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Diagrammatic logic applied to a parameterization process

César Domı́nguez ∗ Dominique Duval †

August 25., 2009

Abstract. This paper provides an abstract definition of some kinds of logics, called diagrammatic
logics, together with a definition of morphisms and of 2-morphisms between diagrammatic logics. The
definition of the 2-category of diagrammatic logics rely on category theory, mainly on adjunction,
categories of fractions and limit sketches. This framework is applied to the formalization of a param-
eterization process. This process, which consists in adding a formal parameter to some operations in
a given specification, is presented as a morphism of logics. Then the parameter passing process, for
recovering a model of the given specification from a model of the parameterized specification and an
actual parameter, is seen as a 2-morphism of logics.

1 Introduction

This paper provides an introduction to the framework of diagrammatic logics with an application to the
formalization of a parameterization process.

The framework of diagrammatic logics is presented in section 2. It stems from [Duval 2003, Duval 2007],
where the aim was to get an abstract definition of logics, with relevant notions of models and proofs, together
with a good notion of morphism between logics: we were looking for kinds of logics for dealing with compu-
tational effects and for morphisms for expressing the meaning of the effects into more usual logics. This work
is based on adjunction [Kan 1958] and categories of fractions [Gabriel and Zisman 1967] with an additional
level of abstraction provided by limit sketches [Ehresmann 1968], which leads to a notion of entailment appar-
ented to [Makkai 1997]. Our point of view is more abstract than the institutions [Goguen and Burstall 1984],
see [Duval 2003] for a comparison. This new paper does not depend on [Duval 2003, Duval 2007].

On the other hand, the EAT and Kenzo software systems have been developed by F. Sergeraert for
symbolic computation in algebraic topology [Rubio et al. 2007, Dousson et al. 1999]. The data types used
in EAT and Kenzo have been specified through a parameterization process in [Domı́nguez et al. 2006,
Domı́nguez et al. 2007], which is described in [Lambán et al. 2003] in terms of object-oriented technolo-
gies like hidden algebras [Goguen and Malcolm 2000] or coalgebras [Rutten 2000]. The parameterization
process consists in adding a formal parameter to some operations in a given specification. It is followed
by the parameter passing process, which recovers a model of the given specification from any model of the
parameterized specification and any actual parameter. A first attempt to use diagrammatic logics in order to
formalize this parameterization process is given in [Domı́nguez et al. 2005]. In section 3 we present a simple
formalization of the parameterization and parameter passing processes as a morphism and a 2-morphism of
diagrammatic logics, respectively. The focus in this application is on the models, but in [Dumas et al. 2009]
another kind of application is studied, where proofs in a diagrammatic logic play an important role.

Most categorical notions used in this paper can be found in [Mac Lane 1998] or [Barr and Wells 1999].
For simplicity, we omit most size issues and we do not always distinguish between equivalent categories. The
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class of morphisms from X to Y in a category C is denoted C[X, Y ]. A graph means a directed multigraph,
and in order to distinguish between various kinds of structures with an underlying graph we speak about
the objects and morphisms of a category, the types and terms of a theory or a specification and the points
and arrows of a limit sketch. The diagrammatic logics which are considered in this paper are the equational
logic and several apparented logics. However diagrammatic logics can be much richer, for instance first-order
logic as well as simple lambda calculus and logics with induction or coinduction can be seen as diagrammatic
logics.

2 Diagrammatic logics

The 2-category of diagrammatic logics and its related notions are defined in sections 2.1, 2.2 and 2.3, then
the diagrammatic equational logic is described in section 2.4.

