
Under consideration for publication in Math. Struct. in Comp. Science

Channel Abstractions for Network Security†

MICHELE BUGLIES I, R ICCARDO FOCARDI

Dipartimento di Informatica, Università Ca’ Foscari Venezia.
Via Torino 155, 30172 Venezia-Mestre, Italy
Email: {bugliesi,focardi}@dsi.unive.it

Received 21 January 2009; revised 5 October 2009

Process algebraic techniques for distributed systems are increasingly being targeted at

identifying abstractions adequate both for high-level programming and specification, and

for security analysis and verification. Drawing on our earlier work in (Bugliesi and

Focardi, 2008), we investigate the expressive power of a core set of security and network

abstractions that provide high-level primitives for the specifications of the honest

principals in a network, while at the same time enabling an analysis of the network-level

adversarial attacks that may be mounted by an intruder.

We analyze various bisimulation equivalences for security, arising from endowing the

intruder with (i) different adversarial capabilities and (ii) increasingly powerful control

on the interaction among the distributed principals of a network. By comparing the

relative strength of the bisimulation equivalences, we obtain a direct measure of the

discriminating power of the intruder, hence of the expressiveness of the corresponding

intruder model.

1. Introduction

Achieving security in distributed systems is challenging and often creates a tension be-
tween two conflicting design requirements. On the one side, security requires formal, often
low-level, specifications of the safeguards built against the threats to which the systems
are exposed. On the other side, programming needs techniques and reasoning methods
that abstract away from low-level details to focus instead on the expected functional
properties.

In the literature on process calculi, this tension has generated a range of approaches,
with two extremes. At one end, lie specifications based on the pi calculus (Milner et al.,
1992). These assume very abstract mechanisms to secure communications by relying on
private channels. While elegant and concise, the security guarantees conveyed by these
mechanisms are often hard to realize in practice (Abadi, 1998). At the other end, we
find specifications that draw on explicit cryptographic primitives as in the spi calculus
(Abadi and Gordon, 1999) or in the applied-pi calculus (Abadi and Fournet, 2001).
While this approach is very successful in providing a formal basis for the analysis of

† Work partially supported by M.I.U.R. (Italian Ministry of Education, University and Research) under
project textitSOFT: Security-Oriented Formal Techniques

M. Bugliesi and R. Focardi 2

network security applications, the resulting specifications are more naturally targeted at
cryptographic protocols, and share the same limits of pi calculus when we try to hide the
cryptographic layer and reason on secure communication in its essence.

Following a more recent line of research (Abadi and Fournet, 2004; Laud, 2005; Adão
and Fournet, 2006; Corin et al., 2007; Fournet and Rezk, 2008), in our earlier work
(Bugliesi and Focardi, 2008), we isolated a core set of security abstractions well-suited
for high-level programming and system design, while at the same time amenable to
distributed implementation and sufficiently expressive to represent full-blown adversarial
settings. In the present paper, we further investigate the effectiveness of our approach by
assessing the adequacy of our abstractions for security analysis. In particular, we analyze
various bisimulation-based security equivalences for the calculus, associated with a variety
of intruder models. The models arise from endowing the intruders with (i) different
adversarial capabilities and (ii) increasingly powerful control on the interaction among
the distributed principals of a network. The bisimulation equivalences, in turn, provide a
direct measure of the discriminating power of the intruders, hence of the expressiveness
of the corresponding models.

The starting point is the asynchronous pi-calculus with security abstractions we de-
fined in (Bugliesi and Focardi, 2008) and the Dolev-Yao intruder model defined there.
In this model, the intruder has the capability to interfere in all network interactions: it
can forge its own traffic, intercept all messages and forward them back to the network,
possibly replicating them. On the other hand, like the Dolev-Yao intruder studied in
cryptographic protocols, it cannot learn any secret message and cannot forge any au-
thenticated transmission. For this intruder model, we give a sound characterization of
strong barbed equivalence in terms of strong asynchronous bisimulation. Also, we show
that asynchronous and synchronous bisimilarity coincide.

We then extend our network abstractions with a new primitive that enables the intruder
to silently eavesdrop on network traffic (without necessarily intercepting it). We show
that the new capability adds no discriminating power to the intruder, in that it does
not affect the security equivalences (either synchronous or asynchronous). On the other
hand, eavesdropping turns out to be strictly less powerful than intercepting.

As a further step, we look at the notion of intruder adopted in (Adão and Fournet,
2006), that corresponds to what is sometimes referred to as the man-in-the-middle in-
truder. In this new model two principals may never engage in a synchronization directly
as it is customary for the semantics of traditional process calculi (and as we assume
in the initial model). Instead, all exchanges take place with the intruder’s intervention.
We show, somewhat surprisingly, that this additional control on the interactions on the
network does not change the notion of equivalence, hence does not add discriminating
power to the intruder.

Plan. Sections 2, 3 and 4 give an overview of the calculus and its semantics. Section 5
proves the main results on the security equivalence for the calculus and its coinductive
characterization. Section 6 investigates alternative intruder models, and derives prowerful
proof methods for bisimilarity. Section 7 discusses the import of such methods in the

Channel Abstractions for Network Security 3

proofs of the distinctive equations for secrecy and authentication. Section 8 concludes
the presentation.

The present paper revises and extends the results in (Bugliesi and Focardi, 2008) and
(Bugliesi and Focardi, 2009).

2. Security and Network Abstractions

We start with a brief review of the calculus of security and network abstractions from
(Bugliesi and Focardi, 2008). We presuppose two countable sets N and V of names and
variables, respectively, and let a− q range over names, w, x, y, z over variables and t, u, v

over N ∪ V. Names enable communication, but serve also as identities: for instance,
b〈a : ñ〉 indicates an output to b originating from a, while b(a : x̃) denotes an input
performed by b of a message from a. Tuples are indicated by a tilde, as in ñ, x̃, ṽ.

2.1. High-Level Principals

The syntax of the high-level calculus is below.

H,K ::= u〈a : ṽ〉◦ (Output)
| v(u : ỹ)◦.H (Input)
| 0 (Null)
| H|K (Parallel)
| if u = v then H else K (Conditional)
| A〈ũ〉 (Definition)
| (νa)H (Restriction)

We use u as short for the name or variable u, or the distinguished name − associated
with an anonymous identity. The notion of α-renaming arises as expected. The null,
parallel composition and conditional forms are just as in the pi-calculus. A〈ũ〉 is the
process defined by a (possibly recursive) definition A(x̃)

def
= H, where x̃ contains all the

variables that appear free in H, |ũ| = |x̃|, and A may only occur guarded by an input
prefix in H. The restriction (νa)H has the familiar pi-calculus syntax but weaker scoping
rules to make it more adequate for implementation in distributed settings (see below).
As to communication, we have four input/output forms, depending whether a is a or −
and whether ◦ is • or the empty character.

The output forms are explained as follows: u〈− : ṽ〉 denotes a plain output, a com-
munication primitive that conveys no security guarantee; u〈a : ṽ〉 denotes a public, but
authentic output, which certifies the originator a of the message, and ensures that the
message cannot be replayed; notice that, in practice, replays are detected and discarded
by the receiver via time-variant parameters included in the message, such as timestamps
or nonces: the overall effect is that the message will be delivered once and, in our abstrac-
tion, this is modelled by directly forbidding replays of authenticated message. u〈− : ṽ〉•
denotes a secret transmission, providing guarantees that only the intended receiver u

will have access to the message payload; finally, u〈a : ṽ〉• denotes a secure transmission,
combining the guarantees of the authentic and secret modes. In sum, the secret outputs

M. Bugliesi and R. Focardi 4

protect from message disclosure, while authentic outputs protect against replication and
forging. On the other hand, an opponent may intercept all outputs, and then selectively
forward them back to the network.

The input forms have dual semantics: v(u : ỹ)◦.H denotes an input, which consumes
a message sent on v from u or −, binding ỹ to the tuple of names that form the payload.
The input prefix is thus a binder for the variable ỹ, whose scope is H: instead, u must
be instantiated at the time the input prefix is ready to fire. As for output, ◦ signals
the secrecy mode and u the authenticity one. In the secret mode v(u : ỹ)•.H we always
require that v is a name. This is to avoid impersonation, as explained below. Inputs and
outputs must agree on the transmission mode to synchronize.

Like in the local pi-calculus (Merro and Sangiorgi, 2004), we make a clear distinction
between the input and output capabilities for communication, and we disallow the trans-
mission of the former in the secret mode. Similarly, we require a name in the sender
position of authentic messages. Taken together, these constraints guarantee that a pro-
cess H never gets to dynamically impersonate a new identity, i.e. use that identity as the
subject of a secret input or, dually, as the source of an authentic output.

Definition 2.1 (Impersonation). A process H impersonates an identity a iff a occurs
free in H either in the subject of a secret input, as in a(u : ỹ)•.H ′, or as the source of an
authentic output, as in u〈a : ṽ〉◦.

2.2. Networks and Intruders

Networks provide the low-level counterpart of the high-level calculus we just discussed.
In addition, they make it possible to express the capabilities of an attacker. The syntax is
given below: within networks, names are partitioned into two sets Nt and Nu of trusted
and untrusted identities, respectively. By convention, we assume that α-renaming respects
this partition.

M,N,O ::= u〈a : ṽ ‖ t̃〉◦ (Low Output)
| v(u : ỹ ‖ z̃)◦.M (Low Input)

| 0 | M |N | A〈ũ〉 | (νa)N | if u = v then M else N

| †z(x : ỹ ‖ w̃)◦i .M (Intercept)
| !i (Forward/Replay)

The first two productions introduce the network-level primitives for input and output and
are subject to the same restrictions about the use of names as in the high-level syntax.
The notion of impersonation carries over similarly, from high-level processes to networks,
as expected. The novelty is in the additional components t̃ of the output messages: these
represent (an abstraction of) the bitstring representation of the payload ṽ , i.e. the view
of the payload available to an external observer of the message, and are bound to the
variables z̃ in the input prefix upon synchronization. The last two productions define
the adversarial primitives. The intercept prefix †z(x : ỹ ‖ w̃)◦i .M enables an adversary
to intercept all network messages. The prefix is a binder for the name i and all its
component variables, with scope M : intercepting the output b〈a : m̃ ‖ ñ〉◦ creates a copy

Channel Abstractions for Network Security 5

of the message indexed by the fresh name i and binds z to the target b, x to a and
w̃ to ñ. As to ỹ, the binding depends on the secrecy mode of the message and on the
trust status of the identity b. In particular, if the message is secret and b ∈ Nt then
ỹ gets bound to ñ, otherwise ỹ is bound to m̃. Notice (i) that intercepting a secret
message directed to a trusted principal does not break the secrecy of the payload, and
(ii) that a message can be intercepted even if it is directed to a restricted identity, as in
(νb)b〈a : m̃ ‖ ñ〉◦. The indexed copies of the intercepted messages may be manipulated
by way of the replay/forward form !i that uses the index i to forward a copy back to the
network, or to produce a replica (in case the original messages was not authenticated).

We make the following, fairly mild, assumption on the format of messages in a network.

Definition 2.2 (Well-formed Networks). We say that a plain output u〈− : ṽ ‖ t̃〉
is well-formed iff ṽ = t̃; a secret/secure u〈a : ṽ ‖ t̃〉• or authentic u〈a : ṽ ‖ t̃〉 output is
well-formed iff |ṽ| = |t̃|. A network N is well-formed iff it is closed (has no free variable)
and all of its outputs are well-formed.

In other words, we assume that the two components ṽ and t̃ in all messages have the
same arity, and that they coincide on public outputs. In fact, the bitstring of a message
depends on the transmission mode: it coincides with the payload in plain outputs, while
it is a fresh tuple of names in each authentic and/or secret output. For the trusted com-
ponents of the network, the correspondence between message formats is established by
the following translation of high-level principals H into their network level counterparts
[H]. We only give the clauses for the communication forms (the remaining clauses are de-
fined homomorphically). As discussed in (Bugliesi and Focardi, 2008), in a cryptographic
implementation, the chosen format may be realized by means of standard time-variant
parameters as, e.g., timestamps, sequence numbers and nonces, in an authentic message,
and by a randomized encryption in a secret output.

[u〈− : ṽ〉] , u〈− : ṽ ‖ ṽ〉
[u〈a : ṽ〉] , (ν c̃)u〈a : ṽ ‖ c̃〉 (|ṽ| = |c̃|)
[u〈a : ṽ〉•] , (ν c̃)u〈a : ṽ ‖ c̃〉• (|ṽ| = |c̃|)
[b(u : x̃)◦.H] , b(u : x̃ ‖ ỹ)◦.[H] (|x̃| = |ỹ| ∧ ỹ ∩ fv(H) = ∅)

The partition on the set of identities in the two sets Nt and Nu makes it possible to
identify, within a network, the trusted components from the intruder.

Definition 2.3 (Trusted processes vs Intruders). A network process N is trusted
iff N = [H], for some high-level principal H, and N only impersonates identities and
creates fresh names in the set Nt. A network process N is an opponent/intruder iff it
only impersonates identities and creates fresh names in the set Nu

Throughout, we assume that our networks are well-formed and we reserve the letters P

and Q to range over the class of trusted processes, and their run-time derivatives.

M. Bugliesi and R. Focardi 6

Table 1 Structural Congruence and Reduction

Structural congruence. Let T and U range over high-level processes, or networks,

uniformly in each of the following defining clauses.

(Struct Par Comm) T |U ≡ U |T
(Struct Par Assoc) (U |U ′)|U ′′ ≡ U |(U ′|U ′′)

(Struct Par Zero) U |0 ≡ U

(Struct Res Zero) (νa)0 ≡ 0

(Struct Res Comm) (νa)(νb)U ≡ (νb)(νa)U

(Struct Res Par) T |(νa)U ≡ (νa)(T |U) a 6∈ fn(T)

(Struct Rec) A〈w̃〉 ≡ U{w̃/x̃} if A(x̃)
def
= U and |w̃| = |x̃|

(Struct If True) if a = a then T else U ≡ T

(Struct If False) if a = b then T else U ≡ U when a 6= b

Reduction. In the (Intercept) rule i /∈ {b, a, m̃, c̃}, σ is the substitution

{b/z, a/x, p̃/ỹ, c̃/w̃}, and the p̃ are as follows: if ◦ = • and b ∈ Nt then p̃ = c̃ else p̃ = m̃.

(Struct)

M ≡ M ′ M ′ −→ N ′ N ′ ≡ N

M −→ N

(Res)

N −→ N ′

(νa)N −→ (νa)N ′

(Par)

M −→ M ′

M |N −→ M ′|N

(Intercept) b〈a : m̃ ‖ c̃〉◦ | †z(x : ỹ ‖ w̃)◦i .N −→ (νi)(b〈a : m̃ ‖ c̃〉◦i | Nσ)

(Comm) b〈a : m̃ ‖ c̃〉◦ | b(a : ỹ ‖ z̃)◦.N −→ N{m̃/ỹ, c̃/z̃}

(Forward) b〈a : m̃ ‖ c̃〉◦i | !i −→ b〈a : m̃ ‖ c̃〉◦

(Replay) b〈− : m̃ ‖ c̃〉◦i | !i −→ b〈− : m̃ ‖ c̃〉◦i | b〈− : m̃ ‖ c̃〉◦

3. Reduction and Barbed Equivalence

The dynamics of the calculus is given in Table 1, in terms of reduction and structural
congruence. To formalize the dynamics of networks, we need a special form to represent
the indexed copies of the messages stored upon interception. We introduce the new form
below as part of what we call run-time network configurations:

I,M, N ::= . . . as in Section 2. . . | b〈a : m̃ ‖ c̃〉◦i

The index i attached with an output is associated univocally with the intercept prefix
that stored the indexed copy, as shown in the (Intercept) rule. Notice, in the same rule,
that the bindings created depend on the structure and, more specifically, on the secrecy
of the intercepted message, as explained earlier on. As for the remaining reductions,
(Comm) is the usual synchronization rule, while (Forward) and (Reply) formalize the
semantics of the adversarial form !i. Notice in particular that a non-authentic message
is replicated, while an authentic one is not (the indexed copy is erased).

