
ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

Under consideration for publication in J. Functional Programming 1

A Theory of RPC Calculi for Client-Server
Model∗

Kwanghoon Choi
Chonnam National University, Gwangju, Republic of Korea

Byeong-Mo Chang
Sookmyung Women’s University, Seoul, Republic of Korea

(e-mail: kwanghoon.choi@jnu.ac.kr,chang@sookmyung.ac.kr)

Abstract

With multi-tier programming languages, programmers can specify the locations of code to run in
order to reduce development efforts for the web-based client-server model where programmers write
client and server programs separately and test the multiple programs together. The RPC calculus,
one of the foundations of those languages by Cooper and Wadler, has the feature of symmetric com-
munication in programmer’s writing arbitrarily deep nested client-server interactions. The feature of
the calculus is fully implemented by asymmetric communication in trampolined style suitable for
the client-server model. However, the existing research only considers a stateless server strategy in
which all server states are encoded for transmission to the client so that server states do not need
to be stored in the server. It cannot always correctly handle all stateful operations involving disks
or databases. To resolve this problem, we first propose new stateful calculi that fully support both
symmetric communication from the programmer’s viewpoint and asymmetric communication in its
implementation using trampolined style. All the existing calculi either provide only the feature of
asymmetric communication or propose only symmetric implementation suitable for the peer-to-peer
model, rather than the client-server model. Second, the method used to design our stateful server
strategy is based on a new locative type system which paves the way for a theory of RPC calculi
for the client-server model. Besides proposing the new stateful calculi, this theory can improve the
existing stateless server strategy to construct new state-encoding calculi that eliminate runtime checks
on remote procedure calls present in the existing strategy, and it enables us to design a new mixed
strategy that combines the benefits of both kinds of strategies. As far as we know, there are no
typed multi-tier calculi that offer programmers the feature of symmetric communication with the
implementation of asymmetric communication under the three strategies together.

Contents

1 Introduction 2
2 The RPC Calculus and Its Locative Type System 5

2.1 A Locative Type System for λrpc 7

∗ This work was supported by the National Research Foundation of Korea (NRF) grant funded by
the Korea government(MSIP) (No. 2017R1A2B4005138).

ar
X

iv
:2

11
0.

15
18

3v
1

 [
cs

.P
L

]
 2

8
O

ct
 2

02
1

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

2 K. Choi and B-M. Chang

3 Locative Calculi Encoding Server States 8
3.1 A State-Encoding RPC Calculus λ enc

rpc 9
3.2 The Formal Semantics of λ enc

rpc 10
3.3 A Typed Compilation of λrpc into λ enc

rpc 12
3.4 Separating Client and Server Terms in λ enc

cs 14
3.5 Discussion 16

4 Locative Calculi with Explicit Server States 17
4.1 A Stateful RPC Calculus λ state

rpc 18
4.2 The Formal Semantics of λ state

rpc 19
4.3 A Typed Compilation of λrpc for λ state

rpc 21
4.4 Separating Client and Server Terms in λ state

cs 23
4.5 Discussion 24

5 Related Work 29
6 Conclusion 31
References 31
A A Proof of Theorem for the RPC Calculus 33
B Proofs of Theorems for the State-Encoding Calculi 34
C Proofs of Theorems for the Stateful Calculi 37

1 Introduction

Modern computing environments such as web systems involve programming not a single
machine but several distributed machines together. For example, a web system basically
consists of a web server that accesses databases and a web client that provides user inter-
faces, and they are connected by a network. Programmers have to develop two individual
programs separately for the two machines, which increases the programmer’s burden.
Further, they need to test the two programs together, which is more complex than they
do with one program on a single machine.

The programmer’s task can be alleviated by the use of multi-tier programming languages
(Cooper et al., 2007; Cooper & Wadler, 2009; Murphy VII et al., 2004; Murphy, 2008;
Neubauer & Thiemann, 2005; Rastogi et al., 2014; Serrano et al., 2006; Serrano & Prunet,
2016; Balat, 2006; Chlipala, 2015). Such languages are equipped with the locations feature,
which enables description of the location to describe where a specified part of the code
should execute. Using this feature, programmers develop a single program that can be
used freely in different locations such as the server and the client in one programming
language. Then compilers will automatically generate separate programs for each location,
guaranteeing communication integrity among the differently located programs.

Notably, RPC calculus (Cooper & Wadler, 2009) offers the feature of symmetric com-
munication between client and server. After adding to each function location annotations
specifying where it must run, programmers can write arbitrarily deep nested client-server
interactions by applying only the standard functions. Their compilation method will au-
tomatically map the deep interactions onto flat request-response interactions on the web
system. The RPC calculus is the foundation of a practical multi-tier web programming
language called Links (Cooper et al., 2007).

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

A Theory of RPC Calculi for Client-Server Model 3

Fig. 1. Overview of a theory of RPC calculi

The existing target language of the RPC calculus, called the CS calculus, where a client
and a server run separate programs, was designed for the server to maintain no session
with individual clients. All server states during client-server interactions are appropriately
encoded in the server for transmission to the client so that server states do not need to be
stored in the server. The CS calculus uses asymmetric communication, which is almost free
in the client-server model, and supports symmetric communication from the programmer’s
viewpoint using trampolined style (Ganz et al., 1999). Thus, the implementation of the
RPC calculus was aligned with the well-known RESTful architecture of web systems,
where web services consist of stateless operations.

However, the existing RPC and CS calculi cannot always correctly handle all stateful
operations involving disks or databases. Some server states with disks or databases are
not easily serialised, and therefore, when the server calls a client function, for example,
between two subsequent database operations, it is not easy to encode all server states
left after the client function call. Even when server states are serialisable, passing seri-
alised server states between client and server repeatedly would increase communication
overheads, giving rise to efficiency concerns. To address this problem, a stateful server
strategy for the RPC calculus is necessary. This looks natural because supporting stateful
interactions is common in web systems. For example. Java HttpSession provides a way
to identify a user across more than one page request or visit to a web site and to store
information about that user.

First, we propose new calculi, λ state
rpc and λ state

cs as shown in Figure 1, based on a stateful
server strategy to resolve the problems of the existing calculi. The new calculi explic-
itly represent server states using the runtime stack, as in the conventional programming
languages. Most importantly, the new calculi fully support the feature of symmetric com-
munication in the RPC calculus by using trampolined style that is easy to implement in
the client-server model. There have been several multi-tier web programming languages
adopting stateful strategies, but none of them support both symmetric communication
from the programmer’s viewpoint and asymmetric communication from the implemen-
tor’s viewpoint. Hop (Serrano et al., 2006; Serrano & Prunet, 2016), Ur/Web (Chlipala,

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

4 K. Choi and B-M. Chang

2015), and Eliom (Balat, 2006; Radanne, 2017) only provide programmers asymmetric
communication where only the client invokes server functions freely but, for the other
way around, they must use a special network library, rather than a language construct. For
example, Hop offers a web reactive programming library for server-to-client communica-
tion. The stateful strategies employed by the three works are different from our strategy
fully supporting symmetric communication. Lambda5 (Murphy VII et al., 2004; Murphy,
2008) does provide programmers symmetric communication but with distinct syntactic
constructs for local and remote functions. The idea of its implementation is similar in that
continuations span multiple worlds such as client and server, but it is based on stateful
peer strategies. The semantic rules for all machines in a distributed system are the same,
and so there is a gap between the semantic description for the peer-to-peer model and
its implementation for the client-server model; to make it fit for the client-server model,
they must employ some ad hoc method. Also note that, to make it adopt a stateless server
strategy, the semantic rules for sever must be made different from those for client. A multi-
tier calculus (Neubauer & Thiemann, 2005) is also for concurrently running processes, and
so it suffers from the same limitation that Lambda5 has.

Second, the method used to design our stateful server strategy is based on a new locative
type system, and it paves the way for a theory of RPC calculi for the client-server model.
Under this theory, besides proposing the new stateful calculi, the theory can improve the
existing stateless server strategy to construct new state-encoding calculi, λ enc

rpc and λ enc
cs as

shown in Figure 1, that eliminate runtime checks on remote procedure calls in the existing
strategy. The theory also enables us to design a new mixed strategy that combines the
benefits of the state-encoding and stateful server strategy. We will elaborate more about
our theory as follows.

A new RPC calculus λrpc in the theory is a typed version of the original RPC calculus
with locative function types τ

a−→ τ ′ of functions that should run at location a. Typing with
locative types can distinguish remote function applications from local ones at the type
level, rather than at the term level by distinct constructs as in all the existing calculi except
the RPC calculus. Using this type information, we are able to design a new type-directed
compilation method. The new method is simpler than the existing untyped method because
it has two kinds of compilation rules, one for client and the other for server, rather than eight
kinds of rules, three for client and five for server, in the existing method. Also, the use of
type information eliminates runtime checks on locations, which is present in the existing
untyped compilation method. For example, due to the absence of location information in
function application terms, both a local function and a remote one can be invoked through
the same function application term, e.g. f M. So, f is needed to check in runtime if it is
a remote function because an invocation of remote functions is implemented differently
from an invocation of local functions. With the locative types, either f is always a local
function or it is always a remote function.

Our theory not only allows us to enjoy the benefits of the simple type-directed compila-
tion method and the elimination of the runtime checks on locations, but it also provides a
framework to compare and to combine the two kinds of strategies. Under the same theory,
it is easy to compare the two server strategies in terms of session management. In the state-
encoding server strategy, one session corresponds to a single request-response interaction,
whereas one session in the stateful server strategy can span multiple request-response

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

A Theory of RPC Calculi for Client-Server Model 5

interactions. A formal description of the comparison will be presented. Because our theory
employs a typed approach, it is also possible to design a mixed strategy where the state-
encoding server strategy is basically used to reduce the server resource consumption but
we switch to the stateful server strategy when necessary. This idea of a mixed strategy can
be realized by adopting the monadic encapsulation of state (Launchbury & Peyton Jones,
1994; Timany et al., 2017). Using the notion, stateful computations are encapsulated using
monads, and they can be separated from the purity of functional language. In the design, we
use the stateful calculi for the phase that uses stateful operations separated by the monadic
type system, and we use the state-encoding calculi for the other phase that uses purely
functional operations.

For the evaluation, we have implemented a prototype compiler of λrpc into two kinds
of calculi with a locative type inference algorithm, and have implemented two evaluators
running a client and a server communicating with the HTTP protocol1.

Figure 1 shows an overview of our theory. As far as we know, there are no typed
locative calculi with the feature of symmetric communication that are implemented with
asymmetric communication using a stateless server strategy, a stateful server strategy, and
a mixed strategy together.

The contributions of this paper are as follows:

• We present a locative type system for the RPC calculus λrpc and prove its type sound-
ness, guaranteeing that the locative information is preserved under the evaluation.

• We design the two RPC calculi λ enc
rpc and λ state

rpc with two semantically correct com-
pilation methods of λrpc into λ enc

rpc and λ state
rpc , respectively.

• We also design two CS calculi λ enc
cs and λ state

cs with two semantically correct compi-
lation methods of λ enc

rpc into λ enc
cs and of λ state

rpc and λ state
cs .

• We implement our stateless and stateful calculi to show their effectiveness by a
location-type inference algorithm, two compilers, and two HTTP-based evaluators.

• We formally compare the characteristics of session management of λ enc
cs with those

of λ state
cs by extending the semantic rules with session annotations.

• We propose a method to design a mixed strategy of the two strategies by extending
the RPC calculus with monadic encapsulation of state.

Section 2 introduces the RPC calculus λrpc with a locative type system and proves the
type soundness of the calculus. Section 3 proposes two calculi λ enc

rpc and λ enc
cs as a new

formulation of the server state-encoding strategy to implement the λrpc calculus. Section
4 extends the new formulation to two stateful calculi λ state

rpc and λ state
cs to implement the

λrpc calculus with the stateful server strategy. Section 5 discusses related work. Section 6
concludes the paper. In the appendix, all proofs of theorems introduced in the sections are
available.

2 The RPC Calculus and Its Locative Type System

Let us review the RPC calculus λrpc, proposed in (Cooper & Wadler, 2009). This is an
ordinary call-by-value λ -calculus with location annotations on λ -abstractions. The annota-

1 https://github.com/kwanghoon/rpccalculi

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

6 K. Choi and B-M. Chang

Syntax
Location a,b ::= c | s
Term L,M,N ::= V | L M
Value V,W ::= x | λ ax.N

Semantics
(Value)

V ⇓a V
L ⇓a λ bx.N M ⇓a W N{W/x} ⇓b V

(Beta)
L M ⇓a V

Fig. 2. The RPC calculus λrpc

tions tell the locations where the λ -abstractions execute. This calculus was designed as the
foundation of a practical multi-tier web programming language. The client-server model
is assumed in the calculus, and so the location annotations are either c denoting client or s
denoting server. The syntax of λrpc is thus defined as in Figure 2.

In Figure 2, λrpc has a big-step operational semantics with evaluation judgements,

M ⇓a V

denoting the evaluation of a term M in the location a resulting in the value V . In the se-
mantics, β -reduction is performed in the location annotated on the λ -abstraction. N{W/x}
is an ordinary substitution of W for x in N.

In λrpc, the evaluation of a term starts from client. An example is:

(λ s f . (λ sx.x) (f c)) (λ cy. (λ sz.z) y)

Figure 3 depicts the flow between the client and server for the example. The client first
requests the server to invoke a function (λ s f . · · ·) at the application in a box named S1.
During the evaluation of the body of the server function, the server calls a client function f
in C1, which is (λ cy. · · ·), with some constant c as an argument. This client function again
requests the server to invoke an identity function (λ sz.z) in S2. Finally, a server function
(λ sx.x) in S3 is locally applied to the result of (f c).

