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Abstract

The understanding of polymorphic typechecking and type errors is poorly supported by

contemporary functional language implementations. Here, a novel visualisation of functions

and their types is presented based on the generation of function specific icons with graphical

type representations which change dynamically as functions are applied. This visualisation

has been implemented for a Standard ML subset within a graphical environment in which

function combinations are constrained by type matching.

Capsule Review

Program visualization techniques are becoming widely used in programming environments,

and in this paper a visualization approach for type information is presented. The goal of the

approach is to improve the understandability of inferred types. Since inferred types have been

notoriously difficult for programmers to understand, looking into new ways to communicate

about them is important.

The empirical results do not show that the visualization is necessarily better than a

traditional textual representation. Rather, they show that this way of communicating about

types seems to have different strengths than those of the traditional textual representation.

The empirical results also suggest that a combination of the visualization with the textual

representation might achieve greater understandability than either can alone.

1 Introduction

The benefits of static parametric polymorphic typechecking based on the Hindley-

Milner scheme, in minimising semantic errors while optimising component generality,

are well known. Indeed, a central strength of modern functional languages lies in

the ease with which they incorporate polymorphic typechecking.

However, systems based on the W algorithm and its variants tend to offer

poor support for understanding type checking and type errors. While this efficient

algorithm is highly amenable to implementation, it is not immediately apparent

that it corresponds well to how people understand the types of programs. Certainly,

novices express difficulty with interpreting type error messages which relate to the

places where type checking failed rather than the design mistakes and misconceptions

that underly the failure. They also have difficulty with understanding the unification

of polymorphic types, especially where both types contain type variables.
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There have been a number of attempts to generate more useful type error informa-

tion either directly from the W algorithm or through extensions and modifications

to it but ultimately these all suffer from the same explanatory limitations as the

algorithm itself. In contrast, a number of visual programming systems have used

polymorphic type checking to prevent badly typed construct combinations but these

tend to lack clear explanations of their type checking regimens.

Here we present a visualisation of functions in which domain and range types are

identified through graphical representations. Function combinations are constrained

by polymorphic type checking and type match failures are identified by clashes

between type representations. For well typed combinations, the type representations

are changed, in particular to reflect bindings of polymorphic type variables.

The following sections discuss novice typechecking problems, textual support for

polymorphic type checking in contemporary functional language implementations

and the use of polymorphic type checking in visual programming systems. Next,

our visualisation of types is discussed and its evaluation with novice functional

programmers is considered. The visualisation has been incorporated in a graphical

system for an SML subset: its design and use are presented. Finally, further work is

suggested.

2 Novice misconceptions with types

In seven years of teaching Standard ML to undergraduates, we have observed a

number of misconceptions about types. Some seem to be generic; others are specific

to polymorphic type systems.

A first source of difficulty is with the distinction between different numeric types.

In some languages used at school level, like BASIC and COMAL1, or as first

undergraduate languages like C, C++ and Java, the distinction between the integer

and real types is elided. Mixed mode arithmetic and assignment is permitted with

invisibly overloaded operators and automatic type coercions. This leads students to

view integers and reals just as two different ways of writing numbers rather than

as distinct types, and to a lack of understanding of numeric type inconsistencies.

Ironically, this was not a problem in the bad old days when assembly and machine

code were taught early in the syllabus as the concrete representations and operations

made the differences painfully explicit.

There seem to be distinct problems with boolean types (Michaelson, 1996), in

particular with the idea of true and false as values rather than as control indicators

for conditional and repetitive constructs. Students often compare the result of

a boolean expression with a boolean value, or return a boolean value from a

conditional expression. This is made worse by the absence of a boolean type in some

languages, for example LISP and C, where the presence or absence of particular

values from some other type is used instead. Thus, we have noticed that students

have difficulty in identifying that an argument or result has a boolean type.

