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The Asynchronous π-calculus, proposed by Honda and Tokoro (1991) and,

independently, by Boudol (1992), is a subset of the π-calculus (Milner et al., 1992) which

contains no explicit operators for choice and output-prefixing. The communication

mechanism of this calculus, however, is powerful enough to simulate output-prefixing, as

shown by Honda and Tokoro (1991) and by Boudol (1992), and input-guarded choice, as

shown by Nestmann and Pierce (2000). A natural question arises, then, whether or not it

is as expressive as the full π-calculus. We show that this is not the case. More precisely,

we show that there does not exist any uniform, fully distributed translation from the

π-calculus into the asynchronous π-calculus, up to any “reasonable” notion of

equivalence. This result is based on the incapability of the asynchronous π-calculus to

break certain symmetries possibly present in the initial communication graph. By similar

arguments, we prove a separation result between the π-calculus and CCS, and between

the π-calculus and the π-calculus with internal mobility, a subset of the π-calculus

proposed by Sangiorgi where the output actions can only transmit private names.

1. Introduction

Communication is one of the fundamental concepts in concurrent and distributed compu-

tation, and can be of many kinds: synchronous, asynchronous, one-to-one, one-to-many,

etc. In this paper we focus on the distinction between synchronous and asynchronous.

Synchronous communication is usually understood as simultaneous exchange of informa-

tion between the partners; a“real life” example is the telephone1. In contrast, in asyn-

chronous communication the action of sending a message and the action of reading it

† Work supported by the NSF-POWRE grant EIA-0074909.
1 Of course, communication by telephone can be thought as simultaneous only when the transmission
time is negligible wrt the “clock” of the partners, which is a reasonable assumption when the partners
are humans.
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usually take place at different times. An example is email. The advantages and disad-

vantages of the two methods are well known: the first is more costly, because it requires

the partners to synchronize to establish the communication, but then, once established,

it is more effective.

1.1. Motivations

A question which arises naturally is whether these two mechanisms are equivalent;

i.e., whether the one can implement the other. One direction seems simple, at least

in principle: asynchronous communication can be simulated by inserting between each

pair of communicating agents a “buffer” process, see for instance (Milner, 1989) and

(He et al., 1990)2. The other direction, on the contrary, is not clear and researchers in

the field seem to have radically different opinions about it.

The motivation for this work arises from the attempt of solving, or at least clarifying,

this question. In the author’s opinion, the crucial point is which other mechanisms are

available in combination with synchronous communication: If the processes can make

choices together, based on the information that they exchange simultaneously, then syn-

chronous communication is intuitively more powerful. This intuition is supported by the

example of two people who try to take a common decision by using email instead of the

telephone: If they act always in the same way, i.e. they send at the same time identical

mails and react in the same way to what they read, then an agreement may be never

reached.

The π-calculus (Milner et al., 1992) is a convenient framework to study this problem.

In fact, the π-calculus is a synchronous paradigm which contains an “asynchronous”

fragment (Boudol, 1992; Honda and Tokoro, 1991). We can thus work in a uniform con-

text. But, more important, the asynchronous π-calculus is one of the richest paradigm

for asynchronous-communication concurrency introduced so far, hence a negative result

regarding this language is more significant.

1.2. Background

The asynchronous π-calculus differs from the π-calculus for the lack of the choice and the

output prefix operators. The underlying model of interaction among processes, however,

is the same as in the π-calculus (the communication rule is based on handshaking, i.e. on

the simultaneous execution of complementary actions). The reason why it is considered

asynchronous is that, due to the lack of output prefix, an output action can only be

written “in parallel” with other activities. More precisely, in the π-calculus we can write

P = x̄.P ′ to represent a process P that performs an output on channel x, and continues

as P ′ afterward, and we can write Q = x.Q′ to represent a process Q that performs an

2 Depending on the particular kind of asynchronous communication this implementation can be more
or less complicated; for instance if the order in which messages are sent is to be maintained, then we
need a FIFO buffer, whose definition as a process requires guarded nondeterminism. For unordered
communication we just need a bag, which can be defined by using input, output, and replication only.
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input on x and continues as Q′ afterward. (In the π-calculi input and output actions

have parameters (names), but here for simplicity we omit them.) Furthermore, by using

the restriction operator we can enforce the synchronization of P and Q on x, so that the

processes can proceed only when the communication along x takes place. From the point

of view of the sender, the attempt to perform the output provokes the suspension of P ,

and the execution of the matching input action (reception) resumes P at its continuation

point P ′. In the asynchronous π-calculus, on the contrary, we can write a sender process

only in the form P = x̄ |P ′, where | is the parallel operator. Since it is performed in

parallel, the output action x̄ does not automatically suspend the sender, and there is

no primitive notion of continuation point. One can think of x̄ |P ′ as a process which

performs an output on x at some unspecified moment and of the handshaking between

x̄ and x.Q′ as the moment in which the message is received. The reception enables the

continuation point Q′ in the receiver, but it does not cause (directly) any resumption of

activity in the sender3.

Of course, the effect of the output prefix can be simulated by implementing a rendez-

vous mechanism, in which the receiver sends, upon reception of the message, an acknowl-

edgment to the sender, and the sender waits until it receives such acknowledgment. This

kind of technique was in fact used by Boudol (1992) to define an encoding of the output

prefix in the asynchronous π-calculus. Although the technique may be not surprising,

the appeal and the novelty of this encoding consists in an elegant use of the primitives

for link mobility, thanks to which the translation can be defined in a compact and fully

compositional way. Independently, Honda and Tokoro (1991) proposed an encoding even

more compact, and also fully compositional, in which it is the receiver which takes the

initiative of synchronizing with the sender. It is probably fair to say that part of the

success of the asynchronous π-calculus, at least in the early days, was due to the en-

coding of Honda and Tokoro. Another important factor, of course, was that it could

be implemented in a relatively simple and natural way. The first implementation of the

asynchronous π-calculus (actually a version of it, called PICT) was developed by Pierce

and Turner (1998).

Both the encodings of Boudol and of Honda and Tokoro work only when the output

prefix is not used in combination with the choice operator. In a subsequent paper Honda

and Tokoro (1992) showed an encoding for the choice operator, but only for the simple

case of the local (aka internal, or blind) choice. More recently, however, Nestmann and

Pierce (2000) showed that input-guarded choice can also be encoded compositionally in

the asynchronous π-calculus4. This result was another fundamental contribution towards

the affirmation of the asynchronous π-calculus as a practically useful paradigm: input-

3 Note that this kind of communication is unordered and that (x̄ |P ′) |x.Q′ is equivalent (modulo silent
actions) to νy(ȳ.P ′ |B | x.Q′) where B is the “bag” process ! y.x̄ and y is a fresh name.

4 Nestmann and Pierce actually were interested in obtaining a so-called fully abstract translation, and

proposed two kinds of encoding. The first one is fully abstract wrt weak bisimulation (see, for instance,
(Milner, 1989)), but it introduces divergences. The second one is fully abstract only wrt a weaker
relation called coupled simulation (Parrow and Sjödin, 1992), but it is divergence-free. Here we refer
to the second encoding, as we take the point of view that a notion of encoding used to relate the
expressive power of two languages should not introduce divergences.



Catuscia Palamidessi 4

guarded choice is considered a very convenient mechanism for programming concurrent

systems, as it allows a process to suspend on two (or more) alternative input channels,

and to resume as soon as one of them receives a datum. A language without this feature

will have to use busy waiting or risk that a process is stuck forever on the “wrong”

channel. Most implementations of languages based on CSP (Hoare, 1978; Hoare, 1985),

for instance, provide this construct as a primitive.

After Nestmann and Pierce showed that the input-guarded choice does not represent a

gap in the expressive power, several authors have used a presentation of the asynchronous

π-calculus which includes this construct as an operator of the language (see for instance

Boreale and Sangiorgi (1998a), and Amadio et al. (1998)).

With a slight modification, the translation of Nestmann and Pierce can be combined

with the translation of Boudol, so to provide an encoding of both the output prefix

and the input-guarded choice. Still, the π-calculus offers something more, namely the

possibility for the two partners of the communication to make choices together. Consider

for instance a process P ready to send data (alternatively) to channels x, y and z, and

assume that process Q is ready to receive data (alternatively) from x, y and w. In the π-

calculus, P and Q can be specified in such a way that they will choose x or y (arbitrarily),

and neither of them will select the “wrong channel” (that is z for P and w for Q). More

precisely, what we need for this specification is the so-called separate choice construct: an

output-guarded choice for P (P = x̄.P1+ ȳ.P2+ z̄.P3) and an input-guarded choice for Q

(Q = x.Q1+y.Q2+w.Q3). Can such a construct be implemented in the asynchronous π-

calculus? Clearly, one could implement it by backtracking from the wrong attempts, or by

using a third process to coordinate the activities of P and Q. However, Nestmann (2000)

showed the surprising result that it is possible to encode such mechanism even without

introducing divergences (such as those which would arise from backtracking loops) and

in a fully distributed way, i.e. without introducing coordinator processes.

1.3. The contribution of this paper

At this point one may doubt that there be any interesting cases of inter-process coor-

dination, expressible in the π-calculus, that cannot be expressed in the asynchronous

π-calculus as well. But in fact there are. Consider the following modification of previous

example: A process P ′ ready to output on x and to input from y (alternatively), and a

process Q′ ready to output on y and to input from x (alternatively). In the π-calculus

we can simply use the so-called mixed-choice construct to define P ′ = x̄.P1 + y.P2 and

Q′ = x.Q1+ ȳ.Q2, and then enforce communication on x and y. Apparently this example

is similar to previous one, but there is a fundamental difference: P ′ and Q′ are symmet-

ric here, at least in their initial action, whereas in previous example P initially can only

send and Q can only receive. The encoding of Nestmann uses a protocol in which send

and receive play completely different roles. As we will show in this paper, it is in gen-

eral not possible to simulate the behavior of P ′ and Q′ in the asynchronous π-calculus,

and not even in the π-calculus with separate choice. Intuitively, the reason is that the

agreement on the communication channel (x or y) represents a situation in which the

initial symmetry of P ′ and Q′ is broken, and this cannot be achieved in a language which
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supports separate choice only. For proving this result, we use techniques from the field

of Distributed Computing. In particular we show that in certain symmetric networks it

is not possible, with the separate-choice π-calculus, to solve the leader election problem,

i.e. to guarantee that all processes will reach a common agreement (elect the leader) in

a finite amount of time. It is possible, on the contrary, to solve this problem with the

mixed-choice π-calculus.

