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We introduce an extension of the pure lambda-calculus by endowing the set of terms
with a structure of vector space, or more generally of module, over a fixed set of scalars.
Terms are moreover subject to identities similar to usual pointwise definition of linear
combinations of functions with values in a vector space. We then study a natural
extension of beta-reduction in this setting: we prove it is confluent, then discuss
consistency and conservativity over the ordinary lambda-calculus. We also provide
normalization results for a simple type system.

1. Introduction

Preliminary Definitions and Notations. Recall that a rig (or “semiring with zero and
unity”) is the same thing as a unital ring, without the condition that every element
admits an additive inverse. Let R = (R, 4,0, x,1) be a rig: (R,+,0) is a commutative
monoid, (R, X, 1) is a monoid, X is distributive over 4+ and 0 is absorbing for x. We write
R® for R\ {0}. We denote by letters a, b, ¢ the elements of R, and say that R is positive
if, for all a,b € R, a + b = 0 implies a = 0 and b = 0. An example of positive rig is N,
the set of natural numbers, with usual operations.

A module over rig R, or R-module, is defined in the same way as a unital module over
a ring, again without the condition that every element admits an additive inverse. For
all set X, the set of formal finite linear combinations of elements of X with coefficients
in R is the free R-module over X', which we denote by R (X).

Linearity in the A\-Calculus. Girard’s linear logic (Gir87), by decomposing intuitionistic
implication, made the computational concept of linearity prominent, while relating it
with the usual algebraic notion. A program is said to be linear if it uses its argument
exactly once. This vague idea can be made more precise, by defining which subterms of
a term w are in linear position in u:

— in a term which is only a variable x, that occurrence of variable is in linear position;

— in an abstraction u = Azs, the subterms in linear position in u are those of the
abstracted subterm s, and wu itself;

— in an application u = (s)t, the subterms in linear position in u are those of the
function subterm s, and w itself.
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In particular, application is linear in the function but not in the argument. This is to
be related with head reduction and memory management: those subterms that are in
linear position are evaluated exactly once in the head reduction, they are not copied nor
discarded.

Algebraic linearity is generally thought of as commutation with sums. It is well known
that the space of all functions from some set to some fixed R-module is itself an R-module,
with operations on functions defined pointwise: for instance, the sum of two functions is
defined by (f + ¢)(z) = f(z) + g(z). In (Ehr01) and (Ehr05), Ehrhard introduced deno-
tational models of linear logic where formulas are interpreted as particular vector spaces
or modules and proofs corresponding to A-terms are interpreted as analytic functions
defined by power series on these spaces: this is the basic idea of Girard’s quantitative
semantics (Gir88). This not only guided the study of differentiation in A-calculus by
Ehrhard and Regnier in (ER03), but also offered serious grounding to endow the set of
terms with a structure of vector space, or of R-module, where R is a rig: one can form
linear combinations of terms, subject to the following two identities:

AT (i: aisi> = i:ai)\x S; (1)
i=1 i=1
and

(Z aisi> u = Z a;(si)u (2)

for all linear combination Z?:l a;s; of terms. We recover the fact that application is
linear in the function and not in the argument, in accordance with the computational
notion of linearity.

Reducing Linear Combinations of A-terms. Apart from differentiation, one important
feature of the calculus of (ER03) is the way (-reduction is extended to such linear com-
binations of terms. Among terms, some are considered simple: they contain no sum in
linear position, so that nor nor applies; hence they are intrinsically not sums.
These form a basis of the R-module of terms. Reduction — is then the least contextual
relation such that: if s is a simple term, then

(Axs)t — s[t/z] (3)
and, if a € R® is a non-zero scalar,
s — s implies as +t — as’ +t . (4)

Since every ordinary A-term can be viewed as a simple term, extends usual (-
reduction. The requirement that s is simple in and , together with the condition
a # 0 in , ensure — actually reduces something, so that reduction is not trivially
reflexive.

Although the previous definition might seem contorted, it is technically efficient. For
instance, it is particularly well suited for proving confluence via usual Tait—Martin-L6f
technique: introduce a parallel version = of — such that — C = C —*, and prove that



Algebraic Lambda-Calculus 3

= enjoys the diamond property. Here = is reflexive and has the following behaviour on
linear combinations of terms:

n n
Z%‘Si = Z%S; as soon as, for all i, s; = s, and s; is simple. (5)
i=1 i=1
Assuming s = s’ = s” are simple terms, we have s+ = 2s’ and s+ = s+ ¢':
then allows to close that pair of reductions by 25’ = s’ +s” and s +s" = s’ + s".
This would not hold if we had forced the s;’s in to be distinct simple terms — that
condition would amount to reduce each element of the base of simple terms, in parallel,
which may seem a natural choice at first.

Collapse. In (VauO7a)), however, the author proved that the above higher-order rewriting
of linear combinations collapses as soon as the rig of scalars admits negative elements:
if -1 € R (so that 1 4+ (—1) = 0), then for all terms s and ¢, s —* ¢. This should
not be a surprise, since in that case the system involves both negative numbers and
potential infinity through arbitrary fixed points. Indeed, take © a fixpoint operator of
the A-calculus, such that (©) s —* (s) (O) s for all A-term s. Write oo for (©) Az (s + z);
then ooy —* s+ 00g, hence 0o stands for an infinite amount of s. We get:

§=584 005 —00s +00; —00r =¥ s—s5+t=t.

Also, if one can consider fractions of scalars, strong normalizability holds only for
normal terms: assume s — s’ and R contains dyadic rationals; then

Both these failures indicate that much care is needed when dealing with linear combi-
nations of A-terms: these make the identity of terms very intricate, much more so than
plain a-equivalence, so that its interaction with higher-order rewriting becomes tricky.
As a result, although the problem about normalizability was well noted in (ERO03|), the
collapse of reduction in presence of negative coefficients eluded the authors of that pa-
per. In the present contribution, we give a syntactic framework for the study of linear
combinations of terms, which aims to be more rigorous and formal than that developed
in (ER03) or (VauO7a): in particular, we put much care in developping an explicit imple-
mentation of the R-module of terms. Also, we do not consider differentiation nor classical
control operators, and only focus on the algebraic structure of terms and the interaction
between coeflicients and reduction. We call the obtained system the algebraic A-calculus.

Contributions. In section [2] we formalize the definition of the R-module of terms, val-
idating identities and , and we introduce the key notion of canonical forms. We
also compare this presentation to that of (ERO03): terms a la Ehrhard—Regnier are just
canonical forms of terms in our setting. This is an important part of the present work,
which we hope sheds new light on the structure the R-module of terms. In section [3] we
define reduction, using rule in the case of a sum, and discuss conservativity w.r.t. or-
dinary S-reduction. Section [] presents a Curry-style simple type system for the algebraic
A-calcul. We prove subject reduction holds iff the rig of scalars is positive. In section
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we discuss necessary conditions for strong normalization of typed terms to hold; we refine
these to sufficient conditions and generalize the proof of strong normalization of differ-
ential A-calculus by Ehrhard and Regnier (ER03). We conclude by discussing possible
other approaches in section [6]

About Previous Works. Most of the results of this paper were already present in (Vau07a)
or even (ER03), sometimes in a weaker form. In those two previous works, however, the
focus was on differentiation and the presence of linear combinations of terms and their
effects on reduction were considered of marginal interest. As we stated before, this may
in particular explain why some of the problems we insist on in this paper were put aside
in (ER03). The material of sections [2| and 3| was the subject of the RTA’07 conference
extended abstract (VauO7b)). Although a very brief outline of a preliminary version of
section [5] was given in that last paper, the normalization results of the present article are
completely new, in that they strictly generalize those of (VauOT7a)).

2. Linear Combinations of Terms

In this section, we introduce the set of terms of the algebraic A-calculus in several steps.
First we give a grammar of terms, on which we define a-equivalence and substitution as
in Krivine’s (Kri90). Then we define a notion of algebraic equality on these terms: this is
given by an equivalence relation £ on terms such that the associated quotient set is an
R-module, moreover validating identities and . The elements of this quotient set
are the objects of the algebraic A-calculus. We then introduce canonical forms of terms as
distinguished elements of £-equivalence classes. We show this construction encompasses
the abstract presentation by Ehrhard and Regnier in (ERO03), based on an increasing
sequence of quotients.

2.1. Raw Terms

Let be given a denumerable set V of variables. We use letters among z,y, z to denote
variables.

Definition 2.1. The language LY of the raw terms of the algebraic A-calculus over R
(denoted by capital letters L, M, N) is given by the following grammar:

M,N,... =z | xM|(M)N|O|aM|M+N .