Channel Abstractions for Network Security 7

The semantics of the calculus is completed by a notion of contextual equality based on
reduction barbed congruence (Honda and Yoshida, 1995). We first define the observation
predicate, as usual in terms of barbs.

Definition 3.1 (Barbs). We write N ↓ b whenever N ≡ (νñ)(b〈. . . 〉◦|N ′) and b 6∈ ñ

Definition 3.2 (Intruder Equivalence). A relation R on (run-time) networks is (i)
barb preserving if MRN and M ↓ b imply N ↓ b; (ii) reduction closed if MRN and
M −→M ′ imply N −→ N ′ with M ′RN ′; (iii) contextual if MRN implies M | I R N | I
for all intruder I and (νñ)MR(νñ)N for all names ñ ∈ N.

A symmetric relation is an intruder bisimulation if it is reduction closed, barb-preserving
and contextual. Intruder equivalence, noted ', is the largest intruder bisimulation.

Notice that we define our observation equivalence in terms of strong bisimulation, thus
ending-up observing the silent moves of a process. However, since such moves arise from
synchronizations over the network, this appears to be the only sound choice to make. Also
we restrict to adversarial contexts, and define two processes equivalent if they cannot
be distinguished by any opponent/intruder that observes them and/or actively interacts
with them, reading, intercepting, forwarding and replaying the messages exchanged, or
forging new ones. Indeed, this is a consequence of our initial intention, namely to find a
reasoning method specifically targeted at the analysis of security-centric properties. On
the other hand, the notion of equivalence we have adopted retains the expected congru-
ence properties with respect to composition with trusted processes, subject to certain
conditions on the identities such processes impersonate.

Theorem 3.1. Let P , Q be trusted processes. P ' Q implies P |R ' Q|R, for all trusted
processes R that do not impersonate any (trusted) identity in fn(P,Q).

As a result, given P,Q,R trusted, P ' Q implies P |R ' Q|R provided that the in-
teractions between P,Q and R only occur via clear-text messages from P (or Q) to R,
and non-authentic messages from R to P (Q). Though they might at first appear overly
restrictive, these constraints are indeed necessary conditions for the secure composition
of trusted systems. To illustrate, given a trusted identity b, consider

H(m) = b〈− : m〉• | b(− : x)•.SEAL〈x〉.

H(m) is a secure principal that protects the secrecy of m (as long as so does SEAL〈x〉).
This can be proved formally, showing that [H(m)] ' [H(m′)] for all pairs of m and m′

(see section 7). On the other hand, the security of H is broken by any trusted process
such as R = b(− : x ‖ y)•.leak〈− : x ‖ y〉 that reads x and then leaks it as a clear-
text message: indeed [H(m)] |R 6' [H(m′)] |R whenever m 6= m′. The desired security
guarantees may be recovered for H by restricting the trusted identity b, so as to prevent
R from interfering on b. Indeed, (νb)H(m) ' (νb)H(m′) and this equality is preserved
by the composition with any trusted process.

We give a formal proof of Theorem 3.1 in Section 5 after introducing the coinductive
characterization of our observation equivalence in terms of labelled bisimilarity. Below,
we illustrate the calculus and further elaborate on the security application of our notion

M. Bugliesi and R. Focardi 8

Table 2 A simple example protocol

Transaction(id, pin) def= Client〈id, pin〉 | Bank〈id, pin〉

Client(id, pin) def= (νc)(bank〈− : c, id, pin〉• | c(bank : xb).xb〈c : “w”, amount〉 . . .)

Bank(id, pin) def= bank(− : xc, xid, xpin)•.
if (xid = id ∧ xpin = pin) then

(νb)(xc〈bank : b〉| b(xc : xop, xamnt).K{xop, xamnt})

of equivalence and we put forward a simple e-banking protocol coded with our security
abstractions.

3.1. A simple on-line protocol

The protocol involves two trusted principals, a Bank and a Client, sharing information
on the id and the pin of the client’s account at the bank. The purpose of the protocol is
for the client to withdraw a certain amount from his account. The interaction assumes
that the Bank can be contacted at the publicly known identity bank ∈ Nt, and takes
the following three steps:

(νc)bank〈− : c, id, pin〉•
1. Client −−−−−−−−−−−−−−−−−−−−−−→ Bank

(νb)c〈bank : b〉
2. Client ←−−−−−−−−−−−−−−−−−−−−−−− Bank

b〈c : “w”, amount〉
3. Client −−−−−−−−−−−−−−−−−−−−−−−→ Bank

At step (1) Client generates a fresh name c to be used as his session identity, and com-
municates it to the bank together with the account id and pin. This communication is
secret, to make sure that the account sensitive data is not leaked to any third party. At
step (2) Bank responds with its own, freshly generated session identity b: this commu-
nication is authentic, to protect c against intruders trying to masquerade as the bank.
Finally, at step (3) the client (more precisely, the instance of the client represented by
the identity c) sends an order to withdraw amount to the bank (instance represented by
b) terminating the protocol. The order request is authentic from c, to provide the bank
with guarantees that the order has effectively originated from c and is not a replica of a
previous order.

The protocol and its participants are expressed directly in our calculus of high-level
principals in terms of the definitions reported in Table 2. We can then formalize the main
properties of the protocol, based on the notion of intruder equivalence introduced in this
section. By an abuse of notation, we present the equations on the terms of the high-level
calculus rather than on their corresponding network processes. In other words we write
H ' K as shorthand for [H] ' [K].

Channel Abstractions for Network Security 9

Client’s account info is not leaked to any third party. One way to formalize this is by
proving that no observer can distinguish two transactions based on the account data
exchanged in the transaction, namely:

Transaction(id, pin) ' Transaction(id′, pin′)

Clearly, a proof of this equivalence requires that neither party deliberately leaks the
account data once the transaction is complete. Another, more direct way that we can
state that id and pin never reach an unintended recipient is by the following equivalence:

Client〈id, pin〉 ' (νn)bank〈− : n, n, n〉•

Here, we are equating Client〈id, pin〉 to a process that simply outputs a fresh name:
that is exactly the view of the message output at the first protocol step available to
the intruder, as the intruder cannot input on a trusted name such as bank. From this
equation, we may also conclude that the protocol is resistant to attacks based on attempts
to impersonate the bank, under the assumption the bank is completely off-line: notice,
in fact, that there are no instances of the process Bank in parallel with the client. Since
bank is a trusted name, no intruder will ever be able to forge the second protocol message,
as it is authenticated.

Bank will only process orders originating from legitimate clients. This property can be
expressed by the following equation,

Transaction(id, pin) ' Transactionspec(id, pin)

contrasting the formalization of the actual transaction with the formalization of an ideal
transaction in which the two partners have previously agreed on the operation and the
amount.

Transactionspec(id, pin) def= Client〈id, pin〉 | Bankspec〈id, pin〉

Bankspec(id, pin) def= bank(− : xc, xid, xpin)•.
if (xid = id ∧ xpin = pin) then

(νb)(xc〈bank : b〉| b(xc : xop, xamnt).K{“w”, amount})

Notice, in fact, that the Bankspec(id, pin) process calls K{“w”, amount} instead of the
requested operation K{xop, xamnt}. If this specification is indistinguishable from the
original process, we are guaranteed that no one can fool the bank into performing an
operation different from the requested one.

4. Labelled transitions

We give an alternative formulation of the semantics of networks, based on a labelled
transition system. The LTS is structured in two layers: the first layer, presented in this
section, includes the transitions that match the reduction semantics of Section 3. A fur-
ther layer, introduced in Section 5 will provide the basis for the definition of bisimilarity.

The first set of transitions is presented in Table 3. In most cases the transitions are

M. Bugliesi and R. Focardi 10

Table 3 Labelled Transition Semantics

Process and Intruder Transitions

(Input)

b(a : ỹ ‖ w̃)◦.N
b(a:m̃‖c̃)◦

−−−−−−→ N{m̃/ỹ, c̃/w̃}

(Output)

b〈a : m̃ ‖ c̃〉◦
b〈a:m̃‖c̃〉◦

−−−−−−→ 0

(Secret Output Intercepted)

b ∈ Nt i /∈ {b, a, m̃, c̃}

b〈a : m̃ ‖ c̃〉•
(i)†b〈a:c̃‖c̃〉•i
−−−−−−−−→ b〈a : m̃ ‖ c̃〉•i

(Output Intercepted)

b 6∈ Nt or ◦ 6= • i /∈ {b, a, m̃, c̃}

b〈a : m̃ ‖ c̃〉◦
(i)†b〈a:m̃‖c̃〉◦i
−−−−−−−−−→ b〈a : m̃ ‖ c̃〉◦i

(Open)

N
(p̃)b〈a:m̃‖c̃〉◦

−−−−−−−−→ N ′ n ∈ {m̃, c̃}\{b, a, p̃}

(νn)N
(n,p̃)b〈a:m̃‖c̃〉◦

−−−−−−−−−−→ N ′

(Open Intercepted)

N
(p̃,i)†b〈a:m̃‖c̃〉◦i
−−−−−−−−−−→ N ′ n ∈ {b, a, m̃, c̃}\{p̃, i}

(νn)N
(n,p̃,i)†b〈a:m̃‖c̃〉◦i
−−−−−−−−−−−−→ N ′

(Replay/Forward)

!i
〈i〉
−→ 0

(Intercept)

σ = {b/z, a/x, p̃/ỹ, c̃/w̃}

†z(x : ỹ ‖ w̃)◦i .N
†b(a:p̃‖c̃)◦i
−−−−−−→ Nσ

(Restr)

N
α
−→ N ′ n 6∈ n(α)

(νn)N
α
−→ (νn)N ′

(Cond)

(a = b ∧M
α→ N) ∨ (a 6=b ∧M ′ α

−→ N)

if a = b then M else M ′ α
−→ N

(Par)

M
α
−→ M ′ bn(α) ∩ fn(N) = ∅

M |N, N |M
α
−→ M ′ |N, N |M ′

(Rec)

N{w̃/x̃}
α
−→ N ′ A(x̃)

def
= N

A〈w̃〉
α
−→ N ′

Synchronization

(Synch Intercept)

M
(p̃,i)†b〈a:m̃‖c̃〉◦i
−−−−−−−−−−→ M ′ N

†b(a:m̃‖c̃)◦i
−−−−−−−→ N ′ {p̃, i} ∩ fn(N) = ∅

M |N
τ
−→ (νp̃, i)(M ′ |N ′)

(Synch)

M
(p̃)b〈a:m̃‖c̃〉◦

−−−−−−−−→ M ′ N
b(a:m̃‖c̃)◦

−−−−−−→ N ′ p̃ ∩ fn(N) = ∅

M |N
τ
−→ (νp̃)(M ′ |N ′)

(Synch Index)

M
〈i〉
−→ M ′ N

(i)

−→ N ′

M |N
τ
−→ M ′ |N ′

Index transitions

(Co-replay)

b〈− : m̃ ‖ c̃〉◦i
(i)

−→ b〈− : m̃ ‖ c̃〉◦i | b〈− : m̃ ‖ c̃〉◦

(Co-forward)

b〈a : m̃ ‖ c̃〉◦i
(i)

−→ b〈a : m̃ ‖ c̃〉◦

Channel Abstractions for Network Security 11

either standard, or constitute the direct counterpart of the corresponding reductions in
Table 1. The two (Output Intercepted) transitions deserve more attention. First notice
that, when the receiver is trusted, the label exhibits different information depending on
the secrecy mode of the output. Secondly, observe that the transitions leave in their
residual a indexed copy of the message emitted: this reflects the effect of an interaction
with a surrounding context that tests the presence of an output by intercepting it. A
further remark is in order on the difference between the two rules that govern scope
extrusion. The difference is best understood if we take the view that a channel name
comprises the two identities of the end-points it connects: the source and the destination.
Under this interpretation the (Open) rule states that the channel name is not extruded,
as in the pi-calculus, while the (Open Intercepted) opens the scope in accordance with
the reduction semantics, by which intercepting a message discloses the identity of the
receiver (as well of the sender) even though restricted. The following, standard result
connects the reductions with the silent actions in the labelled transition semantics.

Lemma 4.1 (Harmony).

— If M
α
−→ M ′ and M ≡ N then N

α
−→ N ′ and M ′ ≡ N ′

— N −→ N ′ if and only if N
τ
−→ ≡ N ′.

We introduce an important class of processes, those arising from the trusted processes
of Definition 2.3 by the labelled transitions we just introduced.

Definition 4.1 (Trusted Derivatives). A trusted derivative is a process obtained by
a (possibly empty) sequence of labelled transitions from a trusted process. Inductively,

P is a trusted derivative if either P ≡ [H] for some high-level principal H, or P̂
α
−→ P

with P̂ trusted derivative.

We prove a preliminary, but important lemma that characterizes various useful properties
on the structure of trusted derivatives. We first introduce the following notation to help
formalize such properties.

We write P �c̃ whenever P has an unguarded (indexed) output with a free bitstring c̃,
and the output is either authentic and/or encrypted. Similarly, we write P �i to signal
that P has an indexed output with free index i. Formally:

P �c̃ , P is structurally congruent to any of the processes (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦),
(νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦i), (νp̃)(P̂ | b〈− : m̃ ‖ c̃〉•), or (νp̃)(P̂ | b〈− : m̃ ‖ c̃〉•i)
with c̃ ∩ p̃ = ∅.

P �i , P ≡ (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦i) with i 6∈ p̃.

Now item 1, in Lemma 4.2 below, states that the index of any output occurring in a
trusted derivative is always free, as are the relative b, a and c̃, as all of these values have
been intercepted. If the secrecy mode is plain, then even the payload m̃ is free. Item 2
states that the index is unique. Item 3 states that each bitstring c̃ identifies one and just
one authentic output. This is not true for non-authentic messages as they could have
been replicated.

M. Bugliesi and R. Focardi 12

Lemma 4.2 (Properties of trusted derivatives). Let P be a trusted derivative.

1 If P ≡ (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦i) then {i, b, a, c̃} ∩ {p̃} = ∅. Furthermore if ◦ = ε or
b ∈ Nu, then {m̃} ∩ {p̃} = ∅.

2 If P ≡ (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦i) then P̂ 6�i.
3 If P ≡ (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦) then P̂ 6�c̃.

Proof. We prove each of the items in turn: in all cases, the proof is by induction, based
on the inductive definition of trusted derivative.

Proof of (1). In the base case the claim follows vacuously, as trusted processes do not
have any occurrence of indexed outputs. For the inductive case, assume the claim is true
for the trusted derivative P , and let P

α
−→ P ′. We need to show that the desired property

holds of (i) all the indexed outputs occurring in P that outlive the transition and are
thus found back in P ′; and of (ii) any new indexed output generated by the transition
itself.