Fig. 3. Evaluation flow in λrpc starting from the client (Labels C1, S1, S2, and S3 indicate
the locations of the applications in the labelled boxes)

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

A Theory of RPC Calculi for Client-Server Model 7

2.1 A Locative Type System for λrpc

We propose a new type system for the untyped RPC calculus λrpc where function types

τ
a−→ τ

′

carry location annotations such that λ -abstractions of the function type run in the location
a specified in the type annotation. We advocate the use of types because a typed RPC
calculus is useful for compilation, which will be shown later. Figure 4 shows type terms
and typing rules. Here, base denotes fundamental types such as int.

Types
Type τ ::= base | τ

a−→ τ

Typing Rules
Γ(x) = τ

(T-Var)
ΓBa x : τ

Γ{x : τ}Bb M : τ ′
(T-Lam)

ΓBa λ bx.M : τ
b−→ τ ′

ΓBa L : τ
a−→ τ ′ ΓBa M : τ

(T-App)
ΓBa L M : τ ′

ΓBc L : τ
s−→ τ ′ ΓBc M : τ

(T-Req)
ΓBc L M : τ ′

ΓBs L : τ
c−→ τ ′ ΓBs M : τ

(T-Call)
ΓBs L M : τ ′

Fig. 4. A Locative Type System for λrpc

This type system uses typing judgements of the form ΓBa M : τ , which denotes that
a term M has type τ under a type environment Γ at location a. By (T-Lam), a loca-
tion specified in the λ -abstraction is defined to be carried by the function type, e.g. as
ΓBc λ sz.z : τ

s−→ τ with location s. (T-Var) is defined as usual. There are three typing rules
for applications classified by where the applications execute and where the functions of the
applications execute. (T-App) pertains to local applications. The location where the func-
tions of the application execute is the same as the location where the application executes.
(T-Req) and (T-Call) are about remote applications. (T-Req) is a typing for applications of
a server function requested by the client, whereas (T-Call) is a typing for applications of a
client function called by server. Here is a typing derivation example:

ΓBc λ sz.z : τ
s−→ τ ΓBc y : τ

(T-Req)
ΓBc (λ

sz.z) y : τ

The example λrpc term in Figure 3 can be typed under our type system using (T-Req) for
the two function applications in the boxes S1 and S2, respectively, (T-App) for the function
application in S3, and (T-Call) for the function application in C1.

For convenience, the typing derivation can be represented in an extended syntax as

(λ s f . (λ sx.x) s(f cc)) s(λ cy. (λ sz.z) sy)

where f has type base c−→ base and all of x, y, z, and c have type base. In the extended
syntax, each application term gets a location annotation. L aM at location a is for (T-App),
L sM in the client is for (T-Req), and L cM in the server is for (T-Call). Then the extended
syntax of the λrpc terms will uniquely determine typing derivations under location contexts.
This representation will be used in our compilation later.

The proposed locative type system has type soundness in that location information is
preserved under the evaluation in λrpc, as is proved by the following theorem.

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

8 K. Choi and B-M. Chang

Theorem 2.1 (Type Soundness for λrpc)
If ΓBa M : τ and M ⇓a V , then ΓBa V : τ .

Note that the typed RPC calculus is a strict subset of the untyped calculus. There are two
kinds of untypeable terms. One kind is due to simple type incompatibility in which the base
type is not compatible with any function types, which does not interest us much. We could
filter out such incompatible terms with the simply typed system. The other kind of untyped
terms are due to location incompatibility. Because we refine function types with location
information, two lambda terms that would have the same function type under the simply
typed system can now have different types. Consider an application term (λ a f . · · ·) M
where f has type base c−→ base and M has type base s−→ base. Obviously, this term cannot
be typed under the type system for λrpc. However, it is not difficult to make it typed without
changing the computation by a transformation of M into λ cx.M x, which now has the same
type as f and the same computation2. This idea can be generalised as a transformation
[[M]]τ τ ′ where a term M of type τ is transformed into τ ′ and τ becomes identical to τ ′ on
the removal of all location annotations in the types.

[[M]]τ τ = M

[[M]]τ1
a−→τ2 τ3

b−→τ4 = λ bx.[[M [[x]]τ3 τ1]]τ2 τ4

The above analysis establishes that every typed term in the simply typed system with ar-
bitrary location annotations can be made typed under our locative type system for λrpc im-
mediately or by the computation-preserving transformation. Our location-typed approach
can thus deal with all terms in the existing location-untyped approach.

We have implemented a unification-based type inference algorithm for our locative type
system. Although polymorphic types are beyond the scope of this research, we believe that
it is possible to extend our type system with them.

3 Locative Calculi Encoding Server States

We present state-encoding calculi for the client-server model, following the stateless server
strategy in (Cooper & Wadler, 2009). Under this strategy, when the server transfers control
to the client, all the server states are encoded into a term so that the client can get the server
to begin evaluating the term later. Unlike the original formulation, our calculi are new in
that they are based on location information at the type level . This feature improves the
original calculus, as we will see.

Figure 5 depicts the basic idea of the stateless server strategy on how to map every
deep nesting of client-server interactions (on the left) into a series of request-response
interactions between the client and the server (on the right). Each solid line indicates an
active thread of control, and each dashed line indicates a stack frame which is waiting
for a function to return. To support this mapping on the stateless server, we introduce the
notion of continuation (Flanagan et al., 1993) to encode the server control to continue. For

2 In a calculus with effects, the transformation may delay or eliminate effects because it transforms
expressions with effects into values without them. In this situation, the transformation must involve
more, for example, let y = M in λ cx.y x to have the same effects.

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

A Theory of RPC Calculi for Client-Server Model 9

Fig. 5. Mapping of arbitrarily deep client-server interactions in λrpc onto flat request-
responses interactions in λ enc

rpc

example, on invoking the client function in (C1), a continuation for (S3) is encoded into
a term, and the encoded term is sent to the client. After the evaluation of (C1), the client
requests the server to evaluate with the term to continue. Accordingly, there are two kinds
of responses, as shown in Figure 5: one kind of response marked by (Call) involves the
return of some encoded continuation, and the other kind marked by (Reply) simply returns
values.

Under the stateless server strategy, it is assumed that every continuation carried by
(Call)-type responses can be serialised so as to return to the client through the network.
When this assumption does not hold, the continuation-based translation will not work. This
observation leads to an alternative stateful server strategy in Section 4, which requires
no such assumption. In this section, we develop our theory under the assumption of a
serialisable continuation.

Now we introduce a new (state-encoding) RPC calculus λ enc
rpc where local function ap-

plications are distinguished from remote function applications explicitly by the new term
constructs req and call.

3.1 A State-Encoding RPC Calculus λ enc
rpc

We first explore the state-encoding RPC calculus informally with an example, and then
we will present its formal semantics in the next section. In λ enc

rpc , there are three kinds of
function applications: a local one Vf (W) and two remote ones, req(Vf ,W) and call(Vf ,W).
In the local function application, Vf is a local function. W denotes a sequence of values
that are its arguments. The terms req(Vf ,W) are used only in the client to transfer control
to the server and then to invoke a server function Vf . The terms call(Vf ,W) are used only
in the server to do the converse with a client function Vf .

Consider again the λrpc example term:

(λ s f . (λ sx.x) (f c)) (λ cy. (λ sz.z) y)

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

10 K. Choi and B-M. Chang

whose evaluation begins in the client. This λrpc term can be implemented under the
stateless server strategy by a λ enc

rpc term as

let r = req(M1,(M2, ID)) in r

where M1 and M2 implement the outermost function (λ s f .(λ sx.x) (f c)) and its argument
(λ cy. (λ sz.z) y), respectively. We used req to invoke the server function in the client. As
previously explained, the notion of continuation was used to encode server states. In the
stateless server strategy, server functions are implemented in continuation-passing style
(CPS), whereas client functions are implemented in direct style (Flanagan et al., 1993).
M1 is a CPS function converted from the server function. M2 as a normal argument is
converted from the original argument, and ID as a continuation argument denotes the
identity continuation λ sw.w.

Now let us examine M1:

M1 , λ s(f ,k).call(λ cx.let y = f (x) in req(cont,y), [[c]])

where cont is λ sw.[[λ sx.x]](w,k), and [[M]] represents an implementation of the λrpc term
M for the server. Here, f is the client function to be invoked, and k is a continuation,
which is ID in the example. The body of M1 is in the context of the server. We use call

to invoke the client function ‘λ cx. · · · ’ in M1: it transfers control to the client to evaluate
f [[c]] by ‘let y = f (x) in · · · ’ above, and then it returns control to the server by req with
the continuation cont representing (λ sx.x) [−] by ‘· · · in req(cont,y)’ above. The client
function in call thus supports the behaviour of commuting from the server to the client,
where cont is regarded as an encoding of the server state. We call such a client function a
commuting function, and our compiler will thus compose commuting functions.

M2 has the following simple structure:

M2 , λ cy. let d = λ s(z,k).k(z) in

let r = req(d,(y, ID)) in r

where d is a CPS function converted from λ sz.z, and the client invokes this (server)
function with its arguments y and ID.

3.2 The Formal Semantics of λ enc
rpc

This section first introduces the syntax and semantics for the state-encoding RPC calculus,
as shown in Figure 6. The syntax of M terms resembles A-normal form (Flanagan et al.,
1993). Values are a variable or a location-annotated function and are denoted by V or W .
Note that x̄ denotes a sequence of variables, and V denotes a sequence of values. There are
two kinds of remote function calls: call(Vf ,W) for invocation of a client function Vf in the
server with arguments W , and req(Vf ,W) for invocation of a server function in the client.
The let constructs let x = M1 in M2 bind x to some intermediate value from the evaluation
of M1, and continue to evaluate M2.

The client context Π, which is ctx x M, waits for a value to bind for x and to evaluate M.
The server context ∆ for the state-encoding RPC calculus is always empty.

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

A Theory of RPC Calculi for Client-Server Model 11

Syntax
Term M ::= V | V f (W) | req(V f ,W) | call(V f ,W) | let x = M in M
Value V,W ::= x | λ ax̄.M
Client context Π ::= ctx x M
Server context ∆ ::= ε

Semantics
Client: M | ε ⇒enc M′ | ε or M | ε ⇒enc Π |M′

(AppC) let y = (λ cx̄.M0)(W) in M | ε ⇒enc let y = M0{W/x̄} in M | ε
(Req) let x = req(λ sx̄.M0,W) in M | ε ⇒enc ctx x M | (λ sx̄.M0)(W)

(ValC) let x =V in M | ε ⇒enc M{V/x} | ε
(LetC) let x = (let y = M1 in M2) in M | ε ⇒enc let y = M1 in (let x = M2 in M) | ε

Server: Π |M⇒enc Π |M′ or Π |M⇒enc M′ | ε

(AppS) Π | (λ sx̄.M0)(W) ⇒enc Π |M0{W/x̄}
(Call) ctx x M | call(λ cx̄.M0,W) ⇒enc let x = (λ cx̄.M0)(W) in M | ε
(Reply) ctx x M | V ⇒enc let x =V in M | ε

Fig. 6. A state-encoding client-server calculus λ enc
rpc

In the semantics, client | server is the notation for snapshots in a client-server based
distributed system. We call such a snapshot a configuration. There are two kinds of config-
urations in this calculus:

• M | ε for the client to evaluate a term M with the empty server context (ε)
• Π |M for the server to evaluate a term M with a pending client context Π

The semantics is described as a relation on configurations as

Con f ⇒enc Con f ′

Local evaluation is in the form of M | ε ⇒enc M′ | ε for the client and Π | M⇒enc Π | M′
for the server. When control moves from the client to the server, the relevant semantic rule
will have the form M | ε ⇒enc Π | M′. For the opposite direction, it is Π | M⇒enc M′ | ε .
The notation R+ and R∗ for a relation R are defined as usual.

In the semantics, the evaluation of a term M begins in the client with the empty server
state and normally finishes when it reaches the value V , as M | ε ⇒enc∗ V | ε , meaning
that M evaluates to V .

For evaluation in the client, (AppC) performs a client function application. M{W/x̄}
denotes an ordinary parallel substitution of W for x̄ in M. (ValC) binds an intermediate
value with a let-variable and continues to evaluate a term in the let body. (LetC) takes
a nested let binding out for evaluation. With (Req), the client can request the server to
execute a server function application, leaving the client context.

The server-side evaluation, which is initiated by (Req) in the client, continues with
(AppS). It is reminiscent of (AppC) for the client. The evaluation in the server will reach
either a value V or a call call(f ′,W ′). For the case of a value, (Reply) returns the value to
the client context ctx x M as let x =V in M. For the case of a call, (Call) moves the client
function call into the client context as let x = f ′(W ′) in M. In any case, the server state will
be empty. This is the stateless server strategy. The typical steps in the server are as follows:

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

12 K. Choi and B-M. Chang

[Client] [Server]
Initiation let x = req(f ,W) in M | ε by (Req)

⇒enc ctx x M | f (W)

either ⇒enc + ctx x M | V by (Reply)
⇒enc let x =V in M | ε

or ⇒enc + ctx x M | call(f ′,W ′) by (Call)
⇒enc let x = f ′(W ′) in M | ε

The proposed semantic rules are defined in a minimal way enough for λ enc
rpc to be an

intermediate calculus for compilation of λrpc, as will be seen. The semantic rules could
be easily extended to cover all syntactic terms including, for example, local applications
without let in (AppC) or remote applications without let in (Req), but this extension is not
essential for our purpose. In the server side, the intermediate calculus for CPS conversion
has only to support local applications, call, and values, all without let.