Definition 2.2. We define free variables of terms as follows:

— variable z is free in term y if x = y;

— variable z is free in Ay M if  # y and «x is free in M;

— variable z is free in (M) N if z is free in M or in N;

— variable z is free in aM if x is free in M;

— variable z is free in term M + N if x is free in M or in N.
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In particular, no variable occurs free in term 0. Notice however that, by the previous
definition, aM might have free variables even if a = 0: as far as raw terms are concerned,
0M is not the same as 0.

From this definition of free variables, we derive a-equivalence (denoted by ~) as in
(Kri90)). We will always consider raw terms up-to a-equivalence. More formally:

Definition 2.3. The set Lr of the raw terms of the algebraic A-calculus over R is the
quotient set L} /~.

Again, we derive the definition of substitution following that in (Kri90)). We write M [N/x]
for the (capture-avoiding) substitution of N for x in M. More generally, if x4, ..., z, are
distinct variables and Ny, ..., N, are terms, we write M [Ny,..., N, /x1,...,x,] for the
simultaneous capture avoiding substitution of each NN; for each x; in M. We obtain the
following variants of definitions and properties from (Kri90).

Proposition 2.4. For all terms M, Ny,..., Ny, Li,...,L, and all distinct variables

LTly--sTny Y1y---5Yp,

M[Nl,...,Nn/xl,...,xn] [L1,~--,Lp/y1,---7yp]
~ MI[N{,... N}/, Li,...,Ly/x1, ..., Zp, Y1, - -, Yp]

where N/ = N; [L1,...,Lp/y1, .., Yp)-

Definition 2.5. A binary relation r on raw terms is said to be contextual if it satisfies
the following conditions:

—xrm
— XM 1t Ax M’ as soon as M r M’;

— (M)Nr (M')N'" as soon as M r M’ and N r N’;
—0r0;

— aM r aM’ as soon as M r M’;

— M+ Nr M + N assoonas Mr M and Nt N'.

This notion of contextual relation is the analogue of a A\-compatible relation in (Kri90).
In particular, a binary relation r is contextual iff it is reflexive and:

— XM 1 Az M’ as soon as M r M’;

— (M)Nr (M’)N'" as soon as M r M’ and N r N’;

— aM r aM’ as soon as M r M’;

— M+ Nr M + N assoonas Mr M and Nt N'.

Proposition 2.6. If r is a contextual relation, then M [N/x] r M [N'/x] as soon as
Nr N

Again, this result is only an obvious variant of that of (Kri90j).
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2.2. The R-Module of Terms

We introduce the actual algebraic content of the calculus by defining an equivalence
relation £ encompassing usual identities between linear combinations, together with

and .

Definition 2.7. Algebraic equality £ is defined on raw terms as the least contextual
equivalence relation such that the following identities hold:

— axioms of commutative monoid:

0+M 2 M (6a)
(M+N)+L & M+ (N+1L) (6b)
M+N £ N+M (6¢)

— axioms of module over rig R:
a(M+N) & aM+aN (7a)
aM +bM = (a+b)M (7b)
a(bM) = (ab)M (7c)
M & M (7d)
oM = 0 (7e)
a0 = 0 (7f)

— linearity in the A-calculus:

Ax0 2 0 (8a)
Az (aM) & a(dxM) (8b)
M@ (M+N) & XM+ N (8¢)
0L 2 0 (8d)
(aM)L %= a((M)L) (8e)
(M+N)L & (M)L+(N)L (8f)

We call algebraic A-terms the elements of Lr /2, i.e. the =-classes of raw terms. If M € Lg,
we write M for its £-class.

Notice that identity could be removed, as it is derived from and . Identities

through subsume and identities (8d)) through subsume . Then the
quotient set Lg/ £ is an R-module validating 1} and .

Definition 2.8. For all My, ..., M, € Lg, we write My +---+ M, or even » ., M, for
the term M; + (--- 4+ M,) (or 0 if n = 0).

One might think of a raw term M € Lg as a writing of its £-class, which is an element
of the R-module Lg/2. Among raw terms, some should be distinguished as canonical
writings. More precisely, we want to make the following statement meaningful: every
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term M € Lg can be uniquely written as M £ ZLI a;s; where the s;’s are pairwise
distinct base elements and the a;’s are non zero.
A good candidate for such a canonical base is obtained as follows:

— all the identities in groups of equations (6] and (§), except (6¢), can be oriented
from left to right to form a rewrite system;

— raw terms which are normal in this rewrite system, and are of the shape x, Ax M or
(M) N, can be considered as base elements (they are not sums);

— every M € Lg has a normal form in this system, which can be written as a linear
combination of base terms.

Notice however that a normal form in this system need not be canonical: consider, e.g.,
x 4+ y + z. The problem is of course that we left out commutativity: adding would
break the very notion of normal form. Rewriting up to commutativity, or up to associa-
tivity and commutativity, is a notable trend in rewriting theory, with well-established
litterature: let’s just cite (PS81). Even closer to our subject, Arrighi and Dowek proposed
in (ADO05)) an associative-commutative rewrite system implementing a computational no-
tion of vector space, which is very close to what we have just outlined.

In the current setting, however, our focus is on precising the syntax of the algebraic
A-calculus: we are only interested in the definition of canonical forms and base elements.
Hence we do not fully reproduce such a rewrite-theoretic development. We rather extend
our notion of equality of terms a minima, so that the order of summands in )., M; no
longer matters. As far as syntax is concerned, this is quite benign. Moreover, the reduction
of the algebraic A-calculus, to be defined in section is introduced as a relation on Lg/2:
associativity and commutativity will be dissolved in £.

Definition 2.9. Permutative equality = C Lr X Lg is the least contextual equivalence
relation such that, Y7 | M; = > | My, holds, for all My,..., M, € Lg and all per-
mutation f of {1,...,n}.

Since free variables of a sum do not depend on the order of the summands, = preserves
free variables.

Definition 2.10. We write Ag for the quotient set Lg/=, and we call permutative terms
the elements of Ag.

Proposition 2.11. Substitution is well defined on Agr: if M, M’ € Lg are such that
M = M’ and, for all i € {1,...,n}, N;, N;/ € Lg are such that N; = N/, then
M [Ny,...,N,/x1,...,2,] = M'[N{,...,N}/x1,...,2,] for all pairwise distinct vari-
ables z1,...,x,.

Except when stated otherwise, we will use the same notation for a raw term M and
its = class, and use them interchangeably. This is harmless in general: the properties we
consider are all invariant under = and we define functions on Ar by induction on raw
terms, compatibility with = being obvious.

Notice already that algebraic equality subsumes permutative equality on raw terms,
so that £ is well defined on Ag and (Lg/2) = (Ar/2).
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2.3. Canonical Forms

We can now define canonical forms of terms as particular permutative terms such that
every class in Ar/Z contains exactly one canonical element.

Definition 2.12. We define the set Ck C Agr of canonical terms (denoted by capital
letters S, T, U, V, W) and the set Bg C Cr of base terms (denoted by small letters s, ¢,
u, v, w) by mutual induction as follows:

— any variable z is a base term;

— let z € V and s a base term, then Az s is a base term;

— let s a base term and T a canonical term, then (s) 7T is a base term;

— let a1,...,a, € R® and s1,...,s, pairwise distinct base terms, then Z?Zl a;s; 1s a
canonical term.

The reader should easily get the intuition that for all canonical terms S,7 € Cg, S 2 T
iff S =T (a formal proof of this result follows, as a corollary of Theorem [2.17)). Mapping
s to the “singleton” 1s defines an injection from base terms into canonical terms.

Definition 2.13. We define the height of base terms and canonical terms by mutual
induction:

—h(z) =1

— h(Azs) =1+ h(s);

— h((s)T) =14 max(h(s),h(T));

— h(z;;l aisi) = maxlgign(h(si)) (Wthh is0iff n = 0)

Definition 2.14. Let M = Z?:l a;s; € AR be a linear combination of base terms,
not necessarily canonical. For all base term s, we call coefficient of s in M the scalar

> i<icn, s;—s @i (the sum of those a;’s such that s; = s), which we denote by M(,). Then
we define cansum (M) € Cg by:

P
cansum (M) = ZM(tj)tj
j=1

where {¢1,...,¢,} is the set of those s;’s with a non-zero coefficient in M.
We now define a function mapping terms in Ar to their canonical forms.