1 COMAL is Danish imperative language with similar functionality to but more structured syntax than
BASIC. It has been widely used in Scottish secondary schools.
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Students also seem to have conceptual problems with tuples. This may be ex-

acerbated by their use as a mechanism for uncurried parameter passing: students

may already be familiar with a similar bracketed notation for formal parameters in

imperative languages. Nested types for nested tuples and lists of tuples are a further

source of difficulty, as are those for nested lists.

However, the main source of student difficulty lies in the understanding of type

abstraction through type variables, which are not presented in early teaching of

imperative languages. First, the very concept of a type as a value is foreign. Secondly,

in block structured languages, each variable is distinct, even where they have the

same identifier. In contrast, in a polymorphic type expression every occurrence

of the same type variable must be instantiated to the same type; that is type

variables are implicitly universally quantified. Furthermore, distinct type variables

need not but may be instantiated to the same type. Finally, students have difficulty

in accepting that a polymorphic type has been deduced when their intention in

solving a particular problem has been to use specific types.

Our observations are supported by Whittle’s study2 of 1st year student errors in

SML programs. He found that type errors were almost as common as syntax errors

and that on average students had 2.3 type error messages for each command; a

much higher rate than for syntax errors. Whittle notes that some type errors are

caused by bad syntax but that students found type errors much harder to correct.

3 Textual support for polymorphic type checking

Milner’s W algorithm (Milner, 1978) assigns a type, usually containing type variables,

to each abstract syntax construct in a program component. It then seeks to derive

an overall type for the component by unifying types for sub-constructs which should

have the same type, to find consistent substitutions with which to instantiate the

type variables.

While the W algorithm is excellent for type checking it seems to be a poor basis

for identifying the causes, as opposed to the sites, of type errors. The W algorithm

carries out a top-down, depth first check of a construct and finds errors when

types which should be the same cannot be unified. Such failures reflect errors at

points of construct use, for example function composition: however, such errors

usually originate at points of construct definition, for example function declaration.

Furthermore, errors are often identified in the sub-structure of a construct, which

again makes it hard to locate their actual source, for example in the use of an

overloaded operator with untyped bound variable operands.

Error intelligibility may be compromised by a lack of programmer understanding

of the correspondences between an original program and the form in which it is

checked. For example, in the SML Definition (Milner et al., 1997), a distinction is

made between the bare language and derived forms. Derived forms are used by

2 Personal communication, Blue Note 1132, Mathematical Reasoning Group, Department of Artificial
Intelligence, University of Edinburgh, December 1996.
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programmers and are subsequently transformed to the bare language for implemen-

tation. For example, function definitions with multi-variable pattern matching are

converted to nameless functions of single variables, whose bodies are tuple matching

case expressions. Here, an error originating from the programmer’s point of view in

the head of a function definition appears to be identified in the body. For example,

infix binary operators are often converted to prefix functions acting on two element

tuples. Finally, errors may be reported in terms of the type variables introduced by

the W algorithm, which need have no obvious relation to the original program.

Surprisingly little research has been conducted into providing better support for

polymorphic type errors: most has been oriented towards refining the presentation

of W algorithm checking sequences. Soosaipillai (1990) proposed that type errors

might be elucidated by traversing a tree of type checking decisions made by the W

algorithm. Her incomplete system for an SML fragment enabled such exploration

by offering menus of type decisions at each level for further investigation. Duggan

and Bent (1996) modified the unification algorithm used in Hindley–Milner systems

to try and isolate the sequence of decisions leading to particular types being ascribed

to variables. They applied this approach to a mini-functional language. Beaven and

Stansifer (1993) also discuss a system for SML. Parse trees are decorated during

type checking and traversed to generate depth first explanations. Wand (1986) also

records type checking decisions, focusing on function applications as the loci of type

errors. He notes that type errors arise when constructs with inconsistent types are

combined in an application, and seeks to find the source by further analysing the type

derivations for those constructs. Rideau and Thery (1997) provide support for type

explanation in a CAML implementation using techniques derived from Wand and

from Bent and Duggan. Rittri (1993) suggests a modification to Wand’s approach

where the user interactively identifies those parts of a type which are deemed

surprising and in need of further elucidation. Johnson and Walz (1986) discuss an

approach to incremental type inference used in the MOE language based editor for

an ML variant with an extended type system. Here, sites of type error detection are

associated back to likely error sources. Where there are several candidate sources

then the system tries to identify the most likely one. Finally, Turner (1990) describes

a system which can identify type errors in SML programs in the derived form.

