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Abstract

The future annotation of MultiLisp provides a simple method for taming the implicit paral-

lelism of functional programs. Prior research on future has concentrated on implementation

and design issues, and has largely ignored the development of a semantic characterization of

future. This paper considers an idealized functional language with futures and presents a series

of operational semantics with increasing degrees of intensionality. The first semantics defines

future to be a semantically transparent annotation. The second semantics interprets a future

expression as a potentially parallel task. The third semantics explicates the coordination of

parallel tasks by introducing placeholder objects and touch operations.

We use the last semantics to derive a program analysis algorithm and an optimization

algorithm that removes provably redundant touch operations. Experiments with the Gambit

compiler indicate that this optimization significantly reduces the overhead imposed by touch

operations.

Capsule Review

Flanagan and Felleisen present four operational semantics for evaluating programs containing

Halstead’s future annotations indicating which expressions may be run in parallel. The

simplest, definitional demantics views such annotations as having no semantic effect. The

most complicated semantics shows how spawned threads coordinate, using environments to

model substitution and continuations to model control flow. This last semantics might be

the starting point of an implementation or for use in designing program analyses. I expected

it to be difficult to describe the operational effects of future annotations. By starting with a

simple operational semantics, and progressively adding the details that one would need to

be concerned with in an implementation, the authors have formulated a clean and credible

description of how future annotations should work.

1 Futures for parallel computation

Programs in functional languages offer numerous opportunities for executing pro-

gram fragments in parallel. In a call-by-value language, for example, the evaluation

of every function application could spawn a parallel thread for each argument ex-

pression. If such a strategy were applied indiscriminately, however, the execution of

a program would generate far too many parallel threads. The overhead of managing

these threads would clearly outweigh any benefits from parallel execution.
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2 C. Flanagan and M. Felleisen

The future annotations of MultiLisp and its Scheme successors (Baker &

Hewitt, 1977; Halstead, 1985) provide a simple method for taming the implicit

parallelism of functional programs. A programmer who believes that the paral-

lel evaluation of some expression outweighs the overhead of creating a separate

task may annotate the expression with the keyword future. An annotated func-

tional program has the same observable behavior as the original program, but

the run-time system may choose to evaluate the future expression in parallel with

the rest of the program. If it does, the evaluation will proceed as if the anno-

tated expression had immediately returned. Instead of a proper value though, it

returns a placeholder, i.e. a value that contains enough information for retrieving

the actual result of the annotated expression when needed. When a program op-

eration requires specific knowledge about the value of some subcomputation but

finds a placeholder, the run-time system performs a touch operation, which syn-

chronizes the appropriate parallel threads, and eventually retrieves the necessary

information.

Past research on futures has almost exclusively concentrated on the efficient imple-

mentation of the underlying task creation mechanism (Feeley, 1993; Ito & Matsui,

1989; Kranz et al., 1989; Miller, 1987; Mohr et al., 1990) and on the extension

of the concept to languages with first-class continuations (Katz & Weise, 1990;

Moreau, 1994b). In contrast, our goal is to develop a semantic framework and

semantically well-founded optimizations for languages with future. The specific ex-

ample we choose to consider is the development of an algorithm for removing

provably redundant touch operations from programs. Our primary results are a

series of semantics for a functional language with futures and a program analysis.

The first semantics defines future to be a semantically-transparent annotation. The

second one validates that a future expression interpreted as process creation is cor-

rect. The last semantics is a low-level refinement, which explicates the coordination

of parallel tasks and the need for placeholder objects. This semantics is inten-

sional enough to permit the derivation of a set-based program analysis (Heintze,

1994). The secondary result is a touch optimization algorithm (based on the anal-

ysis) with its correctness proof. The algorithm was added to the Gambit Scheme

compiler (Feeley, 1993) and produced significant speedups on a standard set of

benchmarks.

The presentation of our results proceeds as follows. The second section intro-

duces an idealized functional language with futures, together with its definitional,

sequential semantics that interprets futures as no-ops. The third section presents an

equivalent parallel semantics for futures and the fourth section refines that semantics

to introduce placeholders and touch operations. The fifth section discusses the cost

of touch operations and presents a provably correct algorithm for eliminating un-

necessary touch operations. The latter is based on the set-based analysis algorithm

of the sixth section. The seventh section presents experimental results demonstrating

the effectiveness of this optimization. Section eight discusses related work. For more

details, we refer the interested reader to two technical reports on this work (Flana-

gan & Felleisen, 1994a; Flanagan & Felleisen, 1994b), which are expansions of a

preliminary conference report (Flanagan & Felleisen, 1995).
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The semantics of future and an application 3

Notation We use f : A −→ B to denote that f is a total function from A to B, and

use Pfin to denote the finite power-set constructor.

2 A functional language with future

2.1 Syntax

We formulate the semantics of future for an idealized, λ-calculus-like language with

futures, conditionals and an explicit apply primitive – see figure 1. The language also

includes the primitives cons, car, and cdr for list manipulation, which will serve to

illustrate the treatment of primitive operations, a set of basic constants that includes

numbers and the empty list nil, and the term error, which is an error or runtime

exception.

M ∈ Λ ::= V (Terms)

| (apply M M)

| (if M M M)

| (car M) | (cdr M)

| error
| (future M)

V ∈ Value ::= c | x | (λx.M) | (cons V V ) (Values)

x ∈ Vars = {x, y, z, . . .} (Variables)

c ∈ Const = {nil} ∪ {0, 1, . . .} (Constants)

Fig. 1. The source language Λ.

A variable occurrence is free if it is not bound by an enclosing λ-expression or

let-expression. A term is closed if it contains no free variables. We identify terms that

differ only by consistent renaming of bound variables. The operation M[x ← V ]

denotes the capture-free substitution of V for all free occurrences of x within M.

For any set of terms X, we use X0 to denote the set of closed terms in X.

2.2 Definitional semantics of future as identity

The future construct is an annotation that describes where parallelism may be

usefully exploited by an implementation. This annotation is semantically transparent

in that it does not change the meaning of programs, only how fast they are evaluated.

We capture this definitional semantics of future as the identity operation via the

abstract machine described in figure 2.

States of this abstract machine are simply closed terms, and the transition rules

of the machine include the typical leftmost-outermost reductions of the lambda

calculus (Plotkin, 1975; Felleisen & Friedman, 1986). For example, if the argument

to the operation car is a pair, then the (car) rule extracts the first element of the pair.
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4 C. Flanagan and M. Felleisen

Evaluator

eval s : Λ0 −→ Answers ∪ {error,⊥}

eval s(P ) =


unload s[V ] if P 7−→∗s V
error if P 7−→∗s error
⊥ if ∀i ∈ N ∃Mi ∈ States such that

P = M0 and Mi 7−→s Mi+1

Data Specifications

S ∈ States ::= Λ (States)

F ∈ FinalStates ::= V | error (Final States)

A ∈ Answers ::= c | procedure | (cons A A) (Answers)

E ∈ EvalCtxt ::= [ ] | (apply E M) | (apply V E) (Evaluation Contexts)

| (if E M M) | (car E) | (cdr E)

Unload Function

unload s : Value0 −→ Answers

unload s[c] = c

unload s[(λx.M)] = procedure

unload s[(cons V1 V2)] = (cons unload s[V1] unload s[V2])

Transition Function

E[ (apply V1 V2) ] 7−→s

{ E[ M[x← V2] ]

error

if V1 = (λx.M)

if V1 6= (λx.M)
(apply)

E[ (car V ) ] 7−→s

{ E[ V1 ]

error

if V = (cons V1 V2)

if V 6= (cons V1 V2)
(car)

E[ (if V M1 M2) ] 7−→s

{ E[ M1 ]

E[ M2 ]

if V = nil

if V 6= nil
(if )

E[ error ] 7−→s error if E 6= [ ] (error)

E[ (future M) ] 7−→s E[ (future M ′) ] if M 7−→s M
′ (future)

E[ (future V ) ] 7−→s E[ V ] (future-id )

E[ (future error) ] 7−→s error (future-error)

Fig. 2. The sequential machine.

The transition rules also specify the error semantics of each class of expressions.

Thus, if the argument to car is not a pair, then the (car) rule produces the state

error. We omit the definition of transition rules for the operation cdr throughout

this paper, since these rules are always analogous to those for car.

The only novel transition rules are the ones for future expressions, which interpret

future as the identity operation. The (future) rule permits evaluation inside of a

future expression. It is the only structural (inference) rule in the evaluation system.1

Once the body of a future expression is first reduced to a value via the (future) rule,

the (future-id ) rule replaces the future expression with this value. The (future-error)

rule handles the case where the evaluation of a future expression yields an error.

This error is simply propagated to the enclosing context.

