
J. Functional Programming 9 (3): 339–346, May 1999. Printed in the United Kingdom

c© 1999 Cambridge University Press

339

F U N C T I O N A L P E A R L

A pointless derivation of radix sort

JEREMY GIBBONS

School of Computing and Mathematical Sciences, Oxford Brookes University,

Gipsy Lane, Headington, Oxford OX3 0BP, UK

(e-mail: jgibbons@brookes.ac.uk)

Abstract

This paper is about point-free (or ‘pointless’) calculations – calculations performed at the

level of function composition instead of that of function application. We address this topic

with the help of an example, namely calculating the radix-sort algorithm from a more obvious

specification of sorting. The message that we hope to send is that point-free calculations are

sometimes surprisingly simpler than the corresponding point-wise calculations.

1 Introduction

This paper concerns algorithms for sorting a list of items into lexical order. Given is

a list of (total) functions ds, each of which extracts a ‘field’ of information from an

item. Two items x and y are lexically ordered with respect to ds if the lists of fields

of x and y extracted by the functions ds are lexicographically ordered:

> ordered :: Ord b => [a->b] -> a -> a -> Bool

> ordered [] x y = True

> ordered (d:ds) x y = d x < d y ||

> (d x == d y) && ordered ds x y

Note that the fields themselves have to permit an ordering. For simplicity, we

suppose that all fields are of the same type; later on, we will also assume that the

field type is bounded, with minimum and maximum values minBound and maxBound,

and enumeratable. For example, the items might be three-digit natural numbers, and

the three ‘fields’ the hundreds, tens and units digits.

We claim that the following two-phase tree-sort algorithm ‘obviously’ sorts a list

into lexical order. The first phase constructs a tree from the list; the second phase

flattens the tree back to a list. In the first phase the list is partitioned into ‘buckets’

according to the most significant field. A tree is grown recursively in each of these

buckets according to the remaining fields. Partitioning stops when there are no more

fields. The second phase flattens the resulting tree of lists into one long list in the

natural order.

What is less obvious is that the list can also be sorted by starting with the least

significant field. The list is partitioned into buckets on each field, starting with the

https://doi.org/10.1017/S0956796899003354 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003354

340 J. Gibbons

least significant; in between partitioning steps, the buckets are simply concatenated

into one long list again. The crucial requirement is that the partitioning operation

must be stable, in a sense made precise later. This second method is the well-known

distribution-sort (Knuth, 1973) or radix-sort (Cormen et al., 1990) algorithm.

In this paper, we derive radix-sort from tree-sort as an exercise in calculating

programs from specifications. However, the main lesson we have learnt from this

exercise is a methodological one. Our calculations got completely bogged down using

the natural definitions of the various functions concerned. In attempting to rephrase

the definitions in a form acceptable to Bird’s program calculator (Bird, 1998) – in

particular, eliminating as many variables as possible and performing point-free (or

‘pointless’) calculations at the level of function composition instead of point-wise

calculations at the level of application – suddenly the calculations became almost

trivial. This is the point of pointless calculations: when you travel light – discarding

variables that do not contribute to the calculation – you can sometimes step lightly

across the surface of the quagmire.

The remainder of the paper is structured as follows. In section 2 we present a

program for the ‘obvious’ tree-sort. Section 3 briefly presents some standard theory.

The main calculation is in section 4. In section 5 we formalize and prove the stability

property needed in the calculation. Section 6 concludes.

2 The program for tree-sort

The tree type we will use throughout the paper is

> data Tree a = Leaf a | Node [Tree a]

The first phase of tree-sort partitions the list into buckets, according to the most

significant field—one bucket for each value in the range minBound..maxBound. A

tree is grown recursively in each of these buckets according to the remaining fields.

Thus, we have

> mktree :: (Bounded b, Enum b) => [a->b] -> [a] -> Tree [a]

> mktree [] xs = Leaf xs

> mktree (d:ds) xs = Node (map (mktree ds) (ptn d xs))

Here, ptn d xs partitions the list xs into buckets according to the field extracted

by d:

> ptn :: (Bounded b, Enum b) => (a->b) -> [a] -> [[a]]

> ptn d xs = [filter ((m==).d) xs | m <- rng]

> rng :: (Bounded a, Enum a) => [a]

> rng = [minBound..maxBound]

For brevity, we have introduced the variable rng for the range of field values. If

the range contains r values, and the list ds has n elements, then mktree ds xs

constructs an r-ary tree of depth n (for any xs).