The use of this technique has been inspired by the work of Bougé (1988), who showed

a similar separation result concerning the CSP (Hoare, 1978; Hoare, 1985) and the frag-

ment of CSP with input-guards only, CSPin . However the mixed-choice π-calculus is a

much richer language than CSPin , and our result could not be derived from the result

of Bougé. Interestingly, Bougé (1988) proved also that CSPin cannot be encoded into its

choice-free fragment, by using similar techniques. This result does not hold in the context

of the π-calculus, as shown by the above mentioned result of Nestmann and Pierce. In

the last section of this paper we will go into further details about the relation between

(Bougé, 1988) and our work.

Another question that we investigate in this paper is to what extent the π-calculus

is more powerful than its “ancestor” CCS (Milner, 1989). For the sake of homogeneity,

we consider the value-passing version of CCS, in which the input and the output actions

carry value parameters (messages). This language, that we will call here CCSvp, can be

seen as a subset of the π-calculus (except for the relabeling operator, see Section 1.5). The

main difference is that in the π-calculus the messages are names which can later be used

as communication channels, thus allowing to change dynamically the structure of the

communication graph (link mobility). In combination with the mixed choice, link mobil-

ity is a very powerful feature for coordination of distributed activities, since it allows two

remote processes, originally not directly connected, to establish a direct communication

link x and to take decision together on the basis of the synchronous exchange of informa-

tion along x. By using a technique similar to the above one (existence/non-existence of a

certain symmetric electoral system) we show that this capability makes the mixed-choice

π-calculus strictly more expressive than CCSvp.

Finally, we consider the expressiveness of the language πI , the π-calculus with internal

mobility, proposed by Sangiorgi (1996). This is a subset of the (mixed-choice) π-calculus

in which the parameters of output actions can be private names only. Because of this

restriction, πI enjoys pleasant properties such as symmetric rules for input and output,

and a much simpler theory for bisimulation equivalence. Boreale (1998) has shown that

the asynchronous version of πI is essentially as expressive as the asynchronous π-calculus.

His encoding is based on the following idea: the main use of sending a non-private name in

the π-calculus is when a process P send a link x toQ via an intermediate processR. P and

Q can then communicate directly on x. In πI , R could not send x toQ, because it can send

only his private names. However, the above mechanism can be simulated by installing in

R a repeater for x which receives messages from P and send them to Q, and viceversa.

Intuitively, however, this idea does not work in the presence of (mixed) choice, because

the choice tests the possibility of communication (guard), and selects the corresponding

branch, in one single atomic step. In the encoding of Boreale the communication along

x is not atomic anymore, and therefore the atomicity of the guarded-choice mechanism
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cannot be trivially encoded, unless the target language supports a much richer notion of

choice, such as a choice depending on the possibility of performing a sequence of actions

instead than a single action. By using an argument similar to the one illustrated above

for CCSvp, we will show that in fact the mixed-choice π-calculus cannot be encoded in

πI .

1.4. The notion of encoding

In the whole discussion above we have used the existence or non-existence of an encoding

as the criterion to compare the expressive power of two languages. The various encodings

presented in literature, however, satisfy different structural and semantic requirements.

What should be the properties of a good notion of encoding, to use as a basis for defining

the concept of expressive power? We do not have a definitive answer. In the context of

this paper, since we are interested in proving negative results (i.e. non-existence of an

encoding) we consider a minimal set of requirements. More specifically, we require an

encoding [[·]] to be

— uniform, i.e.

– homomorphic wrt the parallel operator, namely [[P |Q]] = [[P ]] | [[Q]], and

– renaming preserving, in the sense that for any permutation of names σ in the

domain of the source language there exists a permutation of names θ in the domain

of the target language such that [[σ(P )]] = θ([[P ]])5.

— semantically reasonable, i.e. preserving the relevant observables and the termination

properties.

These conditions will be defined more precisely in Section 7.

The requirement of homomorphism wrt the parallel operator ensures that two parallel

processes are translated into two parallel processes, i.e. no coordinator is added by the

translation. Therefore we can interpret this requirement as the condition that the degree

of distribution of the processes be maintained by the translation. This condition makes

the notion of encoding suitable to compare expressiveness of languages for distributed

systems, where processes are expected to coordinate without the help of a centralized

control.

The requirement of renaming preserving ensures that the translation does not depend

on channel names. This condition seems natural if we want the encoding to preserve the

portability of processes across the nodes of a distributed network.

All the encodings discussed above satisfy the two criteria of uniformity and reasonable-

ness, with the possible exception of the encoding of Boreale, for which the preservation

of a reasonable semantics is an open question. Boreale in fact has shown the correctness

of his encoding only wrt barbed bisimulation, which is not sensitive to internal loops.

5 Note that in (Palamidessi, 1997) we had a stronger condition, namely [[σ(P )]] = σ([[P ]]). We realized
however that the latter condition would be too strong, for instance it would make problematic the
introduction of new names in the translation.
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1.5. The π-calculus hierarchy

Figure 1 summarizes the results discussed above and introduces some terminology:

— π is the full π-calculus, as proposed in (Milner et al., 1992). In the π-calculus the

choice operator (+) is free, in the sense that we can apply it to two arbitrary processes.

For instance, we can write (P |Q) +R.

— πm stands for mixed-choice π, the subset of π where the + can occur only among

prefixed processes (e.g. Σiαi.Pi): the so called guarded choice operator. Here we say

“mixed choice” to emphasize the fact that we can have both input and output (and

silent) prefixes in the same guarded choice. We also omit from πm the match and

the mismatch operators. This is only because the languages in the lower part of the

diagram are traditionally presented without these operators, and the result of non

encoding between πm and πs would be weaker if πm had them. In general, the results

obtained in this paper are independent from their presence or absence.

— πI is the internal-mobility π-calculus introduced by Sangiorgi (1996): in this language,

an output parameter can only be written in the context of a restriction operator, e.g.

νx ȳx.P , also denoted as ȳ(x).P . Another characteristics is that πI uses recursion

instead than iteration. This is not accidental: in the context of πI iteration is strictly

less expressive then recursion. In π, on the contrary, recursion can be encoded by

iteration (Milner, 1993). For the rest πI is a subset of π, hence Milner’s encoding of

recursion extends naturally to an encoding of πI into π.

— CCSvp represents value-passing CCS without the relabeling operator. Value-passing

means that actions have parameters, but unlike π these parameters cannot be used

as channels in other actions. If we consider values simply as symbols (i.e. we do not

consider operators on values as part of the language), then value-passing CCS is a

subset of π except for the relabeling operator: such operator which does not exist in

π and according to Pugliese (1997) it cannot be encoded either. For this reason we

do not consider the relabeling operator here. It is worth noting, however, that the

non-encoding of πm into CCSvp does not depend on the absence of the the relabeling

operator (See Section 5).

— πs stands for separate-choice π, the subset of πm where the prefixes in a choice must

be of the same kind plus, possibly, τ . Namely, in a guarded choice Σiαi.Pi the αi’s

which are not τ must all be either input or output action.

— πi represents input-choice π, the subset of πs where there is no output prefix and only

input actions can be used in a choice. Namely, in Σiαi.Pi all the αi’s must be input

actions.

— πnc stands for choiceless π, the subset of πs without choice, but with the output

prefix.

— πa is the asynchronous π-calculus, namely the subset of πnc without output prefix.

In Figure 1 some encodings are the obvious identity encodings holding between a

language and a superset of it. As for the non-trivial encodings, (1) has been proposed by

Nestmann and Pierce (2000), (2) has been proposed by Nestmann (2000), (3) represents

the two encodings proposed by Honda and Tokoro (1991) and by Boudol (1992), and (4)

is based on Milner’s encoding of recursion into iteration. The three non-encodings are
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(4)

πa

πi πnc

π

πm

πs

CCSvpπI

?

(3)

(2)

(1)

?

: Uniform & reasonable encoding

: No uniform & reasonable encoding

: Identity encoding

: Open problem

π

πI

CCSvp

πm

πs

πi

πnc

πa

: π-calculus

: internal-mobility π-calculus

: value-passing CCS

: mixed-choice π-calculus

: separate-choice π-calculus

: input-choice π-calculus

: choiceless π-calculus

: asynchronous π-calculus

Fig. 1. The π-calculus hierarchy.

presented in this paper. The encoding of π into πm is an open problem. It is likely that

the free choice construct and the match and mismatch operators add expressive power.

However, this result may not be obtainable with the weak requirements that we have in

this paper for the notion of encoding.

Figure 1 shows only a few of the many variants of the π-calculus and of the many

encodings and separation results which have been investigated in literature. We have

considered here only the ones which to our opinion are the most relevant to the issues

investigated in this paper. For a much more exhaustive overview of the variants of π

and of their expressive power we recommend the excellent book of Sangiorgi and Walker

(2001).

1.6. Organization of the paper

The rest of the paper is organized as follows: next section recalls basic definitions. Sec-

tion 3 reformulates in the setting of the π-calculus the notions of symmetric and electoral

system. Section 4 shows the main result of the paper, i.e. the non-existence of symmetric

electoral systems in the asynchronous π-calculus. Section 5 discusses existence of symmet-

ric electoral systems for the synchronous case, i.e. the π-calculus, CCSvp, and πI . Section
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6 interprets previous results as non-encodability results. Section 7 discusses related work

and concludes.