In all of these approaches, explanations are structured variants of the W algorithm

type checking sequence. As with type checking itself, explanations grow with the

size of the checked component and the complexity of the underlying type. There is

a danger of getting lost in a morass of detail which is increasingly indirectly related

to the original program component or the cause of the type error. Only Wand, and

Johnson and Walz directly address the location of the source of errors.

4 Type checking in visual programming systems

Our motivation for the work discussed here was to explore ways of enhancing novice

understanding of parameterised polymorphic type checking. Rather then revisiting

text based explanation of polymorphic type checking, we wished to draw on graphical

and visualisation techniques, in particular from visual programming systems. In such
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systems, all language constructs are represented as diagrams, typically as icons or

labeled boxes, and programs are built by juxtaposing or interconnecting these

representations in two dimensions.

In principle, a visual programming system may be syntax directed, where construct

connection is only allowed if syntax correctness is preserved. This approach is

taken in Cardelli’s seminal proposal for visual functional programming (Cardelli,

1982). However, syntax directed programming imposes an un-natural discipline on

programmers. It is more common either to allow free interconnection, through what

is essentially ad-hoc polymorphism with en-masse consistency checks on a final

program, or to use a type system to dynamically constrain interconnection through

incremental type checking.

A number of visual functional programming systems have been constructed, in-

corporating parameterised polymorphism to constrain interconnection. For example,

Poswig et al.’s VisaVis (1994) is a general purpose language where interconnection

is based on what they term “less ad hoc polymorphism”. However, types do not

appear in program graphs. Braine and Clack’s environment for the object-oriented

functional language Clover (Braine and Clack, 1997) is also based on type di-

rected interconnection but no type information is present in expression graphs.

Kelso’s general purpose system (Kelso, 1994) and Addis and Addis’ functional

schematic programming language Clarity (Addis and Addis, 1996) both label ex-

pression graphs with polymorphic types which are resolved incrementally during

interconnection. Najork and Golin’s Enhanced Show-and-Tell (Najork and Golin,

1990) is a visual data flow language which incorporates polymorphic type checking.

Expression graphs are composed in part from typed icons for data sources.

While type determined component interconnection ensures type consistency, it

may be useful to explain why a proposed connection is inappropriate, to clarify

misconceptions about component functionality. The above systems appear to offer

no support for explaining typed interconnection constraints.

5 A 2D colour type visualisation

We wish to take advantage of the high resolution graphics facilities found in contem-

porary personal computer technology in visualising type expressions. Our experience

of student problems, discussed anecdotally above, suggests the use of graphic tech-

niques to highlight differences between types and the successive instantiation of type

variables. One possibility was to use special icons to identify types. However, we

thought that this was likely to lead to visual clutter with complex, nested types as

fine iconic detail is progressively lost. Instead, we decided to investigate the use of

colour, where each base type is represented by a base colour and more complex types

are represented by composing and nesting the base type colours3. We speculate that,

while users may not be able to directly identify a type from a complex colouring, the

colourings will still be sufficiently distinct to enable discriminations between correct

3 Note that black and white presentation does not do justice to colour: we have provided schematic
renderings of icon visualisations in the following account.
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and incorrect type combinations. We also speculate that colours may be easier to

differentiate than iconic graphics.

Here we discuss a pure functional SML subset providing integer, real, boolean,

string, tuple, list and functions types.

