
19 March 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

On Projecting Processes into Session Types

Published version:

DOI:10.1017/S0960129511000405

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/80856 since 2016-11-21T09:17:27Z

This is an author version of the contribution published on:

Luca Padovani
On Projecting Processes into Session Types

MATHEMATICAL STRUCTURES IN COMPUTER SCIENCE (2012)
22(2)

DOI: 10.1017/S0960129511000405

The definitive version is available at:
http://www.journals.cambridge.org/abstract_S0960129511000405

http://www.journals.cambridge.org/abstract_S0960129511000405

Under consideration for publication in Math. Struct. in Comp. Science

On Projecting Processes into Session Types

Luca Padovani

Dipartimento di Informatica, Università degli Studi di Torino

Received 22 July 2010

We define session types as projections of the behavior of processes with respect to the operations
processes perform on channels. This calls for a parallel composition operator over session types
denoting the simultaneous access to a channel by two or more processes. The proposed approach
allows us to define a semantically grounded theory of session types that does not require the linear
usage of channels. However, type preservation and progress can only be guaranteed for processes
that never receive channels they already own. A number of examples show that the resulting
framework validates existing session type theories and unifies them to some extent.

1. Introduction

Session types are an increasingly popular technique for describing structured communications in
distributed systems. In these systems, processes engage into a conversation by first establishing
a private session and then carrying on the conversation within the protected scope of the session.
The session type prescribes, for each process involved in the session, the sequence and type
of messages the process is allowed to send or expected to receive at each given time. Several
theories of session types have been put forward, each characterized by a combination of features.
The arity of the session is restricted to two processes in the seminal works by Honda [1993]
and Honda et al. [1998], it has been relaxed to an arbitrary, but fixed number of processes in
multi-party session types [Honda et al., 2008], and it is unrestricted in conversation types [Caires
and Vieira, 2009], where processes may dynamically join and leave the session. Processes may
be modeled as bare terms of some process algebra, typically some dialect of the π-calculus, or
as threads in functional languages [Vasconcelos et al., 2006; Gay and Vasconcelos, 2007] and
object-oriented calculi (see Drossopoulou et al. [2007]; Dezani-Ciancaglini et al. [2009] for just
a few examples). Session type theories vary also in the properties they are able to enforce, ranging
from basic type safety to local and global progress properties [Dezani-Ciancaglini et al., 2008;
Bettini et al., 2008].

In this paper we take a step back and try to change the perspective: we define session types
as projections of processes. In particular, we slice the behavior of a process according to the
channels it uses and define the session type associated with a channel as the behavior of the
process restricted to that channel, where the actual messages sent and received by the process
are approximated by the corresponding types. To illustrate this idea consider a simplified version
of the “two buyer protocol” from [Honda et al., 2008] where two processes, Buyer1 and Buyer2,

Luca Padovani 2

cooperate for purchasing an item from a Seller process, which is modeled like this:

Seller = a?(x).x?(item : string).x!price(item).(x?false+ x?true.x?(addr : string))

The seller waits for purchase requests on some public channel a, on which it receives a private
channel x – the session channel – where the rest of the conversation takes place. On this channel
the seller receives the name of an item the buyer wants to purchase, it sends out its price, and then
waits for a decision from the buyer (+ denotes an external choice), which is signalled here with
a boolean value: false means that the buyer has refused to buy the item and the conversation
terminates immediately; true means that the buyer has agreed to buy the item, so the seller waits
for the address to which the item should be shipped and then terminates.

By projecting Seller we obtain

` Seller : {a : ?ρ.1}

where ?ρ.1, the session type associated with a, states that Seller uses a for receiving another
channel on which it commits to behave according to ρ . The 1 denotes that Seller no longer uses
a after this action. The session type

ρ = ?string.!real.(?false.1+ ?true.?string.1)

is in fact the projection of Seller’s continuation after action a?(x) with respect to x, but x is not
visible in Seller’s projection since it is bound within the process. Observe that the session type
only mentions the type of the messages exchanged by the process (in this particular example,
false and true are singleton types corresponding to the boolean values).

The two buyers are modeled with the following terms:

Buyer1 = (new c)a!c.c!“The Origin of Species”.b!c
Buyer2 = b?(x).x?(price : real).(x!false⊕ x!true.x!address)

The first buyer creates a fresh channel c – basically, a new session – and sends it to the seller.
On c it also sends the name of the item to buy and then delegates c to the second buyer, which
thus becomes responsible for carrying out the rest of the conversation. The second buyer, once
it has received the session channel from the first buyer, waits for the price of the item and then
decides (⊕ denotes an internal choice) whether to buy the item, by sending true to the seller
followed by the shipping address, or to refuse the item by sending false to the seller.

The projection of Buyer2 is analogous to that of Seller and yields

` Buyer2 : {b : ?θ .1} where θ = ?real.(!false.1⊕ !true.!string.1)

whereas process Buyer1 results in the projection

` Buyer1 : {a : !ρ.1,b : !θ .1}

Channels a and b are used for delegating c. When c is delegated on a it is because Buyer1
expects the receiver to behave according to the type ρ we have determined above, while when
c is delegated on b it is because Buyer1 expects the receiver to behave according to the type θ

above. Since c is bound within Buyer1 it does not appear in its in projection, nonetheless we may
try to argue about the projection of the sub-process a!c.c!“. . . ”.b!c within Buyer1 with respect
to c: this sub-process uses c directly just for sending a string. In addition, having delegated c to

On Projecting Processes into Session Types 3

other processes, it is as if the sub-process also implements the delegated behaviors by itself. In
other words we have

` a!c.c!“The Origin of Species”.b!c : {a : !ρ.1,b : !θ .1,c : ρ | !string.(θ |1)}

Indeed, ρ is the behavior delegated to Seller. After this delegation, the process sends a string
on channel c and finally it delegates the behavior θ to Buyer2. When a process sends a channel to
another process, the two processes must be running in parallel. Consequently, after the commu-
nication we end up with two (or more) processes acting on the delegated channel simultaneously.
Thus, the overall projection of all of these processes on the channel c is the parallel composition
of the projections of the single processes on c. Using the same argument we obtain the following
projection of the whole system:

` Seller |Buyer1 |Buyer2 : {a : ?ρ.1 | !ρ.1,b : !θ .1 | ?θ .1}

This projection exercise leads to a number of observations. The first one is that we can use
projections for deducing properties of systems, such as the absence of communication errors. In
this respect, observe that the session types associated with a and b have a symmetric structure
and are made of complementary actions. It is thus natural to think of session types as if they were
processes, where complementary actions synchronize, and derive the reductions

?ρ.1 | !ρ.1−→ 1 |1 and !θ .1 | ?θ .1−→ 1 |1

proving that at no time a process sends a message that the other process is unwilling to receive
and symmetrically no process starves from some message that is never sent. Both session types
eventually reduce to parallel compositions of 1’s representing the fact that the channels they are
associated with are no longer involved in any interaction. The channel c is more critical, since it
is restricted and hence inaccessible by other processes. For this reason we expect that its session
type is complete just like ?ρ.1 | !ρ.1 and !θ .1 | ?θ .1 are in the sense described above. Indeed we
have

ρ | !string.(θ |1) −→ !real.(?false.1+ ?true.?string.1) |θ |1
−→ (?false.1+ ?true.?string.1) | (!false.1⊕ !true.!string.1) |1
−→ (?false.1+ ?true.?string.1) | !false.1 |1−→ 1 |1 |1

and we obtain another successful derivation if, in the third reduction, we choose the right branch
of the internal choice rather than the left one. Overall we may deduce, by looking at the projec-
tion, that the system is free from communication errors. What we cannot deduce is, in general,
that the system enjoys progress (although the presented one does), since the projection abstracts
away from the order in which different channels are used.

The second observation is that we can use the projection of a system to compare its imple-
mentation against some desired specification, or to relate it to a different implementation. For
instance, we may argue that ρ | !string.(θ |1) and ρ | !string.θ are equivalent as far as com-
pleteness is concerned. While in the latter session type it is no longer evident that the channel
is being delegated, from the point of view of Seller it makes no difference whether it is a single
buyer engaged in the conversation or if there are many of them, provided that their overall be-
havior is compatible with that exposed by the seller. As another example, consider the process

Luca Padovani 4

(new c)Buyer3 where

Buyer3 = a!c.c!“The Origin of Species”.c?(price : real).c!true.c!address

modeling a wealthy (or naive) buyer who always accepts the offer from the seller. Its projection
with respect to channel c is

` Buyer3 : {a : !ρ.1,c : ρ | !string.?real.!true.!string.1}

which resembles the projection of Buyer1 obtained above, but is not quite the same. In particular,
it looks as if !string.?real.!true.!string.1 is a more deterministic version of !string.(θ |1)
since the latter may refuse the Seller’s offer, while the former cannot. This comparison between
different degrees of nondeterminism, which we call subsession and denote with

!string.(θ |1)� !string.?real.!true.!string.1

in this paper, is very closely related to the notion of subtyping in programming languages, except
that here we are comparing behaviors rather than sets of related values. Subtyping relations for
session types have already been studied [Gay and Hole, 2005], but the particular framework
that we are setting up here gives us the interesting opportunity to re-discover these relations
semantically: if session types are processes, we can reason about them by applying and adapting
well-known behavioral theories for processes.

The reader will have noticed that we have been extremely liberal in the interpretation of the
word “session” and in the association of channels with the corresponding session types in the
examples above. Standard session type theories define the session as a private context which is
instantiated and used by means of dedicated linguistic constructs. Here instead we work with just
processes and channels. For us, each channel, no matter if private or public, identifies a session,
and the session type describes the actions performed on that channel and the order in which they
are performed.

The most fundamental difference between our approach and standard session type theories
is that we permit non-linear usage of private and public channels. We have already seen that
process Buyer1 above keeps using private channel c after it has been sent to the seller. Basically
this is possible because the parallel composition operator | over session types allows us to express
arbitrarily complex compositions of simultaneous behaviors over the same channel. Nonetheless,
the non-linear usage of channels may interfere badly with the idea of projected behavior. To
illustrate the issues that may arise consider the process

P = a?(x).x?(y : int).a!(y+1)

which receives some channel x on a on which it waits for an integer number y, and then sends
y+1 on a before terminating. It is reasonable to expect that the continuation of P after the first
action is projected in the following way:

` x?(y : int).a!(y+1) : {x : ?int.1,a : !int.1} (1)

Now consider the reduction

a!a |P→ nil |a?(y : int).a!(y+1)

where process P synchronizes with the process a!a and reduces to a?(y : int).a!(y+ 1) which

On Projecting Processes into Session Types 5

is obtained by instantiating the variable x in the continuation of P after a?(x) with the actual
channel a that is sent. Thus, in this particular reduction, the variable x before the instantiation is
an alias for a. The residual of P after the synchronization would be projected like this:

` a?(y : int).a!(y+1) : {a : ?int.!int.1} (2)

The projection (2) has little to do with the one we obtained in (1) and it is hard to imagine how
to formalize the relation between the two. In general, our projection assumes that each channel
variable is instantiated with a channel name that is different from any other channel already
present in the projection. It may be argued that this example is somewhat contrived, since we are
sending channel a over itself, but the problem is more general. For instance, consider the process

Q = a?(x).b?(y).x!1.y!2

and the following reduction

a!c |b!c |Q→ nil |b!c |b?(y).c!1.y!2→ nil |nil | c!1.c!2

where the channel variables x and y, which are distinct in Q, are both aliases for c.
In an earlier version of this paper [Padovani, 2009] the aliasing problem is avoided altogether

by means of a draconian restriction on the projection of processes guarded by channel input
prefix: there a process of the form a?(x).P is well typed if P has no free name other than x.
Imposing that P can only use the channel it has received obviously limits the applicability of our
projection idea. In this paper we relax this condition at the cost of a slight complication of the
typing rules. The idea is to devise a type system that prevents well-typed processes from receiving
channels they already own. We enforce this property by means of a strict channel order ≺ such
that v ≺ u means that channel v can be sent/received on u and by imposing, in a process like
a?(x).P, that all the free channel names and channel variables in P other than x and a are strictly
larger than a according to ≺. The process P defined above does not violate this constraint by
itself, since the continuation after the a?(x) prefix uses no channel other than x and a. However,
the sender process a!a is ill-typed since, by strictness of ≺, the relation a ≺ a does not hold: a
channel cannot be sent over itself. The process Q, on the other hand, is ill-typed since the residual
x!1.y!2 requires the relations x ≺ a ≺ b ≺ x, which form a cycle: the relation x ≺ a arises since
x is received from a; the relation a ≺ b arises since b occurs free in the continuation after the
input action a?(x); similarly, the relation b≺ x arises since x occurs free in the continuation after
b?(y). In summary, we allow non-linear usage of channels in the sense that the same channel
can be simultaneously used by many processes at the same time. However, a well-typed process
is prevented from receiving a channel it already owns, for this could change its projection in an
unpredictable way.

