

De Muijnck-Hughes, J. (2020) Type-Driven Development with Idris. Journal of
Functional Programming, 30, e16. (doi: 10.1017/S0956796820000143) [Book Review].

There may be differences between this version and the published version. You are
advised to consult the publisher’s version if you wish to cite from it.

http://eprints.gla.ac.uk/217954/

Deposited on: 15 June 2020

Enlighten – Research publications by members of the University of Glasgow
http://eprints.gla.ac.uk

http://eprints.gla.ac.uk/217954/
http://eprints.gla.ac.uk/

Book Review: Type-Driven Development with Idris
Jan de Muijnck-Hughes

Jan.deMuijnck-Hughes@glasgow.ac.uk

Programming languages that support dependent types provide us with an expressive environ-
ment in which we can specify and reason about properties of our software programs. Type-Driven

Development with Idris is an introductory text to dependently typed programming using the
Idris programming language, which the book introduces, and to how we can use Idris’ support
for first-class dependent types to engineer software programs that are not only maintainable but
programs that can also be formally verified.

Type-Driven Development with Idris is not the first book to describe how dependent types
are used to reason about software programs Stump (2016); Chlipala (2013). While these books
provide extensive coverage of the subject matter, they are aimed toward the theorists (squigglers)
who wish to develop theories using dedicated theorem provers. What is nice about the book,
and the Idris language, is that it is aimed more at engineers (bodgers) not used to squiggling or
functional programming. Importantly, the book does not shy away from more squiggly topics
such as totality, decidability, and theorem proving (which are required components for verifying
programs) and introduces them at a gentle pace comfortable for the novice.

The book is divided into three parts.
Part 1 o�ers a general introduction to the basics of functional programming in Idris that

is reminiscent of Hutton’s Programming in Haskell Hutton (2016). The author considers the
expected readers’ background and ensures that those experienced enough can jump ahead where
appropriate, and that those not so experienced are given the time required to learn functional
programming in Idris. What is nice here is that the author, using the classic “Lists with Length”
example, shows the need for types and how type-driven development helps with the software
engineering process before the Idris language is introduced—thus, allowing one to gain an in-
tuition for why type-driven development matters. Part 2 delves into the core of programming
with dependent types in Idris, introducing language features and idioms that allow one to spec-
ify and reason more precisely about one’s software programs than we can when using existing
general-purpose programming languages. Specifically, the author introduces the reader to de-
pendent types and how they can be used to write interactive programs and demonstrates how
to verify these same interactive programs by using dependent types to reason, at the type level,
about the structure of data and how dependent types can change how we view data to extend
pattern matching in interesting and practical ways. Importantly, the book demonstrates how
these idiomatic constructs support the construction of e�cient verified code, an important aspect
when one is developing real programs. The author makes backwards references, refinements, and
extensions toward the examples mentioned in Part 1, giving the reader a chance to see previ-
ously seen concepts in action. More so, the running examples of a “word guessing game” and
an interactive data store are used to provide motivation and exposition of the concepts being
introduced.

While Parts 1 and 2 introduce us to type-driven development, Part 3 demonstrates its appli-
cation and details how one can work with infinite data, and stateful and concurrent programs, in
type-safe ways. Part 3 is important as the examples we have seen so far have been about learning

1

Idris, and we now see what Idris can do. Each chapter within Part 3 builds up how we can work
with type-level state machines, describing how we can have total interactive programs, then to-
tal interactive stateful programs, then total interactive stateful programs that follow a type-level
specification, and finally, total interactive stateful programs that follow a type-level specification
and handle feedback and errors. Here, each example builds upon the lessons learned in the
previous examples to show how types and total programming help build more reliable verifiable
programs. This layering is beneficial as it gradually helps the reader to see how the extensions
work together. Notably, we are shown how to simulate an ATM machine to deal with errors,
and we end up with a verified word guessing game that compliments the version seen at the end
of Part 2. The book ends by explaining how one can achieve type-safe concurrent programming,
bringing together what we have learnt so far in the book. This chapter details how we can use
Idris’ concurrent primitives in unsafe ways and how we can use types to constrain use of these
primitives in ways we know to be safe. We see this with examples that detail list processing and
word counting using a simple framework as specified in the chapter.

A pleasant detail found within the book is that there is a plethora of example code, walk-
throughs, and exercises. All are appropriately aimed, complete, and clearly demonstrate the
mantra Type, Define, Refine as one types, defines, and refines their way through the book. With
pervasive use of interactive examples requiring user input, the author puts interaction (and
practical programming) at the heart of the book’s story. The use of Idris’ typed-holes here is
exemplary, allowing one to engage with the compiler in conversation, in situ, and explore the
type-driven style of development. This is the best way to experience type-driven development
and is reminiscent of academic textbooks that invite the reader on a journey to understand the
material being taught. In the act of filling holes, combined with the guiding instructions, one is
embedded within a three-way conversation between the reader, the book, and the Idris compiler!
This is how programming should be. Unfortunately, the book ends rather abruptly with the
last chapter. It would have been nice to see where one can go from there. The author treats
type-driven development within the context of the Idris programming language, and it would
have been more fulfilling if the reader was given some hints on how we can transfer this approach
to more mainstream software engineering practices and languages. Further, it is not clear what
the future holds for type-driven development or for Idris. While Appendix D does indeed cover
further reading, I am nonetheless left wanting more, and I suspect other readers will be too. This
cannot be the end of the story.

Overall, Type-Driven Development with Idris is a great book, well-written, and highly engag-
ing. If, like mine, your background was as a bodger and not originally in formal methods, then
I would highly recommend this book to you. The book is accessible and introduces the reader
to a brave new world of programming that blends functional programming, formal mechanized
reasoning about programs, and software engineering. If you are like me now, a squiggler-bodger,
then this book will show you a programming language with dependent types that supports the-
orem proving, rather than a theorem prover in which you can program. While the discerning
squiggler might shy away from this book, they should not: This book is for you too! The book’s
presentation style demonstrates brilliantly how we can present squiggly topics and their appli-
cation to a wider audience. A presentation style I think squigglers everywhere will appreciate.
This is a book for squigglers and bodgers alike. It is a book that I wish existed when I started
typing and defining, and I am glad it is here now that I am constantly refining.

2

Conflicts of Interest
Reviewer’s note: During my doctoral studies, Edwin Brady was my second supervisor. I was
employed by Edwin as a research associate on an EPSRC-funded project to investigate Type-
Driven Development of Communicating Systems, and I still regularly collaborate, and publish,
with Edwin. During the initial consulting phase for Type-Driven Development with Idris, I was
asked by Manning to review an early outline.

References
Chlipala, A. (2013) Certified Programming with Dependent Types - A Pragmatic Introduction to

the Coq Proof Assistant. MIT Press.

Hutton, G. (2016) Programming in Haskell. 2nd edn. Cambridge University Press.

Stump, A. (2016) Verified Functional Programming in Agda. Association for Computing Ma-
chinery and Morgan & Claypool.

3