1.7. Relation with the previous version of this work

A preliminary version of this paper appeared in (Palamidessi, 1997). The principal dif-

ferences in the present version are: (a) The main separation result was previously shown

between the mixed-choice π-calculus and the asynchronous π-calculus. Here we show that

the separation lies exactly between the mixed-choice and the separate-choice (this could

also be proved indirectly by combining the result in (Palamidessi, 1997) and the result

in (Nestmann, 2000)). (b) We give the proof of the separation between the π-calculus

and CCSvp. (In (Palamidessi, 1997) this proof was only sketched.) (c) We show an addi-

tional separation result, between the π-calculus and πI , similar to the one between the

π-calculus and CCSvp. (d) We consider a weaker condition on the notion of encoding

(and hence we strengthen the separation results).

2. Preliminaries

In this section we give the definitions of πm, of πs, and of the notion of hypergraph,

which will be used to represent the communication structure of a network of processes.

2.1. The mixed-choice π-calculus

We present here πm, the mixed-choice π-calculus. This is a subset of the π-calculus which

does not have the match and mismatch operators, and in which the free choice is restricted

to be guarded choice. Note that several recent papers adopt a presentation of the π-

calculus that actually coincides with πm, see for instance (Boreale and Sangiorgi, 1998;

Sangiorgi, 1996).

Let N be a countable set of names, x, y, . . .. The set of prefixes, α, β, . . ., and the set

of π-calculus processes, P,Q, . . ., are defined by the following abstract syntax:

Prefixes α ::= x(y) | x̄y | τ

Processes P ::=
∑

i αi.Pi | νxP | P |P | !P

Prefixes represent the basic actions of processes: x(y) is the input of the (formal) name

y from channel x; x̄y is the output of the name y on channel x; τ stands for any silent

(non-communication) action.

The process
∑

i αi.Pi represents guarded (global) choice and it is usually assumed to

be finite. We will use the abbreviations 0 (inaction) to represent the empty sum, α.P

(prefix) to represent sum on one element only, and P+Q for the binary sum. The symbols

νx, |, and ! are the restriction, the parallel, and the replication operator, respectively.

To indicate the structure of a process expression we will use the following conventions:

P0 |P1 |P2 | . . . |Pk−1 stands for (. . . ((P0 |P1) |P2) | . . . |Pk−1), i.e. the parallel operator

is left associative, and α1.P1 |α2.P2 stands for (α1.P1)|(α2.P2), i.e. the prefix operator

has precedence over |. In all other cases of ambiguity we will use parentheses.
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The operators νx and y(x) are x-binders, i.e. in the processes νxP and y(x).P the

occurrences of x in P are considered bound, with the usual rules of scoping. The set of

the free names of P , i.e. those names which do not occur in the scope of any binder,

is denoted by fn(P ). The alpha-conversion of bound names is defined as usual, and the

renaming (or substitution) P{y/x} is defined as the result of replacing all occurrences of

x in P by y, possibly applying alpha-conversion to avoid capture.

The operational semantics is specified via a transition system labeled by actions

µ, µ′ . . .. These are given by the following grammar:

Actions µ ::= xy | x̄y | x̄(y) | τ

Action xy corresponds to the input prefix x(z), where the formal parameter z is instanti-

ated to the actual parameter y (see Rule I-Sum in Table 1). Action x̄y correspond to the

output of a free name. The bound output x̄(y) is introduced to model scope extrusion, i.e.

the result of sending to another process a private (ν-bound) name. The bound names of

an action µ, bn(µ), are defined as follows: bn(x̄(y)) = {y}; bn(xy) = bn(x̄y) = bn(τ) = ∅.

Furthermore, we will indicate by n(µ) all the names which occur in µ.

In literature there are two definitions for the transition system of the π-calculus which

induce the so-called early and late bisimulation semantics respectively. Here we choose

to present the first one because the early strong bisimulation semantics is coarser than

the late one. Therefore, since our notion of reasonable semantics is coarser than strong

bisimulation, a separation result with the early transition system is more significant.

The rules for the early semantics are given in Table 1. We use a congruence ≡ and

Rule Cong to simplify the presentation. We define this congruence as follows:

(i) P ≡ Q if Q can be obtained from P by alpha-conversion, notation P ≡α Q,

(ii) (νxP ) |Q ≡ νx(P |Q) if x 6∈ fv(Q) (scope expansion).

Some presentation of the labeled transition system of the π-calculus use a coarser defi-

nition of ≡ obtained by adding other structural axioms like the commutativity of | (see

for instance (Milner et al., 1993)). Other presentations, like (Sangiorgi, 1996), define ≡

as alpha conversion only, and use a congruence rule of the form

P ′ ≡ P P
µ

−→ Q

P ′ µ
−→ Q

The reasons why we choose the above intermediate definition of ≡ is because it seems to

be the most suitable to prove the main theorem in Section 4. Given the way the systems

we consider are structured, we do not need the symmetric axiom for scope expansion.

2.2. The separate-choice π-calculus

The separate-choice π-calculus, πs, is the subset of πm in which output and input prefixes

cannot be present in the same guarded choice. This restriction can be specified by the
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I-Sum
∑

i αi.Pi
xy
−→ Pj{y/z} αj = x(z)

O/τ -Sum
∑

i αi.Pi

αj
−→ Pj αj = x̄y or αj = τ

Open
P

x̄y
−→ P ′

νyP
x̄(y)
−→ P ′

x 6= y

Res
P

µ
−→ P ′

νyP
µ

−→ νyP ′
y 6∈ n(µ)

Par
P

µ
−→ P ′

P |Q
µ

−→ P ′|Q
bn(µ) ∩ fn(Q) = ∅

Com
P

xy
−→ P ′ Q

x̄y
−→ Q′

P |Q
τ

−→ P ′|Q′

Close
P

xy
−→ P ′ Q

x̄(y)
−→ Q′

P |Q
τ

−→ νy(P ′|Q′)
y 6∈ fn(P )

Rep
P | !P

µ
−→ P ′

!P
µ

−→ P ′

Cong
P ′ ≡ P P

µ
−→ Q Q ≡ Q′

P ′ µ
−→ Q′

Table 1. The early-instantiation transition system for πm. The symmetric versions

of Par, Com and Close are omitted.

following modification in the grammar:

InputPrefixes αI ::= x(y) | τ

OutputPrefixes αO ::= x̄y | τ

Processes P ::=
∑

i α
I
i .Pi |

∑

i α
O
i .Pi | νxP | P |P | !P

The operational semantics of πs is the same as that of πm, and it is described by the

rules of Table 1.
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2.3. Hypergraphs and automorphisms

In this section we recall the definition of hypergraph, which generalizes the concept of

graph essentially by allowing an edge to connect more than two nodes.

A hypergraph is a tuple H = 〈N,X, t〉 where N,X are finite sets whose elements

are called nodes and edges (or hyperedges) respectively, and t (type) is a function which

assigns to each x ∈ X a set of nodes, representing the nodes connected by x. We will also

use the notation x : n1, . . . , nk to indicate t(x) = {n1, . . . , nk}.

The concept of graph automorphism extends naturally to hypergraphs: Given a hy-

pergraph H = 〈N,X, t〉, an automorphism on H is a pair σ = 〈σN , σX〉 such that

σN : N → N and σX : X → X are permutations which preserve the type of edges,

namely for each x ∈ X , if x : n1, . . . , nk, then σX(x) : σN (n1), . . . , σN (nk).

It is easy to see that the composition of automorphisms, defined componentwise as

σ ◦ σ′ = 〈σN ◦ σ′
N , σX ◦ σ′

X〉, is still an automorphism. Its identity is the pair of identity

functions on N and X , i.e. id = 〈idN , idX〉. It is easy to show that the set of automor-

phisms on H with the composition forms a group.

Given H and σ as above, the orbit of n ∈ N generated by σ is defined as the set of

nodes in which the various iterations of σ map n, namely:

Oσ(n) = {n, σ(n), σ2(n), . . . , σh−1(n)}

where σi represents the composition of σ with itself i times, and h is the least such that

σh = id . It is possible to show that the orbits generated by σ constitute a partition of

N .

We say that an automorphism σ is well-balanced if all its orbits have the same cardi-

nality.

Example 2.1. Figure 2 illustrates various hypergraphs. Hypergraphs 1 and 2 corre-

spond to standard graphs, in the sense that each of their edges connects only two nodes.

In both of them we can define well-balanced automorphisms with

— one single orbit with six nodes, or

— two orbits with three nodes each, or

— three orbits with two nodes each

Of course, also the identity is a well-balanced automorphism (as in any hypergraph) and

in this case it would have six orbits of cardinality one.

Hypergraph 3 has six nodes and three edges, each of which connecting three nodes.

This hypergraph has two well balanced automorphisms (apart from the identity), each

with two orbits of cardinality three.

Finally, Hypergraph 4 has seven nodes and three edges, each of which connecting four

nodes. This hypergraph does not have any well-balanced automorphism except for the

identity, because the central node has three incident edges while every other node has at

most two incident edges.
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edge connecting two nodes

edge connecting four nodes

node

edge connecting three nodes

4

321

Fig. 2. Examples of hypergraphs.

3. Electoral and Symmetric systems

In this section we adapt to the π-calculi (a simplified version of) the notions of electoral

system and symmetric network as given by Bougé (1988).

3.1. Election of a leader in a network

We first need to introduce the concepts of network, network computation and the projec-

tion of a computation over a component of the network.

A network represents a system of parallel processes with possibly some top-level ap-

plications of the restriction operators. The only difference between the notion of network

and that of process is that in a network we want to represent explicitly the intended

distribution. For instance, the process ((P0 |P1) |P2) (which, because of our associativity

convention, we can write as P0 |P1 |P2), may be interpreted as a network of three par-

allel processes, P0, P1 and P2, or as a network of two parallel processes P0|P1 and P2.