Definition 2.15. Canonization of terms can : Ax — Cg is given by

— can (z) = la;
—if can (M) =" | a;s; then can Az M) = D" | a; (Ax s;);
—ifcan (M) =37, a;s; and can (N) = T then can (M) N) =Y | a;(s;) T}

— if can (M) = 37", a;s; and can (N) = 3077 | a;s; then

n+p
can (M + N) = cansum (Z aisi> .

i=1
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Notice that in the penultimate case (definition of can (aM)) the only effect of the appli-
cation of cansum is to prune all the summands (aa;)s; such that aa; = 0.

Lemma 2.16. Canonization enjoys the following properties.

(i) Variables free in can (M) are also free in M. The converse does not hold in general.
(ii) For all base term s, can (s) = 1s.
(iii) For all canonical term S, can(S) = S.
(iv) For all term M € Ag, can (can (M)) = can (M).
(v) For all M, Ny,..., N, € Ag and all variables z1, ..., z, not free in any of these terms,
can (M [Ny,...,Ny/x1,...,2,]) = can(can (M) [can (Ny),...,can (N,) /21, ..., 2,]).

Proof. Fact is straigthforward from the previous definition. Facts and are
proved by mutual induction on the definitions of base terms and canonical terms; fact
follows from . Fact is proved by induction on M: all inductive steps follow
directly from the definitions of canonization and substitution. ]

Theorem 2.17. Algebraic equality is equality of canonical forms: for all M, N € Ag
M £ N iff can (M) = can (N).

Proof. For all M, N € Ag, we write M 2’ N iff can (M) = can (N). It should be clear
that £/ is an equivalence relation. It is contextual because the definition of canonization
is by induction on permutative terms. It moreover validates equations through :
just apply can to both members of each equation and conclude. By the definition of £,
we get = C 2/, Conversely, one can easily check that can (M) £ M for all M € Ag:

this is the whole point of the definition of canonization. Hence the reverse inclusion: if
M £’ N, then M £ can (M) =can(N) = N. O

Corollary 2.18. For all S,T € Cg, S£ T iff S =T.

Proof. This a direct consequence of the previous theorem and fact of Lemma
L]

Corollary 2.19. Substitution is well defined on AR/é: if M,M' € Ar are such that
M £ M’ and, for all i € {1,...,n}, N;, N/ € Agr are such that N; = N/, then
M [Ny,...,Np/w1, ... 2] & M'[N{,...,N!/z1,...,2,] for all pairwise distinct vari-
ables z1,...,x,.

Proof. First apply Theorem to the hypotheses and conclusion: we must prove
can (M [Ny,...,Ny/z1,...,2,]) =can (M'[Ny,..., N} /x1,...,2,])

knowing that can (M) = can (M’) and, for all i € {1,...,n}, can(N;) = can(N/). We
conclude by fact (v)) of Lemma [2.16] O

Corollary 2.20. We can define an R-module structure on Cg as follows:

zero:  Ogn =0
sum: S@&T =can(S+1T)
external product: a® S = can (aS);
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so that can is an isomorphism of R-modules from Ar/2 to Cg.

Proof. By Theorem [2.17] can is well defined on Ag/2, and is injective. It is surjective
by fact of Lemma The R-module structure of Cg then follows from that of
Ar/2. 0

By this isomorphism, and £ being contextual, the quotient structure of algebraic terms
is subsumed by the mutually inductive structure of base terms and canonical terms. If C
is a set of canonical terms, we write C = {S; S € C}; then (Ag/£) = Cgr. When we prove
properties on algebraic terms, we can thus use induction on base terms and canonical
terms: we then check that the corresponding property on algebraic terms follows through
can, which is in general obvious. We will abuse terminology by claiming our proof is by
induction on algebraic terms. Also, we will often define functions on Ag/2 by induction
on base terms and canonical terms: the actual function is obtained by composition with
can. For instance, we define the height of algebraic terms by: h(M) = h(can (M)).

2.4. Abstract presentation

Our presentation of the R-module of terms differs from that by Ehrhard and Regnier in
(ER03), in that we introduce explicitly two dinstinct levels of syntax: permutative terms
on the one hand (Agr) and algebraic terms (Ag/2) on the other hand.

One can see the R-module of canonical terms from Corollary as a concrete pre-
sentation of the one adopted by Ehrhard and Regnier: define an increasing sequence
(R{ARr(k)))k>0 of free R-modules generated by simple terms of bounded height.

Definition 2.21. We define the set Agr(k) of simple terms of height at most k, by
induction on k: let Ag(0) = 0; we define the elements of Agr(k + 1) from those of Ar(k)
by the following clauses:

— if o € Agr(k) then o € Ag(k + 1);

— if x € V then = € Ag(k + 1);

— if o € Ag(k) then \xo € Ag(k + 1);

—if 0 € Ar(k) and 7 € R{ARr(k)) then (o) 7 € Ar(k +1).

Then we define the set of all simple terms as Ag = |J, Ar(k) and the set of terms

R(Ar) = U, R(Ar(K)).

Notice that, although it is not made clear in the original paper, two quotient construc-
tions are interleaved at each height: a-equivalence and the free R-module construction.
In our opinion, this makes for a very intricate notion of equality on terms, so that the
status of prominent and well-established notions in the setting of the ordinary A-calculus
becomes less immediate: for instance, what is a free occurrence of variable in a term,
how do we define properly a-conversion on R (Agr), what are the subterms of a term?
Of course, these questions can be given satisfactory answers: we only claim that the
simplicity of the definition is only apparent.

As expected, R(AR) and (Agr/%) are actually the same R-module of algebraic terms:
define Br(k) (resp. Cr(k)) as the set of base terms (resp. canonical terms) of height
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at most k; then, clearly, Ar(k) is Br(k) and R(Agr(k)) is Cr(k). Hence Agr = Br and

R(AR) = Cg = (Ag/£). This is one important contribution of the present paper: bring
new light on the structure of R (ARr), by deliberately introducing a-equivalence and per-
mutative equality separately from equality of linear combinations (i.e. algebraic equality).
Also, this makes prominent the fact that the reduction of the algebraic A-calculus is de-
fined up to = (see next section).

So, from now on, we formally identify Ar with Bg and R (Ag) with Cg by replacing
Definition [2.21| with the following one:

Definition 2.22. We define simple terms as the £-classes of base terms. We write Ag
for the set of simple terms and R (ARg) for the set of algebraic terms, which we may just
call terms.

When we write a simple term (resp. a term) as s, ¢, u, v or w, (resp. S, T, U, V or W),
it is implicit that s, ¢, u, v, or w is a base term (resp. S, T, U, V, or W is a canonical
term). When we make no such assumption, we write L, M or N or use greek letters o,
7, p- We will often use the notations Az o, (¢) 7, ao, o + 7 with the obvious sense: these
are well defined by contextuality of <.

Definition 2.23. For all S € R{Ag) and s € Ag, we define the coefficient of s in S
by S(5) = S(s)- We then define the support of S as the set of all simple terms with a
non-zero coefficient in S:

Supp (8) = {5 € Ar; S,y # 0}
If S is a set of simple terms, we write R (S) for the set of linear combinations of elements
of S, i.e.
R(S) = Z%‘Si; Vie{l,...,n}, s; € S,a; €R
i=1

or, equivalently, R(S) = {o € R{(AR); Supp (o) C S}.

3. Reductions

In this section, we define reduction using and as key reduction rules: this captures
the definition of reduction in (ER03), minus differentiation, in the setting of the algebraic
A-calculus.

3.1. Reduction and Linear Combinations of Terms

We call relation from simple terms to terms any subset of Ag x R{AR), and we call
relation from terms to terms any subset of R(Agr) x R(Ag). Given a relation r from
simple terms to terms we define two new relations T and T from terms to terms by:

—oto ifo=3" ais; and o’ =Y " | a;S] where, for all i € {1,...,n}, s; v S};
— o070’ ifo=as+T and ¢’ = aS' + T where a #2 0 and s S’.
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Clearly, T C T. It is important that, in the above definitions we do not require Y ., a;s;
nor as+7 to be canonical terms: T matches equation (@), while T matches (). We will use
these constructions in the definitions of one-step 3-reduction — and parallel reduction =:
we introduce these as relations from simple terms to terms, so that the actual reduction
relations on terms are obtained as — and = respectively.

Notice that we cannot define reduction by induction on terms: if there are a,b € R®
such that a+b = 0 then 0 = ao +bo for all ¢ € R(ARg); hence, by rule (@), 0 may reduce.
Following (ER03), we rather define simple term reduction — by induction on the depth
of the fired redex.