We can identify three main contributions of our approach: viewing session types as projections
of process behaviors allows us to define session types as an algebraic language of processes
that closely resembles value-passing CCS. In particular, alternative behaviors can be composed
by means of internal and external choices and the simultaneous access to a channel by two
or more processes is modeled by the parallel composition of session types. As an immediate
consequence of this generalization, we show that session types can be studied semantically, rather
than syntactically, using and possibly adapting well-known behavioral equivalences. Thus, we
are able to semantically justify the fundamental concepts (duality, well-typedness, the subtyping

Luca Padovani 6

Table 1. Syntax of session types.

σ ::= session type
0 (error)

| 1 (success)
| α.σ (action)
| σ +σ (external choice)
| σ ⊕σ (internal choice)
| σ |σ (composition)

α ::= action
?t (value input)

| !t (value output)
| ?σ (channel input)
| !σ (channel output)

relation) that are axiomatically or syntactically presented in other theories. In the end, we provide
a unified framework of behavioral types that encompasses features not only of dyadic and multi-
party session types, but also of channel types [Pierce and Sangiorgi, 1996] and of conversation
types [Caires and Vieira, 2009].

Structure of the paper

In Section 2 we define session types as a proper process algebra equipped with a labeled tran-
sition system and a testing semantics based on fair testing. This will immediately provide us
with a semantically justified equivalence relation – actually, a pre-order – to reason about safe
replacement of channels and well-behaving systems. We devote Section 3 to the study of the
main properties of the subsession relation. In Section 4 we formally define a process language
without any explicit construct dedicated to session-oriented interaction and show how to project
processes in this language into session types by means of a type system. The section illustrates
the idea of behavior projection and the features of the type system with several examples and
concludes with the main properties (type preservation and safety) of the projection. Because of
its relative complexity, we prefer developing the theory of session types before applying it to a
process language, to stress the focus of this paper on the nature of session types rather than that
of processes. In fact, the process language presented in Section 4 can be seen as just a case study
for the developed theory, which may be applied to different languages as well. Nonetheless, the
reader who is eagerly looking for the details of the projection may safely jump to Section 4 af-
ter reading Section 2. Section 5 discusses related work and Section 6 concludes. For the sake of
readability, proofs and other supplementary material related to Sections 3 and 4 have been moved
into Appendix A and B respectively.

2. Syntax and Semantics of Session Types

2.1. Syntax

Let us get started by fixing some conventions: we assume an unspecified set V of basic values,
ranged over by v, . . . such as integer and real numbers, boolean values, and so on; basic types,
ranged over by t, s, . . . , are arbitrary subsets of V like /0 (the empty type), v (the singleton type
inhabited by v only), int, real, bool, and so forth; we write ¬t for V \ t. We interpret types
as sets of values and say that t is a subtype of s when t ⊆ s. This setting may be generalized to

On Projecting Processes into Session Types 7

more expressive types as explained in [Castagna and Frisch, 2005; Frisch et al., 2008]. We will
sometimes say that v is of type t if v ∈ t.

The syntax of session types is presented in Table 1: session types, ranged over by σ , τ , . . . , are
projections of process behaviors with respect to a fixed channel. The session type 0 describes a
faulty process which was involved in a communication error over the channel. No correct system
should ever contain channels typed by 0 , but having an explicit representation of faulty behaviors
is useful in the theory that follows. In a sense, the existence of 0 witnesses that session types are
behaviors and that it is perfectly feasible (although generally undesirable) to write processes that
misbehave. The session type 1 describes a process that has finished using a channel. The session
type α.σ describes a process that offers an action determined by the prefix α , and after the
action is performed it behaves according to the residual session type σ . Action prefixes, ranged
over by α , . . . , represent input/output operations on a channel: ?t and !t represent respectively
the input and the output of values of type t; ?σ and !σ are similar but they concern input/output
of channels of type σ . Session types can be composed by means of two behavioral choices, the
external choice + and the internal choice ⊕. The session type σ + τ describes a process that
offers interacting processes two possible behaviors σ and τ . Interacting processes choose by
offering complementary actions with respect to those offered in σ and τ . Dually, the session type
σ⊕τ describes a process that internally decides to behave according to either σ or τ . Interacting
processes have no way of affecting this choice and must be prepared to handle both behaviors
σ and τ . Finally, the session type σ | τ describes the simultaneous access to a channel by two
processes, each of which behaves, with respect to that channel, according to the session types σ

and τ .
We do not rely on any explicit syntax for describing recursive session types (hence potentially

infinite behaviors). As in [Castagna et al., 2009a], we define session types as the possibly infinite
syntax trees generated by the productions for σ in Table 1 that satisfy the following conditions:

— every infinite branch of the tree has infinite occurrences of the action prefix operator;
— every tree has a finite number of different sub-trees.

The first is a contractivity condition to rule out trees such as those that are solutions of the
equations X = X +X or X = X ⊕X which are not meaningful in the theory we are about to
develop; the second is a regularity condition ensuring that the trees are regular trees [Courcelle,
1983]. In addition, we will focus on well-formed session types where every parallel composition
occurring in some branch of an external choice must be guarded by a prefix. This condition arises
naturally in practice (see Section 4) and spares us some annoying technicalities in the proofs.

Example 2.1. To familiarize with recursive session types consider the family of infinite be-
haviors that are uniquely determined by the following equations (uniqueness is ensured by the
contractivity condition above [Courcelle, 1983]):

!tω = !t.!tω ?tω = ?t.?tω + ?¬t.0 tω = (?t.tω + ?¬t.0)⊕ !t.tω

!ρω = !ρ.!ρω ?ρ
ω = ?ρ.?ρ

ω
ρω = ?ρ.ρω ⊕ !ρ.ρω

The session type !tω describes the behavior of a process that sends an infinite number of values
of type t. The session type !ρω is similar, but in this case the process sends channels with type ρ

rather than basic values. The session type ?tω describes the behavior of a process that is capable
of receiving an infinite number of values of type t and that fails as soon as it receives any value

Luca Padovani 8

that is not of type t. Again the session type ?ρ
ω is similar, but regards the input capability of the

process. The session type tω is a composition of ?tω and !tω where, at each moment, the process
internally decides whether to send a value of type t or to wait for a value of type t. Similarly, ρω

is a composition of ?ρ
ω and !ρω .

It is instructive to compare the above behaviors with the following ones:

!t∗ = 1⊕ !t.!t∗ ?t∗ = 1⊕ (?t.?t∗+ ?¬t.0) t∗ = 1⊕ (?t.t∗+ ?¬t.0)⊕ !t.t∗

For example, the session type !t∗ describes a process that sends an arbitrary number of values
of type t on some channel, but it may internally decide to quit using the channel at any time.
So, !tω is a “more deterministic” behavior than !t∗ and it gives more guarantees to interacting
processes. The precise sense in which !tω and !t∗ (as well as the other pairs of corresponding
behaviors) are related will be formalized in Section 2.2. �

It may appear that the syntax of session types is overly generic, and that external choices
make sense only when they are guarded by input actions and internal choices make sense only
when they are guarded by output actions. As a matter of facts, this is a common restriction in
standard session type theories. There are three reasons for this generality: first, it allows us to
express the typing rules (Section 4) in a compositional way, which is particularly important in our
approach where we aim at capturing full, unconstrained process behaviors; second, it separates
actions from choices, thus yielding a clean, algebraic type language with orthogonal features;
third, it allows us to express (some) parallel compositions in terms of equivalent, sequential
session types. For example, consider the session type σ = !int.1 | !bool.1 which describes two
processes trying to simultaneously send an integer and a boolean value on the same channel. A
process interacting with these two parties is allowed to read both values in either order, since
both are simultaneously available. In other words, the composition σ is equivalent to the session
type !int.!bool.1+ !bool.!int.1, that is the interleaving of the actions in σ . Had we expanded
σ to !int.!bool.1⊕ !bool.!int.1 instead, no interacting process would be able to decide which
value, the integer or the boolean value, to read first. This ability to expand parallel compositions
in terms of sequential choices is well studied in process algebra communities where it goes under
the name of expansion law [De Nicola and Hennessy, 1987; Hennessy, 1988].

2.2. Semantics

According to the idea that session types are behaviors, the most natural way for giving some
meaning to session types is to equip them with a transition relation that describes the actions
performed by processes behaving according to these types. The transition system of session
types is defined by the rules in Table 2 plus the obvious symmetric rules of those concerning
choices and parallel composition. Transitions make use of action labels ranged over by µ , . . .
and generated by the grammar:

µ ::= X | ?v | !v | ?σ | !σ

The transition system is defined by two relations: a labeled one
µ−→ describing external, vis-

ible actions and an unlabeled one −→ describing internal, invisible actions. Thus, the language
of session types and the transition system extend CCS without τ’s [De Nicola and Hennessy,

On Projecting Processes into Session Types 9

Table 2. Transitions of session types.

(R1)

1
X−→ 1

(R2)

σ ⊕ τ −→ σ

(R3)

!v.σ
!v−→ σ

(R4)
v ∈ t

!t.σ −→ !v.t

(R5)
v ∈ t

?t.σ
?v−→ σ

(R6)

!ρ.σ
!ρ−→ σ

(R7)
ρ � ρ

′

?ρ
′.σ

?ρ−→ σ

(R8)
ρ 6� ρ

′

?ρ
′.σ

?ρ−→ 0

(R9)

σ −→ σ
′

σ + τ −→ σ
′+ τ

(R10)

σ
µ−→ σ

′

σ + τ
µ−→ σ

′

(R11)

σ −→ σ
′

σ | τ −→ σ
′ | τ

(R12)

σ
µ−→ σ

′
µ 6=X

σ | τ µ−→ σ
′ | τ

(R13)

σ
µ−→ σ

′
τ

µ−→ τ
′

µ 6=X

σ | τ −→ σ
′ | τ ′

(R14)

σ
X−→ σ

′
τ
X−→ τ

′

σ | τ X−→ σ
′ | τ ′

1987] to a value-passing calculus. Let us briefly comment the rules in Table 2. Rule (R1) states
that the session type 1 emits a signalX denoting successful termination and reduces to itself. By
rule (R2), the session type σ ⊕ τ can perform an internal transition to either σ or τ . Rules (R3),
(R4), and (R5) deal with actions on basic values: the session type !v.σ performs the action !v
denoting the emission of value v and reduces to σ ; the session type !t.σ may internally reduce
to any !v.σ where v is of type t; the session type ?t.σ may perform any action of the form ?v for
any v of type t then reducing to σ . Observe that a process behaving according to !t.σ commits
to sending one particular value of type t, whereas a process behaving according to ?t.σ is able
to receive any value of type t. Rules (R6), (R7), and (R8) deal with actions on channels: the
session type !ρ.σ performs an action !ρ (the output of a channel of type ρ); rules (R7) and (R8)
state that a session type ?ρ ′.σ performs actions of the form ?ρ for any ρ . However, ?ρ.σ reduces
to σ only if the type ρ of the received channel is a subsession of the expected type (ρ � ρ ′);
if the type ρ of the received channel is not a subsession of the expected type (ρ 6� ρ ′), then
an unrecoverable error occurs. This is signalled by the fact that the residual behavior is 0. We
will define the subsession relation between session types shortly. For the time being, the reader
can comfort herself with the intuition that subsession is the behavioral equivalent of subtyping:
if ρ � ρ ′ holds, then any channel with associated session type ρ may be safely used where a
channel with associated session type ρ ′ is expected. Rule (R9) states that + is indeed an external
choice, thus internal moves in either branch do not preempt the other branch. This is a typical re-
duction rule for those languages with two different choices, such as CCS without τ’s. Rule (R10)
states that external choices offer any action that is offered by either branch. Rules (R11), (R12),
and (R13) express the evolution of compositions: each component of a composition is able to
make autonomous progress by itself (R11); each action offered by a component is also offered
by the whole composition (R12); two components may synchronize if they offer complementary
actions. In this rule and in the following, µ denotes the complement of action µ , for example
?v = !v and ?ρ = !ρ; we assume that X is undefined. Finally, rule (R14) expresses the fact that
a parallel composition is successfully terminated only if both its components are.