1 We formulate the sequential semantics of future in this manner to simplify the correspondence with
the parallel semantics presented in the next section.
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The semantics of future and an application 5

The definition of the transition rules relies on the notion of evaluation contexts.

Roughly speaking, an evaluation context E is a term with a hole [ ] in place of the

next sub-term to be evaluated; e.g. in (car M) the next sub-term to be evaluated is

M, and thus the definition of evaluation contexts includes (car E).

A sequential machine state is a final state if it is either a value or the special term

error. No transitions are possible from a final state, and for any state that is not a

final state, there is a unique transition step from that state to its successor state.

Lemma 2.1 (Uniform Evaluation Theorem)

Let M ∈ States.

1. If M 6∈ FinalStates, there exists a unique term M ′ such that M 7−→s M
′.

2. If M ∈ FinalStates, there is no term M ′ such that M 7−→s M
′.

The sequential machine defines the semantics of the language via an evaluator

function (eval s) from closed programs to results. A result is either an answer, which

is a closed value with all λ-expression replaced by the tag procedure,2 or error,

indicating that some program operation was misapplied, or ⊥, if the program

diverges.3 The Uniform Evaluation Theorem implies that the evaluator eval s is a

well-defined total function. Either the transition sequence for a program P terminates

in a final state, in which case eval s(P ) is an answer or error, or else the transition

sequence is infinite, in which case eval s(P ) = ⊥.

Theorem 2.2

The evaluator eval s is a total function.

Since the transition rules (future), (future-id ), and (future-error) interpret future

as the identity operation, the sequential machine correctly captures the extensional

semantics of future as the identity operation. Any parallel implementation strategy

for future should respect this extensional semantics.

3 Parallel operational semantics

The sequential abstract machine just described interprets future as an annotation,

but ignores its intension as an advisory instruction concerning parallel evaluations.

To understand this intensional aspect of future annotations, we need a semantics of

future that models the parallel evaluation of future expressions. For this purpose, we

extend the sequential machine into a parallel machine.

3.1 Specification of the parallel machine

State space The state space of the parallel abstract machine is defined in figure 3. In

addition to sequential machine states, which represent single threads of control, the

2 The evaluator removes λ-expressions from answers so that the observable behavior of programs does
not depend on the terms themselves, but only on their meaning.

3 We make divergent evaluations explicit because in the parallel semantics of the next section we need
to ensure that a divergent speculative thread does not cause divergence of the overall evaluation.
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Evaluator

eval p : Λ0 −→ Answers ∪ {error,⊥}

eval p(P ) =


unload p[V ] if P 7−→∗p V
error if P 7−→∗p error
⊥ if ∀i ∈ N ∃Si ∈ Statep, ni, mi ∈ N such that

mi > 0, P = S0 and Si 7−→ni,mi
p Si+1

Data Specifications

S ∈ Statep ::= M | (f-let (p S) S) (States)

M ∈ Λp ::= V | (apply M M) | . . . (As for Λ)

V ∈ Valuep ::= PValuep | p (Run-time Values)

PValuep ::= c | x | (λx.M) | (cons V V ) (Proper Values)

p ∈ Ph-Vars ::= {p1, p2, p3, . . .} (Placeholder Variables)

Ph-Vars ∩ Vars = ∅
F ∈ FinalStatep ::= V | error (Final States)

Unload Function : unload p = unload s

Transition Rules

E[ (apply V1 V2) ] 7−→1,1
p

{ E[ M[x← V2] ]

error

if V1 = (λx.M)

if V1 6= (λx.M), V 6= p
(apply)

E[ (car V ) ] 7−→1,1
p

{ E[ V1 ]

error

if V = (cons V1 V2)

if V 6= (cons V1 V2), V 6= p
(car)

E[ (if V M1 M2) ] 7−→1,1
p

{ E[ M1 ]

E[ M2 ]

if V = nil

if V 6= nil, V 6= p
(if )

E[ error ] 7−→1,1
p error if E 6= [ ] (error)

E[ (future M) ] 7−→1,1
p E[ (future M ′) ] if M 7−→1,1

p M ′ (future)

E[ (future V ) ] 7−→1,1
p E[ V ] (future-id )

E[ (future error) ] 7−→1,1
p error (future-error)

E[ (future N) ] 7−→1,0
p (f-let (p N) E[ p ]) p 6∈ FP (E) (fork )

(f-let (p V ) S) 7−→1,1
p S[p← V ] (join)

(f-let (p error) S) 7−→1,1
p error (join-error)

S 7−→0,0
p S (reflexive)

S 7−→n,m
p S ′′ (transitive)

if S 7−→a,b
p S ′, S ′ 7−→c,d

p S ′′
and a > 0, c > 0, n = a+ c, m = b+ d

(f-let (p S1) S2) 7−→n,m
p (f-let (p S ′1) S ′2) (parallel )

if S1 7−→a,m
p S ′1, S2 7−→c,d

p S ′2, n = a+ c

Fig. 3. The parallel machine.
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The semantics of future and an application 7

parallel machine also includes states of the form (f-let (p S1) S2), which model the

concurrent evaluation of future expressions by parallel threads. All instances of f-let

in a state occur at the top-level, in an f-let tree. The f-let tree is a convenient method

for representing the current collection of parallel threads and their interdependencies.

The primary sub-state S1 of a state (f-let (p S1) S2) is initially the body of the

future expression, and the secondary sub-state S2 is initially the evaluation context

surrounding the future expression. The placeholder variable p represents the result

of S1 in S2. The evaluation of S1 is considered mandatory , since it is guaranteed to

contribute to the completion of the computation. The evaluation of S2 is speculative,

since such work may not be required for the termination of the program. In

particular, if S1 raises an error signal, then the evaluator discards the state S2,

and any effort invested in the evaluation of S2 is wasted. The distinction between

mandatory and speculative steps is crucial for ensuring a sound definition of an

evaluator and is incorporated into the definition of the transition relation.

The set of values of the parallel machine includes the values of the sequential

machine (constants, variables, closures and pairs), which we refer to as proper values.

To model the implementation of futures, the parallel machine also includes a new

class of values called placeholder variables . A placeholder variable p represents the

result of a computation in progress. Once the computation terminates, all occurrences

of the placeholder are replaced by the value returned by the computation. The usual

conventions for binding constructs like λ and let apply to f-let. We use S[p← V ] to

denote the capture-free substitution of V for all free occurrences of p within a state

S . The function FP (S) determines the free placeholders variables in a state S , and

a state is closed if it contains no free variables or free placeholders.

Transition rules The transition relation of the parallel machine is a predicate on

quadruples · 7−→·,·p ·. The transition relation is f-let compatible and transitive-reflexive.

To provide for induction proofs, it includes the definiton of two indices that measure

the number of steps taken and how many of them are mandatory (i.e. , not

speculative). Specifically, if S 7−→n,m
p S ′ holds, then the index n is the number of steps

involved in the transition from S to S ′, and the index m 6 n is the number of these

steps that are mandatory.

The transition relation is formulated as a collection of transition rules. The rules

(apply), (car), (if ), (error), (future-id ) and (future-error) are simply the corresponding

transition rules of the sequential machine, appropriately modified where necessary

to allow for undetermined placeholders. An application of one of these rules counts

as a mandatory step. The (future) rule permits sequential evaluation inside a future

expression. We forbid parallel evaluation inside a future expression in order to

simplify the state space of the parallel machine.

The (fork ) rule initiates parallel evaluation by spawning the outermost future

expression. It may be applied whenever the current term is of the form:

E[ (future N) ]

The future annotation allows the expression N to be evaluated in parallel with the

enclosing context E[ ]. The machine creates a new placeholder p to represent the
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result of N, and initiates parallel evaluation of N and E[ p ]. We always spawn

the outermost future expression in order to maximize the granularity of the created

task,4 and also to simplify the correctness proof of the parallel machine.

The rules (join) and (join-error) merge distinct threads of evaluation. When the

primary sub-state S1 of a parallel state (f-let (p S1) S2) returns a value V , then the

(join) rule replaces all occurrences of the placeholder p within S2 by that value. If

the primary sub-state S1 evaluates to error, then the (join-error) rule discards the

secondary sub-state S2 and returns error as the result of the parallel state.

The rules (reflexive) and (transitive) close the relation under reflexivity and transi-

tivity. The transition rule (parallel ) permits concurrent evaluation of both sub-states

of a parallel state (f-let (p S1) S2).

We write S 7−→∗p S ′ if S 7−→n,m
p S ′ for some n, m ∈ N. A state S is in normal form

if there is no state S ′ such that S 7−→n,m
p S ′ with n > 0. A state is a final state if it is

either a value, or the state error, and a state is blocked if it is in normal form but

not a final state.

