
ar
X

iv
:1

60
3.

01
75

8v
3

 [
cs

.L
O

]
 2

 J
un

 2
01

6

NORMAL-ORDER REDUCTION GRAMMARS

MACIEJ BENDKOWSKI

Abstract. We present an algorithm which, for given n, generates an unambiguous regular
tree grammar defining the set of combinatory logic terms, over the set {S,K} of primitive com-
binators, requiring exactly n normal-order reduction steps to normalize. As a consequence of
Curry and Feys’s standardization theorem, our reduction grammars form a complete syntactic
characterization of normalizing combinatory logic terms. Using them, we provide a recursive
method of constructing ordinary generating functions counting the number of SK-combinators
reducing in n normal-order reduction steps. Finally, we investigate the size of generated gram-
mars, giving a primitive recursive upper bound.

1. Introduction

Since the time of the pioneering works of Moses Schönfinkel [16] and Haskell Curry [8], com-
binatory logic is known as a powerful, yet extremely simple in structure, formalism expressing
the notion of computability. With the dawn of functional programming languages in the early
1970s, combinatory logic, with its standard normal-order reduction scheme [9], is used as a
practical implementation of lazy semantics in languages such as SASL [17] or its successor Mi-
randa [18]. Lack of bound variables in the language resolves the intrinsic problem of substitution
in λ-calculus, making the reduction relation a simple computational step and so, in consequence,
the leading workhorse in implementing call-by-need reduction schemes.

Surprisingly, little is known about the combinatorial properties of normal-order reduction and,
in particular, its behaviour in the ‘typical’ case of large random combinators. With the growing
popularity of random software testing (see, e.g. [15]) ‘typical’ properties of random λ-terms and
combinators became of immense practical importance. In this approach to software verifica-
tion, large random terms are generated and used to check the programmer-declared function
invariants, making it crucial to understand and exploit the semantic properties of so generated
terms.

State-of-the-art research in this field includes counting and generating λ-terms (see e.g.

[13] [14] [12]), their restricted classes [6], investigating their asymptotic properties [10] [4] as
well as the asymptotic properties of combinatory logic [5].

Main tools used in this line of research include formal power series and generating functions.
Interested in a particular counting sequence (an)n∈N corresponding to a set of terms A, we
construct a suitable generating function, which treated as a complex function in one variable z
yields a Taylor series expansion around z = 0 with coefficients forming our sequence (an)n∈N.
Methods of analytic combinatorics [11] allow us to derive, sometimes surprisingly accurate,
asymptotic approximations of the growth rate of (an)n∈N and, in consequence, use them to
study the asymptotic behaviour of A.

Finding appropriate generating functions plays therefore an important role in the process of
investigating properties of ‘typical’ terms. In [5], authors investigated the asymptotic density
of weakly normalizing terms in the set of all combinators, showing that a ‘typical’ combinator
cannot have a trivial 0 – 1 asymptotic probability of normalization. The result was obtained
by constructing large classes of terms with and without the normalization property. Though
sufficient for the purpose of showing the non-trivial behaviour of normalization, their classes
reveal the combinatorial structure of just a small asymptotic portion of normalizing terms.

This work was partially supported within the grant 2013/11/B/ST6/00975 founded by the Polish National
Science Center.

1

http://arxiv.org/abs/1603.01758v3

In this paper we give a complete combinatorial characterization of normalizing combinatory
logic terms over the set {S,K} of primitive combinators. We construct a recursive family
{Rn}n∈N of regular tree grammars defining combinators reducing in exactly n normal-order
reductions. By Curry and Feys’s standardization theorem [9], normal-order evaluation of nor-
malizing combinators leads to their normal forms, hence our normal-order reduction grammars

form a complete partition of normalizing combinators. Our approach is algorithmic in nature
and provides fully automated methods for constructing {Rn}n∈N as well as their corresponding
ordinary generating functions.

The paper is organized as follows. In Sections 1.1, and 1.2 we give preliminary definitions
and notational conventions. In Section 1.3 we explain our pseudo-code notation and related
implementation. In Section 2 we present a high-level overview on the algorithm. In Section 3
we analyse the algorithm giving proofs of soundness 3.2, completeness 3.3 and unambiguity 3.4.
In Section 3.5 we give a recursive construction of ordinary generating functions corresponding
to {Rn}n∈N. In Section 3.6 we discuss some consequences and applications of normal-order
reduction grammars. Finally, in Section 3.7 we investigate the size of the generated grammars.

1.1. Combinatory Logic. We consider the set of terms over primitive combinators S and
K. In other words, the set C of combinatory logic terms defined as C := S | K | C C. We
follow standard notational conventions (see e.g. [2]) — we omit outermost parentheses and drop
parentheses from left-associated terms, e.g. instead of ((SK)(KK)) we write SK(KK). We
use →w to denote the normal-order reduction relation (reduce the leftmost outermost redex) to
which we usually refer briefly as the reduction relation. We use lower case letters x, y, z, . . . to
denote combinatory logic terms. For an introduction to combinatory logic we refer the reader
to [2], [9].

1.2. Regular tree grammars. In order to characterize terms normalizing in n steps we use
regular tree grammars (see e.g. [7]), a generalization of regular word grammars. A regular tree

grammar G = (S,N,F , P) consists of an axiom S, a set N of non-terminal symbols such that
S ∈ N , a set of terminal symbols F with corresponding arities and a finite set of production
rules P of the form α → β where α ∈ N is a non-terminal and β ∈ TF (N) is a term in the
corresponding term algebra TF (N), i.e. the set of directed trees built upon terminals F according
to their associated arities. To build terms of grammar G, we start with the axiom S and use
the corresponding derivation relation, denoted by →, as defined through the set of production
rules P .

Example 1. Consider the following regular tree grammar defined as B = (S,N,F , P) where
S := B, N := {B}, F := {•, ◦(·, ·)}, and P consists of the two following rules:

{

B→ ◦(B,B)
B→ •

Note that B defines the set of terms isomorphic to plane binary trees where leafs correspond to
the nullary constant • and inner nodes correspond to the binary terminal ◦(·, ·).

In our endeavour, we are going to recursively construct regular tree grammars generating
sets of combinatory logic terms. We set a priori their axioms and both terminal and non-
terminal symbols, leaving the algorithm to define the remaining production rules. And so, the
nth grammar Rn will have:

(i) an axiom S = Rn,
(ii) a set F of terminal symbols consisting of two nullary constants S, K and a single binary

application operator,
(iii) a set of non-terminal symbols N = {C} ∪ {R0, . . . , Rn} where C denotes the axiom of the

set of all combinatory logic terms, as defined in the previous section.

In other words, the grammar Rn defining terms normalizing in n steps, will reference all previous
grammars R0, . . . , Rn−1 and the set of all combinatory logic terms C.

2

Throughout the paper, we adopt the following common definitions and notational conventions
regarding trees. We use lower case letters α, β, γ, δ, . . . to denote trees, i.e. elements of the term
algebra TF (N) whereN = {C}∪{R0, . . . , Rn} for some n. Whenever we want to use a combinator
without specifying its type, we use capital letters X,Y, We define the size of α as the number
of applications in α. We say that α is normal if either α is of size 0, or α = Xα1 . . . αm, for some
m ≥ 1, where all α1, . . . , αm are normal. In the latter case we say moreover that α is complex.
Since we are going to work exclusively with normal trees, we assume that all trees are henceforth
normal. We say that a complex α is of length m if α is in form of Xα1 . . . αm. Otherwise, if α
is not complex, we say that it is of length 0. The degree of α, denoted as ρ(α), is the minimum
natural number n such that α does not contain references to any Ri for i ≥ n. In particular, if α
does not reference any reduction grammar, its degree is equal to 0. We use LG(α) to denote the
language of α in grammar G. Since Rn does not reference grammars of greater index, we have
LRρ(α)−1

(α) = LRn
(α) for arbitrary n ≥ ρ(α). And so, for convenience, we use L(α) to denote

the language of α in grammar Rρ(α)−1 if ρ(α) > 0. Otherwise, if ρ(α) = 0 we assume that L(α)
denotes the language of α in grammar C. Finally, we say that two normal trees are similar if
both start with the same combinator X and are of equal length.

Example 2. Consider the following trees:

(i) α = S(KR1)C, and
(ii) β = K(CS)R0.

Note that both α and β are of size 3 and of equal length 2, although they are not similar since
both start with different combinators. Moreover, only α is normal as β has a subtree CS, which
is of positive size, but does not start with a combinator. Since α contains a reference to R1 and
no other reduction grammar, its degree is equal to 2, whereas the degree of β is equal to 1.

A crucial observation, which we are going to exploit in our construction, is the fact that
normal trees preserve length of generated terms. In other words, if α is of length m ≥ 1, then
any term x ∈ L(α) is of length m as well, i.e. x = Xx1 . . . xm.

1.3. Pseudo-codes and implementation. We state our algorithm using functional pseudo-
codes formalising key design subroutines. The adopted syntax echoes basic Haskell notation and
build-in primitives, though we use certain abbreviations making the overall presentation more
comprehensible. And so, we use the following data structure representing normal trees.

-- | Normal trees.

data Tree = S | K | C | R Int

| App Tree Tree

In our subroutines, we use the following ‘syntactic sugar’ abbreviating the structure of normal
trees.

-- | Syntactic sugar.

X a_1 ... a_m := App X (App a_1 (... App a_{m-1} a_m) ...)