2.1 Limit sketches

There are several definitions of limit sketches (also called projective sketches), all of them are such that a
limit sketch generates a category with limits [Coppey and Lair 1984, Barr and Wells 1999]. While a category
with limits is a graph with identities, compositions, limit cones and tuples, satisfying a bunch of axioms,
we define a limit sketch E as a graph with potential identities, compositions, limit cones and tuples, which
become real features in the generated category with limits C (E). For instance a point X in E may have a
potential identity, this is an arrow idX : X → X in E which becomes the identity morphism at the object
X in C (E). As another instance, a diagram in E may have a potential limit cone, which becomes a limit
cone in C (E). Potential features are not required to satisfy any axiom in E. In addition, for the simplicity
of notations, we assume that each potential feature is unique: a point has at most one potential identity, a
diagram has at most one potential limit cone, and so on.

A morphism of limit sketches e : E1 → E2 is a graph morphism which maps the potential features of E1

to potential features of E2. This forms the category of limit sketches. A realization (or loose model) of a
limit sketch E with values in a category C is a graph morphism which maps the potential features of E to
real features of C. A morphism of realizations is (an obvious generalization of) a natural transformation.
This gives rise to the category Real(E,C) of realizations of E with values in C, denoted simply Real(E)
when C is the category of sets. The category Real(E) has colimits and we will use the fact that left adjoint
functors preserve colimits.

The Yoneda contravariant realization YE of a limit sketch E takes its values in Real(E). It is defined as
YE(E) = P(E)[E,−] where P(E) is the prototype of E, which means, the category generated by E such that
every potential feature of E becomes a real feature of P(E). Thanks to YE, up to contravariance the limit
sketch E can be identified to a part of Real(E) which will be called the elementary part of Real(E) (with
respect to E) and denoted Realel(E). It is a graph with distinguished features, defined as the identities,
compositions, colimits and cotuples which are the images of the potential features of E. A fundamental
property is that the elementary part of Real(E) is dense in Real(E): every realization or morphism of
realizations of E can be obtained by colimits and cotuples from Realel(E). Moeover, a fundamental theorem
due to Ehresmann states that every morphism of limit sketches e:E1 → E2 gives rise to an adjunction
Fe ⊣ Ge where the right adjoint Ge is the precomposition with e [Ehresmann 1968]:

Real(E1)
Fe

⊥
Real(E2)

Ge

Then the functor Fe contravariantly extends e via the Yoneda contravariant realizations, in the sense that
there is a natural isomorphism:

Fe ◦ YE1

∼= YE2
◦ e .

A locally presentable category [Gabriel and Ulmer 1971] is a category C which is equivalent to the category
of set-valued realizations of a limit sketch E, then E is called a limit sketch for the category C. In addition,
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we define a locally presentable functor as a functor F :C1 → C2 which is the left adjoint to the precomposition
with some morphism of limit sketches e, so that C1 and C2 are locally presentable categories. Then e is
called a morphism of limit sketches for the functor F .

2.2 Diagrammatic logic: models and proofs

The framework of diagrammatic logics stems from [Duval 2003, Duval 2007].

Definition 2.1 A diagrammatic logic is a locally presentable functor L such that its right adjoint R is full
and faithful.

The fact that R is full and faithful is equivalent to the fact that the counit natural transformation ε: L◦R ⇒ Id
is an isomorphism. According to [Gabriel and Zisman 1967], it is also equivalent to the fact that L is a
localization, up to an equivalence of categories: it consists of adding inverse morphisms for some morphisms,
constraining them to become isomorphisms. Let us consider a diagrammatic logic L:

S
L

⊥
T

R

Definition 2.1 also means that R defines an isomorphim from T to its image, which is a reflective subcategory
of S.

Definition 2.2 The categories S and T are the category of specifications and the category of theories,
respectively, of the diagrammatic logic L. A specification Σ presents a theory Θ if Θ is isomorphic to L(Σ).
Two specifications are equivalent if they present the same theory.

The fact that R is full and faithful means that every theory Θ, when seen as a specification R(Θ), presents
itself. With the next definition, we claim that every model of a specification takes its values in some theory.

Definition 2.3 A (strict) model M of a specification Σ in a theory Θ is a morphism of theories M : LΣ → Θ
or equivalently (thanks to the adjunction) a morphism of specifications M : Σ → RΘ.

