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Abstract

Interactive theorem provers based on dependent type theory have the flexibility to support
both constructive and classical reasoning. Constructive reasoning is supported natively by
dependent type theory and classical reasoning is typically supported by adding additional
non-constructive axioms. However, there is another perspective that views constructive
logic as an extension of classical logic. This paper will illustrate how classical reasoning
can be supported in a practical manner inside dependent type theory without additional
axioms. We will see several examples of how classical results can be applied to construc-
tive mathematics. Finally, we will see how to extend this perspective from logic to mathe-
matics by representing classical function spaces using a weak value monad.
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1 Introduction

The common view of constructive logic is that it is a restriction of classical logic where the law
of the excluded middle and proof by contradiction are not allowed. Several software proof assis-
tants are founded on constructive logic, including Coq [The Coq Development Team, 2009] and
Agda [Norell, 2007], and they use the Curry-Howard isomorphism to interpret constructive
deductions as programs and vice versa.

In accordance with this common view of constructive logic, these systems can be extended to
classical logic by adding non-constructive axioms such as the law of excluded middle or proof by
contradiction. When these axioms are added, all the constructive theorems can be used in clas-
sical proofs, since they are all still valid classical deductions. However, one cannot use classical
proofs in constructive theorems since they rely on non-constructive axioms.

There is a high price to be paid by these non-constructive axioms. If one attempts to eval-
uate a classical deduction (viewed through the Curry-Howard isomorphism), the evaluation
could get stuck at a non-constructive axiom because these axioms do not have a computational
interpretation.

We will not be taking this common viewpoint in this paper. Instead, we will see constructive
logic as an extension of classical logic. We will add two new logical connectives to classical logic:
the constructive disjunction, written as ¢ + 1, and the constructive existential, written as
Ya: A.p(a). Constructive theorems will make use of these new connectives while theorems living
in the classical fragment will not. These constructive connectives are stronger than their clas-
sical counterparts in the sense that the following formulas hold:

(p+9) = (pVY) (1)
(ZBa:A.p(a)) = (Fa:A.p(a)) (2)

This viewpoint allows us to freely mix classical and constructive theorems since a classical the-
orem is simply a special type of constructive theorem. In many cases, constructive results can be
used in classical theorems by weakening them using the above theorems, but we will also see
some examples where classical theorems are used in constructive proofs.
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This alternative viewpoint is not original, but it is perhaps not widely known in the classical
mathematics community. Even in constructive circles where it is known to some people, it is
perhaps underappreciated. The purpose of this paper is to

1. Tlustrate that this alternative viewpoint is a useful way to practice classical and con-
structive mathematics,

2. Nlustrate that classical theorems, when seen this way, are useful when creating construc-
tive proofs,

3. Extend this viewpoint from logic to mathematics by defining a classical function space as
a special kind of constructive function space.

Before proceeding, it is worth remarking on my notation. Usually papers on constructive mathe-
matics usurp the classical logical symbols, taking V and 3 to mean constructive disjunction and
constructive existence respectively. I feel that this obscures the fact that the constructive result
is stronger than the classical result. Also, taking the same symbols to have different meanings is
a source of confusion and a potential source of conflict between the constructive and classical
mathematics communities. Since our goal here is to unify and to bring classical mathematics
into the world of constructive mathematics, I will be using new symbols for constructive logical
operators. For constructively minded readers, please take careful note of the definitions of log-
ical operators in Section 2.1.

Constructive mathematics also has new mathematical definitions that are analogous to
common mathematical definitions but use these constructive logical operators, such as real num-
bers, continuity, etc. Since this paper is about constructive mathematics, it would be tedious to
prefix “constructive” in front of every mathematical term. Instead, I will use unqualified terms,
such as “real numbers”, for the constructive definitions, and prefix “classical” when referring
to “classical real numbers”. I hope the reader will not find this too confusing.

2 Logic

My intention is to use dependent type theory viewed through the Curry-Howard isomor-
phism [Thompson, 1991] as my deduction system for constructive logic. However, to help ease
the unfamiliar reader into the constructive world and to illustrate how constructive logic is
really an extension of classical logic, we will slowly and informally unveil dependent type theory
beginning first with the classical fragment of constructive logic.

2.1 Classical logic

Before defining the logic, we will define a typed term language. To get us started, we will
assume we are given types for booleans B, natural numbers N, and higher-order functions,
A= B, over these basic types.

The booleans come with two constructors: true, T: B, and false, F: B. There is an if-then-else
function for elimination:

fg:B=>A=A=A
If-then-else comes with its standard reduction rules:
ifTaxy ~ =z
ifFzy ~ y

Using if-then-else, one can define any boolean operator.
The natural numbers come with constructors zero, 0: IN, and successor, S: N = N; and an
eliminator for primitive recursion:

recg: N=A=(N=A=A4)=A
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Primitive recursion comes with its standard reduction rules:
recA0zf ~ z
reca (Sn)zf ~» fn(recanzf)

Higher-order functions will be defined by lambda expressions and comes with the standard
reduction rule:
(Az.e)y~ e[z y]

With primitive recursion, we can define standard operations over natural numbers such as +
and x. We can also define equality between natural numbers:!

0=Nn0 =T
Sn=n0 := F
O0=nSm = F
Sn=nSm = n=nm

Equality for booleans can also be easily defined since it is just a boolean operator.

We say two terms are convertible if they reduce to the same term. We write t«ws to mean
that the two terms t and s are convertible. Convertible terms denote the same value, so if tews
then we can always replace t with s in any context.

For the logic, we will assume we are given symbols T, L, A, =2 and V. We will take as
inference rules for these symbols the standard rules given by natural deduc-
tion [Troelstra and Schwichtenberg, 1996]. When a formula is derivable using the rules of our
logic, we will say that the formula is valid, or the formula holds. This collection of classical con-
nectives is well known to be complete. We can define the remaining logical connectives in terms
of these:

—p = p=>1

eV 1= =(npAy)
Jda: A.p(a) = —Va: A.—p(a)

We will call V the classical disjunction or weak disjunction, and we will call 3 the classic exis-
tential quantifier or weak existential quantifier.
For atomic relations, we define only one predicate symbol over the booleans, (-):

(Fy := L
(Ty == T

Notice that we are distinguishing between the type B of two elements and logical propositions.
The (-) relation acts as a kind of conversion from booleans to propositions.

We will not take any primitive notion of equality. Instead, we will use (r =n s) for the
equality relation between two natural numbers and (r =g s) for the equality relation between
two booleans.

We will assume we are given rules for case analysis and induction:

[n:IN; 0(n)]
0(T) 6(F) 0(0)  0(Sn)
Vb: B.0(b) Vi N.9(n)
Figure 1. Rule for case analysis. Figure 2. Rule for induction.

To see that we have classical logic, we prove the law of excluded middle.

1. Formally, equality is defined as

An.recNn=p n(Am.recg m T (Amgec. F)) (Ang rm.(recg m F (Amgc.rmp)).

2. Context can be used to disambiguate whether = refers to implication or a function type. We use the same
symbol because in Section 3 we will actually identify implication with the function type.
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Theorem 1. (Law of excluded middle) For any proposition ¢, ¢V =@ holds.

Proof. By the definition of V, we need to prove L from the assumptions of = and ——p. But
——p === 1. By applying modus ponens to - and =@ = 1, we get L as required. O

There is an objection that can be raised here. Even though we have proved the law of
excluded middle, we still do not have a theorem giving us proof by contradiction. More specifi-
cally, there is no proof schema for -—¢ = ¢ in our logic. This is not a problem because we can
prove this for every formula in our classical fragment, specifically those formulas built from, T,
1, {-), A, =, and V, and hence the other connectives that are defined in terms of these.

Theorem 2. (Proof by contradiction) For any propositions ¢ and v and for any term r, the
following hold.

1. == T=T

2. -l=1

3. (mme= )= (=)= (e AY) = (9 A1)

4. (Y =9) = (o(e= ) = (=)

5. == (ry=(r)

6. (Va: A—=¢(a) = p(a)) = (- (Va: A.¢(a)) = Va: A.p(a))

Proof. (1)-(4) are easy constructive tautologies. By case analysis (5) reduces to cases (1) and
(2). For (6) we need to prove ¢(a) for an arbitrary a given our hypothesis. From
Va.——p(a) = p(a) it suffices to prove =—p(a), but this follows easily from ——(Va.p(a)). O

We say a proposition ¢ is double negation stable, or simply stable if =—¢ = ¢ holds. If ¢ is a
stable formula then we are allowed to use proof by contradiction to prove it. By induction on
the syntax of formulas, we see that every formula we can build so far is stable, and hence proof
by contradiction is available to prove it. Notice that for ¢ = 1 to be stable we only require that
1) be stable. Therefore, hypotheses of a proposition are irrelevant when determining whether it
is stable or not; only the conclusion matters.

With this fragment of our logic so far, we have covered all of higher-order Peano arithmetic.
This means that this fragment has more than enough logical power to develop essentially all of
classical number theory using classical reasoning and even most of analysis [Simpson, 1999].
This way of defining classical logic inside constructive logic is known as the Gd&del-Gentzen
double negation interpretation [Gédel, 1933].

Now we turn our attention to extending this logic with constructive connectives.

2.2 Constructive logic

We will add two new primitive symbols: the constructive disjunction +3, and the constructive
existential quantifier . These connectives come with their standard rules of inference provided
by natural deduction.

With the introduction of these two connectives, our inductive proof that ——¢ = ¢ now
breaks down. We cannot expect == (¢ + 1) = (¢ + 1) to hold in general even when ¢ and 1) are
stable. Neither can we prove in general that =—(Xn: N.p(n)) = (EZn: N.¢(n)) holds even when
(n) is stable for all n: N.

We say a proposition ¢ is decidable if ¢ + —p holds. Every decidable proposition is stable.

Recall equations (1) and (2) which state that our new constructive connectives can be weak-
ened to their classical counterparts. This reflects part of the old view of constructive logic where
every constructive proof is a classical proof. However, this old view is not fully internalized in
constructive logic. We do not have that every proposition with constructive connectives implies
the same proposition with the constructive connectives replaced by their classical counterparts.