Before we move on to defining the subsession relation, we should discuss a fundamental design

Luca Padovani 10

decision that regards communication and external choices. On the one hand, rule (R5) shows that
only values of the right type may be input by a process whose behavior is described by the session
type ?t.σ . As a consequence, values may drive the selection of the branch in external choices.
For example, we have ?int.σ + ?bool.τ ?3−→ σ and ?int.σ + ?bool.τ ?true−−−→ τ . The type of the
value in the label uniquely determines the branch and thus the residual behavior of the process.
This feature subsumes the label-driven branch selection that is found in standard session types
theories. On the other hand, rules (R7) and (R8) show that a process waiting for a channel will
input the channel regardless of its associated session type. If the channel that is received has the
“right type” (a session type that is a subsession of the expected one), then the communication is
successful and the process proceeds normally. If the channel that is read has the “wrong type”
(a session type that is not a subsession of the expected one), then the communication yields
an error. As a consequence, branch selection cannot be affected by the type of the channel being

communicated. It is true that ?ρ.σ +?ρ ′.τ
?ρ−→σ and ?ρ.σ +?ρ ′.τ

?ρ ′−→ τ , but then, assuming that

ρ and ρ ′ are not related by the subsession relation, we also have the transitions ?ρ.σ +?ρ ′.τ
?ρ ′−→

0 and ?ρ.σ + ?ρ ′.τ
?ρ−→ 0. Namely, a process interacting with another one whose behavior is

described by ?ρ.σ + ?ρ ′.τ may safely send a channel of type ρ ′′ only if ρ ′′ is a subsession of
both ρ and ρ ′. In this case, the residual behavior is non-deterministically chosen to be either σ or
τ . In summary, unlike in [Castagna et al., 2009a] we do not allow dynamic dispatching according
to the type of channels. Section 5 contains a more detailed discussion about this design decision
and its consequences.

In the following we adopt standard conventions regarding the transition relations: we write =⇒
for the reflexive, transitive closure of −→; let

µ
=⇒ be =⇒ µ−→=⇒; we write σ

µ−→ (respectively,
σ

µ
=⇒) if there exists τ such that σ

µ−→ τ (respectively, σ
µ

=⇒ τ); we write X−→, X
µ−→, Y

µ
=⇒ for the

usual negated relations; for example, σ X−→ means that σ does not perform internal transitions.
We let init(σ)

def
= {µ | σ µ

=⇒}; if A is a set of actions, we write A for the set of corresponding

co-actions, namely A
def
= {µ | µ ∈ A \{X}}.

We have assumed that the subtyping relation t ⊆ s for plain types is semantically defined as
the inclusion between the sets of values that inhabit t and s. It would be nice if a similar approach
could be adopted also for session types but, since session types are behaviors, it is not clear which
values do inhabit them. It could be argued that session types are inhabited by channels, which
are indeed values. However, this interpretation falls short of providing a suitable semantics of
session types because channels, unlike basic values (such as, say, numbers or XML documents),
are just names and, as such, they have no structure. There is nothing in a channel name that may
somehow constraint or characterize the behavior of processes using that channel. Consequently,
from a purely type-theoretic point of view we consider all channels as having one special type
(in Section 3 we will actually introduce this type � for technical reasons). This provides further
motivation for preventing dynamic dispatching depending on the “type” of channels, but it leaves
open the issue of defining a suitable subsession relation for session types. If we insist on viewing
session types as behaviors rather than actual types, we can adopt a testing approach [De Nicola
and Hennessy, 1984], in this way: first we define some way of “testing” a session type, that we
call completeness; then we declare two session types as being equivalent if they pass the same
tests; in fact, we will say that σ is a subsession of τ if any test that σ passes is also passed by τ .

On Projecting Processes into Session Types 11

As we have informally stated in the introduction, completeness of a session type σ means that
σ describes the behavior of some processes successfully interacting with each other. By “suc-
cessfully” we mean that no process is ever left behind waiting for messages that never arrive, or
trying to send messages that no one is willing to receive. Also, no communication error result-
ing from rule (R8) may ever occur in a complete session type. From this intuition it is clear the
need to single out the components of σ and verify that either they emit X, indicating successful
termination, or they can synchronize with some other component.

Definition 2.1 (liveness). We say that a session type σ is a component if every parallel compo-
sition in σ occurs underneath a prefix. Let ∼= be the least congruence that satisfies the laws:

σ ∼= 1 |σ σ | τ ∼= τ |σ σ | (τ |ρ)∼= (σ | τ) |ρ

We say that σ is live if, for every σ1 and σ2, σ ∼= σ1 |σ2 where σ1 is a component implies either
X ∈ init(σ1) or init(σ1)∩ init(σ2) 6= /0.

We now formalize completeness as the preservation of liveness under internal transitions.

Definition 2.2 (completeness). We say that σ is complete if σ =⇒ τ implies τ live.

Completeness implies that no communication error can occur (rule (R8) is never applied) for
otherwise some component reduces to 0 and 0 |σ is not live regardless of σ . Therefore, because
of the parallel composition operator for session types, our notion of completeness generalizes
that of duality in other session type theories, and in particular that of Castagna et al. [2009a]
which adopts a language of session types very close to the one used here, except for the lack of |.

Example 2.2. In the introduction we have argued that a session type such as !int.1 | ?int.1
is complete because the actions offered by the two components are complementary. However,
the operational semantics of session types works at the finer level of values, rather than at
the level of actions. So, to be more precise, !int.1 | ?int.1 is complete because any !v per-
formed by !int.1 has a complementary one ?v performed by ?int.1. This makes the defini-
tion of completeness more sophisticated and the resulting theory more general, because we can
deal with (partially) overlapping types. For example, assuming that int ⊆ real we have that
!int.1 | ?real.1 is also complete, despite the two actions !int and ?real are not exactly com-
plementary. Similarly, !real.1 | (?int.1+ ?(real\int).1) is complete as well, even though in
?int.1+ ?(real\int).1 there is no single prefix that can accept all the actions !v that can be
performed by !real.1. �

We use completeness as the discriminating test for comparing session types extensionally and
say that σ is a subsession of τ if every session type that completes σ completes τ as well.

Definition 2.3 (subsession). Let JσK def
= {ρ | (ρ |σ) complete}. We say that σ is a subsession of

τ , notation σ � τ , if JσK ⊆ JτK. We write ≈ for the equivalence relation induced by �, namely
≈=�∩�−1.

The fact that subsession is a sensible choice when interpreted as a subtyping relation may not
be entirely obvious because, according to Definition 2.3, the subsession relation speaks about a

Luca Padovani 12

left-to-right substitutability: if σ � τ holds, then it is safe to use a process that behaves accord-
ing to τ in place of a process that behaves according to σ . That is, subsession is a behavioral
relation which, in accordance with other standard behavioral pre-orders such as the must testing
relation [De Nicola and Hennessy, 1984], has been defined in terms of the contexts ρ in which
some behavior σ can be safely replaced by another behavior τ . On the other hand, the relation
σ � τ that we informally anticipated while describing the transition system of session types and
according to the usual intuition behind every subtyping relation, speaks about a right-to-left sub-
stitutability: it is safe to use a channel “with associated type” σ where a channel “with associated
type” τ is expected. The quotation marks remind us that σ and τ are behaviors while channels,
by themselves, do not expose any behavior. It is the processes using those channels that behave
according to σ or τ . This is the key for realizing that subsession does really make sense when
interpreted as a subtyping relation: when a process P acts on some channel c : τ we can think of
τ as the projection of P’s behavior on c, while the context ρ is given by the combined behavior
of all the other processes acting on c. By replacing c with d : σ we are changing the context with
which P interacts and the relation σ � τ assures that any context that completes σ completes τ

as well, hence the substitution is safe in that it preserves completeness.
The equational theory induced by the subsession relation is not obvious, although a few rela-

tions are easy to check: for example, | is a commutative, associative operator with neutral element
1. According to the subsession relation, + and ⊕ are also commutative and associative and 0 is
neutral for +. Furthermore σ ⊕τ � σ , namely � embeds reduction of nondeterminism as a fun-
damental law, in the same spirit of the must testing relation for standard process algebras [De
Nicola and Hennessy, 1984].

Example 2.3. The session types defined in Example 2.1 resemble classic channel types in typed
theories of the π-calculus. In fact we can spot even more similarities when we try to relate them
using the subsession relation. To begin with, it is possible to show that ?·∗ is covariant, !·∗ is
contravariant, and ·∗ is invariant in the respective arguments. More formally, the relations

t ⊆ s ⇐⇒ ?t∗ � ?s∗ s⊆ t ⇐⇒ !t∗ � !s∗ t = s ⇐⇒ t∗ ≈ s∗

do hold (to be precise the middle statement holds only when s 6= /0, see Example 3.3).
Furthermore, it is safe to use a channel with “more capabilities” where a channel with “less

capabilities” is expected, hence

t∗ � ?t∗ � ?tω and t∗ � !t∗ � !tω and t∗ � tω

since it is safe to use a channel with both input and output capabilities where only one of them is
needed. Also, it is safe to use a channel with associated type ·∗ where a channel with associated
type ·ω is expected. In this case, the process will never exercise the capability to stop using the
channel, even though this is allowed by the session type associated with the actual channel it is
using.

Finally, an interesting interplay arises between the internal choice operator and input/output
actions:

?t∗⊕ ?s∗ ≈ ?(t ∩ s)∗ and !(t ∪ s)∗ � !t∗⊕ !s∗

The first relation has been discovered previously [Castagna et al., 2008; Carpineti et al., 2009]
in completely different settings. In general the equivalence !(t ∪ s)∗ ≈ !t∗⊕ !s∗ does not hold

On Projecting Processes into Session Types 13

because the first value sent by a process that behaves according to !t∗⊕ !s∗ may give information
about the type of the values in the subsequent communications. For example, consider σ =

1+?int.σ and τ = 1+?bool.τ . Then 1+?int.σ +?bool.τ completes !int∗⊕ !bool∗ but not
!(int∪bool)∗. �

Other relations are those concerning errors: we have 0 ≈ α.0 and ! /0.σ ≈ ? /0.σ ≈ 0. More
generally, the relation σ ≈ 0 means that σ cannot be completed in any way: σ describes an
intrinsically flawed behavior that may reach a state in which it is not live regardless of its context.
The class of non-flawed session types will be of primary importance in the following, to the point
that we reserve them a name.

Definition 2.4 (viability). We say that σ is viable if JσK 6= /0.

Example 2.4. Observe that ?t.σ � ?s.σ when t ⊆ s does not hold in general. For example,
consider ?int.1 and ?real.1. Then !int.1+ !

√
2.0 completes ?int.1 because ?int does not

perform ?
√

2. However, !int.1+ !
√

2.0 does not complete ?real.1 because of the derivation
!int.1+ !

√
2.0 | ?real.0 −→ 0 | 1. In general, if σ � τ holds, then τ should not expose any

action that was not exposed by σ to avoid interferences.
It is safe to equip τ with more possible behaviors only if these are guarded by actions for

which σ is known to have a non-viable continuation. For instance, according to Example 2.1
we have defined ?tω = ?t.?tω + ?¬t.0 and it is possible to prove that t ⊆ s implies ?tω � ?sω .
Now we realize that the ¬t.0 branch plays a fundamental role in this respect. Indeed, no process
interacting with another one behaving according to ?tω will ever send any value that is of type
s \ t, since this will lead to a communication error. Thus it is safe to use a channel of type ?tω

where one of type ?sω is expected, since the additional behaviors exposed by ?sω are shielded by
non-viable behaviors in ?tω . �

Remark 2.1. At this stage we can appreciate the fact that subsession depends on the transition
relation, and that the transition relation depends on subsession. This circularity can be broken by
stratifying the definitions: a session type σ is given weight 0 if it contains no prefix of the form
?ρ or !ρ; a session type σ is given weight n > 0 if any session type ρ in any prefix of the form
?ρ or !ρ occurring in σ has weight at most n− 1. By means of this stratification, one can see
that the definitions of the transition relation and of subsession are well founded: the subsession
relation between session types with weight 0 is well defined, since rules (R7) and (R8) are never
used; the subsession relation between session types with weight n+1 is also well defined, since
the premises of rules (R7) and (R8) necessarily regard session types whose weight is at most n.

This stratification induces a hierarchy on channels: those whose associated session type has
weight 0 are first-order channels, in the sense that they cannot be used for sending other chan-
nels; channels whose associated session type has weight 1 can only be used for sending first-order
channels; and so forth. Not only this hierarchy seems natural in practice, but it plays a fundamen-
tal role also in the projection of processes that we will see in detail in Section 4. �

3. Properties of the Subsession Relation

The purpose of this section is to deepen our understanding of the subsession relation and to
pinpoint its main properties. While the best way to achieve this would be to present an axiomati-

Luca Padovani 14

zation for � we must face the fact that � is closely related to the fair testing relation [Natarajan
and Cleaveland, 1995; Rensink and Vogler, 2007] which is notoriously difficult, if at all possi-
ble, to axiomatize.† To further complicate matters, in our setting parallel composition is a truly
primitive operator (see Definition 2.2). For example the session types

σ = ?intω | !intω and τ = ?int.(?intω | !intω)+ !int.(?intω | !intω)

are observationally indistinguishable (they are weakly bisimilar) and yet they describe differ-
ent scenarios: σ describes the behavior of two processes communicating integer numbers; τ

describes the behavior of one process that is waiting for either sending or receiving an integer
number, and thereafter it forks two processes communicating integer numbers. In particular, σ is
complete, while τ is not.

For these reasons we proceed as follows: in Section 3.1 we provide a local characterization of
the subsession relation restricted to components. We are able to extend these results to the general
setting thanks to the precongruence properties of � which we study in Section 3.2. Finally, we
sketch out the role of parallel composition and the fairness properties of� by means of examples
in Section 3.3.