Note that the evaluation of call in the semantics is allowed only in tail positions because
the server state right after the call must be empty. To map λrpc terms without such a
restriction into λ enc

rpc terms with it, compiler support is required as will be explained soon.

3.3 A Typed Compilation of λrpc into λ enc
rpc

Now we are ready to present a typed compilation of the RPC calculus into the state-
encoding RPC calculus. Figure 7 shows our compilation rules.

The compilation rules for client terms are described as C[[Mrpc]] = Menc
rpc . Here, Mrpc

actually denotes a typing derivation for a source term in the RPC calculus, rather than
the source term itself. Such a typing derivation provides each application subterm location
information where the subterm should be evaluated, as explained in Section 2. Menc

rpc denotes
a compiled target term.

(VarC) compiles a variable term simply into a variable. (LamCC) compiles each client
function using direct style. (LamCS) compiles each server function using CPS conversion.
The reason for using the conversion will be explained later. (AppCC) is a compilation
rule for a local client function application typed under the typing rule (T-App), denoted
by L cM. It is a conventional compilation rule that compiles L into a term generating a
client function, compiles M into another term generating an argument, and ends with a
local application term. (AppCS) compiles a remote server function application typed under
the typing rule (T-Req), denoted by L sM. It is almost the same as (AppCC). The only
difference is the replacement of a local application term (f x) with a remote application
term req(f , (x,λ sy.y)). Our compilation rules ensure that f is a CPS-converted function.
Therefore, it will take not only a function argument x but also a continuation. The identity
continuation (λ sx.x) is given to the remote application term because it begins the evaluation
of a CPS term.

(AppCC) and (AppCS) introduce the extra layer of ‘let r = · · · in r’ surrounding local
and remote applications to adapt our compilation to the minimal semantic rules (AppC)
and (Req), respectively.

The basic idea of compilation for the server is CPS conversion. The compilation rules for
server terms are described as S[[Mrpc]] K = Menc

rpc , where K is (a value for) a continuation.

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

A Theory of RPC Calculi for Client-Server Model 13

Client: C[[Mrpc]] = Menc
rpc

(VarC) C[[x]] = x
(LamCC) C[[λ cx.M]] = λ cx.C[[M]]
(LamCS) C[[λ sx.M]] = λ s(x,k).S[[M]] k
(AppCC) C[[L cM]] = let f =C[[L]] in

let x =C[[M]] in
let r = f (x) in r

(AppCS) C[[L sM]] = let f =C[[L]] in
let x =C[[M]] in
let r = req(f ,(x,λ sy.y)) in r

Server: S[[Mrpc]] K = Menc
rpc

(VarS) S[[x]] K = K(x)
(LamSC) S[[λ cx.M]] K = K(λ cx.C[[M]])
(LamSS) S[[λ sx.M]] K = K(λ s(x,k).S[[M]] k)
(AppSC) S[[L cM]] K = S[[L]] (λ s f .

S[[M]] (λ sx.
call(λ cx.let y = f (x) in req(K,y), x)))

(AppSS) S[[L sM]] K = S[[L]] (λ s f .
S[[M]] (λ sx.

f (x,K)))

Fig. 7. A typed compilation for λ enc
rpc

In the compiled term, we first evaluate Mrpc and then continue with K and the evaluation
result.

(VarS) compiles a variable into a term applying a continuation K to a value bound to the
variable. (LamSC) and (LamSS) have a similar structure as (VarS). They only replace the
compiled variable x in (VarS) with C[[λ ax.M]]. (AppSS) compiles a local server function
application typed under (T-App), and it is the same as the CPS conversion of an application.
(AppSC) is the most important compilation rule. A typing derivation denoted by L cM
typed under (T-Call) is compiled as this. Both L and M are first compiled into terms whose
evaluation will be bound to a function f and an argument x in the same way as in (AppSS).
Then the compilation rule generates call(λ cx.let y = f (x) in req(K,y),x). By this remote
client function application, control is first transferred to the client to evaluate f (x). Control
is then returned to the server by req(K,y) to continue K in the server with the application
result y. Our compiler thus supports the behaviour of commuting from the server to the
client by composing this client function, which we call a commute function.

In regard to a client function call from the server, the RPC calculus can allow it in
non-tail positions but the state-encoding RPC calculus allows it only in the tail position.
This mismatch is resolved as follows. The commute function above is composed to have
a request with a continuation after the client function call. The continuation will hold the
context of the client function call in a non-tail position. In this way, (AppSC) ensures that
call(−,−) can be always in a tail position in the state-encoding RPC calculus no matter
where client function calls from the server appear in the RPC calculus.

Now, we prove the correctness of our compilation for λ enc
rpc as follows:

Theorem 3.1 (Correctness of Compilation for λ enc
rpc)

Assume a well-typed λrpc term M under the locative type system:

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

14 K. Choi and B-M. Chang

• If M ⇓c V , then C[[M]] | ε ⇒enc∗ C[[V]] | ε .
• If M ⇓s V , then Π | S[[M]] K⇒enc∗ Π | S[[V]] K for all Π and K.

The basic idea of our proof is this. A sequence of evaluation steps is built in λ enc
rpc matched

to each subtree of evaluation in λrpc by induction on the height of the evaluation trees,
and then the sequences are put together to build what is matched to the whole evaluation
tree in the conditions. As a natural consequence, the proof also guarantees that client-
server communication in λrpc is preserved in λ enc

rpc , though the theorem itself does not
state this explicitly. Figure 5 shows an example of the correspondence of client-server
communication between λrpc and λ enc

rpc with identical box names S1, C1, and S2 labelled
on the related flows.

3.4 Separating Client and Server Terms in λ enc
cs

Although the state-encoding RPC calculus has the potential to make the λrpc terms run on
the client and the server separately, in the λ enc

rpc terms, the client part and the server part are
still together. In this section, we propose a state-encoding CS calculus λ enc

cs where the two
parts are clearly separated, and names are used in one part to refer to functions in the other
part.

Figure 8 shows the syntax and semantics of the state-encoding CS calculus. Terms in the
calculus are now denoted by m, and values are variables or closures clo(F, v̄) denoted by v
or w. F is a name for a closed function. A closed function, z̄λ ax̄.m, is a function with a list
of free variables z̄. In a closure, v̄ consists of values to substitute for the free variables z̄ in
the closed function. A substitution of v̄ for x̄ in m is written as m{v̄/x̄}. The function store
φa is a mapping of names into closed functions for each location a. π and δ are client and
server contexts, respectively.

Configurations in the semantics of the state-encoding CS calculus are as follows:

• m | ε for the client to evaluate a term m with the empty server context ε

• π | m for the server to evaluate a term m with a pending client context π

The semantic rules for the state-encoding CS calculus are isomorphic to those for the state-
encoding RPC calculus under the aforementioned changes.

Figure 8 also shows the compilation rules of the state-encoding RPC calculus into
the state-encoding CS calculus. The compilation rules are actually closure conversion
gathering closed functions for each location. For a given λ enc

rpc term M, the following
compilation generates a λ enc

cs term m:

CC[[M]] = m

The compilation rules traverse a source term. Whenever a location-annotated function
is encountered, a fresh name F is created, a list of free variables z̄ is collected over the
function, and a mapping of this name into a constructed closed function is added to the
function store at the location. f v is the standard function for free variable collection trivially
extended with the located lambda calculus. Note that the compilation rules utilise implicit
global function stores, with which the mapping of names and closed functions encountered
during the compilation is checked. Actually, rather than checking the presence of closed

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

A Theory of RPC Calculi for Client-Server Model 15

Syntax
Term m ::= v | v f (w) | req(v f ,w) | call(v f ,w) | let x = m in m
Value v,w ::= x | clo(F, v̄)
Function store φa ::= { · · · , F = z̄λ ax̄.m, · · · }
Client context π ::= ctx x m
Server context δ ::= ε

Semantics
Client: m | ε ⇒enc m′ | ε or m | ε ⇒enc π | m′

(AppC) let y = clo(F, v̄)(w) in m | ε ⇒enc let y = m0{v̄/z̄,w/x̄} in m | ε if φc(F) = z̄λ cx̄.m0

(Req) let x = req(clo(F, v̄),w) in m | ε ⇒enc ctx x m | clo(F, v̄)(w) if φs(F) = z̄λ sx̄.m0

(ValC) let x = v in m | ε ⇒enc m{v/x} | ε
(LetC) let x = (let y = m1 in m2) in m | ε ⇒enc let y = m1 in (let x = m2 in m) | ε

Server: π | m⇒enc π | m′ or π | m⇒enc m′ | ε

(AppS) π | clo(F, v̄)(w) ⇒enc π | m0{v̄/z̄,w/x̄} if φs(F) = z̄λ sx̄.m0

(Call) ctx x m | call(clo(F, v̄),w) ⇒enc let x = clo(F, v̄)(w) in m | ε if φc(F) = z̄λ cx̄.m0

(Reply) ctx x m | v ⇒enc let x = v in m | emp
Compilation

CC[[Menc
rpc]] = m

CC[[x]] = x
CC[[λ ax.m]] = clo(F, z̄) if z̄ = f v(λ ax.m) and φa(F) = z̄λ ax.CC[[m]]

CC[[v(w)]] = CC[[v]](CC[[w]])
CC[[let x = m1 in m2]] = let x =CC[[m1]] in CC[[m2]]

CC[[req(v,w)]] = req(CC[[v]], CC[[w]])
CC[[call(v,w)]] = call(CC[[v]], CC[[w]])

Fig. 8. Syntax and semantics of λ enc
cs with a compilation of λ enc

rpc

functions in the function stores, we intend to collect the closed functions to construct the
function stores.

Our main compilation method using CC[[−]] compiles a closed state-encoding RPC term
into a closed state-encoding CS term. As a side effect, it generates a function store φc for the
client and a function store φs for the server. Now we can prove that a combined compilation
of C[[−]] with CC[[−]] of RPC terms will generate state-encoding CS terms that correctly
implement the RPC terms as follows.

Theorem 3.2 (Correctness of Compilation for λ enc
cs)

Assume a well-typed term M under the locative type system. Given φc and φs:

• If M ⇓c V , then CC[[C[[M]]]] | ε ⇒enc∗ CC[[C[[V]]]] | ε .

By this compilation correctness theorem, it is demonstrated that the feature of the RPC
calculus allowing arbitrarily deep nesting of control contexts between the client and the
server can be correctly implemented by a series of flat request-responses under the stateless
server strategy.

We have implemented a parser of λrpc, a location-type inference procedure for our type
system, a compiler, and an evaluator of λ enc

rpc and λ enc
cs on HTTP between the client and

the server. Figure 9 shows a compilation of the RPC term in Figure 3, generated by the

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

16 K. Choi and B-M. Chang

φc : main = let r3 = req(clo(g7,{}),clo(g10,{}),clo(g11,{})) in r3
g2 = { f7, f5,k4} λ cz9. let r10 = f7 z9 in req(clo(g1,{ f5,k4}, r10)
g10 = {} λ cy. let r14 = req(clo(g8,{}), y,clo(g9,{})) in r14

φs : g1 = { f5,k4} λ sx6. f5 (x6,k4)
g3 = { f7, f5,k4} λ sx8. call(clo(g2,{ f7, f5,k4}), x8)
g4 = { f5,k4} λ s f7. clo(g3,{ f7, f5,k4}) c
g5 = {k4, f} λ s f5. clo(g4,{ f5,k4})) f
g6 = {} λ sx,k11. k11 x
g7 = {} λ s f ,k4. clo(g5,{k4, f}) (clo(g6,{}))
g8 = {} λ sz,k15. k15 z
g9 = {} λ sx16. x16
g11 = {} λ sx17. x17

Fig. 9. Compilation of the RPC term in Figure 3

compiler. The evaluator starts with main in the client. For readability, each list of free
variables is enclosed by { }, and so is each list of values for such free variables in closures.

Our state-encoding calculi are higher-order, whereas the original CS calculus remains
first-order. This is because the original CS calculus employed an implementation method
called defunctionalisation (Reynolds, 1972), which converts higher-order functions into
first-order ones. However, the state-encoding calculi offer more freedom in the implemen-
tation of higher-order functions. They do not actually depend on any specific implemen-
tation methods such as closure conversion; they could even utilise defunctionalisation as
well.

3.5 Discussion

3.5.1 Trampolined Style

Our state-encoding calculi use a new trampolined style embedded in the semantics. This
contrasts with the original CS calculus (Cooper & Wadler, 2009), which has the tram-
polined style (Ganz et al., 1999) formulated using terms that introduces a special loop
function called trampoline in the client as follows:

Line 1: trampoline(x) = case x o f
Line 2: | Call(f ,x,k)→ trampoline(req(k, f (x)))
Line 3: | Return(x)→ x
Line 4: trampoline(req(g,v))

In Line 4, an invocation of a server function g from the client is surrounded by the tram-
poline function. It is like the semantic behaviour defined by (Req) in the state-encoding
calculi. On receiving a datum like Call(f ,x,k) from the server in Line 2, the client applies
f to x, and then invokes a continuation k with the application result. This is surrounded by
the trampoline function again for repetition as many times as is necessary. For commuting
between the server and the client like this, our compilation method composes commute
functions, as explained in Section 3.3:

commute, λ
c(f ,x,k).let y = f (x) in req(k,y)

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

A Theory of RPC Calculi for Client-Server Model 17

so that Call(f ,x,k) can be regarded as commute(f ,x,k). In the trampoline function, two
branches in Lines 2 and 3, one for Call and the other for Return, correspond to what are
supported by (Call) and (Reply), respectively.