Nondeterminism Unlike the transition function of the sequential machine, which maps

each state to a unique successor state, the transition relation of the parallel machine

has an important degree of freedom. In particular, it does not specify when the (fork )

rule applies. For example, consider the state E[ (future N) ]. An implementation of

the machine may proceed either by evaluating the future body N via a (future)

transition or by creating a new task via a (fork ) transition. The choice of whether

or not to apply the (fork ) rule is entirely up to the implementation of the machine.

An implementation may immediately apply this rule whenever a future expression

is encountered, realizing a task creation strategy called eager task creation (Kranz

et al., 1989; Swanson et al., 1988; Gabriel & McCarthy, 1988). Alternatively, an

implementation may never invoke the (fork ) rule, resulting in a purely sequential

evaluation. In between these two extremes lies a range of strategies where new

tasks are created according to some implementation-dependent and possibly load-

dependent algorithm. A particularly efficient strategy is lazy task creation (Feeley,

1993; Mohr et al., 1990), where new tasks are created via fork transitions only when

the additional parallelism can exploit idle computing resources.

A second source of nondeterminism in the parallel machine is the transition

rule (parallel ). This rule does not specify the number of steps that parallel sub-

states must perform before they synchronize. An implementation of the machine

can use almost any scheduling strategy for allocating processors to tasks. The only

constraint, as specified in the definition of evalp, is that the implementation must

perform mandatory computation steps on a regular basis.

Evaluation The parallel machine can evaluate a program via many different tran-

sition sequences. Some of these transition sequences may be infinite, even if the

4 This strategy is used in many implementations of future (Mohr et al., 1990; Feeley, 1993) and of other
parallel functional languages (Flanagan & Nikhil, 1996).
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program terminates according to the sequential semantics. Consider the program

P = (apply (λx.Ω) (future error))

where Ω is some diverging sequential term such that Ω 7−→n,m
p Ω 7−→n,m

p Ω 7−→n,m
p · · ·.

The sequential evaluator never executes Ω because P ’s result is error. In contrast,

P admits the following infinite parallel transition sequence:

P 7−→1,0
p (f-let (p error) (apply (λx.Ω) p)) via (fork )

7−→1,0
p (f-let (p error) Ω)

7−→n,0
p (f-let (p error) Ω) since Ω 7−→n,m

p Ω

7−→n,0
p · · ·

This ‘evaluation’ diverges because it exclusively consists of speculative transition

steps and does not include any mandatory transition steps that contribute to the

sequential evaluation of the program.

The evaluator for the parallel machine excludes these excessively speculative or

unfair transition sequences, and only admits fair transition sequences that regu-

larly include mandatory transition steps.5 For a terminating transition sequence, the

number of speculative steps performed is implicitly bounded. For non-terminating

sequences, the definition of the evaluator explicitly requires that mandatory transition

steps are performed on a regular basis. This constraint implies that an implementa-

tion of the machine must keep track of the mandatory thread and must ensure that

this mandatory thread is regularly executed.

In summary, the parallel machine nondeterministically chooses any transition se-

quence that regularly performs mandatory computation, and reports on the behavior

of that sequence. If the chosen transition sequence produces either a value V or

error, then evalp returns unloadp[V ] or error, respectively. If the chosen transition

sequence does not terminate, then evalp returns ⊥. As we will prove below, the eval-

uator relation evalp is a total function and is extensionally identical to the sequential

evaluator eval s.

Placeholder transparency and synchronization We say that a program operation is

placeholder-strict in a position if it needs specific information about the value of

the corresponding argument. For example, the operations car, cdr, if and apply are

placeholder-strict in their first position. Whenever an undetermined placeholder ap-

pears in a placeholder-strict argument position of one of these operations, then that

operation must block until the placeholder is determined and specific information

about the value of the argument is known. We model this behavior in the parallel

machine via side-conditions associated with the transition rules (car), (cdr), (if )

and (apply). These side-conditions ensure that if a placeholder-strict argument is an

undetermined placeholder, then the transition rule cannot fire.

5 The concept of a mandatory step is closely related to the notion of legitimacy introduced by Katz and
Weise (1990).
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For a brief illustration of this idea, consider the following transition sequence:

P = (car (future (apply (λx. (cons x x)) 1))) (1)

7−→1,0
p (f-let (p (apply (λx. (cons x x)) 1) ) (car p)) (2)

7−→1,1
p (f-let (p (cons 1 1) ) (car p)) (3)

7−→1,1
p (car (cons 1 1)) (4)

7−→1,1
p 1 (5)

The first transition in this sequence creates a new task for the evaluation of the

future expression via a (fork ) transition. After task creation (line 2), no transition

steps are possible from the secondary sub-state (car p). The (car) rule cannot fire

since the argument of car is a placeholder. Evaluation of the primary substate

proceeds unhindered. Once the primary substate produces a value (line 3), the (join)

rule synchronizes the separate threads of computation by replacing all occurrences

of p by that value. After synchronization (line 4), the operation car applies to the

new argument (cons 1 1), and execution continues with the program returning the

answer: 1.

Since program operations block whenever an argument in a placeholder-strict

position is undetermined, the parallel machine never performs a transition before

a placeholder is determined that it would perform differently after the placeholder

is determined. Hence the transition relation of the machine exhibits a substitutivity

property: the transition relation commutes with substitution of values for place-

holders. Since this property is crucial in proving the correctness of the machine, we

formulate a matching lemma.

Lemma 3.1 (Substitutivity; Placeholder Transparency)

If S1 7−→n,m
p S2, then for any placeholder p and any W ∈ Valuep,

S1[p←W ] 7−→n,m
p S2[p←W ] .

Proof

The proof is by lexicographic induction on n and on the size of S1, and proceeds by

case analysis on the transition rule used for S1 7−→n,m
p S2. q

3.2 Consistency of the parallel machine

The observable behavior of the parallel machine on a given program is deterministic,

despite its nondeterminate internal behavior. We prove this fact in the traditional

manner, using a extended form of the Diamond Lemma. The Extended Diamond

Lemma states that if we reduce an initial state S0 by two alternative transitions,

producing respectively states S1 and S2, then there is some state S3 that is reachable

from both S1 and S2. Furthermore, the lemma also relates the number of steps

involved in the various state transitions. This relationship among transition steps is

crucial to proving that all transition sequences for a given program exhibit the same

termination behavior.
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Lemma 3.2 (Extended Diamond Lemma)

Let S0, S1, S2 ∈ Statep. If S0 7−→n1 ,m1
p S1 and S0 7−→n2 ,m2

p S2, then there exists S3 ∈ Statep
and k1, l1, k2, l2 ∈ N such that S1 7−→k1 ,l1

p S3 and S2 7−→k2 ,l2
p S3. Furthermore, the

following inequalities hold:

S0
-

7−→n1 ,m1
p

S1pppppppppppppppppp?
7−→k1 ,l1

p

S3
p p p p p p p p p p p p p p p p p p-
7−→k2 ,l2

p

S2

?

7−→n2 ,m2
p

m1 + k1 6 n2 + l2
m2 + k2 6 n1 + l1

k1 6 n2

k2 6 n1

Proof

The proof proceeds by lexicographic induction n1 + n2 and on the size of S0, and by

case analysis on the pair of transition rules used for S0 7−→n1 ,m1
p S1 and S0 7−→n2 ,l1

p S2.

To simplify the case analysis, we define the transition relation (seq) as the union of

(apply), (car), (if ) and (error). The transition relation of the parallel machine is then

the union of the ten relations (seq), (future), (future-id ), (future-error), (fork ), (join),

(join-error), (parallel ), (reflexive) and (transitive). The following table enumerates the

possible combinations after symmetry considerations, and annotates each case with

a reference to the argument used to prove that case.

seq fut fut-id fut-err fork join j-err par. refl. trans.

(seq) ≡ × × × × × × × 1 2

(future) ≡ × × 3 × × × 1 2

(future-id ) ≡ × 4 × × × 1 2

(future-error) ≡ 5 × × × 1 2

(fork ) ≡ × × × 1 2

(join) ≡ × 6 1 2

(join-error) ≡ 7 1 2

(parallel ) 8 1 2

(reflexive) 1 1

(transitive) 2

The following arguments show that the lemma holds in each of the above cases:

(×) The cases marked by the symbol × are impossible, since the domains of the

respective relations are disjoint.

(≡) The cases marked by the symbol ≡ hold, since the relation in question is a

partial function, and hence S1 = S2.

(1) For the case where S0 7−→0,0
p S1 via the rule reflexive, take S3 = S2.