3. Context will be use to disambiguate the constructive disjunction from addition.
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Theorem 3. The formula —(Vn: N.Xm: N.Rnm) = —(Vn: N.3m: N.Rnm) does not hold in gen-
eral.

Proof. Given our deduction rules, we know that every valid formula holds in every topological
model [Rasiowa. and Sikorski, 1968]. Therefore, to prove that this formula is not valid, it suf-
fices to find a topological model where the formula does not hold.

In the topological model we will consider, propositions will represent open subsets of C, the
Cantor space. Let f: N = C be an enumeration of some countable dense subset of the Cantor
space. Let Rnm be clopen sets such that UmeN Rnm covers the entire Cantor space except
f(n). Thus ¥m.Rnm represents C\{f(n)}, but Im. Rnm represents C. Therefore Yn.Xm.Rnm
represents () while Vn.3m.Rnm represents C. Thus —(Vn.Xm.Rnm) represents C and
—(Vn.3m.Rnm) represents (). Hence the theorem is false in this model. U

Even adding an assumption that R is decidable does not help.

Theorem 4. The formula
(Vnm:N.Rnm+-Rnm) = —(Vn: N.Xm: N.Rnm) = —(Vn: N.3m: N.Rnm)

does not hold constructively.

Proof. The topological model from Theorem 3 satisfies the hypothesis Vnm: N. Rnm + —-Rnm,
so the proof is the same as the proof of Theorem 3. 0

2.3 Reasoning with weak connectives

One wants to reason with the weak connectives as easily as one reasons with the connectives in
traditional classical logic. Unfolding the definition of the weak disjunction to transform it into a
negated conjunction is not a pleasant way of proceeding. One wants to do case analysis. We
cannot allow general case analysis to be done on the weak disjunction because that would imply
that it is equivalent to the constructive disjunction.

Fortunately, there is a common situation when case analysis is allowed on the weak disjunc-
tion. When the goal is a stable proposition, then case analysis can be done:

[l (9] [-6)
VY 0 0 0
0

Figure 3. A derived elimination rule for weak disjunction and stable 6.

It is easy to prove this rule is a tautology in constructive logic. A similar rule can be derived
for the weak existential:

ja: 4; (@) [~-0]

Jda: A.¢(a) 0 0
9

Figure 4. A derived elimination rule for the weak existential and stable 6.

In Coq, these two rules, when written as theorems, have a form close enough to that of an
elimination rule of an inductive type that they can be used with Coq’s destruct t using
tactic. This allows case analysis to be done on weak disjunctions and weak existentials almost as
easily as they are done on constructive disjunctions and constructive existentials. To make this
easier still, Appendix A provides tactics (orWelim and existWelim) that calls destruct t
using and then tries to automatically solve the stability goal for 6 by searching a database of
stability hints.
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3 Dependent Type Theory

Up to now, we have been taking a traditional view of logic where terms and formula are sepa-
rate entities. However, to proceed will will need to take a unified view of these two entities, and
that unified view is provided by dependent type theory.

In dependent type theory, both data types and logical propositions are put on the same
level; both are considered types. We define x as a kind of types? and we can write IN: %, or
Vn: N.Xm: N.Rnm: . The values of propositional types are proof objects, or witnesses, of the
proposition. For example, Az: ¢.x has type ¢ = ¢, and it is a proof object of the this tautology.
For every deduction of a formula 6, there is an associated proof object of type 6 which is given
by the Curry-Howard isomorphism.

Dependent type theory enhances the elimination rules for logical connectives allowing depen-
dent elimination. For example, the dependent elimination rule for the constructive existential is
shown in Figure 5.

a: 4; (@)

p:Ta: A.pa) 0((a, p(a))s,)
0(p)

Figure 5. Dependent elimination rule for the constructive existential.

Here the proof object p is allowed to occur in the type of the conclusion, #(p). Notice that
when applying the elimination rule to a goal 6(p), the p occurring in 6 is refined into the depen-
dent pair (a, ¢(a))s,. This is analogous to the induction rule for natural numbers where the n
occurring in 6(n) is refined into 0 and Sm in the two branches. In fact, it is completely analo-
gous, so much so that we can define all the logical connectives to actually be data types.

T := () (unit type)

L =190 (void type)

OAY = X1 (product type)

P> = =1 (function type)

Vo: A.p(a) = Iz A.o(a) (dependent function type)

The classical formulas correspond to “degenerate” data types, in the sense that if ¢ is a proposi-
tion made entirely from classical connectives,® then for any two values of such a type, p, q: , we
can prove p < ¢ for a suitable notion of equivalence (see Section 3.1). Generally, we will use the
logical notation for these classical formulas, and reserve the use of the type theoretic notation
for the other cases. However, technically they will denote the same thing.

What we have called the constructive disjunction and constructive existential are really the
same things as the sum type and dependent pair type respectively, and we will continue to use
the same notation for them both.

Since we have a kind for types, we can give signatures to predicates and relations. A predi-
cate over A will have kind A = %, and a binary relation on A and B will have kind A= B = *,
which is the same thing as a function from A to predicates on B. We already have an example
of a predicate: Ab: B.(b): B=-*. For b: B, we can now define (b) as

(b):=if bT L.

This basic predicate can be used build other, more complicated predicates.

4. There are many variations of dependent type theory which treat the types of types in various ways, and
there are choices about whether quantification is predicative or impredicative. In this paper, we shall ignore these
issues and leave it up to the reader to interpret this work as much as possible in whatever system they wish. For
concreteness, this work has been prototyped in Coq. See Appendix A.

5. Actually, it suffices that the conclusion be composed from classical connectives.
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In exactly the same way we can define families of types. For example, we can recursively
define a family of types having n:IN elements as a function of n:

ZO = @
Ly = ()—I—Zn

3.1 Setoids

So far we have not dealt with equality beyond the recursive definition of equality for inductive
data types such as N. In dependent type theory, it is common to use a structure called a setoid
that pairs a data type, called the carrier, with an equivalence relation over that type. The type
of Setoids is denoted by 2.

Q:=YA: %x.XR: A= A= %.EquivalenceRelation R

When a X: ) is used in a context expecting a type, we will leave the first projection implicit.
We will write x <xy when z and y are equivalent under the equivalence relation from the setoid
X. We will leave the subscript off when it can be inferred from context.

All inductive data types form a natural setoid structure where equality is the one defined in
the usual recursive way. These natural setoid equivalences for the void data type () and the unit
data type () are trivial in the sense that equivalences hold for every pair of values in their
respective types.

A function f:X =Y between two setoids X and Y is respectful when it respects the equiva-
lence relation from the two setoids:

Respectful f:=Vzy: X.zxy= fx < fy

The type of all respectful functions forms the (constructive) function space between setoids X
and Y. We write X — Y for this type:

X—-Y:=Xf: X=7Y.Respectful f

In fact, we will make X — Y a setoid. We define two respectful functions f, g: X — Y to be
equivalent if they are equivalent pointwise:

f<g=Vr: X. frxgz.

Propositions also form a setoid. Two propositions ¢, ¥: x are considered equivalent if they are
logically equivalent:

== (=) AN (Y=¢)

With this together with respectful functions, we can form respectful predicates of type X — x
and higher arity respectful relations.

Given a setoid X and a respectful predicate on that setoid, P: X — x, we can define a subse-
toid with carrier Ya: X.Pa and where equality is defined by equality of X on the first projec-
tion.

(z,p)=sp (y,9):==2=xY

Given a setoid X and a respectful equivalence relation on that setoid E, a quotient setoid can
be formed by replacing the equivalence relation on X with E.

T=x/py:=FEry

In this paper, we will also be interested in stable setoids, which are setoids that have an addi-
tional property that the equivalence relation is stable.6 Setoids for inductive data types are
stable setoids, and respectful functions whose codomain are stable setoids are also stable setoids.
One can define a setoid of (constructive) real numbers [O’Connor, 2008a|, R, and this setoid is
stable.

6. Stable setoids could reasonably be called Hausdorff spaces [Bauer and Taylor, 2008].
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3.2 Notation

We will use some compressed notation for a few common idioms. In particular, we will identify
sets with respectful predicates, so we will use set notation to define and work with predicates:
pX = X —x%
reX = Xz
{z: X |p(z)} = Ax: X.po(x)
{fe|e: X} = {y|Ze: Xy =< fz}

XUY = {zlzeX+ze€Y}

XNY = {zlzeXAzeY}

XCY = VexeX=zecY

We also define some shorthand for quantifiers:

Vee X.p(z) := Ve.xe X = ()
SreX.p(x) Yr.x e X Ao(x)
Vn <m.p(n) Vn.(n<m)=¢(n)
Sn<m.p(n) = En.(n<m)Apn)

and similarly for 3 and for other inequalities.
Finally, we define unique existence for setoids.

e X.p(x):=Fe: X. o)) A(Vey: X.o(z) = o(y) =z =< y)

In most cases we will leave the first projection of the dependent pair type (a.k.a. the construc-
tive existential) implicit as I have already mentioned in the case of using setoids in a context
requiring a type.

I will also not explicitly write out proof objects that go into the construction of constructive
existentials. Instead, I will just give the witness and will leave it to the reader to fill in the
proof.

4 Infinite Pigeonhole Principle

Let us consider a real life example of using classical reasoning in the development of constructive
mathematics. In this example, we will be using the infinite pigeonhole principle. The infinite
pigeonhole principle says that if you distribute an infinite number of pigeons amongst a finite
number of pigeonholes, then there is some pigeonhole with an infinite number of pigeons. There
is no constructive proof of the infinite pigeonhole principle because finding a pigeonhole with an
infinite number of pigeons is undecidable in general. Therefore, we state the theorem using clas-
sical existentials.

Vn: NV f: N=Z,.Im.Va: N.3b > a.(fo =7, m).

Because this theorem is stated in the classical fragment of our logic, we can use classical rea-
soning to prove this theorem.
Now let us see a constructive context where this classical theorem can be used.

4.1 Hausdorff metrics

I have used this pigeonhole principle during my development of constructively compact sets to
prove that the Hausdorff metric is, in fact, a metric [O’Connor, 2008b, O’Connor, 2009]. A
metric on a type X is defined by a ball relationship BX: Q* = X = X = x where BXab means
that dab < . The ball relationship is used instead of the distance function for a couple of rea-
sons. Firstly, this allows one to define a metric without needing to construct the real numbers.
Secondly, it allows one to define metrics for spaces without a computable distance function.