First, all types are visualised as rectangles. Base types are represented a rectangles

of solid colour: int in red, real in purple, bool in pink and string in orange

(figure 1).
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a) int

c) bool

b) real

d) string

Fig. 1. Base types.

A tuple type is represented by a rectangle with vertical stripes for each of the

field’s types, for example, Fig 2 shows an int * real * string.
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Fig. 2. Tuple – int * real * string

A list type is represented with the element type above a reversed “L”. This is

chosen to mirror graphically the SML postfix constructor notation. Figure 3 shows

a (int * real * string) list.
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a) generic list b) (int * real * string) list

Fig. 3. List.

The list is the only structured datatype in our SML subset so a unique mark

is appropriate. For arbitrary datatypes, some general means of type identification

would need to be devised: this is currently under consideration.

Formally, an SML function is a mapping from a single domain to a single range.

In practise, it is usual to treat a curried function as if it were a function of several
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<t1>

<tN>

<t2>

Fig. 4. Function – <t1> -> <t2> ... -> <tN>.

Fig. 5. string -> string list -> bool.

domains. Thus, a curried function type is visualised as a rectangle with the type for

each level of nesting from left to right at the top and the result type in the bottom

right hand corner (figure 4). For example, figure 5 shows a string -> string

list -> bool function.

Finally, a polymorphic type variable is represented by a rectangle with the identifier

in it – Fig 6. For example, figure 7 shows the (’a -> ’b) -> ’a list -> ’b

list type for the map function.

’a
Fig. 6. Polymorphic – ’a.

’a
’b

’b

’a

Fig. 7. map – (’a -> ’b) -> ’a list -> ’b list.

6 Evaluation of the visualisation

We wished to evaluate our naive hypothesis that the above visualisation would aid

in the understanding of polymorphic types and their unification during function
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application. All our subjects were to have at least introductory programming expe-

rience in Standard ML and would thus already be familiar with textual based type

understanding. While this would weight the evaluation against the visualisation, we

felt it worth pursuing to check that the visualisation was at least a plausible alter-

native to textual type presentation. In fact, our experiment showed the visualisation

to be no better or worse than the textual approach, despite the subjects’ greater

experience of textual type understanding. This suggests that further development

and evaluation of the visualisation might be worthwhile.

The evaluation is based on a series of questions involving the types arising from

function application. For each question, the subject is given the types of a function

and its argument, and is asked to select one of four possible resultant types. In

addition, they are given the options of the result being some other type or a type

error. For an example, see figure 8.

Fig. 8. Question 11 – visualised.

We wished to compare the use of the visualisation with the use of text on the

same questions. We also wished to check for any learning effect as a result of

answering the visualisation based questions. We made up a set of 20 questions, with

six involving no type variables, four involving one type variable, eight involving two

type variables and two involving three type variables – Set 1. We then duplicated

this set, changing the base types and the order of answer options – Set 2. Finally,

textual versions of both sets were prepared.

For the experiment, we divided the subjects up into two groups. The first group

answered a visualised version of Set 1 while the second group answered a textual

version of Set 1. Then, the first group answered a textual version of Set 2 while the

second group answered a visualised version of Set 2. Finally, both groups answered

a short questionnaire on their prior experience with polymorphic typed languages,

and their subjective rating of the visualisation. The experiment was conducted on

paper and subjects were given 10 minutes in which to answer each test set.

Our experiment was conducted with two groups of eight subjects taking a 1st

year course on Functional Programming in Standard ML at Heriot-Watt University.
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During the course, students were shown visualisation diagrams to augment textual

explanation of function types. However, they still used a textual based prgramming

environment for practical work. At the start of the experiment, the subjects were

given a brief explanation of the visualisation.