3.5.2 A Location-Typed Approach

A difference between our state-encoding calculi and the original calculi (Cooper & Wadler,
2009) is the use of locative type information for compiling function applications. In the
original location-untyped approach, location information is not available for function ap-
plications, whereas functions have location annotations. Both the client function and the
server function can therefore be invoked in the same function application. For example, in
the λrpc term:

let g = λ
a f . f M in · · · g (λ cx.x) · · · g (λ sy.y) · · ·

both (λ cx.x) and (λ sy.y) are invoked in the same application term f M. As a result, every
function application must check at runtime the location of the function to decide whether to
use the trampoline function in case of the server function. In our location-typed approach,
local function applications are clearly separated from remote function applications, and so
no such dynamic check at runtime is required. We also showed that all terms in the location-
untyped approach can be supported in the location-typed approach by the transformation
explained in Section 2.

In addition to the absence of runtime checks on location, our location-typed approach
results in a simple form of compilation where there are only two kinds of compilation
rules, one for the client and the other for the server. The original compilation method
in the location-untyped approach consists of eight kinds of compilation rules: three for
the client and five for the server. The simple form helps explain the essential structure of
our compilation rules: the compilation of λrpc into λ enc

rpc is a combination of direct-style
compilation for the client and CPS-style compilation for the server, and the compilation of
λ enc

rpc into λ enc
cs is a variant of closure conversion classifying closed functions on locations.

The simple compilation rules using locative types facilitate the development of new stateful
calculi in the next section, which was not achieved by the previous work.

4 Locative Calculi with Explicit Server States

The stateless server strategy in the state-encoding calculi is not always satisfactory. When
the server states involve disks or databases that do not permit serialisation, it is difficult to
encode them. Let us see an example:

λ squery.let cursor = executeOnDatabase(query) in
let name = getNameFromRecord(cursor) in
let r = fclient(name) in
let cursor = nextRecord(cursor) in · · ·

This is a server function that has a query as an argument. It is assumed to invoke a
client function repeatedly for each of a list of records obtained from a database query. A
remote client function invocation fclient(name) resides between two subsequent database
operations. We should serialise a list of records referenced by the database cursor before the

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

18 K. Choi and B-M. Chang

invocation. However, in general, it is difficult to pack the records into a continuation leaving
nothing in the server. Even when it is possible to serialise such server states, moving the
serialised records between the client and the server repeatedly will increase communication
overheads. This will cause some efficiency concerns. This observation motivates us to
design new stateful calculi that eliminate the need to encode server states.

In this section, we develop new calculi that save and restore server states using the
stack in the underlying semantics, and therefore there is no need to encode them as in
the state-encoding calculi. In fact, using the runtime stack is similar to how conventional
programming languages have approached the problem of saving and restoring control
contexts.

We first introduce the syntax and semantics for a stateful RPC calculus λ state
rpc using

stack-based control states in the server. Then we propose a typed compilation method of
compiling λrpc terms into λ state

rpc terms and subsequently another compilation method for
separating client and server terms in λ state

cs .

4.1 A Stateful RPC Calculus λ state
rpc

Let us explore the features of a stateful RPC calculus λ state
rpc before we explain the details

of its syntax and semantics. An important feature is a stack ∆ in the server:

∆ ::= ε | ctx x M ·∆

where the empty stack is denoted by ε , and any non-empty stack consists of contexts
concatenated with the dot operator. A context ctx x M can be viewed as a let term with a
hole such as let x = [−] in M denoting a control state.

We illustrate two new constructs call and ret in the stateful RPC calculus with the
following steps under the evaluation relation⇒state:

[Client] [Server]
ctx z Mz | ∆; let x = call(fclient ,Varg) in M (1)

⇒state let z = fclient(Varg) in Mz | ctx x M ·∆ (2)
⇒state + let z = ret(W) in Mz | ctx x M ·∆ (3)
⇒state ctx z Mz | ∆; let x =W in M (4)

In (1), a server is about to switch to a client in order to invoke a client function. The new
call construct does this after pushing the server context (ctx x M) onto a stack ∆. In (2), the
waiting client context (ctx z Mz) is open to become the let with a hole filled with the client
function application fclient(Varg), and the server context stack grows from ∆ to ctx x M ·∆.
This application is assumed to evaluate eventually to ret(W) using the other new construct.
In (3), the new ret construct is about to switch to the server to return the value W after
popping the top server context from the server stack and restoring the server context saved
by call previously. In addition, the ret construct leaves the client context surrounding itself
in the client. This will lead to (4).

Note that call(f ,W) in λ state
rpc is different from call(f ,W) in λ enc

rpc in regard to whether or
not the server stack is involved. Accordingly, the organisation of client functions for calling
by the constructs is different, as we will see soon.

The configuration ‘let x = ret(V) in M | ∆’ in the stateful RPC calculus is reminiscent
of the configuration ‘let x = req(K,V) in M | ε’ in the state-encoding RPC calculus. The

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

A Theory of RPC Calculi for Client-Server Model 19

server stack ∆ in the former can be regarded as the continuation K encoded for a server
control state in the latter. As we apply K to V in the server and bind the application result
to x in the latter, we return V to the server with ∆ and bind the evaluation result to x in the
former.

Consider again the λrpc example term:

(λ s f . (λ sx.x) (f c)) (λ cy. (λ sz.z) y)

For comparison with the state-encoding RPC calculus, this term can be implemented in
the stateful RPC calculus as

let r = req(M1,M2) in r

where M1 and M2 are supposed to implement the outermost function (λ s f . (λ sx.x) (f c))
and its argument (λ cy. (λ sz.z) y), respectively. The use of req is the same as for λ enc

rpc . The
notable difference is that it does not require any continuation argument. In λ state

rpc , it is not
necessary to use CPS conversion for server functions, because the underlying semantics of
the stateful calculus explicitly manages a server stack that continuations would substitute
for in the state-encoding calculus.

Now let us examine M1:

M1 , λ s f . let w = call(λ cx.let y = f (x) in ret(y) , [[c]]) in
let r = [[λ sx.x]](w) in r

where [[M]] represents an implementation of a λrpc term M for the server. Given f as
a client function, call switches to the client to invoke a commute function (λ cx.let y =

f (x) in ret(y)), pushing a server context (ctx w (let r = [[λ sx.x]](w) in r)) on a server
stack. The commute function applies f to x (i.e. [[c]]) in the client. It then returns the result
value y to the server by ret(y), popping the server context. We continue to evaluate the term
from the restored context with the result value bound to w in the server.

One implementation of M2 is as follows:

M2 , λ
cy. let r = req([[λ sz.z]], y) in r

When compared with the implementation for λ enc
rpc , this is a simple structure with no

continuation argument in the use of req to invoke a server function.

4.2 The Formal Semantics of λ state
rpc

Figure 10 shows the syntax and semantics of the stateful RPC calculus λ state
rpc in the same

style of the state-encoding RPC calculus. Basically, the syntax of the calculus has A-normal
form with three constructs: req, call, and ret. We intend this new construct ret(V) to return
a value to the server from the client, and a symmetric construct of call(f ,W) invokes a
client function from the server.

Values are either a variable or a locative function. Client contexts Π are the same for
λ enc

rpc . Server contexts now have the form of a stack denoted by ∆.
There are two kinds of configurations in the stateful RPC calculus:

• M | ∆ for the client to evaluate a term M with a stack ∆ in the server separated by |
• Π | ∆;M for the server to evaluate a term M on a stack ∆ with a pending client context

Π in the client separated by |

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

20 K. Choi and B-M. Chang

Syntax
Term M ::= V | V f (W) | req(V f ,W) | call(V f ,W) | ret(V) | let x = M in M
Value V,W ::= x | λ ax̄.M
Client context Π ::= ctx x M
Server context stack ∆ ::= ε | ctx x M ·∆

Semantics
Client: M | ∆⇒state M′ | ∆ or M | ∆⇒state Π | ∆′;M′

(AppC) let y = (λ cx̄.M0)(W) in M | ∆ ⇒state let y = M0{W/x̄} in M | ∆
(Req) let x = req(λ sx̄.M0,W) in M | ∆ ⇒state ctx x M | ∆; let r = (λ sx̄.M0)(W) in r

(ValC) let x =V in M | ∆ ⇒state M{V/x} | ∆
(LetC) let x = (let y = M1 in M2) in M | ∆ ⇒state let y = M1 in (let x = M2 in M) | ∆
(Ret) let y = ret(V) in M2 | ctx x M1 ·∆ ⇒state ctx y M2 | ∆; let x =V in M1

Server: Π | ∆;M⇒state Π | ∆;M′ or Π | ∆;M⇒state M′ | ∆′

(AppS) Π | ∆; let y = (λ sx̄.M0)(W) in M ⇒state Π | ∆; let y = M0{W/x̄} in M

(Call) ctx y M2 | ∆; let x = call(λ cx̄.M0,W) in M1

⇒state let y = (λ cx̄.M0)(W) in M2 | ctx x M1 ·∆
(Reply) ctx x M | ∆; V ⇒state let x =V in M | ∆
(ValS) Π | ∆; let x =V in M ⇒state Π | ∆; M{V/x}
(LetS) Π | ∆; let x = (let y = M1 in M2) in M ⇒state Π | ∆; let y = M1 in (let x = M2 in M)

Fig. 10. A stateful client-server calculus λ state
rpc

The semantics of the calculus is described by the evaluation relation ⇒state on the
configurations. The semantic rules are defined in a minimal way for λ state

rpc enough to
be an intermediate calculus for compilation of λrpc as those for λ enc

rpc . In the semantics,
(AppC), (ValC), and (LetC) are semantic rules for locally running the client in the form
M | ∆⇒state M′ | ∆. Note that the three client-side rules are different from those rules in
λ enc

rpc only in that the server context stack ∆ replaces the empty server context of the rules
in λ enc

rpc . (AppS), (ValS), and (LetS) are semantic rules for locally running the server in the
form Π | ∆;M ⇒state Π | ∆;M′. The three server-side rules introduce the server context
stack ∆ when compared with those rules in λ enc

rpc .
The remaining four semantic rules, (Req), (Ret), (Call), and (Reply), change active

running from the client to the server or vice versa. We intend a request initiated by (Req) to
finish by (Reply), and we also intend a call that (Call) begins to finish with (Ret). Note that
both (Req) and (Reply) are exactly the same as those in λ enc

rpc except for the introduction of
a server context stack ∆ instead of the empty server context.

(Call) in λ state
rpc exhibits an important difference from that in λ enc

rpc . The call construct can
now be used in a non-tail position, e.g. let y = [−] in M0. (Call) pushes it onto the current
server context stack ∆ as ctx y M0 ·∆, switching to the client. (Ret) reverses this procedure:
it returns a value computed in the client back to the server, popping the top server context
from the server stack ctx y M0 ·∆.

Interestingly, we find that the client-server interactions in λ state
rpc are analogous to the

behaviour of coroutines (Conway, 1963). When the client is assumed to be an initiator and
the server is assumed to be a coroutine, (Req) is an initiation of a coroutine, (Call) is a

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

A Theory of RPC Calculi for Client-Server Model 21

Client: C[[Mrpc]] = Mstate
rpc

(VarC) C[[x]] = x
(LamCC) C[[λ cx.M]] = λ cx.C[[M]]
(LamCS) C[[λ sx.M]] = λ sx.S[[M]]
(AppCC) C[[L cM]] = let f =C[[L]] in

let x =C[[M]] in
let r = f (x) in r

(AppCS) C[[L sM]] = let f =C[[L]] in
let x =C[[M]] in
let r = req(f ,x) in r

Server: S[[Mrpc]] = Mstate
rpc

(VarS) S[[x]] = x
(LamSC) S[[λ cx.M]] = λ cx.C[[M]]
(LamSS) S[[λ sx.M]] = λ sx.S[[M]]
(AppSC) S[[L cM]] = let f = S[[L]] in

let x = S[[M]] in
let r = call(λ cx.let y = f (x) in ret(y), x) in r

(AppSS) S[[L sM]] = let f = S[[L]] in
let x = S[[M]] in
let r = f (x) in r

Fig. 11. A typed compilation for λ state
rpc

suspension of the execution of the coroutine to return to its initiator, (Ret) is a resumption
of the coroutine, and (Reply) is a terminator of the courotine.

The stateful RPC calculus is also based on the semantic-based trampoline style, which
was explained for the state-encoding calculi in Section 3.5, by (Req), (Call), and (Reply)
together with the support for composing commute functions by its compiler, which will be
explained in the next section.

4.3 A Typed Compilation of λrpc for λ state
rpc

Now we present a typed compilation of the RPC calculus into the stateful RPC calculus.
Our compilation takes a typing derivation of a source term under our locative type system
in the same way as before.

Figure 11 shows our compilation rules. The compilation rules for the client and the
server have the same form:

C[[Mrpc]] = Mstate
rpc and S[[Mrpc]] = Mstate

rpc

The compilation rules are in direct style. This contrasts with the use of CPS conversion in
the compilation rules for the state-encoding RPC calculus, which does not support saving
and restoring server contexts in its semantics. Therefore, it is a compiler that supports
this by CPS conversion. The stateful calculus, however, does support saving and restoring
server contexts in the underlying semantics, and so the compiler for this calculus does not
need to track any server contexts to manage. As a result, it is not necessary to adopt CPS
conversion for compilation of server terms anymore.

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

22 K. Choi and B-M. Chang

In the compilation rules, (VarC), (LamCC), and (LamCS) are the same as (VarS), (LamSC),
and (LamSS) for variable, client function, and server function. The compilation rules only
follow the structure of the terms.