Formally, a network is defined as a tuple of the form

〈〈x0, x1, . . . , xn−1〉, 〈P0, P1, . . . , Pk−1〉〉 (1)

where the Pi’s are processes meant to run in parallel and the xi’s are names which are

meant to be globally bound (i.e. bound at the top level in the whole system). More

precisely, the network (1) is meant to represent the process

P = νx0 νx1 . . . νxn−1(P0 |P1 | . . . |Pk−1) (2)

It will be convenient to assume that the bound names in P0, P1, . . . , Pk−1 are differ-
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ent from each other, from x0, x1, . . . , xn−1, and from all the free names (bound-names

convention).

From now on we will use this process notation to represent the network, with the

convention that whenever we write an expression like that in (2) we mean that the

network is constituted exactly by the k processes P0, P1, . . . , Pk−1. We will also use [Q]

to denote a process of the form νx0 νx1 . . . νxn−1 Q. Thus whenever the specific bound

names are not relevant we will simply represent the network above as

[P0 |P1 | . . . |Pk−1].

A computation C for a network is a (possibly ω-infinite) sequence of transitions

[P0 |P1 | . . . |Pk−1]
µ0

−→ [P 1
0 |P 1

1 | . . . |P 1
k−1]

µ1

−→ [P 2
0 |P 2

1 | . . . |P 2
k−1]

...

µn−1

−→ [Pn
0 |Pn

1 | . . . |Pn
k−1]

(
µn

−→ . . . )

with n ≥ 0. Note that at each computation step we may need to apply the Cong rule

on the right side of the transition in order:

— to maintain the bound-names convention, i.e. to keep the bound names different from

each other and from the free names, and

— to maintain the parallel structure of the network. In fact a transition generated by the

Close rule would group a set of processes in the scope of a restriction operator, thus

we need the Cong rule with the axioms for scope expansion to bring the restriction

operator at the top level and re-establish the number of components to k.

We will represent a computation like the above also by C : P
µ̃

=⇒ Pn (by C : P
µ̃

=⇒

if it is infinite), µ̃ being the sequence µ0µ1 . . . µn−1(µn . . .), and Pn being the process

[Pn
1 |Pn

2 | . . . |Pn
k ]. The relation C ≺ C′ (C′ extends C) is defined as usual: let C : P

µ̃
=⇒

Pn. Then C ≺ C′ iff there exists C′′ : Pn µ̃′

=⇒ Pn+n′

with n′ ≥ 1, or C′′ : Pn µ̃′

=⇒,

and C′ = CC′′ (identifying the two occurrences of Pn). We will denote by C′ \ C the

continuation C′′. Note that according to this definition infinite computations cannot

be extended. This is consistent with the fact that we admit only ω-infinite (i.e. not

transfinite) computations.

Given P and C as above, the projection of C over Pi, Proj (C, i), is defined as the

“contribution” of Pi to the computation. More formally, Proj (C, i) is the sequence of
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steps

Pi
µ̃0

=⇒ Qi

P 1
i

µ̃1

=⇒ Q1
i

P 2
i

µ̃2

=⇒ Q2
i

...

Pn−1
i

µ̃n−1

=⇒ Qn−1
i






Pn
i

µ̃n

=⇒ Qn
i

...






where the definition of Pm
i

µ̃m

=⇒ Qm
i depends on the proof tree T which generates the

transition step [Pm
0 |Pm

1 | . . . |Pm
k−1]

µm

−→ [Pm+1
0 |Pm+1

1 | . . . |Pm+1
k−1 ]:

— If Pm
i is active during the transition, namely T contains a node of the form Pm

i

µ
−→

R, then

(Pm
i

µ̃m

=⇒ Qm
i ) = (Pm

i

µ
−→ R)

Note that either Pm
i is the only process active during this transition, and in this case

µm = µ, or Pm
i is involved in a communication step (i.e. it is in the premise of a

rule Com or Close) and in this case µm = τ and µ is a communication action. Note

also that Qm
i and Pm+1

i may be different because T may contain at some lower level

an application of the Cong rule. However, Qm
i can only differ from Pm+1

i for the

presence of restriction operators and/or some renaming.

— If Pm
i is idle during the transition, namely T does not contain any node of the form

Pm
i

µ
−→ R, then Pm

i

µ̃m

=⇒ Qm
i is empty, namely Qm

i = Pm
i = Pm+1

i and µ̃m is empty.

Note that the notation Proj (C, i) is not accurate: the projection is not a function of

C, but rather of the sequence of proof trees which generate C. However this distinction

is inessential here.

In order to define the notion of electoral system we assume the existence of a special

channel out to be used for communicating with the “external world”, and therefore free

(unbound). Furthermore we assume that the set of names N contains a special subset

equipped with a one-to-one mapping with the natural numbers, which we will use to

identify the individual processes in a network. For the sake of simplicity we shall denote

these names directly by natural numbers, but one should keep in mind that this is just

a notation, i.e. we are not adding any arithmetical capability to the calculus. We will

assume, without loss of generality, that these names are not used as bound names.

Intuitively an electoral system has the property that at each possible run the processes

will agree sooner or later on “which of them has to be the leader”, and will communicate

this decision to the “external world” by using the special channel out.

Definition 3.1. (Electoral system) A network P = [P0 |P1 | . . . |Pk−1] is an electoral

system if for every computation C for P there exists an extension C′ of C and there
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exists n ∈ {0, 1, . . . , k − 1} (the “leader”) such that for each i ∈ {0, 1, . . . , k − 1} the

projection Proj (C′, i) contains one output action of the form out n, and no extension of

C′ contains any other action of the form out m, with m 6= n.

Note that for such a system an infinite computation C must contain already all the

output actions of each process because C cannot be extended.

3.2. Symmetric networks

In order to define the notion of symmetric network, we have to consider its communication

structure, which we will represent as an hypergraph. Intuitively the nodes represent the

processes, and the edges represent the communication channels connecting the processes.

We exclude the special channel out since processes cannot use it to communicate with

each other.

Definition 3.2. (Hypergraph associated to a network) Given a network P =

[P0 |P1 | . . . |Pk−1], the hypergraph associated to P is H(P ) = 〈N,X, t〉 with N =

{0, 1, . . . , k − 1}, X = fn(P0 |P1 | . . . |Pk−1) \ {out}, and for each x ∈ X , t(x) = {n |x ∈

fn(Pn)}.

We extend now the notion of automorphism to networks so to take into account the

use of the special names as process identifiers, and the role of the binders at the top level.

Definition 3.3. (Network automorphism) Given a network

P = νx0 νx1 . . . νxn−1(P0 |P1 | . . . |Pk−1)

let H(P ) = 〈N,X, t〉 be the hypergraph associated to P . An automorphism on P is any

automorphism σ = 〈σN , σX〉 on H(P ) which satisfies the following additional conditions:

— σX coincides with σN on N ∩ X , i.e. for every n ∈ N ∩ X we have σX(n) = σN (n)

(remember that N is a set of natural numbers and that the natural numbers are

assumed to represent also a special subset of names).

— σX must preserve the distinction between free and bound names, i.e.

x ∈ {x0, x1, . . . , xn−1} if and only if σ(x) ∈ {x0, x1, . . . , xn−1}, for each x ∈ X

Thanks to the fact that σN (·) and σX(·) coincide on the intersection of their domains,

we can simplify the notation and use σ(·) to represent both σN (·) and σX(·). We will

also, with a slight abuse of notation, use the hypergraph H to denote the domain of

σX(·), i.e. the set N ∪X .

Intuitively, a network P is symmetric with respect to an automorphism σ iff for each

i the process associated to the node σ(i) is identical (modulo alpha-conversion) to the

process obtained by σ-renaming the process associated to the node i.

The notion of σ-renaming is the obvious extension of the standard notion of renaming

(see the preliminaries). More formally, given a process Q, first apply alpha-conversion

so to rename all bound names into fresh ones, extend σ to be the identity on these new
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names, and define σ(Q) by structural induction as indicated below.

σ(τ) = τ

σ(x(y)) = σ(x)(y)

σ(x̄y) = σ(x)σ(y)

σ(
∑

i αi.Pi) =
∑

i σ(αi).σ(Pi)

σ(νxP ) = νx σ(P )

σ(P |Q) = σ(P ) |σ(Q)

σ(!P ) = !σ(P )

Furthermore we need to define the application of σ on the actions. For τ and x̄y the

definition is the same as above. For the other actions we have:

σ(xy) = σ(x)σ(y)

σ(x̄(y)) = σ(x)(y)

We are now ready to give the formal definition of symmetric network:

Definition 3.4. (Symmetric network) Consider a network P = [P1 |P2 | . . . |Pk], let

H(P ) = 〈N,X, t〉 be its associated hypergraph, and let σ be an automorphism on P . We

say that P is symmetric wrt σ iff for each node i ∈ N , Pσ(i) ≡α σ(Pi) holds. We also say

that P is symmetric if it is symmetric wrt all the automorphisms on H(P ).

Note that if P is symmetric wrt σ then P is symmetric wrt all the powers of σ.

4. Non existence of symmetric electoral systems in πs

In this section we present our first result, which says that for certain communication

graphs it is not possible to write in πs a symmetric network solving the election problem.

We first need to show that the πs enjoys a certain kind of confluence property:

Lemma 4.1. Let P be a process in πs. Assume that P can make two transitions P
x̄[y]
−→ Q

and P
zw
−→ R, where x̄[y] stands for an output action either bound (x̄(y)) or unbound

(x̄y). Then there exists S such that Q
zw
−→ S and R

x̄[y]
−→ S (see Figure 3).

Proof Observe that x and z must be free names in P . The rule which has produced the

x̄[y] transition can be only O/τ-Sum, Open, Res, Par, Rep, or Cong. In the last five

cases the assumption is again a x̄[y] transition. By repeating this reasoning (descending

the tree), we must arrive to a leaf transition of the form

PO =
∑

i

αO
i .Pi

αO
j

−→ Pj where αO
j = x̄y

Analogously, the rule which has produced the zw transition can be only I-Sum, Res,
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✠ ❘

❘ ✠

P

Q R

zwx̄[y]

x̄[y]zw

S

Fig. 3. An illustration of Lemma 4.1.