For (i) it is enough to observe that no name free in P may ever get bound in P ′,
simply because no labelled transition introduces new binders. As to (ii) if the transition
generates a new indexed output, then it must be of the form

P ≡ (νp̃, r̃)(P ∗ | b′〈a′ : m̃′ ‖ c̃′〉◦)
(r̃,j)†b′〈a′:ñ‖c̃′〉◦j
−−−−−−−−−−−→ P ′ ≡ (νp̃)(P ∗ | b′〈a′ : m̃′ ‖ c̃′〉◦j)

where ñ = m̃′ if b′ 6∈ Nt or ◦ 6= •, and ñ = c̃′ otherwise. The side conditions to the
(Restr) and (Open Intercept) rules enforce the conditions required by the Lemma on the
output indexed by j.

Proof of (2). As in item (1), the base case follows vacuously. For the inductive case,
assume the desired property holds of P , and consider the new trusted derivative obtained
by P

α
−→ P ′. If α does not generate a new indexed output, the lemma follows directly

by the induction hypothesis, because P ′ �i implies P �i for all indexes i. Otherwise, as in
the previous case, the transition has the form

P ≡ (νp̃, r̃)(P ∗ | b′〈a′ : m̃′ ‖ c̃′〉◦)
(r̃,j)†b′〈a′:ñ‖c̃′〉◦j
−−−−−−−−−−−→ P ′ ≡ (νp̃)(P ∗ | b′〈a′ : m̃′ ‖ c̃′〉◦j)

To conclude, we need to show that j 6= i for all i such that P �i. From item (1) of the
present lemma, we know that i ∈ fn(P), hence i ∈ fn(P ∗) Then, j 6= i follows by the
side condition that governs the choice of the bound names in rule (Par).

Proof of (3). We need a more general statement to carry out the inductive proof, namely:
For all c̃ such that P ≡ (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦) or P ≡ (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦i) one has P̂ 6�c̃.

In the base case, P ≡ [H] has no indexed outputs. As to non-indexed outputs, an anal-
ysis of the translation [·] shows that P may be restructured as (ν r̃)(P̂ | (ν c̃)b〈a : m̃ ‖ c̃〉◦),
where p̃ = r̃] c̃: from this, it is clear that P̂ 6�c̃, as desired. In the inductive case, assume
the claim true of a trusted derivative P ∗ and let P ∗ α

−→ P . We reason by cases on the
format of α.

Channel Abstractions for Network Security 13

If α is an input, then P ∗ ≡ (νp̃)(P̂ ∗ | d(e : x̃ ‖ ỹ).[H]) and P ≡ (νp̃)(P̂ ∗ | [Hσ]) for a
suitable substitution σ of the variables in x̃ and ỹ. Now, for all the unguarded outputs
in [Hσ] we reason as in the based case. For the remaining (indexed) outputs in P̂ ∗ the
claim follows by the induction hypothesis.

If α is an output/intercept/co-forward, the proof follows directly by the induction
hypothesis. For the output case, all the (indexed and not) unguarded outputs of P

are unguarded in P ∗; for the intercept case, P ∗ ≡ (νp̃)(P̂ ∗ | b〈a : m̃ ‖ c̃〉◦) and P ≡
(νp̃)(P̂ ∗ | b〈a : m̃ ‖ c̃〉◦i) and P̂ ∗ 6�c̃ is implied by the induction hypothesis on P ∗. For
the co-forward case, the reasoning is the same as the one just described, with P ≡
(νp̃)(P̂ ∗ | b〈a : m̃ ‖ c̃〉◦) and P ∗ ≡ (νp̃)(P̂ ∗ | b〈a : m̃ ‖ c̃〉◦i).

5. Bisimilarity

As anticipated, the definition of bisimilarity rests on a further set of labelled transitions,
that provide the observable counterpart of the labelled transitions of Table 3. The new
transitions are introduced in Definition 5.1 below, and are obtained from the transitions
in in Table 3 by filtering away all the transitions that involve the adversarial forms
(intercept and forward/reply) as well all the transitions that may not be observed by
an opponent by virtue of the restriction the opponent suffers on the use of the trusted
identities of a network.

Definition 5.1 (Observable LTS). We say that a network has an observable transi-

tion, noted N `
α
−→ N ′, if and only if it may be derived by the following rules:

N
α
−→ N ′

N `
α
−→ N ′

α 6∈

b(a : m̃ ‖ c̃)◦ a ∈ Nt

(p̃)b〈a : m̃ ‖ c̃〉• b ∈ Nt

†b(a : m̃ ‖ c̃)◦i , 〈i〉

The notions of synchronous and asynchronous bisimulation arise as expected from the
observable labelled transitions. When α is an input action, say b(a : m̃ ‖ c̃)◦, we note
with α the corresponding output action b〈a : m̃ ‖ c̃〉◦.

Definition 5.2 (Intruder Bisimularity). Let R be a symmetric relation over net-

works. R is a bisimulation if whenever MRN and M `
α
−→ M ′ with bn(α) ∩ fn(N) = ∅

there exists N ′ such that N `
α
−→ N ′ and M ′RN ′.

R is an asynchronous bisimulation if whenever MRN and M `
α
−→ M ′ with bn(α) ∩

fn(N) = ∅ one has: (i) if α is not an input, then N `
α
−→ N ′ and M ′RN ′; (ii) if α is an

input, then N `
α
−→ N ′ and M ′RN ′ or N `

τ
−→ N ′ and M ′RN ′|α.

Bisimilarity, noted ∼, is the largest bisimulation, and asynchronous bisimilarity, noted
∼a, is the largest asynchronous bisimulation.

In the proofs, it will be convenient to work with bisimulations up to structural congruence,
i.e., bisimulations in which matching actions lead to processes which are still in R up to
≡. In particular, the requirement M ′RN ′ (M ′RN ′|α, for the asynchronous input case) is
relaxed into M ′≡R≡N ′ (M ′≡R≡N ′|α, respectively). Thanks to Lemma 4.1, it is trivial

M. Bugliesi and R. Focardi 14

to prove that that if R is a (asynchronous) bisimulation up to structural congruence then
≡R≡ is a (asynchronous) bisimulation. Thus, in order to prove that two processes are
bisimilar it is sufficient to exhibit a bisimulation up to structural congruence containing
them. In the following, we will implicitly adopt this technique.

5.1. Synchronous vs asynchronous bisimilarity

Given the asynchronous nature of the calculus, it would seem natural to elect ∼a as the
natural bisimilarity. As it turns out, however, the ability to intercept all traffic makes
asynchronous bisimilarity just as powerful as synchronous bisimilarity. We prove this
below. To ease the presentation and the proofs, we tacitly adopt the so-called Barendregt
convention for the bound and free names of a process: in particular, we assume bound
names to be all distinct and different from the free names of all the considered processes.
One consequence of this convention is that we may simplify the definition of bisimilarity
by dropping the side-condition “bn(α)∩ fn(N) = ∅” as it is verified trivially by virtue of
the convention.

We first prove two simple, but useful, lemmas.

Lemma 5.1. Let γ̄i = a〈b : m̃ ‖ c̃〉◦i and γ̄′i = ā′〈b′ : m̃′‖c̃′〉◦i . If (νp̃)(P | γ̄i)a(ν q̃)(Q | γ̄′i)
then also (νp̃)P a (ν q̃)Q, where a is either ∼ or ∼a, respectively.

Proof. Define R = {((νp̃)P, (ν q̃)Q) | (νp̃)(P | γ̄i) a (ν q̃)(Q | γ̄′i)}: we show that R is
a a-bisimulation (up to structural congruence). Let (νp̃)P R (ν q̃)Q and assume that

(νp̃)P `
α
−→ (νp̃′)P ′. Then also P `

α̂
−→ P ′ for a some α̂: in particular, either α = (r̃)α̂

and p̃ = {p̃′, r̃}, or α = α̂ and p̃ = p̃′. By Lemma 4.2(2), we know that α̂ 6= (i), hence

α 6= (i). By the Barendregt convention, we also have that P | γ̄i `
α̂
−→ P ′ | γ̄i. Consequently,

(νp̃)(P | γ̄i) `
α
−→ (νp̃′)(P ′ | γ̄i). Now we may use the hypothesis (νp̃)(P | γ̄i) a (ν q̃)(Q | γ̄′i)

to find a matching transition from (ν q̃)Q. We have two cases.

If a is ∼ or α is not an input action, we know that (ν q̃)(Q | γ̄′i) `
α
−→ (ν q̃′)R with

(νp̃′)(P ′ | γ̄i) a (ν q̃′)R and to conclude we must show that (ν q̃)Q `
α
−→ (ν q̃′)Q′ and that

R = Q′ | γ̄′i. Indeed, both these facts follow from the observation that α 6= (i) and that
the only action performed by γ̄′i is (i).

If instead α is an input action and a is ∼a, then we have an additional case, namely
(ν q̃)(Q | γ̄′i) `

τ
−→ (ν q̃′)R with (νp̃′)(P ′ | γ̄i) ∼a (ν q̃′)R |α. Reasoning as above, it follows

that R = Q′ | γ̄′i, and (ν q̃)Q `
τ
−→ (ν q̃′)Q′ which is again the matching transition we are

looking for. In fact, we have (νp̃′)(P ′ | γ̄i) ∼a (ν q̃′)R |α ≡ (ν q̃′)(Q′ |α | γ̄′i) from which
(νp̃′)P ′ R (ν q̃′)(Q′ |α) ≡ (ν q̃′)Q′ |α as desired.

Lemma 5.2. If P a Q then (νn)P a (νn)Q, where a is either ∼ or ∼a, respectively.

Proof. Directly, by coinduction.

Theorem 5.1. ∼a = ∼.

Proof. Clearly ∼ ⊆ ∼a because, by definition, a synchronous bisimulation is also an

Channel Abstractions for Network Security 15

asynchronous bisimulation. To prove the reverse inclusion, let R = {(P,Q) | P ∼a Q}:
we show that R is a synchronous bisimulation.

Let (P,Q) ∈ R and P `
β
−→ P ′. If β is not an input action the proof follows directly from

the hypothesis. In fact, since P ∼a Q by hypothesis, there exists a matching transition

Q `
β
−→ Q′ such that P ′ ∼a Q′. Hence (P ′, Q′) ∈ R as desired.
Assume then that β is an input action: β = b(a : m̃ ‖ c̃)◦. Given that P ∼a Q by

hypothesis, we have two possible ways that Q may move. If Q `
β
−→ Q′ with P ′ ∼a Q′, we

reason as above. Otherwise Q `
τ
−→ Q′ and P ′ ∼a Q′ | b〈a : m̃ ‖ c̃〉◦. Let then Q `

τ
−→ Q′. By

an inspection of the labelled transitions, there must exist Q̂ and q̃ such that Q ≡ (ν q̃)Q̂

and the move from Q derives from two transitions Q̂
α
−→ ·

α
−→ for suitable ᾱ and α. The

proof proceeds with a case analysis on the format of α and α. Let then α = d(h : ñ ‖ ẽ)◦,
and α = d〈h : ñ ‖ ẽ〉◦.

From Q̂
α
−→ it follows that Q̂ `

(i) †γi

−−−−→ with γi = d〈h : g̃ ‖ ẽ〉◦i , and g̃ = ñ or g̃ = ẽ

depending on the secrecy mode ◦. As a a consequence, Q ≡ (ν q̃)Q̂ `
(r̃,i) †γi

−−−−−−→ Q′′ with
r̃ = q̃ ∩ {d, h, g̃, ẽ}. From the hypothesis that Q ∼a P , we then find a matching move

P `
(r̃,i)†γi

−−−−−→ P ′′ with P ′′ ∼a Q′′. Now we observe that the initial move β from P is still

available on P ′′, i.e., P ′′ `
β
−→ . But then, we are back to the same situation as before, as

this move from P ′′ must be matched by Q′′ directly or via a silent action. This reasoning
may be repeated only a finite number of times, after which Q must be able to respond
with a β move: this is a consequence of our assumption that replication, and recursion,
are guarded in our processes, hence Q may not have infinitely many outputs ready to
fire.

Without loss of generality, we assume that Q responds with a β move right after the

first step, i.e. Q′′ `
β
−→ (in case the move occurs at a subsequent step, we simply repeat

the argument used for the first step). Summarizing the reasoning above, we have:

P ≡ (νp̃)P̂ `
(r̃,i)†γi

−−−−−→ P ′′ ≡ (νp̃′)(P̂ ′′ | αi) `
β
−→ (νp̃′)(P ′′′ | αi)

∼a ∼a ∼a

Q ≡ (ν q̃)Q̂ `
(r̃,i)†γi

−−−−−→ Q′′ ≡ (ν q̃′)(Q̂′′ | α ′
i) `

β
−→ (ν q̃′)(Q′′′ | α ′

i)

Here αi = d〈h : ñ ‖ ẽ〉◦i is the indexed copy of α indexed by i, and p̃′ = p̃ \ r̃, q̃′ = q̃ \ r̃.
Similarly, α ′

i = d〈h : ñ′ ‖ ẽ〉◦i is the cached copy of the output emitted by Q (notice that
ñ may be different from ñ′ when ◦ is •, even though the bitstring ẽ is the same as in P).

Now, since β is an input, from P `
β
−→ and P `

(r̃,i)†γi

−−−−−→ , it follows that {r̃, i}∩n(β) = ∅.

Hence from Q `
(r̃,i)†γi

−−−−−→ · `
β
−→ it also follows that Q `

β
−→ · `

(r̃,i)†γi

−−−−−→ , and the same can

be said of P . Thus, we have P `
β
−→ ≡ (νp̃)(P ′′′ | α), and Q `

β
−→ ≡ (ν q̃)(Q′′′ | α ′)

where α ′ = d〈h : ñ′ ‖ ẽ〉◦ is the output from Q corresponding to α. To conclude, we must
show that (νp̃)(P ′′′ | α) ∼a (ν q̃)(Q′′′ | α ′). If α is an authentic label (i.e. h = h), by

M. Bugliesi and R. Focardi 16

Lemma 4.2(2), we can complete the diagram above as follows:

(νp̃′)(P ′′′ | αi) `
(i)
−−→ (νp̃′)(P ′′′ | α)

∼a ∼a

(ν q̃′)(Q′′′ | α ′
i) `

(i)
−−→ (ν q̃′)(Q′′′ | α ′).

Here the desired relation follows because ∼a is closed by restriction, by Lemma 5.2. If
instead α is non authentic (h = −), again by Lemma 4.2(2), the diagram can continue
as follows:

(νp̃′)(P ′′′ | αi) `
(i)
−−→ (νp̃′)(P ′′′ | α | αi)

∼a ∼a

(ν q̃′)(Q′′′ | α ′
i) `

(i)
−−→ (ν q̃′)(Q′′′ | α ′ | α ′

i)

Then, by Lemma 5.1, we know that (νp̃′)(P ′′′ | α) ∼a (ν q̃′)(Q′′′ | α ′), and the claim
follows again by closure under restriction (on the tuple r̃).

The syntactic restrictions imposed on our processes, in particular the absence of un-
guarded recursion and, similarly, of an unguarded choice operator are crucial in the proof
of Theorem 5.1. Indeed, if we lift those restrictions, not only the proof breaks, but the
theorem itself is false. We conclude the section with two counter-examples that substanti-
ate this observation. Let ∗R denote the replicated version of R, defined by the unguarded
recursive equation ∗R def= ∗R | R.