Figures 9 and 10 show summaries of raw results for numbers of wrong answers

and of unanswered question. They also shows summaries of normalised results where

the number of wrong answers is divided by the number of questions answered.

visual text

wrong unanswered normalised wrong unanswered normalised

wrong wrong

average 5.1 1.9 30.9% 6.4 0.4 32.6%

median 3.0 1.5 15.8% 2.5 0.0 13.2%

Fig. 9. Results – visualisation followed by textual questions.

text visual

wrong unanswered normalised wrong unanswered normalised

wrong wrong

average 7.0 0.9 35.9% 7.4 0.8 37.9%

median 4.5 0.0 22.5% 5.5 0.0 27.5%

Fig. 10. Results – textual followed by visualisation questions.

The group answering visualised followed by textual questions made fewer mistakes

but failed to answer more questions on the visualised questions compared with the

textual questions. Contrariwise, the group answering textual followed by visualised

questions made fewer mistakes but failed to answer more questions on the textual

questions compared with the visualised questions. All differences were insignificant

but might suggest a waning in interest from the first question set to the second set.

T-tests showed that there were no significant differences between the groups so

the results for all visualised and and all textual questions were combined (figure 11).

Overall, on the visualisation questions, subjects made slightly fewer mistakes but

failed to answer twice as many questions. However, t-tests again show that these

differences are not significant.

visual text

wrong unanswered normalised wrong unanswered normalised

wrong wrong

average 6.3 1.3 34.4% 6.7 0.6 34.2%

median 4.0 0.5 20.4% 4.0 0.0 20.0%

Fig. 11. Combined visualisation and textual question results.

After each experiment, each subject was asked to rate the visualisation for ease

of use, speed of use and preference (see figure 12). On average, those who answered

the visualised questions first found the visualisation comparable in ease of use to

and the same speed as the text. However, on average they also thought that the

visualisation would slightly hinder type error understanding. On average, those who

answered textual questions first found the visualisation slightly easier to use and
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visual then text text then visual

difficulty speed help difficulty speed help

average 4.1 4.1 4.3 3.4 4.9 3.9

median 4.0 4.0 4.0 3.5 5.3 4.3

Fig. 12. Questionnaire results by visual/textual order: difficulty: 1 = easier, 4 = same, 7 =

harder; speed: 1 = slower, 4 = same, 7 = faster; help: 1 = helps, 4 = neutral, 7 = hinders.

difficulty speed help

average 3.7 4.6 4.1

median 4.0 4.0 4.0

Fig. 13. Combined questionnaire results: difficulty: 1 = easier, 4 = same, 7 = harder; speed:

1 = slower, 4 = same, 7 = faster; help: 1 = helps, 4 = neutral, 7 = hinders.

slightly faster than the text, and thought that the visualisation would make no

difference to understanding of type errors.

All answers were then combined – Figure 13. On average, those who answered the

visualised questions first thought that the visualisation was slightly easier to use and

slightly faster than the text, and would make no difference to understanding type

errors. Median scores for all answers suggest that this cohort found no difference

between the visualised and textual approaches, and thought that the visualisation

would neither help nor hinder type understanding.

Students also had an opportunity to provide other comments. Some said that

they found the visualisation confusing. Others indicated that they preferred the

visualisation. This would suggest that a future evaluation should also consider the

subjects’ dominant cognitive style on the Verbaliser/Imager dimension (Riding and

Cheema, 1991) as a factor in their relative performances on textual and visual

questions. We were retrospectively pleased that a self-identified colour blind student

said that they found the visualisation very helpful.

While one should be cautious in drawing conclusions from such small numbers

of subjects, overall there seems to be no disadvantage to using the visualisation

as opposed to the text. Of course, there is also no apparent advantage. However,

the subjects had three months experience of practical text based programming and

had only seen the visualisation in passing in lectures. Thus, we think that further

investigation of the practical use of this visualisation is worthwhile to see whether

or not it can offer a viable alternative to text based type information. To that end,

we are developing a type exploration environment incorporating the visualisation.

This is discussed in the following sections.

7 Function oriented icon generation

Central to visual programming is the use of graphical visualisations of program

components to ease their identification and understanding of their interconnection.

However, the manner in and degree to which language constructs are represented

graphically have significant impacts on the intelligibility and ease of use of visual

programming systems.