Moreover, we allow the use of this abbreviated notation in pattern matching, meaning that
by writing (X a_1 ... a_m) we expect a complex tree of length m for some m ∈ N. If mul-
tiple arguments are supposed to share the same length, we use the same natural number m,
e.g. (X a_1 ... a_m) and (X b_1 ... b_m). A working Haskell implementation of our algo-
rithm is available at [3].

2. Algorithm

The key idea used in the construction of reduction grammars is to generate new productions
in Rn+1 based on the productions in Rn. Necessarily, any term normalizing in n + 1 steps
reduces directly to a term normalizing in n steps, hence their syntactic structure should be

3

closely related. As the base of our inductive construction, we use the set of normal forms R0

given by

R0 := S | K | SR0 | KR0 | SR0R0.

Clearly, primitive combinators S and K are in normal form. If we take a normal form x, then
both S x and K x are again normal since we did not create any new redex. For the same reason,
any term Sx1x2 where x1 and x2 are normal forms, is itself in normal form. And so, with the
above grammar we have captured exactly all redex-free terms.

Let us consider productions of R0. Note that from both the cases of SR0 and KR0 we can
abstract a more general rule — if x reduces in n steps, then Sx and Kx reduce in n steps as
well, since after reducing x we have no additional redexes left to consider. It follows that any Rn
should contain productions SRn and KRn. Similarly, from the case of SR0R0 we can abstract
a more general rule — if Sx1x2 reduces in n steps, then both x1 and x2 must reduce in total of
n steps. The normal-order reduction of Sx1x2 proceeds to normalize x1 and x2 sequentially. As
there is no head redex, after n steps we obtain a term in normal form. And so, Rn should also
contain productions SRiRn−i for i ∈ {0, . . . , n}.

As we have noticed, all the above productions do not contain head redexes and hence do
not increase the total amount of required reduction steps to normalize. Formalizing the above
observations, we say that α is short if either α = Xα1 or α = Sα1α2. Otherwise, α is said to be
long. Hence, we can set a priori the short productions of Rn for n ≥ 1 and continue to construct
the remaining long productions. Naturally, as we consider terms over two primitive combinators
S and K, we distinguish two types of long productions, i.e. S- and K-Expansions.

2.1. K-Expansions. Let us consider a production α = Xα1 . . . αm where m ≥ 0. The set
K-Expansions(α) is defined as

{

K(Xα1 . . . αk)Cαk+1 . . . αm | k ∈ {0, . . . ,m− 1}
}

.

Proposition 3. Let x ∈ L(K(Xα1 . . . αk)Cαk+1 . . . αm). If x→w y, then y ∈ L(Xα1 . . . αm).

Proof. Let x = K(Xx1 . . . xk)zxk+1 . . . xm. Consider its direct reduct y = Xx1 . . . xkxk+1 . . . xm.
Clearly, xi ∈ L(αi) for i ∈ {1, . . . ,m} which finishes the proof. �

In other words, the set K-Expansions(α) has the property that any K-Expansion of α
generates terms that reduce in one step to terms generated by α. If we compute the sets
K-Expansions(α) for all productions α ∈ Rn, we have almost constructed all of the long
K-productions in Rn+1. What remains is to include the production KRnC as any term x ∈
L(KRnC) reduces directly to y ∈ L(α) for some production α ∈ Rn.

We use the following subroutine computing the set of K-Expansions of a given production.

-- | Returns K-Expansions of the given production.

kExpansions :: Tree -> [Tree]

kExpansions p = case p of

(K a_1 ... a_m) -> kExpansions ’ K [a_1 ,...,a_m]

(S a_1 ... a_m) -> kExpansions ’ S [a_1 ,...,a_m]

where

kExpansions ’ _ [] = []

kExpansions ’ h [x_1 ,...,x_k] = K h C x_1 ... x_k

: kExpansions ’ (App h x_1) [x_2 ,...,x_k]

2.2. S-Expansions. Let us consider a production α = Xα1 . . . αm where m ≥ 0. We would like
to define the set S-Expansions(α) similarly to K-Expansions(α), i.e. in such a way that any
term generated by an S-Expansion of α reduces in a single step to some y ∈ L(α). Unfortu-
nately, defining and computing such a set is significantly more complex than the corresponding
K-Expansions(α).

4

Let q = Xx1 . . . xkz(yz). Suppose that q ∈ L(α) for some production α ∈ Rn. Ev-
idently, S(Xx1 . . . xk)yz →w q and so we would like to guarantee that q ∈ L(β) for some
β ∈ S-Expansions(α). Assume that α = Xα1 . . . αkγδ where z ∈ L(γ) and yz ∈ L(δ). Un-
fortunately, in order to guarantee that we capture all terms reducing to α via an S-redex and
nothing more, we cannot use both γ and δ directly. We require an additional ‘rewriting’ opera-
tion that would extract the important sublanguages of γ and δ so that we can operate on them,
instead of γ and δ.

Hence, let us consider the following rewriting relation ⊲, extending the standard derivation
relation:

α ⊲ β ⇔ α→ β ∨ (α = C ∧ ∃n∈N β = Rn) .

We use D to denote the transitive-reflexive closure of ⊲. The important property of D is the
fact that if α D β, then L(β) ⊆ L(α). To denote the fact that α does not rewrite to β and vice
versa, we use the symbol α ‖ β. In such case we say that α and β are non-rewritable. Otherwise,
if one of them rewrites to the other, meaning that α and β are rewritable, we use the symbol
α ⊲⊳ β.

2.2.1. Mesh Set. In the endeavour of finding appropriate S-Expansions rewritings, we need to
find common meshes of given non-rewritable trees α ‖ β. In other words, a complete partition of
L(α)∩L(β) using all possible trees γ such that α, β D γ. For this purpose, we use the following
pseudo-code subroutines.

-- | Given X α1 . . . αm and X β1 . . . βm computes

-- the family {γ1, . . . , γm} of tree meshes.

mesh :: [Tree] -> [Tree] -> [[Tree]]

mesh (x : xs) (y : ys)

| x ‘rew ‘ y = [y] : mesh xs ys -- case when x D y

| y ‘rew ‘ x = [x] : mesh xs ys -- case when y D x

| otherwise = meshSet x y : mesh xs ys -- case when x ‖ y

mesh [] [] = []

The function Mesh, when given two similar productions α = Xα1 . . . αm and β = Xβ1 . . . βm,
constructs a family {γi}mi=1 where each γi depends on the comparison of corresponding argu-
ments. In the case when x rewrites to y (denoted as x ‘rew‘ y in the pseudo-code) the singleton
{y} is constructed. Similarly, when y D x, the singleton {x} is constructed. Otherwise, when x
and y are both non-rewritable, γi is computed using the MeshSet subroutine.

-- | Returns the mesh set of given trees.

meshSet :: Tree -> Tree -> [Tree]

meshSet (X a_1 ... a_m) (X b_1 ... b_m) =

cartesian X [mesh a_i b_i | i <- [1..m]]

meshSet (R k) b @ (X b_1 ... b_m) =

nub $ concatMap (\p -> meshSet p b) $ productions (R k)

meshSet b @ (X b_1 ... b_m) (R k) =

nub $ concatMap (\p -> meshSet b p) $ productions (R k)

meshSet _ _ = []

When given two similar trees α = Xα1 . . . αm and β = Xβ1 . . . βm, MeshSet computes
meshes γ1, . . . , γm of corresponding arguments αi and βi using the subroutine Mesh. Next, ar-
gument meshes {γi}mi=1 are used to construct meshes for α and β, using the subroutine Carte-

sian which computes the Cartesian product {X}× γ1 × · · · × γm using term application. In the
case when one of MeshSet’s argument is a reduction grammar Rk and the other α is complex,
MeshSet computes recursively mesh sets of α and each production δ ∈ Rk, outputting their
set-theoretic union. In any other case, MeshSet returns the empty set.

5

Example 4. Let α = KCR0S and β = KS(SR0C)S. Consider MeshSet(α, β). Both α

and β are similar and complex, hence MeshSet proceeds directly to construct mesh sets of
corresponding arguments of α and β. Since C D S, we get γ1 = {S}. Then, as both R0 and SR0C
are non-rewritable, γ2 = MeshSet(R0, SR0C). It follows that MeshSet(R0, SR0C) is equal to
⋃

δ∈R0
MeshSet(δ, SR0C). Further inspection reveals that MeshSet(R0, SR0C) = {SR0R0}

and thus γ2 = {SR0R0}. Finally, γ3 = {S} as S rewrites trivially to itself. Since each γi is a
singleton, it follows that

MeshSet(α, β) = {KS(SR0R0)S}.
We leave the analysis of MeshSet until we fully define the construction of reduction grammars

{Rn}n∈N.

2.2.2. Rewriting Set. Consider again our previous example of q = Xx1 . . . xkz(yz) ∈ L(α) where
α = Xα1 . . . αkγδ such that both z ∈ L(γ) and yz ∈ L(δ). In order to capture terms reducing
to α via an S-redex, we need to find all pairs of trees η, ζ such that γ D ζ and δ D η ζ.
Since such pairs of trees follow exactly the structure of z(yz) we can use them to define the set
S-Expansions(α). And so, to find such rewriting pairs, we use the following RewritingSet

pseudo-code subroutine.

