Computer Science, Universityof Aarhus.

Felleisen, Matthias. (1990). Esop ’90: 3rd european symposium on programming
copenhagen, denmark, may 15–18, 1990 proceedings. Berlin, Heidelberg: Springer
Berlin Heidelberg. Chap. On the expressive power of programming languages, pages
134–151.

Fiore, Marcelo, & Staton, Sam. (2014). Substitution, jumps, and algebraic effects.Pages
41:1–41:10 of: Proceedings of the Joint Meeting of the Twenty-Third EACSL Annual
Conference on Computer Science Logic (CSL) and the Twenty-Ninth Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS). CSL-LICS ’14. New York, NY, USA:
ACM.

Garrigue, Jacques. (2004). Relaxing the value restriction. Pages 196–213 of:Kameyama,
Yukiyoshi, & Stuckey, Peter J. (eds),Functional and Logic Programming. Lecture Notes
in Computer Science, vol. 2998. Springer Berlin Heidelberg.

Gunter, Carl A., Rémy, Didier, & Riecke, Jon G. 1995 (June).A generalization of
exceptions and control in ML.Proc. ACM Conf. on Functional Programming and
Computer Architecture.

Harper, Robert, & Lillibridge, Mark. (1993). Polymorphic type assignment and CPS
conversion.Lisp and symbolic computation, 6(3-4), 361–380.

Kammar, Ohad, Lindley, Sam, & Oury, Nicolas. (2013). Handlers in action.Sigplan not.,
48(9), 145–158.

Kiselyov, Oleg, Shan, Chung-chieh, & Sabry, Amr. (2006). Delimited dynamic binding.
Sigplan not., 41(9), 26–37.

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

* 23

Kiselyov, Oleg, Sabry, Amr, & Swords, Cameron. (2013). Extensible effects: An
alternative to monad transformers.Sigplan not., 48(12), 59–70.

Landin, P. J. (1964). The mechanical evaluation of expressions. The computer journal,
6(4), 308–320.

Leijen, Daan. (2014). Koka: Programming with row polymorphic effect types. Pages
100–126 of:Levy, Paul, & Krishnaswami, Neel (eds),Proceedings 5th Workshop on
Mathematically Structured Functional Programming, MSFP 2014, Grenoble, France,
12 April 2014.EPTCS, vol. 153.

Leroy, Xavier. (1992).Typage polymorphe d’un langage algorithmique. Phd thesis (in
french), Université Paris 7.

Leroy, Xavier. (1993). Polymorphism by name for referencesand continuations.Pages
220–231 of: 20th symposium Principles of Programming Languages. ACM Press.

Leroy, Xavier, & Weis, Pierre. (1991). Polymorphic type inference and assignment.Pages
291–302 of: Proceedings of the 18th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages. POPL ’91. New York, NY, USA: ACM.

Levy, Paul Blain, Power, John, & Thielecke, Hayo. (2003). Modelling environments in
call-by-value programming languages.Inf. comput., 185(2), 182–210.

Lindley, Sam, & Cheney, James. (2012). Row-based effect types for database integration.
Pages 91–102 of: Proceedings of the 8th ACM SIGPLAN Workshopon Types in
Language Design and Implementation. TLDI ’12. New York, NY, USA: ACM.

Lucassen, John M., & Gifford, David K. (1988). Polymorphic effect systems.Pages 47–
57 of: Proceedings of the 15th ACM SIGPLAN-SIGACT Symposiumon Principles of
Programming Languages. POPL ’88. New York, NY, USA: ACM.

Milner, Robin. (1978). A theory of type polymorphism in programming. Journal of
computer and system sciences, 17(3), 348 – 375.

Moreau, Luc. (1998). A syntactic theory of dynamic binding.Higher-order and symbolic
computation, 11(3), 233–279.

Pfenning, Frank, & Schürmann, Carsten. (1999). System description: Twelf — a meta-
logical framework for deductive systems.Pages 202–206 of: Automated Deduction —
CADE-16. Lecture Notes in Computer Science, vol. 1632. Springer Berlin Heidelberg.

Pierce, Benjamin C. (2002).Types and programming languages. Cambridge, MA, USA:
MIT Press.

Plotkin, Gordon D., & Power, John. (2003). Algebraic operations and generic effects.
Applied categorical structures, 11(1), 69–94.

Plotkin, Gordon D., & Pretnar, Matija. (2013). Handling algebraic effects.Logical methods
in computer science, 9(4).

Pretnar, Matija. (2014). Inferring algebraic effects.Logical methods in computer science,
10(3).

Pretnar, Matija. (2015). An introduction to algebraic effects and handlers. invited tutorial
paper.Electr. notes theor. comput. sci., 319, 19–35.

Rémy, Didier. (2015). Type systems. Lecture notes. Parisian Master of Research in
Computer Science.

Staton, Sam. 2013 (June). Instances of computational effects: An algebraic perspective.
Pages 519–519 of: Logic in Computer Science (LICS), 2013 28th Annual IEEE/ACM
Symposium on.

ZU064-05-FPR polymorphic-eff 24 May 2016 1:25

24 O. Kammar and M. Pretnar

Wells, J.B. (1999). Typability and type checking in system fare equivalent and
undecidable.Annals of pure and applied logic, 98(13), 111 – 156.

Wright, Andrew K. (1995). Simple imperative polymorphism.Lisp and symbolic
computation, 8(4), 343–355.

Wu, Nicolas, Schrijvers, Tom, & Hinze, Ralf. (2014). Effecthandlers in scope.Pages 1–12
of: Proceedings of the 2014 ACM SIGPLAN Symposium on Haskell. Haskell ’14. New
York, NY, USA: ACM.

	1 Introduction
	2 Handlers of algebraic effects
	2.1 Language
	2.2 State handlers
	2.3 Operational semantics

	3 Type system
	4 Expressivity
	4.1 Evaluation
	4.2 Reference cells
	4.3 Dynamically scoped state

	5 Conclusion and further work