It follows that equivalent specifications have the same models. A model M of Σ in Θ is sometimes called an
oblique morphism, it is denoted M : Σ → Θ. Whenever in addition S and T are 2-categories with a natural
isomorphism between T[LΣ, Θ] and S[Σ, RΘ], then T[LΣ, Θ] is the category of models of Σ in Θ, denoted
L[Σ, Θ]. Otherwise, L[Σ, Θ] is simply the discrete category with the models of Σ in Θ as objects.

Definition 2.4 An entailment is a morphism τ in S such that Lτ is invertible in T.

A similar notion can be found in [Makkai 1997]. Two specifications which are related by entailments are
equivalent.

Definition 2.5 An instance ρ of a specification Σ in a specification Σ1 is a cospan in S made of a morphism
σ : Σ → Σ′

1 and an entailment τ : Σ1 → Σ′
1. It is also called a fraction with numerator σ and denominator

τ , and it is denoted ρ = τ\σ : Σ → Σ1.

Let us illustrate an instance ρ = τ\σ of Σ in Σ1 as:

Σ
σ

Σ′
1 Σ1τ

this provides easily a diagram in the category S, by omitting the dotted arrow, and a diagram in the category
T, by making the dotted arrow a solid one, inverse to Lτ :

in S: Σ
σ

Σ′
1 Σ1τ

in T: LΣ
Lσ

LΣ′
1

(Lτ)−1

LΣ1
Lτ
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Since the category S has colimits and since the composition of entailments is an entailment, the instances
can be composed in the usual way as cospans, thanks to pushouts. This forms the bicategory of instances of
the logic, denoted S2. Let ρ = τ\σ: Σ → Σ1 in S2, then we define Lρ = (Lτ)−1 ◦ Lσ: LΣ → LΣ1 in T. The
instances are better suited than the morphisms of specifications for presenting the morphisms of theories,
because for every morphism of theories θ : LΣ → LΣ1 there is an instance ρ such that Lρ = θ. Since L is a
localization, the quotient category of the bicategory S2 is equivalent to T.

Definition 2.6 An inference system for a diagrammatic logic L is a morphism of limit sketches e:ES → ET

for the locally presentable functor L.

Thanks to the Yoneda contravariant realization, the morphism e has properties similar to the functor L. In
particular, e can be chosen so as to consist of adding inverse arrows for some collection of arrows in ES ; see
[Duval 2003, theorem 3.13] for a systematic construction of e. The next definitions depend on the choice of
an inference system e:ES → ET for L; more details are given in [Duval 2007].

Definition 2.7 An inference rule r with hypothesis H and conclusion C is a span in ES , made of two
morphisms t : H ′ → H and s : H ′ → C such that e(t) is invertible in ET . It is also called a fraction with
numerator s and denominator t, and it is denoted r = s/t : H → C.

With this definition we claim that an inference rule with hypothesis H and conclusion C can be seen, via
the Yoneda contravariant realization, as an instance of Y(C) in Y(H). So, we can define an inference step
simply as a composition of fractions, which means, as a pushout in the category S.

Definition 2.8 Given an inference rule r = s/t : H → C and an instance κ:Y(H) → Σ of the hypothesis
Y(H) in a specification Σ, the corresponding inference step provides the instance κ ◦ Y(r):Y(C) → Σ of the
conclusion Y(C) in Σ.

Definition 2.9 A proof (or derivation, or derived rule) is the description of a fraction in S2 in terms of
inference rules (thanks to composition and cotuples).

Typically, by deriving ρ = τ\idσ for a given morphism τ : Σ1 → Σ, we get the property that τ is an
entailment. For instance, in equational logic, let τ be the inclusion of a given specification Σ1 into the
specification Σ made of Σ1 together with an equation f = g made of two terms f, g in Σ1; then τ is an
entailment if and only if the equation f = g holds in the theory presented by Σ1.