(AppCC) and (AppSS) are for local applications in the client and server, respectively.
They generate local application terms f (x) with f and x as the compiled terms of the
function and the argument of the applications.

(AppCS) and (AppSC) are the most interesting compilation rules. (AppCS) compiles
a term of invocation of a server function in the client. It simply generates a target term
with req(f ,x) with f as a compiled server function and x as a compiled argument. Note
that there is no identity continuation once introduced in compilation for the state-encoding
RPC calculus. (AppSC) compiles a term of invocation of a client function in the server,
into a target term with call(λ cx.let y = f (x) in ret(y),x) composing a commute function
with call and ret.

We now prove a slightly stronger version of the correctness of the compilation for λ state
rpc .

For the proof, we introduce a definition of call-return balanced evaluation steps. call and
ret are the only constructs to push onto and to pop from a server stack. Intuitively, this
implies that in the evaluation steps, every invocation of a client function from the server
will return to the server without changing a client context and a server stack.

Definition 4.1
A sequence of evaluation steps, Con f1⇒state∗ Con fn, is said to be call-return balanced if
the evaluation sequence is derived from the following grammar:

• bal ::= Con fcall bal Con fret | Con felse | bal1 bal2 where

— Con fcall and Con fret : configurations paired in the form of

(1) ctx y My | ∆; let x = call(V,W) in Mx and

(2) let y = ret(Vr) in My | ctx x Mx ·∆, respectively.

— Con felse : configurations in the form of neither Con fcall nor Con fret

Note that it is easy to construct Con fcall ⇒state∗ ctx y My | ∆; let x = Vr in Mx in the
call-return balanced evaluation steps, because Con fret ⇒state ctx y My | ∆; let x =Vr in Mx

by the definition of (Ret). The client context ctx y My and the server stack ∆ are preserved
during the client function call.

Theorem 4.1 (Correctness of Compilation for λ state
rpc)

Assume a well-typed term λrpc M under the locative type system:

• If M ⇓c V , then C[[M]] | ∆⇒state∗ C[[V]] | ∆ for all ∆, which is call-return balanced.
• If M ⇓s V , then Π | ∆;S[[M]]⇒state∗ Π | ∆;S[[V]] for all Π and ∆, which is call-return

balanced.

The basic idea of our proof has the same structure as the proof for λ enc
rpc explained in

Section 3.3. The proof builds a sequence of evaluation steps in λ state
rpc matched to each

subtree of evaluation in λrpc by induction on the height of evaluation trees, and then it
puts the sequences together to build what is matched to the whole evaluation tree in the
conditions. The proof therefore guarantees that client-server communication in λrpc is
preserved in λ enc

rpc , though the theorem itself does not tell this explicitly. Later, we will

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

A Theory of RPC Calculi for Client-Server Model 23

Syntax
Term m ::= v | v f (w) | req(v f ,w) | call(v f ,w) | ret(v) | let x = m in m
Value v,w ::= x | clo(F, v̄)
Client context π ::= ctx x m
Server context δ ::= ε | ctx x m ·δ

Semantics
Client: m | δ ⇒state m′ | δ or m | δ ⇒state π | δ ′; m′

(AppC) let y = vF (w) in m | δ ⇒state let y = m0{v̄/z̄,w/x̄} in m | δ
if vF = clo(F, v̄) and φc(F) = z̄λ cx̄.m0

(Req) let x = req(vF ,w) in m | δ ⇒state ctx x m | δ ; let r = vF (w) in r
if vF = clo(F, v̄) and φs(F) = z̄λ sx̄.m0

(ValC) let x = v in m | δ ⇒state m{v/x} | δ
(LetC) let x = (let y = m1 in m2) in m | δ ⇒state let y = m1 in (let x = m2 in m) | δ
(Ret) let y = ret(v) in m2 | ctx x m1 ·δ ⇒state ctx y m2 | δ ; let x = v in m1

Server: π | δ ; m⇒state π | δ ; m′ or π | δ ; m⇒state m′ | δ ′

(AppS) π | δ ; let y = vF (w) in m ⇒state π | δ ; let y = m0{v̄/z̄,w/x̄} in m
if vF = clo(F, v̄) and φs(F) = z̄λ sx̄.m0

(Call) ctx y m2 | δ ; let x = call(vF ,w) in m1 ⇒state let y = vF (w) in m2 | ctx x m1 ·δ
if vF = clo(F, v̄) and φc(F) = z̄λ cx̄.m0

(Reply) ctx x m | δ ; v ⇒state let x = v in m | δ

(ValS) π | δ ; let x = v in m ⇒state π | δ ; m{v/x}
(LetS) π | δ ; let x = (let y = m1 in m2) in m ⇒state π | δ ; let y = m1 in (let x = m2 in m)

Compilation
CC[[Mstate

rpc]] = m

CC[[ret(v)]] = ret(CC[[v]]) (The rest of the compilation rules are the same as for λ enc
cs)

Fig. 12. Syntax and semantics of λ state
cs with a compilation of λ state

rpc

present an example of a correspondence of client-server communication between λrpc and
λ state

rpc indirectly by comparing related flows between λ enc
rpc and λ state

rpc in Section 4.5.1.

4.4 Separating Client and Server Terms in λ state
cs

As was done for the state-encoding calculi, we propose a stateful CS calculus. Again, the
basic idea is to use closure conversion to decompose a term into closed functions and to
classify them according to location annotations.

In Figure 12, the syntax and semantics of λ state
cs are shown. The syntax of λ state

cs is
identical to that of λ enc

cs except for ret(v). The terms in the calculus are denoted by m.
The calculus explicitly deals with closures v as values, rather than lambda terms. F is a
name for a closed function. φa is a mapping of names into closed functions in the location
a. π and δ are client and server contexts, respectively.

Configurations in the semantics of λ state
cs are changed accordingly:

• m | δ for the client to evaluate a term m with a stack δ in the server separated by |
• π | δ ;m for the server to evaluate a term m on a stack δ with a pending client context

π in the client separated by |

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

24 K. Choi and B-M. Chang

φc : main = let r3 = req(clo(g3,{}), clo(g5,{})) in r3
g2 = { f7} λ cz10. let y9 = f7 z10 in ret(y9)
g5 = {} λ cy. let r14 = req(clo(g4,{}), y) in r14

φs : g1 = {} λ sx. x
g3 = {} λ s f . let x5 = (let r11 = call(clo(g2,{ f}), c) in r11) in let r6 = clo(g1,{}) x5 in r6
g4 = {} λ sz. z

Fig. 13. A compilation of the RPC term in Figure 3

The semantic rules for the stateful CS calculus are isomorphic to those for the stateful RPC
calculus under the aforementioned changes.

The compilation rules for λ state
cs are the same as those for λ enc

cs except for ret(v) in Figure
12. For a given closed λ state

rpc term M , CC[[M]] = m means that it generates a λ state
cs term m

for the client, producing a function store φc for the client and another function store φs for
the server.

We now prove the correctness of the compilation for λ state
cs by assuming a similar defi-

nition of call-return balance for evaluation steps as Definition 4.1.

Theorem 4.2 (Correctness of Compilation for λ state
cs)

Assume a well-typed term M under the locative type system. Given φc and φs:

• If M ⇓c V , then
CC[[C[[M]]]] | ε ⇒state∗ CC[[C[[V]]]] | ε , which is call-return balanced.

While we reused the parser of λrpc and the location-type inference procedure for our
type system mentioned in Section 3.4, we have implemented a compiler and an evaluator of
λ state

rpc and λ state
cs on HTTP between the client and the server. Figure 13 shows a compilation

of the RPC term in Figure 3, generated by the compiler. The evaluator starts with main in
the client.

4.5 Discussion

4.5.1 Session Management

Because the RPC calculus is designed for the web-based client-server model, it is necessary
to discuss whether or not the new stateful CS calculus fits the model. In the state-encoding
CS calculus, it is rather straightforward to associate the semantics with the request-response
interaction of the web-based model, thanks to the nature of the stateless server which
is aligned well with the RESTful web. However, in the stateful CS calculus, it is not so
obvious how the semantics is connected with the web-based interaction, because the web-
based model does not directly support the server states that the semantics deals with.

To explain how the stateful CS calculus manages server states through a series of mul-
tiple request-response interactions, we introduce the notion of session to capture one or
more request-response interactions. In the notation, we place a session annotation over the
bar separating a client and a server as

• ‘client
session
| server’ to denote the client and the server connected under a session

identified by a unique number session, or

• ‘client
nothing
| server’ to denote that no session is established between the two.

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

A Theory of RPC Calculi for Client-Server Model 25

Note that this notion also turns out to be useful for explicitly explaining how the semantics
in the state-encoding CS calculus is related to request-response interactions.

Let us begin with the semantics of λ enc
cs extended with session annotations where one

session exactly corresponds to one request-response interaction on the web.

(Req) let x = req(vF ,w) in m
nothing
| ε ⇒enc ctx x m

session
| let r = vF(w) in r

where vF = clo(F, v̄), φs(F) = z̄λ sx̄.m0, and fresh session

(Call) ctx x m
session
| call(vF ,w) ⇒enc let x = vF(w) in m

nothing
| ε

where vF = clo(F, v̄), φc(F) = z̄λ cx̄.m0

(Reply) ctx x m
session
| v ⇒enc let x = v in m

nothing
| ε

(Req) corresponds to the creation of a new session. Both (Call) and (Reply) correspond
to the closing of the session. For the other local rules, the status of the session remains
unchanged:

Client (AppC), (ValC), (LetC) : m
nothing
| ε ⇒enc m′

nothing
| ε

Server (AppS), (ValS), (LetS) : π

session
| m ⇒enc π

session
| m′

where m, m′, and π are those from the semantic rules in λ enc
cs .

Now let us discuss the semantics of λ state
cs extended with session annotations where one

session can not only correspond to one request-response interaction on the web but can
also be expanded to correspond to more than one interaction:

(Req1) let x = req(vF ,w) in m
nothing
| ε ⇒state ctx x m

session
| ε; let r = vF(w) in r

where vF = clo(F, v̄), φs(F) = z̄λ sx̄.m0, and fresh session

(Req2) let x = req(vF ,w) in m
session
| δ ⇒state ctx x m

session
| δ ; let r = vF(w) in r

where vF = clo(F, v̄), φs(F) = z̄λ sx̄.m0, and δ 6= ε

(Reply1) ctx x m
session
| ε; v ⇒state let x = v in m

nothing
| ε

(Reply2) ctx x m
session
| δ ; v ⇒state let x = v in m

session
| δ if δ 6= ε

(Call) ctx y m2
session
| δ ; let x = call(vF ,w) in m1⇒state let y = vF(w) in m2

session
| ctx x m1 ·δ

where vF = clo(F, v̄) and φc(F) = z̄λ cx̄.m0

(Ret) let y = ret(v) in m2
session
| ctx x m1 ·δ ⇒state ctx y m2

session
| δ ; let x = v in m1

The original semantic rule (Req) in λ state
cs is divided into two rules. (Req1) with the

empty server stack corresponds to the creation of a new session, and (Req2) with the non-
empty stack δ corresponds to a continuation of the previously created session. The original
semantic rule (Reply) in λ state

cs is also divided into two rules. (Reply1) with the empty server
stack is matched with (Req1) to close the created session, and (Reply2) with the non-empty
stack δ is matched with (Req2) to maintain the previously created session. Both (Call) and
(Ret) are extended to continue to maintain the status of the session. For the other local
rules, the status of session remains unchanged as

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

26 K. Choi and B-M. Chang

Fig. 14. Comparison of session management between λ enc
cs and λ state

cs

Client (AppC), (ValC), (LetC) : m
optSession
| δ ⇒enc m′

optSession
| δ

Server (AppS), (ValS), (LetS) : π

session
| δ ;m ⇒enc π

session
| δ ;m′

where m, m′, π , and δ are those from the semantic rules in λ state
cs . For the client-side local

rules, it is confirmed that either optSession = nothing and δ = ε or optSession = session
and δ 6= ε holds.

The session-annotated semantics of λ state
cs clearly explains how the stateful CS calculus

using request-response interactions is implemented on the web-based model. Also, the
idea of applying session annotation to the semantics enables us compare λ enc

cs with λ state
cs

in terms of the web-based implementation using request-response interaction.
Figure 14 shows a comparison of session management between λ enc

rpc and λ state
rpc when the

λrpc term in the example is evaluated. First, the figure shows that client-server communi-
cation in λ state

rpc is the same as that in λ enc
rpc by using the same box names S1, C1, and S2

on the related flows. Second, with the stateful server, the active thread of control described
by the solid line with (S2) is above the pending thread of control described by the dashed
line with (S3), meaning that S2 is being evaluated with the server stack holding the server
context of S3.

4.5.2 A Mixed Strategy

In the previous comparison between λ enc
cs and λ state

cs , we clearly understood how they
manage sessions differently. In λ enc

cs , the server does not need to retain anything once it
sends the client a response. This is advantageous because the server resource consumption
is reduced. In λ state

cs , the server can naturally support storing a stateful context that the
server must have before and after a client function call. This is necessary when it is not
easy or not possible to encode the stateful context, for example, in database operations

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

A Theory of RPC Calculi for Client-Server Model 27

as seen in Section 4, and to send the encoded context to the client. The question then
arises if we can use both strategies: a mixed strategy basically employs the state-encoding
strategy to reduce the server resource consumption but switches to the stateful strategy
when necessary. We here argue that our theory can be extended to support this mixed
strategy.