The second phase is to flatten the tree of lists into one long list, which will be

lexically ordered according to the fields:

https://doi.org/10.1017/S0956796899003354 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003354

Functional pearl 341

> flatten :: Tree [a] -> [a]

> flatten = foldt id concat

where foldt is the fold on our trees:

> foldt :: (a->b) -> ([b]->b) -> Tree a -> b

> foldt f g (Leaf x) = f x

> foldt f g (Node ts) = g (map (foldt f g) ts)

Combining the two phases, we have

> treesort :: (Bounded b, Enum b) => [a->b] -> [a] -> [a]

> treesort ds xs = flatten (mktree ds xs)

3 Theory

The theory of datatypes (Malcolm, 1990; Meijer et al., 1991) provides many use-

ful properties of folds (and their dual, unfolds (Gibbons and Jones, 1998)) over

datatypes. In particular, the fold over a datatype enjoys a universal property, stating

that the fold is the unique solution to a certain equation. Thus, the task of showing

that a certain function h is equal to a given function expressed a fold (which would

otherwise require an inductive proof) is reduced to showing that h is a solution to

the equation characterizing the fold (which typically does not require induction).

For example, the universal property for the standard foldr on lists states, for

strict h, that h = foldr f e precisely if

h [] = e

h (a:as) = f a (h as)

A consequence of this is the fusion law for foldr, giving conditions under which

the composition of a function with a foldr is again a foldr: for strict h,

h . foldr f e = foldr f’ e’

if and only if e’ = h e and

h (f a (foldr f e x)) = f’ a (h (foldr f e x))

The latter property follows in turn from the stronger condition

h (f a b) = f’ a (h b)

The fold for trees enjoys the universal property, for strict h, that h = foldt f g

if and only if

h . Leaf = f

h . Node = g . map h

The corresponding fusion law states that

h . foldt f g = foldt f’ g’

provided that h is strict and

h . f = f’

h . g = g’ . map h

https://doi.org/10.1017/S0956796899003354 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003354

342 J. Gibbons

4 Using folds

Unfortunately, none of the properties of fold discussed in section 3 seems to apply

to our program for tree-sort: the only fold is in the function flatten, and in

general nothing can be said about a fold after another function. However, we can

write mktree as a foldr over the list of field functions by eliminating the second

parameter, which does not contribute to the equations. We have

mktree [] = Leaf

mktree (d:ds) = Node . map (mktree ds) . ptn d

and so

mktree = foldr fm Leaf

where fm d g = Node . map g . ptn d

Now, both flatten and mktree are expressed using folds. Unfortunately,

treesort is not expressed as the composition of another function with a foldr: we

have

treesort ds = flatten . mktree ds

but it is mktree, not mktree ds, that is the fold. We can get around this problem

by defining a synonym for composition:

> comp :: (b->c) -> (a->b) -> (a->c)

> comp f g = f . g

We now obtain

treesort ds = comp flatten (mktree ds)

or equivalently

treesort = comp flatten . mktree

(Of course, we could have written simply (flatten .) . mktree, but partially

applied infix compositions are quite confusing to use.)

Now the fusion law is applicable, and we obtain

treesort = foldr ft et

if and only if

et = comp flatten Leaf

and

ft d (comp flatten (mktree ds)) = comp flatten (fm d (mktree ds))

For the first of these we get

comp flatten Leaf

= { definition of comp }
flatten . Leaf

= { definition of flatten }
id

https://doi.org/10.1017/S0956796899003354 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003354

Functional pearl 343

so we let et be id. For the second we get

comp flatten (fm d (mktree ds))

= { definitions of comp, fm }
flatten . Node . map (mktree ds) . ptn d

= { definition of flatten }
concat . map flatten . map (mktree ds) . ptn d

= { definition of treesort }
concat . map (treesort ds) . ptn d

= { claim (see Section 5):

map (treesort ds) . ptn d = ptn d . treesort ds }
concat . ptn d . treesort ds

= { definition of treesort }
concat . ptn d . comp flatten (mktree ds)

so we let ft d g be concat . ptn d . g. We have shown that

treesort = radixsort

where

> radixsort :: (Bounded b, Enum b) => [a->b] -> [a] -> [a]

> radixsort = foldr ft id

> where ft d g = concat . ptn d . g

As the name suggests, this is the well-known radix-sort algorithm. The advantage

of radix-sort over tree-sort is that it does not require a stack. Indeed, radix-sort was

used to sort punched cards in the early days of computing: card ‘sorting’ machines

could perform the ptn d stage on one column of a punched card, and all the

operator had to do was concat the resulting piles of cards into one big pile and

repeat the process for the remaining columns. Using tree-sort would have entailed

keeping a ‘stack’ of many partially-sorted piles of cards.