At one extreme, all language constructs may be given graphical representations.

Cardelli’s proposal is based on icons with different shapes and enclosed symbols
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or labels for different constructs. In Pagan’s FP system (Pagan, 1987), there are

labeled rectangular representations of all constructs. In Reekie’s proposed Visual

Haskell (Reekie, 1994), labeled graphical constructs are are joined together within

enclosing boxes by arcs. This approach leads to large numbers of similar represen-

tations which require text to distinguish between them but are substantially bulkier

than the equivalent program code. Thus, less efficient use is made of display space

on a screen, reducing the amount of program that may be viewed at one time.

More fundamentally, there is a danger of a mismatch between a task and a

notation. For example, in an early empirical study, Green and Petre (1992) found

that for conditional logic design, people had more difficulty understanding graphical

representations of programs than with the equivalent textual code. They suggest that

the structure of the graphics makes it harder to scan a visual program. especially

where graphical structures contain “knots” as a result of arc intersections. In a

more recent survey of 19 evaluations of visual programming systems, Whitley (1997)

identified nine where the visual notation was beneficial, and 10 where it appeared

to inhibit problem solving.

We decided to adopt a mixed mode visualisation based on the function as the

fundamental unit of presentation. Functions are entered as text for display as icons

based on an augmented form of the function type discussed above. Interactive

graphical techniques are then used to connect actual to formal parameters, to

collapse partially and fully applied functions to simpler iconic forms, and to expand

collapsed function applications back into the original graphical form.

<t1>

<tN>

<t2>

move

name

collapse/expand

zoom

Fig. 14. Function icon.

Figure 14 shows the function icon. To the left of the type is a rectangle containing

four buttons. The move button is selected to move the icon. The function name

button is selected to identify other functions which may take this function as an

argument by highlighting the appropriate argument positions. The zoom button is

selected to increase (or decrease) the size of the icon. The collapse/expand button
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is selected to combine a function application made from linked icons into a single

icon or to recreate the linked icons contributing to a collapsed icon. For example,

the map function is shown in figure 15.

Fig. 15. Map icon.

We also generate icons from values of other types, here augmenting the type

representation with a textual reminder of its type.

8 Implementation

The visualisation has been incorporated into a prototype visual programming envi-

ronment for the above SML subset, in C++ using the Motif X Library. Figure 16

shows the interface layout.

Fig. 16. Interface.

On the left is a column of buttons for loading pre-defined functions, copying an

icon, displaying text from an icon, saving text for all icons to file, deleting an icon,

restoring a deleted icon, and exiting the system. Icons are displayed in the main

central display. Icons have the functionality described above. The lower left hand
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display shows text from icons and information about system progress. The lower

right hand display enables textual entry of SML for iconic visualisation.

Behind the visualisation are a lexical analyser, parser and type checker for the

SML subset taught to first year students (Foubister et al., 1997). The subset provides

integer, real, boolean and string base types, which may be combined as tuples

and lists. The type checker is based on Field and Harrison’s account of the W

algorithm (Field and Harrison, 1988). SML values are represented within the system

as abstract syntax trees and text is reconstructed from trees through pretty printing.

9 Type visualisation during function application

The type visualisation provides broad information about which functions may be

applied to which arguments. As in a text based system, the types must be compatible

but here there is substantive visual evidence for compatibility. The types must either

look the same or have the same structure with type variables in one in corresponding

positions to arbitrary sub-structures in the other. For example, figure 17 shows the

function:

Fig. 17. Example components.

fun sumfunc _ [] = 0 |

sumfunc f (h::t) = f h+sumfunc f t

fn : (’a -> int) -> ’a list -> int list

which sums the application of function f to every element of an arbitrary list. On

the left are the function real : fn : int -> real which converts an integer to a

real and the function:

fun sq (x:int) = x*x

fn : int -> int
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which squares its integer argument. On the right are icons for a list of strings and a

list of integers.