For the mixed strategy, the problem is how to distinguish one phase of λrpc terms in
which the compilation rules and semantic rules of λ enc

rpc and λ enc
cs are applied, from the

other phase of the terms in which those of λ state
rpc and λ state

cs are applied. A simple idea is
to use the notion of monadic encapsulation of state (Launchbury & Peyton Jones, 1994;
Timany et al., 2017), where stateful computations are encapsulated using monads and the
purity of the functional language embracing them is preserved.

To explain how monadic encapsulation of state can help in the design of our mixed
strategy, we first introduce the standard monadic operations and stateful operations to the
term syntax of λrpc, and a new (state) type is introduced to the type syntax:

M ::= · · · | runST M | thenST M (λx.M) | returnST M
| newVar M | readVar M | writeVar M M

τ ::= · · · | ST state τ | ∀state.τ

A key construct runST M encapsulates a stateful computation M where states may be
cascaded through newVar, readVar, and writeVar by the monadic binder thenST , which
allows a value to escape from the monad by the monadic stopper returnST at the end.
Note that state is a (state) type variable, which is essential to the monadic encapsulation of
state in a pure functional language. A new state type ST state τ can be read intuitively as
follows: a stateful computation of this type can allocate, read, and write in a memory region
indexed by state and then produce a value of type τ . The type of runST in the literature
(Launchbury & Peyton Jones, 1994; Timany et al., 2017) is

(∀state. ST state τ)→ τ.

Having a universally quantified state type variable in the type guarantees that every mem-
ory region allocated inside the stateful computation is not accessible outside the runST
anymore by limiting the scope of the state type variable, which never occurs in τ . This is a
key property of the monadic encapsulation of state.

For example, in an evaluation of the following extended λrpc term:

clientFun2 (

runST (

(thenST (newVar 0) (λ l.
(thenST (writeVar l(clientFun1())) (λ ().
(thenST (readVar l) (λx.
(returnST x)))))))))

a new piece of memory is allocated at an address l and is initialised with 0 by newVar 0,
the server calls a client function to obtain a value by clientFun1(), the memory is updated
with the value by writeVar l (· · ·), the written value is read again by readVar l, and it
escapes the runST monad by returnST x. Finally, the other client function clientFun2 is
called from the server with the escaped value as an argument.

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

28 K. Choi and B-M. Chang

It is important to note that clientFun1 is called in the middle of the stateful computations,
whereas clientFun2 is called after all the stateful computations. Therefore, the former
should be implemented in the stateful server strategy, but the latter can be implemented
in the state-encoding server strategy. To capture these different phases, we introduce two
forms of typing judgements as follows:

ΓBa M : τ ΓIa M : τ

where the typing judgements with the black triangle denote that a term under evaluation is
in the middle of stateful computations, and the typing judgements with the white triangle
denote the absence of stateful computations. We also change the function type to include

the colour as τ
a, colour−−−−−→ τ ′, where it is white or black. Functions of the black function

type are invoked in the middle of the stateful computations, whereas functions of the white
function type are never invoked there.

The typing rules for λrpc are then duplicated, and therefore we make one set have the
typing rules with only the white triangle and make the other set have them with only the
black triangle. In (T-App-B) of the black set, the colour of the function type in the premise
is made the same as the colour of the triangle. In (T-Lam-B), the colour of the function
type in the conclusion is the same as the colour of the triangle. These coloured typing rules
will get a function infected whenever the function is invoked within a stateful expression.

ΓIa L : τ
a,black−−−−→ τ ′ ΓIa M : τ

(T-App-B)
ΓIa L M : τ ′

Γ{x : τ}Ib M : τ ′
(T-Lam-B)

ΓIa λ bx.M : τ
b,black−−−−→ τ ′

The two sets of the typing rules are combined through two new typing rules:

f resh state, state 6∈ FTV (Γ)∪FTV (τ) ΓIs M : ST state τ
(Gen&Run)

ΓIs runST M : τ

FTV (Γ)∪FTV (τ) = /0 ΓIs runST M : τ
(Purify)

ΓBs runST M : τ

(Gen&Run) is a typing rule combining (Gen) and (Run) in the literature, which generalises
a state type variable and is a typing rule for runST , respectively. Those typing rules for the
monadic constructs and state manipulation constructs are from the literature, and they are
included in the black set. (Purify) is a typing rule that encapsulates a stateful world from
pure functional expressions whenever no free state type variables escape, i.e. FTV (Γ)∪
FTV (τ) = /0.

With these typing rules, clientFun1 in the example must be typed by (T-App-B); it gets
infected because it is invoked within a runST expression, which is typed by (Gen&Run).
However, clientFun2 can be typed by (T-App-W), which is a white-coloured version of (T-
App-B). The scope of states of the runST expression is thus limited inside it by (Gen&Run).
Then it can be treated as a pure expression by (Purify) because there are no other runST
expressions enclosing it.

After typing an extended λrpc term with the coloured typing rules, the phases using the
white typing rules are compiled and evaluated under the state-encoding server strategy, and
the phases using the black typing rules are compiled and evaluated under the stateful server
strategy. Monadic encapsulation of state has been proved to separate the stateful world from

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

A Theory of RPC Calculi for Client-Server Model 29

the pure expression in the literature (Launchbury & Peyton Jones, 1994; Timany et al.,
2017). Therefore, we can utilise the idea to separate where we can use the state-encoding
server strategy from where we should use the stateful server strategy. What remains to be
seen is how to compile (Purify). This typing rule is compiled as a direct style invocation
of a CPS-style expression compiled from the typing in the premise by applying the initial
continuation to the expression. This can be viewed as a border between the two strategies.

This completes the explanation of how we designed a hybrid strategy, which is another
benefit of our theory of RPC calculi.

5 Related Work

Links (Cooper et al., 2007) is a practical multi-tier web programming language that em-
ploys the RPC calculus as the foundation for client-server communication. It is a typed
functional programming language incorporating Kleisli-based database query optimisa-
tion, continuations for web interactions, concurrency with message passing, and XML
programming. It would be interesting to extend the implementation of Links using the
proposed theory of RPC calculi.

Lambda5 (Murphy VII et al., 2004; Murphy, 2008) is a modally-typed lambda calculus
in which modal type systems can control local resources safely in distributed systems.
It is extended to a full-fledged web programming language. From the programmer’s per-
spective, there are two things to compare. First, while Lambda5 is similar to the RPC
calculus in that it allows programmers to write symmetric communication, it distinguishes
the syntax of remote function applications, say, ‘get〈s〉(here M N)’, from that of local
ones, say, ‘M N’. In this respect, Lambda5 is like λ enc

rpc and λ state
rpc because λrpc offers a

uniform syntax for both kinds of applications.
Second, the modal type system for Lambda5 introduces at modality, ‘τ at a’ in order

to be able to refer to a specific location. The use of at-types for some term M and typing
environment Γ can be viewed as typing judgements ΓBa M : τ . One interesting difference
is that our type system introduces locative types τ

a−→ τ ′ with specific location a. The type
system for Lambda5 uses box types �τ and diamond types ♦τ , but locations in the modal
types are too implicit to be usable; box types are associated with all arbitrary locations,
and diamond types are associated with some unknown location. On the basis of this ob-
servation, we believe that our type system is a modal type system using locative types that
internalise at modality. A formal comparison on how our type system is related to the
modal type system is left as a future work. Another interesting question is to investigate if
the state-encoding and stateful calculi could have any modal type systems beyond the type
system for the RPC calculus.

From the implementation perspective, Lambda5 designed for peer-to-peer distributed
systems is based on symmetric communication, whereas the RPC calculus designed for
client-server systems is based on asymmetric communication. The semantic rules for client
and server in Lambda5 are therefore the same. Although Lambda5 could be exploited for
a stateless server strategy, the same semantic rules have to be revised in a nontrivial way
to achieve a stateful client and stateless server, where each is defined by different semantic
rules. For a stateful server strategy, the Lambda5 semantic rules should also be revised to
make them usable with the client-server model. The idea used in Lambda5 of continuations

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

30 K. Choi and B-M. Chang

spanning multiple worlds such as client and server is similar. However, in λ state
rpc , the

semantic rules (Req) and (Call) for client-to-server RPCs and vice versa are asymmetric;
the former is defined to initiate a new server control context, and the latter is defined to
return to a client context waiting for this server response. This fits the implementation based
on trampolined-style well. Thus, the semantics of Lambda5 has this subtle gap between its
description and its web-based implementation. Lambda5 is implemented on a web-based
client-server model in an ad hoc way, for example to support channels on top of HTTP.

A multi-tier calculus by Neubauer and Thiemann (Neubauer & Thiemann, 2005) au-
tomatically constructs communications for concurrently running processes. The calculus
employs session types (Gay & Hole, 1999) to enforce the integrity of communications
automatically. They proposed a series of transformations as compilation to convert a source
program into separate programs at different locations determined by the use of primitives
that run only at specific locations. The calculus can be called a stateful peer strategy
because each process manages its own state, but there is no concept of a central server
as in Lambda5.

There are several programming languages that have adopted the feature of multi-tier
web programming: Hop (Serrano et al., 2006; Serrano & Berry, 2012) extending Scheme;
Hop.js extending JavaScript (Serrano & Prunet, 2016); Eliom, a multi-tier ML program-
ming language, featuring module systems extended with location annotations (Radanne,
2017) in the project Ocsigen (Balat, 2006); and Ur/Web (Chlipala, 2015) with a depen-
dently typed system; and a multi-tier functional reactive programming framework for Scala
(Reynders et al., 2014). They are all practical web programming languages featuring con-
currency, reactive UI, database, and XML.

Hop, Eliom, and Ur/Web provide programmers only asymmetric communication where
basically only the client can invoke server functions; the server resorts to a network library
to call client functions back. All of them use a special syntax for RPC distinct from that
for local function calls. As far as we know, they are all based on a stateful server approach
as described for HOP in (Serrano & Queinnec, 2010; Boudol et al., 2012) and for Eliom
in (Radanne, 2017), though Ur/Web never presented any formal semantics on their RPC
implementation. These languages do not need to implement the mapping of symmetric
communication onto asymmetric communication as is done in our theory. It is therefore
less meaningful to compare our theory with them in terms of stateful server approaches. In
(Serrano & Queinnec, 2010), a denotational continuation-based semantics for a core subset
of HOP is present for the purpose of elaboration of how to generate client-side code by the
server-side code. In (Boudol et al., 2012), more versatile semantics is proposed in order to
reason about the safety of the same-origin policy in the web application security model,
whereas we use our semantics for proving the correctness of compilation for the two RPC
implementation strategies.

The PLT Scheme community has studied the construction of interactive server-side web
applications. In (Graunke et al., 2001; Matthews et al., 2004), the authors have pointed
out the mismatch problem between the structure of sequential programs and the structure
of the corresponding web interactions. They suggest an automatic structuring method of
sequential programs so that a restructured web program and a consumer can construct
a pair of coroutines where each interaction point can be resumed arbitrarily often. The

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

A Theory of RPC Calculi for Client-Server Model 31

method stores a continuation object at the server, referring to it by ID, which can be
viewed as a stateful server strategy. In the implementation of our stateful calculi, a client
and a server play exactly the same role as coroutines, as explained in Section 4.3, though
we use session numbers sent from the client on requests to resume the suspension. In
(McCarthy, 2009; McCarthy, 2010; Krishnamurthi et al., 2007), the authors have addressed
the practical problem of how scalable, continuation-based web programs can achieve mod-
ular compilation and higher-order interaction with third-party libraries by stack inspection
and manipulation techniques known as continuation marks and delimited continuations.
Although the techniques used are different, their solution can be viewed as a mixed strategy
from the standpoint of our theory.

Using continuations as a language-level technique to structure the client-server inter-
actions of web programs is well-known, as has been discussed by (Queinnec, 2004). Al-
though it is not about multi-tier web programming, it is worth noting that this work dis-
cusses the advantages and disadvantages of storing continuations on the client side and
server side.

Wysteria (Rastogi et al., 2014) is another related work. This system is in the different
domain of secure multi-party computation but shares some similar technical machinery
and development. It indexes the types of data and computations by participating principals,
which can be regarded as locations. Further, Wysteria also proposes abstractions for private
states among participating principals and among subsets of these principals, acting as a
secure computation. Similar to our research, it also proposes a translation whose targets
consists of ‘sliced’ code for each participant.

6 Conclusion

We have proposed a theory of RPC calculi that deals with the implementation of arbitrarily
deep nested client-server interactions using the feature of symmetric communication on the
web-based flat request-response interactions in trampolined style under the state-encoding
server strategy and the stateful server strategy. In this theory, a new typed RPC calculus λrpc

is proposed where typing with locative types identifies remote function applications at the
type level. Our new theory of RPC calculi has advantages over the existing research work.
With the help of type-level identification of remote functions, the structure of compilation
of λrpc into λ enc

rpc and λ state
rpc is simplified compared to the structure of the original compi-

lation without using type information. This simplicity allows our theory to explore three
design choices: a state-encoding server strategy, a stateful server strategy, and furthermore,
a mixed strategy of these two strategies.

In future, we hope to design a full-fledged multi-tier web programming language based
on our theory of RPC calculi. The design must consider many more features such as HTML
constructs, reactive UI, databases, and concurrency because our theory addresses only
client-server communication.

References

Balat, V. (2006). Ocsigen: Typing web interaction with Objective Caml. In ML’06: Proceedings of
the 2006 Workshop on ML, pp.84-94.

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

32 K. Choi and B-M. Chang

Boudol, G., Luo, Z., Rezk, T. & Serrano, M. (2012). Reasoning about web applications: An
operational semantics for HOP. ACM Transactions on Programming Languages and Systems,
34(2), 10:1-10:40.