Definition 3.1. We define an increasing sequence of relations from simple terms to terms
by the following statements. Let —q be the empty relation ) C Ag x R({ARg). Assume
—, is defined. Then we set 0 —1 o’ as soon as one of the following holds:

— o =Msand 0 = \x.S" with s —1 S’;
— o= (s)T and o/ = (8") T with s —; S/, or o/ = (s) T’ with T =}, T’;
—o=(M\xs)T and o/ = s[T/x].

Let — = Upen — k- We call one-step reduction or simply reduction, the relation —.
Lemma 3.2. We have = = J,cn —&-

Proof. This is a consequence of the more general following properties of = : if (r,,) is an
increasing sequence of relations from simple terms to terms, then (r;,) is also increasing

(monotony) and |J,, rn,=J,, In (w-continuity). Ul

Lemma 3.3. If 0 € Ag and 0’ € R(AR), then o — ¢’ iff one of the following holds:
(i) o = Az7 and 0 = Az 7’ with 7 — 7/;

(i) o =(r)pand o' = (7') p with 7 — 7/, or o/ = (1) p/ with p = p’;

(iii) 0 = (Az7) p and ¢’ = 7 [p/x];

where, in each case 7 € Ag.

Proof. If (i) or the first case of holds, then it holds at some depth k, hence o — 1
o’. If the second case of (i) holds, then by Lemma[3.2} we get p =, p’ for some k, hence
o —py1 o If holds then o —1 o’. Conversely, if ¢ — ¢’ then there is k such that

o —, o' and one of or holds by the definition of — (and Lemma in the
second case of (). Ul

Let =" be the reflexive and transitive closure of =.

Lemma 3.4. Let 0,0’,7 € R(AR) with 0 = ¢’. Then for all 7 € R(Ag) and all a € R
we have: Az o = Az o, (o)1 = (o) 7, (T)0 =" (1)0’, 0 +7 = o’ + 7 and ac =" ao’.

Proof. Writeo =S =bu+V and o’ =S’ =bU’ +V with b # 0 and and u — U’, and
write 7 =T = Y7, a;t;. Then by Lemma Axu— Az U’ and (u) T — (U') T, hence

Mo=bxu+AxV SbxU + Xz V = A\xo’
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and

()T =bu)T+ (V)T =bU)T+ (V)T = (') 7.
Also, for each i, (t;) S — (t;) S’: then (1) o = S, a;(t;) S reduces to (1) o’ = "1 a;(t;) S’
in n =-steps. For sum: c + 7 =bu+V+T = bU'+V +T =o' + 7. If ab = 0 then
abu = abU’ = 0, hence aoc = ao’; otherwise aoc = abu + aV — abU’ + aV = ao’. [

Lemma 3.5. The relation =" is contextual.

Proof. This is a straightforward consequence of Lemma [3.4] using reflexivity and tran-
sitivity. |

3.2. Confluence

We prove the confluence of = by usual Tait—Martin-Lof technique: introduce a parallel
extension of reduction (in which redexes can be fired simultaneously) and prove it enjoys
the diamond property (i.e. strong confluence).

3.2.1. Parallel reduction

Definition 3.6. We define an increasing sequence of relations from simple terms to
terms by the following statements. Let = be the identity relation on Ag, extended as a
relation from simple terms to terms. Assume =3, is defined. Then we set ¢ =, ¢’ as
soon as one of the following holds:

— o =Mzs and ¢’ = Az S’ with s =, 5’;

— o= (s)T and o' = (§") T’ with s =, S’ and T =, T;

— o= (\zs)T and o/ = §'[T"/z] with s =, S’ and T =, T".

Let = = Uyen =k We call parallel reduction the relation =.
Lemma 3.7. We have = = {J, . =1
Proof. Similarly to Lemma [3.2} = is monotone and w-continuous. O
Lemma 3.8. If 0 € Ag and ¢’ € R{AR), then o = ¢’ iff one of the following holds:
(i) o = Az7and o = \x 7’ with 7 = 77;
(i) o = (7)pand o' = (7') p’ with 7 = 7/ and p = p';
(iii) o = (A7) p and o’ = 7/ [p’/z] with 7 = 7" and p = p/;

where, in each case 7 € Ag.

Proof. Like in Lemma this is just rephrasing the definition of =, using Lemma
where = is involved. O

Lemma 3.9. Relation = is contextual.

Proof. The proof is very similar to that of Lemma [3.4] using Lemma [3.8 and the
definition of =. L]

Lemma 3.10. (A\ro)T = o’ [7//z] as soon as 0 = ¢/ and 7 = 7.
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Proof. This is a straightforward consequence of Lemmas [3.8| and O
Lemma 3.11. The following strict inclusions hold: = C = C ="

Proof. The fact that = C = is straightforward from the definitions. The fact that
=, C =" and =, C =" is easily proved by induction on k, hence = C =". Inclusions
are strict: write I = Az z, then (I)(I)I = I but (I)(I)I % I, and ((I)I)I =" I but
(ODIEL 0

3.2.2. Reductions and Substitution. The main property of parallel reduction is the fol-
lowing one, which fails for one-step reduction.

Lemma 3.12. Let z be a variable and o, 7,¢’, 7’ be terms. If 0 = ¢/ and 7 = 7/ then
olr/z) =o' [r'/x] .

Proof. We prove by induction on k that if 0 =, ¢’ and 7 = 7/ then o [7 /2] = o’ [7//z].
If £k = 0 then ¢’ = o; then by Lemma and Proposition we have o [1/1] =
o[7'/z] = o' [7'/z]. Suppose the result holds for some k, then we extend it to k + 1 by
inspecting the possible cases for reduction o =, o’. We first address the case in which
o is simple and o =, ; ¢’. Then one of the following statements applies (we write 7 =T

and 7' =T):

— o = MAywu with y # z and y not free in T, and ¢/ = Ay U’ with v =, U’; hence, by
the induction hypothesis, u[T'/z] = U’ [T" /] and we get

olr/z] =My (u[T/z]) = My (U'[T"/a]) = o’ [r' /2]

by Lemma 3.9}
— o= (u)V and ¢/ = (U') V' with u =, U’ and V. =, V’; hence, by the induction
hypothesis, u[T'/z] = U’ [T’ /z] and V [T/x] = V' [T’ /], and we get

olr/z] = (u[T/x)) V[T/2] = U [T'/2]) V' [T"/2] = o' [7'/2]

by Lemma [3.9;
_U:Mandal:wmthy:ﬁkl’,z:ﬁﬂ,xsféyandynotfreein

T; hence, by the induction hypothesis, u [T'/z] = U’ [T"/z] and V [T/z] = V' [T’ /x],
and we get

olr/z] = MyulT/2)) V[T/z] = (U [T"/]) [V' [T’ /a]/y] = o’ [r' /2]

by Lemma [3.10

Now assume o =%, ; o’. By definition, this amounts to the following: o = Y"1 | a;s;
and o = > | a;S!, with s; =, S/ for all i. We have just shown that we then have

s; [T/x] = SL[T'/x] for all i. We conclude by Lemma Ul

From Lemmas and [3.12) we can derive a very similar result for =":
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Corollary 3.13. Let x be a variable and o, 7,0’,7 be terms. If ¢ =" ¢/ and 7 =" 7/
then

olr/z] =" o' [T /x] .

3.2.3. Church-Rosser. We finish the proof of confluence by showing that the =-reducts
of a fixed term o all =-reduce to one of them (obtained by firing all redexes of o,
simultaneously).

Definition 3.14. We define inductively on term o its full parallel reduct o by:

zl = z

Azs| ;x sl
Qas)T| = (s1)[TL/a]

(s) Tl (sl) T| if s is a variable or an application

n n
E a;S; = E a; ﬁl .
i=1 i=1

Lemma 3.15. If ¢ and ¢’ are such that ¢ = ¢/, then ¢/ = o|.

Proof. One simply proves by induction on k that if 0 =, o’ or 0 =, 0/ then 0/ = o,
using Lemma [3.9|in general, and Lemma [3.10|in the case of a redex. L]

Theorem 3.16. Relation = is strongly confluent. Hence, relation — enjoys the Church-
Rosser property.

Proof. Strong confluence of = is a straightforward corollary of Lemma It implies
confluence of = by Lemma [3.11 ]

3.2.4. Trivia. There is a case in which confluence is much easier to establish: if 1 admits
an opposite —1 € R. In this case, assume ¢ =" ¢’. Since = is contextual, ¢’ = o’ +
(-o+0 =" o'+ (~1)0’ + 0 = 0. Hence =" is symmetric, which obviously implies
Church-Rosser. But this has little meaning: in the next section, we show that reduction
becomes trivial as soon as —1 € R.