Given a metric space X, one can define a metric on §X, the finite sets of X, by the Haus-
dorff metric. Given two finite sets A and B, we defined the ball relation as

BS* AB:= (VYa € A.3be B.BXab) A (Vbe B.3a € A. BXab).
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This says that for every point in 4 there is some point in B that within £ and vice versa. Notice
the use of the weak existential here. It may be unclear why one needs use the weak existential
and not the constructive one. To understand, it is helpful to consider the case where X is the
real numbers R.

If we were using the traditional metric space definition, the distance between two sets of real
numbers 4 and B would be

dAB:=max {maxmin dab, max min dab}.
acA beB beB ac A
Since A and B are finite sets and min and max are constructive functions, this definition is con-

structive. However, notice that min dab does not compute at which point b the minimum value
beB
is obtained. If such a b were computable then we could decide for any two real numbers if a <b

or b < a. However, this is well known to be undecidable.
Since we want to represent this metric using our ball relation, it would be inappropriate to
use constructive existence in our Hausdorff metric definition since that would require us to know

at which point b the minimum inigdab is obtained. This would make the definition too strong.
€

4.2 Applying the pigeonhole principle
One key property required of the ball relation is the closedness property:
Ve: QF.(V: QT.BE sab) = BXab

We need to prove this property for our definition of the Hausdorff metric (given that the metric
space X already has this property). Consider for the moment one half of the definition of the
Hausdorff metric:

Vae A.3be B.BXab

To prove half of the closeness property, it suffices to prove
Ve: Q+.(vn; N*+Vaec Adbe B.B;ﬁriab) — Va e A.3beB.BXab.

For any given a € A we need to prove there is some b € B such that BXab holds. The trouble is
that the b found by our hypothesis depends on n, and we need to find one b that holds for every
n.

This is where the infinite pigeonhole principle comes into play. There is going to be some b
such that that BEX 1ab holds for infinitely many n since B is a finite set. Because of the weak-

ening property of metric spaces, this one b works for all n. Thus BXab holds as needed. The
other half of the definition of the Hausdorff metric is proved similarly. Notice that because we
have used the weak existential in the definition of the Hausdorff metric, we are able to apply the
infinite pigeonhole principle, which is a result in classical logic.

One might object to this whole formulation of the problem because, though it is technically
done in constructive logic, we have avoided any real constructive work by avoiding the construc-
tive existential. In other words, there is no computational content in any of this work.

While not denying the above argument, it is important to see that we still maintain the con-
structive content of the rest of the theory. While there is no computational content in this frag-
ment of the development, once the Hausdorff metric is defined one can go on to define compact
sets as the Cauchy completion of the finite sets.

The completion of a metric space X [O’Connor, 2008a] is represented by coherent functions
from QT to X. A function representing a point y from the completion of X takes a tolerance &:
Q™ and returns a value in X that is within ¢ of the point y. A function is coherent if it repre-
sents some point. Two different functions that both represent the same point are equivalent
under a suitable setoid equivalence relation. We see that the completion does have constructive
content, even if the underlying metric is in the classical fragment of constructive logic. For
example, for each compact subset of the plane, we can compute a finite set of points that
approximates the compact set.
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(- (1), Dr

Figure 6. The result of computing an approximation of the graph of sin(3z) on [—1, 1].

Figure 6 shows the output of a computation inside Coq (not extracted from Coq) of an
approximation of the graph of the function Ax.sin(3z) on the interval [—1, 1]. Here the finite set
is being represented as a boolean matrix together with coordinates for the upper-left and lower-
right corners of the matrix. Using the notation mechanism of Coq we display the boolean
matrix using single Unicode characters denoting whether the value of the corresponding entry of
the matrix is true or false. This produces the convenient visualization of the finite set seen in
the figure and illustrates how concrete computation can really proceed even when the metric is
in the classical fragment of our logic.

5 Double Negation

There is an alternative definition of the classical disjunction and classical existential in terms of
their constructive counter parts. By slapping a double negation on the outside of a constructive
connective, it can be turned into a classical connective.

eVY = (e +)
Ax.o(x) = —(Zz.0(z))
These definitions are equivalent to the definitions given in previously in Section 2.1, but the
observation that you use double negations to transform constructive statements into classical

ones is very powerful owing to the special properties of double negation. In particular, double
negation forms a monad, and thus monadic style reasoning can be used.

5.1 Monads

Monads are a standard construction in category theory [Kock, 1972]. In this section, we review
the basics of monads from a functional programming perspective [Wadler, 1995]. A (strong)
monad M: Q= Q is a setoid constructor that comes with three polymorphic operations.

unitgy : IIX. X —-IMX

mapg : XY . (X—>Y)—-MX > MY

joingy : IX.IMONX) —MX
These operations need to satisfy certain laws. There are several different ways of phrasing the
monad laws, but one of the easiest ways is to first define two auxiliary combinators. The first

combinator, bindgy takes a function f: X — MY and lifts the argument, returning a function of
type 9IMX — MY

bindgy f := joingg o (mapen f)
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The second combinator takes f: X — 9Y and ¢: Y — 97 and combines them to get a function
of type X —IMZ:

g <& f:=(bindgy g)o f
Using this combinator, the monad laws can be stated as
f K unitgm f

unitgy < f f
fK(gkh) < (fg)<Kh.

X

X

Let us call a function whose type is of the form X — 9Y a Kleisli function. As you can see,
these Kleisli functions compose together nicely. By composing a regular function of type X — Y
together with unitgy, it can be transformed into Kleisli function.

We will use the following notation for these operations when it is clear which monad is under
consideration:

F e mapm(f
f = bindm(f)
G := uniton(a)

There are several other useful combinators for monads. One called ap, takes a function “inside a
monad”, f:IM(X —Y), and a value x: MX “applies” f to = and returns a value of type MY . We
write ap using the infix operator Q:

f @z :=bindoy (Mfo.fox) f
Ap can be used to create higher arity map functions, such as
map2g: (X =Y > 2) > MX - MY - MZ
map2oy fry:= f @z Qy.
We will give map2gy a special notation when applied to infix operators:
x oy :=map2gy (Aab.aob)zy

With these combinators, plus other combinators and notations, manipulating monadic values
can be almost as pleasant as manipulating regular values.

5.2 The double negation monad
Double negation 91: x = x is a type constructor:
mgp = ﬁﬁ(p

This is trivially a setoid constructor because every function to (7 is respectful and equivalent to
every other function of the same type.
The operations for this monad correspond to to the natural proofs of the appropriate type:

unity; = Ap:x.Aa: p Ak p.ka
mapy = AU xAf: o= r: N Ak:—p.x (ko f)
joing = Ag:*x.Ax: N(MNep). Ak: —p.x(unitey k)

Any double negated type, Iy, is automatically stable no matter if ¢ uses constructive connec-
tives or not. Indeed, joiny witnesses the proof of stability. This means that weak disjunction
and weak existentials can be eliminated nicely whenever one is trying to prove a goal of type
90. This is actually a special instance of a more general rule that says that if the goal stable
then a hypothesis of the form 9ty can be transformed into a hypothesis of the form ¢.

7. Recall that —¢p:= ¢ =1 and that L :=0, so a value of type —¢ is really a function to the void type.
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Figure 7. Elimination rule for the double negation monad and stable 6.

In the special case where 6 is of the form 96y, the proof of this elimination rule is witnessed
by the bindgy function. Indeed, if 0 is stable, then 6 and 910 are isomorphic, with unitey wit-
nessing 6 = N0, and the proof of stability witnessing 910 = 6. Using this isomorphism, we can
prove the our elimination rule for the double negation monad by transforming 6 into 916, using
binds, and transforming 910 back to 6.

The advantage of this monadic approach is that, not only can classical connectives for dis-
junction and existence be defined, but arbitrarily complex constructive propositions can be
turned into classical-like propositions.

5.3 Hybrid systems

Geuvers et al. have developed a framework for proving safety of hybrid discrete and continuous
systems [Geuvers etal., 2010]. For example, they prove the correctness of a simple thermostat
hybrid system by proving that it maintains a minimum temperature.

This work uses exact real arithmetic via the constructive real numbers, rather than floating
point numbers, in order to ensure correctness. The difficulty here is that many propositions
about real numbers are undecidable and hence not provable in constructive mathematics. For
example, constructive trichotomy Vzy: R.(z < y) + (z < y) + (y < z), and even constructive
dichotomy Vzy: R.(z < y) + (y < z) do not hold, but they do hold when the constructive dis-
junction is replaced by the weak disjunction or when the lemma conclusions are put into the
double negation monad.

Geuvers et al. use the double negation monad instead of classical connectives. The use of the
double negation monad allows one to use trichotomy and dichotomy when reasoning about the
hybrid systems. Using the classical fragment of constructive logic is acceptable because the ulti-
mate goal of a safety proof is to show that the set of reachable states is contained within some
compact set, and being a member of a compact set is a stable relation.

5.4 Feit-Thompson theorem

The Feit-Thompson theorem, also known as the odd order theorem, states that any group of
odd order is solvable. The revised paper proof is about 255 pages long and there is currently an
ambitious effort underway to formalize the proof in Coq [Gonthier etal., 2007].

The ultimate goal of the Feit-Thompson theorem is double negation stable, thus classical
reasoning can be allowed. Since large parts of the proof only involve reasoning over finite sets,
restricting oneself to constructive reasoning is not actually restrictive because most classical laws
hold constructively in the finite case. However, a few parts of the proof involve reasoning about
undecidable predicates. For these cases, a modal operator called classically has been defined:®

classically ¢:=Vb: B.(p= (b)) = (b)

Notice that this definition is logically equivalent to the double negation monad defined in Sec-
tion 5.2. The reason this form of the double negation monad is used is that, for this particular
project, one very often has goals of the form (r). When this is the case a hypothesis of
classically ¢ can be immediately applied and a new hypothesis ¢ introduced into the context.
Using SSReflect tactics [Gonthier and Stéphane, 2009], this can easily be done in one step. This
leaves the user to prove their original goal (r) under the hypothesis ¢ with the classically
stripped away.