(2) If S0 7−→n1 ,m1
p S1 via the rule transitive, we have that S0 7−→a1 ,b1

p S5 7−→a2 ,b2
p S1,

where n1 = a1 + a2, m1 = b1 + b2, a1 > 0 and b1 > 0. The following diagram
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12 C. Flanagan and M. Felleisen

outlines our proof technique for this case:

S0
-

7−→a1 ,b1
p

S2

?

7−→n2 ,m2
p

S5pppppppppppppppppp?
7−→a3 ,b3

p

S6
p p p p p p p p p p p p p p p p p p-
7−→a4 ,b4

p

S1
-

7−→a2 ,b2
p

S3
p p p p p p p p p p p p p p p p p p-
7−→a5 ,b5

p

pppppppppppppppppp?
7−→k1 ,l1

p

Since a1 + n2 < n1 + n2, by the inductive hypothesis there exists S6 ∈ Statep
and a3, b3, a4, b4 ∈ N such that:

S5 7−→a3 ,b3
p S6

S2 7−→a4 ,b4
p S6

b1 + a3 6 n2 + b4

m2 + a4 6 a1 + b3

a4 6 a1

a3 6 n2

Similarly, since S5 7−→a2 ,b2
p S1, S5 7−→a3 ,b3

p S6 and a2 + a3 < n1 + n2, by the

inductive hypothesis there exists S3 ∈ Statep and k1, l1, a5, b5 ∈ N such that:

S1 7−→k1 ,l1
p S3

S6 7−→a5 ,b5
p S3

b2 + k1 6 a3 + b5

b3 + a5 6 a2 + l1

a5 6 a2

k1 6 a3

Let k2 = a4 + a5 and l2 = b4 + b5. Then S1 7−→k1 ,l1
p S3 and S2 7−→k2 ,l2

p S3.

Furthermore:

m1 + k1 = b1 + b2 + k1

= (b1 + a3) + (b2 + k1)− a3

6 (n2 + b4) + (a3 + b5)− a3 (I.H.)

= n2 + l2

m2 + k2 = m2 + a4 + a5

= (m2 + a4) + (b3 + a5)− b3

6 (a1 + b3) + (a2 + l1)− b3 (I.H.)

= n1 + l1

k1 6 a2 6 n2

k2 = a4 + a5 6 a1 + a2 = n1

Thus the lemma holds for this case.

(3) Suppose S0 7−→1,1
p S1 via the rule (future) and S0 7−→1,0

p S2 via the rule (fork ).

Then:

S0 = E[ (future N) ]

S1 = E[ (future N ′) ] where N 7−→1,1
p N ′

S2 = (f-let (p N) E[ p ])

Let S3 = (f-let (p N ′) E[ p ]). Clearly S1 7−→1,0
p S3 via (fork ), and S2 7−→1,1

p S3

via (parallel ).
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(4) Suppose S0 7−→1,1
p S1 via the rule (future-id ) and S0 7−→1,0

p S2 via the rule (fork ).

Then:

S0 = E[ (future V ) ]

S1 = E[ V ]

S2 = (f-let (p V ) E[ p ])

Let S3 = S1. Then S1 7−→0,0
p S3 via (reflexive) and S2 7−→1,1

p S3 via (join).

(5) The case where S0 7−→1,1
p S1 via (future-error) and S0 7−→1,0

p S2 via (fork ) holds

by reasoning similar to the previous case.

(6) Suppose S0 7−→1,1
p S1 via the rule (join) and S0 7−→n,0

p S2 by the rule (parallel ).

Then:

S0 = (f-let (p V ) S)

S1 = S[p← V ]

S2 = (f-let (p V ) S ′) where S 7−→n,m
p S ′

Pick S3 = S ′[p ← V ]. Then S1 7−→n,m
p S3 by the Placeholder Transparency

Lemma (3.1), and S2 7−→1,1
p S3 via the rule (join).

(7) The case where S0 7−→1,1
p S1 via (join-error) and S0 7−→n,0

p S2 via (parallel ) holds

by reasoning similar to the previous case.

(8) Suppose both the transitions S0 7−→n1 ,m1
p S1 and S0 7−→n2 ,m2

p S2 are via the rule

(parallel ). Then:

S0 = (f-let (p S ′0) S ′′0 )

S1 = (f-let (p S ′1) S ′′1 )

where S ′0 7−→a1 ,m1
p S ′1, S ′′0 7−→c1 ,d1

p S ′′1 and n1 = a1 + c1

S2 = (f-let (p S ′2) S ′′2 )

where S ′0 7−→a2 ,m2
p S ′2, S ′′0 7−→c2 ,d2

p S ′′2 and n2 = a2 + c2

Since a1 + a2 6 n1 + n2 and S ′0 is strictly smaller than S0, by the inductive

hypothesis there exists S ′3 such that:

S ′1 7−→a3 ,l1
p S ′3

S ′2 7−→a4 ,l2
p S ′3

m1 + a3 6 a2 + l2
m2 + a4 6 a1 + l1

a3 6 a2

a4 6 a1

Similarly, there exists S ′′3 such that:

S ′′1 7−→c3 ,d3
p S ′′3

S ′′2 7−→c4 ,d4
p S ′′3

d1 + c3 6 c2 + d4

d2 + c4 6 c1 + d3

c3 6 c2

c4 6 c1

Letting S3 = (f-let (p S ′3) S ′′3 ), we have:

S1 7−→k1 ,l1
p S3

S2 7−→k2 ,l2
p S3

where k1 = a3 + c3, k2 = a4 + c4, and the indices satisfy the inequalities.

q

The Extended Diamond Lemma implies that all transition sequences exhibit the

same observable behavior.
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Lemma 3.3 (Consistency of Transitions)

Let P be a program. If P 7−→∗p S , where S is in normal form, then:

1. For all normal forms S ′ such that P 7−→∗p S ′, S ′ = S .

2. It is impossible that for all i ∈ N there exists Si ∈ Statep and ni, mi ∈ N such

that mi > 0, P = S0 and Si 7−→ni,mi
p Si+1.

Proof

1. Suppose P 7−→∗p S and P 7−→∗p S ′, where S, S ′ are in normal form. By the

Extended Diamond Lemma (3.2), there exists some S4 such that S 7−→∗p S4 and

S ′ 7−→∗p S4. However, since S, S ′ are in normal form, we have that S = S4 = S ′.
2. We prove part 2 by contradiction. Assume that P 7−→n,m

p S where S is in normal

form, and that there exists some sequence of states Si ∈ Statep and ni, mi ∈ N

such that mi > 0, P = S0 and Si 7−→ni,mi
p Si+1.

Pick an integer k > n. Then P 7−→a,b
p Sk+1, where a = Σi=k

i=0ni and b = Σi=k
i=0mi.

By the Extended Diamond Lemma (3.2), Sk+1 7−→c,d
p S (because S is in normal

form) for some c, d ∈ N, with n > b+ c. But b+ c > b = Σi=k
i=0mi > k + 1 > k,

since mi > 0, producing the contradiction n > k > n.

q

The Consistency of Transitions Lemma implies that all transition sequences for a

given program exhibit the same observable behavior, and hence the evaluator evalp
for the parallel machine is a well-defined function.

Theorem 3.4 (Consistency of evalp)

The relation evalp is a function.

3.3 Correctness of the parallel machine

Every transition rule of the sequential machine has a corresponding rule in the

parallel machine, which implies that every transition of the sequential machine is

also a transition of the parallel machine.

Lemma 3.5

Suppose S 7−→s S
′, for S, S ′ ∈ States. Then S 7−→1,1

p S ′.

The correspondence between transitions of the two machines (together with Theo-

rem 3.4) implies that their respective evaluators are equivalent.

Theorem 3.6 (Correctness of evalp)

eval s = evalp.

Proof

Let P be any program. We proceed by case analysis of the definition of eval s:

• Suppose eval s(P ) = unload s[V ] because P 7−→∗s V . Then P 7−→∗p V , and hence

evalp(P ) = unloadp[V ] = unload s[V ].

• Similarly, if eval s(P ) = error because P 7−→∗s error, then P 7−→∗p error, and

hence evalp(P ) = error.
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• Finally, suppose eval s(P ) = ⊥ via the infinite sequence

P ≡ S0 7−→s S1 7−→s · · · 7−→s Sk 7−→s · · · .
Then P ≡ S0 7−→1,1

p S1 7−→1,1
p · · · 7−→1,1

p Sk 7−→1,1
p · · ·, and thus evalp(P ) = ⊥.

Hence eval s ⊆ evalp. Since eval s is total and evalp is a function (from Theorem 3.4),

we also have that eval s = evalp. q

The equivalence of the two evaluators implies that evalp is defined for all programs.

In summary, the parallel machine correctly implements the sequential machine

in that they both define the same semantics for the source language. Hence, the

interpretation of future as a task creation construct, with implicit task coordination,

is entirely consistent with the definitional semantics of future as an annotation.