The first example shows that Theorem 5.1 is false in the presence of unguarded repli-
cation. Consider the two processes below:

P
def= Q | b(− : x).b〈− : x〉

Q
def= ∗ a〈− : m〉 | ∗ a(− : x).a〈− : x〉

Clearly P 6∼ Q, because there is no way for Q to match the input transition available for
P on b. On the other hand, the two processes cannot be distinguished in the asynchronous

version of bisimilarity as P ’s move on b, P `
b(−:n)
−−−−−→ Q | b〈− : n〉, may be matched by Q

via a τ -transition that takes Q back to itself (thanks to the presence of the replicated
output).

Formally, consider the following relation:

R = { (Q̂ | b(− : x ‖ y).b〈− : x ‖ y〉 , Q̂) | Q̂ is a derivative of Q} ∪ Id

Notice that Q̂ ≡ Q|R, where R is the parallel composition of possibly replicated outputs
on a (both a〈− : m〉 and other outputs on a read from the environment and resent by Q),
with their relative indexed copies: this can be easily proved by induction on the length
of the derivation from Q to Q̂. Thus Q̂ cannot synchronize on b and, since Q `

τ
−→ Q, we

also have Q̂ `
τ
−→ Q̂.

It is now trivial to verify that R is an asynchronous bisimulation. The only interesting

case is Q̂ | b(− : x ‖ y).b〈− : x ‖ y〉 `
b(−:n‖c)
−−−−−−→ Q̂ | b〈− : n ‖ c〉 which is simulated by

Channel Abstractions for Network Security 17

Q̂ `
τ
−→ Q̂ with Q̂ | b〈− : n ‖ c〉 R Q̂ | b〈− : n ‖ c〉, since Id ⊆ R. Given that Q is a (zero)

derivative of itself, we obtain that PRQ and thus P ∼a Q.

A similar example shows that Theorem 5.1 fails if we extend the syntax with an
unguarded nondeterministic choice operator, P1 + P2, defined with the usual semantics
(P1+P2

α
−→η P ′ if P1

α
−→η P ′ or P2

α
−→η P ′). Let a(− : x)∗ denote the guarded recursive

process Q
def= a(− : x).Q, and consider the following processes:

P
def= a(− : x)∗ | (a〈− : x〉 + b(− : x).b〈− : x〉)

Q
def= a(− : x)∗ | a〈− : x〉

Clearly, we have P 6∼ Q, because there is no way for Q to match the input transition
available for P on b. On the other hand, the two processes cannot be distinguished in the

asynchronous version of bisimilarity as P `
b(−:n)
−−−−−→ a(− : x)∗ | b〈− : x〉, may be matched

by Q `
τ
−→ a(− : x)∗.

5.2. Characterizing Barbed Equivalence

We conclude the section on bisimilarity showing that bisimilarity coincides with (our
version of) barbed equivalence. For the soundness direction of the proof, we need a
standard lemma connecting barbs with labelled transitions.

Lemma 5.3. M ↓ b if and only if M `
(ñ,i)†b〈... 〉◦i
−−−−−−−−−→ with b 6∈ ñ.

Proof. In both directions, by an inspection of labelled transition system.

Theorem 5.2. For any pair of trusted processes, P ∼ Q implies P ' Q.

Proof. Define the candidate relation

R = {((νñ)(I |P), (νñ)(I |Q)) | P ∼ Q with P,Q trusted derivatives, I intruder}

We show that R ⊆'. Being I arbitrary, R is contextual by definition. That R is barb
preserving follows easily by Lemma 5.3 above. In particular, from (νñ)(I |P) ↓ b we
know that I ≡ (νm̃)(b〈. . . 〉◦ | I ′) or P ≡ (νm̃)(b〈. . . 〉◦ |P ′), with b 6∈ m̃, ñ. In the first

case, we have immediately (νñ)(I |Q) ↓ b. In the second case, P `
(m̃,i)b〈... 〉◦i
−−−−−−−−→ and, by

the hypothesis P ∼ Q, we have Q `
(m̃,i)b〈... 〉◦i
−−−−−−−−→ . Hence Q ↓ b and given that b 6∈ ñ,

(νñ)(I |Q)↓ b as desired.
It remains to show that R is reduction closed. By Lemma 4.1, we may reason equiv-

alently in terms of τ -transitions (as opposed to reductions). Assume (νñ)(I |P) `
τ
−→ R:

we must find a matching transition (νñ)(I |Q) `
τ
−→ R′ with RRR′. The proof is by cases

on the derivation of the move from (νñ)(I |P).
If the move comes from I, then the same move is available from (νñ)(I |Q) and we

are done. The case when the transition comes from P `
τ
−→ P ′ is equally simple: we just

have to appeal to the hypothesis P ∼ Q.

M. Bugliesi and R. Focardi 18

The remaining cases are when both I and P contribute to the move. There are a
multitude of cases, all with the same structure: we give the (Synch Intercept) cases

as representatives. Assume then, that (νñ)(I |P) `
τ
−→ R because P `

(p̃,i)b〈a:m̃‖c̃〉◦i
−−−−−−−−−−−→ P̂ ,

I `
†b(a:m̃‖c̃)◦

−−−−−−−−→ Î and R is (νñ, p̃, i)(Î | P̂). From the hypothesis P ∼ Q, we know that

Q `
(p̃,i)b〈a:m̃‖c̃〉◦i
−−−−−−−−−−−→ Q̂, with P̂ ∼ Q̂. We are done as (νñ)(Q | I) `

τ
−→ (νñ, p̃, i)(Î | Q̂) and

(νñ, p̃, i)(Î | Q̂) is the desired R′.

We continue with the completeness part of the characterization proof, showing that bisim-
ilarity is implied by barbed equivalence. As usual, the proof amounts to showing that the
actions involved in the labelled transitions of a process are definable by corresponding,
testing contexts that provoke those actions. The following, auxiliary lemma allows us to
‘strip away’ the residuals of such testing contexts.

Lemma 5.4. Let P,Q be trusted processes, ñ ⊆ Nt and e ∈ Nu fresh in P,Q. Then
(νñ)(P | e〈− : ñ ‖ ñ〉) ' (νñ)(Q | e〈− : ñ ‖ ñ〉) implies P ' Q.

Proof. By coinduction, define:

R = { (M,N) | there exist ñ ⊆ Nt, e ∈ Nu fresh in M,N such that
(νñ)(M | e〈− : ñ ‖ ñ〉) ' (νñ)(N | e〈− : ñ ‖ ñ〉) }

Clearly R is symmetric. We show that it is an intruder bisimulation.

— R is barb preserving. Assume M ↓ b. The interesting case is when b ∈ ñ. Let then b

be the j-th element in the tuple ñ, f 6= e a name fresh in M and N , and define†:

I
def= e(− : x̃ ‖ ỹ).†z(. . .)◦i .if z = xj then f〈− : ‖ 〉 else 0

Then (νñ)(M | e〈− : ñ ‖ ñ〉) | I −→ M0 −→ M1 with M0 6 ↓ f , and M1 ↓ f . Now,
from the hypothesis (νñ)(M | e〈− : ñ ‖ ñ〉) ' (νñ)(N | e〈− : ñ ‖ ñ〉) we find N0 and
N1 such that that (νñ)(N | e〈− : ñ ‖ ñ〉 | I) −→ N0 −→ N1 and N0 6 ↓ f , N1 ↓ f . This,
in turn, implies N ↓ b as desired.

— R is reduction closed. Assume M −→ M ′. Then we have a corresponding tran-
sition (νñ)(M | e〈− : ñ ‖ ñ〉) −→ (νñ)(M ′ | e〈− : ñ ‖ ñ〉), and from the hypothe-
sis (νñ)(M | e〈− : ñ ‖ ñ〉) ' (νñ)(N | e〈− : ñ ‖ ñ〉) there must exist N̂ such that
(νñ)(N | e〈− : ñ ‖ ñ〉) −→ N̂ and N̂ ' (νñ)(M ′ | e〈− : ñ ‖ ñ〉) Thus N̂ ↓ e and since
e is fresh in N,M , this implies N̂ ≡ (νñ)(N ′ |e〈− : ñ ‖ ñ〉) with N −→ N ′, as desired.

— R is contextual. Assume (M,N) ∈ R.
We first show that (M |I, N |I) ∈ R for all intruder contexts I. Since ' is contextual,
we know that (νñ)(M | e〈− : ñ ‖ ñ〉) | I ′ ' (νñ)(N | e〈− : ñ ‖ ñ〉) | I ′, for all I ′. Now
choose e′ ∈ Nu fresh in M,N, I and let

I ′ = e(− : x̃ ‖ ỹ).(I[x̃/ñ] | e′〈− : x̃ ‖ x̃〉)

† We are loose here as we do not specify the arity and the mode of the intercept prefix. Indeed, M ↓ b
can derive from a plain or secret output of an arbitrary number of messages on b; for the argument to
go through, after inputing on a, I should run as many copies of process guarded by the input prefix
as there are arities in P and Q, for the two possible modes of the intercept prefix.

Channel Abstractions for Network Security 19

Since I is adversarial, and ñ ⊆ Nt I[x̃/ñ] is still a legal intruder process term. Now
(νñ)(M | e〈− : ñ ‖ ñ〉) | I ′ −→ (νñ)(M | I | e′〈− : ñ ‖ ñ〉). From the hypothesis
(νñ)(M | e〈− : ñ ‖ ñ〉) ' (νñ)(N | e〈− : ñ ‖ ñ〉) and the fact that e′ is fresh, we find
a corresponding transition (νñ)(N | e〈− : ñ ‖ ñ〉) | I ′ −→ (νñ)(N | I | e′〈− : ñ ‖ ñ〉),
with (νñ)(M | I | e′〈− : ñ ‖ ñ〉) ' (νñ)(N | I | e′〈− : ñ ‖ ñ〉). Thus (M | I,N | I) ∈ R

as desired.
It remains to show that ((νm)M, (νm)N) ∈ R for all m. Given any such m, choose an
untrusted e′ 6= m fresh in M,N . Given that e is also fresh in M,N , from the hypothesis
(νñ)(M |e〈− : ñ ‖ ñ〉) ' (νñ)(N |e〈− : ñ ‖ ñ〉) we know that (νñ)(M |e′〈− : ñ ‖ ñ〉) '
(νñ)(N |e′〈− : ñ ‖ ñ〉). Now we have: (νñ)((νm)M |e′〈− : ñ ‖ ñ〉) ≡ (νm, ñ)(M |e′〈− :
ñ ‖ ñ〉) ' (νm, ñ)(N | e′〈− : ñ ‖ ñ〉) ≡ (νñ)((νm)N | e′〈− : ñ ‖ ñ〉). This implies
((νm)M, (νm)N) ∈ R as desired.

Theorem 5.3. For any pair of trusted processes, P ' Q implies P ∼ Q.

Proof. We show that P ' Q implies P ∼a Q, and conclude by Theorem 5.1. Let R =
{(P,Q) | P ' Q}. We prove that R is an asynchronous bisimulation. Take (P,Q) ∈ R

and let P `
α
−→ P ′. We must find a matching transition for Q.

If α = τ the claim follows by Lemma 4.1 and the fact that ' is reduction closed. If α is
an input action, an inspection of the observable transitions shows that α = b(a : m̃ ‖ c̃)◦

with a ∈ Nu. Thus α is a legal intruder context, and hence by contextuality P |α ' Q |α.
Now, by construction, P | α −→ P ′, and by reduction closure we know that Q | α −→ N

with N ' P ′. We have the two expected possible cases: indeed, either N ≡ Q′ with
Q `

α
−→ Q′, or Q `

τ
−→ Q′ and N ≡ Q′ | α.

When α is an output or intercept action the proof proceeds by exhibiting a distinguish-
ing context for each possible transition. We prove the intercept case as a representative.
Also, to simplify the notation we restrict the proof to the simpler case when the in-
tercepted payload (correspondingly the bitstring) is a monadic message. The extension
to the polyadic case presents no difficulty, though it is notationally costly. Let then
α = (ñ, i) † b0〈b1 : b2 ‖ b3〉•i , and let m̃ = fn(P,Q). Define:

Im̃ = ko〈− : ‖ 〉 |
†x0(x1 : x2 ‖ x3)i.if match(x̃, b̃, m̃, ñ) then ko(− : ‖).ok〈− : ñ ‖ ñ〉 else 0

where ko and ok are chosen fresh, and match is the composite conditions that identifies
the label alpha univocally. In particular, match(x̃, b̃, b̃, ñ) corresponds to the following
test (we omit the details of how such test can be encoded in terms of cascaded condi-
tionals):

(xj = bj)bj 6∈ñ ∧ (xj 6∈ m̃)bj∈ñ ∧ (xj = xk)bj=bk∈ñ ∧ (xj 6= xk)bj 6=bk∈ñ

By construction, we have:

P | Im̃ −→M0 −→M1 ≡ (νñ)(P ′ | ok〈− : ñ ‖ ñ〉)

Here, as a result of the interception, the opponent caches a copy of the message inter-

M. Bugliesi and R. Focardi 20

cepted, namely b0〈b1 : b2 ‖ b2〉•i . In the labelled transition, this copy is attributed to the
derivative of P , that is P ′, explaining the structure of M1.

Now observe that M0 ↓ ko, M0 6 ↓ ok, and dually M1 6 ↓ ko, M1 ↓ ok. Then, from the
hypothesis P ' Q, we derive P | Im̃ ' Q | Im̃. Hence there exist N0, N1 such that
Q | Im̃ −→ N0 −→ N1 and Mi ' Ni (i = 0, 1). This, in turn, implies that Im̃ must have
consumed the input on ko. Thus, given that ko is fresh to Q, we know that there exists
Q′ such that N1 ≡ (νñ)(Q′ |ok〈− : ñ ‖ ñ〉) and Q `

α
−→ Q′. This is the matching transition

we were looking for as, by by Lemma 5.4 we know that M1 ' N1 implies P ′ ' Q′, as
desired.

As usual, the characterization of barbed equivalence in terms of bisimilarity represents
a useful result, as it allows us to carry out coinductive proofs of barbed equivalence for
processes. Indeed, bisimilarity turns our very effective as a proof technique for most of
the standard security equivalences for secrecy and authentication. In addition, based on
the results in Section 6.2, the coinductive proofs are fairly elegant, because based on
rather “small” candidates. We will return on this briefly at the end of Section 6.2.

We conclude this section by exemplifying the use of the coinductive characterization
of barbed equivalence in the proof of Theorem 3.1, that we state again below.

Theorem 5.4 (Congruence over trusted processes). Let P , Q be trusted processes.
P ' Q implies P |R ' Q|R, for all trusted processes R that do not impersonate any
identity in fn(P,Q).

Proof. We first need the following observation. Let M and N be two network processes,
and let σ be an injective substitution that maps any subset of the trusted free names
in M,N onto corresponding untrusted names: then Mσ ' Nσ implies M ' N . We
can show, equivalently, Mσ∼Nσ implies M∼N and this, in turn, follows directly by
coinduction, noting that M `

α
−→ M ′ implies Mσ `

ασ
−−→ M ′σ and conversely, that when α

is observable, Mσ `
ασ
−−→ M ′σ implies M `

α
−→ M ′ (clearly, the same is true of N).

Now choose σ to be an injective substitution that maps all the trusted names imper-
sonated by R into corresponding untrusted names (σ is the identities on all the other
names). By construction, Rσ is an intruder, and since R does not impersonate any iden-
tity in fn(P,Q), we have that Pσ = P , and Qσ = Q. From the hypothesis P ' Q, by
contextuality, it also follows P |Rσ ' Q |Rσ, hence (P |R)σ ' (Q |R)σ. By the previous
observation, this implies P |R ' Q |R as desired.