8. Technically the definition of classically is a little different than the one we give here, but the spirit is
close enough for our purposes.
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6 Classical Functions

In classical mathematics, functions are represented by a certain class of binary predicates over
the domain and codomain. The constrains are that for each point in the domain there is at at
least one and at most one related point in the codomain.

(Vo: X.3Y . Fay) AN (Vyz: B.Fry= Frz=yx<z).

If we drop the constraint that there is at least one related point in the codomain we get the defi-
nition of a partial function.

Defining this notion of a classical function using constructive mathematics is not difficult.
The problem is that we want to be able to compose and manipulate functions easily, and using
relations makes this difficult. For example, to write F'(Gz) < G(Fx) using binary predicates, one
would have to give names to the intermediate values and write out something like

Ay yo 2120. Gxy1 AN Fy1 21 A Fryas A Gys 20 N 21 X 29.

Translating from functional notation to binary predicate notation is quite painful and greatly
expands the formula. In first order logic, there is not much else that can be done without
extending the language with new function symbols. However, with dependent type theory there
is an easy transformation that can be done.

Using curried functions, one would write the type of a binary predicate on X and Y as
X — Y — x. Binary predicates can also be equivalently viewed as having type X — pY, which is
a function from X to unary predicates on Y.

If the binary predicate F' satisfies the properties of being a function and it is applied to an
input z: X, the resulting unary predicate will have some special properties. The predicate
Fx: Y is a predicate that holds for at least one value and at most one value. For a classical
partial function F, the predicate Fx will hold for at most one value.

We define a classical partial value, or a weak partial value, of a stable setoid Y as a subsetoid
of predicates on Y that holds for at most one value and which is also stable. We denote the
stable setoid of weak partial values over Y as LY

PBY (=Y Y. (Vy.~~ycV=ye V)NV 21 € V= 4y2€ V= y1 <X 42)

We define a classical value, also called a weak value, of stable setoid Y as a subsetoid of BY
that holds for at least one value. We denote this stable setoid of weak values over Y as UY.

PY =X Y:PY.Jy.ye Y

We use the weak existential here because we want to define functions for classical mathematics.
If we had used the constructive existential, then our definition would end up almost equivalent
to a constructive function.

Now a weak (partial) function can simply be defined as a function that produces weak (par-
tial) values. Once we show that weak (partial) values form a monad (see Section 6.1), then we
will see that a weak (partial) function is simply a Kleisli function for the weak (partial) value
monad.

Has this shuffling around of definitions really helped us? The answer is yes, because both B
and U are monads (see Section 6.1), users can use standard monadic combinators and pro-
graming techniques to manipulate functions and values of this type. Consider the example from
before of trying to state F'(Gx) < G(Fx). Using the the weak value monad, the functions F' and
G will have type X — U X. Using the bind operation we can write the statement as
F(Gz) < G(Fx). This statement is almost as easy to write as the classical notation, and cer-
tainly much easier than the long winded definition using binary predicates.

6.1 Monadic operations

Recalling our notation from Section 3.2, we define unityp: X — B X as

uniteg zo:= {z: X |z <20}



14 SECTION 6

Given a function f: X —Y, we define mapy f:PX — PY as
mapy fX :={y: Y|z e X. fr <y}
Finally, we define joing : B(PX) — PX as
joing X' := & o unitgp.

The definitions of mapsy, joing, and unity are defined similarly.

Recall from Section 2.1 that we defined a function from booleans to propositions, Ab. (b} :
B — %. There is a similar function taking classical boolean values to propositions. For b: 0B, we
use the same notation to transform it into a proposition and context will make it clear which
one is meant:

b):=Teb

6.2 Choice functions

The constructive axiom of choice is stated using the constructive quantifiers as follows:
VAB: x.(Vz: A.Xy: B.Rxy)= (X f: A= BNVz: A Rx(fx))

This is a theorem of dependent type theory (e.g. it is provable in MLTT [Nordstrom etal., 1990]
and CIC [The Coq Development Team, 2009] and OTT [Altenkirch and McBride, 2006]) and I
will call this the “constructive theorem of choice”. Notice, however, that the function f will not
in general respect the equivalence relations between A and B if A and B are setoids.

Using the classical connectives and classical functions we can state the classical axiom of
choice for setoids X and Y and a respectful relation R:

(Vzy.m—Rxy= Ray)= (Vo: X.3y:Y.Ray)= (3f: X =LY .Va: X. fr C Rx)

This classical choice axiom is double negation stable by construction, and it is not a theorem of
dependent type theory (e.g. it is not a theorem of MLTT nor CIC nor OTT). This is one signifi-
cant difference from the usual approach of doing classical mathematics in a constructive logic by
adding additional classical axioms. In the usual approach, the axiom of choice is inherited from
the constructive theorem of choice.

However, it is worth noting that the classical axiom of choice is a consistent negative state-
ment. In OTT, one can add consistent axioms to propositions without destroying canonicity of
the non-propositional fragment [Altenkirch etal., 2007]. Thus in OTT, users have the flexibility
to choose whether or not to include the axiom of choice in their work.

6.2.1 Definite choice

Although the general axiom of choice is not available without the use of other axioms, the prin-
ciple of definite choice holds.

(Vzy.m—Raxy= Ray)= (Vo: X.y:Y.Ray)= (Ef: A—=UV(B).Va: A. fx C Rx)

Notice that the existence of the classical function is even constructive.

The proof is pretty trivial because the hypothesis of definite choice contains exactly the
ingredients needed to build the weak function f. Given an arbitrary x, we have that Rx is a
stable predicate, and there classically exists a unique y such that y € Rx holds. Thus we can
create a function f: A = UB such that Vz.A. fr C Rx holds. Because R is respectful, we can
prove this function is respectful as well.

6.3 Examples of classical functions

One example of a classical function is the characteristic of a ring structure. For every ring R
there is a monoid homomorphism from p: N — R defined by pn:=mn-1g. The characteristic of R
is the GCD of the set {n|pn=<0r}.
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In general, the characteristic of a ring is uncomputable, even if the ring enjoys decidable
equality. However, we can create a classical function for it. More generally, we can create a clas-
sical function to compute the GCD of any subset of N. First, we give the specification for the
GCD:

gedSpec @ pIN=N=x
gedSpec Px := (Vye P.(z|y)) A (Vz.(Vy € P.(z]y)) = (2| z))

Notice that gcdSpec Pz is a stable proposition because x|y is a decidable relation. We can also
find a proof object for the proposition that there is a unique number n satisfying gcdSpec P.

gcdExists @ VP: pN.3n: N. gcdSpec Pn.

Because we have used the classical existential here, the entire theorem lies in the classical frag-
ment of our logic. Therefore we can complete the proof using any of the usual classical tech-
niques. Using definite choice, we can define the ged : N — UN operation.

We can prove various lemmas about this classical function. For example,

VPQ.(ged (PUQ) | ged P).
It is now easy to define the characteristic of a ring:
char R:=ged {n|p(n) <g 0}

Another example of a classical function is the degree function for polynomials. When the ring of
coeflicients enjoys decidable equality then the degree function is a fine constructive function.
However, when decidable equality does not hold for the ring structure, as is the case for the real
numbers, the degree function can no longer be constructed. However, even in this case, it is still
important to be able to talk about bounds on degrees of polynomials in theorems.

In A Course in Constructive Algebra [Mines etal., 1988] the authors write (pg. 60-61),

For n € N, a polynomial f in R[X] that can be written as Z?;ol r; X" is said to
have degree at most n — 1, written deg f <n—1 or deg f <n. [...] If r;#0 for some
i > d, then we say that f has degree at least d, and write deg f > d. If deg f < d
and deg f > d then we say that f has degree d, written deg f =d, [...]

If f and g are polynomials, then we write deg f < deg g if deg g < n implies
deg f < n for each n € N; and we write deg f < deg ¢ if deg g < n + 1 implies
deg f <n for each n€N. [..]]

Notice all the effort that needs to go in defining all the possible ways of using and comparing
degrees of polynomials. There are so many, it is unreasonable for the authors to write them all
out. Indeed, it only takes them five lines before they write

[...] Then ab is the leading coefficient of fg, and deg fg=deg f +deg g.

However, they have not defined what deg h = deg f 4+ deg g means, although the reader can
make up a reasonable definition on the spot.

Instead, classical functions can be used to give a rigorous definition of degree. We can define
a specification for degree in a similar way to how we specified the GCD.

d n
degSpecfd::(Z riXt= f)/\(Vn.Z riXt= f:>(d<n)>

=0 =0

This specification is stable if the underlying ring R is a stable setoid. In particular, this is the
case for R.

We can prove that for every polynomial f, there classically exists a unique d such that
degSpec fd holds. From this proof we can create a weak function deg: R[X] — UN. Using our
monodic combinators, we can construct arbitrary propositions about degrees such as,

(deg f < 1)
(deg f < degyg)
(deg f = degg+degh).
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This technique can express most of the propositions about degrees required, but there is a
caveat. A Course in Constructive Algebra defines deg f > n using constructive existentials.
Therefore, there is no way to replicate this statement in this framework. However, I believe that
the use of such constructive statements about degrees is relatively rare. In those cases where a
constructive statement is required, then one would need to revert to the old method of making
an ad-hoc definition.

7 Conclusion

One advantage of founding an interactive theorem prover on dependent type theory is that it
has the capability of supporting both constructive reasoning and classical reasoning. However,
one need not add axioms that destroy canonicity to get classical reasoning. Classical reasoning
was already there because it is a fragment of constructive reasoning. This allows one to retain
the benefits of constructive logic while still being able to derive classical results. We saw three
examples of how to integrate traditionally classical results with constructive mathematics.

We also created a monadic method of defining classical functions spaces, again without the
need to add classical axioms. We saw two examples of classical functions that can be used in
constructive mathematics.

Maintaining canonicity in dependent type theory is important because it allows for computa-
tion to be done inside the logic using a technique known as reflec-
tion [Barendregt and Geuvers, 2001]. It also allows for program extraction, which means soft-
ware can be developed along with their proofs of correctness. Dependent pair types (i.e. con-
structive existentials) are important in the development of correct software because it allows one
to tie invariants right into data types [Leroy, 2009].