4 Placeholder object semantics

The parallel machine specifies the parallel execution behavior of programs with

future at the source level, and hides low-level operations that are required in re-

alistic implementations of future. In particular, implementations typically represent

placeholders using placeholder objects to avoid the expensive substitution operation

on placeholders (compare (join)). Instead, placeholder objects are mutated in place.

This technique requires touch operations at placeholder-strict positions in computa-

tional primitives to dereference placeholder objects when necessary. Since we plan

to use the semantics of future to develop an algorithm for removing redundant touch

operations, we reformulate the parallel machine to expose these placeholder objects

and the associated touch operations, and we also associate an identifying label with

each expression in a placeholder-strict position. The result is an abstract machine

called the placeholder machine.

4.1 Specification of the placeholder machine

The state space of the placeholder machine is a minor revision of that of the parallel

machine – see figure 4. Instead of plain variables, placeholders are now tagged

objects. An undetermined placeholder object (written 〈ph p〉) is created to represent

the result of each parallel task (compare (fork )). The placeholder variable p is used to

distinguish placeholder objects from each other. When the computation associated

with the placeholder object terminates, producing a value V , the undetermined

placeholder object is replaced by the determined placeholder object 〈ph V 〉.6
The correctness of this technique requires that a determined placeholder object

〈ph V 〉 representing the value V is observably equivalent to the value V itself. To

ensure this behavior, the primitives car, cdr, if and apply perform touch operations

on their placeholder-strict arguments. A touch operation behaves as the identity

6 The explicit replacement of undetermined placeholders by determined placeholders is still unrealistic,
but suffices for our purposes. Alternatively, the explicit substitution could be avoided via a lookup rule
along the lines of Felleisen and Hieb (1989).
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Evaluator

eval ph : Λ0 −→ Answers ∪ {error,⊥}

eval ph(P ) =


unload ph[V ] if P ′ 7−→∗ph V
error if P ′ 7−→∗ph error
⊥ if ∀i ∈ N ∃Si ∈ Stateph, ni, mi ∈ N such that

mi > 0, P ′ = S0 and Si 7−→ni,mi
ph Si+1

where P ∈ Λ0 is converted to P ′ ∈ Λ0
ph by adding labels as appropriate

Data Specifications

S ∈ Stateph ::= M | (f-let (p S) S) (States)

V ∈ Valueph ::= PValueph | PHValueph (Run-time Values)

PHValueph ::= 〈ph p〉 | 〈ph V 〉 (Placeholder Values)

PValueph ::= c | x | Cl ph | Pairph (Proper Values)

Cl ph ::= (λx.M) (Closures)

Pairph ::= (cons V V ) (Pairs)

l ∈ Label (Labels)

M ∈ Λph ::= V | (apply Ml M) (Terms with labels)

| (if Ml M M)

| (car Ml) | (cdr Ml)

| error | (future M)

Unload Function

unload ph : Value0
ph−→Answers

unload ph[c] = c

unload ph[(λx.M)] = procedure

unload ph[(cons V1 V2)] = (cons V ′1 V ′2)

where V ′i = unload ph[Vi]

unload ph[〈ph V 〉] = unload ph[V ]

Touch Function

touchph : Valueph −→ PValueph ∪ {〈ph p〉}
touchph[〈ph V 〉] = touchph[V ]

touchph[V ] = V otherwise

Placeholder Substitution S[p := V ]

M[p := V ] = M with all occurrences of 〈ph p〉 replaced by 〈ph V 〉
(f-let (p′ S1) S2)[p := V ] =

{
(f-let (p′ S1[p := V ]) S2) if p = p′
(f-let (p′ S1[p := V ]) S2[p := V ]) if p 6= p′

Transition Rules

E[ (apply V l
1 V2) ] 7−→1,1

ph

{ E[ M[x← V2] ]

error

if touchph[V1] = (λx.M)

if touchph[V1] 6∈ Cl ph ∪ {〈ph p〉} (apply)

E[ (car V l) ] 7−→1,1
ph

{ E[ V1 ]

error

if touchph[V ] = (cons V1 V2)

if touchph[V ] 6∈ Pairph ∪ {〈ph p〉} (car)

E[ (if V l M1 M2) ] 7−→1,1
ph

{ E[ M1 ]

E[ M2 ]

if touchph[V ] = nil

if touchph[V ] 6∈ {nil, 〈ph p〉} (if )

E[ (future N) ] 7−→1,0
ph (f-let (p N) E[ 〈ph p〉 ]) p 6∈ FP (E) (fork )

(f-let (p V ) S) 7−→1,1
ph S[p := V ] (join)

The transition rules (error), (future), (future-id ), (future-error), (join-error),

(reflexive), (transitive) and (parallel ) are as for the parallel machine

Fig. 4. The placeholder machine.
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operation on proper values, but when applied to a placeholder object, the touch

operation dereferences the placeholder object to retrieve the value that it represents.

An occurrence of an undetermined placeholder object 〈ph p〉 is free if p is not

bound by an enclosing f-let expression, and a state S is closed if it does not contain

any free variables or free undetermined placeholder objects.

Terms in the placeholder machine include labels on placeholder-strict arguments.

These labels will later be used by an analysis algorithm to identify the set of

possible values of each placeholder-strict argument, and, in particular, to identify

those placeholder-strict arguments that never yield placeholders. The labels do not

have any effect on program evaluation.

4.2 Correctness of the placeholder machine

The state space of the placeholder machine is almost identical to that of the

parallel machine, with the exception of placeholder objects and labels. Therefore,

each placeholder machine state corresponds to a parallel machine state. We ex-

plicate this correspondence with a translation function Θ that maps placeholder

machine states to corresponding parallel machine states. The translation replaces

determined placeholder objects with the appropriate value; replaces undetermined

placeholder objects with the corresponding placeholder variable; and removes labels

on placeholder-strict operations.

Θ : Stateph −→ Statep
Θ[[〈ph p〉]] = p

Θ[[〈ph V 〉]] = Θ[[V ]]

Θ[[(apply Ml
1 M2)]] = (apply Θ[[M1]] Θ[[M2]])

· · · = · · · similar clauses for other states

Θ extends in a natural manner to evaluation contexts: Θ[[ [ ] ]] = [ ].

The function Θ is a bisimulation relation for the parallel and placeholder machines.

That is, every transition of the placeholder machine corresponds to a transition of

the parallel machine, and vice versa.

Lemma 4.1 (Bisimulation Lemma)

Let S1 ∈ Statep and S ′1 ∈ Stateph such that Θ[[S ′1]] = S1.

1. If S ′1 7−→n,m
ph S

′
2, then S1 7−→n,m

p Θ[[S ′2]].

2. If S1 7−→n,m
p S2, then there exists S ′2 ∈ Stateph such that S ′1 7−→n,m

ph S ′2 and

Θ[[S ′2]] = S2.

Proof

We prove the first part by lexicographic induction on n and on the size of S ′1,

and by case analysis of the last step in S ′1 7−→n,m
ph S ′2. We prove the second part by

lexicographic induction on n and on the size of S1, and by case analysis of the last

step in the transition S1 7−→n,m
p S2. q

The Bisimulation Lemma implies the equivalence of the placeholder and parallel

machines.
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(define fib

(lambda (n)

(if (< n 2)

1

(+(future ( fib (−n 1)))

( fib (−n 2))))))

Fig. 5. The definition of fib.

Theorem 4.2 (Correctness of evalph)

evalph = evalp.

Proof

Both directions of the theorem are straightforward consequences of the Bisimulation

Theorem. q

In summary, the placeholder machine correctly implements the parallel machine

in that both machines specify the same semantics for the source language. Hence

the use of placeholder objects, combined with touch operations for placeholder-strict

primitives, is a valid technique for coordinating parallel tasks.

5 Touch optimization

The placeholder machine performs touch operations on arguments in placeholder-

strict positions of all program operations. These implicit touch operations guarantee

the transparency of placeholders, which makes future-based parallelism so convenient

to use. Unfortunately, these (compiler-inserted) touch operations impose a significant

overhead on the execution of annotated programs. For example, an annotated

doubly-recursive version of fib (see figure 5) performs over a million touch operations

during the computation of (fib 25).