3.1. Local Characterization of the Subsession Relation

The local characterization of the subsession relation requires some auxiliary notation. We begin
by defining ground actions as approximated actions where we abstract from the type of commu-
nicated channels:

µ ::= X | ?v | !v | ?� | !�
With an abuse of notation we use µ for ranging over ground and non-ground actions without

distinction and will make sure that no confusion may possibly arise. Given an action µ , we write
bµc for the ground action corresponding to µ: b·c is the identity except that b†ρc = †� where
† ∈ {?, !}. We extend b·c to sets of actions so that bAc= {bµc | µ ∈ A}.

Then, we define the continuation of a session type σ with respect to an action µ as the combi-
nation of all the possible residuals of σ after µ . This differs from the relation

µ−→ which relates
σ with one particular (not necessarily unique) residual of σ after µ . For example, consider
σ = ?int.σ1 + ?real.σ2. On the one hand we have σ

?3−→ σ1 and also σ
?3−→ σ2 namely, there

are two possibly different residuals of σ after ?3 due to two different branches of the external
choice that may yield common actions. On the other hand, the (unique) continuation of σ after
?3 is σ1⊕σ2, which expresses the fact that both branches are possible. One simple way to think
of the continuation of σ after µ is as the behavior perceived by the process(es) at the other end of
the communication channel: the process sending !3 (the dual action of ?3) to ?int.σ1+?real.σ2

does not know which branch (σ1 or σ2) has been taken, hence from its point of view it is as if
the receiver behaves according to σ1⊕σ2. The actual definition of continuation is slightly more
involved because we must abstract from the type of channels being communicated and we need
to take into account the possibility of communication errors:

† As far as the author’s knowledge goes, the definition of complete axiomatizations of fair testing equivalences is still
an open problem [Rensink and Vogler, 2007].

On Projecting Processes into Session Types 15

Definition 3.1 (continuation). Let σ
bµc
=⇒. The continuation of σ with respect to µ is defined as

follows:

σ(µ)
def
=

⊕

σ=⇒ µ−→σ ′
σ ′ if bµc 6= !�⊕

σ=⇒ !ρ ′−→σ ′
σ ′ if µ = !ρ and σ

!ρ ′
=⇒ implies ρ ′ � ρ

0 otherwise

As long as µ = bµc the continuation σ(µ) is the internal choice of all possible residuals of
σ after µ . This is also true when µ = ?ρ for some ρ , but recall that session types of the form
?ρ ′.σ offer any action of the form ?ρ . So for example, if σ = ?ρ1.σ1 + ?ρ2.σ2 we may have
σ(?ρ) = σ1⊕σ2 or σ(?ρ) = 0⊕σ2 or σ(?ρ) = σ1⊕0 or σ(?ρ) = 0⊕0 according to whether
ρ � σ1 and ρ � σ2 or ρ 6� σ1 and ρ � σ2 or ρ � σ1 and ρ 6� σ2 or ρ 6� σ1 and ρ 6� σ2,
respectively. When µ = !ρ things are a little more complicated. Consider a sender process that
behaves according to the session type σ = !ρ1.σ1 ⊕ !ρ2.σ2. The receiver process must offer
actions of the form ?ρ ′ for the synchronization to occur, for instance we may assume that it
behaves according to the type ?ρ.σ . If ρ1 � ρ and ρ2 � ρ , then, no matter which action (!ρ1 or
!ρ2) is offered by the sender, no error occurs and σ(!ρ) = σ1⊕σ2. If, however, we have ρ1 6� ρ ,
then the synchronization occurs nonetheless, but it yields a communication error. According to
rule

(R8)
ρ 6� ρ

′

?ρ
′.σ

?ρ−→ 0
in Table 2, the error is registered in the receiver, which reduces to 0. Since here we only have
the sender’s session type at our disposal, it is in sender’s continuation that we keep track of the
error, hence we let σ(!ρ) = 0. In summary, the continuation after !ρ is the combination of all
the residuals after all the actions !ρ ′, but only if ρ is an upper bound for all the ρ ′. If ρ is not an
upper bound for any possible ρ ′ that is offered, the continuation is defined to be 0. This implies
that, if there is no upper bound for all the ρ ′ offered by the sender, then no synchronization may
occur at all.

The final auxiliary notion we need, that of ready set, gives us a tool for measuring the degree
of nondeterminism of a session type.

Definition 3.2 (ready set). We say that σ has ready set R, notation σ ⇓ R, if there exists σ ′ such
that σ =⇒ σ ′ and R = {bµc ∈ binit(σ ′)c | σ(µ) viable}.

In words, σ has ready set R, where R is a possibly infinite set of actions, if σ may independently
evolve to some residual σ ′ such that all the actions offered by σ ′ whose continuation with respect
to σ is viable are in R. From now on we use R, S, . . . to range over ready sets.

A few examples will clarify the concept:

— α.0 ⇓ /0 since, regardless of any action that α.0 may possibly emit, the corresponding contin-
uation is not viable;

— ?int.1 has just one ready set {?v | v ∈ int} which contains all the actions of the form ?v for
every v of type int;

— !int.1 has as many ready sets as the number of values of type int, each set having the form
{!v} where v ∈ int, plus another set {!v | v ∈ int} which is obtained by taking σ ′ = σ .

Luca Padovani 16

Table 3. Selected axioms of the subsession relation.

(S1) σ ⊕ τ � σ

(S2) σ � 1+σ

(S3) α.0 � 0

(D1) α.σ +α.τ ≈ α.(σ ⊕ τ)

(D2) α.σ ⊕α.τ ≈ α.(σ ⊕ τ)

(SP1) ?(t ∪ s).σ ≈ ?t.σ + ?s.σ
(SP2) !(t ∪ s).σ ≈ !t.σ ⊕ !s.σ if t,s 6= /0

(CH1) †ρ.σ +†ρ ′.τ ≈ †ρ.σ ⊕†ρ ′.τ

(CH2) ?(ρ⊕ρ ′).(σ ⊕ τ) ≈ ?ρ.σ ⊕ ?ρ
′.τ

(CH3) !(ρ ∨ρ ′).(σ ⊕ τ) ≈ !ρ.σ ⊕ !ρ ′.τ

Intuitively, the larger the number of ready sets of a session type, the less deterministic the
session type is. Compare ?true.1+ ?false.1 and ?true.1⊕ ?false.1: the former has just one
ready set {?true,?false} saying that the session type is ready to receive any boolean value; the
latter has three ready sets, {?true}, {?false}, and {?true,?false}, saying that the session
type may be willing to receive only one of true or false or both, depending on its internal
state. Only actions whose continuation with respect to σ is viable are considered in the ready set.
For example ?intω ⇓ {?v | v ∈ int} despite ?intω ?v−→ for every v ∈ V since ?intω(?v) = 0
for every v ∈ V \int. Beware of ground actions ?� and !�: if ?� is in some ready set of σ , then
there exists ρ such that σ(?ρ) is viable; if !� is in some ready set of σ , then there exists ρ such

that σ(!ρ) is viable and σ
!ρ ′
=⇒ implies ρ ′ � ρ .

We are now ready to provide the local characterization of �:

Theorem 3.1. Let σ and τ be components. Then σ � τ if and only if:

1 τ ⇓ S implies σ ⇓ R and R ⊆ S;

2 σ viable and τ
bµc
=⇒ implies σ

bµc
=⇒ and σ(µ)� τ(µ) for every µ 6=X.

Property (1) states that for every ready set of τ there is one of σ with fewer actions. As
we have seen, this intuitively means that τ is more deterministic than σ . Property (2) states
that, when σ is viable, any observable action offered by the larger session type must also be
offered by the smaller one and that the continuations of σ and τ with respect to such actions
must be related by �. We have already motivated this property in Example 2.4 by showing
that ?int.1 6� ?real.1 since the additional actions emitted by ?real.1 may interfere with some
session types that complete ?int.1.

The local characterization of the subsession relation permits to formally verify a number of
properties of �. Some of these, such as commutativity and associativity of + and ⊕, are fairly
obvious. Less obvious is the fact that the two choices distribute over each other, just like in
other testing equivalences [De Nicola and Hennessy, 1987; Hennessy, 1988]. In Table 3 we
have collected other laws related to � and the induced equivalence relation which we regard as
particularly interesting. We spend the next few paragraphs describing them in some more detail.

Axiom (S1) concerns reduction of nondeterminism: it is safe to replace some behavior (σ⊕τ)
with a more deterministic one (σ) or, equivalently, it is safe to replace a channel with fewer
capabilities (σ) with another one having more capabilities (σ ⊕ τ). As the substitution of the
channel does not affect the process, the process will behave more deterministically than what the
type of the actual channel prescribes. Axiom (S2) states that it is safe to replace a channel which
associated type is 1+ σ with a channel which associated type is σ . Indeed, the session type

On Projecting Processes into Session Types 17

1+σ indicates that the process using the channel is ready to interact according to σ but is also
satisfied if not requested to. The session type σ , on the other hand, indicates that the interaction
will occur. Axiom (S3) states that the availability of actions emitted by a prefix α are irrelevant
if the corresponding continuation is non-viable, hence α.0 � 0. Observe that (S3) is not sound
in standard testing theories and the presence of an action α is never irrelevant. The fundamental
reason why (S3) is sound for � is that the notion of testing we are using is symmetric.

Axioms (D1) and (D2) show the interaction between choices and actions. In particular, α.σ +

α.τ ≈ α.(σ ⊕ τ) tells us that the session type α.σ +α.τ denotes an internal choice between the
continuations σ and τ after the prefix α: since both branches are guarded by the same prefix,
there is no way for an interacting party to select one particular branch. In a sense axiom (D1)
suggests that the external choice operator is more delicate than the internal choice since some
external choices are actually internal choices in disguise. The law α.σ ⊕α.τ ≈ α.(σ ⊕ τ) states
that it is irrelevant whether the internal choice is done before or after the action, when the action
in the two branches is the same.

Axioms (SP1) and (SP2) are splitting laws concerning the communication of plain values. In
particular, ?(t ∪ s).σ ≈ ?t.σ + ?s.σ relates input actions with external choices (accepting values
of type t ∪ s is the same as offering the interacting party to send values that inhabit either t or
s) while !(t ∪ s).σ ≈ !t.σ ⊕ !s.σ relates output actions with internal choices (sending a value of
type t ∪ s is the same as internally choosing to send a value of type t or of type s). Note that this
axiom holds only if neither t nor s is /0 for otherwise !t.σ ⊕ !s.σ is not viable, while !(t ∪ s).σ
may be.

Axiom (CH1) states that, as far as the communication of channels is concerned, internal and
external choices make no difference, provided that the action is of the same kind in both branches.
This is a consequence of the rules

(R7)
ρ � ρ

′

?ρ
′.σ

?ρ−→ σ

and

(R8)
ρ 6� ρ

′

?ρ
′.σ

?ρ−→ 0

(see Table 2), implying that in our theory there is no dynamic dispatching depending on the type
of channels. A process that behaves according to ?ρ ′.σ will always accept any channel that is sent
to it, regardless of the session type associated with the channel, which may thus be incompatible
with ρ ′. In other words, from the point of view of synchronizations it is as if channels all have the
same type, say � (which, practically speaking, the reader may think of as the type of URLs or of
IP addresses). Under this interpretation, rule (CH1) becomes ?�.σ + ?�.τ ≈ ?�.σ ⊕ ?�.τ which
is a reformulation of axioms (D1) and (D2). Axiom (CH2) shows that, when multiple branches
accepting channels are present, the only way to be sure that no communication error occurs is to
send a channel whose associated type is smaller than the type expected in each branch (indeed,
ρ⊕ρ ′ is the greatest lower bound of ρ and ρ ′). Axiom (CH3) is the dual of axiom (CH2): when
channels of possibly different session types are sent, the receiver must be able to deal with all of
them. Thus, if the channels being sent have associated types ρ and ρ ′, the receiver must be able to
accept channels with associated type ρ ∨ρ ′, which stands for least upper bound of ρ and ρ ′. For
example, a process behaving according to !(!int∗).1⊕!(!real∗).1 is either sending a channel on
which integer numbers can be sent, or a channel on which real numbers can be sent. The receiver

Luca Padovani 18

of this channel can use it safely only for sending values that are in the intersection int∩real.
Indeed we have !(!int∗).1⊕ !(!real∗).1≈ !(!int∗).1 since !int∗∨ !real∗ ≈ !int∗.

Example 3.1. In axiom (CH2), the behavior ρ⊕ρ ′ may be non-viable even when both ρ and ρ ′

are. For example, we have ?(?tω).1⊕?(?sω).1≈ ?(?tω ⊕ ?sω).1≈ ?(?(t ∩ s)ω).1. A process that
behaves as specified by ?(?tω).1⊕ ?(?sω).1 is waiting for a channel, but it will internally decide
whether to use that channel for receiving values of type t or values of type s. Consequently, the
only safe channels that can be sent to this process are those that can only carry values in the
intersection t∩s. If this intersection turns out to be empty, then the only channels that can be sent
are useless, since their associated session type must be non-viable.