Prototype Coq modules for the weak connectives and weak value monads are given in
Appendix A and Appendix B respectively. The GCD example has been formalized in Coq using
these modules and the lemma that VPQ. (ged (PU Q) | ged P) has been verified in order to show
this proof of concept. Although the monadic functions work well for creating statements using
classical functions, more theory of weak values needs to be developed and included in the
module in order to make reasoning about them easier.

I hope that the idea of embedding classical reasoning this way will be developed further for
proof assistants. While we have seen that it is possible to do classical reasoning, more support in
constructive proof assistants would be needed if classically minded users are to be able to use
them transparently for classical reasoning. With enough support, it should be possible for users
to not even know that the underlying logic of the system is constructive. This would benefit
constructive users as well, because they would be able to use classical results in their work.
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Appendix A Classical Connectives for Coq

Qed.
Require Import Coq.Classes.Morphisms.
Require Import Coq.Program.Basics. Hint Resolve and_stable iff_stable not_stable : stable
Lemma forall_stable : forall A (P : A -> Prop),
(forall a, “"P a -> P a) -> ““(forall a, P a) -> forall a, P a. [1- (- (- (?P -> 7Q))) -> 7P -> ?Q] => apply (imp_stable P Q)
Proof. I[H: (" (* (7P -> 7Q))) |- ?P -> 7Q] => apply (imp_stable P Q);[lapply H]
firstorder. end : stable.

Hint Extern 3 => match goal with

Qed.

Lemma imp_stable :
Proof .

forall P (Q : Prop), ("7Q -> Q) -> (P -> Q)

firstorder.
Qed.

Lemma and_stable : forall (P Q : Prop),
P ->P) > (CQ->Q ->"7"C®/NQ ->P/\Q.
Proot.
firstorder.
Qed.

Lemma iff_stable : forall (P Q : Prop),

(P ->P) > (7Q > Q) -> (P <> Q) -> (P <> Q).
Proof.
firstorder.

Qed.
Lemma not_stable : forall (P
Proof .

Prop), ~"P -> "P.

firstorder.

-> P -> Q.

Hint Extern 2 =>
match goal with
[I- (* (- forall d, ?Q d)) -> forall d, €?Q d] =>
change (“~(forall d, Q d) -> forall d, Q d); apply forall_stable
I [H: ( (~ forall d, €7Q d)) |- forall d, @7Q d] =>
change (forall d, Q d); apply forall_stable;[lapply H]
end : stable.

Ltac solveStable := solve [auto with stable |firstorder with stable].

Section OrW.
Variables (P Q : Prop).

Definition orW : Prop := ~("P/\"Q).
Lemma orW_stable : "~
Proof .

firstorder.

Qed.

orW -> orW.
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Lemma orWeaken : P \/ Q -> orW.

Proof . Lemma existsW_stable : ~~exW -> exW.
firstorder. Proof .
Qed. firstorder.
Qed.
Lemma orW_elim : forall (R : Prop),
(P ->R) -> (Q->R) -> (""R ->R) -> orW ->R. Lemma existsWeaken : { a : A | P a} -> exW.
Proof . Proof .
firstorder. firstorder.
Qed. Qed.
End OrW. Lemma existsW_elim :
forall (Q:Prop), (forall a, P a -> Q) -> (*°Q -> Q) -> exW -> Q.
Hint Resolve orW_stable : stable. Proof .
Hint Resolve orWeaken : core. firstorder.
Qed.
Ltac leftW := apply orWeaken; left.
Ltac rightW := apply orWeaken; right. End ExistsW.
Tactic Notation "orWelim" constr(H) "as"
simple_intropattern(A) simple_intropattern(B):= Hint Resolve existsW_stable : stable.
let G := fresh "orWelim" in
destruct H as [AIBIG] using orW_elim;[| |solveStablel. Ltac existW x := apply existsWeaken; exists x.
Tactic Notation "orWelim" constr(H):= Tactic Notation "existWelim" constr(H) "as"
let G := fresh "orWelim" in simple_intropattern(a) simple_intropattern(Ha):=
destruct H as [HIH|G] using orW_elim;[| |solveStable]. let G := fresh "existWelim" in

destruct H as [a HalG] using existsW_elim;[|solveStable].
Instance orW_imp_morphism : Morphism (impl ==> impl ==> impl) orW.

firstorder. Instance exW_imp_morphism {A : Type} :
Qed. Morphism (pointwise_relation A impl ==> impl) (QexW A).
firstorder.
Instance orW_inverse_imp_morphism : Qed.
Morphism (inverse impl ==> inverse impl ==> inverse impl) orW.
firstorder. Instance exW_inverse_imp_morphism {A : Type}
Qed. Morphism (pointwise_relation A (inverse impl) ==> (inverse impl))
(Qexi A).
Instance orW_iff_morphism : firstorder.
Morphism (iff ==> iff ==> iff) orl. Qed.
firstorder.
Qed. Instance exW_iff _morphism {A : Type}
Morphism (pointwise_relation A iff ==> iff) (QexW A).
Lemma excluded_middle : forall P, (orW P ("P)). firstorder.
firstorder. Qed.
Qed.
Notation "’existsW’ x , p" (exW _ (fun x => p))
Section ExistsW. (at level 200, x ident, right associativity) : type_scope.
Notation "’existsW’ x : t , p" := (exW _ (fun x:t => p))
Variables (A : Type) (P : A -> Prop). (at level 200, x ident, right associativity,
format "’ [’ ’existsW’ °/’x:t , */ ’p’]

Definition exW : Prop := “forall a, (P a). : type_scope.

Appendix B Classical Values for Coq

Notation "wpv ’holds’ x" := (WPVcarrier _ wpv x) (at level 70).
Require Import ClassicalConnectives.
Require Import Setoid. Record WeakValue (A:ClassicSetoid) := {
Require Import Relation_Definitions. WVcarrier :> WeakPartialValue A;
Require Import SetoidClass. WVexists : existsW x, WVcarrier holds x
Record ClassicSetoid : Type :=
{CScarrier :> Type (* equivalence relation for WeakValues and WeakPartialValues *)
;CSetoid : Setoid CScarrier Definition WPVeq (A:ClassicSetoid) : relation (WeakPartialValue A)
;CSstable : forall x y, ~"(x == y) -> (x == y) fun x y => respectful (Qequiv A (CSetoid A)) iff (WPVcarrier _ x)
}. (WPVcarrier _ y).
Hint Resolve CSstable : stable. Lemma WPVeq_is_Setoid : forall A, Equivalence (WPVeq A).
Proof .
Definition Function (A B:ClassicSetoid) : ClassicSetoid. intros A.
intros A B. split.
apply (Build_ClassicSetoid intros [p]l x y Hxy.
_ (Build_Setoid rewrite Hxy.
(@Equivalence.respecting_equiv _ _ (@setoid_equiv _ (CSetoid A)) reflexivity.
_ _ (@setoid_equiv _ (CSetoid B))))). intros [p] [q] Hpq x y Hxy.
abstract (intros [f Hf] [g Hgl Hfg; simpl in *; auto with stable). symmetry; apply Hpq; symmetry.
Defined. auto.
intros [p] [q] [r] Hpq Hgr x y Hxy.
Definition FunSpace (A B : ClassicSetoid) : Type := Function A B. transitivity (q y).
apply Hpq; auto.
Definition FunctionApply A B (f:FunSpace A B) : A -> B := projl_sig f. apply Hqr; reflexivity.
Qed.

Coercion FunctionApply : FunSpace >-> Funclass.
Instance WPVSetoid (A:ClassicSetoid) : Setoid (WeakPartialValue A) :=

Instance CSetoid_ (A:ClassicSetoid) : Setoid A := {equiv := WPVeq A
{equiv := Qequiv _ (CSetoid A) ;setoid_equiv := QWPVeq_is_Setoid A
;setoid_equiv := @setoid_equiv _ (CSetoid A)
}.
Add Parametric Morphism A : (WPVcarrier A)
Add Parametric Morphism A B : (FunctionApply A B) with signature (equiv ==> equiv ==> iff) as WPVcarrier_morph.
with signature (equiv ==> equiv ==> equiv) as FunctionApply_morph. Proof .
Proof . intros x y Hxy.
intros f g Hfg x y Hxy. apply Hxy.
apply Hfg. Qed.
auto.
Qed. Lemma WPVeq_stable : forall A (x y : WeakPartialValue A),
“(x ==y) ->x v
Record WeakPartialValue (A:ClassicSetoid) := Proof .
{WPVcarrier : A -> Prop intros A p q Hpq x y Hxy.
;WPVstable : forall a, ~~WPVcarrier a -> WPVcarrier a rewrite (WPVmorph _ p _ _ Hxy).
;WPVmorph : Morphism (@equiv A (CSetoid A) ==> iff) WPVcarrier apply iff_stable; auto with stable.
;WPVuniq : forall x y, WPVcarrier x -> WPVcarrier y -> x ==y revert Hpq.
3. q -> (p holds y <-> q holds y)).

Hint Resolve WPVstable : stable. intros Hpq.
rewrite Hpq.
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reflexivity.
Qed.

Canonical Structure WPVCsetoid A :=
Build_ClassicSetoid (WeakPartialValue A) (WPVSetoid A) (WPVeq_stable A).

Lemma WVeq_is_Setoid : forall A, GEquivalence (WeakValue A) (WPVeq A).
Proot.

intros A.

destruct (WPVeq_is_Setoid A).

split; eauto.

Qed.

Instance WVSetoid (A:ClassicSetoid) : Setoid (WeakValue A) :=
{equiv := WPVeq A
;setoid_equiv := @WVeq_is_Setoid A

Canonical Structure WVCsetoid A :=
Build_ClassicSetoid (WeakValue A) (WVSetoid A)
(fun x y => WPVeq_stable A x y).

Add Parametric Morphism A : (Wcarrier A) with signature (equiv
as WVcarrier_morph.
Proot.

auto.
Qed.

Definition WPVzero : forall A, WeakPartialValue A.
intros A.
exists (fun x => False).
abstract (auto with stable).
abstract (intros _ _ _; reflexivity).
abstract contradiction.
Defined.