-- | Given α and β computes their rewriting set.

rewritingSet :: Tree -> Tree -> [Tree]

rewritingSet a S = []

rewritingSet a K = []

rewritingSet a C = [C a]

rewritingSet a (R k) =

nub $ concatMap (\p -> rewritingSet a p) $ productions (R k)

rewritingSet a (X b_1 ... b_m)

| a ‘rew ‘ b_m => [X b_1 ... b_m]

| b_m ‘rew ‘ a => [X b_1 ... b_{m-1} a]

| otherwise =>

cartesian (X b_1 ... b_{m-1}) [meshSet a b_m]

The outcome of RewritingSet(α, β) depends on β’s structure. If β is a primitive combinator
S or K, RewritingSet returns the empty set. If β = C, a singleton {Cα} is returned. When
β = Rk for some k ∈ N, RewritingSet computes recursively the rewriting sets of α and
γ ∈ Rk, outputting their set-theoretic union. Otherwise when β = Xβ1 . . . βm, RewritingSet

determines whether α ⊲⊳ βm. If α D βm, a singleton {Xβ1, . . . , βm} is returned. Conversely,
in the case of βm D α, RewritingSet returns {Xβ1, . . . , βm−1α}. Finally if α and βm are
non-rewritable, RewritingSet invokes the Cartesian subroutine computing the Cartesian
product of {Xβ1, . . . , βm−1} × MeshSet(α, βm) using term application, passing afterwards its
result as the computed rewriting set.

Example 5. Let us consider the rewriting set RewritingSet(S,R0). Since β = R0, we know
that RewritingSet(S,R0) =

⋃

γ∈R0
RewritingSet(S, γ). It follows therefore that in order

to compute RewritingSet(S,R0), we have to consider rewriting sets involving productions of
R0. Note that both productions S and K do not contribute new trees. It remains to consider
productions SR0, KR0 and SR0R0. Evidently, each of them is complex and has R0 as its final
argument. Hence, their corresponding rewriting sets are SS, KS and SR0S, respectively. And
so, we obtain that

RewritingSet(S,R0) = {SS,KS, SR0S}.
Similarly to the case of MeshSet, we postpone the analysis until we define the construction

of {Rn}n∈N.
Equipped with the notion of mesh and rewriting sets, we are ready to define the set of S-

Expansions. And so, let α = Xα1 . . . αm where m ≥ 0. The set S-Expansions(α) is defined
6

as
{

S(Xα1 . . . αk)ϕlϕrαk+3 . . . αm | k ∈ {0, . . . ,m− 2}
}

,

where (ϕlϕr) ∈ RewritingSet(αk+1, αk+2). We use the following subroutine computing the
set of S-Expansions for a given α.

-- | Returns S-Expansions of the given production.

sExpansions :: Tree -> [Tree]

sExpansions p = case p of

(K a_1 ... a_m) -> sExpansions ’ K [a_1 ,...,a_m]

(S a_1 ... a_m) -> sExpansions ’ S [a_1 ,...,a_m]

where

sExpansions ’ _ [] = []

sExpansions ’ _ [_] = []

sExpansions ’ h [x_1 ,x_2 ,...,x_k] =

map (\(App l r) -> S h l r x_3 ... x_m)

(rewritingSet x_1 x_2) ++

sExpansions ’ (App h x_1) [x_2 ,...,x_m]

Proposition 6. Let x ∈ L(S(Xα1 . . . αk)ϕlϕrαk+3 . . . αm). If x→w y, then
y ∈ L(Xα1 . . . αkϕr(ϕl ϕr)αk+3 . . . αm).

Proof. Let x = S(Xx1 . . . xk)wzxk+3 . . . xm. Let us consider its direct reduct y in form of
Xx1 . . . xkz(w z)xk+3 . . . xm. Clearly, xi ∈ L(αi) for i in proper range. Moreover, both w ∈ L(ϕl)
and z ∈ L(ϕr), which finishes the proof. �

2.3. Algorithm pseudo-code. With the complete and formal definitions of both S- and K-

Expansions we are ready to give the main algorithm Reduction Grammar, which for given
n ∈ N constructs the grammar Rn.

-- | Given n ∈ N constructs Rn.

reductionGrammar :: Integer -> [Tree]

reductionGrammar 0 = [S, K, S (R 0), K (R 0), S (R 0) (R 0)]

reductionGrammar n = [S (R n), K (R n)]

++ [S (R $ n-i) R_i | i <- [0..n]]

++ [K (R $ n-1) C]

++ concatMap kExpansions (reductionGrammar $ n-1)

++ concatMap sExpansions (reductionGrammar $ n-1)

Example 7. Let us consider α = SSSR0. Since α ∈ S-Expansions(SR0R0) we get α ∈ R1.
Note that S-Expansions(α) contains β1 = S(SS)SS and β2 = S(SS)KS. It follows that
β1, β2 ∈ R2.

3. Analysis

3.1. Tree potential. Most of our proofs in the following sections are using inductive reasoning
on the underlying tree structure. Unfortunately, in certain cases most natural candidates for
induction such as tree size fail due to self-referencing productions, i.e. productions of Rn which
explicitly use the non-terminal symbol Rn. In order to remedy such problems, we introduce the
notion of tree potential π(α), defined inductively as

7

π(S) = π(K) = π(C) = 0,

π(Xα1 . . . αm) = m+
m
∑

i=1

π(αi),

π(Rn) = 1 + max
γ∈Φ(Rn)

π(γ)

where Φ(Rn) denotes the set of productions of Rn which do not use the non-terminal symbol
Rn. Note that such a definition of potential is almost identical to the notion of tree size. The
potential of α is the sum of α’s size and the weighted sum of all non-terminal grammar symbols
occurring in α.

Immediately from the definition we get π(R0) = 1. Moreover, π(Rn+1) > π(Rn) for any
n ∈ N. Indeed, let α ∈ Rn be the witness of Rn’s potential. Clearly, (Kα C) ∈ Φ(Rn+1) and so
Rn+1 has necessarily greater potential. Moreover, π(α) > π(β) if β is a subtree of α. It follows
that the notion of tree potential is a good candidate for the intuitive tree complexity measure.

3.2. Soundness. In this section we are interested in the soundness of Reduction Grammar.
In particular, we prove that it is computable, terminates on all legal inputs and, for given
n, constructs a reduction grammar Rn generating only terms that require exactly n steps to
normalize.

Let us start with showing that the rewriting relation is decidable.

Proposition 8. It is decidable to check whether α D β.

Proof. Induction over n = π(α)+π(β). If α = X, then the only tree α rewrites to is X. On the
other hand, if α = C, then α rewrites to any β. And so, it is decidable to check whether α D β

in case n = 0. Now, let us assume that n > 0. We have two remaining cases to consider.

(i) If α = Xα1 . . . αm, then α D β if and only if β = Xβ1 . . . βm and αi D βi for all i ∈
{1, . . . ,m}. Since the total potential of π(αi)+π(βi) is less than n, we can use the induction
hypothesis to decide whether all arguments of α rewrite to the respective arguments of β.
It follows that we can decide whether α D β.

(ii) If α = Rk, then clearly α D β if and only if β = Rk or there exists a production γ ∈ Rk
such that γ D β. Let us assume that γ is a production of Rk. Note that if γ D β, then
γ and β are similar. And so, since similarity is decidable, we can rephrase our previous
observation as α D β if and only if β = Rk or there exists a production γ ∈ Rk such that γ
is similar to β and γ D β. Checking whether β = Rk is trivial, so let us assume the other
option and start with the case when γ is a short production referencing Rk.

If γ = XRk is similar to β = Xβ1, we know that γ D β if and only if Rk D β1. Since
π(Rk)+π(β1) < n, we know that checking whether Rk D β1 is decidable, hence so is γ D β.

Let us assume w.l.o.g. that γ = SRkR0. Clearly, β = Sβ1β2. And so, γ D β if and only
if Rk D β1 and R0 D β2. Notice that π(Rk) + π(β1) < n as well as π(R0) + π(β2) < n.
Using the induction hypothesis to both, we get that checking Rk D β1 and R0 D β2 is
decidable, hence so is α D β.

Finally, if γ is a long production we can rewrite it as γ = Xγ1 . . . γm, and so reduce this
case to the previous one when both trees are complex, as π(γ) is necessarily smaller than
n.

�

Proposition 9. Let α, β be two trees. Then, both α D γ and β D γ for arbitrary γ ∈
MeshSet(α, β).

Proof. Induction over n = π(α)+π(β). Let M = MeshSet(α, β). Clearly, it suffices to consider
such α, β that M 6= ∅.

Let us assume that both α = Xα1 . . . αm and β = Xβ1 . . . βm. If αi ⊲⊳ βi for all i ∈
{1, . . . ,m}, then M consists of a single tree γ = Xγ1 . . . γm for which αi, βi D γi. Evidently, our

8

claim holds. Suppose that there exists an i ∈ {1, . . . ,m} such that αi ‖ βi. Since π(αi)+π(βi) <
n, we can apply the induction hypothesis to MeshSet(αi, βi). The set M ′ = MeshSet(αi, βi)
cannot be empty and so let δi be an arbitrary mesh in M ′. We know that αi, βi D δi. And so,
if we consider an arbitrary γ = Xγi . . . γm ∈ M , we get αi, βi D γi for all i ∈ {1, . . . ,m}, which
implies our claim.

What remains is to consider the case when either α = Rk and β is complex or, symmetri-
cally, β = Rk and α is complex. Let us assume w.l.o.g. the former case. From the definition,
MeshSet(Rk, β) depends on the union of MeshSet(γ, β) for γ ∈ Rk. Clearly, Rk rewrites to
any of its productions. Let γ ∈ Rk be a production referencing Rk. We have to consider two
cases based on the structure of γ.