Due to the dynamic typing of Scheme, the cost of each touch operation depends

on the program operation that invoked it. If a program operation already performs

a type dispatch to ensure that its arguments have the appropriate type, e.g. car,

cdr, apply, etc, then a touch operation is free. Put differently, an implementation of

(car x) in pseudo-code is:

(if (pair? x) (unchecked-car x) (error ’car ”Not a pair”))

Extending the semantics of car to perform a touch operation on placeholders is

simple:

(if (pair? x) (unchecked-car x)

(let ([y (touch x)]) (if (pair? y) (unchecked-car y)

(error ’car ”Not a pair”))))

The touching version of car incurs an additional overhead only in the error case

or when x is a placeholder. For the common case when x is a pair, no overhead
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is incurred. Since the vast majority of Scheme operations already perform a type-

dispatch on their arguments,7 the overhead of performing implicit touch operations

appears to be acceptable at first glance.

Still, a standard technique for increasing execution speed in Scheme systems is to

disable type-checking typically based on informal correctness arguments or based

on type verifiers for the underlying sequential language (Wright & Cartwright,

1994; Fagan, 1990; Aiken et al., 1994). When type-checking is disabled, most pro-

gram operations do not perform a type-dispatch on their arguments. Under these

circumstances, the source code (car x) translates to the pseudo-code:

(unchecked-car x)

Extending the semantics of car to perform a touch operation on placeholders is now

quite expensive, since it then performs an additional check for every execution:

(if (placeholder? x) (unchecked-car (touch x)) (unchecked-car x))

Performing these placeholder? checks can add a significant overhead to the execution

time. Kranz (1989) and Feeley (1993) estimated this cost at nearly 100% of the

(sequential) execution time, and our experiments confirm these results (see below).

The classical solution for avoiding this overhead is to provide a compiler switch

that disables the automatic insertion of touches, and a touch primitive so that pro-

grammers can insert touch operations explicitly where needed (Feeley, 1993; Kessler

& Swanson, 1989; Swanson et al., 1988). We believe that this solution is flawed for

two reasons. First, it clearly destroys the transparent character of future annotations.

Instead of an annotation that only affects executions on some implementations,

future is now a task creation construct and touch is a synchronization tool. Secondly,

to use this solution safely, the programmer must know where placeholders can ap-

pear instead of regular values and must add touch operations at these places in the

program. In contrast to the addition of future annotations, the placement of touch

operations is far more difficult: while the former requires a prediction concerning

computational intensity, the latter demands a full understanding of the data flow

properties of the program. Since we believe that an accurate prediction of data flow

by the programmer is only possible for small programs, we reject this traditional

solution.

A better approach than explicit touches is for the compiler to use information

provided by a data-flow analysis of the program to remove unnecessary touches wher-

ever provably possible.8 This approach substantially reduces the overhead of touch

operations without sacrificing the simplicity or transparency of future annotations.

7 Two notable exceptions are if, which does not perform a type-dispatch on the value of the test
expression, and the equality predicate eq?, which is implemented as a pointer comparison.

8 This approach is similar in character to optimization techniques such as soft-typing (Wright &
Cartwright, 1994; Fagan, 1990; Aiken et al., 1994) and tagging optimization (Henglein, 1992), which
remove the type-dispatches required in dynamically-typed languages wherever possible. However, touch-
optimization also applies to a statically-typed language with futures, where soft-typing and tagging
optimization techniques are not as useful.
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E[ (car V ) ] 7−→1,1
ph


E[ V1 ] if V = (cons V1 V2)

unspecified if V ∈ PHValueph
error otherwise

(car)

E[ (if V M1 M2) ] 7−→1,1
ph


E[ M1 ] if V = nil

unspecified if V ∈ PHValueph
E[ M2 ] otherwise

(if)

E[ (apply V1 V2) ] 7−→1,1
ph


E[ M[x← V2] ] if V1 = (λx.M)

unspecified if V1 ∈ PHValueph
error otherwise

(apply)

Fig. 6. Non-touching transition rules.

5.1 Non-touching primitives

The current language does not provide primitives that do not touch arguments

in placeholder-strict positions. To express and verify an algorithm that replaces

touching primitives by non-touching primitives, we extend the language Λph with

non-touching forms of the placeholder-strict primitive operations, denoted car, cdr,

if and apply, respectively:9

M ::= . . .

| (car M) | (cdr M)

| (if M M M)

| (apply M M)

As their name indicates, a non-touching operation behaves in the same manner as

the original version as long as its argument in the placeholder-strict position is not

a placeholder. If the argument is a place-holder, the behavior of the non-touching

variant is unspecified, and any arbitrary state may be produced. The extended

language is called Λ.

We define the semantics of the extended language Λ by extending the placeholder

machine with the additional transition rules described in figure 6. The evaluator

for the extended language, evalph, is defined in the usual way (compare figure 4).

Unlike evalph, the evaluator evalph is no longer a function. There are programs in

Λ for which the evaluator evalph can either return a value or can be unspecified

because of the application of a non-touching operation to a placeholder. Still, the

two evaluators clearly agree on programs in Λph.

Lemma 5.1

For P ∈ Λph, evalph(P ) = evalph(P ).

9 Since these operations do not perform a touch operation on their arguments, we do not associate a
label with those arguments.
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5.2 The touch optimization algorithm

The goal of touch optimization is to replace the touching operations car, cdr, if

and apply by the corresponding non-touching operation whenever possible without

changing the semantics of programs. For example, suppose that a program contains

(car Ml) and we can prove that M never evaluates to a placeholder. Then we can

replace (car Ml) with (car M), which the machine can execute without performing

a test for placeholdership on the result of M.

This optimization technique relies on a detailed data-flow analysis of the program

that determines a conservative approximation to the set of run-time values for each

expression in a placeholder-strict position. We assume that the analysis returns a

placeholder table, which is a table of labels identifying all labeled expressions in the

program that may yield placeholder objects.

Definition 5.2

Placeholder table, valid placeholder table

• A placeholder table P is a subset of Label .

• A placeholder table P is currently valid for a state S (denoted S |=c P) if for

every term of the form 〈ph p〉l or 〈ph V 〉l in S , l ∈ P
• A placeholder table P is (always) valid for a program P (denoted P |=a P) if

P 7−→∗ph S implies that S |=c P.

The basic idea behind touch optimization is now easy to explain. If a placeholder

table that is always valid for a program shows that the argument of a touching

version of car, cdr, if or apply can never be a placeholder, the optimization algorithm

replaces the operation with its non-touching version. The optimization algorithmT,

parameterized over a placeholder table P, is defined in figure 7. If P is always

valid for the program being optimized, then the touch optimization algorithm TP
preserves the meaning of that program. For every transition step of the source

program P there exists a corresponding transition step for the optimized program

TP(P ). We extend TP in a natural manner to states to aid in the proof of this

correspondence.

Lemma 5.3 (Step Correspondence)

Let S be a placeholder machine state for which the placeholder table P is currently

valid.

1. Suppose S 7−→l,l
ph S

′. Then TP(S) 7−→l,l
phTP(S ′).

2. Suppose TP(S) 7−→l,l
ph S

′′. Then S 7−→l,l
ph S

′ where TP(S ′) = S ′′.

Proof

We prove the first part by case analysis of S 7−→l,l
ph S

′, and the second part by case

analysis of TP(S) 7−→l,l
ph S

′′. q

The Step Correspondence Lemma implies that a touch optimized program exhibits

the same behavior as the corresponding unoptimized program.
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TP : Λph −→ Λph

TP[x] = x

TP[c] = c

TP[(λx.M)] = (λx.TP[M])

TP[(cons M1 M2)] = (cons TP[M1] TP[M2])

TP[(future M)] = (futureTP[M])

TP[(car Ml)] =

{
(car TP[M])

(car TP[M]l)

if l 6∈ P
if l ∈ P

TP[(if Ml M1 M2)] =

{
(if TP[M] TP[M1] TP[M2])

(if TP[M]l TP[M1] TP[M2])

if l 6∈ P
if l ∈ P

TP[(apply Ml N)] =

{
(apply TP[M] TP[N])

(apply TP[M]l TP[N])

if l 6∈ P
if l ∈ P

Fig. 7. The touch optimization algorithm T.

Theorem 5.4

For P ∈ Λ0
ph, if P |=a P then evalph(TP(P )) = evalph(P ).

Proof

Both the fact that evalph is well-defined onTP(P ) and that the equality holds follow

from Lemma 5.3. q

In summary, the touch optimization algorithm we present removes redundant touch

operations from programs based on the information provided by an always valid

placeholder table. This optimization algorithm is provably correct with respect to the

semantics of future as specified by the extended evaluator evalph. Any implementation

that realizes evalph correctly can therefore make use of our optimization technique.

6 Set-based analysis for futures

The touch optimization algorithm just described relies on an analysis that infers

an always valid placeholder table for the program to be optimized. This section

presents such an analysis, which is a variant of Heintze’s set-based analysis (Heintze,

1994), appropriately adapted to our language with futures.