3.3. Conservativity

Every ordinary M-term is also a raw term of the algebraic A-calculus, whose =-class is
simple. Let A denote the set of all Ad-terms and —, denote the usual G-reduction of the
A-calculus: it is then clear that, for all s,s’ € A, s —, s’ implies s — s’. Denote by <
the reflexive, symmetric and transitive closure of = and <>, the usual S-equivalence of
the A-calculus.

Lemma 3.17. The algebraic A-calculus preserves the equalities of the A-calculus, i.e. for
all A-terms s and t, s <+, t implies s « .
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Proof. This is a straightforward consequence of the confluence of —, and the fact that

One may wonder if the reverse also holds, i.e. if equivalence classes of A-terms in
the algebraic A-calculus are the same as in the ordinary A-calculus. If R is N, then =-
reductions from A-terms are exactly — s-reductions (restricted to A-terms, = then only
amounts to a-conversion), and the result holds by the same argument as in Lemma
In the general case, however, a A\-term does not necessarily reduce to another A-term,
hence the proof is not as easy.

3.3.1. The Positive Case. We prove that, for all s,s’ € A, s « s implies s <, s
(Theorem (3.24)).
Definition 3.18. We define A : R(Ar) — P(A) by induction on terms:
Ale) = {z}
x {Au; ueA(s)}
{(w)v; wue A(s) and v e A(T)}

=
/N
=
S
N—
I

n

A jzlaisi = UA(&)

i=1

The crucial point in that definition is that the sum > ; a;s; being canonical entails
that, for all ¢, a; # 0.

Proposition 3.19. If s € A, then A (s) = {s}.

Lemma 3.20. If R is positive and terms o € R(ARg) and ¢’ € R({Ag) are such that
o = o', then for all &' € A(0’), either ' € A (o) or there exists s € A (o) such that
5 —p 8.

Proof. The proof is by induction on the depth of the reduction o = o”, i.e. the least

k such that o = o’. All induction steps are straightforward, except for the extension
from —, to =j: assume 0 = at+U and 0 = a1' + U with a # 0 and t —; T'. By
definition, A (¢') = A (a7’ +U) C A(T’) U A (U). Since R is positive, the coefficient of
t in can(at + U) is non-zero: hence A (o) = A(at+U) = A(t) UA(U). Now assume
v' € A(o'): either v/ € A(U) C A(o); or v/ € A(T'), and then, by the induction
hypothesis, either v' € A (t) C A (o) or there exists v € A (t) C A (o) such that v —, v'.
L]

Corollary 3.21. If R is positive and s € A and o € R(AR) are such that s =" o, then
for all t € A (o), s =} t.

Lemma 3.22. If 0 and ¢’ € R(AR) are such that o = o/ then o = o/ |.
Proof. The proof is easy and very close to that of Lemma [3.15 ]

We define iterated full reduction by ¢]° = ¢ and o|" ™! = (al™)].
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Lemma 3.23. If o = 7 then 7 =" o|".

Proof. The proof is by induction on n. If n =0, 0 = 7 = ¢|° and this is reflexivity
of =*. Assume the result holds at rank n. If o =" 7 = 7/, then, by the induction
hypothesis, 7 =" o|™. Since =" is also the transitive closure of =, Lemma entails
| =% o|"! By Lemma we have 7/ = 7], hence 7/ =" o |" 1. O

Theorem 3.24. If R is positive and s,t € A are such that s <> ¢ then s < ¢.

Proof. Assume s,t € A and s < t. By the Church-Rosser property of = (Theorem
, there exists 0 € R(AR) such that s =" ¢ and t =" ¢. By Lemma there
exists some n € N such that ¢ =" 7 = s|". Notice that for all w € A, w] € A; hence
7 € A and we write 7 = v with v € A. We have s =" v and t =" v: by positivity of R
and Corollary we obtain that, for all v € A (v), there are s’ € A (s) and t' € A (¢)
such that s’ —3% v’ and ¢ —} ¢'. By Proposition [3.19, A(s) = {s}, A(t) = {¢} and
A (v) = {v}, hence the conclusion. Ul

3.3.2. Collapse. If R is not positive, we show that reductional equality collapses: <
identifies terms which bear absolutely no relationship with each other.

Lemma 3.25. Assume, there are a,b € R® such that a + b = 0, then for all term o,
0="ac =" 0.
Proof. Take © a fixed point combinator of the A-calculus, such that (©)s —3 (s)(©)s
for all A-term s. Write oo, for (©) Az (¢ + z); then oo, =" o + 00,. We get:
0 = aco, + boo, = ao + aco, + boo, = ac

and
ao = ao + aco, + boo, = ac + aco, + bo + boo, = 0.

O

Corollary 3.26. If R is such that 1 has an opposite, i.e. —1 € R with 1+ (—1) = 0, then
for all terms o and 7, 0 =" 7.

4. Simple Type System

Raw terms may be given implicative propositional types in a natural way. Assume we
have a denumerable set of basic types ¢,,...; we build types from basic types using
intuitionistic arrow: if A and B are types, then so is A — B. Typing rules are given in
Figure [1] Notice that scalar coefficients have no influence on typing. In particular, we
make no assumption on the actual structure of R.

Proposition 4.1. Typing in the algebraic A-calculus enjoys the following properties:

(i) f ' M : A then free variables of M are declared in T'.
() I T+ M : A then, for all IV whose domain is disjoint from that of I", we have
I, TV-M: A.
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e:AFz: A (Ax)
I'e:A-M:B I'-M:A— B I'FN:A
’ A A
T Asp AP I (M)N:B (App)
— (Zero) IEM:A ! TEM:A TEN:A
['rFo:4 rran:a O TFM+N:A (Add)

Figure 1. Typing rules for the algebraic A-calculus.

(ifi) If M = M’ then T M : Aiff T F M’ : A.
(iv) For all canonical term S, ' .S : A if and only if, for all u € A(S), '+ u : A.
(v) For all raw term M, if ' - M : A then I' F can (M) : A.

The converse of that last proposition does not hold: for instance, for all raw term M,
can (0M) = 0 can be given any type in any context whereas 0M satisfies the same typing
judgements as M. Hence such a straightforward notion of typing is not compatible with
algebraic equality £.

Definition 4.2. The term o is weakly typable of type A in context I'if T'F can (o) : A
is derivable. We write I'Fr o : A for T' - can (o) : A.

Proposition 4.3. For all 0 € R{(AR), 'Fro: Aiff T g s: A, for all s € Supp (o).

Now we show that subject reduction holds for weak typing, as soon as R is positive

(Lemma [4.6)).
Lemma 4.4. Let 0,7 € Ag. f 'z : Arro:Band I'Fr7: Athen I'Fr o [7/z] : B.

Proof. One proves by induction on the derivation of I,z : A+ M : B that if moreover
' N : Athen T' v M[N/z] : B. The result follows by taking M = can(c) and

N = can(7), using fact of Lemma Ll

Lemma 4.5. For all 0,7 € R(Ag) and all a € R, Supp (6 + 7) C Supp (o) U Supp (1)
and Supp (ac) C Supp (¢). If R is positive, we moreover have: Supp (¢ + 7) = Supp (o) U
Supp (7).

Proof. For all s € Ag, we have (0 + 7)) = 0(5) + 7(s) and (a0)) = ao(,). By the
definition of Supp (0 + 7) and Supp (ac), we get the above inclusions. If R is positive,
(0 +7)(s) # 0 as soon as o5 # 0 or 7(5) # 0, hence Supp (¢ + 7) = Supp (o) U Supp (7).

U

Notice that we do not necessarily have Supp (ac) = Supp (¢) when a # 0 and R is positive:
see Lemma [5.3] for a sufficient condition.

Lemma 4.6. Assume R is positive. If c = ¢’ and ' Fr o : Athen ' g o’ : A.