Chlipala, A. (2015). Ur/Web: A simple model for programming the web. In POPL’15: Proceedings of
the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages,
pp.153–165.

Conway, M. E. (1963). Design of a separable transition-diagram compiler. Communications of the
ACM, 6(7), 396–408.

Cooper, E. K., Lindley, S., Wadler, P. & Yallop, J. (2007). Links: Web programming without tiers. In
FMCO’06: Proceedings of the 5th International Conference on Formal Methods for Components
and Objects. Berlin, Heidelberg: Springer-Verlag, pp.266-296.

Cooper, E. K. & Wadler, P. (2009). The RPC calculus. In PPDP’09: Proceedings of the 11th ACM
SIGPLAN Conference on Principles and Practice of Declarative Programming. New York, NY,
USA: ACM, pp.231-242.

Flanagan, C., Sabry, A., Duba, Bruce F. & Felleisen, M. (1993). The essence of compiling with
continuations. In PLDI’93: Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation. New York, NY, USA: ACM, pp.237-247.

Ganz, S. E., Friedman, D. P. & Wand, M. (1999). Trampolined style. In ICFP’99: Proceedings of
the Fourth ACM SIGPLAN International Conference on Functional Programming. New York, NY,
USA: ACM, pp.18-27.

Gay, S. J. & Hole, M. (1999). Types and subtypes for client-server interactions. In ESOP’99:
Proceedings of the 8th European Symposium on Programming Languages and Systems. London,
UK, UK: Springer-Verlag, pp.74-90.

Graunke, P., Findler, R. B., Krishnamurthi, S. & Felleisen, M. (2001). Automatically restructuring
programs for the web. In ASE’01: Proceedings of the 16th IEEE International Conference on
Automated Software Engineering. Washington, DC, USA: IEEE Computer Society, pp.211-222.

Krishnamurthi, S., Hopkins, P. W., McCarthy, J., Graunke, P., Pettyjohn, G. & Felleisen, M. (2007).
Implementation and use of the PLT scheme web server. Higher-Order and Symbolic Computation,
20(4), 431-460.

Launchbury, J. & Peyton Jones, S. L. (1994). Lazy functional state threads. In PLDI’94: Proceedings
of the ACM SIGPLAN Conference on Programming Language Design and Implementation.
Orlando, Florida, USA, pp.24-35.

Matthews, J., Findler, R. B., Graunke, P., Krishnamurthi, S. & Felleisen, M. (2004). Automatically
restructuring programs for the web. Automated Software Engineering, 11(4), 337-364.

McCarthy, J. A. (2009). Automatically restful web applications: Marking modular serializable
continuations. In ICFP’09: Proceedings of the 14th ACM SIGPLAN International Conference
on Functional Programming. New York, NY, USA: ACM, pp.299-310.

McCarthy, J. A. (2010). The two-state solution: Native and serializable continuations accord. In
OOPSLA’10: Proceedings of the ACM International Conference on Object Oriented Programming
Systems Languages and Applications. New York, NY, USA: ACM, pp.567-582.

Murphy VII, T. (2008). Modal Types for Mobile Code. Ph.D. thesis, Carnegie Mellon University,
Pittsburgh, PA, USA.

Murphy VII, T., Cray, K., Harper, R. & Pfenning, F. (2004). A symmetric modal lambda calculus for
distributed computing. In LICS’04: Proceedings of the 19th Annual IEEE Symposium on Logic in
Computer Science. Washington, DC, USA: IEEE Computer Society, pp.286-295.

Neubauer, M. & Thiemann, P. (2005). From sequential programs to multi-tier applications
by program transformation. In POPL’05: Proceedings of the 32nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. New York, NY, USA: ACM, pp.221-232.

Queinnec, C. (2004). Continuations and web servers. Higher-Order and Symbolic Computation,
17(4), 277-295.

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

A Theory of RPC Calculi for Client-Server Model 33

Radanne, G. (2017). Tierless Web Programming in ML. Ph.D. thesis, University Paris Diderot.
Rastogi, A., Hammer, M. A. & Hicks, M. (2014). Wysteria: A programming language for generic,

mixed-mode multiparty computations. In SP’14: Proceedings of the 2014 IEEE Symposium on
Security and Privacy. Washington, DC, USA: IEEE Computer Society, pp.655-670.

Reynders, B., Devriese, D. & Piessens, F. (2014). Multi-tier functional reactive programming for the
web. In Onward!’14: Proceedings of the 2014 ACM International Symposium on New Ideas, New
Paradigms, and Reflections on Programming & Software, pp.55-68.

Reynolds, J. C. (1972). Definitional interpreters for higher-order programming languages. In
ACM’72: Proceedings of the ACM Annual Conference - Volume 2. New York, NY, USA: ACM,
pp.717-740.

Serrano, M. & Berry, G. (2012). Multi-tier programming in Hop. Communications of the ACM,
55(8), 53–59.

Serrano, M. & Prunet, V. (2016). A glimpse of Hopjs. In ICFP’16: Proceedings of the 21st ACM
SIGPLAN International Conference on Functional Programming, pp.180-192.

Serrano, M. & Queinnec, C. (2010). A multi-tier semantics for Hop. Higher-order and Symbolic
Computation, 23(4), 409–431.

Serrano, M., Gallesio, E. & Loitsch, F. (2006). Hop: A language for programming the web 2.0. In
DLS’06: Proceedings of the 1st Dynamic Languages Symposium, pp.975-985.

Timany, A., Stefanesco, L., Krogh-Jespersen, M. & Birkedal, L. (2017). A logical relation for
monadic encapsulation of state: Proving contextual equivalences in the presence of runST. In
PACMPL’17: Proceedings of ACM Programming Languages, 2(POPL), pp.64:1-64:28.

A A Proof of Theorem for the RPC Calculus

Theorem A.1 (Type Soundness for λrpc)
If ΓBa M : τ and M ⇓a V then ΓBa V : τ .

Proof
We prove this theorem by induction on the height of the typing derivation on M. For (T-Var)
as a base case, it is provable trivially. For inductive cases, we do case analysis on the last
typing rule used. For (T-Lam), it is straightforward. For (T-App), (T-Req), and (T-Call), we
use inductive arguments and the substitution lemma A.1. In order to prove the cases with
(T-Req) and (T-Call), we need an additional fact A.1 saying that the types of values are the
same wherever the values are.

Fact A.1
If ΓBa V : τ then ΓBb V : τ .

Proof
This is provable due to the definition of (T-Var) and (T-Lam) which are typing rules for V ,
either a variable and a function.

Lemma A.1 (Substitution)
If Γ,x : τ1Ba M : τ2 and ΓBb W : τ1 then ΓBa M{W/x} : τ2.

Proof
The proof is straightforward by induction on the height of the typing derivation on M.

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

34 K. Choi and B-M. Chang

B Proofs of Theorems for the State-Encoding Calculi

The main theorem states the correctness of compilation for λ enc
rpc as follows.

Theorem B.1 (Correctness of Compilation for λ enc
rpc)

Assume a well-typed λrpc term M under the locative type system.

• If M ⇓c V then C[[M]] | ε ⇒enc∗ C[[V]] | ε .
• If M ⇓s V then Π | S[[M]] K⇒enc∗ Π | S[[V]] K for all Π and K.

Proof
The proof consists of two parts. The proof firstly builds a sequence of evaluation of the
compiled term in λ enc

rpc matched to each subtree of evaluation of a given term in λrpc

by induction on the height of the evaluation of M. Then the proof puts the sequences
together to construct a longer one matched to the whole evaluation. The composition
lemma, Lemma B.1, supports this by showing that, given an λ enc

rpc evaluation sequence,
it is possible to construct the same sequence but under arbitrary let bindings. The proof
uses this lemma as glue in the client. But for the same purpose in the server, the lemma is
not used because the proof uses continuations as glue.

In addition, the proof must derive the use of substitutions in λ enc
rpc from the use of those in

λrpc to complete the construction of the λ enc
rpc evaluation sequence. The substitution lemma,

Lemma B.2, supports this by showing that a compilation of a substituted term in λrpc is the
same as a substitution in λ enc

rpc of compiled terms.
In the RPC calculus, every base case involves only (Value) where the height is 1, and

every inductive case must use (Beta) to make the height at least higher than 1. For the base
cases with (Value), both of M and V are λ bx.M0. The theorem can be easily verified since
C[[M]] =C[[V]] is true.

In the inductive cases, M is L Marg. The inductive cases are also analysed into four by
the similar reason since (Beta) involves two locations a and b: the application is being
evaluated at the location a, and L evaluates to a function of the location b.

i) When a is s: Firstly, by the induction hypotheses with three subtrees in the evaluation
of the λrpc term M, three subsequences in λ enc

rpc can be constructed with universally quanti-
fied variables K1,K2,K3. Secondly, to combine these subsequences in order to make what
the theorem demands, the proof instantiates the three variables with a continuation to S[[L]]
(see Figure 7), a continuation to S[[Marg]] (see Figure 7), and K in the compilation rules
(AppSS) or (AppSC) at Figure 7, respectively. Note that the proof for these inductive cases
(a is s) is thus proved without using Lemma B.1, which is necessary for the following
inductive cases (a is c). Finally, the proof uses Lemma B.2 to complete building the
evaluation sequence in λ enc

rpc as the theorem demands.
ii) When a is c: This proof firstly uses the induction hypotheses with the three subtrees

in the evaluation of the λrpc term M to build λ enc
rpc evaluation subsequences. Secondly, the

proof has to combine these subsequences in order to form a longer one that the theorem
demands. Each of C[[L]], C[[Marg]], and a local or remote application is surrounded by a
let term of the form let var = · · · in term in the compilation rules (AppCC) and (AppCS)
at Figure 7. So, the proof has to resort to Lemma B.1 to lift an evaluation subsequence
for C[[L]] to one for let var =C[[L]] in term, and to lift another evaluation subsequence for
C[[Marg]] to one for let var′ =C[[Marg]] in term′. Finally, the proof takes the third evaluation
subsequence for the local or remote application to finish by using Lemma B.2.

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

A Theory of RPC Calculi for Client-Server Model 35

To prove Theorem B.1, we use Lemma B.1 and Lemma B.2. The former lemma states
that the evaluation of terms in λ enc

rpc is preserved under the let binding.

Lemma B.1 (Composition)
In the state-encoding RPC calculus λ enc

rpc ,

• If M | ε ⇒enc∗ V | ε
then let x = M in M0 | ε ⇒enc∗ let x =V in M0 | ε

Proof
This is proved by induction on the length of the evaluation in the condition. In the base
case, the length is zero, and so M is identical to V . Therefore, let x = M in M0 is identical
to let x =V in M0, which proves the base case.

In inductive cases where the length is one or longer, the proof does a case analysis on
kinds of the first rule used in the evaluation of M | ε ⇒enc∗ V | ε and Π | M⇒enc∗ Π | V ,
to make the evaluation progress by applying a rule for the kind. Then the proof will have
an evaluation subsequence shorter than one in the condition, with which we can apply
induction to finish the proof.

Hence, there are 4 cases for consideration.
i) (AppC) and (ValC): The lemma is provable simply by induction as explained above.
ii) (Req): Let M be let y = req(Vf ,W̄) in My. Then there exist steps such that

let y = req(Vf ,W̄) in My | ε
⇒enc ctx y My | Vf (W̄)

⇒enc Con f1⇒enc ...⇒enc Con fk⇒enc∗ V | ε

where either (Reply) or (Call) must be used in some step, Con fk−1⇒enc Con fk, and neither
(Reply) nor (Call) is used before the step. This is because, in order to move from the server
configuration (ctx y My | Vf (W̄)) to a client configuration (V | ε), there is no other way
than using (Reply) or (Call) by the definition of the semantic rules for λ enc

rpc .
After the use of either (Reply) or (Call), it is easy to construct,

Con fk⇒enc+ Con fk+n⇒enc∗ V | ε

where all except Con fk+n are for the server and Con fk+n ⇒enc∗ V | ε is a condition that
we can apply induction with. This finishes the proof for this case.

iii) (LetC): In this case, M is let x1 = (let x2 = M1 in M2) in M3. This is proved
by induction after using the intermediate value lemma, Lemma B.3, and the context-
independent intermediate value lemma, Lemma B.4. By applying (LetC) two times, we
have:

let x = M in M0 | ε ⇒2 let x2 = M1 in (let x1 = M2 in (let x = M3 in M0)) | ε

where induction cannot be applied immediately. After the evaluation of both M1 and M2,
we will reach a configuration as: let x = M3{V1/x1} in M0 | ε where V1 is a value of
(let x2 = M1 in M2). Then we can apply induction with M3{V1/x1} | ε ⇒∗ V | ε . We
thus need to make the evaluation progress over M1 and M2. To do this, we apply the two
additional lemmas to lead the evaluation to the configuration above. This finishes the proof
in the case.

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

36 K. Choi and B-M. Chang

Lemma B.2 shows the compilation of a substituted term yields the same term as the
compilation of a term substituted with compiled values.

Lemma B.2 (Substitution)
The compilation C[[−]] and S[[−]] of λrpc into λ enc

rpc preserve substitution operations in λrpc

and λ enc
rpc . Let V [[λ ax.M]] =C[[λ ax.M]].

• C[[N{W/x}]] =C[[N]]{V [[W]]/x}.
• S[[N{W/x}]] K = (S[[N]] K){V [[W]]/x}.

Proof
This lemma is true because of the definition of the compilation rules.

To prove Lemma B.1, we introduce Lemma B.3 and Lemma B.4, as follows.

Lemma B.3 (Intermediate Value)
• If let x = M in M0 | ε ⇒enc∗ V | ε

then let x = M in M0 | ε ⇒enc∗ let x =Vx in M0 | ε ⇒enc∗ V | ε .