(i) Let γ = XRk. Then, π(γ) = π(Rk) + 1 and so we cannot use the induction hypothesis to
MeshSet(γ, β) directly. Note however, that we can assume that β = Xβ1, since otherwise
MeshSet(γ, β) would be empty. Therefore, we know that MeshSet(Rk, β1) 6= ∅ to which
we can now use the induction hypothesis, as π(Rk) + π(β1) < n. Immediately, we get that
Rk, β D γ.

(ii) W.l.o.g. let γ = SRkR0. Then, π(γ) = 3 + π(Rk). Again, we cannot directly use the
induction hypothesis. Note however, that we can assume that β = Sβ1β2. And so we get
π(Rk) + π(β1) < n and π(R0) + π(β2) < n. Using the induction hypothesis to both parts
we conclude that Rk, β D γ in this case as well.

To finish the proof we need to show that our claim holds for all γ ∈ Rk which do not reference
Rk. Indeed, any such production has necessarily smaller potential than Rk, and so, we can use
the induction hypothesis directly to the resulting mesh set. Evidently, our claim holds. �

In other words, MeshSet(α, β) is in fact a set of meshes, i.e. trees generating a joint portion
of L(α) and L(β). Note, that along the lines of proving the above proposition, we have also
showed that indeed MeshSet(α, β) terminates on all legal inputs, as the number of recursive
calls cannot exceed 2(π(α) + π(β)) – in the worst case, every second recursive call decreases the
total potential sum of its inputs.

Proposition 10. Let α, β be two trees. Then, α D ϕr and β D ϕlϕr for arbitrary ϕlϕr ∈
RewritingSet(α, β).

Proof. We can assume that RewritingSet(α, β) 6= ∅, as otherwise our claim trivially holds.
Let ϕlϕr ∈ RewritingSet(α, β). Based on the structure of β, we have to three cases to
consider.

(i) If β = C, then ϕlϕr = Cα. Clearly, α D α and C D C α.
(ii) If β = Xβ1 . . . βm, then we have again exactly three possibilities. Both cases when α ⊲⊳

βm are trivial, so let us assume that α ‖ βm. It follows that there exists such a γ ∈
MeshSet(α, βm) that ϕlϕr = Xβ1 . . . βm−1γ. Due to Proposition 9, we know that α, βm D

γ and so directly that α D ϕr and β D ϕlϕr.
(iii) Finally, suppose that β = Rn. Then, there exists a production γ ∈ Rn such that ϕlϕr ∈

RewritingSet(α, γ). Note however, that in this case γ = Xγ1 . . . γm and so we can
reduce this case to the already considered case above.

�

Now we are ready to give the anticipated soundness theorem.

Theorem 11 (Soundness). If x ∈ L(Rn), then x reduces in n steps.

Proof. Induction over pairs (n,m) where m denotes the length of a minimal, in terms of length,
derivation Σ of x ∈ L(Rn). Let n = 0 and so x ∈ L(R0). If m = 1, then x ∈ {S,K} hence x
is already in normal form. Suppose that m > 1. Clearly, x 6∈ {S,K}. Let R0 → α be the first
production rule used in derivation Σ. Using the induction hypothesis to the reminder of the
derivation, we know that x does not contain any nested redexes. Moreover, α avoids any head
redexes and so we get that x is in normal form.

9

Let n > 0. We have to consider several cases based on the choice of the first production rule
Rn → α used in the derivation Σ.

(i) α = SRn or α = KRn. Using the induction hypothesis we know that x = Xy where y
reduces in n steps. Clearly, so does x.

(ii) α = SRn−iRi for some i ∈ {0, . . . , n}. Then, x = Syz where y ∈ L(Rn−i) and z ∈ L(Ri).
Note that both their derivations are in fact shorter than the derivation of x and thus
applying the induction hypothesis to both y and z we know that they reduce in n− i and
i steps, respectively. Following the normal-order reduction strategy, we note that y and z
and reduce sequentially in x. Since x does not contain a head redex itself, we reduce it in
total of n reductions.

(iii) α = KRn−1C. Directly from the induction hypothesis we know that x = Kyz where y
reduces in n− 1 steps. And so x→w y, implying that x reduces in n steps.

(iv) α = K(Xα1 . . . αk)Cαk+1 . . . αm. Let x ∈ L(α). Clearly, x has a head redex and so
let x →w y. Using Proposition 3, we know that y ∈ L(Xα1 . . . αm). Moreover, by the
construction of Rn we get α ∈ K-Expansions(Xα1 . . . αm) and therefore y ∈ L(Rn−1). It
follows that y reduces in n− 1 steps and so x in n steps.

(v) α = S(Xα1 . . . αk)ϕlϕrαk+3 . . . αm. Let x ∈ L(α). Clearly, x has a head redex and so
let x →w y. Due to Proposition 6 we get that y ∈ L(Xα1 . . . αkϕr(ϕl ϕr)αk+3 . . . αm).
In order to show that x reduces in n steps it suffices to show that y ∈ L(Rn−1). Let us
consider β such that α ∈ S-Expansions(β). From the structure of α we can rewrite it as
β = Xα1 . . . αkαk+1αk+2 . . . αm. Moreover, from Proposition 10 we know that αk+1 D ϕr
and αk+2 D ϕl ϕr. Clearly, y ∈ L(β), which finishes the proof.

�

Combining the above result with the fact that each normalizing combinatory logic term re-
duces in a determined number of normal-order reduction steps, gives us the following corollary.

Corollary 12. If L(Rn) ∩ L(Rm) 6= ∅, then n = m.

3.3. Completeness. In this section we are interested in the completeness of Reduction

Grammar. In other words, we show that every term normalizing in exactly n steps is gen-
erated by Rn.

W start with some auxiliary lemmas showing the completeness of MeshSet and, in conse-
quence, RewritingSet.

Lemma 13. Let α, β be two non-rewritable trees. Let x be a term. Then, x ∈ L(α) ∩ L(β) if
and only if there exists a mesh γ ∈ MeshSet(α, β) such that x ∈ L(γ).
Proof. It suffices to show the necessary part, the sufficiency is clear from Proposition 9. We
show this result using induction over the size |x| of x. Let x ∈ L(α) ∩ L(β). Let us start with
noticing that |α|+ |β| > 0. Moreover, there are only two cases where x ∈ L(α)∩L(β), i.e. when
either α = Xα1 . . . αm and β = Xβ1 . . . βm or when exactly one of them is equal to some Rn
and the other is complex. And so, let us consider these cases separately.

(i) Suppose that α = Xα1 . . . αm and β = Xβ1 . . . βm. It follows that we can rewrite x as
Xx1 . . . xm such that xi ∈ L(αi) ∩ L(βi). Clearly, if all αi ⊲⊳ βi, then there exists a mesh
γ such that x ∈ L(γ). Let us assume that some αi and βi are non-rewritable. Then,
using the induction hypothesis we find a mesh γi ∈ MeshSet(αi, βi) such that xi ∈ L(γi).
Immediately, we get that there exists a mesh in MeshSet(α, β) which generates x.

(ii) Let us assume w.l.o.g. that α = Rn and β = Xβ1 . . . βm. Since x ∈ L(Rn), there must be
such a production γ ∈ Rn that x ∈ L(γ). Although the size of x does not decrease, note
that we can reduce this case to the one considered above since both γ and β are complex.
Clearly, it follows that we can find a suiting mesh δ ∈ MeshSet(γ, β) such that x ∈ L(δ).
Immediately, we get δ ∈ MeshSet(α, β) which finishes the proof.

�

10

Lemma 14. Let α, β be two trees. Let x, yx be two terms. Then, x ∈ L(α) and yx ∈ L(β) if
and only if there exists such a ϕlϕr ∈ RewritingSet(α, β) that x ∈ L(ϕr) and yx ∈ L(ϕlϕr).

Proof. Due to Proposition 10 the sufficiency part is clear. What remains is to show the necessary
part. Let x ∈ L(α) and yx ∈ L(β). Consider the structure of β. If β = C, then Cα ∈
RewritingSet(α, β) and so ϕl = C, ϕr = α. Clearly, our claim holds. Now, consider the case
when β = Xβ1 . . . βm. Based on the rewritability of α and βm we distinguish three subcases.

(i) If α D βm, then Xβ1 . . . βm ∈ RewritingSet(α, β). Since yx ∈ L(β), we get x ∈ L(βm)
and in consequence x ∈ L(ϕr).

(ii) If βm D α, then Xβ1 . . . βm−1α ∈ RewritingSet(α, β). Since βm D α, we know that
L(α) ⊆ L(βm) and so yx ∈ L(Xβ1 . . . βm−1α).

(iii) If α ‖ βm, then we know that x ∈ L(α)∩L(βm). If not, then yx could not be a term of L(β).
And so, using Lemma 13 we find a mesh γ ∈ MeshSet(α, βm) such that x ∈ L(γ). We
know that Xβ1 . . . βm−1γ ∈ RewritingSet(α, β). Clearly, it is the tree we were looking
for.

It remains to consider the case when β = Rk. Note however, that it can be reduced to the
case when β = Xβ1 . . . βm. Indeed, since x ∈ L(Rk), then there exists a production γ ∈ Rk such
that x ∈ L(γ). From the previous arguments we know that we can find a tree satisfying our
claim. �

Using the above completeness results for MeshSet and RewritingSet, we are ready to give
the anticipated completeness result of {Rn}n∈N.

Theorem 15 (Completeness). If x reduces in n steps, then x ∈ L(Rn).

Proof. Induction over pairs (n, s) where s denotes the size of x. The base case n = 0 is clear
due to the completeness of R0. Let n > 0.