Proof. We prove by induction on base terms and canonical terms that if either ' - s: A
and s > o’,orT'HS:Aand S = o/, then I' F ¢’ : A. For base terms, we check that
all possible cases for reduction s — ¢’ preserve weak typing, which is straightforward by
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induction hypotheses (using Lemma in the case of a redex). Now assume I' - S : A
and write S = at+U and ¢’ = a7’ + U, with a # 0 and ¢t — T’. By Lemma
Supp (S) = {t} USupp (U) (this is where we use the positivity condition). By Proposition
I'Ft:Aand T' - U : A. By the induction hypothesis on base term ¢, we get
I'+T': A. By Lemmald.5|again, Supp (¢') C Supp (I”)USupp (U), and we get T' g o’ : A
by Proposition O

5. On Normalization Properties

Unsurprisingly, if R is not positive, there is no normal term: assume there are a,b € R®
such that a + b = 0 and let 0 € Ag and ¢’ € R{Ag) be such that ¢ — ¢’'; then for all
T € R(AR), 7 = ao + bo + 7 and then 7 = ac’ + bo + 7. Hence every term 7 reduces.

Moreover, even if R is positive, it may be the case that the only normalizable terms are
normal terms. Indeed, assume R is the set QT of non-negative rational numbers (which
is a positive rig), and ¢ — o¢’; then there is an infinite sequence of reductions from o:

Ll +l,Nl +3,~ 1 +2”—1,N
0=z0+-0—=-0+-0 = -0+-0 == —0 — e
2 2 2 2 4 4 2n 2n

In order to establish the strong normalization of typed terms, we will therefore assume
that R is finitely splitting in the following sense: for all a € R,

{(a1,...,a,) €(R)"; neNanda=a;+ - +an}
is finite. We can then define the width function
w(a) =max{n € N; J(a1,...,a,) € (R*)" stea=ay1+--+a,}.

The width function relates the additive structure of R with that of N as shown by the
following lemma:

Lemma 5.1. If R is finitely splitting, then it is positive. Moreover, for all a,b € R,
w(a)=0iff a =0 and w (a + b) > w (a) + w (D).

Proof. Assume R is finitely splitting. Since 0 is neutral for addition in R, the empty
sequence is the only element of {(ai,...,a,) € (R*)"; n€ N and a; + -+ a, = 0}.
Hence w(0) = 0 and R is positive. If a # 0 then w(a) >= 1. Hence w(a) = 0 im-
plies a = 0. Now let a,b € R. We can write a = a1 + -+ - + ay(q) and b= by + -+ + by(),
where the a;’s and the b;’s are non zero. Then a +b= a1 + -+ aya) + 01 + - + by
hence w (a + b) > w (a) + w (b). Ul

One essential point of this section is to show that the finite splitting condition efficiently
prevents those tricky situations we have just evidenced in Q™. We are led to prove that
strongly normalizing terms are exactly the linear combinations of strongly normalizing
simple terms.

The finite splitting property is actually not sufficient for that purpose. Take, for in-
stance, R = N x N, with operations defined pointwise: (p,q) + (p',¢') = (p+p',q+ ¢')
and (p,q)(p',q") = (pp',qq’'). Tt is easily checked that this defines a finitely splitting rig,
with w (p,q) = p + ¢. Now write a = (1,0) and b = (0,1): we have w(a) = w(b) = 1,
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a+b=1(1,1) = 1gr and ab = (0,0) = Og. Then, if we write § = Az (z) x, we notice that
the only =-reduct of term a(d) bé is 0, which is normal, whereas the simple term (&) bo

has no normal form.

We will therefore require R to be finitely splitting and to satisfy the following integral
domain property: for all a,b € R, if ab = 0 then either a = 0 or b = 0. In that case, we
obtain the following four lemmas.

Lemma 5.2. For all a,b € R, w(ab) > w (a)w (b). In particular, w (1) = 1.

Proof. Write a = a1 +- - +ay(q) and b = by +- - - +by(p), where the a;’s and the b;’s are
non zero. Then, developping ab = (a1 + - - -+ @y (q)) (b1 + - - - 4 by()) We obtain w (a) w (b)
summands, which are all non zero by the integral domain property of R. ]

Lemma 5.3. If 0 = at + p with a # 0 then Supp () = Supp (7) U Supp (p).

Proof. By Lemma [4.5] all that remains to be shown is that Supp (ar) = Supp (7): this
follows directly from the integral domain property of R. ]

Lemma 5.4. For all 0,0’ such that ¢ = ¢/, ac + 7 = ao’ 4+ 7 also holds as soon as

a # 0.
Proof. Again, this is a direct consequence of the integral domain property of R. ]
Lemma 5.5. For all 0 € Ag and all ¢/ € R(AR), 0 = ¢’ iff 0 — ¢'.

Proof. By Lemma and the fact that Supp (o) = {o}, if we write 0 = as + T with
a # 0, then s = o and there is b € R such that T' = bo. Necessarily, we have a + b =1,
which by Lemma implies a = 1 and b = 0. Hence the result by definition of =. [

In subsection we prove that, under these conditions, o € R(AR) is strongly nor-
malizing iff every simple term in Supp (o) is strongly normalizing. We then develop the
proof of strong normalization of simply typed terms, in subsections [5.2] through [5.4] fol-
lowing Krivine’s version of Tait’s reducibility method (Kri90). From this, we derive a
weak normalization result with the only assumption that R is positive, in subsection [5.5)

Ezamples. Obviously, the rig N is finitely splitting with w (n) = n for all n € N, and
has no zero divisor. One more interesting instance is the rig of all polynomials over
variables &1, . .., &, with non-negative integer coefficients, denoted by P,, = N[¢1, ..., &)
for all P € P, w(P) = P(1,...,1). Such a rig of polynomials is involved in the weak
normalization scheme we develop in section All other examples we know of are given
by variants of P,,, for instance:

— any rig R[¢1,. .., &,], where R is itself an integral finitely splitting rig;

— any similar rig of polynomials, with the restriction that the ¢;’s do not commute:
&&; # €;& when i # j (this is a rig which satisfies our conditions, yet is not commu-
tative for multiplication);

— any similar rig of polynomials, relaxed in that the £;’s are supposed to be idempotent:
5151 = gz for all 1.
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5.1. Scalars and normalization

From now on, we assume R is finitely splitting and integral. Under these conditions, we
prove a term is strongly normalizing iff it is a linear combination of strongly normalizing

simple terms (Theorem [5.11]).

Lemma 5.6. Let 0 € R({ARg). There are only finitely many terms ¢’ such that ¢ = o”.

Proof. The proof is by induction on h(c). If h(¢) = 0 then o = 0 and the property holds
trivially by Lemma Assume that the property holds for all o such that h(o) < k. Let
o € R{AR) be such that h(c) = k+1. For each term o’ € R (ARg) such that ¢ = ¢, there
aret € Ag, T/,U € R{(Ag) and a € R® such that c = at+ U, o' =aT' + U and t — T".
By Lemma t € Supp (0): there are finitely many such simple terms. Moreover, due
to the finite splitting condition on R, for each such ¢ there exist finitely many a € R® and
U € R(AR) such that 0 = at + U. A simple inspection of the definition of — shows that,
by inductive hypothesis applied to subterms of ¢ (i.e. £-classes of subterms of ¢, all of

height at most k), t —-reduces to finitely many terms, which are all the possible choices
for T". ]

Konig’s lemma thus justifies the following definition:

Definition 5.7. If o is a strongly normalizing term, we denote by |o| the length of the
longest sequence of =-reductions from o to its normal form. We denote by Ng the set of
strongly normalizing simple terms and Ng (n) = {o € Ng s.t. |o] < n}.

Then R (NR) is the set of linear combinations of strongly normalizing simple terms:
R(Nr) = {0 € R{Ar); Supp (o) C Nr}.

In the following, we prove that R (Ng) is exactly the set of all strongly normalizing terms.
We first show the easiest inclusion.

Lemma 5.8. The support of every strongly normalizing term is a finite subset of Ng.
More precisely, if o is strongly normalizing, then Supp () C Ng (|o]).

Proof. By Lemma[5.4] from a sequence of reductions from 7 € Supp (c), we can derive
a sequence of reductions from o of the same length. L]

We now establish the reverse inclusion: the terms in R (Ng) are strongly normalizing.
The proof boils down to the following idea: to each o € R(Ng), we associate a finite
multiset ||o|| of natural numbers so that if ¢ = ¢’ then ||o|| > ||o’||, where > denotes the
multiset order (which is a well-order).

First we fix notations for multisets. We write Mg, (IN) for the set of finite multisets
of natural numbers. If p1,...,p, € N, we write [p1,...,pn] € Mgn (N) for the multiset
containing exactly p1,...,pn, taking repetitions into account. If u,v € Mg, (N), u+ v
denotes the disjoint union of p and v, and if & € N, ku denotes the multiset Zle -
Now assume p = [p1,...,pm] and v = [q1,...,qs], with p; < - <pp and ¢ < -+ < ¢y,
we recall that pu < v for the multiset order iff one of the following holds:

— m =0 and n > 0;
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— mn # 0 and p,,, < qp;

— mn#0, ppm = qn and [p1,...,Pm-1] <[q1,. -, qn-1]-

This strict order is the transitive closure of the following relation: p < p' iff p = v +
[p1,-..,pm] and ' = v+ [q] where, for all i, p; < q. The well-foundedness of the multiset
order amounts to the fact that there is no infinite descending chain for <.