6. More on intruders

Before exploring in further detail the security applications of the calculus, and the import
of our observational equivalence in specifying security goals, in this section we conduct
an in-depth analysis of our intruder model, and contrast it with other models found
in the security literature. Specifically, we analyze two further models that arise from
endowing the intruders with (i) different adversarial capabilities and (ii) increasingly
powerful control on the interaction among the distributed principals of a network. As a
result of this analysis we will also derive powerful proof techniques for bisimilarity.

Channel Abstractions for Network Security 21

6.1. Eavesdroppers

Standard formalizations of Dolev-Yao models assume that the intruder has the ability
to “tap the wire” and silently eavesdrop on network traffic without necessarily inter-
cepting it. We extend the set of adversarial forms to provide a formal account of this
stronger model of intruder, and analyze the expressiveness of this primitive in terms of
the discriminating power it conveys.

The syntax of the high-level calculus is unchanged from Section 2, while the new
productions for networks are as follows:

M,N ::= . . . (as in Section 2) . . . | ?z(x : ỹ ‖ w̃)◦i .M

Like the intercept prefix, ?z(x : ỹ ‖ w̃)◦i .M is a binder for the name i and for all of
its component variables, with scope M . The reductions and labelled transitions follow
the exact same rationale as the corresponding rules for the intercept primitive, with the
differences (i) that eavesdropping does not consume the output, and hence (ii) that it
does not create a copy in case the output is authentic (cf. Appendix B).

In the rest of this section we analyze the import of eavesdropping on the notion of bisim-
ilarity that results from its inclusion in the calculus. In that direction we let (∼κ)κ⊆{†,?,!}
denote the family of bisimilarity relationships associated with the corresponding set of
adversarial primitives. Similarly, we define the set (∼κ

a)κ⊆{†,?,!} for the asynchronous
setting, and look at the relative strength of (some of) the equivalences in these sets.

We first that eavesdropping does not give any additional discriminatory power.

Theorem 6.1. ∼†!a = ∼?†!
a , and similarly ∼†! = ∼?†!.

Proof. We outline the proof the the synchronous relation. The reasoning for the asyn-
chronous case is similar.

That ∼?†! ⊆ ∼†! is obvious, as {(P,Q) | P ∼?†! Q} is trivially a †!-bisimulation. For
the reverse inclusion, we use the candidate R = {(P,Q) | P ∼†! Q}and show that it is a
?†!-bisimulation.

Take (P,Q) ∈ R and let P `
α
−→ P ′. The only interesting cases are when α is an eaves-

drop action: we show the case when α = (r̃, i)?b〈− : c̃ ‖ c̃〉•i . as representative. In this case
we have P ≡ (νp̃, r̃)(P̂ | b〈− : m̃ ‖ c̃〉•) and P ′ ≡ (νp̃)(P̂ | b〈− : m̃ ‖ c̃〉• | b〈− : m̃ ‖ c̃〉•i) for
a suitable tuple m̃. Then we may reason as follows to find a matching transition from Q:

P `
(r̃,i)?b〈−:c̃‖c̃〉•i

−−−−−−−−−−−−−−−−−−−−−−−−−→ P ′

m

P `
(r̃,i)†b〈−:c̃‖c̃〉•i
−−−−−−−−−−−→ · `

(i)
−−→ P ′

∼†! ∼†! ∼†!

Q `
(r̃,i)†b〈−:c̃‖c̃〉•i
−−−−−−−−−−−→ · `

(i)
−−→ Q′

m

Q `
(r̃,i)?b〈−:c̃‖c̃〉•i

−−−−−−−−−−−−−−−−−−−−−−−−−→ Q′

M. Bugliesi and R. Focardi 22

Notice that we rely on a one-to-one correspondence between eavesdrop actions and se-
quences of intercept-replay (or forward, in case of authenticated outputs). That an eaves-
drop may be simulated by an intercept-replay (forward) sequence follows by an inspec-
tion of the labelled transition. For the opposite direction, we further need an appeal to
Lemma 4.2(2), to get a guarantee that the reply (forward) selects the unique indexed
output stored by intercept.

Next, we show that eavesdropping is strictly less powerful than intercepting.

Theorem 6.2. ∼†!a (∼?!
a and similarly ∼†! (∼?!.

Proof. Clearly ∼?†!
a ⊆ ∼?!

a , and this implies ∼†!a ⊆ ∼?!
a since, by Theorem 6.1, we

have ∼?†!
a =∼†!a . The exact same reasoning applies in the synchronous case. That the

inclusions are strict follows by the following counter-example, which applies uniformly
to the synchronous and asynchronous cases. Let a ∈ Nt, and take the following two
processes:

P
def= a〈− : m〉 | a〈− : m〉 | ∗ a(− : x).a〈− : x〉

Q
def= a〈− : m〉 | ∗ a(− : x).a〈− : x〉

P 6∼?†!
a Q, because P and Q may be distinguished using the intercept moves to count the

outputs in the two processes. On the other hand, P ∼?! Q as counting in not possible
with eavesdrop moves, because eavesdropping does not consume the output. The only
remaining possibility to tell P from Q would be to consume the outputs by output moves,
but this is not possible because a is a trusted name, hence there are no observable output
moves on a. In fact, the intruder cannot input on a trusted name a but only eavesdrop
or intercept the communication.

6.2. M en in the middle

We continue our analysis by looking at man-in-the-middle intruder adopted in (Adão and
Fournet, 2006). In this new model, two principals may never engage in a synchronization
directly like in our initial semantics of Section 3. Instead, all exchanges require the
mediation of the intruder which intercepts all outputs and then delivers them to the
processes in the exact moment they are ready to consume them.

A man-in-the-middle intruder is easily accounted for in our calculus. The reduction
relation arises from the relation defined in Table 1 by dropping the (Comm) rule and by
replacing the (Forward) and (Replay) rules with two rules in Table 4. A corresponding
modification is required on the labelled transition semantics to mimic the form of three-
way synchronization induced by the new rules of reduction. In particular, the new labelled
transitions arise from those defined in Table 3 by (i) replacing the rules (Co-reply) and
(Co-forward) with the two rules in Table 4, and (ii) by dropping the (Synch) rule (thus
effectively disabling direct synchronization between trusted processes). The observable
LTS for the new semantics is derived exactly as we did in Definition 5.1.

In the rest of this section we study the relative strength of the notions of bisimilarity
resulting in the intruder models, based on their labelled transition semantics, and the

Channel Abstractions for Network Security 23

Table 4 Man-in-the-middle semantics

Reductions:

(Forward) b〈a : m̃ ‖ c̃〉◦i | !i | b(a : ỹ ‖ z̃)◦.N −→ N{m̃/ỹ, c̃/z̃}

(Replay) b〈− : m̃ ‖ c̃〉◦i | !i | b(− : ỹ ‖ z̃)◦.N −→ b〈− : m̃ ‖ c̃〉◦i | N{m̃/ỹ, c̃/z̃}

Labelled Transitions

(Co-replay)

N
b(−:m̃‖c̃)◦

−−−−−−→ N ′

b〈− : m̃ ‖ c̃〉◦i |N
(i)

−→ b〈− : m̃ ‖ c̃〉◦i | N ′

(Co-forward)

N
b(a:m̃‖c̃)◦

−−−−−−→ N ′

b〈a : m̃ ‖ c̃〉◦i | N
(i)

−→ N ′

associated notions of bisimilarity. To avoid ambiguity between the two labelled transition
systems, and the resulting notions of bisimilarity we adopt the following notation. We
note

α
−→DY (respectively `

α
−→DY) the (observable) labelled transition relation for the

Dolev-Yao model, resulting from the transitions in Table 3. On the other hand, we note
with

α
−→MIM and `

α
−→MIM the relations for the Man-in-the-middle model, resulting from

the LTS formed as described in (i) and (ii) above. Finally, we note DY∼ and MIM∼ the associated
notions of (synchronous) bisimilarity (notice, to this regard, that having disabled all τ -
actions on trusted processes, the relations of asynchronous and synchronous bisimilarity
on trusted processes collapse to the same relation MIM∼).

At a first look, the new equivalence MIM∼ would appear finer than DY∼ due to the tighter
control the new intruder can exercise over the interaction between the principals of a
network. As it turns out, however, this additional control does not add any discriminating
power.

We start noting that the simple properties on the structure of the indexed copies
occurring in a process, proved in Section 4, extend to the new labelled transitions. In
particular Lemma 4.2 holds just as well when P is a MIM-derivative of a trusted process,
and Lemma 5.1 is true also of MIM∼. Next, we introduce a definition that identifies a useful
binary relation on processes and their derivatives. Throughout the section we tacitly
assume that all the processes we refer to (as well as their run-time derivatives) are
trusted.

Definition 6.1 (Compatible processes). P and Q are index compatible, or simply
compatible, if P ≡ (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦i) if and only if Q ≡ (ν q̃)(Q̂ | b〈a : m̃′ ‖ c̃〉◦i),
where m̃ = m̃′ whenever ◦ = ε or b ∈ Nu.

By Lemma 4.2, each index of a trusted process indexes exactly one indexed message.
Consequently, assuming two processes compatible implies that we may establish a bijec-
tion between their indexed messages: indeed the indexed messages in the two processes
have the same structure, up-to their respective payload which may be different only when
the messages are encrypted. As we shall see, compatibility is a convenient property that
we will often presuppose of the processes included in the candidate relations used in

M. Bugliesi and R. Focardi 24

the proofs of this section. Given that all static trusted processes are pairwise compati-
ble (because they have no indexed message) the assumption will not involve any loss of
generality for the results we will prove on static trusted processes.

The compatibility relation is closed under the transition relation, both in the Dolev-Yao
and Man-in-the-middle transition systems, in the following sense.

Lemma 6.1. Let P and Q be compatible processes. If P `
α
−→η P ′ and Q `

α
−→η Q′, then

P ′ and Q′ are compatible, with η any of DY and MIM.

Proof. In Appendix A

A further lemma shows that bisimilarity (in either intruder model) is insensitive to the
choice of the indexes associated with the intercepted outputs, and to the duplication with
a different index of existing indexed copies of non-authentic messages.

Lemma 6.2. Let γi = a〈b : m̃ ‖ c̃〉◦i and γ′i = ā〈b : m̃′ ‖ c̃〉◦i , and let Pi and Qi be the
two trusted derivatives Pi ≡ (νp̃)(P̂ | γi) and Qi ≡ (ν q̃)(Q̂ | γ′i). If Pi

η∼ Qi then, for any
j 6∈ fn(Pi, Qi) ∪ {p̃, q̃}, we have:

1 Pj ≡ (νp̃)(P̂ | γj)
η∼ (ν q̃)(Q̂ | γ′j) ≡ Qj

2 Pi,j ≡ (νp̃)(P̂ | γi | γj)
η∼ (ν q̃)(Q̂ | γ′i | γ′j) ≡ Qi,j when b = −

where
η∼ is either DY∼ or MIM∼, and γj and γ′j are γ and γ′ indexed by j rather than i.

Proof. In Appendix A.

The next Lemma proves another useful closure property, this time for MIM∼ under the
(co-reply) and (co-forward) transitions in the DY-system.

Lemma 6.3. Assume P and Q compatible: if P
MIM∼ Q and P `

(i)
−→DY P ′ then Q `

(i)
−→DY Q′

and P ′ MIM∼ Q′.

Proof. In Appendix A.

Theorem 6.3. On trusted processes MIM∼ ⊆ DY∼.

Proof. We show that the following relation is a (synchronous) DY-bisimulation:

R = {(P,Q) | P MIM∼ Q with P,Q compatible}.

Let (P,Q) ∈ R and P `
α
−→DY P ′: we must find a matching transition Q `

α
−→DY Q′ with

P ′ MIM∼ Q′. The fact that P ′ and Q′ are compatible directly derive from Lemma 6.1. We
reason by cases on the format of α. When α 6∈ {τ, (i)}, we have P `

α
−→DY P ′ iff P `

α
−→MIM P ′.

From P
MIM∼ Q, we know that Q `

α
−→MIM Q′, with P ′ MIM∼ Q′. We are done since Q `

α
−→MIM Q′ iff

Q `
α
−→DY Q′.
When α = (i), the proof follows directly by Lemma 6.3. Assume then α = τ . The

transition P `
τ
−→DY P ′ must be derived from two transitions of the form

P̂
b〈a:m̃‖c̃〉◦
−−−−−−−→DY ·

b(a:m̃‖c̃)◦

−−−−−−−→DY P̂ ′

Channel Abstractions for Network Security 25

where P ≡ (νp̃)P̂ and P ′ ≡ (νp̃)P̂ ′. We distinguish two sub-cases depending on the
format of the two labels involved in the transitions.

Case a = a. There exist Q̂, Q̂′, q̃ with Q ≡ (ν q̃)Q̂ and Q′ ≡ (ν q̃)Q̂′ such that:

P̂
b〈a:m̃‖c̃〉◦
−−−−−−−→DY ·

b(a:m̃‖c̃)◦

−−−−−−−→DY P̂ ′

m m

P̂
b〈a:m̃‖c̃〉◦
−−−−−−−−→MIM ·

b(a:m̃‖c̃)◦

−−−−−−−−→MIM P̂ ′

⇓ ⇓

P̂ `
(i)†b〈a:ñ‖c̃〉◦i
−−−−−−−−−→MIM · `

(i)
−→MIM P̂ ′ (ñ = m̃ ∨ ñ = c̃)

⇓ ⇓

P ≡ (νp̃)P̂ `
(r̃,i)†b〈a:ñ‖c̃〉◦i
−−−−−−−−−−→MIM · `

(i)
−→MIM (νp̃′)P̂ ′ (p̃′ = p̃ \ r̃)

MIM∼ MIM∼ MIM∼

Q ≡ (ν q̃)Q̂ `
(r̃,i)†b〈a:ñ‖c̃〉◦i
−−−−−−−−−−→MIM · `

(i)
−→MIM (ν q̃′)Q̂′ (q̃′ = q̃ \ r̃)

⇓ ⇓

Q̂
b〈a:m̃′‖c̃〉◦
−−−−−−−−→MIM ·

b(a:m̃′‖c̃)◦

−−−−−−−−→MIM Q̂′

m m

Q̂
b〈a:m̃′‖c̃〉◦
−−−−−−−−→DY ·

b(a:m̃′‖c̃)◦

−−−−−−−−→DY Q̂′

Thus, Q `
τ
−→DY Q′, with (νp̃′)P̂ ′ MIM∼ (ν q̃′)Q̂′. From this, by closure under restriction, we

obtain P ′ ≡ (νp̃′, r̃)P̂ ′ MIM∼ (ν q̃′, r̃)Q̂′ ≡ Q′, as desired.