In axiom (CH3) the behavior ρ ∨ρ ′ may not exist, in which case, no process will ever be able
to accept a delegated channel from another process that behaves according to !ρ.σ ⊕ !ρ ′.τ . For
example, consider the behavior !(!intω).1⊕ !(!boolω).1 describing a process that either sends
a channel on which integer numbers can be sent or it sends a channel on which boolean values
can be sent. Since the receiver does not know which channel is actually sent, it can safely use it
only for sending values of type int∩ bool. So, on one side the receiver commits to using the
channel according to its session type and yet there is no value that can be safely sent on it. �

3.2. Pre-congruence Properties of the Subsession Relation

Since � is akin to a subtyping relation it should be natural to use regardless of the context
in which it is used. For this reason it is important to study its pre-congruence properties. The
following result shows that � is a pre-congruence for prefix, parallel composition, and internal
choice.

Theorem 3.2. Let σ � τ . Then (1) α.σ � α.τ; (2) ρ |σ � ρ | τ; (3) ρ⊕σ � ρ⊕ τ for every ρ .

Proof. (1) is an immediate consequence of Theorem 3.1. As regards (2), we have θ | (ρ |σ)

complete if and only if (θ |ρ) |σ complete, which implies (θ |ρ) | τ complete being equivalent
to θ | (ρ |τ) complete. We conclude ρ |σ � ρ |τ since θ is arbitrary. As regards (3), it suffices to
observe that θ | (ρ⊕σ) is complete if and only if both θ |ρ and θ |σ are complete.

The existence of non-viable behaviors results in a large class of indistinguishable session types,
those that are not viable. For example in 0 ≈ ?int.0 we are equating a totally unobservable
behavior (0) with an observable, although still non-viable, one (?int.0). This prevents � from
being a pre-congruence with respect to the external choice, for instance, 0+ ?int.1 6� ?int.0+
?int.1 since we know from axiom (D1) that ?int.0+?int.1≈ ?int.(0⊕1) which is not viable
whereas 0+?int.1 is. We can overcome this problem by focusing on the largest relation included
in � that is a pre-congruence for +:

Definition 3.3 (subsession pre-congruence). Let σ v τ if and only if σ +ρ � τ +ρ for every
component ρ . We write ' for the equivalence relation induced by v, namely '=v∩v−1.

As we restrict � to v the risk is to lose some potentially interesting relations. Fortunately
this is not the case and in fact � and v almost coincide, as we can see from the following local
characterization for v:

On Projecting Processes into Session Types 19

Theorem 3.3. Let σ and τ be components. Then σ v τ if and only if:

1 τ ⇓ S implies σ ⇓ R and R ⊆ S;

2 τ
bµc
=⇒ implies σ

bµc
=⇒ and σ(µ)� τ(µ) for every µ 6=X.

The only difference between � and v is that condition (2) is required to hold for σ viable in
Theorem 3.1, whereas it must hold unconditionally in Theorem 3.3. In other words we have the
following:

Corollary 3.1. Let σ viable and σ ,τ be components. Then σ � τ if and only if σ v τ .

In practice usingv in place of�makes no difference since one is always interested in working
with viable session types (we will formalize this clearly in Section 4). In what follows we put v
at work on some examples of derivable relations.

Example 3.2 (decomposition). It is always possible to rewrite external choices of input actions
and internal choices of output actions so that the branches are disjoint with respect to basic
values. More precisely, the following laws are derivable:

(SP-IN)
?t.σ + ?s.τ ' ?(t \ s).σ + ?(s\ t).τ + ?(t ∩ s).(σ ⊕ τ)

(SP-OUT1)
t \ s 6= /0 s\ t 6= /0 t ∩ s 6= /0

!t.σ ⊕ !s.τ ' !(t \ s).σ ⊕ !(s\ t).τ⊕ !(t ∩ s).(σ ⊕ τ)

(SP-OUT2)
/0 (s⊆ t

!t.σ ' !(t \ s).σ ⊕ !s.σ

Axiom (SP-IN) shows that sending a value v to a process behaving according to the session
type ?t.σ +?s.τ may result in three different continuations: if v has type t but not s, then the only
possible continuation is σ ; if v has type s but not t, then the only possible continuation is τ; if v
has type t∩ s, then either branch can be selected and either continuation is possible. The rule can
be easily derived from (SP1) and (D1) and is valid also in case any of t \ s, s\ t, or t ∩ s is empty
because ? /0.σ ' 0.

Rule (SP-OUT1) is somewhat the dual of axiom (SP-IN) and regards output actions. Its deriva-
tion is straightforward from rule (SP2) and axiom (D2). The only difference with (SP-IN) is the
requirement of non-emptiness for the various types in the decomposition, which derives from
analogous requirements of axiom (SP2). Rule (SP-OUT2) is a specialized instance of (SP-OUT1)
where s⊆ t and is just as easily derived. �

Example 3.3 (covariance and contravariance). Input and output obey respectively the follow-
ing covariance and contravariance properties:

(S-IN-VAL)
t ⊆ s

?t.σ + ?(s\ t).0v ?s.σ

(S-OUT-VAL)
/0 (s⊆ t

!t.σ v !s.σ

(S-IN-CH)
ρ � ρ

′

?ρ.σ v ?ρ
′.σ

(S-OUT-CH)
ρ
′ � ρ

!ρ.σ v !ρ ′.σ

Rule (S-IN-VAL) follows from rule (SP-IN), axiom (S3), pre-congruence for +, and states
covariance of input actions. To avoid interferences, this is safe only if the behavior after any
value in s \ t is non-viable (see also Example 2.4). Rule (S-OUT-VAL) follows from (SP-OUT2)
and (S1) and states contravariance of output actions.

Luca Padovani 20

Rules (S-IN-CH) and (S-OUT-CH) are similar but they regard channels. Rule (S-IN-CH) fol-
lows from axioms (CH2) and (S1). Indeed, ρ � ρ ′ implies ρ ≈ ρ ⊕ ρ ′. Then ?ρ.σ ' ?(ρ ⊕
ρ ′).σ ' ?ρ.σ ⊕ ?ρ ′.σ v ?ρ ′.σ . Dually, rule (S-OUT-CH) follows from axioms (CH3) and (S1),
thus: ρ ′ � ρ implies ρ ∨ρ ′ ≈ ρ , hence !ρ.σ ' !(ρ ∨ρ ′).σ ' !ρ.σ ⊕ !ρ ′.σ v !ρ ′.σ . �

3.3. Fairness Properties of the Subsession Relation

At the beginning of this section we have stated that � is closely related to the fair testing rela-
tion. Unlike other testing relations, fair testing is insensitive to divergence and is based on the
consideration that, if some action is offered infinitely often by a process, then some other process
may rely on the fact that this action will eventually happen. To illustrate this concept consider
the session type

?intω | !intω | ?1984.1
describing three processes simultaneously accessing a channel: two of them receive and send an
infinite sequence of integers; the third one is waiting for the number 1984 to appear. It is not
hard to verify that this composition is complete: even though the second process keeps send-
ing numbers different from 1984, those numbers will be read by the first process. After each
synchronization between the first and the second process it is possible (although not granted)
that the third process will send 1984 (!1984 ∈ init(?intω | !intω)) and this is enough to entail
completeness.

According to the local characterizations of � and v, axiom (S1) is sound. It follows that any
finite number of applications of (S1) is also sound. However, this is no longer true “in the limit”,
if we are allowed to apply (S1) infinitely many times. If this were the case we would be able to
build the derivation

!intω v !0ω

(precongruence)
!int.!intω v !int.!0ω

... (S-OUT-VAL)
!int.!0ω v !0.!0ω

(transitivity)
!int.!intω v !0.!0ω

which coinductively proves !intω v !0ω . This relation apparently makes sense, since !0ω is a
more deterministic behavior than !intω or, equivalently, a process using a channel with type
!intω for sending only 0 is behaving well. However, the composition

?intω | !0ω | ?1984.1

is not complete because ?1984.1 no longer has the potential synchronization with ?intω | !0ω .
The problem is that axiom (S1) may prune out branches from a session type, and the pruned

branches may incidentally be the ones that ensure completeness in some contexts. Such contexts
are difficult to characterize because they depend on the non-local structure of session types. To
illustrate what we mean by “locality” here, consider the session types defined by the following
equations:

σ = !bool.1⊕ !int.σ ρ1 = !int.(!bool.1⊕ !int.ρ1) ρ2 = !bool.1⊕ !int.!int.ρ2

where ρ1 (respectively, ρ2) differs from σ because all the !bool.1 branches after an even (respec-
tively, odd) number of !int prefixes have been removed. It turns out that σ � ρi for i ∈ {1,2}
hold, since both ρ1 and ρ2 are more deterministic variants of σ and they both go infinitely many

On Projecting Processes into Session Types 21

Table 4. Syntax of processes.

P ::= process
nil (idle)

| u!e.P (output)
| u?(x).P (channel input)
| ∑i∈I u?(x : ti).Pi (value input)
| P⊕P (internal choice)
| P |P (parallel composition)
| (new c)P (restriction)

e ::= expression
x (variable)

| c (channel)
| . . .

times through a state where some boolean value may be emitted. So while in principle any branch
!bool.1 after any number of !int prefixes can be safely removed, if we remove all of them (or
just enough so that only a finite number of them remains), we invalidate the fairness property.
Indeed we have σ 6� !intω .

Example 3.4. In light of the preceding discussion one can verify that !tω is invariant with respect
to t and that neither tω � ?tω nor tω � !tω do hold, while ?tω is still covariant with respect to
t like ?t∗ (in fact covariance of ?tω increases viable traces of the session type). Note also that
the relations ?t∗ � ?tω , !t∗ � !tω , and t∗ � tω that we have already presented in Example 2.3 are
valid despite the fact that in every case infinitely many 1 branches are removed. In general the
instances 1⊕σ v σ and 1⊕σ v 1 of axiom (S1) are sound even when they are applied infinitely
many times. �

Interestingly, the notions of completeness and of subsession relation are affected by fairness
only in systems made of three or more participants, as in the example at the beginning of this
section. The subsession relation defined in [Castagna et al., 2009a] is oblivious to fairness since
in that context only dyadic sessions (those connecting exactly two processes) are considered. By
contrast, the systems in [Castagna and Padovani, 2009] involve an arbitrary number of partici-
pants and consequently both completeness and the refinement relation have fairness properties.

4. A Projection for Processes

In this section we show how to project processes into the session types we have defined and
studied in the previous sections.

4.1. Syntax and Semantics of Processes

Processes are defined by the grammar in Table 4. We use P, Q, R, . . . to range over processes;
we use a, b, c, . . . to range over channel names taken from some infinite set N ; we let x, y,
z, . . . range over variables taken from some set X . In principle we should distinguish channel
variables, which can only be instantiated by channel names, from value variables, which can only
be instantiated by basic values. To keep things simple we generically use the term “variable”
for both and will make sure that no ambiguity may possibly arise. We let u, v, . . . range over
channel names and channel variables (v should not be confused with v that we used to range over

Luca Padovani 22

Table 5. Axioms of structural congruence for processes.

P |nil ≡ P (S-UNIT)
P |Q ≡ Q |P (S-COMM)

P | (Q |R) ≡ (P |Q) |R (S-ASSOC)
(new a)(new b)P ≡ (new b)(new a)P (S-SWITCH)

(new a)nil ≡ nil (S-NIL)
(new a)(P |Q) ≡ P | (new a)Q a 6∈ fn(P) (S-EXTR)

P⊕Q ≡ Q⊕P (S-CHOICE)

elements of V); we let e, . . . range over an underspecified language of expressions which include
variables and channel names; finally, we use m to range over messages, which are elements of
V ∪N . The language we consider is a minor variant of the π-calculus, so we remark here only
the differences: there are three action prefixes: u!e denotes an output on channel u of the value or
channel to which the expression e evaluates; u?(x) denotes an input on channel u of a channel x;
the guarded sum ∑i∈I u?(x : ti).Pi denotes an input on channel u of some value v. The branch Pk is
selected according to the type tk that v belongs to (the types in the branches need not be disjoint).
In these prefixes we call u subject. The process P⊕Q denotes an internal choice between P
and Q. We adopt the following usual conventions: we omit the nil process when it immediately
follows a prefix; we write fn(P) for the set of free variables and channel names occurring in P
(the binders are input prefixes and restriction); we write P{m/x} for the process P where all free
occurrences of the variable x have been replaced by m.