Definition 5.9. For all 7 € Ag and o € R(AR), we write w, (o) for the width of the
coefficient of 7 in o2 w; (0) = w (0()). If moreover o € R(Ng), we write

lol =" > we(o)[Ir]].

TESupp(o)

For instance, if o is a strongly normalizing simple term, ||o|| =w (1) [|o|] = [|o]].

Lemma 5.10. Let 0 € R(Ng) and let ¢’ be such that 0 — o’. Then ¢’ € R(Ng) and
o'l < llo]l-

Proof. Write 0 = as+ T and o’ = aS’+ T with s — S’. Since 0 € R(Ng), Lemma
entails s € Ng: write |s| = p + 1. Clearly, S’ is strongly normalizing and |S’| < p.
By Lemma [5.8] Supp(S’) C Ng(p). Then Lemma [5.3] implies Supp (/) = Supp (S') U
Supp (T') C Ng. Hence ||o’|| is well defined.

We now prove that ||o’|| < ||o||. The following two facts provide a sufficient condition:

(i) For all ¢ > |s|, the multiplicity of ¢ in ||o’|| is the same as in ||o||.
(ii) The multiplicity of |s| in ||o”]|| is stricty less than in ||o||.

Fact ({i) boils down to the following equation
D owi(o)= > wi(o)
t€Nr(q) tENr(q)

for all ¢ > |s|. It is then sufficient to show that, for ¢ > |s| and for all ¢ € Ng(q),
w; (o) = wy (o). Since Supp (8’) C Nr(p) and p < g, we deduce that S’ = 0 and

O-Et) =Ty = o(1) and we conclude.
Similarly, to prove fact (i), we must show that

doowi(e)> Y wi(o)
teNR(|s]) teNR(|s])

Let ¢ € Ng(]s|). With the same argument as above, i’@ = 0 and then O'Et) =T

If t # s, we thus have of, = o(;), hence w; (o) = w; (). Moreover, by Lemma

ws (o) = w (a+I(§)) > w(a) +w, (T) and w(a) > 0. Since T,y = o(,), we obtain

w (o) > wg (07) U
We can now state the final theorem of this subsection:

Theorem 5.11. The set of all strongly normalizing terms is R (NRg).

Proof. One inclusion is Lemma [5.8 The other one follows from Lemma [5.10] and the
fact that the multiset order is a well-order. ]
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5.2. Saturated sets

We now define a notion of saturation on sets of simple terms, and prove Ng is saturated.
Here the conditions we imposed on R are crucial, since the proof heavily relies on Theorem

EIT

Definition 5.12. Let X be a set of simple terms. An X-redex is a simple term of the
following shape:

o=M\xs)T
where s € X and T € R(X"). We write Red (o) for the term obtained by firing this redex:
Red (o) = s [T/x].

Definition 5.13. The set X is saturated if, for all Ng-redex o and all 71, ..., 7, € R(NR),
(Red (0’)) 1 -Th €ER <X> implies (0-) T Ty € X.

Lemma 5.14. The set Ng is saturated.

Proof. We have to prove that, for all Ng-redex o and all 71,...,7, € R(Ng), if
(Red (0)) 71 -+ 7 € R{NR) then (o) 71 -7, € Nr. We write o0 = (Ax s) Ty where s € Ng
and Ty € R(NR), and, for each i, write 7, = T;. With these notations, we are led to prove
that, for all s € Ng and all Ty, ..., T, € R{Ng), if

(8[T0/$])T1~~-THER<NR>, (9)

then
p=Axs)Ty---T, € Ng.

By Theorem each Tj is strongly normalizing. We prove the result by induction on

Is|+> 1 |T3|- By Lemma it is sufficient to show that for all p’ such that p — p’, p’

is strongly normalizing. The reduction p — p’ can occur at the following positions:

— at the root of the Ng-redex;

— inside s;

— inside one of the Tj’s.

Head reduction. In the first case, which is the only possible one if [s|+ > |2| =0,
o = (Red (o)) 71 -+ 7, so hypothesis @I) applies directly.

Reduction in the function. Consider the case in which reduction occurs inside s. So
p=AeS)Ty---T, with s — S’. Write the canonical term S" = >/ | ;5] and,
for all I € {1,...,q}, define p; = (Axs))Ty---T, so that p/ = Y[, ap). It is
then sufficient to prove that, for all I € {1,...,q}, p; € Ng. For all [, ‘s;‘ < |s]
and the induction hypothesis applies to the data si , 1o, ..., T,. Hence it is sufficient
to show that (s;[To/z]) T ---T, € R(Ngr). By hypothesis @, (Red (o)) 71+ €
R(Ng). Since s — S’, Corollary and Lemma imply (Red ()77 —
St ai(s)[To/x]) Ty - - - T, Hence each (s] [Tp/z]) Ty -+ T,, € R(Ng) by Lemma

Reduction in an argument. Consider the case in which reduction occurs inside 1;:
pr=Axs) Ty T]---T,, with T; — T}. Since |T]| < }2|, the induction hypothesis
applies to the data s,Tp,...,T},...,T,. Hence it is sufficient to show that @) holds

s Lo
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for that data: (s[To/z]))Ty---T}-- T, € R(NR) — or (s[T4/z])T1---Tn € R{(NR)
if i = 0. We can conclude directly, since this is a = -reduct of (Red (c)) 717, €
R (NR) by contextuality of =" — plus Proposition [2.6]if i = 0.

O

5.3. Reducibility

To each simple type, we associate a saturated subset of Ng as follows.

Definition 5.15. If X and ) are sets of simple terms, one defines X — ) C Ag by:
X —>Y={o€Ag; forall T e R(X),(0)7T € V}.

Proposition 5.16. If X, X', Y,)’ C Ag are such that X C X’ and V' C ), then
X =Y CX - ).

Lemma 5.17. If S is a saturated set and X C Ng, then X — S is saturated.
Proof. This is straightforward from the definitions of saturation and X — S. L]

Definition 5.18. We define the interpretation A* of type A by induction on A:

— ¢* = NR if ¢ is a basic type;
— (A— B)* = A* — B*.

Definition 5.19. Let Eg be the set of all simple terms o of shape o = (z) 71 - - - 7, where
T1,-..,Tn € R{NR). These are called neutral terms.

Lemma 5.20. The following inclusions hold:
Er € (Nr — Er) € (Er — Ngr) C Nr.

Proof. Of course, Eg C Ng, hence the central inclusion, by Proposition [5.16] The first
inclusion holds by definition of Eg. If 7 € EgR — Ng, let x be any variable, x € Eg and we
have (1) z € Ng, which implies 7 € Ng by Lemma[3.4} hence the last inclusion. O

Corollary 5.21. For all type A, Eg C A* C Ng.

5.4. Adequation

We finish the strong normalization proof: every simply typed term lies in the interpreta-
tion of its type. More formally:

Theorem 5.22. Let ¢ be a term and assume
r1: A1, Ty A bRO A
is derivable. Let o1 € R(A7), ..., om € R(A},). Then
o1y yOm/T1, .., Tm] € R(AY).

Proof. Write 7 = o[o1,...,0m/%1,...,Zm]. We prove 7 € R{A*) by induction on
can (o).
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Variable. o = z; for some i and A = A;. Then 7 = 0; € R(A}) by hypothesis.
Application. o0 = (s)T with @1 : Ay,..., 2 : A s: B— Aand 21 : Ay,..., 2 :
A,, =T : B. By inductive hypothesis,

slo1y .o yom/x1, . xm] € R{(B — A)Y)

and

I[O’l,...,Um/J?l,. ..,xm] S R<B*> .
Hence 7 € R(A*) by definition of B* — A*.

Abstraction. 0 = Az s and A = B — (' with

x1: Ay, . Ty A,z BEs: C.
We assume z is distinct from every x; and does not occur free in any can (o;). Then
T = Az S’ with

S =501, 0m/T1, . T
We show that 7 € R{(B — C)*) using the definition of B* — C*: let T € R(B*), we
have to prove (Az S")T € R{(C*). Since C* is saturated, it is sufficient to show that
S’ [T/x] € R{C*). By Proposition
s’ [T/.fl)} :§[270'17~"70'm/1‘7x17"'7'T7I’L]

and we conclude by the induction hypothesis applied to s.
Linear combinations. ¢ = >_"" ;a;s; and I' - 's; : A for all ¢ € {1,...,n}. Then, by
the induction hypothesis, each s; [01,...,0m/21,...,2m] € R(A*) and we conclude.