Case a = −. There exist Q̂, Q̂′, q̃ with Q ≡ (ν q̃)Q̂ and Q′ ≡ (ν q̃)Q̂′ such that:

P̂
b〈−:m̃‖c̃〉◦
−−−−−−−−→DY ·

b(−:m̃‖c̃)◦

−−−−−−−−→DY P̂ ′

m m

P̂
b〈−:m̃‖c̃〉◦
−−−−−−−−→MIM ·

b(−:m̃‖c̃)◦

−−−−−−−−→MIM P̂ ′

⇓ ⇓

P̂ `
(i)†b〈−:ñ‖c̃〉◦i
−−−−−−−−−→MIM · `

(i)
−→MIM P̂ ′ | b〈− : m̃′ ‖ c̃〉◦i

⇓ ⇓

P ≡ (νp̃)P̂ `
(r̃,i)†b〈−:ñ‖c̃〉◦i
−−−−−−−−−−−→MIM · `

(i)
−→MIM (νp̃′)(P̂ ′ | b〈− : m̃′ ‖ c̃〉◦i)

MIM∼ MIM∼ MIM∼

Q ≡ (ν q̃)Q̂ `
(r̃,i)†b〈−:ñ‖c̃〉◦i
−−−−−−−−−−−→MIM · `

(i)
−→MIM (ν q̃′)(Q̂′ | b〈− : m̃′ ‖ c̃〉◦i)

⇓ ⇓

Q̂
b〈−:m̃′‖c̃〉◦
−−−−−−−−−→MIM ·

b(−:m̃′‖c̃)◦

−−−−−−−−→MIM Q̂′

m m

Q̂
b〈−:m̃′‖c̃〉◦
−−−−−−−−→DY ·

b(−:m̃′‖c̃)◦

−−−−−−−−→DY Q̂′

M. Bugliesi and R. Focardi 26

with p̃′ = p̃ \ r̃ and q̃′ = q̃ \ r̃. Thus, Q `
τ
−→DY Q′ with (νp̃′)(P̂ ′ | b〈− : m̃′ ‖ c̃〉◦i)

MIM∼
(ν q̃′)(Q̂′ | b〈− : m̃′ ‖ c̃〉◦i). By Lemma 5.1 we have that (νp̃′)P̂ ′ MIM∼ (ν q̃′)Q̂′. Then, P ′ MIM∼ Q′

follows by closure under restriction with the names in r̃.

The hypothesis that P and Q are compatible processes is crucial for the proof. Indeed,
the result is false for arbitrary run-time configurations. For instance b〈− : m ‖ m〉i

MIM∼ 0,
as neither process has any transition; on the other hand, clearly, b〈− : m ‖ m〉i 6

DY∼ 0 as
the process on the left has an (i)-transition, while 0 clearly has not.

In order to prove the other inclusion, we first extend Lemma 4.2(3) to the case of secret
and non-authentic messages, for the trusted MIM-derivatives. Intuitively, MIM-transitions
never produce replicas of an indexed output, even in the case of non-authentic commu-
nication.

Lemma 6.4. Let P be a MIM trusted derivative. If P ≡ (νp̃)(P̂ | b〈− : m̃ ‖ c̃〉•i) then P̂ 6�c̃.

Proof. The proof follows by the same argument used in Lemma 4.2 item 3.

Theorem 6.4. On trusted processes DY∼ ⊆ MIM∼.

Proof. We show that the following relation is a MIM-bisimulation:

R = {(P,Q) | P DY∼ Q, with P,Q trusted MIM-derivatives and compatible}.

Let (P,Q) ∈ R and P `
α
−→MIM P ′: we must find a matching transition Q `

α
−→MIM Q′ with

P ′ DY∼ Q′. Clearly, P ′ and Q′ are trusted MIM-derivatives and the fact that P ′ and Q′

are compatible directly derive from Lemma 6.1. We proceed by cases depending on the
format of α (noting that α 6= τ as there are no MIM-silent transitions in a trusted process).

If α 6= (i) we reason as in Theorem 6.3, namely:

P `
α
−→MIM P ′

m
P `

α
−→DY P ′

DY∼ DY∼
Q `

α
−→DY Q′

m
Q `

α
−→MIM Q′

Let then α = (i). From P `
(i)
−→MIM P ′ we know that P ≡ (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦i). By Lemma

4.2(2), it follows that P `
(i)
−→DY P ∗ ≡ (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦). Furthermore, an inspection of

the labelled transition systems shows that P `
(i)
−→MIM P ′ implies P `

(i)
−→DY P ∗ `

τ
−→DY P ′ where

τ derives from the internal transitions P̂ | b〈a : m̃ ‖ c̃〉◦
b〈a:m̃‖c̃〉◦
−−−−−−−→DY ·

b(a:m̃‖c̃)◦

−−−−−−−→DY P̂ ′, with
P ′ ≡ (νp̃)P̂ ′. We distinguish various sub-cases, depending on the format of these labels.

Case a = a. We work out the sub-case when ◦ = •, the case when ◦ = ε follows by the
same argument. Let then P ≡ (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉•i). From the hypothesis P

DY∼ Q, and

Channel Abstractions for Network Security 27

the observation that P `
(i)
−→DY · `

τ
−→DY P ′, we know that Q `

(i)
−→DY Q∗ `

τ
−→DY Q′ with P ′ DY∼ Q′.

To conclude, we need to show that Q `
(i)
−→MIM Q′. First, from the hypothesis that P and Q

are compatible, it follows that Q ≡ (ν q̃)(Q̂ | b〈a : m̃′ ‖ c̃〉•i). Then, by Lemma 4.2(2), it
follows that Q∗ ≡ (ν q̃)(Q̂ | b〈a : m̃′ ‖ c̃〉•). Now we proceed by contradiction and assume

that Q 6̀
(i)
−→MIM Q′. Then, the τ -transition in Q∗ `

τ
−→DY Q′ does not consume the output

emitted by Q `
(i)
−→DY , i.e. Q′ ≡ (ν q̃)(Q̂′ | b〈a : m̃′ ‖ c̃〉•) which implies Q′ `

†(j)b〈a:c̃‖c̃〉•j
−−−−−−−−−→DY .

On the other hand, by Lemma 4.2(3), P ′ 6`
†(j)b〈a:c̃‖c̃〉•j
−−−−−−−−−→DY contradicting P ′ DY∼ Q′.

Case a = −. We further distinguish two sub-cases, depending on whether the indexed
message is in clear or encrypted.

We first examine the case ◦ = •. Then P ≡ (νp̃)(P̂ | b〈− : m̃ ‖ c̃〉•i), and reasoning as in
case a = a, it follows that Q ≡ (ν q̃)(Q̂ | b〈− : m̃′ ‖ c̃〉•i). Now, by Lemma 6.4, we know
that

P ≡ (νp̃)(P̂ | b〈− : m̃ ‖ c̃〉•i)
Q ≡ (ν q̃)(Q̂ | b〈− : m̃′ ‖ c̃〉•i)

with P̂ 6�c̃ and Q̂ 6�c̃. From P `
(i)
−→MIM P ′ it follows that P ′ ≡ (νp̃′)(P̂ ′ | b〈− : m̃ ‖ c̃〉•i) with

P̂ ′ 6 �c̃. Again, reasoning as the the previous case, it must be the case that Q `
(i)
−→MIM Q′.

Otherwise it would be Q′ ≡ (ν q̃′)(Q̂′ | b〈− : m̃ ‖ c̃〉•i | b〈− : m̃ ‖ c̃〉•) with Q̂′ 6 �c̃, again
contradicting P ′ DY∼ Q′.

To conclude, assume ◦ = ε. In this case, all names of the indexed message (including the
m̃’s) have been extruded at this stage, given that the communication is not secret and
the message has already been intercepted (Lemma 4.2(2)). We have:

P `
(i)
−→DY ·

b〈−:m̃‖m̃〉
−−−−−−−−→DY ·

b(−:m̃‖m̃)
−−−−−−−−→DY P ′

⇓ ⇓ ⇓

P `
(i)
−→DY · `

(j)†b〈−:m̃‖m̃〉j

−−−−−−−−−−−→DY · `
b(−:m̃‖m̃)
−−−−−−−→DY P ′ | b〈− : m̃ ‖ m̃〉j

DY∼ DY∼ DY∼ DY∼
Q `

(i)
−→DY · `

(j)†b〈−:m̃‖m̃〉j

−−−−−−−−−−−→DY · `
b(−:m̃‖m̃)
−−−−−−−→DY Q′ | b〈− : m̃ ‖ m̃〉j

⇓ ⇓ ⇓

Q `
(i)
−→DY ·

b〈−:m̃‖m̃〉
−−−−−−−−→DY ·

b(−:m̃‖m̃)
−−−−−−−−→DY Q′

Since P and Q are compatible, By Lemma 4.2(2), we know that Q
(i)
−−→MIM Q′. From

P ′ | b〈− : m̃ ‖ m̃〉i
DY∼ Q′ | b〈− : m̃ ‖ m̃〉i, by Lemma 5.1, we derive P ′ MIM∼ Q′, as desired.

By the previous two lemmas we have the result we anticipated.

Theorem 6.5. On trusted processes, MIM∼ = DY∼.

M. Bugliesi and R. Focardi 28

Besides being interesting in itself, as expressiveness result, Theorem 6.5 provides us
with a very effective proof technique for DY∼, and consequently for '. In fact, coinductive
proofs for MIM-bisimilarity may be carried out with much smaller candidates than their
DY counterparts, as the number of states reached by a pair of trusted processes is much
smaller in the MIM LTS than it is in the DY LTS. There are two reasons for that. First,
trusted processes (and their derivatives) have no τ transitions in the MIM LTS (they
do, instead, in the DY LTS). Secondly, the size of the candidate relations used in DY

bisimilarity proof grows easily out of control due to the presence of multiple replicas
of the same message. In contrast, MIM-transitions never produce replicas of an indexed
output, as the index transitions are enabled only in processes that are ready to consume
the produced outputs.

We show the use of MIM-bisimilarity as a proof technique for security in the next section.

7. Security laws

We discuss some equational laws that characterize the behavior of abstractions and pro-
vide insight into their (the abstractions’) security properties. Mutatis mutandis, by com-
bining the secrecy and authentication equations of this section one may derive coinduc-
tive proofs for the security properties of e-banking protocol in Section 3.1. Through this
section we write H ' K (respectively H ∼ K) to mean [H] ' [K] (resp. [H] ∼ [K]).

7.1. Secrecy and Authentication

We start our security analysis by discussing the role of the scope restriction operator
in our calculus. As we noted, restricting the destination of an output does not hide
the presence of the output to an observer. Indeed, (νb)b〈a : m〉• 6' 0, as outputs are
always observable with an intercept, even when they are secret. On the other hand, secret
outputs on restricted (or more generally trusted) channels do guarantee the privacy of
the payload. This is expressed by the following equation:

(νb)b〈a : m〉• ' (νb)b〈a : m′〉• (1)

The equation is very easily proved by coinduction, using the following MIM-candidate,
where P and Q are the trusted processes representing the two high-level principals in the
equation:

R(1) = {(P,Q), (b〈a : m ‖ c〉•i , b〈a : m′ ‖ c〉•i)}
R(1) works uniformly for the two cases, irrespective of whether a = a or a = −. Notice,
on the other hand, that the case a = − requires the following, significantly larger DY-
bisimulation:

{(P,Q), (b〈− : m‖c〉•i , b〈− : m′‖c〉•i)} ∪ {(
∏
k

b〈− : m ‖ c〉•,
∏
k

b〈− : m′ ‖ c〉•) | k ≥ 0}

A variant of equation (1) uses a fresh name to masquerade for m in place of m′:
(νb)b〈a : m〉• ' (νb)(νd)b〈a : d〉•, which is proved as the one we have just discussed.

Channel Abstractions for Network Security 29

In (Abadi and Gordon, 1999), the spi-calculus characterization of secrecy is given by
means of a related equation, that we may express as follows:

(νb)(b〈a : m〉• | b(a : x)•.H(x)) ' (νb)(b〈a : m′〉• | b(a : x)•.H(x)) (2)

which holds just in case H(m) ' H(m′) and, when a = −, if H(m),H(m′) do not
impersonate b. This last condition is to avoid H(x) trivially breaks the secrecy of possible
replays of m and m′ as in H(x) = b(− : x)•.c〈− : x〉. The proof is similar to the proof
of equation (1). Here we use the following MIM-bisimulation candidate.

R(2) = { (P,Q), (Pi, Qi) } ∪ ∼

P and Q are the trusted processes corresponding to the high-level principals in the
equation, while Pi and Qi are the residuals of the output intercepted transitions in the
two processes, namely b〈a : m ‖ c〉•i | b(a : x)•.H(x) and b〈a : m′ ‖ c〉•i | b(a : x)•.H(x),
respectively. For the non-authentic case, i.e., when a = −, we additionally notice that

b〈− : m ‖ c〉•i |H(m) ∼ b〈− : m′ ‖ c〉•i |H(m′) (3)

The above processes are reached from Pi, Qi after a replay of the intercepted output. The
fact they are bisimilar is a simple consequence of H(m) and H(m′) not impersonating
b: rule (Co-replay) of MIM semantics requires an input on b to replay a message, thus the
presence of b〈− : m ‖ c〉•i does not affect the behaviour of H(m) in any way. Formally,
the MIM-bisimulation candidate is:

R(3) = {(b〈− : m ‖ c〉•i |P, b〈− : m ‖ c〉•i |Q) . P ∼ Q,H(m) −̀→MIM
∗ P,H(m′) −̀→MIM

∗ Q}

In fact, from H(m) −̀→MIM
∗ P and H(m′) −̀→MIM

∗ Q and since H(m),H(m′) do not imper-

sonate b, we know that P and Q do not impersonate b. Thus, b〈− : m ‖ c〉•i |P `
α
−→MIM P ′

implies P ′ is b〈− : m ‖ c〉•i |P ′′ and P `
α
−→MIM P ′′. The fact R(3) is a MIM-bisimulation triv-

ially follows from P ∼ Q.

7.2. Authentication

The most basic form of authentication can be stated in terms of the equation (νa)(b(a :
x)◦.P) ' 0, which may be proved by just observing that neither process has any ob-
servational transition. A more interesting notion of authentication may be formalized as
proposed by (Abadi and Gordon, 1999), by contrasting the system to be authenticated
with a system that satisfies the specification trivially. To illustrate, consider the following
equation:

(νa)(b〈a : m〉◦ | b(a : x)◦.H(x)) ' (νa)(b〈a : m〉◦ | b(a : x)◦.H(m)) (4)

Here, by “magically” plugging m in H(x), the equation states that m is the only message
that can possibly be received. That is guaranteed because there is just one authentic
output in the scope of the restriction. The proof of equation (4) follows co-inductively
showing that the following candidate is a MIM-bisimulation:

R(4) = { (P,Q), (Pi, Qi) } ∪ Id

M. Bugliesi and R. Focardi 30

Here Id is the identity relation, P and Q are the trusted network processes corresponding
to the high-level principals in the equation, while Pi and Qi are the residuals of the output
intercepted transitions in the two processes.

7.3. Sessions

We conclude our series of examples proving the authenticity and secrecy of properties of
a simple protocol for establishing a private session between two communication parties.
The specification is given by the following definitions:

D(m) def= (A(m) | B)

A(y) def= (νk)(b〈a : k〉 | a(b : x).x〈k : y〉•)

B
def= (νh)b(a : y).(a〈b : h〉 |h(y : z)•.H(z))

The two parties, A and B, exchange two fresh names, h and k, that are subsequently
used for a secret and authentic exchange of the message m. The two fresh names h

and k are thus employed to establish a new session between A and B. To reason about
authentication, let

Bspec(z′) def= (νh)b(a : y).(a〈b : h〉 |h(y : z)•.H(z′))

represent the “ideal” definition of B, which differs from B only in the fact that the
received z is ignored and, instead, H gets the parameter z′. In other words, Dspec(m) def=
(A(m) | Bspec(m)) represents a process which always delivers m to Q(z). The protocol
properties may then be described as follows.