As we did for session types we do not equip processes with concrete syntax for expressing
infinite behaviors: simply, infinite processes are infinite trees built with the grammar in Table 4.
In the examples that follow we will define infinite processes by means of possibly parametrized
equations of the form

X(ũ) = P

where X is a process variable and ũ ⊆ fn(P) its parameters. Intuitively, an occurrence of X(ṽ)
within P stands for an occurrence of P{ṽ/ũ}. More formally, we will write X(ṽ) for the (syntactic)
solution of the above equation where the parameters ũ have been instantiated with ṽ within P. To
ensure that such solution exists and is unique and that the typing rules we are about to discuss
yield contractive session types we require that every occurrence of X within P must be guarded
by no less than one prefix and at least one prefix with subject v for every v∈ fn(P). The rationale
for this unusually strong restriction comes from the fact that the projection produces possibly
recursive session types that are associated with the single channels used by the process. For
example, we want to avoid a process like

X = u!v.X

since its projection yields the (perfectly fine) equation σ = !ρ.σ for channel u but also the equa-
tion ρ = ρ |ρ for channel v, which admits a non-contractive solution. Thus, requiring that process
variables must be guarded by prefixes regarding all the free names in P makes sure that the ses-
sion types for all these names in the resulting projection are contractive.

Following standard presentations, the operational semantics of processes is given by a combi-

On Projecting Processes into Session Types 23

Table 6. Reduction of processes.
(R-COMM)

e ↓ v v ∈ tk k ∈ I

a!e.P |∑
i∈I

a?(x : ti).Qi}→ P |Qk{v/x}

(R-COMMS)

a!c.P |a?(x).Q→ P |Q{c/x}

(R-CHOICE)

P⊕Q→ P

(R-NEW)
P→ P′

(new c)P→ (new c)P′

(R-PAR)
P→ P′

P |Q→ P′ |Q

(R-CONG)
P≡ P′ P′→ Q′ Q≡ Q′

P→ Q

nation of structural congruence rules and a reduction relation. Structural congruence is the small-
est congruence that contains alpha-conversion and the rules in Table 5 and is standard, the only
uncommon rule possibly being (S-CHOICE) which states the commutativity of internal choice.
The reduction relation is inductively defined by the rules in Table 6: rules (R-NEW) and (R-
PAR) state unremarkable reductions under contexts; rule (R-CONG) is the standard reduction
up to structural congruence; rule (R-CHOICE) (possibly used in conjunction with (S-CHOICE)
and (R-CONG)) states that a process P⊕Q may autonomously reduce to either P or Q; finally,
rules (R-COMM) and (R-COMMS) are the two synchronization rules, whereby a message is ex-
changed between processes exposing complementary actions. In (R-COMM) we write e ↓ v to
denote that the expression e evaluates to some basic value v. Observe that a synchronization oc-
curs only if there is some branch of the guarded sum that is capable of receiving the value v being
sent, whereas in rule (R-COMMS) the synchronization occurs regardless of the type associated
with the channel c being exchanged. This is consistent with the semantics of our session types,
which prevents any form of dynamic dispatching based on the type of channels. In the following
we write P→ if there is Q such that P→ Q.

4.2. A Type System for Projection

We now get to the main point of this paper, namely the projection of a process into session types.
Since the theory of session types has already been developed and studied in the previous sections,
we only have to take care of the aliasing problem we anticipated in the introduction. The problem
can be summarized as follows: in a process a?(x).P it is not known to which channel name the
variable x will be instantiated at runtime. Therefore, the projection of P, which yields a session
environment ∆ mapping channel names and channel variables to the corresponding session types,
has a distinct entry regarding the channel variable x. This implicitly assumes that the channel
variable x will not be instantiated to any channel name c already occurring in the domain of ∆ for
otherwise we would have to merge the session types ∆(c) and ∆(x) respectively associated with c
and x. This, in general, can only be obtained by projecting the instantiated process P{c/x} anew.
Instead, we want the projection of P{c/x} to be simply ∆ where the entry for x has turned into an
entry for c. To avoid the problem we introduce a channel order ≺ imposing a stratification over
channels such that channel a can be sent over channel b only if a ≺ b and then requiring that a
process a?(x).P is well typed only if every free channel name and channel variable in P other
than a and x is (strictly) larger than a according to ≺. In particular, another well-typed process

Luca Padovani 24

Table 7. Typing rules for processes.
(T-SUB)
Γ;C ` P : ∆ ∆

′ � ∆

Γ;C ` P : ∆
′

(T-NIL)

Γ;C ` nil : /0

(T-OUTPUT)
Γ ` e : t Γ;C ` P : ∆∪{u : σ}

Γ;C ` u!e.P : ∆∪{u : !t.σ}

(T-INPUT)
Γ,x : ti;C ` Pi : ∆∪{u : σi} i∈I

Γ;C `∑
i∈I

u?(x : ti).Pi : ∆∪{u : ∑
i∈I

?ti.σi}

(T-OUTPUTS)
Γ;C ` P : ∆∪{u : σ ,v : τ} C ` v≺ u

Γ;C ` u!v.P : ∆∪{u : !ρ.σ ,v : τ |ρ}

(T-INPUTS)
Γ;C ,x≺ u ` P : ∆∪{u : σ ,x : ρ} C ` u≺ dom(∆)

Γ;C ` u?(x).P : ∆∪{u : ?ρ.σ}

(T-CHOICE)
Γ;C ` P : ∆ Γ;C ` Q : ∆

Γ;C ` P⊕Q : ∆

(T-PAR)
Γ;C ` P : ∆ Γ;C ` Q : ∆

′

Γ;C ` P |Q : ∆ |∆′

(T-RES)
Γ;C ` P : ∆∪{c : σ} c 6∈ dom(∆) σ complete

Γ;C \ c ` (new c)P : ∆

a!c must be such that c≺ a, hence the reduction

a!c |a?(x).P→ nil |P{c/x}

yields a residual P{c/x} where c itself is strictly smaller than (hence different from) a and, by
transitivity of ≺, any other free channel name in P.

Let us now proceed to the formal definition of the type system.

Definition 4.1 (channel order). A channel order is a strict partial order over N ∪X .

We use C , . . . to range over channel orders and we introduce the following notation:

— we write C ` u≺ v if (u,v) ∈ C ;
— we write C {c/x} for {(u{c/x},v{c/x}) | (u,v) ∈ C };
— we write C \ c for the restriction of C on (N \{c})∪X ;
— we write C `M ≺ N if C ` u≺ v for every u ∈M and v ∈ N where M,N ⊆N ∪X ;
— we write C ,u≺ v for the smallest transitive relation that includes C ∪{(u,v)}.

The typing rules for the process language are defined in Table 7. Judgments have the form
Γ;C ` P : ∆, where Γ is a standard environment mapping value variables to basic types, C is
a channel order, and ∆ is a session environment mapping channel names and channel variables
to session types. To avoid clutter, we will usually omit Γ and/or C when they are empty or
unimportant. If X is an environment, we write dom(X) for the domain of X and /0 for the empty
environment. We assume, for every judgment Γ;C ` P : ∆, a basic form of hygiene by requiring
dom(Γ)∩dom(∆) = /0. This implicitly imposes an unambiguous sorting of variables whereby the
same variable x cannot simultaneously denote a basic value (x ∈ dom(Γ)) and a channel (x ∈
dom(∆)). The type system makes use of a � relation and a | operator over session environments
which naturally extend the same concepts over session types:

— let {ui : σi}i∈I | {ui : τi}i∈I be the session environment {ui : σi | τi}i∈I ;

On Projecting Processes into Session Types 25

— let {ui : σi}i∈I � {u j : τ j} j∈J if J ⊆ I and σi � τi for every i ∈ J and σi � 1 for every i ∈ I \J.

The session environment ∆ |∆′, which is defined only when dom(∆) = dom(∆′), is obtained by
pointwise composition of the session types in ∆ and ∆′. The relation ∆� ∆′ holds if every session
type in ∆ is �-smaller than the corresponding session type in ∆′, if there is one. Every session
type in ∆ which has no corresponding one in ∆′ must be smaller than the successfully terminated
session type 1. This relation is crucial in the definition of the sole non-structural rule of the type
system, (T-SUB), which we describe first.

(T-SUB) This rule looks very much alike a subsumption rule, except that it seems to work
“the other way round” in that it allows the session environment ∆ associated with a process
P to become a smaller ∆′ in the conclusion. The apparently non-standard direction in which
the subsession relation is applied in this rule can be explained by noting that, in our setting,
“smaller” roughly means “less deterministic”, hence less precise. Thus, if we view a judgment
P : ∆ as stating that ∆ is the “type” of P, rule (T-SUB) allows us to give P a less precise “type”
than the one it actually has. This is precisely what happens in a standard subsumption rule such
as

` e : t t ⊆ s

` e : s

which decreases the precision of the type for e.
For instance, suppose ` P : {c : !int.1}, namely P sends integer values on channel c. Rule (T-

SUB) states that it is safe to declare P as if it behaves according to !real.1 on c, even though
we know that in reality P sends only values from a proper subset of real. By declaring that P
is less deterministic than it actually is we are imposing stronger constraints on the environment
in which P executes, as other processes waiting for messages on c will have to be ready to
receive real numbers, not just integer ones. The second purpose of rule (T-SUB) is to enrich
the session environment with session types for channels that are not used by P. For example, if
` P : /0, meaning that P does not use any channel, we may also derive ` P : {c : 1} which is a
different way for stating the same thing. The ability to enrich session environment with explicit
information about unused channels is essential in rules (T-INPUT), (T-CHOICE), and (T-PAR).

(T-NIL) The idle process nil does not perform any action on any channel, hence it is projected
into the empty session environment. Observe that nil denotes a process that performs no action
and that uses no channel, while the failed session type 0 denotes a communication error.

(T-OUTPUT) Rule (T-OUTPUT) types output actions of basic values of type t over channel u.
We assume an unspecified set of deduction rules for judgments of the form Γ ` e : t, denoting
that the expression e has type t in the environment Γ. If the projection of P on u is σ , then the
projection of u!e.P on u is !t.σ . Just like e may evaluate to any value of type t, the behavior !t.σ
may internally reduce to !v.σ for every v ∈ t.

(T-INPUT) Rule (T-INPUT) types guarded sums denoting input actions for basic values over
channel u. If the projection of Pi on u is σi, then the projection of ∑i∈I u?(x : ti).Pi on u is
∑i∈I ?ti.σi. Observe that the session environment of every branch must be the same, except pos-
sibly for the session type associated with u. This can be ensured by repeated applications of
rule (T-SUB).

(T-OUTPUTS) Rule (T-OUTPUTS) types delegations, whereby a channel v is sent over another
channel u. When delegating a channel, the process expects the receiver to behave on v according

Luca Padovani 26

to some session type ρ; at the same time, the process may continue using the delegated channel
according to some behavior τ . Hence the overall behavior on v which appears in the resulting
session environment is determined by the composition τ |ρ , even though the ρ part of the behav-
ior is actually taken care of by a different process. The projection of the process on u is similar
to that in rule (T-OUTPUT), except that in this case the !ρ prefix denotes the communication of a
channel with associated type ρ . Rule (T-OUTPUTS) requires the delegated channel v to be strictly
smaller than u according to the channel order C . This ensures that v 6= u and that v is not owned
by the receiver process.

(T-INPUTS) Rule (T-INPUTS) types an input action for a channel x on channel u. The con-
tinuation P commits to behaving according to ρ on the received channel, and the projection of
the process on u is similar to that in rule (T-INPUT), but the ?ρ prefix denotes the input of a
channel. The premise C ` u≺ dom(∆) imposes that every free channel variable or channel name
in the continuation P must be strictly larger than u, and the continuation itself is typed using the
enriched channel order C ,x ≺ u which records the assumption that x is strictly smaller than u.
This assumption is in fact enforced on the sender in rule (T-OUTPUTS) and is sufficient to ensure
that the received channel is not among the ones that P already owns.

(T-CHOICE) This rule types internal choices and requires the two branches P and Q of the
choice to have the same session environment. In practice P and Q need not necessarily use the
same channels, and those that are used in both branches need not be used according to the same
behavior. The requirement imposed by rule (T-CHOICE) can always be satisfied by appropriate
applications of rule (T-SUB). For example, suppose Γ ` P : ∆1 and Γ `Q : ∆2 where ∆1 = {u : σ1}
and ∆2 = {u : σ2,v : τ} and u 6= v. Then {u : σ1⊕σ2,v : 1⊕ τ} � ∆i for every i ∈ {1,2}. Note
that, although it is always possible to find a lower bound to every pair of session environments,
this does not guarantee that every session type in the resulting session environment is viable (we
have discussed an instance of this problem in Example 3.1).

(T-PAR) This rule expresses more clearly than any other rule the idea of projected behavior we
are pursuing. Unlike other session type systems, the rule allows (actually requires) both processes
to use the same channels, whose corresponding projections are composed with | (recall that ∆ |∆′
is defined only if dom(∆) = dom(∆′)). Rule (T-SUB) can be used to make sure that the session
environments for P and Q have the same domain, recalling that 1 is neutral for |.