Let us start with considering short terms. Let x = Xy be a term of size s. Since x has no
head redex, y must reduce in n steps as well. Now, we can apply the induction hypothesis to y
and deduce that y ∈ L(Rn). It follows that x ∈ L(XRn). Clearly, XRn is a production of Rn
and so x ∈ L(Rn). Now, assume that x = Syz. Since x reduces in n steps and does not contain
a head redex, there exists such an i ∈ {0, . . . , n} that y reduces in i steps and z reduces in
n− i steps. Applying the induction hypothesis to both y and z, we get that y ∈ L(Ri) whereas
z ∈ L(Rn−i). Immediately, we get that x ∈ L(Rn) as SRiRn−i ∈ Rn.

What remains is to consider long terms. Let x = Kx1x2. Note that x1 must reduce in n− 1
steps, as x →w x1. And so, from the induction hypothesis we get that x1 ∈ L(Rn−1). Now we
have x ∈ L(KRn−1C) and hence x ∈ L(Rn) as KRn−1C is a production of Rn.

Now, let x = Kx1 . . . xm for m ≥ 3. Since x has a head redex, we know that x →w y =
x1x3 . . . xm, which itself reduces in n − 1 steps. Let us rewrite y as Xy1 . . . ykx3 . . . xm where
x1 = Xy1 . . . yk. We know that there exists a production α ∈ Rn−1 such that y ∈ L(α). Let α =
Xα1 . . . αkα3 . . . αm. Clearly, there exists a β = K(Xα1 . . . αk)Cα3 . . . αm ∈ K-Expansions(α).
We claim that x ∈ L(β). Indeed, y ∈ L(α) implies that yi ∈ L(αi) and xj ∈ L(αj) for any i and
j in proper ranges. Since x2 ∈ L(C), we conclude that x ∈ L(β) and hence x ∈ L(Rn).

Let x = Sx1 . . . xm for m ≥ 3. Since x has a head redex x →w y = x1x3(x2x3)x4 . . . xm
which reduces in n− 1 steps. Again, let us rewrite y as Xy1 . . . ykx3(x2x3)x4 . . . xm where x1 =
Xy1 . . . yk. Now, since y ∈ L(Rn−1), there exists a production α = Xα1 . . . αkα3γα4 . . . αm ∈
Rn−1 such that y ∈ L(α). We claim that there must be a production β ∈ S-Expansions(α)
such that x ∈ L(Rn). If so, the proof would be complete. Notice that x3 ∈ L(α3) and
x2x3 ∈ L(γ). Using Lemma 14 we know that there exists a tree ϕlϕr ∈ RewritingSet(α3, γ)
such that x3 ∈ L(ϕr) and (x2x3) ∈ L(ϕlϕr). And so y ∈ L(Xα1 . . . αkϕr(ϕlϕr)α4 . . . αm).
Moreover, due to the fact that ϕlϕr ∈ RewritingSet(α3, γ), we know that the tree β =
S(Xα1 . . . αk)ϕlϕrα4 . . . αm ∈ S-Expansions(α) and so also β ∈ Rn. Since x2 ∈ L(ϕl), we get
that x ∈ L(β). �

11

3.4. Unambiguity. In this section we show that reduction grammars are in fact unambiguous,
i.e. every term x ∈ L(Rn) has exactly one derivation. Due to the mutual recursive nature of
MeshSet, RewritingSet and ReductionGrammar, we split the proof into two separate
parts. In the following lemma, we show that MeshSet returns unambiguous meshes under the
assumption that R0, . . . , Rn up to some n are themselves unambiguous. In the corresponding
theorem we use inductive reasoning which supplies the aforementioned assumption and thus, as
a consequence, allows us to prove the main result.

Lemma 16. Let α, β be two trees such that γ, γ ∈ MeshSet(α, β) where in addition ρ(α), ρ(β) ≤
r + 1. If R0, . . . , Rr are unambiguous and L(γ) ∩ L(γ) 6= ∅, then γ = γ.

Proof. Induction over n = π(α)+π(β). Let x ∈ L(γ)∩L(γ). We can assume that |MeshSet(α, β)|
is greater than 1 as the case for |MeshSet(α, β)| = 1 is trivial. In consequence, the base case
n = 0 is clear as the resulting MeshSet for two trees of potential 0 has to be necessarily empty.
Hence, we have to consider two cases based on the structure of α and β.

(i) Let α = Xα1 . . . αm and β = Xβ1 . . . βm. Clearly, x is in form of x = Xx1 . . . xm. Let αi ‖
βi be an arbitrary non-rewritable pair of arguments in α, β. It follows that xi ∈ L(αi)∩L(βi)
and so, due to Lemma 13, there exists a mesh δ ∈ MeshSet(αi, βi) such that xi ∈ L(δ).
Let Mi = MeshSet(αi, βi). Since π(αi) + π(βi) < n we can use the induction hypothesis
to Mi and immediately conclude that δ is the only mesh in Mi generating xi. And so,
we know that γ and γ are equal on the non-rewritable arguments of α, β. Note that if
αi ⊲⊳ βi, then both contribute a single mesh at position i. Immediately, we get that both
γ and γ are also equal on the rewritable arguments of α and β, hence finally γ = γ.

(ii) W.l.o.g. let α = Rk and β = Xβ1 . . . βm. Clearly, as ρ(α) ≤ r + 1, we know that Rk is
unambiguous. From the definition of MeshSet there exist productions δ, δ ∈ Rk such that
γ ∈ MeshSet(δ, β) and γ ∈ MeshSet(δ, β). We claim that γ = γ as otherwise δ, δ would
generate a common term. Suppose that γ 6= γ. From Lemma 13 we know that L(γ) ⊆ L(δ)
and L(γ) ⊆ L(δ). Since x ∈ L(γ) ∩ L(γ), we get that x ∈ L(δ) ∩ L(δ) and therefore a
contradiction with the fact that Rk is unambiguous. It follows that γ = γ, which finishes
the proof.

�

Theorem 17 (Unambiguity). Let α, β ∈ Rn. If L(α) ∩ L(β) 6= ∅, then α = β.

Proof. Induction over n. Let x ∈ L(α) ∩ L(β). Note that if x ∈ L(α) ∩ L(β), then both α, β

must be similar. We can therefore focus on similar productions of Rn. For that reason, we
immediately notice that R0 satisfies our claim.

Let n > 0. Since Rn does not contain combinators as productions, we can rewrite both α as
Xα1 . . . αm and β as Xβ1 . . . βm. Let us consider several cases based on their common structure.

(i) Let X = K. If m = 1, then α and β are equal as there is exactly one short K-production
in Rn. If m = 2, then again α = β, since there is a unique K-production KRn−1C of length
two in Rn. If m > 2, then both are K-Expansions of some productions in Rn−1. And so

α = K(Xα1 . . . αk)Cα3 . . . αm ∈ K-Expansions(γ),

β = K(Xβ1 . . . βk)Cβ3 . . . βm ∈ K-Expansions(δ),

where

γ = Xα1 . . . αkα3 . . . αm,

δ = Xβ1 . . . βkβ3 . . . βm.

Since x ∈ L(α)∩L(β), we can assume that x is in form of K(Xy1 . . . yk)x2x3 . . . xm where
yi ∈ L(αi) ∩ L(βi) and xj ∈ L(αj) ∩ L(βj). It follows that we can use the induction

hypothesis to γ, δ ∈ Rn−1 obtaining αi = βi and αj = βj . Immediately, we get α = β.
12

(ii) Let X = S. If m = 1, then α and β are equal due to the fact that there is exactly one
S-production of length one in Rn. If m = 2, then α, β are in form of α = SRiRn−i and
β = SRjRn−j. Hence, x = Sx1x2 for some terms x1, x2. Since x1 ∈ L(Ri) ∩ L(Rj) and
x2 ∈ L(Rn−i) ∩ L(Rn−j), we know that i = j due to Corollary 12 and thus α = β. It
remains to consider long S-productions. Let

α = S(Xα1 . . . αk)ϕlϕrα4 . . . αm ∈ S-Expansions(γ),

β = S(Xβ1 . . . βk)ϕlϕrβ4 . . . βm ∈ S-Expansions(δ),

where

γ = Xα1 . . . αkα2α3α4 . . . αm,

δ = Xβ1 . . . βkβ2β3β4 . . . βm.

It follows that we can rewrite x as S(Xy1 . . . yk)wzx4 . . . xm. Let us focus on the reduct
x →w y = Xy1 . . . ykz(wz)x4 . . . xm. Evidently, y ∈ L(γ) ∩ L(δ) and so according to the
induction hypothesis we know that γ = δ, in particular α2 = β2 and α3 = β3. Hence,
both ϕlϕr and ϕlϕr are elements of the same RewritingSet. If we could guarantee that
ϕlϕr = ϕlϕr, then immediately α = β and the proof is finished. From the construction of
the RewritingSet we have two cases left to consider.

(i) If α3 = Xγ1 . . . γm, then both ϕlϕr and ϕlϕr are either in form of Xγ1 . . . γm−1 ϕr or
Xγ1 . . . γm−1 ϕr. It follows that ϕl = ϕl. It remains to show that ϕr = ϕr. Note that
ρ(α2), ρ(α3) ≤ n since both γ, δ ∈ Rn−1. Moreover, from the induction hypothesis we
know that R0, . . . , Rn−1 are unambiguous. And so, since z ∈ L(ϕr) ∩ L(ϕr), we can
use Lemma 16 to conclude that ϕr = ϕr.