Par, Rep, or Cong. In the last four cases the assumption is again a zw transition. By

repeating this reasoning (descending the tree), we must arrive to a leaf transition of the

form

P I =
∑

i

αI
i .Qi

αI
j

−→ Qj{w/v} where αI
j = z(v)

Now, PO and P I must be two parallel processes in P , i.e. there must be a subprocess in

P of the form T [P I ] |U [PO] (modulo ≡), i.e. P ≡ V [T [PO] |U [P I ]] (here T [ ], U [ ] and

V [ ] represent contexts, with the usual definition). Furthermore, the x̄[y] transition and

the zw transition must have been obtained by the application of the rule Par to this

subprocess, i.e. Q ≡ V [T [Pj ] |U [P I ]] and R ≡ V [T [PO] |U [Qj{w/v}]]. By applying again

the rule Par (plus all the other rules in the trees for the x̄[y] and the zw transitions) we

obtain the transitions Q
zw
−→ S and Q′

x̄[y]
−→ S where S = V [T [Pj] |U [Qj{w/v}]]. �

We are now ready to prove the non-existence result. The intuition is the following: In

the attempt to reach an agreement about the leader, the processes of a symmetric network

have to “break the initial symmetry”, and therefore have to communicate. The first such

communication, however, can be repeated, by the above lemma and by symmetry, by all

the pair of processes of the network. The result of all these transitions will still lead to a

symmetric situation. Thus there is a (infinite) computation in which the processes never

succeed to break the symmetry, which means no leader is elected.

Theorem 4.2. Consider a network P = [P0 |P1 | . . . |Pk−1] in πs, with k ≥ 2. Assume

that P has an automorphism σ with only one orbit, and that P is symmetric wrt σ. Then

P cannot be an electoral system.

Proof Assume by contradiction that P is an electoral system. We will show that we

can then construct an infinite increasing sequence of computations for P , C0 ≺ C1 ≺

. . . ≺ Ch . . ., such that for each j, Cj : P
µ̃j

=⇒ P j does not contain any action of the

form out n, and P j is still symmetric wrt σj , where σj is an automorphism with only one

orbit obtained from σ by adding associations on the new names introduced during the

computation, and by eliminating the associations on the names that have disappeared.
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This gives a contradiction, because the limit of this sequence is an infinite computation

for P which does not contain any action of the form out n.

We will prove the above statement by induction. In order to understand the proof, it

is important to notice that if σ has only one orbit then, for each i ∈ {0, 1, . . . , k − 1},

Oσ(i) = {i, σ(i), . . . , σk−1(i)} = {0, 1, . . . , k − 1}

h = 0) Define C0 to be the empty computation.

h+1) Let Ch : P
µ̃h

=⇒ P h where P h contains k processes and is symmetric wrt a one-orbit

automorphism σh. We show how to construct Ch+1 : P
µ̃h+1

=⇒ P h+1, and a new one-orbit

automorphism σh+1 for P h+1, such that P h+1 contains k processes and is symmetric wrt

σh+1.

Since P is an electoral system, it must be possible to extend Ch to a computation C

which contains (k) actions out n, for a particular n ∈ {0, 1, . . . , k − 1}. Observe that

the first action µ of C \ Ch cannot be out n. Otherwise, let P h
i be the component

which performs this action. Then P h
i must contain the subprocess out n. By symmetry,

P h
σh(i)

≡α σh(P
h
i ) and therefore P h

σh(i)
must contain the subprocess out σ(n). Further-

more, σh(n) is free, because we have assumed that numbers cannot be used as bound

names. Hence there must be an extension of C where the action out σh(n) occurs. This

implies (for the hypothesis that P is an electoral system), that σh(n) = n. Given that

k ≥ 2, σh must generate more than one orbit. Contradiction.

In conclusion, µmust be an action different from out n. We have two different situations

depending on whether the transition is generated by the move of one process only, or by

a communication between two processes (i.e. it involves the Com or the Close rule).

The transition is the result of the move of one process only) In this part of the

proof, in order to simplify the notation we will assume, without loss of generality,

that

σ(0) = 1, σ2(0) = 2, . . . σk−1(0) = k − 1, σk(0) = 0

Therefore

P = [P0 |Pσ(0) | . . . |Pσk−1(0)]

and, by symmetry,

P ≡α [P0 |σ(P0) | . . . |σ
k−1(P0)].

We also assume, without loss of generality, that P h
0 is the component that performs

the step, and let this step be

P h
0

µ0
−→ P h+1

0

Using the symmetry of P h, i.e. the fact that P h
i = P h

σi
h
(0)

≡α σi
h(P

h
0 ) for every

i ∈ {0, 1, . . . , k − 1}, we can mimic the step of P h
0 with every P h

i and derive the
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transitions

P h
1

µ1
−→ P h+1

1

P h
2

µ2
−→ P h+1

2

...

P h
k−1

µk−1
−→ P h+1

k−1

such that

— µi is not of the form out n for any i, n ∈ {0, 1, . . . , k − 1},

— the bound-names convention is respected in the P h+1
i ’s.

— the bound names of µi (if any) are different from the free names of all the other

processes (and because of the bound-names convention in P h, we do not even need

to use α conversion here).

Thanks to the latter property, we can compose the displayed transitions into a com-

putation

P h µ̃
=⇒ P h+1

where:

— P h+1 = [P h+1
0 | P h+1

1 | . . . | P h+1
k−1 ],

— µ̃ = µ′
0µ

′
1 . . . µ

′
k−1, where each µ′

i is equal to µi except if µi is a free output action,

in which case the argument may become bound in µ′
i due to the restrictions at

the top level in P h.

It remains to show that we can construct a one-orbit automorphism σh+1 for P h+1

such that P h+1 is symmetric wrt it. To this purpose we need to distinguish various

cases depending on µ0.

µ0 = τ) In this case we have that, for every i ∈ {0, 1, . . . , k− 1}, µi = τ and P h+1
i ≡α

σi
h(P

h+1
0 ). Hence we can simply define σh+1 as σh restricted to (the edges and the

nodes of) H(P h+1).

µ0 = x̄0y0) We have that, for every i ∈ {0, 1, . . . , k − 1}, µi = σi
h(x0)σ

i
h(y0) and

P h+1
i ≡α σi

h(P
h+1
0 ). Hence also in this case we can define σh+1 as σh restricted to

H(P h+1).

µ0 = x̄0(y0)) We have that, for every i ∈ {0, 1, . . . , k− 1}, µi = σi
h(x0)(yi) for some yi

that is different from every other bound and free name in the other components

of P h.

Define σh+1 as follows:

σh+1(z) =







yσh(i) if z = yi and z ∈ H(P h+1)

σh(z) if z 6= yi and z ∈ H(P h+1)

undefined otherwise

(3)

Note that σh+1 is well-defined, because for all j ∈ {0, 1, . . . , k−1} σh+1(j) = σh(j)
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since j does not occur bound, and therefore j cannot be one of the yi’s. Hence

P h+1
j = P h+1

σ
j

h+1(0)

Finally, observe that σh+1 generates only one orbit and that

P h+1
j ≡α σj

h+1(P
h+1
0 )

Therefore P h+1 is symmetric wrt σh+1.

µ0 = x0y0) If y0 is not new, i.e. it occurred in P h, or if y0 ∈ {0, 1, . . . , k − 1}, then

we can choose the transitions above so that for every i ∈ {0, 1, . . . , k − 1}, µi =

σi
h(x0)σ

i
h(y0) and P h+1

i ≡α σi
h(P

h+1
0 ). Hence also in this case we can define σh+1

as σh restricted to H(P h+1).

If, on the contrary, y0 is new, then we can choose the transitions above so that

for every i ∈ {0, 1, . . . , k − 1}, µi = σi
h(x0)yi for some yi that is also new. (this

is possible because in the early semantics we can instantiate an input action with

an arbitrary name). Then, proceed as in the case (µ0 = x̄0(y0)).

The transition results from the communication of two processes) This is the part

of the proof where we use the specific property of πs illustrated by Lemma 4.1.

The interesting case is when the two agents are in different nodes of the communica-

tion graph. (If the agents are inside the same node, say P h
i , then we have a transition

P h
i

τ
−→ P h+1

i and we proceed like in previous case.) Let P h
i and P h

j be the two

processes, with i 6= j. We have two transitions P h
i

µi
−→ Qi and P h

j

µj

−→ Rj , where

µi and µj are complementary. Assume without loss of generality that µi is the input

action, and µj is the output action. Since σh generates only one orbit, there exists

r ∈ {1, . . . , k − 1} such that j = σr
h(i). Assume for simplicity that r and k are rel-

atively prime6, and let θ = σr
h. Then P h

j = P h
θ(i) and we can write Rθ(i) for Rj . Let

us first consider the case in which the first step of C \ Ch has been produced by an

application of the Com rule. Then we have a transition

P h
i | P h

θ(i)
τ

−→ Qi | Rθ(i)

By symmetry, we have that P h
θ(i)

θ(µi)
−→ θ(Qi). By Lemma 4.1 we then have the tran-

sitions Rθ(i)
θ(µi)
−→ R′ and θ(Qi)

µj

−→ R′ for some R′. Let us define P h+1
θ(i) = R′. By

symmetry, we also have P h
θ2(i) ≡ P h

θ(j)

θ(µj)
−→ θ(Rj), and θ(µi), θ(µj) are complemen-

tary, hence we can combine them into a transition

Rθ(i) | P
h
θ2(i)

τ
−→ P h+1

θ(i) | Rθ2(i)

6 If they are not, then in the rest of the proof k has to be replaced by the least p such that pk = rq, for
some q.



Catuscia Palamidessi 22

with Rθ2(i) = θ(Rj). By repeatedly applying this reasoning, we obtain

Rθ2(i) | P
h
θ3(i)

τ
−→ P h+1

θ2(i) | Rθ3(i)

...