Definition WPVunit : forall A:ClassicSetoid, A -> WeakPartialValue A.
intros A a.
exists (fun x => a == x).
abstract (apply CSstable).
abstract (intros x y Hxy; rewrite Hxy; reflexivity).
abstract (intros x y Hax; rewrite Hax; auto).
Defined.

Add Parametric Morphism A : (WPVunit A) with signature (equiv ==> equiv)
as WPVunit_morph.

Proof .

intros x y Hxy.

intros a b Hab.

simpl.

revrite Hxy, Hab.

reflexivity.

Qed.

Definition WVunit : forall A:ClassicSetoid, A -> WeakValue A.
intros A a.

exists (WPVunit A a).

abstract (existW a; simpl; reflexivity).

Defined.

Add Parametric Morphism A : (WVunit A) with signature (equiv ==> equiv)
as WVunit_morph.

apply WPVunit_morph.

Qed.

Definition WPVmap : forall (A B : ClassicSetoid)
(f : Function A B),
WeakPartialValue A ->
WeakPartialValue B.
intros A B f a.
exists (fun y => existsW x, a holds x /\ projl_sig f x
abstract (auto with stable).
abstract (intros x y Hxy;setoid_rewrite Hxy;reflexivity).
abstract(
intros x y Hx Hy;
existWelim Hx as xO [HxO Hfx0];
existWelim Hy as x1 [Hx1 Hfx1l;
rewrite <- Hfx0, <- Hfx1;
apply (proj2_sig f);
eapply WPVuniq; [apply HxO |apply Hx1]
)

v).

Defined.

Add Parametric Morphism A B : (WPVmap A B)
with signature (equiv ==> equiv ==> equiv) as WPVmap_morph.

Proof .

intros [f fmorph] [g gmorph] Hfg.

intros x y Hxy.

intros a b Hab.

simpl in *.

assert (Hfga : forall a, f a == g a).
intros a0; apply Hfg.

reflexivity.

setoid_reurite Hfga.

setoid_rewrite Hxy.

setoid_rewrite Hab.

reflexivity.

Qed.

Definition WVmap : forall (A B : ClassicSetoid)
(f : Function A B),

WeakValue A ->

WeakValue B.
intros A B f a.
exists (WPVmap A B f a).
abstract (
existWelim (WVexists _ a) as a0 HaO;
existW (proji_sig £ a0);
simpl;
existW a0;
auto with *
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).

Defined.

Add Parametric Morphism A B : (WVmap A B)
with signature (equiv ==> equiv ==> equiv) as WVmap_morph.
Proof .
simpl.
intros f g Hfg.
intros x y Hxy.
apply WPVmap_morph;
auto.
Qed.

Definition WPVjoin : forall A,
WeakPartialValue (WPVCsetoid A) -> WeakPartialValue A.
intros A a.
exists (fun x => a holds (WPVunit A x)).
abstract (auto with stable).
abstract (intros x y Hxy; rewrite Hxy; reflexivity).
abstract (
intros x y Hx Hy;
assert (Hyy : y == y);[reflexivityl];
assert (Hxy := WPVuniq _ _ _ _ Hx Hy y y Hyy);
simpl in Hxy;
rewrite Hxy;
reflexivity
).
Defined.

Add Parametric Morphism A : (WPVjoin A) with signature (equiv
as WPVjoin_morph.

Proof.

intros x y Hxy.

intros a b Hab.

simpl.

rewrite Hxy, Hab.

reflexivity.

Qed.

equiv)

Definition WVjoin : forall A, WeakValue (WVCsetoid A) -> WeakValue A.
intros A a.

exists (WPVjoin _ (WPVmap _ _ (exist _ _ (WVcarrier_morph A)) a)).
abstract (

existWelim (WVexists _ a) as a0 HaO;

existWelim (WVexists _ a0) as al Halj

existW al;

simpl;

existW a0;

split; auto;

intros x y Hxy;

rewrite Hxy;

simpl; split;

(apply WPVuniq | intros Hy; rewrite <- Hyl;

auto) .

Defined.

Add Parametric Morphism A : (WVjoin A) with signature (equiv ==> equiv)
as WVjoin_morph.

intros x y Hxy.

intros a b Hab.

simpl.

setoid_rewrite Hxy.

setoid_rewrite Hab.

reflexivity.

Qed.

Definition WPVBind (A B : ClassicSetoid)

(f : Function A (WPVCsetoid B))

(a : WeakPartialValue A) : WeakPartialValue B :=
WPVjoin _ (WPVmap _ _ f a).

Definition WVBind (A B : ClassicSetoid)
(f : Function A (WVCsetoid B))
(a : WeakValue A) : WeakValue B :=
WVjoin _ (WVmap _ _ f a).

Lemma WPVlawl : forall (A B : ClassicSetoid)

(f : FunSpace _ _) a, WPVBind A B f (WPVunit A a)
Proof .
intros A B [f morph] a.
change (Morphism (equiv ==> equiv)%signature f) in morph.
intros x y Hxy.
simpl.
setoid_rewrite Hxy.
assert (Hyy : y
reflexivity.
split.

intros E.
existWelim E as x0 [HxO Hfx0].
rewrite Hx0.

rewrite (Hfx0 y y Hyy).

auto.
intros Hfa.
existW a.
split.

reflexivity.
intros ¢ d Hed.

).

rewrite Hcd.

simpl.

split.

apply WPVuniq; auto.
intros Hyd.

rewrite <- Hyd.

auto.

Qed.

Lemma WPVlaw2 : forall (A : ClassicSetoid) (a : WeakPartialValue A),
WPVBind _ _ (exist (WPVunit_morph A)) a a

Proof .

intros A a.

intros x y Hxy.
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simpl.
setoid_reurite Hxy.
simpl.

split.

intros E.

existWelim E as x0O [HxO HfxO0].
setoid_replace y with x0.
auto.
rewrite <- (HfxO x0 x0); simpl; reflexivity.
intros Hay.
existW y.
split; auto.
change (WPVunit A y == WPVunit A y).
reflexivity.
Qed.

Section Law3.

Variable (A B C : ClassicSetoid)
(f : FunSpace A (WPVCsetoid B))
(g : FunSpace B (WPVCsetoid C))
(a : WeakPartialValue A).

Lemma Law3Help : Morphism (equiv ==> equiv) (fun x => WPVBind B C g (f x)).

Proof .

intros x y Hxy.
unfold WPVBind.
setoid_rewrite Hxy.
reflexivity.

Qed.

Lemma WPVlaw3 :

WPVBind B C g (WPVBind A B f a) ==
WPVBind A C (exist Law3Help) a.
Proof .

intros x y Hxy.

setoid_rewrite Hxy.

clear x Hxy.

split.

intros E.

existWelim E as x [E Hx].
existWelim E as z [Hz Hfz].

simpl.
existW z.
split; auto.

change ((WPVBind B C g (f z)) == (WPVunit C y)).
setoid_rewrite <- Hx.

unfold WPVBind.

setoid_revrite Hfz.

apply WPVlawl.

intros E.

existWelim E as z [Hz Hfz].
simpl.

assert (Hyy : y == y).
reflexivity.

rewrite <- (Hfz y y Hyy) in Hyy.
simpl in Hyy.
existWelim Hyy as x [Hx Hgx].
existW x; split; auto.
existW z; split; auto.
intros ¢ d Hed.
rewrite Hed.
simpl.
split.
apply WPVunig; auto.
intros Hxd; rewrite <- Hxd; auto.
Qed.

End Law3.

Lemma WVlawl : forall (A B : ClassicSetoid)
(f : FunSpace A (WVCsetoid B))

(a : A), WVBind A B £ (WVunit A a)
Proof.

a.

intros A B f a.
intros x y Hxy.
assert (morph : Morphism (equiv ==> equiv)

(fun x => (f x : WPVCsetoid B))).
intros ¢ d Hed.
rewrite Hed.
reflexivity.

APPENDIX B

assert (X := WPVlawl A B (exist _ _ morph) a x y Hxy).
revrite <- X.
split.

intros E.

existWelim E as b [E Hb].

existWelim E as c¢ [Hcl He2].

simpl.

existW c.

change (b == (WVunit B x)) in Hb.

rewrite <-Hc2 in Hb.

split; auto.

intros E.
simpl.
existW (WVunit B x).
split; auto.
change (WVunit B x
reflexivity.
Qed.

= WVunit B x).

Lemma WVlaw2 : forall (A : ClassicSetoid)
(a : WeakValue A), WVBind _ _ (exist _ _ (WVunit_morph A)) a
Proof .

intros A a.

intros x y Hxy.
rewrite <- (WPVlaw2 A a x y Hxy).
split.

intros E.

existWelim E as b [E Hb].
existWelim E as ¢ [Hcl He2].
change (b == WVunit A x) in Hb.
rewrite <- Hc2 in Hb.

simpl.

existW c.

split; auto.

intros E.
simpl.
existW (WVunit A x).
split; auto.
change (WVunit A x == WVunit A x).
reflexivity.
Qed.

Lemma WVlaw3 : forall (A B C : ClassicSetoid)
(f : FunSpace A (WPVCsetoid B))

(g : FunSpace B (WPVCsetoid C))

(a : WeakPartialValue A),

WPVBind B C g (WPVBind A B f a) ==

WPVBind A C (exist _ _

(Law3Help A B C f g)) a.

Proof .
apply WPVlaw3.
Qed.

Section Ap.

Variable (A B : ClassicSetoid) (f : WeakValue (Function A B))
(a : WeakValue A).

Lemma Apl : forall fO : FunSpace A B,
Morphism (equiv ==> equiv) (fun a0:A => £0 a0).

Proof.
intros [f0 Hf0].
apply HfO.

Qed.

Definition ApBody (0 : Function A B) : WeakValue B :=
Wimap _ _ (exist _ _ (Apl £0)) a.

Lemma Ap2 : Morphism (equiv ==> equiv) ApBody.
Proot.

intros x y Hxy.

unfold ApBody.

apply WVmap_morph.

apply Hxy.

reflexivity.

Qed.