Ll
We get the following corollary of Theorem [5.22]
Theorem 5.23. All weakly typable terms are strongly normalizing,.
Proof. Let 0 € R{AR) be such that z7 : Ay,..., 2, : Ay Fr o @ A is derivable. For

all i € {1,...,n}, since Egr C A}, ; € R(A}). Hence 0 = 0 [21,...,Zm/21,...,2m] €
R (A*) by Theorem and we conclude by Corollary and Theorem Ul

5.5. Weak normalization scheme

Remember that we forced strong conditions on R in the beginning of this section. One
can get rid of this restriction by slightly changing the notion of normal form, as was
already noted by Ehrhard and Regnier in (ER03). In the following, we provide a full
development of their argument.

Definition 5.24. We define pre-normal terms and pre-neutral terms by the following
inductive statements:

— o0 € Ag is a pre-neutral term if 0 = z with € V, or ¢ = (s)T, where s is a
pre-neutral term and T is a pre-normal term;
— 0 € AR is a simple pre-normal term if ¢ is pre-neutral, or ¢ = Az s where s is a simple

pre-normal term;
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— o is a pre-normal term if, for all s € Supp (), s is a simple pre-normal term.

Intuitively, pre-normal terms are those terms o such that can (o) contains no redex.
Hence:

Proposition 5.25. If R is positive then pre-normal terms are exactly normal terms (and
pre-neutral terms are exactly neutral terms).

A rig of polynomials. Let R be any rig and Z be a set of variables in bijection with R: to
every a € R we associate &, € Z such that £, =& iff a = b, and E = {{,; a € R}.

Definition 5.26. Let P = N [Z] be the rig of polynomials with non-negative integer
coefficients over variables in Z. If P € P, and f : R — R’ where R’ is any rig, we denote
by

Pla f(a)}
the valuation of P at f, i.e. the scalar (in R’) obtained by replacing each &, in P by f(a),
for all a € R.

Definition 5.27. If P € P, we denote by [P] the value of P in R:
[P] = P{a— a} €R.
Lemma 5.28. The rig P is finitely splitting and has no zero divisor.
Proof. The width function is exactly the sum of all coefficients:

w(P)=P{a+— 1} € N.

Hence Theorem [5.23] applies and we obtain:
Corollary 5.29. All weakly typable terms in P (Ap) are strongly normalizing.

We extend the valuation of a term in P (Ap) as the term in R (Ag) obtained by replacing
each polynomial coefficient with its value.

Definition 5.30. We define [-] : P (Ap) — R (ARg) by induction on terms:

[z2] = =
[Az ] Az [s]

[o7] = WD
i P;s; Y

> IP] [s] -

i=1
Proposition 5.31. For all o € P (Ap), if o is a pre-normal term, then [o]] € R(AR) is
a pre-normal term.

Lemma 5.32. For all 0,0’ € P (Ap), if ¢ = o, then [o] =" [o]'.
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Proof. The proof is easy by induction on reduction ¢ = o’. ]

Definition 5.33. For all M € Ag, define M € Ap as the permutative term obtained
from M by replacing every coefficient a with the monomial y,.

Lemma 5.34. For all S € R(AR), S = [[Sﬂ
Proof. For all s € Supp (S), Sy = S(s) = [és,,,] = [S&]- O
Lemma 5.35. Let S € R(AR). FT'FrS: Athen'F S: A,

Proof. One easily proves by induction on permutative term M that that if '+ M : A
then I'- M : A. L]

Theorem 5.36. Let 0 € R(AR) be a weakly typable term. Then o is weakly normalizing
in the sense that it reduces to a pre-normal form.

Proof. If o is weakly typable then, by Lemma [5.35] & is typable. By Theorem [5.23]
& is strongly normalizing, hence ¢ =" 7 where 7 is normal. By Proposition T is
pre-normal, and so is [r] by Proposition By Lemma o =" [r], hence the
conclusion. L]

Recall that if R is positive, then every pre-normal form is a normal form; in this case
Theorem [5.36] states a genuine weak normalization property.

6. Other Approaches and Related Work

Undeterminate Forms. It is noteworthy that the collapse we described in section [3.3]
involves a term oo, such that oo, = no +00,, for all n € N: reduction of oo, generates
an unbounded amount of ¢. This is not a surprise, since the untyped algebraic A-calculus
involves both linear algebra and arbitrary fixed points. The term oo, + (—1)00, is then
analoguous to the well know indeterminate form oo — oo of the affinely extended real
number line (that is R U {—o0, 00}, the two-point compactification of R, where the
usual operations can be extended only partially). The collapse of reduction in presence
of negative scalars follows from the fact that we consider co, — co, = 0.

Notice that our observations do not depend on equations and . As a matter of
fact, if there exists n € R with 1 + = 0, then any contextual equivalence relation =
defined on raw terms such that:

— = contains [-reduction, i.e. (A\z M) N =2 M [N/z] for all M, N € Ag;
— 2 contains R-module equations (groups of equations (]ED and );

is unsound. Indeed, we can define cop; € Agr for all M € Ag, and then cops + nooys is
=-equal to both M and O:

oonr +noonr = (1 +n)oonr =0
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and
(M + ocop) +noopr by iterated S-reductions
M + (copr + noons)
M+0
M.
One seemingly natural variant of one-step reduction is the following one, which we
already outlined in our introduction. Rather than (4, extend reduction from simple
terms to all terms by:

o0 + Moo

1R MR 1R 1R

c=oifo=as+Tand o' =aS"+ T, witha #0, T,y =0and s — 5’ (10)

As far as reduction is concerned, this amounts to restrict the syntax to canonical forms of
terms. Notice this is not contextual in the sense of definition 2.5l This is still unsound in
general, however: one can reproduce the argument of section [3.3.2] replacing aco, + boo,
with aco, + b(Ax x) 00,

We have already mentioned another technique to deactivate coefficients and tame £
during reduction: replace the coefficients of a term with formal variables, then reduce
some steps, last replace the variables with their values. Reduction = can be seen as
a strategy in this setting. In particular, = is well-behaved as far as normalization is
concerned: the trick involving rational coefficients is no longer possible, and (weakly)
typed terms are strongly normalizing.

A possible fix to the collapse while retaining the algebraic structure of the calculus
might involve typing, in order to ward arbitrary fixed points off. Then one has to introduce
some typed notion of reduction: we have seen that typability isn’t even preserved under
our notion of reduction. This is the subject of current work, in connection with the
quantitative semantics of simply typed ordinary A-calculus in the finiteness spaces of
(Ehr05).

Algebraic Rewriting. In (ADO06), Arrighi and Dowek introduced the linear algebraic A-
calculus. The background setting is quite unrelated: their work provides a framework for
quantum computation; in particular, terms represent linear operators, hence application
is bilinear rather than linear in the function only. Notwithstanding this distinction, their
approach to A-calculus with linear combinations of terms contrasts with ours: consider
terms up to = rather than some variant of £, and handle the identities between linear
combinations, together with analogues of (1) and (2), as reduction rules.

Confronted to problems similar to those we exposed above in presence of negative
coefficients, they opted for a completely different solution, far more natural in their
setting: restrict those reduction rules involving rewriting of linear combinations to closed
terms in normal form. This allows to tame some of the intrinsic potential infinity of the
pure A-calculus, avoiding to consider indeterminate forms. Up to these restrictions, they
prove confluence for the whole system.

This opens interesting perspectives for future work, already the subject of a collab-
oration with Arrighi and Dowek. In particular, it seems a system similar to that of
(ADOG6)) can be designed in the setting of the algebraic A-calculus. Moreover one can see
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the divergence on the treatment of linearity in both works as the manifestation of the
call-by-name (CBN) vs. call-by-value (CBV) duality: Arrighi-Dowek’s linear algebraic
A-calculus is intrinsically a CBV system, whereas our algebraic A-calculus is rooted in
the CBN translation of A-calculus in linear logic (recall that it originates in the presen-
tation the differential A-calculus of Ehrhard and Regnier). It is a matter of particular
interest whether both calculi enjoy the same relationship as is known between the CBN
and CBYV flavours of pure A-calculus.
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