5 Stability

We are left with the task of proving

map (treesort ds) . ptn d = ptn d . treesort ds

Informally, this condition states that ptn d is stable: partitioning a sorted sequence

yields a collection of sorted buckets. Straightforward calculation1 shows that this

condition follows from

filter p . flatten = flatten . mapt (filter p)

and

mapt (filter p) . mktree ds = mktree ds . filter p

1 The calculations omitted from this paper are included in an appendix, which is available on the JFP
web site.

https://doi.org/10.1017/S0956796899003354 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003354

344 J. Gibbons

Here, mapt is map over trees, which is a fold:

> mapt :: (a->b) -> Tree a -> Tree b

> mapt f = foldt (Leaf . f) Node

The first of these new obligations is easy to discharge, given the following fold-map

fusion law, a special case of fusion:

foldt f g . mapt h = foldt (f . h) g

The remaining proof obligation is to show that

mapt (filter p) . mktree ds = mktree ds . filter p

We would like to use fusion, the most powerful tool at our disposal, and mktree is

the most obvious fold here on which to use it. However, neither side of the equation

is in the correct form of some function composed with mktree. Fortunately, the

trick of discarding idle variables works as well here as it did in section 4.

The left-hand side is equal to

(comp (mapt (filter p)) . mktree) ds

and so the idle ds can easily be discarded. Fusion states that

comp (mapt (filter p)) . mktree = foldr f e

provided that

comp (mapt (filter p)) Leaf = e

and

comp (mapt (filter p)) (fm d g) = f d (comp (mapt (filter p)) g)

Straightforward calculations conclude that e should be Leaf . filter p and f

should be just fm, and we obtain

comp (mapt (filter p)) . mktree = foldr fm (Leaf . filter p)

On the right-hand side of the remaining proof obligation we have the expression

mktree ds . filter p and we need to discard the idle ds. To this end we introduce

the function after (so we can write composition partially applied to the other

argument):

> after :: (a->b) -> (b->c) -> (a->c)

> after f g = g . f

We can now write the right-hand side of the remaining proof obligation as

(after (filter p) . mktree) ds

Another straightforward application of fusion shows that

after (filter p) . mktree = foldr fm (Leaf . filter p)

provided that

ptn d . filter p = map (filter p) . ptn d

https://doi.org/10.1017/S0956796899003354 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003354

Functional pearl 345

The proof of this final property relies essentially on the fact that two filters (of total

predicates) commute with each other:

map (filter p) (ptn d xs)

= { definition of ptn }
map (filter p) [filter ((m==).d) xs | m <- rng]

= { definition of map }
[filter p (filter ((m==).d) xs) | m <- rng]

= { filters (of total predicates) commute with each other }
[filter ((m==).d) (filter p xs) | m <- rng]

= { definition of ptn }
ptn d (filter p xs)

Note that the property only holds for total predicates p. Fortunately, in our case the

predicates are all of the form (m==).d, and so are total when d is.

6 Conclusions

We expected the calculation of radix-sort from tree-sort to be a simple exercise.

However, our first attempts became bogged down in a morass of bound variables and

cascading proof obligations. Judicious use of partially applied function compositions

(of the form comp f and after f) eliminated the awkward variables, and at the

same time simplified the proofs to linear calculations, making the problem tractable.

The program as it stands is inefficient, because ptn d xs performs many traversals

of the list xs, one for each bucket. A more efficient approach is to perform a single

traversal, constructing all the buckets at once:

ptn d xs = foldr (fp d) empties xs

where empties = [[] | m <- rng]

fp d x buckets = at (fromEnum (d x)) (x:) buckets

at 0 f (x:xs) = f x : xs

at (n+1) f (x:xs) = x : at n f xs

However, this more efficient version is more difficult to manipulate, so throughout

this paper we have stuck with the unoptimized version.

Acknowledgements

Thanks are due to Richard Bird, who threw all my variables away, and to Patrick

Djojo Surjo, whose questions inspired this investigation in the first place.

References

Bird, R. S. (1998) Introduction to Functional Programming using Haskell. Prentice-Hall.

Cormen, T. H., Leiserson, C. E. and Rivest, R. L. (1990) Introduction to Algorithms. MIT

Press.

Gibbons, J. and Jones, G. (1998) The under-appreciated unfold. ACM International Conference

on Functional Programming.

https://doi.org/10.1017/S0956796899003354 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003354

346 J. Gibbons

Knuth, D. E. (1973) The Art of Computer Programming, Volume 3: Sorting and searching.

Addison-Wesley.

Malcolm, G. (1990) Data structures and program transformation. Science of computer

programming, 14, 255–279.

Meijer, E., Fokkinga, M. and Paterson, R. (1991) Functional programming with bananas,

lenses, envelopes and barbed wire. In: Hughes, J. (ed), Functional Programming Languages

and Computer Architecture: Lecture Notes in Computer Science 523, pp. 124–144. Springer-

Verlag.

https://doi.org/10.1017/S0956796899003354 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796899003354