(T-RES) In a restriction (new c)P the overall behavior of P projected on c must not require any
external contribution in order to have progress since c is invisible from outside the restriction.
This property is precisely captured by the notion of completeness, hence the behavior σ asso-
ciated with the restricted channel c must be complete. The rule does not prevent c from being
extruded but, as we have seen while commenting rule (T-OUTPUTS), the composition σ already
takes into account any behavior implemented by external processes to which c is delegated. It is
possible that the restricted channel c is communicated over other channels in P, just as it is possi-
ble that some channels are communicated over c in P. For these operations to be typed correctly,
c must be ordered appropriately while typing P. This rule simply “guesses” the right channel
order C for typing P, and requires the channel order C \ c in the conclusion to have no trace of
c, but to be coherent with C otherwise.

Before studying the soundness properties of the type system let us have a look at a few ex-
amples of typing derivations. All of the presented examples focus on the main novelty of our

On Projecting Processes into Session Types 27

approach based on projected behavior, which allows the non-linear usage of (private) channels
and the parallel composition of session types.

Example 4.1. In the introduction we have described a conversation between the processes Seller,
Buyer1, and Buyer2. Using the typing rules in Table 7 we can now formally derive the projections
we have intuitively obtained there. In particular, regarding the Buyer1 process we have:

C ` nil : /0 (T-SUB)
C ` nil : {a : 1,b : 1,c : 1} C ` c≺ b

(T-OUTPUTS)
C ` b!c : {a : 1,b : !θ .1,c : 1 |θ}

(T-OUTPUT)
C ` c!“. . . ”.b!c : {a : 1,b : !θ .1,c : !string.(1 |θ)} C ` c≺ a

(T-OUTPUTS)
C ` a!c.c!“. . . ”.b!c : {a : !ρ.1,b : !θ .1,c : ρ | !string.(1 |θ)}

(T-RES)
` (new c)a!c.c!“. . . ”.b!c : {a : !ρ.1,b : !θ .1}

for some appropriate ρ and θ such that ρ | !string.(1 |θ) is complete. In this derivation we take
C = {(c,a),(c,b)}, which is the least channel order that is necessary for typing the restricted
process in Buyer1. Observe that C does not impose any particular relation between a and b,
consequently Buyer1 can be typed using the empty channel order. �

Example 4.2 (buffer). To illustrate an example of typing derivation for an infinite process we
consider B(a,b) from [Milner, 1999], which is defined by

B(a,b) = a?(x : t).b!x.B(a,b)

and which represents a 1-place buffer parametrized on two channels a and b for respectively writ-
ing to and reading from the buffer values of type t. Observe that B(a,b) satisfies the contractivity
condition we mentioned when describing the process language. To type B(a,b) we postulate an
assumption about its projection, in particular

` B(a,b) : {a : σ ,b : τ}

having care to mention, in the session environment, only channels that occur within B(a,b). Now
we type the definition of B(a,b) under this assumption:

x : t ` B(a,b) : {a : σ ,b : τ}
(T-OUTPUT)

x : t ` b!x.B(a,b) : {a : σ ,b : !t.τ}
(T-INPUT)

` a?(x : t).b!x.B(a,b) : {a : ?t.σ ,b : !t.τ}

and we know from Example 2.1 that the (unique) solutions of the equations σ = ?t.σ and τ = !t.τ
are ?tω and !tω , respectively.

We may increase the capacity of the buffer by composing a suitable number of 1-place buffers.
For example (new c)(B(a,c) |B(c,b)) is a buffer with capacity 2 that can be typed as follows:

` B(a,c) : {a : ?tω ,c : !tω}
(T-SUB)

` B(a,c) : {a : ?tω ,b : 1,c : !tω}
` B(c,b) : {b : !tω ,c : ?tω}

(T-SUB)
` B(c,b) : {a : 1,b : !tω ,c : ?tω}

(T-PAR)
` B(a,c) |B(c,b) : {a : ?tω |1,b : 1 | !tω ,c : !tω | ?tω}

(T-RES)
` (new c)(B(a,c) |B(c,b)) : {a : ?tω |1,b : 1 | !tω}

(T-SUB)
` (new c)(B(a,c) |B(c,b)) : {a : ?tω ,b : !tω}

Luca Padovani 28

where the topmost applications of (T-SUB) enrich the session environment with information on
unused channels, so that the subsequent application of (T-PAR) is possible, (T-RES) is justified
since !tω |?tω is a complete session type, and the application of (T-SUB) at the bottom gets rid of
1 subterms which are neutral for |. Observe that the projection of the two-place buffer coincides
with that of the 1-place buffer: any information about the capacity of the buffer is abstracted
away in its projection. �

Example 4.3 (multi-party session). Consider the system

(new c)(a!c |b!c |Client) |a?(x).Server |b?(x).Server

composed by a client and two servers defined as

Client = c!number.Client⊕ c!false.c!false
Server = x?(y : int).Server+ x?(y : false)

The client process establishes a multi-party session by creating a fresh channel c that is for-
warded to both servers located at a and b. Namely, the system reduces to

(new c)(Client |Server{c/x} |Server{c/x})

where the private channel c is owned by all three processes in the system.
The client issues an unbounded number of requests on which the servers compete, so that

multiple requests can be processed concurrently by the two servers, and the first that completes a
request may begin serving the next one. At any time the client may close the session by sending
a false signal to the servers. The client side of the system can be projected as follows:

...
C ` a!c : {a : !σ .1,c : 1 |σ}

(T-SUB)
C ` a!c : {a : !σ .1,b : 1,c : σ}

...
C ` b!c : {b : !σ .1,c : 1 |σ}

...
C ` Client : {c : ρ}

(T-SUB)
C ` Client : {b : 1,c : ρ}

(T-PAR)
C ` b!c |Client : {b : !σ .1 |1,c : 1 |σ |ρ}

(T-SUB)
C ` b!c |Client : {a : 1,b : !σ .1,c : σ |ρ}

(T-PAR)
C ` a!c |b!c |Client : {a : !σ .1 |1,b : 1 | !σ .1,c : σ |σ |ρ}

(T-SUB)
C ` a!c |b!c |Client : {a : !σ .1,b : !σ .1,c : σ |σ |ρ}

(T-RES)
` (new c)(a!c |b!c |Client) : {a : !σ .1,b : !σ .1}

by taking C = {(c,a),(c,b)} and σ = ?int.σ + ?false.1 and ρ = !int.ρ⊕ !false.!false.1
(observe that, in the application of rule (T-RES), the session type σ |σ |ρ , which combines the
behavior of three processes running in parallel, is complete). The reader may easily complete the
projection and verify that the whole system is well typed. �

Example 4.4 (chat room service). The process Chat defined by

Chat = (new c)(Join |Publish)
Join = a!c.c!“Welcome”.Join

Publish = c?(x : string).Publish

models a chat room service as an unbounded multi-party session where an arbitrary number
of participants may join and post messages. Each participant joins the chat room by receiving

On Projecting Processes into Session Types 29

channel c on the public channel a, and the service notifies this by posting a welcome message. On
channel c each participant is allowed to send an arbitrary number of strings, which are collected
by the process Publish and published in some unspecified way.

For projecting Join we begin with the assumption

C ` Join : {a : !(!string∗)ω ,c : !stringω} where C = {(c,a)}

and derive

C ` Join : {a : !(!string∗)ω ,c : !stringω}
(T-OUTPUT)

C ` c!“. . . ”.Join : {a : !(!string∗)ω ,c : !stringω} C ` c≺ a
(T-OUTPUTS)

C ` a!c.c!“. . . ”.Join : {a : !(!string∗)ω ,c : !stringω | !string∗}
(T-SUB)

C ` Join : {a : !(!string∗)ω ,c : !stringω}

Since !stringω = !string.!stringω the session type associated with c does not change
while going from the premise to the conclusion of rule (T-OUTPUT). In the application of (T-SUB)
we use the property !stringω � !stringω | !string∗, which may be surprising. According to
the session type !string∗ associated with the exported channel c, each participant may send an
arbitrary number of messages, but it may also decide to stop sending them at any time. This be-
havior gives less guarantees than !stringω , and in fact we have seen that !string∗� !stringω .
However, the possible termination of each participant is compensated by the fact that unlimited
participants can join the chat room at any time (recall that Join and each participant run in paral-
lel). So, the assumption we have made in Join about channel c, which is typed with !stringω ,
“absorbs” the !string∗ behavior of each participant. In Join we could have assumed c with type
!string∗ as well, since !string∗ � !string∗ | !string∗ also holds. However, this assumption
would have made Chat ill-typed, because !string∗ |?stringω , which is the composition of the
projections for c of processes Join and Publish, is not complete. �

4.3. Properties of the Projection

We now present a standard sequence of results proving that the provided type system is sound.
First we show that the projection of a process is not affected by structural congruence rules:

Lemma 4.1. If Γ;C ` P : ∆ and P≡ Q, then Γ;C ` Q : ∆.

Before showing that projections are preserved by reductions, we must realize that the existence
of a projection for a process does not necessarily mean that the process “behaves well”. For
example we have

` c?(x : /0) : {c : ? /0.1}
Not only c?(x : /0) cannot make any progress, but it cannot cooperate with any other process.

This is witnessed by the existence, in its session environment, of the session type ? /0.1, which
is not viable. Viability of the session types in a session environment is really the property that
characterizes well-typedness of processes and that we need as hypothesis to the type preservation
theorem. We say that a session environment ∆ is viable if so is every session type in the range of
∆.

Theorem 4.1 (type preservation). Let Γ;C ` P : ∆ and P→Q and ∆ viable. Then Γ;C `Q : ∆.

Luca Padovani 30

If compared with standard session type theories, the notion of viability looks like an additional
complication of our setting. However, the rules in Table 7 should really be thought of as pro-
jection rules, rather than typing rules: they synthesize the behavior of a process into its session
environment, and they do so by imposing as few constraints as possible on how processes act on
channels. In standard session type theories there is no need for the concept of viability because
session types are syntactically guaranteed to be viable and the (implicit) assumption is made that
no basic type can be empty. The next example shows that viability of the session environment is
necessary for Theorem 4.1 to hold.

Example 4.5. Consider the process P |Q where

P = (new c)a!c and Q = a?(x).x!3

Process P creates a fresh channel c, it sends c to Q, and does not use it anymore. Process Q
sends an integer on the channel it receives from P. According to the rules in Table 7 we have

` P |Q : {a : !1.1 | ?(!int.1).1}

In particular, the session type associated with a is not viable, because 1 � !int.1 does not
hold. Indeed, we have the reduction

P |Q→ (new c)(nil | c!3)

where the residual process is ill typed, since c is associated with the session type 1 | !int.1 which
is not complete, hence it does not satisfy the premise of rule (T-RES). �

In judgments of the form Γ;C ` P : ∆ the session environment ∆ is an approximation of P
insofar as it describes the projections of P’s behavior with respect to the channels it uses and del-
egates. It is well known that this approximation is unable to capture situations where well-typed
processes are deadlocked because the interdependencies between communications occurring on
different channels are lost. Our approach is no exception, as shown by the following example.

Example 4.6 (deadlock). Consider the process

(new a)(new b)(a!3.b?(x : bool) |b!true.a?(x : int))

where the channels a and b have respectively type σ = !int.1 |?int.1 and τ = ?bool.1 |!bool.1.
Both σ and τ are complete, hence the process is well-typed. Nonetheless, it is unable to perform
any reduction. �

The safety property we are able to state guarantees that, if all the processes sharing some
channel c are immediately ready to communicate on c, then they will eventually synchronize.
Since in our reduction for processes synchronization is triggered not just by the channels on
which messages are exchanged, but also by the type of the exchanged messages, the eventual
synchronization translates to the fact that there is no communication error: it is never the case
that there is a process willing to send a message of some type, and no other process is ever willing
to receive messages of that particular type. The notion of “readiness” we mentioned is formalized
thus:

On Projecting Processes into Session Types 31

Definition 4.2 (readiness). We say that P is ready on c if P ↓ c is derivable by the rules:

c!e.P ↓ c c?(x).P ↓ c ∑
i∈I

c?(x : ti).Pi ↓ c
P ↓ c Q ↓ c

P |Q ↓ c

Intuitively, P is ready on c if c is the subject of every unguarded prefix in P. Also, a ready
process does not have any unguarded internal choice, hence its only possibility to perform a
reduction step is by means of a synchronization rule (either (T-COMM) or (T-COMMS)).

Theorem 4.2. If Γ;C ` P : ∆∪{c : σ} and σ complete and P ↓ c, then P→.

Since reductions propagate through parallel compositions (R-PAR) and restrictions (R-NEW),
Theorem 4.2 can be generalized whenever P is some unguarded sub-process that is ready on c.
In particular, if Γ;C ` P |Q : ∆∪{c : σ} and c 6∈ fn(Q) or if Γ;C ` (new d)P : ∆∪{c : σ} and
c 6= d, then Γ;C ` P : ∆′∪{c : σ} for some ∆′.