2.3 The 2-category of diagrammatic logics

Definition 2.10 A morphism of logics F : L1 → L2 is a pair of locally presentable functors (FS , FT ) together
with a natural isomorphism FT ◦ L1

∼= L2 ◦ FS .

This means that there are inference systems e1 and e2 for L1 and L2 respectively, and morphisms of limit
sketches eS and eT for FS and FT respectively, which form a commutative square of limit sketches:

L1

F

L2

S1
L1

FS

T1

FT

S2
L2

T2

∼=

E1,S
e1

eS

E1,T

eT

E2,S
e2

E2,T

=

Using the Yoneda contravariant realization, a morphism of logics F : L1 → L2 can be determined by any
graph morphism on S1,el (the elementary part of S1 with respect to E1) with values in S2 preserving the
distinguished features of S1,el and the entailments of L1. Some morphisms of logics are easier to describe at
the sketch level (as the undecoration morphism in section 3.1) while others are easier to describe at the logic
level (as the parameterization morphism in section 3.2). The next result is a straightforward application of
adjunction.
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Proposition 2.11 Given a morphism of logics F : L1 → L2 and the corresponding adjunctions FT ⊣ GT

between theories and FS ⊣ GS between specifications, for each specification Σ1 of L1 and each theory Θ2 of
L2 the adjunctions provide an isomorphism, natural in Σ1 and Θ2, between the categories of models:

L1[Σ1, GT (Θ2)] ∼= L2[FS(Σ1), Θ2] .

Definition 2.12 A 2-morphism of logics ℓ: F ⇒ F ′: L1 → L2 is a pair of natural transformations (ℓS , ℓT )
where ℓS : FS ⇒ F ′

S :S1 → S2 and ℓT : FT ⇒ F ′
T :T1 → T2 are such that ℓT ◦ L1 = L2 ◦ ℓS .

Given a morphism of logics F = (FS , FT ) or a 2-morphism of logics ℓ = (ℓS, ℓT ), we will usually omit the
subscripts S and T .

The diagrammatic logics together with their morphisms and 2-morphisms form a 2-category. By focusing
on theories we get a functor from the 2-category of diagrammatic logics to the 2-category of categories. The
other parts of the logic (the category of specifications, the adjunction, and the inference system) provide a
way to answer some issues about theories, typically whether some morphisms of theories are invertible.

2.4 The diagrammatic equational logic

The equational logic provides a fundamental example of a diagrammatic logic. As usual in categorical logic
(see [Pitts 2000]), the equational theories are defined as the categories with chosen finite products; with the
functors which preserve the chosen finite products they form a category Teq . Similarly (see [Lellahi 1989,
Barr and Wells 1999, Wells 1993]), the equational specifications are defined as the finite product sketches,
which means, the limit sketches (as in section 2.1) such that their potential limits are only potential products;
with the morphisms of finite product sketches they form a category Seq . Since all finite products may be
recovered from binary products and a terminal type, we restrict the arity of products to either 2 or 0. We will
often omit the word “equational”. Every theory Θ can be seen as a specification ReqΘ and every specification
Σ generates, or presents, a theory LeqΣ. This corresponds to an adjunction:

Seq

Leq

⊥
Teq

Req

The category of sets with the cartesian products as chosen products forms an equational theory denoted
Set . By default the models of an equational specification Σ are the models of Σ in Set , called the set-valued
models of Σ. It is a classical exercise to build limit sketches for Teq and Seq , then it is easy to check that
Leq is a diagrammatic logic. A simplified description is given now, see [Domı́nguez and Duval 2009] for a
detailed construction. The starting point is the limit sketch for graphs Egr , where the points Type and Term

stand for the sets of vertices (or types) and edges (or terms) and the arrows dom and codom for the functions
source (or domain) and target (or codomain):

Type Term
dom

codom

Figure 1 presents the main part of the graph underlying Eeq,S , in addition there are potential limits, including
the specification of potential monomorphisms, and equalities of arrows. We have represented this graph in
such a way that the bottom line, which is made of Egr with potential limits and tuples, is equivalent to
Egr . The point Type has been duplicated for readability, and the point Unit is a potential terminal type,
interpreted as a singleton.