Rθk−2(i) | P
h
θk−1(i)

τ
−→ P h+1

θk−2(i)
| Rθk−1(i)

and Rθk−1(i)
θk−1(µi)
−→ P h+1

θk−1(i)
. Finally, observe that from the transition θ(Qi)

µj

−→

R′ above we can derive θk(Qi)
θk−1(µj)
−→ θk−1(R′). But θk = σkr

h = id , hence we

have Qi

θk(µj)
−→ P h+1

i , where we have defined P h+1
i to be θk−1(R′). Therefore we can

compose also these transitions, thus “closing the circle”, and we obtain

Rθk−1(i) | Qi
τ

−→ P h+1
θk−1(i)

| P h+1
i

The composition of the displayed transitions gives us the intended continuation7:

P h = [P h
i |P h

θ(i) | . . . |P
h
θk−1(i)]

τ̃
=⇒ [P h+1

i |P h+1
θ(i) | . . . |P h+1

θk−1(i)
]8

Finally define P h+1 = [P h+1
i |P h+1

θ(i) | . . . |P h+1
θk−1(i)

] and observe that σh (restricted to

H(P h+1)) is still an automorphism for P h+1 and that P h+1 is still symmetric with

respect to it. Note that H(P h+1) may differ from H(P h) because some edges may

have disappeared and because the Com rule may have extended the set of nodes that

share a certain edge. However, H(P h+1) does not contain any new edges because

Com only transmits free names, corresponding to existing edges. Hence we can define

σh+1 as the restriction of σh to H(P h+1).

Consider now the case in which the first step of C \Ch is obtained by an application

of the Close rule. Then the transition is of the form

P h
i | P h

θ(i)

τ
−→ νyi(Qi | Rθ(i))

where yi is the name transmitted in the communication. By following the same rea-

7 Under the assumption that r and k are relatively prime, also θ has only one orbit. If we drop this
assumption, and hence we replace k by the smallest p such that pk = rq for some q, then the compu-
tation we have constructed involves only the processes of the nodes in Oθ(i) = {i, θ(i), . . . , θp−1(i)}.
To complete computation we have to repeat the reasoning for the other orbits of θ: Oθ(σh(i)),
Oθ(σ

2
h
(i)). . .Oθ(σ

q−1
h

(i)).
8 We are using a sloppy notation here: the processes should be permuted so to have their indexes in
increasing order.
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soning as before, we obtain the transitions

Rθ(i) | P
h
θ2(i)

τ
−→ νyθ(i)(P

h+1
θ(i) | Rθ2(i))

Rθ2(i) | P
h
θ3(i)

τ
−→ νyθ2(i)(P

h+1
θ2(i) | Rθ3(i))

...

Rθk−2(i) | P
h
θk−1(i)

τ
−→ νyθk−2(i)(P

h+1
θk−2(i)

| Rθk−1(i))

Rθk−1(i) | Qi
τ

−→ νyθk−1(P h+1
θk−1(i)

| P h+1
i )

Note that, thanks to the bound-names convention for P h, all the yj’s are different from

each other and from the free variables. We can then combine the above transitions,

and use the Cong rule with scope expansion to push the restriction operators at the

top-level of the network, thus obtaining the derivation

P h = [P h
i |P h

θ(i) | . . . |P
h
θk−1(i)]

τ̃
=⇒ [P h+1

i |P h+1
θ(i) | . . . |P h+1

θk−1(i)
]

Note that H(P h+1) may contain some of the yj’s as additional edges, because if

these names occur in the P h+1
j ’s, they occur free. We need therefore to expand the

automorphism accordingly. This can be done by defining σh+1 exactly as in (3). It is

easy to see that σh+1 has one orbit and that P h+1 is symmetric wrt it. �

In (Bougé, 1988) a less restrictive notion of symmetry is considered for proving negative

results. Namely, the automorphism σ can have more orbits, provided that they all have

the same cardinality (i.e. σ can be well-balanced). In the framework of (Bougé, 1988)

this is a significant generalization, because the language considered there, CSPin , can

have the parallel operator only at the top level. Hence the condition of a single orbit,

there, would impose that all the parallel processes present in the network have the same

code (modulo renaming).

In our framework, on the contrary, we do not have this restriction, and the above

mentioned generalization is not essential. In fact, we can easily extend Theorem 4.2 to

well-balanced automorphisms:

Corollary 4.3. Consider a network P = [P0 |P1 | . . . |Pk−1] in πs, and assume that the

associated hypergraph H(P ) admits a well-balanced automorphism σ 6= id , and that P

is symmetric wrt σ. Then P cannot be an electoral system.

Some examples of hypergraphs with well-balanced automorphisms are the hypergraphs

1 and 2 in Figure 4. The nodes with the same filling represent nodes in the same orbit.

Proof of Corollary 4.3 The idea is to transform a network P with a well-balanced

automorphism into a network Q with a one-orbit automorphism by grouping together the

nodes in the same orbit in H(P ) into one single node in H(Q). For example, Hypergraphs

1 and 2 in Figure 4 are transformed into Hypergraphs 3 and 4, respectively.
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Fig. 4. Examples of hypergraphs with well-balanced automorphisms and their

transformation into hypergraphs with one-orbit automorphisms.

Assume that σ generates p orbits of cardinality q, and assume, without loss of gener-

ality, that 0, 1, . . . , p− 1 belong to different orbits, and

σ(0) = p σ(1) = p+ 1 . . . σ(p− 1) = 2p− 1

σ2(0) = 2p σ2(1) = 2p+ 1 . . . σ2(p− 1) = 3p− 1

...
...

...
...

σq−1(0) = (q − 1)p σq−1(1) = (q − 1)p+ 1 . . . σq−1(p− 1) = qp− 1

Define the processes

Q0 = P0 |P1 | . . . |Pp−1

Q1 = Pp |Pp+1 | . . . |P2p−1

...

Qq−1 = P(q−1)p |P(q−1)p+1 | . . . |Pqp−1
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Consider now the network Q = [Q0 |Q1 | . . . |Qq−1]. Clearly Q and P generate the same

computations (they are strongly bisimilar), but the associated hypergraph, H(Q), is

different: H(Q) is “an abstraction” of H(P ) in the sense that certain nodes of H(P ) are

“grouped together” in the same node of H(Q), as explained before.

Note that Q may contain names corresponding to non-existing nodes. To eliminate

them, consider the renaming ρ : {0, 1, . . . , qp− 1} → {0, 1, . . . , q − 1} defined by

ρ(n) = n div p

i.e. ρ(n) is the result of the integer division of n by p, and define Q′ = ρ(Q). It is easy

to see that the traces of the projections of Q′ are the same as those in Q modulo the

renaming ρ.

In the hypergraph H(Q′) the nodes N are, of course, 0, 1, . . . , p− 1. The edges X are

the same as the edges of H(P ) minus {p, p+ 1, . . . , qp− 1}. (Note that in Figure 4 the

edges internal to the nodes of the transformed graph are not represented.)

Now, consider the pair θ = 〈θN , θX〉 with θN (0) = 1, θN (1) = 2,. . . , θN (q − 1) = 0,

and θX = σX restricted to H(Q′). It is easy to see that θ is an automorphism on H(Q′)

with only one orbit, and that Q′ is symmetric wrt θ.

Finally, observe that if P is an electoral system then also Q′ is an electoral system,

and apply Theorem 4.2. �

5. Existence of symmetric electoral systems in πm

The negative result of previous section does not apply to πm: its mixed-choice construct,

in fact, makes it possible to establish a simultaneous agreement among two processes,

thus breaking the symmetry. Note that the presence of mixed choice invalidates the

confluence property of Lemma 4.1.

Consider for example the election problem in a symmetric network consisting of two

nodes P0 and P1 only, and two private edges, x0 and x1, connecting them. A π-calculus

specification which solves the problem is P = νx0 νx1 (P0 |P1), where:

Pi = xiy.out i

+

xi⊕1(y).out 〈i⊕ 1〉

(4)

with i ∈ {0, 1} and ⊕ being the sum modulo 2. The argument y is not relevant, it is

present only because in πm actions must have an argument.

Note that the above electoral system, although very simple, has an automorphism with

only one orbit, hence by Theorem 4.2 it cannot be expressed in πs.

What happens when the hypergraph is more complicated? We claim that in πm the

existence of symmetric electoral systems is guaranteed in a large number of cases:

Claim 1. Let H be a connected hypergraph (i.e. each pair of nodes are connected by

a sequence of edges). Then there exists a symmetric electoral system P in πm such

that H(P ) = H . (Remember that “symmetric” means symmetric wrt every possible

automorphism on the hypergraph.)
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23

10 x0

x2

x3 x1

Fig. 5. A hypergraph which is connected, but not fully connected since the two

pairs of nodes with the same fillings are not directly connected by any edge.

Our claim is substantiated by the following idea for an electoral algorithm:

Let k be the number of nodes. The generic process Pi executes the following:

1 Broadcast a private name yi to all the other processes (possible thanks to the connec-

tivity hypothesis) and, meanwhile, receive the private name yj of each other process

Pj . In this way the hypergraph becomes fully connected.

2 Repeat (at most k times) a choice where one guard is an output action on yi, while

the others are input actions on the yj’s. If at a certain point an input is selected, then

go to 4.

3 If this point is reached, then Pi is the leader. Broadcast this information to all the

other processes, output out i and terminate.

4 Wait to receive the name of the leader. Then send it on out and terminate. �

Note that the above algorithm works under the assumption that each process knows

what is the total number of processes in the network.

It is difficult to make the above argument more formal while keeping it general, since

the details of the algorithm (like how to broadcast the private name) depend on the

structure of the hypergraph.

For proving separation results between πm and the other languages, however, it is

sufficient to show that πm can solve the symmetric electoral problem in one hypergraph,

suitably chosen. We will consider the simple hypergraph in Figure 5.