Set-based analysis consists of two co-mingled phases: a specification phase and

a solution phase.10 The specification phase derives constraints on the sets of values

that program expressions may assume. These constraints describe the data flow

relationships of the analyzed program. The solution phase solves these constraints

to yield an always valid placeholder table for the analyzed program.

10 Cousot and Cousot (1995) showed that the results of set-based analysis can alternatively be computed
via an abstract interpretation based on chaotic iteration.
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6.1 The constraint language

The language of set expressions is described by the following grammar.

τ ∈ SetExp = c | dom(τ) | rng(τ) | car(τ) | cdr(τ) | 〈ph〉 | α
α, β, γ ∈ SetVar ⊃ Label

Intuitively, each set expression τ denotes a set of values. A constant c denotes

the corresponding singleton set. The set expressions dom(τ) and rng(τ) denote the

argument set and result set, respectively, of functions denoted by τ. Similarly, car(τ)

and cdr(τ) denote the first and second components, respectively, of pairs denoted

by τ. The set expression 〈ph〉 denotes a value set that contains placeholders. The

meta-variables α, β, γ range over set variables, and we include program labels in the

collection of set variables.

A constraint C is an inequality τ1 6 τ2 relating two set expressions, and intuitively

it denotes a corresponding set containment relationship between the value sets for

τ1 and τ2. A constraint system S is a collection of constraints.

C ∈ Constraint = τ1 6 τ2

S ∈ Constraint∗ = Pfin(Constraint)

6.2 The specification phase

The specification phase of set-based analysis derives constraints on the sets of values

that program expressions may assume. Following Aiken et al. (1994) and Palsberg

and O’Keefe (1995), we formulate this derivation as a proof system.

The derivation proceeds in a syntax-directed manner according to the constraint

derivation rules presented in figure 8. Each rule infers a judgment of the form

Γ `M : α,S, where:

1. the derivation context Γ maps the free variables of M to set variables;

2. α names the value set of M; and

3. S is a constraint system describing the data-flow relationships of M, using α.

The constraint derivation rule (const) generates the constraint c 6 α, which

ensures that the value set for a constant expression contains that constant. The

(var) rule extracts the appropriate set variable α for a particular program variable

x from the derivation context. The (abs) rule for functions propagates values from

the function’s domain into its formal parameter and from the function’s body into

its range. The (app) rule for applications propagates values from the argument

expression into the domain of the applied function and from the range of that

function into the result of the application expression. This rule also records values

for the function sub-expression in the appropriate label. The (cons) rule for pairs

records the possible values for the pairs components. The (car) rule extracts the

possible values for the first component of a pair. The (cdr) rule is similar, but is

omitted for brevity.
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Γ ` c : α, {c 6 α} (const)

Γ ∪ {x : α} ` x : α, ∅ (var)

Γ ∪ {x : β1} `M : β2,S
Γ ` (λx.M) : α,S∪

{
dom(α) 6 β1

β2 6 rng(α)

} (abs)

Γ `Mi : βi,Si for i = 1, 2

Γ ` (apply Ml
1 M2) : α,S1 ∪S2 ∪


β1 6 l

β2 6 dom(β1)

rng(β1) 6 α


(app)

Γ `Mi : βi,Si for i = 1, 2

Γ ` (cons M1 M2) : α,S1 ∪S2 ∪
{
β1 6 car(α)

β2 6 cdr(α)

} (cons)

Γ `M : β,S
Γ ` (car Ml) : α,S∪ {car(β) 6 α, β 6 l} (car)

Γ ` 〈ph p〉 : α, {〈ph〉 6 α} (undef-ph)

Γ ` V : β,S
Γ ` 〈ph V 〉 : α,S∪ {β 6 α, 〈ph〉 6 α} (def-ph)

Γ `M : β,S
Γ ` (future M) : α,S∪ {β 6 α, 〈ph〉 6 α} (future)

Γ `Mi : βi,Si for i = 1, 2, 3

Γ ` (if Ml
1 M2 M3) : α,S1 ∪S2 ∪S3 ∪ {β1 6 l, β2 6 α, β3 6 α} (if )

Fig. 8. Constraint derivation rules.

The (undef-ph) rule generates the constraint 〈ph〉 6 α, which ensures that the value

set of an undefined placeholder contains placeholders. The (def-ph) rule records that

the value set of a defined placeholder contains both the placeholder, and the value

that the placeholder would yield after a touch operation. The (future) rule records

that a future expression can yield both a placeholder and the value produced by

the future body. The (if ) rule records possible values of the test expression in the

appropriate label, and also records that the if-expression can return the result of

either the then or else subexpression.

Many of the constraint derivation rules introduce new set variables. For example,

the rule (const) introduces the new set variable α. Whenever this rule is applied, we

need to choose a fresh set variable for α that is not used elsewhere in the constraint

derivation. Choosing a fresh set variable in this manner yields a more accurate

analysis.
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c 6 β β 6 γ

c 6 γ
(s1)

α 6 car(β) β 6 γ

α 6 car(γ)
(s3)

α 6 rng(β) β 6 γ

α 6 rng(γ)
(s5)

α 6 car(β) car(β) 6 γ

α 6 γ
(s7)

α 6 rng(β) rng(β) 6 γ

α 6 γ
(s9)

〈ph〉 6 β β 6 γ

〈ph〉 6 γ (s2)

α 6 cdr(β) β 6 γ

α 6 cdr(γ)
(s4)

dom(β) 6 α β 6 γ

dom(γ) 6 α
(s6)

α 6 cdr(β) cdr(β) 6 γ

α 6 γ
(s8)

α 6 dom(β) dom(β) 6 γ

α 6 γ
(s10)

Fig. 9. The rules Θ = {s1, . . . , s10}.

6.3 Solving set constraints

To solve a constraint system, we close it under the rules Θ described in figure 9.

Intuitively, these rules infer all the data-flow paths in the program, which are

described by constraints of the form β 6 γ (for β, γ ∈ SetVar), and propagate values

along those data-flow paths. Specifically, the rules (s1) to (s6) propagate information

about constants, placeholders, pairs, and function domains and ranges forward

along the data-flow paths of the program. The rules (s7) and (s8) constructs the

data-flow paths from the components of a pair to all accesses of that component.

The rule (s9) constructs data-flow paths from function results to corresponding

call sites, and the rule (s10) similarly constructs data-flow paths from actual to

formal parameters for each function call. We write S `Θ C if S proves C via

the rules Θ, and use closeΘ(S) to denote the closure of S under Θ, i.e. the set

{C | S `Θ C}.
We use a worklist algorithm to compute the closure of S under Θ efficiently.

The worklist keeps track of all constraints in S whose consequences under Θ may

not be in S. The algorithm repeatedly removes a constraint from the worklist, and

for each consequences under Θ that is not already in S, it adds that consequence

both to S and to the worklist. The process iterates until the worklist is empty, at

which point S is closed under Θ. The complete algorithm can be found in the first

author’s dissertation (Flanagan, 1997).

This closure process propagates all information concerning the possible place-

holder values for labeled expressions into constraints of the form 〈ph〉 6 l. Hence,

we can infer from closeΘ(S) a placeholder table that is always valid for the analysed

program, as follows.

Definition 6.1 (P(P ))

For P ∈ Λph with ∅ ` P : α,S,

P(P ) = {l | [〈ph〉 6 l] ∈ closeΘ(S)} .
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Theorem 6.2 (Correctness of P(P ))

The placeholder table P(P ) is always valid for P :

P |=a P(P ) .

Proof

The correctness of this theorem follows from a subject reduction proof along the

lines described in the first author’s dissertation (Flanagan, 1997). q

7 Experimental results

We extended the Gambit compiler (Feeley, 1993; Feeley & Miller, 1990), which

makes no attempt to remove touch operations from programs, with a preprocessor

that implements the set-based analysis algorithm and the touch optimization algo-

rithm. The analysis and the optimization algorithm are as described in the previous

sections extended to a sufficiently large subset of functional Scheme.11 We used the

extended Gambit compiler to test the effectiveness of touch optimization on the

suite of benchmarks contained in Feeley’s PhD thesis (1993) on a GP1000 shared-

memory multiprocessor (BBN Advanced Computers, 1989). Figure 10 describes

these benchmarks.

Program Description

fib Computes the 25th fibonacci number using a doubly-recursive algorithm.

queens Computes the number of solutions to the n-queens problem, for n = 10.

rantree Traverses a binary tree with 32768 nodes.

mm Multiplies two 50 by 50 matrices of integers.

scan Computes the parallel prefix sum of a vector of 32768 integers.

sum Uses a divide-and-conquer algorithm to sum a vector of 32768 integers.

tridiag Solves a tridiagonal system of 32767 equations.

allpairs Parallel Floyd’s algorithm, finds path between all pairs in a 117 node graph.

abisort Sorts 16384 integers using the adaptive bitonic sort algorithm.

mst Computes the minimum spanning tree of a 1000 node graph.

qsort Uses a parallel Quicksort algorithm to sort 1000 integers.

poly Computes the square of a 200 term polynomial, and evaluates the result.