• The point Comp stands for the set of pairs of composable terms, the arrow i for the inclusion into the
set of pairs of consecutive terms and comp for (f, g) 7→ g ◦ f .

• The point Selid stands for the set of types with a potential identity, the arrow i0 for the inclusion
and selid for X 7→ idX .
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• The point 2-Prod stands for the set of pairs of types with a potential binary product, the arrow j for
the inclusion into the set of pairs of types and 2-prod for (Y1, Y2) 7→ (pr i: Y1 × Y2 → Yi)i=1,2.

• The point 2-Tuple stands for the set of binary cones with a potential binary tuple, the arrow k for the
inclusion into the set of binary cones, 2-base′ for recovering the base (fi: X → Yi)i=1,2 7→ (Y1, Y2), and
2-tuple stands for the construction of the potential binary tuple (fi: X → Yi)i=1,2 7→ 〈f1, f2〉: X →
Y1 × Y2.

• The point 0-Prod stands for the set of potential terminal types, the arrow j0 for the injection (ensuring
that there is at most one terminal type) and 0-prod for the selection of the potential terminal type (if
any).

• The point 0-Tuple stands for the set of types with a potential collapsing term (or nullary tuple), the
arrow k0 for the inclusion into the set of types, 0-base′ for recovering the potential terminal type and
0-tuple stands for the construction of the potential collapsing term X 7→ 〈 〉X : X → 1.

0-Prod

j0
0-prod

0-Tuple
0-base′

k0

0-tuple

Selid

i0
selid

Comp

i
comp

2-Tuple
2-base′

k

2-tuple

2-Prod

j
2-prod

Unit Type
0-base id

Type Term
codom

dom
Cons

snd

fst
2-Cone

c2

c1

2-base
Type2

b2

b1

Figure 1: The graph underlying Eeq,S

A limit sketch Eeq,T for equational theories is obtained from Eeq,S by choosing the entailments and
mapping them to equalities, the corresponding morphism is the diagrammatic equational logic Leq . Figure 2
provides the correspondence between the usual rules of equational logic and the diagrammatic inference rules,
as fractions. Since only a part of Eeq,S is considered, some rules are missing, it is an exercise to enlarge
Eeq,S so as to get them.

It should be noted that in this definition of the equational theories and specifications, the equations are
identities of terms; a more subtle point of view, where the equations in a theory form a congruence, can be
found in [Domı́nguez and Duval 2009].

3 A parameterization process

Several variants of the diagrammatic equational logic, related by morphisms, are defined in section 3.1.
The parameterization process and the parameter passing process are formalized in sections 3.2 and 3.3,
respectively.

3.1 Some diagrammatic logics

The theories of the parameterized equational logic LA are the equational theories together with a distin-
guished type, called the type of parameters and usually denoted A. The specifications are the equational
specifications with maybe a distinguished type A. The inclusion of limit sketches determines a morphism of
logics FA: Leq → LA.

6



name rule fraction

composition f :X→Y g:Y →Z
g◦f :X→Z Cons Comp

i

comp

Term

identity X
idX :X→X Type Selid

i0

selid
Term

binary product Y1 Y2

pr i:Y1×Y2→Yi i=1,2 Type2 2-Prod
j

2-prod
2-Cone

binary tuple f1:X→Y1 f2:X→Y2

〈f1,f2〉:X→Y1×Y2 2-Cone 2-Tuple
k

2-tuple
Term

terminal type 1 Unit 0-Prod
j0

0-prod
Type

collapsing X
〈 〉X :X→1 Type 0-Tuple

k0

0-tuple
Term

Figure 2: Rules for the equational logic

The theories of the equational logic with a parameter La are the parameterized equational theories to-
gether with a distinguished constant of type A, called the parameter and usually denoted a: 1 → A. The
specifications are the parameterized equational specifications with maybe a distinguished term a: 1 → A.
The inclusion of limit sketches determines a morphism of logics Fa: LA → La.