By inspection, sq may be sumfunc’s first argument: ’a will match int and int

will match int. The function real may not be sumfunc’s first argument as the real

type will not match int. Similarly, both lists may be sumfunc’s second argument.

The visualisation also provides active information about which argument positions

an icon may be attached to. For example, selecting sq’s name (figure 18) highlights

sumfunc’s first argument.

Fig. 18. Selecting sq

Selecting the highlighted argument (figure 19) joins sq’s icon to that position and

also changes the type of ’a in the rest of sumfunc’s icon to reflect its unification

with int.

Fig. 19. Connecting sq to sumfunc.

Note also that the collapse button has changed to <. Selecting this button (fig-

ure 20) collapses the join of sq with sumfunc to a new composite icon.

The icon for the connected f argument has been removed and the collapse button

has changed to > showing that this icon can be expanded back up again.
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Fig. 20. Collapsing sq joined to sumfunc.

Selecting the int list icon (figure 21) has highlighted the single argument in the

collapsed icon for the application of sumfunc to sq.

Fig. 21. Selecting the int list.

Once again, the icon may be connected to the argument (figure 22).

Finally, the composite icon may be collapsed further to an icon for the final

integer (figure 23).

10 Arbitrary order argument provision

Usually functions must be applied to arguments from left to right. However, in

a visual environment it is possible to take advantage of the 2D space to enable

arbitrary order argument provision. Consider once again figure 17. If the int list

is selected then sumfunc’s second argument is highlighted (figure 24).

Subsequently, joining the int list icon to the second argument position unifies

’a with int in sumfunc’s icon (figure 25).
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Fig. 22. Connecting the int list to sumfunc/sq.

Fig. 23. Collapsing int list joined to sumfunc/sq.

Fig. 24. Selecting the int list.

We think that this may be useful in explaining the link between different occur-

rences of the same type variable, as well as more generally for free form visual type

exploration.

Text may be generated simply from an arbitrary order argument application. For

a nested function with N layers, each with an associated pattern:

fun f p1 p2 ... pN = e

if the Ith pattern pI is applied to some argument aI then an equivalent text is:

fun f’ p1 p2 ... pI-1 = f p1 p2 ... pI-1 aI
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Fig. 25. Connecting the int list to sumfunc.

11 Further work

We have shown how a simple visualisation of polymorphic types may be incorporated

within a visual environment to guide and clarify type compatibility in function

application. We now intend to use it to investigate the elucidation of type errors

where there are multiple potential error sources. The environment will be extended

to highlight such sources and to structure their exploration through static inspection

of and incremental changes to the program. The extended system will also be used

for the comparative evaluation of different approaches to identifying error sources,

discussed above, and of potential new error source identification and explanation

schemes. To these ends, the core typechecking and visualisation system is being

reconstructed in Standard ML with SML/Tk. This will support a larger pure

functional subset of SML, in particular user defined datatypes.

Our questionnaire responses from textually experienced subjects suggested a range

of reactions to the visualisation, from very positive to quite antagonistic. Thus, in

the interests of supporting this variagated but predominantly text using audience,

it might be worth augmenting the pure graphical presentation with text within the

type rectangles, to offer greater support to those preferring text. Furthermore, an

evaluation of the augmented representation, and comparison with the textual results

discussed above, might enable clarification of the relative merits of text and graphics

for presenting polymorphic type checking.

While the system is intended primarily for investigating type explanation, it would

be straightforward to extend it into a full visual programming environment. This

would involve generating text from visualised function applications, sending the text

to a SML system and then visualising the results. However, we think that the current

division between text for function bodies and graphics for function application may

restrict ease of use for general programming. It might be more fruitful to develop a

new visual programming environment incorporating the visualisation, using design

criteria such as Yang et al.’s (1997), based on Green and Petre’s cognitive dimensions

for visual programming (Green and Petre, 1996). It would be interesting to explore

the application of such criteria specifically to visual functional programming.
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