Proposition 5.1. Let H be the hypergraph illustrated in Figure 5. Then, there exists

a symmetric electoral system P = νx0 νx1 νx2 νx3 (P0 |P1 |P2 |P3), in πm, such that

H(P ) = H .

Proof For every i ∈ {0, 1, 2, 3} we define Pi following the idea illustrated above. First Pi

broadcasts its private name yi to all the other nodes, and receives the private names of

all the other nodes (first phase). Then each process uses yi to compete for the election

(second phase).

For the first phase of the algorithm, we define

Pi = νyi P
3
i (5)

where, intuitively, P 3
i represents a process that receives three names from its left neighbor
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1

y3

y2

y1

23

0 x0

x2

x3 x1

y0

Fig. 6. The evolution of the hypergraph in Figure 5 after running the first phase

of the algorithm, i.e.the code described in (5) and (6) up to the Q3
i ’s.

via the channel xi−i and sends three names to its right neighbor via the channel xi, in

such a way that the first name sent is yi, and the other two are the first two names

received from the left neighbor. In this way each name is broadcasted to all processes.

At this point it would seem natural to define P k
i = xiyi+k+1 |xi−1(yi+k) . P

k−1
i for

1 ≤ k ≤ 3, but there is a problem: the output xiyi+k in P k−1
i may become available

before xiyi+k+1 is consumed, so the right neighbor may receive yi+k before yi+k+1. This

would be incorrect because the order is relevant: the first name received (intended to be

yi+k+1) will be retransmitted k − 1 times while the second (intended to be yi+k) will be

retransmitted only k − 2 times.

In order to solve the above problem we need to sequentialize the output actions. We

do this by using an idea similar the one used Honda and Tokoro (1991) for the encoding

of the output prefix. Namely, we replace each action by a pair of actions: xy becomes

x(w) followed by wy, and x(y) becomes xw, where w is a fresh name, and w(y).

The definition of P k
i then is as follows (the symbols + and − here represent the sum

and difference modulo 4, respectively):

P k
i = νw (xi−1w | xi(w

′) . (w′yi+k+1 | w(yi+k) . P
k−1
i ) ) for 1 ≤ k ≤ 3

P 0
i = Q3

i

(6)

The purpose of Q3
i is to perform the second phase of the algorithm, i.e. to compete

for the election. The meaning of the superscript 3 will be clear later. By the time each

Pi reaches the point Q3
i , the original hypergraph has evolved into the fully connected

hypergraph illustrated in Figure 6. Note that the xi’s are no longer there because they

do not occur in the Q3
i ’s.

Interestingly, this first phase of the algorithm is within the syntax of πs and πa, but

not of πI nor of the π-calculus version of CCSvp. By “π-calculus version of CCSvp” we

mean the language obtained from CCSvp by replacing the restriction operator of CCSvp
with the one of the π-calculus, and other obvious changes of this kind.

We now describe the Qk
i ’s, for 0 ≤ k ≤ 3. As stated above, their purpose is to compete
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for the election. Each node i tries to “dominate” the other nodes by sending messages on

its own channel yi. Each time i sends a message on yi to another node, say j, the nodes

dominated by j, and j itself, become dominated by i. The superscript k, initially 3, in

Qk
i indicates how many additional nodes i needs to dominate before becoming a winner.

Obviously i becomes the winner whenever it succeed to dominate all the other nodes,

i.e. whenever k = 0. At this point i executes Q0
i , namely it tells the name of the winner

(its own name i) to each other node j by using j’s channel yj, and then it outputs its

own name i on out. Note that in order for i to know that it is the winner it is sufficient

to keep track of the number of nodes that it dominates9. In order to do this, whenever i

sends a message on yi to a node j, the message is a new name z. Then j sends back to i

a new name s. These names z and s are used by j to communicate to i the number d of

nodes that it dominates: j does this by outputting d times on s and then one time on z.

Correspondingly, i executes the part Rk
i , namely it receives all the (d) inputs on s, then

one input on z, and finally it becomes Qk−d−1
i . Note that R0 is never reached, so it does

not need to be defined.

Of course, by symmetry, we need to make it possible for i to lose the competition.

Thus in alternative to the output on yi the node i must also try to receive input from

all the other nodes, on their own channels. If one of these input actions succeeds, then

i becomes dominated and it exits the competition. At this point i executes Sd
i : first it

comunicates to the dominator a new name s (whose purpose is described above) and the

number (3 − k) of nodes that i currently dominates, and then (last two instructions of

Sd
i ) it waits to receive the name of the winner (from the winner), on its own channel,

and then it sends such name on out.

9 In a preliminary version of this paper there was an error: the number of nodes currently dominated

by i was calculated by adding 1 each time i was doing an output on yi. The error was pointed out
by Peng Wu, and corrected by the author in the way described here. Note that the corresponding
code in (7) is tuned for the case of 4 nodes. Later Peng Wu has coded the algorithm for the case of
arbitrary rings, by using counters, and he has verified his program under the Mobility Workbench
model checker.
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The definition of the Qk
i ’s is as follows:

Qk
i = νz ( yiz . z(s) . Rk

i

+

yi+1(z) . S
3−k
i

+

yi+2(z) . S
3−k
i

+

yi+3(z) . S
3−k
i

)

for 1 ≤ k ≤ 3

Q0
i = yi+1i . yi+2i . yi+3i . out i

Rk
i = s(w) . Rk−1

i

+

z(w) . Qk−1
i

Sd
i = νs ( zs . ss . . . . . ss

︸ ︷︷ ︸

d times

. zs . yi(n) . out n )

(7)

Note that the Pi’s have all the same code except for a renaming which corresponds to

the structure of the hypergraph, hence P is symmetric wrt every automorphism on the

hypergraph. �

In contrast to the first phase of the algorithm, the second phase, displayed in (7), is not

within the syntax of πa or πs, but it is within the syntax of πI , and an analogous process

can also be written in CCSvp. Hence for an hypergraph like the one in Figure 6 the

symmetric electoral problem can be solved also in these two languages. More in general,

we believe that the problem can be solved in CCSvp or in πI for any fully connected

graph.

Claim 2. Let H be a fully connected hypergraph (i.e. each pair of nodes are connected

directly by an edge). Then there exists a symmetric electoral system P , in CCSvp or in

πI , such that H(P ) = H .

Again, it is difficult to prove this claim in general (wrt any fully connected hypergraph)

because the precise steps of the algorithm depend on the structure of the hypergraph.

In the next section, we investigate the limitations of CCSvp and πI by showing a class

of hypergraphs for which the symmetric electoral problem cannot be solved with these

two languages.

6. Non existence of symmetric electoral systems in CCSvp and in πI

The mechanisms of name-passing and scope extrusion, which makes it possible in the π-

calculus (and in πm) to extend dynamically the communication structure of the network,
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are essential for the solution to the electoral problem illustrated in Proposition 5.1. In

fact, as we shall see, the part of the solution which completes the hypergraph cannot be

expressed in CCSvp or in πI .

More in general, CCSvp and πI cannot express any solution to the symmetric electoral

problem in a hypergraph like the one of Figure 5. Intuitively, the problem is that the

symmetry cannot be broken as long as there is no direct connection (channel) between

symmetric nodes (i.e. the nodes in the same orbit). And in CCSvp, as well as in πI , there

is no way to create a new direct connection between two nodes, unless, in the case of πI ,

they are already sharing a channel.

Theorem 6.1. Let P = [P0 |P1 | . . . |Pk−1] be a network in CCSvp or in πI , and let the

associated hypergraph H(P ) = 〈N,X, t〉 admit a well-balanced automorphism σ 6= id

such that P is symmetric wrt σ and, for each n ∈ N , there exist no h such that σh(n) 6= n

and {n, σh(n)} ⊆ t(x) for some x ∈ X . Then P cannot be an electoral system.

An example of such network is represented in Figure 5: let σ be the automorphism

defined as σ(0) = 2, σ(2) = 0, σ(1) = 3, and σ(3) = 1. Clearly σ is well balanced (it

has two orbits of cardinality two). Note that the hypotheses of the above theorem are

satisfied, because there is no edge between 0 and 2, and between 1 and 3.

Proof of Theorem 6.1 The proof is analogous to that of Theorem 4.2, and it is based

on the construction of an infinite computation from P where no leader is elected.

Suppose that at a certain step of the computation P has evolved into P h, no leader

has been elected yet, and P h is symmetric wrt a well balanced automorphism σh which

satisfies the hypotheses of the theorem. Consider the first step from P h. For the same

reasons explained in the proof of Theorem 4.2, this step cannot be of the form out n. We

have two cases:

The transition is the result of the move of one process only) Assume, without loss

of generality, that P h
0 is the process which makes the move. Let this move be

P h
0

µ0
−→ P h+1

0

Since P h
σi
h
(0)

≡α σi
h(P

h
0 ), By symmetry, we can construct derivations

P h
σh(0)

µ1
−→ P h+1

σh(0)

P h
σ2
h
(0)

µ2
−→ P h+1

σ2
h
(0)

...

P h

σ
q−1
h

(0)

µq−1
−→ P h+1

σ
q−1
h

(0)

(where q is the cardinality of the orbits of σ) such that

P h
σi
h+1(0)

≡α σi
h+1(P

h
0 )

where σh+1 is constructed by adding to σh the associations on the new names intro-
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duced by the above transitions, if any, as in the proof of Theorem 4.2. Note that σh+1 is

well balanced and coincides with σh on all the processes P h
j such that j not in the orbit

of 0. For such processes, define P h+1
j = P h

j . By composing the transitions above, we

get a non-empty sequence of transitions from P h to P h+1 = [P h+1
0 |P h+1

1 | . . . |P h+1
k−1 ]

which does not contain out n. Finally, observe that P h+1 is symmetric wrt σh+1.

The transition results from the communication of two processes) This is the cru-

cial part of the proof, which distinguishes CCSvp and πI from πm. Again, the inter-

esting case is when the two communicating processes are in different nodes. Assume,

without loss of generality, that P h
0 and P h

i are the partners in the communication.