The theories of the decorated equational logic Ldec are the equational theories together with a wide
subtheory called pure (wide means with the same types). The specifications are the equational specifications
together with a wide subspecification. Here is a way to build Edec,T from Eeq,T which reflects the meaning
of the word “decoration”, a smaller choice for Edec,T can be found in [Domı́nguez and Duval 2009]. The
decorations in this context are simply made of two keywords p for “pure” and g for “general”; some terms are
pure, all terms are general, and there are rules for dealing with the decorations: identities and projections
are always pure, and the compositions or tuples of pure terms are pure. This information can be encoded
as a realization ∆ of Eeq,T with values in the category of equational theories, as follows. First let us
describe the set-valued realization ∆0 of Eeq,T underlying ∆. The set ∆0(Type) is made of one type D
and the set ∆0(Term) of two terms p and g, so that ∆0(Cons) = {(p, p), (p, g), (g, p), (g, g)}, ∆0(2-Cone) =
{(p, p), (p, g), (g, p), (g, g)} and ∆0(Type

2) = {(D, D)}, and we denote ∆0(Unit) = {⋆}. Then ∆0(selid)
maps D to p, ∆0(comp) maps (p, p) to p and everything else to g, ∆0(2-prod) maps (D, D) to (p, p),
∆0(2-tuple) maps (p, p) to p and everything else to g, ∆0(0-prod) maps ⋆ to p and ∆0(0-tuple) maps D
to p. The structure of equational theory on each set ∆0(E) is induced by a monomorphism p → g in ∆(Term).
Then Edec,T is the sketch of elements (similar to the more usual category of elements) of the realization ∆
of Eeq,T : the points of Edec,T include one point Type.D over the point Type of Eeq,T , two points Term.p and
Term.g over the point Term of Eeq,T , four points over Cons, and so on, and the arrows of Edec,T include an
arrow c: Term.p → Term.g over idTerm which is a potential monomorphism, for the conversion of pure terms
to general terms.

Clearly by forgotting the decorations we get a morphism of diagrammatic logics Fund : Ldec → Leq , called
the undecoration morphism. And by mapping every feature of Eeq,T to the corresponding pure feature of
Edec,T we get a morphism of diagrammatic logics Fp: Leq → Ldec such that Fund ◦ Fp = idLeq

.

3.2 The parameterization process is a morphism of logics

In this section we define a morphism of logics Fpar : Ldec → LA. We define Fpar on specifications, its definition
on theories follows easily. We will use the fact, which follows from the definition of a morphism of logics,
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that a specification may be replaced by an equivalent one whenever needed.
The parameterization process starts from a decorated specification and returns a parameterized specifi-

cation. Roughly speaking, it replaces every general feature in a decorated specification by a parameterized
one, in such a way that a pure feature does not really depend on the parameter. More precisely, types
and pure terms are unchanged, while every general term f : X → Y is replaced by f ′: A × X → Y where
A is the type of parameter. Figure 3 defines the image of the elementary decorated specifications (pure
terms are denoted with “ ” and the projections prX : A × X → A and εX : A × X → X are often omitted):
for each point E.x in Edec,S , the parameterization process replaces the elementary decorated specification
Y(E.x) by the parameterized specification Fpar (Y(E.x)). The morphisms between elementary decorated spec-
ifications are transformed in a straightforward way. For instance, the image of the morphism Y(c), where
c: Term.p → Term.g is the conversion arrow, maps f ′: A×X → X in Fpar (Y(Term.g)) to f ◦ εX : A×X → Y
in Fpar (Y(Term.p)), or more precisely in a parameterized specification equivalent to Fpar (Y(Term.p)). This
provides a graph morphism Fpar :Realel(Edec,S) → Real(EA,S).