(ii) If α3 = Rk, then necessarily there exist such productions η, η ∈ Rk that ϕlϕr ∈
RewritingSet(α2, η) whereas ϕlϕr ∈ RewritingSet(α2, η). Due to Proposi-
tion 10, we know that L(ϕlϕr) ⊆ L(η) and L(ϕlϕr) ⊆ L(η). It implies that wz ∈
L(η)∩L(η), however, since k < n, we know from the induction hypothesis that Rk is
unambiguous. Hence η = η. Finally, it means that we can reduce this case to one of
the previous cases when α3 is complex, concluding that ϕlϕr = ϕlϕr.

�

3.5. Generating functions. Fix an arbitrary normal-order reduction grammar Rn. Let us
consider the counting sequence {rn,k}k∈N where rn,k denotes the number of SK-combinators of
size k reducing in n normal-order reduction steps. Suppose we associate with it a formal power
series Rn(z) defined as

Rn(z) =
∞
∑

k=0

rn,k z
k.

In the following theorem we present a recursive method of computing the closed-form solution
of Rn(z) using the regular tree grammars R0, . . . , Rn and the inductive use of the Symbolic

Method developed by Flajolet and Sedgewick [11].

Theorem 18. For each n ≥ 0, the ordinary generating function Rn(z) corresponding to the
sequence {rn,k}k∈N has a computable closed form solution.

Proof. Induction over n. Let us start with giving previously computed closed-form solutions for
C(z), i.e. the generating function corresponding to the set of all SK-combinators, and R0(z) [5]:

(1) C(z) =
1−

√
1− 8z

2z
R0(z) =

1− 2z −
√
1− 4z − 4z2

2z2
.

Clearly, both C(z) and R0(z) are computable.
Now, suppose that n ≥ 1. Recall that in its construction, Rn might depend on previous

reduction grammars R0, . . . , Rn−1, the set C of all SK-combinators and itself, via self-referencing
13

productions. Due to Theorem 17, Rn is unambiguous and so we can express its generating
function Rn(z) as the unique solution of

(2) Rn(z) =
∑

α∈Rn

zk(α)C(z)c(α)
n
∏

i=0

Ri(z)
ri(α),

where k(α), c(α) and ri(α) denote respectively, the number of applications, the number of
non-terminal symbols C and the number of non-terminal symbols Ri in α.

Note that Rn has exactly four self-referencing productions, i.e. SRn, KRn, SR0Rn and
SRnR0. It means that by converting them into appropriate functional equations, we can further
rewrite (2) as

(3) Rn(z) = 2zRn(z) + 2z2R0(z)Rn(z) +
∑

α∈Φ(Rn)

zk(α)C(z)c(α)
n−1
∏

i=0

Ri(z)
ri(α),

where Φ(Rn) denotes the set of productions α ∈ Rn which do not reference Rn. By the induction
hypothesis, we can compute the closed-form solutions for R0(z), . . . , Rn−1(z) turning (3) into a
linear equation in Rn(z). Simplifying (1) for R0(z), we derive the final closed-form solution

Rn(z) =
1√

1− 4z − 4z2

∑

α∈Φ(Rn)

zk(α)C(z)c(α)
n−1
∏

i=0

Ri(z)
ri(α).

�

3.6. Other applications. In this section we highlight some interesting consequences of the
existence of normal-order reduction grammars. In particular, we prove that terms reducing in n
steps have necessarily bounded length. Moreover, we show that the problem of deciding whether
a given term reduces in n steps, can be done in memory independent of the size of the term.

Proposition 19. If α ∈ Rn, then α has length at most 2n+ 2.

Proof. Induction over n. The base case n = 0 is clear from the shape of R0. Fix n > 0. Let us
consider long productions in Rn. If β is a K-Expansion of some Xα1 . . . αm ∈ Rn−1, then

β = K(Xα1 . . . αk)Cαk+1 . . . αm for 0 ≤ k ≤ m− 1.

Since setting k = 0 maximizes the length of β, we note that β is of length m+2 and so by the
induction hypothesis at most 2n + 2. Now, let us consider the case when β is a S-Expansion

of some Xα1 . . . αm ∈ Rn−1. Then,

β = S(Xα1 . . . αk)ϕlϕrαk+3 . . . αm for 0 ≤ k ≤ m− 2.

where in addition (ϕl ϕr) ∈ RewritingSet(αk+1, αk+2). Again, setting k = 0 maximizes the
length of β. It follows that β is of length at most m+ 1 and so also at most 2n + 1. �

In other words, terms reducing in n steps cannot be too long as their length is tightly bounded
by 2n+ 2. Now, let us consider the following two problems.

Problem: n-step-reducible

Input: A combinatory logic term x ∈ L(C).
Output: yes if and only if x reduces in n steps.

Problem: reduces-in-n-steps

Input: A combinatory logic term x ∈ L(C) and a number n ∈ N.
Output: yes if and only if x reduces in n steps.

Since n in not a part of the input, we can compute Rn in constant time and memory. Using
Rn we build a bottom-up tree automaton recognizing L(Rn) [7] and use it to check whether

14

x ∈ L(Rn) in time O(|x|), without using additional memory. On the other hand, the Naive

algorithm requires O(|x|) time and additional memory. At each reduction step, the considered
term doubles at most in size, as Sxyz →w xz(yz). In order to find the next redex we spend up
to linear time in the current size of x, therefore both size and time are bounded by

|x|+ 2|x|+ 4|x|+ · · ·+ 2n|x| = |x|
(

1 + 2 + 4 + · · ·+ 2n
)

= |x|
(

2n+1 − 1
)

= O(|x|).
As a natural extension, we get the following corollary.

Corollary 20. The reduces-in-n-steps problem is decidable in space depending exclusively
on n, independently of |x|.
3.7. Upper bound. In this section we focus on the upper bound on the number of productions
in Rn. We show that there exists a primitive recursive function f : N → N such that |Rn| ≤ f(n).

Following the scheme of the soundness proofs in Section 3.2, we construct suitable upper
bounds using the notions of tree potential and degree. In the end of this section, we show that
these values are in fact bounded in each Rn, thus giving the desired upper bound.

Lemma 21. Let α, β be two trees of degree at most n such that their total potential π(α)+π(β)

is equal to p. Then, the number of distinct meshes in MeshSet(α, β) is bounded by |Rn|e p!.
Proof. Induction over the total potential p. Consider the following primitive recursive function
fn : N → N.

fn(k) =

{

1 if k = 0,

(|Rn| · fn(k − 1))k otherwise.

We claim that |MeshSet(α, β)| ≤ fn(p). Note that it suffices to consider such α, β that
|MeshSet(α, β)| > 1 since fn is an increasing function attaining positive values for any given
input. It follows that the base case p = 0 is clear, as if π(α) +π(β) = 0, then MeshSet(α, β) is
necessarily empty. Now, let us assume that p > 0. From the construction of the common mesh
set M of α and β, we can distinguish two cases left to consider.

(i) Suppose that α = Xα1 . . . αm and β = Xβ1 . . . βm. In order to maximize the size of M ,
we can furthermore assume that none of the pairs αi, βi are rewritable. And so, the total
number of meshes in M is equal to the product of all meshes in corresponding mesh sets
for αi and βi. The degree of αi and βi is still at most n, however π(αi) + π(βi) ≤ p − 2.
Hence, using the induction hypothesis we get |MeshSet(αi, βi)| ≤ fn(p − 2). Since both
α, β are of length m ≤ p we can furthermore state that

|M | ≤ (fn(p− 2))m ≤ (fn(p− 2))p

≤ (fn(p− 1))p ≤ (|Rn| · fn(p− 1))p

= fn(p).

(ii) Let us assume w.l.o.g. that α = Ri and β is complex. In order to maximize the total
number of meshes in M , we can moreover assume that all productions γ ∈ Ri are similar
to β and generate disjoint sets of meshes. We claim that MeshSet(γ, β) ≤ fn(p − 1).
Clearly, if γ does not reference Ri, then our claim is trivially true. Suppose that γ is a
self-referencing production. If γ = XRi, then β is in form of Xβ1. From the construction
of M , we get that

|MeshSet(γ, β)| = |MeshSet(Ri, β1)|.
As π(Ri)+π(β1) ≤ p− 1, we can apply the induction hypothesis to MeshSet(Ri, β1) and
immediately obtain |MeshSet(γ, β)| ≤ fn(p− 1). Now, suppose w.l.o.g. that γ = SRiR0

and hence β = Sβ1β2. Again, from the construction of M we know that

|MeshSet(γ, β)| = |MeshSet(Ri, β1)| · |MeshSet(R0, β2)|.
15

Due to the fact that both π(Ri) + π(β1) ≤ p − 2 and π(R0) + π(β2) ≤ p − 2, we can use
the induction hypothesis and immediately get that

|MeshSet(γ, β)| = |MeshSet(Ri, β1)| · |MeshSet(R0, β2)|
≤ fn(p− 2) fn(p− 2).

Note that (fn(p − 2))2 ≤ fn(p − 1) for p ≥ 2 and, in consequence, |MeshSet(γ, β)| ≤
fn(p− 1). Indeed, if p = 2, then (fn(p − 2))2 = 1 ≤ fn(1) = |Rn|. Otherwise if p > 2, then

fn(p − 1) = (|Rn| · fn(p− 2))p−1

=
(

|Rn|p−1(fn(p − 3))p−2
)p−1

≥
(

|Rn|p−2(fn(p − 3))p−2
)p−1

= (|Rn| · fn(p− 3))(p−1)(p−2).