Proof
This is proved by induction on the length of the evaluation in the conditions.

Lemma B.4 (Context-Independent Intermediate Value)
• If let x = M in M1 | ε ⇒enc∗ let x =V in M1 | ε

then let x = M in M2 | ε ⇒enc∗ let x =V in M2 | ε .

Proof
This is proved by induction on the length of the evaluation in the conditions. In (ValC),
(AppC), and (Req), the proof is straightforward. In (LetC), when M is (let y = My in Mx),
we have (let x = M in M1) | ε ⇒enc let y = My in (let x = Mx in M1) | ε . The proof
uses an inner induction on the number of the let constructs enclosing let x = Mx in M1

such as “let y = My in −”. The use of the inner induction will eventually lead to a form
of let x = Mx{Vy/y} in M1 | ε where Vy is a value of My. Then we can apply the outer
induction to it to finish the proof.

The theorem of the correctness of compilation for λ enc
cs immediately follows the theorem

for λ enc
rpc .

Theorem B.2 (Correctness of Compilation for λ enc
cs)

Assume a well-typed term M under the locative type system. Given φc and φs,

• If M ⇓c V then CC[[C[[M]]]] | ε ⇒enc∗ CC[[C[[V]]]] | ε .

Proof
By Theorem B.1, it holds that if M ⇓c V then C[[M]] | ε ⇒enc∗ C[[V]] | ε . From such
a series of evaluation steps in λ enc

rpc , it is easy to construct evaluation steps in λ enc
cs as

CC[[C[[M]]]] | ε ⇒enc∗ CC[[C[[V]]]] | ε . This is because of two reasons, as follows.
First, the compilation rules CC[[−]] preserves the structure of terms, for example, map-

ping a variable in λ enc
rpc into a variable in λ enc

cs , an application in λ enc
rpc into an application in

λ enc
cs , and so on. The only exception is to map a function in λ enc

rpc into a closure in λ enc
cs , but

a closure has a role as a function in λ enc
cs . Second, the semantic rules in λ enc

rpc are isomorphic
to the semantic rules in λ enc

cs .

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

A Theory of RPC Calculi for Client-Server Model 37

To construct evaluation steps starting from CC[[C[[M]]]] | ε in λ enc
cs , we have only to

choose the isomorphic semantic rule corresponding to the semantic rule used in each of
the evaluation steps in λ enc

rpc .

C Proofs of Theorems for the Stateful Calculi

The structure of proofs of theorems for the stateful calculi is very similar to that of those
for the state-encoding calculi.

The main theorem states the correctness of compilation for λ state
rpc as follows.

Theorem C.1 (Correctness of Compilation for λ state
rpc)

Assume a well-typed term λrpc M under the locative type system.

• If M ⇓c V then C[[M]] | ∆⇒state∗ C[[V]] | ∆ for all ∆, which is call-return balanced.
• If M ⇓s V then Π | ∆;S[[M]]⇒state∗ Π | ∆;S[[V]] for all Π and ∆, which is call-return

balanced.

Proof
This proof has the same structure as for Theorem B.1. It firstly builds a subsequence of
evaluation of the compiled term in λ state

rpc to each subtree of evaluation of a given term in
λrpc, and then it puts the subsequences together into a longer one for the whole evaluation.
The composition lemma, Lemma C.1, supports the second part. The substitution lemma,
Lemma C.2 is required in the second part to show that the a λ state

rpc substitution after a λrpc-
to-λ state

rpc compilation produces the same term as one by a λrpc-to-λ state
rpc compilation after a

λrpc substitution.
Now let us prove by induction on the height of the evaluation of M. The base cases with

height 1 use (Value) in the RPC calculus. For base cases with (Value), both M and V are
the same as λ bx.M0, and so the theorem is trivially true by zero step evaluation.

The inductive cases with higher than height 1 must use (Beta) in the condition of this
theorem. Every case is provable by induction and the use of Lemma C.1 and C.2 in the same
way as for Theorem B.1. For the case with L cMarg ⇓c V , each evaluation subsequence in
λ state

rpc obtained from each subtree of evaluation in λrpc is balanced by induction. The three
subsequences are combined by having a single configuration using (ValC) between the first
and the second, and by having another configuration using (AppC) between the second and
the third. (ValC) is used in the end. By the definition of call-return balance, the resulting
evaluation sequence in λ state

rpc is call-return balanced. The case with L sMarg ⇓s V is verified
exactly in the same way but with (ValS), (AppS), and (ValS).

For the case with L sMarg ⇓c V , the three call-return balanced evaluation subsequences
are combined with intermediate configurations using (ValC) between the first and the sec-
ond, using (Req) and (Apps) between the second and the third, and using (ValS), (Reply),
and (ValC) in the end.

The case with L cMarg ⇓s V is most interesting because a new pair of call and ret will
be added to the resulting evaluation sequence explicitly, not just by induction. The first
subsequence is followed by configurations using (ValS), which is followed by the second
subsequence, which is followed by other configurations using (Call), (AppC), (LetC),
and (AppC), which is followed by the third subsequence, which is lastly followed by a

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

38 K. Choi and B-M. Chang

configuration using (Ret). The whole evaluation sequence is call-return balanced by the
definition of bal ::=Con fcall bal Con fret .

To prove Theorem C.1, we use a lemma stating that the evaluation of terms in λ enc
rpc is

preserved under the let binding, as follows.

Lemma C.1 (Composition)
In the stateful RPC calculus λ state

rpc ,

• If M | ∆⇒state∗ V | ∆ and it is call-return balanced
then let x = M in M0 | ∆⇒state∗ let x =V in M0 | ∆, which is call-return balanced.
• If Π | ∆;M⇒state∗ Π | ∆;V and it is call-return balanced

then Π | ∆; let x = M in M0 ⇒state∗ Π | ∆; let x = V in M0, which is call-return
balanced.

Proof
This is proved by induction on the length of the evaluation in the conditions. In the base
case, the length is zero, and so M is identical to V, which proves the lemma.

In inductive cases where the evaluation takes one or more steps, the proof is done by
case analysis on kinds of the first rule used in the evaluation of M | ∆⇒state∗ V | ∆ and
Π | ∆;M⇒state∗ Π | ∆;V . Hence, there are 10 cases for consideration.

i) (AppC), (AppS), (ValC), (ValS): The lemma is proved simply by induction. The
resulting evaluation sequence preserves the call-return balance because it is just the in-
ductively obtained balanced evaluation subsequences appended in the front or in the end
with Con felses using some of (AppC), (LetC), (ValC), (AppS), (LetS), and (ValS).

ii) (LetC), (LetS): In these cases, M is let x1 = (let x2 =M1 in M2) in M3. These cases are
proved by induction together with Lemma C.3 and Lemma C.4. The two additional lemmas
are used to uncover values which M1 and M2 evaluate to and then to make the evaluation of
let x = M in M0 progress until it reaches a configuration let x = M3{V1,2} in M0, to which
induction can be applied. The condition call-return balance is verified by bal ::= balbal
because all the evaluation subsequences obtained from applying induction and the two
lemmas are all call-return balanced and onely some extra configurations, which are not
Con fcall nor Con fret , are introduced.

iii) (Ret): The call-return balance is not satisified in the condition of this case. So, it is
vacuously true.

iv) (Reply): By the definition of (Reply), M is a value. When M = V , it is trivially true
with the zero evaluation step. When M 6= V , the evaluation sequence in the condition of
this case is impossible. So, it is vacuously true.

v) (Call): Let M be let y = call(Vf ,W) in My and let Π be ctx z Mz.

Π | ∆; let y = call(Vf ,W) in My by (Call)
⇒enc let z =Vf (W) in Mz | ctx y My ·∆ by the balance
⇒enc∗ let z = ret(Vcall) in Mz | ctx y My ·∆ by (Ret)
⇒enc Π | ∆; let y =Vcall in My by (Val)
⇒enc Π | ∆; My{vcall/y} by the condition
⇒enc∗ Π | ∆; V

It is possible to mock the evaluation steps except the last steps above with Π | ∆; let x =
M in M0 because all the steps betwen Con fcall and Con fret above use only the evaluation

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

A Theory of RPC Calculi for Client-Server Model 39

rules that do not depend on the server stack. For the last steps of evaluation above, we
prove it by induction. The call-return balance is verified by bal ::= bal bal.

vi) (Req): Let M be let y = req(Vf ,W) in My. We do an analysis to look for a configura-
tion as follows.

let y = req(Vf ,W) in My | ∆
⇒enc ctx y My | ∆; let r =Vf (W) in r
⇒enc Con f1⇒enc ...⇒enc Con fk⇒enc∗ V | ∆

where either (Reply) or (Call) is used in a step, Con fk−1⇒enc Con fk, and neither (Reply)
nor (Call) is used before the step. There should exist such a configuration. This is because,
in order to move from a server configuration (ctx y My | ∆; let r =Vf (W̄) in r) to a client
configuration (V | ∆), there is no other way than using (Reply) or (Call) by the definition
of the semantic rules for λ enc

rpc .
For use of (Reply), it is easy to construct, after the step,

Con fk⇒enc+ Con fk+n⇒enc∗ V | ∆

where Con fk+n⇒enc∗ V | ∆ is a condition to apply induction with. Since the subsequence
from Con f1 to Con fk−1 does not contain any configurations of the form Con fcall or Con fret ,
the condition of the lemma implies that the subsequence from Con fk to V | ∆ is balanced.

For use of (Call), an inner induction is needed to make it progress to reach a configura-
tion that induction of the lemma is applicable. Let Con fk be

ctx y My | ∆; let z = call(Vg,Wgarg) in Mz

Con fk by (Call)
⇒enc let y =Vg(Wgarg) in My | ctx z Mz ·∆ by the balance
⇒enc∗ let y = ret(Vcall) in My | ctx z Mz ·∆ by (Ret)
⇒enc ctx y My | ∆; let z =Vcall in Mz by (Val)
⇒enc ctx y My | ∆; Mz{vcall/z}

The subsequence after the configuration (ctx y My | ∆; let z =Vcall in Mz) all the way to
(V | ∆) is balanced by the following argument. The subsequence before the configuration
is constructed to be balanced. Since the whole of the evaluation sequence in the condition
of the lemma is balanced, the definition of call-return balance implies that the subsequence
after the configuration is balanced.

We repeat the analysis again from the last configuration above until we find any use of
(Reply), which allows to apply induction of the lemma. Since the steps are finite by the
condition, the analysis will be terminated in finite time. This finishes the proof.

Lemma C.2 (Substitution)
Let V [[λ ax.M]] =C[[λ ax.M]].

• C[[N{W/x}]] =C[[N]]{V [[W]]/x}.
• S[[N{W/x}]] K = (S[[N]] K){V [[W]]/x}.

Proof
This lemma is true because of the definition of the compilation rules.

To prove Lemma C.1, we introduce two lemma as follows.

ZU064-05-FPR jfp2019arxiv 29 October 2021 0:57

40 K. Choi and B-M. Chang

Lemma C.3
• If let x = M in M0 | ∆⇒state∗ V | ∆ and it is call-return balanced

then let x = M in M0 | ∆⇒state∗ let x =Vx in M0 | ∆⇒state∗ V | ∆ .
• If Π | let x = M in M0⇒state∗ Π | V and it is call-return balanced

then Π | let x = M in M0⇒state∗ Π | let x =Vx in M0⇒state∗ Π | V .
In each conclusion of the two conditional statements above, the former evaluation se-

quence until M evaluates to Vx and the latter one after that are both call-return balanced.

Proof
This is proved by induction on the length of the evaluation in the conditions.

Lemma C.4
• If let x = M in M1 | ∆⇒state∗ V1 | ∆ and it is call-return balanced

then let x = M in M2 | ∆⇒state∗ let x =V in M2 | ∆ and it is also call-return balanced.
• If Π | ∆; let x = M in M1⇒state∗ Π | ∆;V1 and it is call-return balanced

then Π | ∆; let x = M in M2 ⇒state∗ Π | ∆; let x = V in M2 and it is also call-return
balanced.

Proof
The lemma is proved by induction on the length of the evaluation in the conditions.

The theorem of the correctness of compilation for λ state
cs immediately follows the theo-

rem for λ state
rpc .

Theorem C.2 (Correctness of Compilation for λ state
cs)

Assume a well-typed term M under the locative type system. Given φc and φs,

• If M ⇓c V then CC[[C[[M]]]] | ε ⇒state∗ CC[[C[[V]]]] | ε .

Proof
This theorem is proved by the same argument used in the proof of Theorem B.2. The key
idea is that the compilation rules CC[[−]] preservers the structure of λ state

rpc terms.

	1 Introduction
	2 The RPC Calculus and Its Locative Type System
	2.1 A Locative Type System for rpc

	3 Locative Calculi Encoding Server States
	3.1 A State-Encoding RPC Calculus rpcenc
	3.2 The Formal Semantics of rpcenc
	3.3 A Typed Compilation of rpc into rpcenc
	3.4 Separating Client and Server Terms in csenc
	3.5 Discussion

	4 Locative Calculi with Explicit Server States
	4.1 A Stateful RPC Calculus rpcstate
	4.2 The Formal Semantics of rpcstate
	4.3 A Typed Compilation of rpc for rpcstate
	4.4 Separating Client and Server Terms in csstate
	4.5 Discussion

	5 Related Work
	6 Conclusion
	References
	A A Proof of Theorem for the RPC Calculus
	B Proofs of Theorems for the State-Encoding Calculi
	C Proofs of Theorems for the Stateful Calculi