point E.x Y(E.x) Fpar (Y(E.x))

type Type.p X X

pure term Term.p X
f

Y X
f

Y

term Term.g X
f

Y A×X
f ′

Y

pure composition Comp.p X
f

g◦f

=
Y

g
Z X

f

g◦f

=
Y

g
Z

composition Comp.g X
f

g◦f

=
Y

g
Z A×X

〈prX ,f ′〉

g′◦〈prX ,f ′〉

=
A×Y

g′

Z

selection of identity Selid.p X
idX

X X
idX

X

binary product 2-Prod.p Y1

Y1×Y2

p1

p2Y2

Y1

Y1×Y2

p1

p2Y2

pure pairing 2-Tuple.p Y1

X

f

g

〈f,g〉

=

=

Y1×Y2

p1

p2

Y2

Y1

X

f

g

〈f,g〉

=

=

Y1×Y2

p1

p2

Y2

pairing 2-Tuple.g Y1

X

f

g

〈f,g〉

=

=

Y1×Y2

p1

p2

Y2

Y1

A×X

f ′

g′

〈f ′,g′〉

=

=

Y1×Y2

p1

p2

Y2

terminal type 0-Prod.p 1 1

pure collapsing 0-Tuple.p X
〈 〉X

1 X
〈 〉X

1

Figure 3: The parameterization morphism on elementary decorated specifications
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Theorem 3.1 The graph morphism Fpar defines a morphism of diagrammatic logics:

Fpar : Ldec → LA

which is the inclusion on the pure part of Ldec, in the sense that Fpar ◦Fp = FA. It is called the parameter-
ization morphism.

Proof. It can be checked that this graph morphism preserves the distinguished features of Realel(Edec,S)
and the entailments of the decorated logic, so that it provides a morphism of diagrammatic logics. The
equality Fpar ◦ Fp = FA is easily checked on elementary specifications. �

The morphisms of logics Fund , Fpar and FA form a (non-commutative) triangle, which becomes commu-
tative when restricted to the pure part of Ldec:

Leq

Fp
id

=

FA

=
LdecFund Fpar

Leq
FA

LA

The parameterization morphism Fpar formalizes the parameterization process. The span made of Fund and
Fpar formalizes the process of starting from an equational specification Σeq , choosing a pure subspecifica-
tion Σ0 of Σeq so as to get a decorated specification Σdec such that Σeq = Fund (Σdec), then forming the
parameterized specification ΣA = Fpar (Σdec).

3.3 The parameter passing process is a 2-morphism of logics

The diagram of logics in section 3.2 composed with the inclusion Fa: LA → La, which adds the parameter
a: 1 → A, provides another diagram with in addition a 2-morphism ℓ as described below:

Leq

Fp
id

=

Fa◦FA

=
LdecFund Fa◦Fpar

Leq
Fa◦FA

⇑

ℓ

La

Each decorated specification Σdec, with Σeq = Fund (Σdec), gives rise to two specifications with parameter:
on the one hand Σeq,a = Fa(FA(Σeq)), which is simply Σeq seen as a specification with a parameter, and
on the other hand Σa = Fa(Fpar (Σdec)). Let us define the morphism ℓΣdec

: Σeq,a → Σa. When Σdec is some
Y(E.p) (where p means “pure”) it is easy to check that Σeq,a = Σa; then ℓΣdec

is the identity. When Σdec =
Ydec(Term.g) (where g means “general”) , then ℓΣdec

is defined by ℓΣdec
(f) = f ′ ◦ 〈a, idX〉: X → Y (where

1 × X is identified with X). The definitions when Σdec = Ydec(Comp.g) and when Σdec = Ydec(2-Tuple.g)
are similar.