Definition Ap : WeakValue B :=
WVBind _ _ (exist _ _ Ap2) f.

End Ap.




Require Import Coq.Classes.Morphisms.
Require Import Coq.Program.Basics.

Lemma forall_stable : forall A (P : A -> Prop), 
 (forall a, ~~P a -> P a) -> ~~(forall a, P a) -> forall a, P a.
Proof.
firstorder.
Qed.

Lemma imp_stable : forall P (Q : Prop), (~~Q -> Q) -> ~~(P -> Q) -> P -> Q.
Proof.
firstorder.
Qed.

Lemma and_stable : forall (P Q : Prop), (~~P -> P) -> (~~Q -> Q) -> ~~(P /\ Q) -> P /\ Q.
Proof.
firstorder.
Qed.

Lemma iff_stable : forall (P Q : Prop), (~~P -> P) -> (~~Q -> Q) -> (~~(P <-> Q) -> (P <-> Q)).
Proof.
firstorder.
Qed.

Lemma not_stable : forall (P : Prop), ~~~P -> ~P.
Proof.
firstorder.
Qed.

Hint Resolve and_stable iff_stable not_stable : stable.

Hint Extern 3 =>  match goal with 
  [|- (~ (~ (?P -> ?Q))) -> ?P -> ?Q] => apply (imp_stable P Q)
 |[H:(~ (~ (?P -> ?Q))) |- ?P -> ?Q] => apply (imp_stable P Q);[|apply H]
 end : stable.

Hint Extern 2 => 
 match goal with 
  [|- (~ (~ forall d, @?Q d)) -> forall d, @?Q d] => change (~~(forall d, Q d) -> forall d, Q d); apply forall_stable
 |[H:(~ (~ forall d, @?Q d))|- forall d, @?Q d] => change (forall d, Q d); apply forall_stable;[|apply H]
 end : stable.

Ltac solveStable := solve [auto with stable |firstorder with stable].

Section OrW.

Variables (P Q : Prop).

Definition orW : Prop := ~(~P/\~Q).

Lemma orW_stable : ~~orW -> orW.
Proof.
firstorder.
Qed.

Lemma orWeaken : P \/ Q -> orW.
Proof.
firstorder.
Qed.

Lemma orW_elim : forall (R : Prop),
 (P -> R) -> (Q -> R) -> (~~R -> R) -> orW -> R.
Proof.
firstorder.
Qed.

End OrW.

Hint Resolve orW_stable : stable.
Hint Resolve orWeaken : core.

Ltac leftW := apply orWeaken; left.
Ltac rightW := apply orWeaken; right.
Tactic Notation "orWelim" constr(H) "as"
  simple_intropattern(A) simple_intropattern(B):= 
 let G := fresh "orWelim" in
 destruct H as [A|B|G] using orW_elim;[| |solveStable].
Tactic Notation "orWelim" constr(H):= 
 let G := fresh "orWelim" in
 destruct H as [H|H|G] using orW_elim;[| |solveStable].

Notation "x ⊕ y" := (orW x y) (at level 85, right associativity).

Instance orW_imp_morphism : Morphism (impl ==> impl ==> impl) orW.
firstorder.
Qed.

Instance orW_inverse_imp_morphism : Morphism (inverse impl ==> inverse impl ==> inverse impl) orW.
firstorder.
Qed.

Instance orW_iff_morphism : Morphism (iff ==> iff ==> iff) orW.
firstorder.
Qed.

Lemma excluded_middle : forall P, (orW P (~P)).
firstorder.
Qed.

Section ExistsW.

Variables (A : Type) (P : A -> Prop).

Definition exW : Prop := ~forall a,~(P a).

Lemma existsW_stable : ~~exW -> exW.
Proof.
firstorder.
Qed.

Lemma existsWeaken : { a : A | P a } -> exW.
Proof.
firstorder.
Qed.

Lemma existsW_elim : 
 forall (Q:Prop), (forall a, P a -> Q) -> (~~Q -> Q) -> exW -> Q.
Proof.
firstorder.
Qed.

End ExistsW.

Hint Resolve existsW_stable : stable.

Ltac existW x := apply existsWeaken; exists x.
Tactic Notation "existWelim" constr(H)
  "as" simple_intropattern(a) simple_intropattern(Ha):= 
 let G := fresh "existWelim" in
 destruct H as [a Ha|G] using existsW_elim;[|solveStable].

Instance exW_imp_morphism {A : Type} : Morphism (pointwise_relation A impl ==> impl) (@exW A).
firstorder.
Qed.

Instance exW_inverse_imp_morphism {A : Type} : Morphism (pointwise_relation A (inverse impl) ==> (inverse impl)) (@exW A).
firstorder.
Qed.

Instance exW_iff_morphism {A : Type} : Morphism (pointwise_relation A iff ==> iff) (@exW A).
firstorder.
Qed.

Notation "'existsW' x , p" := (exW _ (fun x => p))
  (at level 200, x ident, right associativity) : type_scope.
Notation "'existsW' x : t , p" := (exW _ (fun x:t => p))
  (at level 200, x ident, right associativity,
    format "'[' 'existsW'  '/ ' x : t ,  '/ ' p ']'")
  : type_scope.



Require Import ClassicalConnectives.
Require Import Setoid.
Require Import Relation_Definitions.
Require Import SetoidClass.

Record ClassicSetoid : Type :=
 {CScarrier :> Type
 ;CSetoid : Setoid CScarrier
 ;CSstable : forall x y, ~~(x == y) -> (x == y)
 }.

Hint Resolve CSstable : stable.

Definition Function (A B:ClassicSetoid) : ClassicSetoid.
intros A B.
apply (Build_ClassicSetoid
 _ (Build_Setoid
  (@Equivalence.respecting_equiv _ _ (@setoid_equiv _ (CSetoid A))
                                 _ _ (@setoid_equiv _ (CSetoid B))))).
abstract (intros [f Hf] [g Hg] Hfg; simpl in *; auto with stable).
Defined.

Definition FunSpace (A B : ClassicSetoid) : Type := Function A B.

Definition FunctionApply A B (f:FunSpace A B) : A -> B := proj1_sig f.

Coercion FunctionApply : FunSpace >-> Funclass.

Instance CSetoid_ (A:ClassicSetoid) : Setoid A :=
 {equiv := @equiv _ (CSetoid A)
 ;setoid_equiv := @setoid_equiv _ (CSetoid A)
 }.

Add Parametric Morphism A B : (FunctionApply A B) with signature (equiv ==> equiv ==> equiv) as FunctionApply_morph.
Proof.
intros f g Hfg x y Hxy.
apply Hfg.
auto.
Qed.

Record WeakPartialValue (A:ClassicSetoid) :=
 {WPVcarrier : A -> Prop
 ;WPVstable : forall a, ~~WPVcarrier a -> WPVcarrier a
 ;WPVmorph : Morphism (@equiv A (CSetoid A) ==> iff) WPVcarrier
 ;WPVuniq :  forall x y, WPVcarrier x -> WPVcarrier y -> x == y
 }.

Hint Resolve WPVstable : stable.

Notation "wpv 'holds' x" := (WPVcarrier _ wpv x) (at level 70).

Record WeakValue (A:ClassicSetoid) := {
 WVcarrier :> WeakPartialValue A;
 WVexists : existsW x, WVcarrier holds x 
 }.

(* equivalence relation for WeakValues and WeakPartialValues *)
Definition WPVeq (A:ClassicSetoid) : relation (WeakPartialValue A) :=
 fun x y => respectful (@equiv A (CSetoid A)) iff (WPVcarrier _ x) (WPVcarrier _ y).

Lemma WPVeq_is_Setoid : forall A, Equivalence (WPVeq A).
Proof.
intros A.
split.
  intros [p] x y Hxy.
  rewrite Hxy.
  reflexivity.
 intros [p] [q] Hpq x y Hxy.
 symmetry; apply Hpq; symmetry.
 auto.
intros [p] [q] [r] Hpq Hqr x y Hxy.
transitivity (q y).
 apply Hpq; auto.
apply Hqr; reflexivity.
Qed.

Instance WPVSetoid (A:ClassicSetoid) : Setoid (WeakPartialValue A) :=
 {equiv := WPVeq A
 ;setoid_equiv := @WPVeq_is_Setoid A
 }.

Add Parametric Morphism A : (WPVcarrier A) with signature (equiv ==> equiv ==> iff) as WPVcarrier_morph.
Proof.
intros x y Hxy.
apply Hxy.
Qed.

Lemma WPVeq_stable : forall A (x y : WeakPartialValue A),
 ~~(x == y) -> x == y.
Proof.
intros A p q Hpq x y Hxy.
rewrite (WPVmorph _ p _ _ Hxy).
apply iff_stable; auto with stable.
revert Hpq.
cut (p == q -> (p holds y <-> q holds y)).
 tauto.
intros Hpq.
rewrite Hpq.
reflexivity.
Qed.

Canonical Structure WPVCsetoid A := 
 Build_ClassicSetoid (WeakPartialValue A) (WPVSetoid A) (WPVeq_stable A).

Lemma WVeq_is_Setoid : forall A, @Equivalence (WeakValue A) (WPVeq A).
Proof.
intros A.
destruct (WPVeq_is_Setoid A).
split; eauto.
Qed.

Instance WVSetoid (A:ClassicSetoid) : Setoid (WeakValue A) :=
 {equiv := WPVeq A
 ;setoid_equiv := @WVeq_is_Setoid A
 }.

Canonical Structure WVCsetoid A := 
 Build_ClassicSetoid (WeakValue A) (WVSetoid A) (fun x y => WPVeq_stable A x y).

Add Parametric Morphism A : (WVcarrier A) with signature (equiv ==> equiv) as WVcarrier_morph.
Proof.
auto.
Qed.

Definition WPVzero : forall A, WeakPartialValue A.
intros A.
exists (fun x => False).
  abstract (auto with stable).
 abstract (intros _ _ _; reflexivity).
abstract contradiction.
Defined.

Definition WPVunit : forall A:ClassicSetoid, A -> WeakPartialValue A.
intros A a.
exists (fun x => a == x).
  abstract (apply CSstable).
 abstract (intros x y Hxy; rewrite Hxy; reflexivity).
abstract (intros x y Hax; rewrite Hax; auto).
Defined.