(authenticity) D(m) ' Dspec(m)

(secrecy) D(m) ' D(m′) if H(m) ' H(m′)

The proof can be derived in essentially the same way for both equations: we give the
proof for the secrecy equation as representative. While we could reason co-inductively, as
for the previous equations, in this case it is more convenient to first show an auxiliary
equation. Let:

A′(y) def= b〈a : k〉 | a(b : x).x〈k : y〉•

B′ def= b(a : y).(a〈b : h〉 |h(y : z)•.H(z))

We show, that A′(m) |B ' A′(m′) |B. Then the proof of our initial equation de-
rives by compositionality as A′(m) | B ' A′(m′) | B implies (νh)(νk)(A′(m) | B) '
(νh)(νh)(A′(m′) | B) by closure under restriction and hence A(m)|B ' A(m′)|B be-
cause A(x) | B ≡ (νh)(νk)(A′(x) | B).

The proof that A′(m) |B ' A′(m′) |B follows by co-induction, choosing the candidate

Channel Abstractions for Network Security 31

as follows. First define:

Rsec = {(A′(m) |B , A′(m′) |B),

(a(b : x).x〈k : m〉• | a〈b : h〉 | h(k : z)•.H(z),

a(b : x).x〈k : m′〉• | a〈b : h〉 | h(k : z)•.H(z)),

(h〈k : m〉• | h(k : z)•.H(z), h〈k : m′〉• | h(k : z)•.H(z)) } ∪ '

We can show that Rsec is a DY-bisimulation. The proof is routine, noting that some of
the pairs that arise from R in the bisimulation game are contained in '. One such pair is
([a(b : x).x〈k : m〉• | B′], [a(b : x).x〈k : m′〉• | B′]), which arises from R via an (Output)
transition, and is contained in ' as both processes are stuck.

8. Conclusions

We have investigated a new set of security abstractions for distributed communication.
The resulting primitives can be understood as a kernel API (Application Programming
Interface) for the development of distributed applications. The API primitives are pur-
posely defined without explicit reference to an implementation; at the same time, how-
ever, they are designed to be amenable to cryptographic implementations. The semantic
theory and the proof techniques we have developed make the API a convenient tool for
the analysis of security-sensitive applications. Our results show that the abstractions are
robust, in that the observational equivalences they yield are preserved under the differ-
ent observations available with the different adversarial primitives and interaction models
which we have considered.

Certainly, for programming/specifying realistic examples and applications, one would
need reliable communications within protected environments (a.k.a. secret channels à
la pi-calculus). We do not see any problem in accommodating that feature within our
present framework. Also, in its present form, our framework is targeted at (and we argue,
well-suited for) secrecy and authentication. Future work includes expending it to account
for advanced properties, like anonymity, required in modern network applications such
as electronic voting.

Various papers in the literature have inspired or are related to our present approach.
A localized use of names, introduced in the Local pi-calculus (Merro and Sangiorgi,
1998) is discussed and employed in (Abadi et al., 2002) for purposes similar to ours,
while the handling of principals and authentication we adopted in the present paper is
reminiscent of that in (Abadi et al., 2000). Other papers with related design are (Abadi
and Fournet, 2004; Laud, 2005; Adão and Fournet, 2006). Of these, the closest to our
approach is (Adão and Fournet, 2006). While we share some of the initial motivations and
ideas, specifically the idea that the environment can mediate all communications, the two
target complementary objectives, and differ for a number of design choices and technical
results. A first important difference is in the choice of the communication primitives and
their semantics: while we accommodate various communication modes, the semantics of
communication in (Adão and Fournet, 2006) makes it possible to only express (what
corresponds to) our secure communications. As a result, our calculus makes it possible

M. Bugliesi and R. Focardi 32

to express a wider range of protocols. A second important difference is that we allow
dynamic creation of new principal identities, thus making it possible to express sessions,
a feature that is not easily accounted for in (Adão and Fournet, 2006).

Acknowledgements. We would like to thank the the referees for their comments
and constructive criticism.

References

Abadi, M. (1998). Protection in programming-language translations. In Larsen, K. G., Skyum,

S., and Winskel, G., editors, ICALP, volume 1443 of Lecture Notes in Computer Science,

pages 868–883. Springer.

Abadi, M. and Fournet, C. (2001). Mobile values, new names, and secure communication. In

POPL 2001: The 28th ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages, London, pages 104–115.

Abadi, M. and Fournet, C. (2004). Private authentication. Theor. Comput. Sci., 322(3):427–476.

Abadi, M., Fournet, C., and Gonthier, G. (2000). Authentication primitives and their compi-

lation. In POPL 2000, Proceedings of the 27th ACM SIGPLAN-SIGACT on Principles of

Programming Languages, January 19-21, 2000, Boston, Massachusetts, USA, pages 302–315.

Abadi, M., Fournet, C., and Gonthier, G. (2002). Secure implementation of channel abstractions.

Inf. Comput., 174(1):37–83.

Abadi, M. and Gordon, A. D. (1999). A calculus for cryptographic protocols: The spi calculus.

Inf. Comput., 148(1):1–70.

Adão, P. and Fournet, C. (2006). Cryptographically sound implementations for communicating

processes. In Bugliesi, M., Preneel, B., Sassone, V., and Wegener, I., editors, ICALP (2),

volume 4052 of Lecture Notes in Computer Science, pages 83–94. Springer.

Bugliesi, M. and Focardi, R. (2008). Language based secure communication. In Proceedings of the

21st IEEE Computer Security Foundations Symposium, CSF 2008, Pittsburgh, Pennsylvania,

23-25 June 2008, pages 3–16. IEEE Computer Society.

Bugliesi, M. and Focardi, R. (2009). Security abstractions and intruder models. In Proceedings

of the 15th Workshop on Expressiveness in Concurrency (EXPRESS 2008), number 242 in

ENTCS, pages 99–112. Elsevier.

Corin, R., Deniélou, P.-M., Fournet, C., Bhargavan, K., and Leifer, J. J. (2007). Secure im-

plementations for typed session abstractions. In 20th IEEE Computer Security Foundations

Symposium, CSF 2007, 6-8 July 2007, Venice, Italy, pages 170–186. IEEE Computer Society.

Fournet, C. and Rezk, T. (2008). Cryptographically sound implementations for typed

information-flow security. In Proceedings of the 35th ACM SIGPLAN-SIGACT Symposium on

Principles of Programming Languages, POPL 2008, San Francisco, California, USA, January

7-12, 2008, pages 323–335. ACM.

Honda, K. and Yoshida, N. (1995). On reduction-based process semantics. Theor. Comput. Sci.,

151(2):437–486.

Laud, P. (2005). Secrecy types for a simulatable cryptographic library. In Atluri, V., Meadows,

C., and Juels, A., editors, ACM Conference on Computer and Communications Security,

pages 26–35. ACM.

Merro, M. and Sangiorgi, D. (1998). On asynchrony in name-passing calculi. In Proceedings of

ICALP 98, volume 1443 of Lecture Notes in Computer Science. Springer-Verlag.

Channel Abstractions for Network Security 33

Merro, M. and Sangiorgi, D. (2004). On asynchrony in name-passing calculi. Mathematical

Structures in Computer Science, 14(5):715–767.

Milner, R., Parrow, J., and Walker, D. (1992). A calculus of mobile processes, Parts I and II.

Information and Computation, 100:1–77.

Appendix A. Additional Proofs

Lemma (6.1). Let P and Q be compatible processes. If P `
α
−→η P ′ and Q `

α
−→η Q′, then

P ′ and Q′ are compatible, with η any of DY and MIM.

Proof. By induction on the number of indexed messages in P . If P does not have any
indexed message, then neither does Q. Consequently, the only relevant transitions are
the (· · · Intercepted) rules, whose side-conditions imply the claim.

Otherwise P ≡ (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦i), and Q ≡ (ν q̃)(Q̂ | b〈a : m̃′ ‖ c̃〉◦i), with m̃ = m̃′

whenever ◦ = ε or b ∈ Nu. By Lemma 4.2(1), i does not occur as index in P̂ and Q̂.
Then, we reason by a case analysis of the transitions, uniformly for the two systems:

If α 6= (i) we know that the transitions have the form

P ≡ (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦i) `
α
−→η (νp̃′)(P̂ ′ | b〈a : m̃ ‖ c̃〉◦i) ≡ P ′

Q ≡ (ν q̃)(Q̂ | b〈a : m̃′ ‖ c̃〉◦i) `
α
−→η (ν q̃′)(Q̂′ | b〈a : m̃′ ‖ c̃〉◦i) ≡ Q′

In particular, (νp̃)P̂ `
α
−→η (νp̃′)P̂ ′ and (ν q̃)Q̂ `

α
−→η (ν q̃′)Q̂′. Now, by inductive hypoth-

esis we know that (νp̃′)P̂ ′ and (ν q̃′)Q̂′ are compatible and, by Lemma 4.2(2), P̂ ′ 6�i and
Q̂′ 6�i. As a consequence, (νp̃′)(P̂ ′ | b〈a : m̃ ‖ c̃〉◦i) ≡ P ′ and (ν q̃′)(Q̂′ | b〈a : m̃′ ‖ c̃〉◦i) ≡
Q′ are also compatible.

If α = (i), i.e., the transition is a (co-forward) or a (co-reply), the effect is to either
cancel the indexed copy, from P and Q, or leave it untouched: in both cases P ′ and Q′

are compatible.

Lemma (6.2). Let γi = a〈b : m̃ ‖ c̃〉◦i and γ′i = ā〈b : m̃′ ‖ c̃〉◦i , and let Pi and Qi be the
two trusted derivatives Pi ≡ (νp̃)(P̂ | γi) and Qi ≡ (ν q̃)(Q̂ | γ′i). If Pi

η∼ Qi then, for any
j 6∈ fn(Pi, Qi) ∪ {p̃, q̃}, we have:

1 Pj ≡ (νp̃)(P̂ | γj)
η∼ (ν q̃)(Q̂ | γ′j) ≡ Qj

2 Pi,j ≡ (νp̃)(P̂ | γi | γj)
η∼ (ν q̃)(Q̂ | γ′i | γ′j) ≡ Qi,j when b = −

where
η∼ is either DY∼ or MIM∼, and γj and γ′j are γ and γ′ indexed by j rather than i.

Proof. In both cases, the proof is by coinduction, uniformly for the two bisimilarities.
First observe that, by Lemma 4.2(1,2) P̂ 6�i,j , and similarly Q̂ 6�i,j . Moreover, i 6= j, given
that, again by Lemma 4.2(1), i ∈ fn(Pi, Qi).

For (1), we define R = {(Pj , Qj) | Pi
η∼ Qi} ∪

η∼ and show that R is an η-bisimulation.

Take (Pj , Qj) ∈ R and let Pj `
α
−→η R.

— If α 6= (j), given that P̂ 6�i,j , we know that R ≡ (νp̃′)(P̂ ′ | γj), and also Pi `
α
−→η P ′

i ≡
(νp̃′)(P̂ ′ | γi). From the hypothesis Pi

η∼ Qi, we then have Qi `
α
−→η S with R

η∼ S.

M. Bugliesi and R. Focardi 34

Since Q̂ 6 �i,j , it follows that S ≡ (ν q̃′)(Q̂′ | γ′i), and also Qj `
α
−→η Q′

j ≡ (νp̃′)(Q̂′ | γ′j),
which is the desired matching move from Qj .

— If instead α = (j), we have four different cases, depending (i) on the labelled transition
system under consideration (i.e. whether η is DY or MIM) and (ii) on whether γi and
γ′i are authentic or not.

We first look at the DY-system. If b = b, then Pj `
(j)
−→DY R ≡ (νp̃)(P̂ | γ) (where γ is

the output corresponding to γi) and given that P̂ 6 �i,j , it follows that Pi `
(i)
−→DY R.

From the hypothesis Pi
DY∼ Qi, we then have Qi `

(i)
−→DY S with R

DY∼ S. Now, from

Q̂ 6�i,j , it follows that S ≡ (ν q̃)(Q̂ | γ′), and also that Qj `
(j)
−→DY S which is the match-

ing we needed to conclude. If b = −, we have Pj `
(j)
−→DY Rj ≡ (νp̃)(P̂ | γ | γj), and

Qj `
(j)
−→DY Sj ≡ (ν q̃)(Q̂ | γ′ | γ′j), with Ri

DY∼ Si given that Pi `
(i)
−→DY Ri is necessarily

simulated by Qi `
(i)
−→DY Si being Q̂ 6�i,j . Hence, (Rj , Sj) ∈ R as desired.

Now let’s consider the MIM-system. If b = b, then Pj `
(j)
−−→MIM R ≡ (νp̃)P̂ ′, where

P̂
a(b:m̃‖c̃)
−−−−−−−→MIM P̂ ′ and a corresponding transition is available from Pi, i.e. Pi

(i)
−−→MIM R.

From the hypothesis Pi
MIM∼ Qi, we then have Qi `

(i)
−→MIM S with R

DY∼ S. Now, from Q̂ 6�i,j ,

it follows that that Qj `
(j)
−−→MIM S which is the matching we needed to conclude. Finally,

If b = −, we have Pj `
(j)
−−→MIM Rj ≡ (νp̃)(P̂ ′ | γj), and Qj `

(j)
−−→MIM Sj ≡ (ν q̃)(Q̂′ | γ′j),

with Ri
MIM∼ Si given that Pi `

(i)
−→DY Ri is necessarily simulated by Qi `

(i)
−→DY Si being

Q̂ 6�i,j . Hence (Rj , Sj) ∈ R as desired.

For (2), we define the candidate relation as follows: R = {(Pi,j , Qi,j) | Pi
η∼ Qi}.

Then we proceed by coinduction taking (Pi,j , Qi,j) ∈ R and Pi,j `
α
−→η R and showing

that there exists a matching transition for from Qi,j . Notice that we are assuming that
b = −, i.e., that communication is not authenticated. This means that γi, γ

′
i and γj , γ

′
j

will never be consumed by any transition. We distinguish two cases: if the α 6= (j) the
move must come from Pi and proof follows easily from the hypothesis that Pi

η∼ Qi. The
case α = (j) is just as easy because, by (1) we know that Pi

η∼ Qi iff Pj
η∼ Qj and we

may reason as in previous case, i.e., α 6= (j), interchanging j with i.

Lemma (6.3). Assume P and Q compatible. If P
MIM∼ Q and P `

(i)
−→DY P ′ then Q `

(i)
−→DY Q′

and P ′ MIM∼ Q′.

Proof. we show that the following relation is a MIM-bisimulation.

R = {(P ′, Q′) | ∃P,Q compatible. P
(i)
−−→DY P ′, Q

(i)
−−→DY Q′, P

MIM∼ Q} ∪ MIM∼

Assume (P ′, Q′) ∈ R and P ′ `
α
−→MIM P ′′. From (P ′, Q′) ∈ R, we know that there exist

P and Q compatible such that P `
(i)
−→DY P ′, Q `

(i)
−→DY Q′ and P

DY∼ Q. From P `
(i)
−→DY , an

inspection of the DY-transition system shows that P ≡ (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦i). Then,

Channel Abstractions for Network Security 35

since P and Q are compatible, it follows that Q ≡ (ν q̃)(Q̂ | b〈a : m̃′ ‖ c̃〉◦i). We now have
two cases, depending on the value of a.