Note that, by the hypothesis that processes in the same orbit are not connected, 0

and i must be in different orbits. Let us consider the case of πI first. We have that

the communication can only derive from the rule Close, because output actions in

πI can only be of the form x̄(y). Assume without loss of generality that P h
0 is the

sender and that the communication action is x̄0(y0). we have:

P h
0 |P

h
i

τ
−→ νy0 (P h+1

0 |P h+1
i )

By symmetry, i.e. since P h

σ
j

h
(0)

≡α σj
h(P

h
0 ) and P h

σ
j

h
(i)

≡α σj
h(P

h
i ), we also have

P h
σh(0)

|P h
σh(i)

τ
−→ νyσh(0)

(P h+1
σh(0)

|P h+1
σh(i)

)

P h
σ2
h
(0)

|P h
σ2
h
(i)

τ
−→ νyσ2

h
(0) (P

h+1
σ2
h
(0)

|P h+1
σ2
h
(i)
)

...

P h

σ
q−1
h

(0)
|P h

σ
q−1
h

(i)

τ
−→ νy

σ
q−1
h

(0)(P
h+1

σ
q−1
h

(0)
|P h+1

σ
q−1
h

(i)
)

where all yl’s are distinct, and distinct from the free names (by the bound-names

convention on P h), and

P h+1

σ
j

h+1(0)
≡α σj

h+1(P
h+1
0 ) and P h+1

σ
j

h+1(i)
≡α σj

h+1(P
h+1
i )

where σh+1 is defined as in (3). For any j which is neither in the orbit of 0, nor in

the orbit of i, define P h+1
j = P h

j , and let

P h+1 = [νy0 νy1 . . . νyq−1(P
h+1
0 |P h+1

1 | . . . |P h+1
k−1 )]

By using the Cong rule with scope expansion, we can combine the above transitions

into a computation

P h τ̃
=⇒ P k+1

Finally, note that:

— P k+1 is symmetric wrt to σh+1, and

— H(P k+1) differs from H(P k) only for the presence of the new edges yj between

the nodes P h+1

σ
j

h
(0)

and P h+1

σ
j

h
(i)

(which were already connected by the edge x
σ
j

h
(0)).

None of the existing edges have changed their type, i.e. two nodes that were not

connected by any edge in H(P h) are still not connected by any edge in H(P h+1).



Catuscia Palamidessi 32

In the case of CCSvp, the proof is analogous. The crucial point here is that the objects

of the communications, i.e. the yj’s, can only be values. Therefore they cannot be used

as communication channels in later steps of the computation10. �

7. Uniform encoding

In this section we use the above results to show the non-encodability of the πm into its

asynchronous subsets, into CCSvp, and into πI , under certain requirements on the notion

of encoding [[·]].

There is no agreement on what should be a good notion of encoding, and perhaps

indeed there should not be a unique notion, but several, depending on the purpose.

However, it seems reasonable to require at least the two following properties:

1 compositionality,

2 preservation of some intended semantics.

For a distributed system, however, it seems reasonable to strengthen the notion of com-

positionality on the parallel operator by requiring that it is translated homomorphically,

namely

[[P |Q]] = [[P ]] | [[Q]] (8)

In this way we can ensure that the translation maintains the degree of distribution of

the system, without introducing additional processes with coordination functions.

Likewise, it seems reasonable to require that the encoding “behaves well” with respect

to channel renamings, i.e. for any permutation of names σ in the domain of the source

language there exists a permutation of names θ in the domain of the target language

such that ∀i ∈ N σ(i) = θ(i) and

[[σ(P )]] = θ([[P ]]) (9)

We will say that an encoding that satisfies (8) and (9) is uniform11.

Concerning the notion of semantics, we call “reasonable” a semantics which distin-

guishes two processes P and Q whenever there exists a maximal (finite or infinite) com-

putation of P in which the intended observables (some visible actions) are different from

the observables in any (maximal) computation of Q. In the following, our intended ob-

servables are the actions performed on channel out. Note that the above condition cannot

be satisfied by a semantics which is insensitive to infinite τ loops, such as weak bisimu-

lation or coupled bisimulation.

10 In the case of CCSvp the notion of hypergraph associated to a network should be slightly different,
i.e. we should distinguish between edges that represent channels and edges that represent only values
and therefore cannot be used as communication channels. Also, we should use scope extrusion as a
bisimilarity law.

11 The definition of uniformity has emerged from discussion with Iain Phillips and Maria Grazia Vigliotti.
They pointed out the necessity of the condition ∀i ∈ N σ(i) = θ(i) in order for the encoding to preserve
symmetry, and hence for Corollary 7.1 to hold. They also pointed out the necessity of the condition
about connectivity in Corollary 7.2.
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Corollary 7.1. There exist no uniform encoding of πm into πs preserving a reasonable

semantics.

Proof Uniformity preserves symmetry, and a reasonable semantics distinguishes an elec-

toral system from a non-electoral one. Hence apply Theorem 4.2 and Proposition 5.1.

Note that the hypergraph in Proposition 5.1 has one-orbit automorphisms. �

For the next result we need a further condition: We say that an encoding [[·]] does not

increase the level of connectivity of a network if for all processes P and Q, if fn(P ) ∩

fn(Q) = ∅, then fn([[P ]]) ∩ fn([[Q]]) = ∅.

Corollary 7.2. There exist no uniform encoding of πm into CCSvp or into πI which

does not increase the level of connectivity and which preserves a reasonable semantics.

Proof Analogous, by Theorem 6.1 and Proposition 5.1. Note that the hypergraph in

Proposition 5.1 has well-balanced automorphisms satisfying the conditions of Theo-

rem 6.1. �

Note that if we relax condition (8), imposing just generic compositionality instead, i.e.

[[P |Q]] = C[ [[P ]], [[Q]] ] (10)

with C[·, ·] generic context, then these non-encodability results do not hold anymore. In

fact, we could give an encoding of the form

[[P |Q]] = νy1νy2 . . . νyn([[P ]] |M | [[Q]])

where M is a “monitor” process which coordinates the activities of P and Q, inter-

acting with them via the fresh channels y1, y2, . . . , yn. The translation of a network

P1 |P2 | . . . |Pn would then be a tree with the Pi’s as leaves, and the monitors as the

other nodes. The disadvantage of this solution is that it is not a distributed implemen-

tation; on the contrary, it is a very centralized one.

8. Discussion and future work

The non-existence results of this work hold even if we disregard unfair computations.

The proof of Theorem 4.2 in fact can be slightly modified so that for the construction of

Ch+1 from Ch we consider each time a different process in the network. In this way, the

limit of the sequence is a fair computation.

Our Theorems 4.2 and 6.1 correspond to Theorems 3.2.1 and 4.2.1 in (Bougé, 1988), for

CSPin and CSP respectively. The main difference with those results is that here we are

dealing with much richer languages. In particular, both the π-calculi and CCSvp admit

the parallel operator inside every process, and not just at the top-level as it is the case for

CSPin and CSP (at least, for the versions considered in (Bougé, 1988): all processes in

a network are strictly sequential). This leads to an essential difference. Namely, the proof

of Bougé shows that the network can get stuck in the attempt to elect a leader: since

an output action in CSPin can be only sequential, the prefix of a computation which

leads to the first output action, repeated by all processes, brings to a global deadlock.

Our proof, on the contrary, shows that the system can run forever without reaching an
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agreement: whenever a first output action occurs, all the other processes can execute their

corresponding output action as well, and so on, thus generating an infinite computation

which never breaks the symmetry. Another difference is that in the π-calculus the network

can evolve dynamically. This is the reason why Theorem 4.2.1 in (Bougé, 1988) does

not hold for πm (as shown by our Theorem 1). This feature complicates the proof of

Theorems 4.2 since we have to take into account the evolution of the automorphism.

The use of the parallel operator as a free constructor usually enhances significantly

the expressive power of a language. It is for instance essential for implementing choice

(at least in a restricted form). In fact, Bougé (1988) has shown that it is not possible

to encode CSPin into CSPno (the sublanguage of CSP with neither input nor output

guards in the choice), while Nestmann and Pierce (2000) have shown that the π-calculus

with input-guarded choice (πi) can be embedded into the π-calculus without choice (πa).

The crucial point is that the parallel operator allows to represent the main characteristic

of the choice, namely the simultaneous availability of its guards.

Sangiorgi andWalker (2001) cite our separation result between πm and πs wrt a slightly

different semantic condition, which is the following:

For any P and any N ⊆ fn(P ), if every maximal computation of P contains

exactly one action whose subject is in N , then every maximal computation

of [[P ]] contains exactly one action whose subject is in N .

Strictly speaking, with this condition the separation result does not follow from Theo-

rem 4.2. The problem is that our notion of electoral systems requires all processes to

execute the action out n after the leader is elected. This requirement corresponds to im-

posing that all processes will eventually know whom the winner is, which is a standard

condition in the notion of electoral system found in literature. However, we could have

considered a simpler (more permissive) notion of electoral system, obtained by requiring,

in Definition 3.1, that C′ contains only one action of the form out n (performed, presum-

ably, by the winner). All results presented in this paper would remain valid under this

new notion of electoral system, and in this way the separation result could be proved

also wrt the above variant of the semantic condition.

One way to interpret the results presented in this paper is that mixed choice is a really

difficult mechanism to implement. The only possibility to achieve a fully distributed and

symmetry-preserving implementation probably is to use randomized techniques. Francez

and Rodeh (1980) have proposed a randomized implementation of CSP, however, their

solution it is not fully satisfactory because it is not robust wrt adverse scheduling strate-

gies. We are currently investigating a probabilistic extension of πi for this purpose, called

πpa (Herescu and Palamidessi, 2000). We have shown that in πpa it is possible to express

the solution to some of the leader election problems that would not be solvable in πi (or

πs), so this seems encouraging.
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