Add Parametric Morphism A : (WPVunit A) with signature (equiv ==> equiv) as WPVunit_morph.
Proof.
intros x y Hxy.
intros a b Hab.
simpl.
rewrite Hxy, Hab.
reflexivity.
Qed.

Definition WVunit : forall A:ClassicSetoid, A -> WeakValue A.
intros A a.
exists (WPVunit A a).
abstract (existW a; simpl; reflexivity).
Defined.

Add Parametric Morphism A : (WVunit A) with signature (equiv ==> equiv) as WVunit_morph.
apply WPVunit_morph.
Qed.

Definition WPVmap : forall (A B : ClassicSetoid)
 (f : Function A B),
 WeakPartialValue A ->
 WeakPartialValue B. 
intros A B f a.
exists (fun y => existsW x, a holds x /\ proj1_sig f x == y).
  abstract (auto with stable).
 abstract (intros x y Hxy;setoid_rewrite Hxy;reflexivity).
abstract(
intros x y Hx Hy;
existWelim Hx as x0 [Hx0 Hfx0];
existWelim Hy as x1 [Hx1 Hfx1];
rewrite <- Hfx0, <- Hfx1;
apply (proj2_sig f);
eapply WPVuniq; [apply Hx0 |apply Hx1]
).
Defined.

Add Parametric Morphism A B : (WPVmap A B) with signature (equiv ==> equiv ==> equiv) as WPVmap_morph.
Proof.
intros [f fmorph] [g gmorph] Hfg.
intros x y Hxy.
intros a b Hab.
simpl in *.
assert (Hfga : forall a, f a == g a).
 intros a0; apply Hfg.
 reflexivity.
setoid_rewrite Hfga.
setoid_rewrite Hxy.
setoid_rewrite Hab.
reflexivity.
Qed.

Definition WVmap : forall (A B : ClassicSetoid)
 (f : Function A B),
 WeakValue A ->
 WeakValue B.
intros A B f a.
exists (WPVmap A B f a).
abstract (
existWelim (WVexists _ a) as a0 Ha0;
existW (proj1_sig f a0);
simpl;
existW a0;
auto with *
).
Defined.

Add Parametric Morphism A B : (WVmap A B) with signature (equiv ==> equiv ==> equiv) as WVmap_morph.
Proof.
simpl.
intros f g Hfg.
intros x y Hxy.
apply WPVmap_morph;
auto.
Qed.

Definition WPVjoin : forall A, WeakPartialValue (WPVCsetoid A) -> WeakPartialValue A.
intros A a.
exists (fun x => a holds (WPVunit A x)).
  abstract (auto with stable).
 abstract (intros x y Hxy; rewrite Hxy; reflexivity).
abstract (
intros x y Hx Hy;
assert (Hyy : y == y);[reflexivity|];
assert (Hxy := WPVuniq _ _ _ _ Hx Hy y y Hyy);
simpl in Hxy;
rewrite Hxy;
reflexivity
).
Defined.

Add Parametric Morphism A : (WPVjoin A) with signature (equiv ==> equiv) as WPVjoin_morph.
Proof.
intros x y Hxy.
intros a b Hab.
simpl.
rewrite Hxy, Hab.
reflexivity.
Qed.

Definition WVjoin : forall A, WeakValue (WVCsetoid A) -> WeakValue A.
intros A a.
exists (WPVjoin _ (WPVmap _ _ (exist _ _ (WVcarrier_morph A)) a)).
abstract (
existWelim (WVexists _ a) as a0 Ha0;
existWelim (WVexists _ a0) as a1 Ha1;
existW a1;
simpl;
existW a0;
split; auto;
intros x y Hxy;
rewrite Hxy;
simpl; split;
[apply WPVuniq | intros Hy; rewrite <- Hy];
auto).
Defined.

Add Parametric Morphism A : (WVjoin A) with signature (equiv ==> equiv) as WVjoin_morph.
intros x y Hxy.
intros a b Hab.
simpl.
setoid_rewrite Hxy.
setoid_rewrite Hab.
reflexivity.
Qed.

Definition WPVBind (A B : ClassicSetoid)
 (f : Function A (WPVCsetoid B))
 (a : WeakPartialValue A) : WeakPartialValue B :=
 WPVjoin _ (WPVmap _ _ f a).

Definition WVBind (A B : ClassicSetoid)
 (f : Function A (WVCsetoid B))
 (a : WeakValue A) : WeakValue B :=
 WVjoin _ (WVmap _ _ f a).

Lemma WPVlaw1 : forall (A B : ClassicSetoid)
 (f : FunSpace _ _) a, WPVBind A B f (WPVunit A a) == f a.
Proof.
intros A B [f morph] a.
change (Morphism (equiv ==> equiv)%signature f) in morph.
intros x y Hxy.
simpl.
setoid_rewrite Hxy.
assert (Hyy : y == y).
 reflexivity.
split.
 intros E.
 existWelim E as x0 [Hx0 Hfx0].
 rewrite Hx0.
 rewrite (Hfx0 y y Hyy).
 auto.
intros Hfa.
existW a.
split.
 reflexivity.
intros c d Hcd.
rewrite Hcd.
simpl.
split.
 apply WPVuniq; auto.
intros Hyd.
rewrite <- Hyd.
auto.
Qed.

Lemma WPVlaw2 : forall (A : ClassicSetoid)
 (a : WeakPartialValue A), WPVBind _ _ (exist _ _ (WPVunit_morph A)) a == a.
Proof.
intros A a.
intros x y Hxy.
simpl.
setoid_rewrite Hxy.
simpl.
split.
 intros E.
 existWelim E as x0 [Hx0 Hfx0].
 setoid_replace y with x0.
  auto.
 rewrite <- (Hfx0 x0 x0); simpl; reflexivity.
intros Hay.
existW y.
split; auto.
change (WPVunit A y == WPVunit A y).
reflexivity.
Qed.

Section Law3.

Variable (A B C : ClassicSetoid)
 (f : FunSpace A (WPVCsetoid B))
 (g : FunSpace B (WPVCsetoid C))
 (a : WeakPartialValue A).

Lemma Law3Help : Morphism (equiv ==> equiv) (fun x => WPVBind B C g (f x)).
Proof.
intros x y Hxy.
unfold WPVBind.
setoid_rewrite Hxy.
reflexivity.
Qed.

Lemma WPVlaw3 :
 WPVBind B C g (WPVBind A B f a) ==
 WPVBind A C (exist _ _ Law3Help) a.
Proof.
intros x y Hxy.
setoid_rewrite Hxy.
clear x Hxy.
split.
 intros E.
 existWelim E as x [E Hx].
 existWelim E as z [Hz Hfz].
 simpl.
 existW z.
 split; auto.
 change ((WPVBind B C g (f z)) == (WPVunit C y)).
 setoid_rewrite <- Hx.
 unfold WPVBind.
 setoid_rewrite Hfz.
 apply WPVlaw1.
intros E.
existWelim E as z [Hz Hfz].
simpl.
assert (Hyy : y == y).
 reflexivity.
rewrite <- (Hfz y y Hyy) in Hyy.
simpl in Hyy.
existWelim Hyy as x [Hx Hgx].
existW x; split; auto.
existW z; split; auto.
intros c d Hcd.
rewrite Hcd.
simpl.
split.
 apply WPVuniq; auto.
intros Hxd; rewrite <- Hxd; auto.
Qed.

End Law3.

Lemma WVlaw1 : forall (A B : ClassicSetoid)
 (f : FunSpace A (WVCsetoid B))
 (a : A), WVBind A B f (WVunit A a) == f a.
Proof.
intros A B f a.
intros x y Hxy.
assert (morph : Morphism (equiv ==> equiv) (fun x => (f x : WPVCsetoid B))).
 intros c d Hcd.
 rewrite Hcd.
 reflexivity.
assert (X := WPVlaw1 A B (exist _ _ morph) a x y Hxy).
rewrite <- X.
split.
 intros E.
 existWelim E as b [E Hb].
 existWelim E as c [Hc1 Hc2].
 simpl.
 existW c.
 change (b == (WVunit B x)) in Hb.
 rewrite <-Hc2 in Hb.
 split; auto.  
intros E.
simpl.
existW (WVunit B x).
split; auto.
change (WVunit B x == WVunit B x).
reflexivity.
Qed.

Lemma WVlaw2 : forall (A : ClassicSetoid)
 (a : WeakValue A), WVBind _ _ (exist _ _ (WVunit_morph A)) a == a.
Proof.
intros A a.
intros x y Hxy.
rewrite <- (WPVlaw2 A a x y Hxy).
split.
 intros E.
 existWelim E as b [E Hb].
 existWelim E as c [Hc1 Hc2].
 change (b == WVunit A x) in Hb.
 rewrite <- Hc2 in Hb.
 simpl.
 existW c.
 split; auto.
intros E.
simpl.
existW (WVunit A x).
split; auto.
change (WVunit A x == WVunit A x).
reflexivity.
Qed.

Lemma WVlaw3 : forall (A B C : ClassicSetoid) 
 (f : FunSpace A (WPVCsetoid B))
 (g : FunSpace B (WPVCsetoid C))
 (a : WeakPartialValue A),
 WPVBind B C g (WPVBind A B f a) ==
 WPVBind A C (exist _ _
             (Law3Help A B C f g)) a.
Proof.
apply WPVlaw3.
Qed.

Section Ap.

Variable (A B : ClassicSetoid) (f : WeakValue (Function A B)) (a : WeakValue A).

Lemma Ap1 : forall f0 : FunSpace A B, Morphism (equiv ==> equiv) (fun a0:A => f0 a0).
Proof.
intros [f0 Hf0].
apply Hf0.
Qed.

Definition ApBody (f0 : Function A B) : WeakValue B := WVmap _ _ (exist _ _ (Ap1 f0)) a.

Lemma Ap2 : Morphism (equiv ==> equiv) ApBody.
Proof.
intros x y Hxy.
unfold ApBody.
apply WVmap_morph.
apply Hxy.
reflexivity.
Qed.

Definition Ap : WeakValue B :=
 WVBind _ _ (exist _ _ Ap2) f.

End Ap.