We start with the case a = a. By Lemma 4.2(2), the index i is unique in P and Q, hence
we have P ′ ≡ (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦) and Q′ ≡ (ν q̃)(Q̂ | b〈a : m̃′ ‖ c̃〉◦). Now we examine

the transition P ′ `
α
−→MIM P ′′, and distinguish three sub-cases:

— The move α is by process P̂ . From P̂ 6 �i, we know that α 6= (i), and we may reason
as follows:

P ′ ≡ (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦) `
α
−→MIM (νp̃′)(P̂ ′ | b〈a : m̃ ‖ c̃〉◦) ≡ P ′′

⇓

P ≡ (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦i) `
α
−→MIM (νp̃′)(P̂ ′ | b〈a : m̃ ‖ c̃〉◦i) ≡ P ′′′

MIM∼ MIM∼

Q ≡ (ν q̃)(Q̂ | b〈a : m̃′ ‖ c̃〉◦i) `
α
−→MIM (ν q̃′)(Q̂′ | b〈a : m̃′ ‖ c̃〉◦i) ≡ Q′′′

⇓

Q′ ≡ (ν q̃)(Q̂ | b〈a : m̃′ ‖ c̃〉◦) `
α
−→MIM (ν q̃′)(Q̂′ | b〈a : m̃′ ‖ c̃〉◦) ≡ Q′′

That Q′′′ ≡ (ν q̃′)(Q̂′ | b〈a : m̃′ ‖ c̃〉◦i) follows because the only move possible for
b〈a : m̃′ ‖ c̃〉◦i is a forward labelled (i), while α 6= (i): hence the move from Q must

have originated from Q̂. Thus, from P ′ `
α
−→MIM P ′′ we have found a matching move

Q′ `
α
−→MIM Q′′. Now we must show that (P ′′, Q′′) ∈ R. First observe that P ′′′ and Q′′′

are compatible: this follows by Lemma 6.1, and from the hypothesis that P and Q are

compatible. Also note that P ′′′ `
(i)
−→DY P ′′, Q′′′ `

(i)
−→DY Q′′. Then, (P ′′, Q′′) ∈ R follows

by definition, as P ′′′ MIM∼ Q′′′ with P ′′′ and Q′′′ compatible.

— The move α is by process b〈a : m̃ ‖ c̃〉◦ and is an output. By an inspection of the
observable transitions, we know that b ∈ Nu or ◦ = ε and the transition is of the
following form:

P ′ ≡ (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦) `
b〈a:m̃‖c̃〉◦
−−−−−−−→MIM (νp̃)P̂ .

Notice that no name gets extruded in this move. In fact, since P ≡ (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦i),
by Lemma 4.2(1) we know that i, b, a, c̃, m̃ ∈ fn(P). Back on Q ≡ (ν q̃)(Q̂ | b〈a : m̃′ ‖ c̃〉◦i),
the fact that P and Q are compatible, together with b 6∈ Nt imply that m̃ = m̃′. Thus
we find the desired matching move from Q′:

Q′ ≡ (ν q̃)(Q̂ | b〈a : m̃ ‖ c̃〉◦) `
b〈a:m̃‖c̃〉◦
−−−−−−−→MIM (ν q̃)Q̂.

To conclude, by our hypothesis we know that P
MIM∼ Q, and this, by Lemma 5.1 implies

(νp̃)P̂ MIM∼ (ν q̃)Q̂, hence (νp̃)P̂ R (ν q̃)Q̂ as desired.

M. Bugliesi and R. Focardi 36

— The move α is by process b〈a : m̃ ‖ c̃〉◦ and is an intercepted output. Consider the
following reductions:

P ′ ≡ (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦) `
(j)†b〈a:ñ‖c̃〉◦j
−−−−−−−−−→MIM (νp̃)(P̂ | b〈a : m̃ ‖ c̃〉◦j) ≡ P ′′

Q′ ≡ (ν q̃)(Q̂ | b〈a : m̃′ ‖ c̃〉◦) `
(j)†b〈a:ñ‖c̃〉◦j
−−−−−−−−−→MIM (ν q̃)(Q̂ | b〈a : m̃′ ‖ c̃〉◦j) ≡ Q′′

where j is a fresh index, and either ñ = c̃ (if ◦ = • and b ∈ Nt), or otherwise
ñ = m̃ = m̃′, given that P and Q are compatible. Notice that, even in this case,
no name gets extruded in this moves. Now, from our hypothesis P

MIM∼ Q, by Lemma
6.2(1) we obtain P ′′ MIM∼ Q′′, hence P ′′ R Q′′ as desired.

We continue with the case a = −. As in our previous analysis, by Lemma 4.2(2), we
know that the index i is unique in P and Q. Given that the originator of the mes-
sage is anonymous, the (i) move from P and Q is a replay, and thus we have P ′ ≡
(νp̃)(P̂ | b〈− : m̃ ‖ c̃〉◦ | b〈− : m̃ ‖ c̃〉◦i) and Q′ ≡ (ν q̃)(Q̂ | b〈− : m̃′ ‖ c̃〉◦ | b〈− : m̃′ ‖ c̃〉◦i).
We examine the transition P ′ `

α
−→MIM P ′′, and distinguish four sub-cases:

— The move α is by process P̂ . From P̂ 6 �i, we know that α 6= (i), and we may reason
as follows:

P ′ ≡ (νp̃)(P̂ | b〈− : m̃ ‖ c̃〉◦ | b〈− : m̃ ‖ c̃〉◦i)
`

α
−→MIM (νp̃′)(P̂ ′ | b〈− : m̃ ‖ c̃〉◦ | b〈− : m̃ ‖ c̃〉◦i) ≡ P ′′

⇓

P ≡ (νp̃)(P̂ | b〈− : m̃ ‖ c̃〉◦i) `
α
−→MIM (νp̃′)(P̂ ′ | b〈− : m̃ ‖ c̃〉◦i) ≡ P ′′′

MIM∼ MIM∼

Q ≡ (ν q̃)(Q̂ | b〈− : m̃′ ‖ c̃〉◦i) `
α
−→MIM (ν q̃′)(Q̂′ | b〈− : m̃′ ‖ c̃〉◦i) ≡ Q′′′

⇓
Q′ ≡ (ν q̃)(Q̂ | b〈− : m̃′ ‖ c̃〉◦ | b〈− : m̃′ ‖ c̃〉◦i)

`
α
−→MIM (ν q̃′)(Q̂′ | b〈− : m̃′ ‖ c̃〉◦ | b〈− : m̃′ ‖ c̃〉◦i) ≡ Q′′

That Q′′′ ≡ (ν q̃′)(Q̂′ | b〈− : m̃′ ‖ c̃〉◦i) follows because the only move possible for
b〈− : m̃′ ‖ c̃〉◦i is a replay labelled (i), while α 6= (i): hence the move from Q must
have originated from Q̂. Now we must show that (P ′′, Q′′) ∈ R. First we observe that
P ′′′ and Q′′′ are compatible: this follows by Lemma 6.1, and from the hypothesis that

P and Q are compatible. Then, we note that P ′′′ `
(i)
−→DY P ′′, Q′′′ `

(i)
−→DY Q′′. Finally,

(P ′′, Q′′) ∈ R follows by definition, as P ′′′ MIM∼ Q′′′ with P ′′′ and Q′′′ compatible.

Channel Abstractions for Network Security 37

— The move α is by process b〈− : m̃ ‖ c̃〉◦i . The analysis of the transition is as follows:

P ′ ≡ (νp̃)(P̂ | b〈− : m̃ ‖ c̃〉◦ | b〈− : m̃ ‖ c̃〉◦i)

`
(i)
−→MIM (νp̃)(P̂ ′ | b〈− : m̃ ‖ c̃〉◦ | b〈− : m̃ ‖ c̃〉◦i) ≡ P ′′

where P̂
b(−:m̃‖c̃)
−−−−−−−→MIM P̂ ′

⇓

P ≡ (νp̃)(P̂ | b〈− : m̃ ‖ c̃〉◦i) `
(i)
−→MIM (νp̃)(P̂ ′ | b〈− : m̃ ‖ c̃〉◦i) ≡ P ′′′

MIM∼ MIM∼

Q ≡ (ν q̃)(Q̂ | b〈− : m̃′ ‖ c̃〉◦i) `
(i)
−→MIM (ν q̃)(Q̂′ | b〈− : m̃′ ‖ c̃〉◦i) ≡ Q′′′

where Q̂
b(−:m̃′‖c̃)
−−−−−−−−→MIM Q̂′

⇓
Q′ ≡ (ν q̃)(Q̂ | b〈− : m̃′ ‖ c̃〉◦ | b〈− : m̃′ ‖ c̃〉◦i)

`
(i)
−→MIM (ν q̃)(Q̂′ | b〈− : m̃′ ‖ c̃〉◦ | b〈− : m̃′ ‖ c̃〉◦i) ≡ Q′′

Here, the format of Q′′′ is a consequence of Lemma 4.2(2) by which Q̂ 6 �i, hence the
replay move from Q must originate from the unique output indexed by i. Now we
conclude exactly as in the previous case.

— The move α is by process b〈− : m̃ ‖ c̃〉◦ and is an output. Since the transition is
observable we know that b ∈ Nu or ◦ = ε and, given that P and Q are compatible,
we obtain that m̃ = m̃′. By Lemma 4.2(1) we also have that i, b, c̃, m̃ ∈ fn(P,Q).
Thus:

P ′≡ (νp̃)(P̂ | b〈− : m̃ ‖ c̃〉◦ | b〈− : m̃ ‖ c̃〉◦i) `
b〈−:m̃‖c̃〉◦
−−−−−−−→MIM (νp̃)(P̂ | b〈− : m̃ ‖ c̃〉◦i) ≡P

Q′≡ (ν q̃)(Q̂ | b〈− : m̃ ‖ c̃〉◦ | b〈− : m̃ ‖ c̃〉◦i) `
b〈−:m̃‖c̃〉◦
−−−−−−−→MIM (ν q̃)(Q̂ | b〈− : m̃ ‖ c̃〉◦i) ≡Q

In other words, we are back with P and Q, which are MIM-bisimilar (and thus included
in R) by hypothesis.

— The move α is by process b〈− : m̃ ‖ c̃〉◦ and is an intercepted output. We distinguish
two further sub-cases. If the output, and its indexed copy are in clear, by the com-
patibility of P and Q we may conclude that m̃ = m̃′ = c̃. Hence the transitions from
P ′ and Q′ are as follows:

P ′ ≡ (νp̃)(P̂ | b〈− : m̃ ‖ m̃〉◦ | b〈− : m̃ ‖ m̃〉◦i)

`
(j)†b〈−:m̃‖m̃〉◦j
−−−−−−−−−−−→MIM (νp̃)(P̂ | b〈− : m̃ ‖ m̃〉◦ | b〈− : m̃ ‖ m̃〉◦i | b〈− : m̃ ‖ m̃〉◦j) ≡ P ′′

and

Q′ ≡ (ν q̃)(Q̂ | b〈− : m̃ ‖ m̃〉◦ | b〈− : m̃ ‖ m̃〉◦i)

`
(j)†b〈−:m̃‖m̃〉◦j
−−−−−−−−−−−→MIM (ν q̃)(Q̂ | b〈− : m̃ ‖ c̃〉◦ | b〈− : m̃ ‖ c̃〉◦i | b〈− : m̃ ‖ c̃〉◦j) ≡ Q′′.

That P ′′ MIM∼ Q′′ follows from our hypothesis P
MIM∼ Q, by Lemma 6.2(2).

M. Bugliesi and R. Focardi 38

When ◦ = •, for P ′ we have:

P ′ ≡ (νp̃)(P̂ | b〈− : m̃ ‖ c̃〉• | b〈− : m̃ ‖ c̃〉•i)

`
(j)†b〈a:c̃‖c̃〉•j
−−−−−−−−−→MIM (νp̃)(P̂ | b〈− : m̃ ‖ c̃〉• | b〈− : m̃ ‖ c̃〉•i | b〈− : m̃ ‖ c̃〉•j) ≡ P ′′

Q′ ≡ (ν q̃)(Q̂ | b〈− : m̃′ ‖ c̃〉• | b〈− : m̃′ ‖ c̃〉•i)

`
(j)†b〈−:c̃‖c̃〉•j
−−−−−−−−−→MIM (ν q̃)(Q̂ | b〈− : m̃′ ‖ c̃〉• | b〈− : m̃′ ‖ c̃〉•i | b〈− : m̃′ ‖ c̃〉•j) ≡ Q′′.

That P ′′ MIM∼ Q′′ follows from our hypothesis P
MIM∼ Q, again by Lemma 6.2(2).

There are no other moves, as there are no direct MIM-synchronizations for a trusted
process.

Channel Abstractions for Network Security 39

Appendix B. Semantics of Eavesdroppers

Reduction. Like for intercept, σ is the substitution {b/z, a/x, p̃/ỹ, c̃/w̃}, and the p̃ are as

follows: if ◦ = • and b ∈ Nt then p̃ = c̃ else p̃ = m̃. Moreover, in the (Eavesdrop) rule,

i /∈ {b, m̃, c̃}.

(Eavesdrop Auth)

b〈a : m̃ ‖ c̃〉◦ | ?z(x : ỹ ‖ w̃)◦i .N −→ b〈a : m̃ ‖ c̃〉◦ | (νi)Nσ

(Eavesdrop)

b〈− : m̃ ‖ c̃〉◦ | ?z(x : ỹ ‖ w̃)◦i .N −→ b〈− : m̃ ‖ c̃〉◦ | (νi)(b〈− : m̃ ‖ c̃〉◦i | Nσ)

Labelled Transitions

(Output Eavesdropped)

b 6∈ Nt or ◦ 6= • i /∈ {b, m̃, c̃}

b〈− : m̃ ‖ c̃〉◦
(i)?b〈−:m̃‖c̃〉◦i
−−−−−−−−−→ b〈− : m̃ ‖ c̃〉◦i | b〈− : m̃ ‖ c̃〉◦

(Output Eavesdropped Auth)

b 6∈ Nt or ◦ 6= • i /∈ {b, a, m̃, c̃}

b〈a : m̃ ‖ c̃〉◦
(i)?b〈a:m̃‖c̃〉◦i
−−−−−−−−−→ b〈a : m̃ ‖ c̃〉◦

(Secret Output Eavesdropped)

b ∈ Nt i /∈ {b, m̃, c̃}

b〈− : m̃ ‖ c̃〉•
(i)?b〈−:c̃‖c̃〉•i
−−−−−−−−→ b〈− : m̃ ‖ c̃〉•i | b〈− : m̃ ‖ c̃〉•

(Secret Output Eavesdropped Auth)

b ∈ Nt i /∈ {b, a, m̃, c̃}

b〈a : m̃ ‖ c̃〉•
(i)?b〈a:c̃‖c̃〉•i
−−−−−−−−→ b〈a : m̃ ‖ c̃〉•

(Open Eavesdropped)

N
(p̃,i)?b〈a:m̃‖c̃〉◦i
−−−−−−−−−−→η N ′ n ∈ {b, a, m̃, c̃} − {p̃, i}

(νn)N
(n,p̃,i)?b〈a:m̃‖c̃〉◦i
−−−−−−−−−−−−→η N ′

(Synch Intercept)

M
(p̃,i)†b〈a:m̃‖c̃〉◦i
−−−−−−−−−−→ M ′ N

†b(a:m̃‖c̃)◦i
−−−−−−−→ N ′ {p̃, i} ∩ fn(N) = ∅

M |N
τ
−→ (νp̃, i)(M ′ |N ′)

(Eavesdrop)

?z(x : ỹ ‖ w̃)i.N
?b(a:p̃‖c̃)◦i
−−−−−−→ N{b/z, a/x, p̃/ỹ, c̃/w̃}