Theorem 3.2 The morphisms ℓΣdec
: Σeq,a → Σa define a 2-morphism of diagrammatic logics:

ℓ: Fa ◦ FA ◦ Fund ⇒ Fa ◦ Fpar : Ldec → La

which is the identity on the pure part of Ldec. It is called the parameter passing 2-morphism.

Proof. The definition of ℓΣdec
on the elementary decorated specifications is extended to all specifications

by colimits, and the result follows. �
Theorem 3.2 has the expected consequence on models, stated as proposition 3.3: given a set-valued model

MA of the paramererized specification ΣA, each α ∈ MA(A), called an actual parameter or an argument,
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gives rise to a model M(α) of the equational specification Σeq . Let us introduce some notations. For each
set A, let SetA denote the object of TA made of the equational theory of sets with A as the interpretation
of A, so that RA(SetA) = Set . For each set A and element α ∈ A, let SetA,α denote the object of Ta

made of the equational theory of sets with A and α as the interpretations of A and a respectively, so that
Ra(SetA,α) = SetA. For each decorated specification Σdec = (Σeq , Σ0), made of an equational specification
Σeq and a wide subspecification Σ0, and for each set-valued equational model M0 of Σ0, let Leq [Σeq ,Set ]|M0

denote the set of models of Σeq extending M0. Let ΣA = Fpar (Σdec), the definition of Fpar is such that Σ0 is
also a subspecification of ΣA and for each f : X → Y in Σeq there is a f ′: A×X → Y in ΣA, with f ′ = f ◦ εX

when f is pure.

Proposition 3.3 Let Σdec = (Σeq , Σ0) be a decorated specification and let ΣA = Fpar (Σdec). For each set
A and each set-valued model MA: ΣA → SetA in LA, let M0: Σeq → Set denote the restriction of MA to Σ0.
Then there is a function:

M: A → Leq [Σeq ,Set ]|M0

which maps each α ∈ A to the model M(α) of Σeq extending M0 and such that M(α)(f) = MA(f ′)(α,−)
for each f : X → Y in Σeq .

Proof. Let Σeq,a = Fa(FA(Σeq)) and Σa = Fa(Fpar (Σdec)). The precomposition with the morphism
ℓΣdec

: Σeq,a → Σa gives rise to a functor La[Σa,SetA,α] → La[Σeq,a,SetA,α]. Proposition 2.11 provides the
isomorphisms La[Σa,SetA,α] ∼= LA[ΣA,SetA] and La[Σeq,a,SetA,α] ∼= Leq [Σeq ,Set ]. So, for each α ∈ A we
get a functor LA[ΣA,SetA] → Leq [Σeq ,Set ]. Let MA,α denote the image of MA, because of the definition
of ℓΣdec

it extends M0 and satisfies MA,α(f) = MA(f ′)(α,−) for each f : X → Y in Σeq . Now, when MA is
fixed, the result follows by defining M(α) = MA,α. �

The function M is not a bijection in general. However this may happen, under the conditions of propo-
sition 3.4: this is the exact parameterization property from [Lambán et al. 2003], which is also proved in
[Domı́nguez and Duval 2009].

Proposition 3.4 With the specifications Σeq , Σ0 and ΣA as in proposition 3.3, let M0 be a model of Σ0

and MA a terminal model of ΣA extending M0. Then the function M from proposition 3.3 is a bijection:

MA(A) ∼= Leq [Σeq ,Set ]|M0
.

It follows from [Rutten 2000] and [Hensel and Reichel 1995] that there is a terminal model of ΣA over M0.
Proposition 3.4 corresponds to the way algebraic structures are implemented in the systems Kenzo/EAT. In
these systems the parameter set is encoded by means of a record of Common Lisp functions, which has a field
for each operation in the algebraic structure to be implemented. The pure terms correspond to functions
which can be obtained from the fixed data and do not require an explicit storage. Then, each particular
instance of the record gives rise to an algebraic structure.
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