Fig. 10. Description of the benchmark programs.

Each benchmark was tested on the original compiler (standard ) and on the

modified compiler (touch optimized ). The results of the test runs are documented

in figure 11. The first two columns present the number of touch operations per-

formed during the execution of a benchmark using the standard compiler (column

1), and the sequential execution overhead of these touch operations (column 2). To

determine the absolute overhead of touch , we also ran the programs on a single

11 Five of the benchmarks include a small number (one or two per benchmark) of explicit touch operations
for coordinating side-effects. They do not affect the validity of the analysis and touch optimization
algorithms.

https://doi.org/10.1017/S0956796899003329 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003329


The semantics of future and an application 27

standard compiler touch optimized compiler

Benchmark touch operations touch operations performance increase

Program (n = 1) (n = 1) over standard (%)

count(K) overhead(%) count(K) overhead(%) n = 1 n = 4 n = 16

fib 1214 85.0 122 10.2 68 66 58

queens 2116 41.2 35 1.5 39 44 39

rantree 327 67.5 14 2.6 63 59 37

mm 1828 121.0 3 <1 121 79 31

scan 1278 126.8 66 4.1 118 77 23

sum 525 107.3 33 6.1 95 61 25

tridiag 811 110.8 7 <1 109 42 6

allpairs 32360 150.4 14 <1 150 66 <1

abisort 5751 106.5 9 <1 105 45 32

mst 20422 91.4 750 5.3 82 21 <1

qsort 253 43.3 78 19.9 20 <1 <1

poly 526 65.3 121 16.2 42 14 <1

Fig. 11. Benchmark results.

processor after removing all touch operations. The next two columns contain the

corresponding measurements for the touch optimizing compiler. The touch optimiza-

tion algorithm reduces the number of touch operations to a small fraction of the

original number (column 3), thus reducing the average overhead of touch operations

from approximately 90% to less than 10% (column 4).

The last three columns show the relative speedup of each benchmark for one,

four, and 16 processor configurations, respectively. The number compares the run-

ning time of the benchmarks using the standard compiler with the optimizing

compiler. As expected, the relative speedup decreases as the number of processors

increases , because the execution time is then dominated by other factors, such as

memory contention and communication costs. For most benchmarks, the benefit

of our touch optimization is still substantial, producing an average speedup over

the standard compiler of 37% on four processors, and of 20% on 16 processors.

The exceptions are the last three benchmarks, mst, qsort, and poly. However, even

Feeley (1993) described these as ‘poorly parallel’ programs, in which the effects of

memory contention and communication costs are especially visible. It is therefore

not surprising that our optimizing compiler does not improve the running time in

these cases.

8 Related work

The literature on programming languages contains a number of descriptions of the

semantics of parallel Scheme-like languages. The only one that directly deals with

parallelism based on transparent annotations is Moreau’s PhD thesis (1994b; 1994a).

Moreau studies the functional core of Scheme extended with pcall (a construct for

evaluating function and argument expressions of an application in parallel) and first-

class continuations. His primary goal is to design a semantics for the language that
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treats pcall as a pure annotation, and to derive a reasonably efficient implementation.

The semantics is an extension of Felleisen and Friedman’s control calculus (1986);

the implementation is a parallel version of the CESK machine (Felleisen & Friedman,

1987; Felleisen & Hieb, 1989) that implements placeholders as globally accessible

reference cells. The equivalence proof establishes that both evaluators define the same

observable equivalence relation via the construction of a number of intermediate

calculi and machines. It is far more complicated than our diamond and bisimulation

techniques. Moreau later adopted the simpler approach described in this paper, and

extended it to handle first-class continuations and mutable state (Moreau, 1996).

Independently, Reppy (1992) and Leroy (1992) define operational semantics for

ML-like languages with first-class synchronization operations. Reppy’s language,

Concurrent ML, can express future as an abstraction over the primitives of the

language. The semantics is a two-level rewriting system. The first level, also a

program rewriting system in the tradition of Felleisen and Friedman (1986; 1987;

1989), accounts for the sequential behavior; the second level specifies the behavior of

sets of parallel tasks and the task communication mechanisms. Reppy proves a type

soundness theorem for the extended semantics; he does not construct a low-level

semantics that can serve as the basis of an implementation or a program analysis

tool. Leroy formulates a semantics for a subset of CML in the traditional ‘natural’

semantics framework. He also uses his semantics to prove the type soundness of the

complete language. No attempt is made to exploit the semantics for the derivation

of an analysis algorithm or a compiler optimization.

Jaganathan and Weeks (1994) define an operational semantics for a simple func-

tional language extended with the spawn construct. They also show how the future

annotation can be implemented using spawn. Since their primary goal is the deriva-

tion of a semantically well-founded abstract interpretation (in the spirit of Cousot

and Cousot (1977)), they extend Deutsch’s transition semantics (Deutsch, 1992) to

their language. The transition semantics requires the assignments of a unique label

to each sub-expression of a program and expresses computation as the movement

of a token from label to label. An auxiliary label on each sub-expression is used to

collect information about the values of the expression. The semantics is well-suited

for deriving traditional abstract interpretations, but is inappropriate for specifying

a user-level semantics.

Wand (1995) recently extended his work on correctness proofs for sequential

compilers to parallel languages. In his prior work on the correctness of sequential

compilers, he derived compilers from the semantic mappings that translate syntax

into λ-calculus expressions. Such a derivation consists of a staging process that

separates the run-time portion of the semantic mapping from the compile-time

portion. To prove the correctness of the compiler, it suffices to prove that the

‘composition’ of the two functions yields the semantic mapping. The extension of

this work to parallel compilers starts from a semantic mapping that translates

a Scheme-like language with process creation and communication constructs into

a higher-order calculus of communication and computation. After separating the

compiler from the ‘machine’, the correctness proof is a combination of (a stronger

version of) the sequential correctness proof and a correctness proof for the parallel
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portion of the language. The proof techniques are related to the ones we used to

prove the equivalence of the parallel and placeholder machines.

Kranz et al. (1989) briefly describe a simplistic algorithm for touch optimization

based on a first-order type analysis. The algorithm lowers the touch overhead to

65% from 100% in standard benchmarks, that is, it is significantly less effective

than our touch optimization. The paper does not address the semantics of future or

the well-foundedness of the optimizations. Knopp (1989) reports the existence of a

touch optimization algorithm based on abstract interpretation. His paper presents

neither a semantics nor the abstract interpretation. He only reports the reduction

of static counts of touch operations for an implementation of Common Lisp with

future. Neither paper gives an indication concerning the expense of the analysis

algorithms.12

Much work has been done on the static analysis of sequential programs. Our

analysis most closely follows Heintze’s work on set-based analysis for the sequential

language ML (Heintze, 1992), but the extension of this technique to parallel lan-

guages requires a substantial reformulation of the derivation and correctness proof.

Specifically, Heintze uses the ‘natural’ semantics framework to define a set-based

‘natural’ semantics, from which he reads off ‘safeness’ conditions on set environments.

He then presents set constraints whose solution is the minimal safe set environment.

We start from an parallel abstract machine and avoid Heintze’s intermediate steps by

deriving our set constraints and proving their correctness directly from the abstract

machine semantics.

Other techniques for static analysis of sequential programs include abstract

interpretation (Cousot & Cousot, 1977; Cousot & Cousot, 1994) and Shivers’

0CFA (Shivers, 1991). The relationship between abstract interpretation and set-

based analysis was covered by Heintze (Heintze, 1992).

Sequential optimization techniques such as tagging optimization (Henglein, 1992)

and soft-typing (Wright & Cartwright, 1994; Fagan, 1990; Aiken et al., 1994)

are similar in character to touch optimization. Both techniques remove the type-

dispatches required for dynamic type-checking wherever possible, without changing

the behavior of programs, in the same fashion as we remove touch operations.

However, the analyses relys on conventional type inference techniques, whereas ours

exploits the Scheme view of types as sets directly.

9 Conclusion

The development of a semantics for futures directly leads to the derivation of a

powerful program analysis. The analysis is computationally inexpensive but yields

enough information to eliminate numerous implicit touch operations. We believe

that the construction of this simple touch optimization algorithm clearly illustrates

how semantics can contribute to the development of advanced compilers.

12 Ito’s group [Ito: personal communication, April 22 1994] reports an attempt at touch optimization
based on abstract interpretation. His group abandoned the effort due to the exponential cost of the
abstract interpretation algorithm.
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