As 2(p − 2) ≤ (p− 1)(p − 2) for p > 2, we finally obtain

(|Rn| · fn(p− 3))(p−1)(p−2) ≥ (|Rn| · fn(p − 3))2(p−2)

= (fn(p− 2))2.

We know therefore that MeshSet(γ, β) ≤ fn(p− 1) for each γ ∈ Ri. Finally, using the
fact that |Ri| ≤ |Rn|, we get

|M | ≤ |Rn| · fn(p− 1)

≤ (|Rn| · fn(p− 1))p

= fn(p).

And so, we know that |MeshSet(α, β)| ≤ fn(p). Solving the recurrence for fn(p), using
e.g. Mathematica R© [19], we obtain the following closed form expression

fn(p) = |Rn|e pΓ(p,1),
where

Γ(s, x) = (s − 1)! e−x
s−1
∑

k=0

xk

k!

is the upper incomplete gamma function (see e.g. [1]). Simplifying the above expression in the

case x = 1 and using the observation that
∑s−1

k=0
1
k! ≤ e for arbitrary s, we finally obtain the

anticipated upper bound

fn(p) ≤ |Rn|e p!.
�

Lemma 22. Let α, β be two trees of degree at most n such that their total potential π(α) +
π(β) is equal to p. Then, the number of distinct trees in RewritingSet(α, β) is bounded by

|Rn|1+e p!.
Proof. If |RewritingSet(α, β)| ≤ 1, then our claim is trivially true. Let us focus therefore
on the remaining cases when either β = Xβ1 . . . βm and both βm and α are non-rewritable, or
β = Ri.

First, consider the former case. Note that the resulting rewriting set is of equal size as
MeshSet(α, βm). Since π(α) + π(βm) ≤ p− 1, we can use Lemma 21 to deduce that

|RewritingSet(α, β)| = |MeshSet(α, βm)| ≤ |Rn|e (p−1)! < |Rn|1+e p!.
Now, let us consider the latter case. In order to maximize the resulting rewriting set we

assume that each production γ ∈ Ri generates a disjoint set of trees. We claim that each

production γ contributes at most |Rn|e p! new trees to the resulting rewriting set and therefore

|RewritingSet(α, β)| ≤ |Rn|1+e p!, as there are at most |Rn| productions in Ri. Indeed,
16

consider an arbitrary γ ∈ Ri. Evidently, if |RewritingSet(α, γ)| ≤ 1, then our claim is true.
Hence, let us assume that |RewritingSet(α, γ)| > 1. It follows that γ is complex. Let us
rewrite it as Xγ1 . . . γm. Note that as in the previous case, the resulting rewriting set is of equal
size as MeshSet(α, γm). Since π(α) + π(γm) ≤ p− 1 we use Lemma 21 and get

|RewritingSet(α, γ)| = |MeshSet(α, γm)| ≤ |Rn|e (p−1)! < |Rn|e p!.
�

Lemma 23. Let α, β be two trees of total potential π(α) + π(β) equal to p. Then, each mesh
in MeshSet(α, β) has potential bounded by p!(1 + e).

Proof. Induction over total potential p. Again, it suffices to consider such α, β that MeshSet(α, β)
is not empty. Immediately, the base case p = 0 is clear. Let us assume that p > 0. Consider the
following primitive recursive function f : N → N.

f(k) =

{

1 if k = 0,

k · (f(k − 1) + 1) otherwise.

Let γ ∈ MeshSet(α, β). We claim that π(γ) ≤ f(p). Note that f is an increasing function
attaining positive values for any input. We have two cases to consider.

(i) Suppose that α = Xα1 . . . αm and β = Xβ1 . . . βm. Note that π(αi) + π(βi) ≤ p − 2 for
each pair of corresponding arguments αi, βi. Using the induction hypothesis to pairs αi, βi
and the fact that γ ∈ MeshSet(α, β) is similar to both α and β, we bound γ’s potential
by

π(γ) ≤ m · f(p− 2) +m ≤ p · (f(p− 2) + 1) ≤ f(p).

(ii) Assume w.l.o.g. that α = Ri and β is complex. It follows that γ ∈ MeshSet(δ, β) for
some δ ∈ Ri. If δ does not reference Ri, then clearly π(δ) ≤ π(Ri) − 1 and therefore
π(γ) ≤ f(p− 1). Now, suppose that δ is a self-referencing production of Ri.

If δ = XRi, then β is in form of Xβ1 and similarly γ = Xγ1. It follows that π(δ) =
π(Ri) + 1 and therefore π(δ) + π(β) = p + 1. Note however that π(γ1) ≤ f(p − 1) as
π(Ri) + π(β1) ≤ p− 1. Due to that, π(γ) = 1 + f(p− 1) ≤ f(p).

Let us assume w.l.o.g. that δ = SRiR0. Immediately, β is in form of Sβ1β2 whereas
γ = Sγ1γ2. Moreover, π(δ) = π(Ri) + 3. Note however that both π(Ri) + π(β1) ≤ p − 2
and π(R0) + π(β2) ≤ p − 2. We can therefore use the induction hypothesis and conclude
that

π(γ) = 2 + π(γ1) + π(γ2) ≤ 2 + 2 · f(p− 2).

Since π(δ) ≥ 4, we know that p ≥ 3 and so we can further bound π(γ) by

π(γ) = 2 (1 + f(p− 2))

≤ (p − 1) (1 + f(p− 2))

= f(p− 1) ≤ f(p).

Finally, we know that π(γ) ≤ f(p). What remains is to solve the recursion, using e.g. Mathe-
matica R© [19], for f and give its closed form solution. It follows that

f(p) = Γ(1 + p) + e pΓ(p, 1)

≤ p! + e p!

= p!(1 + e)

where

Γ(n) = (n − 1)!

�

Lemma 24. Let α, β be two trees of potential π(α)+π(β) = p. Then, each tree in RewritingSet(α, β)
has potential bounded by p!(1 + e) + p.

17

Proof. Let γ be an arbitrary tree in RewritingSet(α, β). Based on the structure of β we have
several cases to consider. If β = C, then γ = Cα and so π(γ) = π(α) + 1 = p + 1. Note that
1 < p!(1 + e) for any p and thus our bound holds.

If β = Xβ1 . . . βm, then π(α) + π(βm) ≤ p − 1. In both cases when α ⊲⊳ βm the resulting
tree has potential bounded by p and so also by p!(1 + e) + p. Let us assume that α ‖ βm. We
can therefore rewrite γ as Xγ1 . . . γm. Using Lemma 23, we know that π(γm) ≤ (p− 1)!(1 + e).
Moreover, both α and β are similar to γ. Let us rewrite them as Xα1 . . . αm and Xβ1, . . . , βm,
respectively. Note that for each i < m, γi is equal to αi or βi. It follows that we can bound the
potential of Xγ1 . . . γm−1 by p− 1 and hence γ’s potential by (p− 1)!(1 + e) + p.

Now, if β = Ri, then γ ∈ RewritingSet(α, δ) for some δ ∈ Ri. Clearly, if δ does not
reference Ri, we know that π(δ) ≤ π(Ri) − 1 ≤ p − 1. Moreover, δ is complex, as otherwise
RewritingSet(α, δ) = ∅. Using our previous argumentation, we can therefore conclude that
π(γ) ≤ (p − 1)!(1 + e) + p. Suppose that δ is a self-referencing production of Ri. If δ = XRi,
then α is in form of Xα1 and γ = Xγ1. Immediately, π(α) + π(δ) = p+ 1. If Ri ⊲⊳ α1, then γ
has potential bounded by p. Therefore, let us assume that Ri ‖ α1. Since π(Ri)+π(α1) = p−1,
we know from Lemma 23 that π(γ1) ≤ (p − 1)!(1 + e). It follows immediately that π(γ) ≤
(p− 1)!(1 + e) + 1 ≤ p!(1 + e) + p.

Finally, suppose that δ = Sδ1δ2 and so α = Sα1α2. Immediately, γ = Sγ1γ2. Again, if
δ2 ⊲⊳ α2, we can bound γ’s potential by p. Hence, let us assume that δ2 ‖ α2. Clearly,
π(α) + π(δ) = p + 3. Note however that π(α1) + π(δ1) ≤ p − 2 and π(α2) + π(δ2) ≤ p − 2,
as both δ1 and δ2 are non-terminal reduction grammar symbols of positive potential. Using
Lemma 23 to MeshSet(α2, δ2) we conclude that π(γ2) ≤ (p − 2)!(1 + e). It follows that
π(γ) ≤ (p− 2)!(1 + e) + p ≤ p!(1 + e) + p. �

Lemma 25. There exists a primitive recursive function ψ : N → N such that π(Rn) ≤ ψ(n).

Proof. Consider the following function ψ : N → N:

ψ(k) =

{

1 if k = 0,

4 (ψ(k − 1) + 2)! + 2ψ(k − 1) + 5 otherwise.

Clearly, ψ is an increasing primitive recursive function. We show that ψ(n) bounds the
potential of Rn using induction over n. Since π(R0) = ψ(0) = 1, the base case is clear. Let
n > 0. In order to prove our claim, we have to check that π(α) ≤ ψ(n) − 1 for all productions
α ∈ Rn which do not reference Rn.

(i) Suppose that α = SRn−iRi. Clearly, the potential of α is equal to 2 + π(Rn−i) + π(Ri).
Using the induction hypothesis, we know moreover that

π(α) ≤ 2 + ψ(n − i) + ψ(i)

≤ 2 + 2ψ(n − 1)

≤ ψ(n)− 1.

(ii) Let α = KRn−1C. Due to the fact that π(α) = 2+π(Rn−1), we use the induction hypothesis
and immediately obtain

π(α) ≤ 2 + ψ(n− 1) ≤ ψ(n)− 1.

(iii) Suppose that α ∈ K-Expansions(β) for some β ∈ Rn−1. Note that π(β) ≤ ψ(n−1)+3 as
the productions of greatest potential in Rn−1 are exactly SRn−1R0 and SR0Rn−1. Since
π(α) = 2 + π(β), we get

π(α) ≤ 5 + ψ(n− 1) ≤ ψ(n)− 1.

(iv) Finally, let α ∈ S-Expansions(β) for some β ∈ Rn−1. Again, π(β) ≤ π(Rn−1) + 3
and hence from the induction hypothesis π(β) ≤ ψ(n − 1) + 3. Let us rewrite α as
S(Xβ1 . . . βk)ϕlϕrβk+3 . . . βm where β = Xβ1 . . . βm. Note that π(α) ≤ π(β) + π(ϕl) +
π(ϕr)+1. Moreover, as π(ϕlϕr) = 1+π(ϕl)+π(ϕr), we get π(α) ≤ π(β)+π(ϕlϕr). Since

18

π(βk+1βk+2) ≤ π(β) − 1 and thus, π(βk+1βk+2) ≤ ψ(n − 1) + 2, we can use Lemma 24 to
obtain

π(ϕlϕr) ≤ (ψ(n − 1) + 2)!(1 + e) + ψ(n − 1) + 2.

It follows therefore that

π(α) ≤ π(β) + π(ϕlϕr)

≤ (ψ(n − 1) + 2)!(1 + e) + 2ψ(n − 1) + 5

≤ ψ(n)− 1

where the last inequality follows from the fact that

(3− e) (ψ(n − 1) + 2)! ≥ 1

5
(ψ(n − 1) + 2)! ≥ 6

5
≥ 0.

�

Theorem 26. There exists a primitive recursive function χ : N → N such that the number |Rn|
of productions in Rn is bounded by χ(n).

Proof. Consider Rn for some n > 0. Note that Rn consists of:

(i) two productions SRn and KRn,
(ii) n+ 1 short S-productions in form of SRn−iRi,
(iii) an additional K-production KRn−1C,
(iv) K-Expansions(α) for each α ∈ Rn−1 and
(v) S-Expansions(α) for each α ∈ Rn−1.

It suffices therefore to bound the number of K- and S-Expansions, as the number of other
productions in Rn is clear. Let us start with K-Expansions. Suppose that α is of length m.
Clearly, |K-Expansions(α)| = m. Using Proposition 19, we know that that each production
α ∈ Rn−1 is of length at most 2n. It follows that there are at most 2n · |Rn−1| K-Expansions in
Rn. Now, let us consider S-Expansions. In order to bound the number of S-Expansions in Rn,
we assume that each production α ∈ Rn−1 is of length 2n and moreover each RewritingSet

of appropriate portions of α generates a worst-case set of trees. And so, assuming that α is
of length 2n we can rewrite it as Xα1 . . . α2n. Let ψ denote the upper bound function on the
potential of Rn−1 from Lemma 25. Evidently, π(α) ≤ ψ(n − 1) + 3. Now, using Lemma 22 we
know that each RewritingSet(αi, αi+1) contributes at most

|Rn−1|1+e
(

ψ(n−1)+3
)

!

new S-Expansions. As there are at most 2n − 1 pairs of indices (i, i + 1) yielding Rewrit-

ingSets, we get that the number of S-Expansions in Rn is bounded by

(2n − 1) · |Rn−1| · |Rn−1|1+e
(

ψ(n−1)+3
)

! ≤ (2n − 1) · |Rn−1|2+3
(

ψ(n−1)+3
)

!.

Finally, since |R0| = 5, we combine the above observations and get the following primitive
recursive upper bound on |Rn|.

χ(k) =

5 if k = 0,

4 + k + 2k · χ(k − 1)

+(2k − 1) · χ(k − 1)2+3
(

ψ(k−1)+3
)

! otherwise.

�

4. Conclusion

We gave a complete syntactic characterization of normal-order reduction for combinatory
logic over the set of primitive combinators S and K. Our characterization uses regular tree
grammars and therefore exhibits interesting algorithmic applications, including the computation
of corresponding generating functions. We investigated the complexity of the generated reduction
grammars, giving a primitive recursive upper bound on the number of their productions. We

19

emphasize the fact that although the size of Rn is bounded by a primitive recursive function of
n, it seems to be enormously overestimated. Our computer implementation of the Reduction

Grammar algorithm [3] suggests that the first few numbers in the sequence {|Rn|}n∈N are in
fact

5, 12, 75, 625, 5673, 53164, 508199, . . .

The upper bound χ(1) on the size of R1 is already of order 6 · 1084549, whereas the actual size
of R1 is equal to 12. Naturally, we conjecture that {Rn}n∈N grows much slower than {χ(n)}n∈N,
although the intriguing problem of giving better approximations on the size of Rn for large n is
still open.

Acknowledgements

We would like to thank Katarzyna Grygiel for many fruitful discussions and valuable com-
ments.

References

[1] M. Abramowitz and I. Stegun. Handbook of Mathematical Functions, with formulas, graphs, and mathemat-

ical tables. Dover Publications, 1972.
[2] H. P. Barendregt. The Lambda Calculus, Its Syntax and Semantics, volume 103. North Holland, 1984.
[3] M. Bendkowski. Normal-order reduction grammars – Haskell implementation. https://github.com/maciej-

bendkowski/normal-order-reduction-grammars, 2016.
[4] M. Bendkowski, K. Grygiel, P. Lescanne, and M. Zaionc. SOFSEM 2016: Theory and Practice of Computer

Science: 42nd International Conference on Current Trends in Theory and Practice of Computer Science,

Harrachov, Czech Republic, 2016, chapter A Natural Counting of Lambda Terms, pages 183–194. Springer
Berlin Heidelberg, Berlin, Heidelberg, 2016.

[5] M. Bendkowski, K. Grygiel, and M. Zaionc. Theory and Applications of Models of Computation: 12th

Annual Conference, TAMC 2015, Singapore, chapter Asymptotic Properties of Combinatory Logic, pages
62–72. Springer International Publishing, Cham, 2015.

[6] O. Bodini, D. Gardy, B. Gittenberger, and Z. Gołębiewski. On the number of unary-binary tree-like structures
with restrictions on the unary height, 2015.

[7] H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison, and M. Tommasi. Tree
Automata Techniques and Applications. Available on: http://www.grappa.univ-lille3.fr/tata, 2007. release
October, 12th 2007.

[8] H. B. Curry. Grundlagen der kombinatorischen Logik. American Journal of Mathematics, 52(3):509–536,
1930.

[9] H. B. Curry and R. Feys. Combinatory Logic. Vol. I. Amsterdam, North Holland, 1958.
[10] R. David, K. Grygiel, J. Kozik, C. Raffalli, G. Theyssier, and M. Zaionc. Asymptotically almost all λ-terms

are strongly normalizing. Logical Methods in Computer Science, Volume 9, Issue 1, 2013.
[11] P. Flajolet and R. Sedgewick. Analytic Combinatorics. Cambridge University Press, New York, NY, USA,

1 edition, 2009.
[12] B. Gittenberger and Z. Gołębiewski. On the number of lambda terms with prescribed size of their De Bruijn

representation. In N. Ollinger and H. Vollmer, editors, 33rd Symposium on Theoretical Aspects of Computer

Science, STACS 2016, February 17-20, 2016, Orléans, France, volume 47 of LIPIcs, pages 40:1–40:13. Schloss
Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.

[13] K. Grygiel and P. Lescanne. Counting and generating lambda terms. Journal of Functional Programming,
23(5):594–628, 2013.

[14] P. Lescanne. Boltzmann samplers for random generation of lambda terms. CoRR, abs/1404.3875, 2014.
[15] M. Pałka, K. Claessen, A. Russo, and J. Hughes. Testing an optimising compiler by generating random

lambda terms. In A. Bertolino, H. Foster, and J. Li, editors, Proceedings of the 6th International Workshop

on Automation of Software Test, AST 2011, Waikiki, Honolulu, HI, USA, May 23-24, 2011, pages 91–97.
ACM, 2011.

[16] M. Schönfinkel. Über die Bausteine der mathematischen Logik. Mathematische Annalen, 92(3):305–316,
1924.

[17] D. Turner. A New Implementation Technique for Applicative Languages. Software: Practice and Experience,
9(1):31–49, 1979.

[18] D. Turner. An overview of Miranda. SIGPLAN Not., 21(12):158–166, 1986.
[19] Inc. Wolfram Research. Mathematica Version 10.3, 2015. Champaign, Illinois.

20

Theoretical Computer Science Department, Faculty of Mathematics and Computer Science,

Jagiellonian University, ul. Prof. Łojasiewicza 6, 30-348 Kraków, Poland

E-mail address: bendkowski@tcs.uj.edu.pl

21

	1. Introduction
	1.1. Combinatory Logic
	1.2. Regular tree grammars
	1.3. Pseudo-codes and implementation

	2. Algorithm
	2.1. K-Expansions
	2.2. S-Expansions
	2.3. Algorithm pseudo-code

	3. Analysis
	3.1. Tree potential
	3.2. Soundness
	3.3. Completeness
	3.4. Unambiguity
	3.5. Generating functions
	3.6. Other applications
	3.7. Upper bound

	4. Conclusion
	Acknowledgements
	References