5. Related Work

Since their introduction session types have been extended in many ways and applied to several
programming paradigms. Nonetheless, in each theory session types are roughly characterized by
the same features: the ability to describe sequences of exchanged messages having possibly dif-
ferent types; some form of branching and branch selection; two dual branching modalities which
we called internal and external choices in this work; the ability to express recursive behaviors. In
our theory sequencing and branching are modeled by means of algebraic operators of a proper
process calculus: prefix for sequencing, two behavioral operators corresponding to internal and
external choice. We have avoided an explicit representation of recursive behaviors and worked
instead with infinite trees, like in [Castagna et al., 2009a].

Session type theories differentiate also by the basic mechanism that drives branch selection:
it can be labels [Honda et al., 1998; Gay and Hole, 2005; Vasconcelos et al., 2006; Gay and
Vasconcelos, 2007; Honda et al., 2008], object types [Capecchi et al., 2009; Drossopoulou et
al., 2007], or even the type of channels [Castagna et al., 2009a]. In this work, as in [Castagna
et al., 2009a], we generalize the label-driven approach to a type-driven one, but we do not allow
branching to be affected by the type of channels. This is a direct consequence of rule

(R8)
ρ 6� ρ

′

?ρ
′.σ

?ρ−→ 0

in the operational semantics of session types, modelling the fact that the reception of channels
with the “wrong type” yields an unrecoverable error. Hence, well-typed processes are guaranteed
to exchange only channels with the “correct type”. This approach limits the expressiveness of our
language of session types, if compared to that in [Castagna et al., 2009a], but results in a slightly
simpler theory. From a practical point of view it is also simpler to implement, since it does
not require session types to be represented and maintained at run-time (recall that the session
type associated with a channel changes with time). This fact can already be appreciated in the

Luca Padovani 32

communication rules of our process calculus (Section 4)

(R-COMM)
e ↓ v v ∈ tk k ∈ I

a!e.P |∑
i∈I

a?(x : ti).Qi}→ P |Qk{v/x}
and

(R-COMMS)

a!c.P |a?(x).Q→ P |Q{c/x}

where it is clear that communication of basic values implies a run-time check for their type
(v ∈ tk) whereas no such check is required for the communication of channels. Observe that if
we equipped the transition system of session types with the rule

v 6∈ t

?t.σ ?v−→ 0

which corresponds to (R8) but for basic values, we would disable (at the level of session types)
dynamic dispatching also on the type of basic values, because any input operation would be able
to receive every basic value, although some of these would lead to an unrecoverable error. When
desired, as in Examples 2.1 and 2.3, this feature can be encoded by the behavior ?t.σ + ?¬t.0.

The main difference between our approach and existing ones lies in the presence of a parallel
composition operator for session types, in the spirit of conversation types by Caires and Vieira
[2009]. In a sense, we have started from the idea that two (or more) participants must be com-
bined together in order to communicate, which is common to all works on session types, and
internalized it directly in the session type language by providing a composition operator.

Defining session types as a process language has allowed us to study their theory using well-
known process algebraic techniques. This was already done in [Castagna et al., 2009a] regarding
the dyadic setting. Here we have generalized the approach to sessions with an arbitrary number of
participants. This has required a notion of completeness (Definition 2.2) which is more involved
than that of duality that we find in dyadic settings. Interestingly, the additional complication
arises not so much from the number of participants, as from the fact that the most natural formu-
lation of completeness induces a fairness property in the resulting subsession relation. Indeed,
while the subsession relation in [Castagna et al., 2009a] is akin to the must testing pre-order [De
Nicola and Hennessy, 1984, 1987; Hennessy, 1988], the subsession relation in this work (Defi-
nition 2.3) shares some properties with the should testing pre-order [Natarajan and Cleaveland,
1995; Rensink and Vogler, 2007]. With respect to the earlier version of this paper [Padovani,
2009], however, we have adopted a different notion of liveness which is similar to a symmetric
variant of the error-freedom relation in [Acciai and Boreale, 2008]. In [Padovani, 2009] a ses-
sion type σ is live if σ

X
=⇒, namely if σ has the ability to reach a successfully terminated state,

hence completeness is somewhat related to total correctness (a final state is always reachable).
In the present paper we have tried to relax this into partial correctness (no bad state is ever
reached). For us, a bad state is one where some non-terminated participant is no longer capable
of synchronizing with any other participant within the same session. We argue that the notion
of completeness we use in this work fits more naturally a type-theoretic setting and allows us to
type a large number of relatively simple processes that occur often in practice and that are con-
sidered well behaved. For example, in typing the combined buffer (Example 4.2) we have used
the property that !tω |?tω is complete, but the same session type is non-viable in [Padovani, 2009]
becauseX 6∈ init(!tω |?tω). Alas, the formulation of completeness in this work is far less elegant

On Projecting Processes into Session Types 33

and succinct than the one in [Padovani, 2009], and does not avoid the subtleties of fairness in
the resulting subsession relation (Section 3.3). Alternative characterizations of fair/should test-
ing relations have been defined by Natarajan and Cleaveland [1995] and Bugliesi et al. [2010].
In all these works the characterizations highlight the “non-local” nature of fairness, which makes
it more awkward to apply in practice.

A distinctive feature of the language of processes we have used in [Padovani, 2009] and also
in this paper (Section 4) is that we do not discriminate between private and public channels
(sometimes referred to by the adjectives live and shared in other theories), there is no construct
specifically dedicated to session-oriented communication, and we do not impose any linearity
constraint on the use of channels. So, if on one hand the use we make of the term “session” may
be improper as sessions were specifically introduced as a structuring construct, on the other hand
we have shown that the essence of sessions can be captured purely at the level of types. This led
us to re-discover and refine channel types [Pierce and Sangiorgi, 1996; Sangiorgi and Walker,
2001] as well as some known properties of their semantics [Castagna et al., 2008; Carpineti et
al., 2009]. [Vasconcelos, 2009; Giunti and Vasconcelos, 2010] also provide type systems for pure
π-calculus processes, but the linearly typed channels implicitly model dyadic sessions.

With respect to the process language in [Padovani, 2009], here we have operated several
changes: syntactically, we use recursive definitions instead of replication for modeling infinite
behaviors. As observed elsewhere [Honda et al., 1998], recursion seems to better match concrete
programming paradigms, but the results we have obtained here easily extend to a language with
replication as we did in [Padovani, 2009]. Also, we have preferred a reduction semantics for pro-
cesses to the labeled transition relation used in [Padovani, 2009], which turns out to be simpler to
understand and results in simpler proofs. The most important difference with [Padovani, 2009]
is that we have relaxed the type system, in particular rule (T-INPUTS), by means of a channel
order that stratifies channels. The stratification is already enforced on the session types associ-
ated with channels (Remark 2.1), but in the type system it has to be made explicit because the
typing rules only have a partial view of the session types. The aliasing phenomenon we avoid by
means of a channel order is known to be source of trouble in general settings not involving any
sort of typing on processes. For instance, it is partially responsible for the unpopularity of the
mismatch operator in process calculi [Sangiorgi and Walker, 2001]. Within the more restricted
scope of session type theories, the same phenomenon has been addressed in a number of ways
(Yoshida and Vasconcelos [2007] provide a clear survey on this matter). In [Honda et al., 1998]
the synchronization rule modeling channel passing has the form

a!c.P |a?(c).Q→ P |Q

where alpha-conversion is implicitly used for renaming the channel c bound in the input prefix
a?(c) so that it matches the channel being sent. If alpha-conversion is not possible because c oc-
curs free in Q, then no synchronization takes place. As pointed out by Yoshida and Vasconcelos
[2007], this solution is not completely satisfactory since it implies a runtime check. Further-
more, if adopted in our context it would force us to weaken Theorem 4.2, for well-typedness and
readiness of processes would no longer guarantee a synchronization involving a delegation. Gay
and Hole [2005] use polarities for distinguishing the two ends of session channels, and impose
a linear usage of these channels. This way, each end of a session channel is always owned by
exactly one process at any time, thus no merging of session types is ever required. This solution

Luca Padovani 34

is unfeasible in our approach, which heavily relies on non-linear usage of channels (including
private ones). A similar solution is also proposed by Vasconcelos [2009], where channels are not
polarized but restrictions bind two (distinct) channels corresponding to the two ends of a session.
Giunti and Vasconcelos [2010] address the problem in yet another way: they define a linear type
system where session channels do not have polarities, and they enrich the type language with
types of the form (σ ,τ), so that a judgment c : (σ ,τ) ` P denotes the fact that P owns both ends
of the session identified by c, and the two ends are used according to the session types σ and τ .
Then, a typing derivation such as

c : σ ` P c : τ ` Q

c : (σ ,τ) ` P |Q

indicates that the two ends are owned by the two sub-processes P and Q. There is a strong
similarity between the type (σ ,τ) and the session type σ | τ in the present work. In fact, just as
we require the session type of a restricted channel to be complete (rule (T-RES)), they require
the two components of (σ ,τ) to be dual. The difference is that the hypothesis c : (σ ,τ) does not
necessarily imply that the two ends are owned by independent processes running in parallel. For
example, if in the system P |Q above P sends c to Q, the system evolves to some P′ |Q′ which is
typed thus:

` P′ c : (σ ′,τ ′) ` Q′

c : (σ ′,τ ′) ` P′ |Q′

for some appropriate session types σ ′ and τ ′. Basically, the typing records the fact that now both
ends of the session are owned by the sole process Q′, which however may use c according to some
sequential interleaving of σ ′ and τ ′ semantically different from σ ′ |τ ′. Again, this approach does
not guarantee progress in the sense of Theorem 4.2. In the end the stratification we impose is
original to the best of our knowledge, in that it solves the aliasing problem with a static type
system (no runtime check is required) and it does not rely on polarities nor on linear usage
of channels. It is not obvious whether this approach is more or less restrictive when compared
against related ones; the topic should be further investigated. Other session type theories such as
those developed in [Dezani-Ciancaglini et al., 2008; Bettini et al., 2008] impose an ordering on
channels for ensuring global progress of well-typed systems. In these works the channel order
determines the temporal order in which different channels can be used, whereas in our case the
order determines a hierarchy of channels such that “smaller” channels can be sent/received over
“larger” ones. In this sense our channel order resembles the nesting of arrows in the types of
higher-order functions.

In recent years there has been considerable work on so-called contracts for distributed pro-
cesses and Web services [Castagna et al., 2009b; Castagna and Padovani, 2009]. Unlike session
types, contracts capture the overall behavior of a process, including the order of communica-
tions occurring on different channels. For this reason, their behavioral nature has been explicitly
recognized since the very beginning and their theories have been developed as refinements and
extensions of existing process algebraic ones. Even for contracts the shift from dyadic theo-
ries, where only client/server interactions are considered, to multi-party theories has required
the adoption of fair behavioral equivalences [Bravetti and Zavattaro, 2007a,b, 2009]. Laneve and
Padovani [2008] show semantic-preserving, mutual encodings between contracts and session

On Projecting Processes into Session Types 35

types in the dyadic setting. Here we further clarify the relationship between the two formalisms
in the general setting by pursuing the idea of projected behavior. In particular, we argue that the
projection described in Section 4 would seamlessly work if applied to the contracts in [Castagna
and Padovani, 2009] which capture a very shallow abstraction of processes.

The use of processes as types has already been proposed in ways unrelated to sessions and
session types, for example by Chaki et al. [2002] and Nielson and Nielson [1994]. In particular,
Nielson and Nielson [1994] use a language close to value-passing CCS for defining an effect sys-
tem for Concurrent ML. Sumii and Kobayashi [1998] and Kobayashi et al. [2000] describe a type
system for guaranteeing deadlock freedom of π-calculus processes. In their proposal channels
are associated with types of the form [t]/U where t is the type of messages transmitted over the
channel while U is a term of a simple process algebra called usage which specifies the modalities
(input/output) in which the channel is used by a process. As in our approach, usages can be com-
posed in parallel to express the simultaneous access to a channel by several processes. In fact, this
type system can be seen as projecting processes into usages. The main difference is that channels
are only allowed to transmit one type of message, while in our case the same channel can be used
for transmitting messages of different types. Also, usages are equipped with a subusage rela-
tion, but this is axiomatically defined whereas our subsession relation arises from completeness.
Igarashi and Kobayashi [2004] propose a radically different (and more expressive) application
of the “types-as-processes” paradigm, where π-calculus processes (not channels) are associated
with process types which are expressed as CCS-like terms. Unlike [Sumii and Kobayashi, 1998;
Kobayashi et al., 2000] and session type theories including the one proposed in the present pa-
per, the process type associated with a process captures the order in which communications on
different channels occur while the actual content of messages is approximated into types. In this
respect, process types are much more similar to contracts proposed by Castagna and Padovani
[2009], except that contracts keep track of delegated channels for ensuring global progress.

In the present work we have been advocating a behavioral approach for the formalization of
session types, but logical and type-theoretic approaches have also been investigated. In the logical
approach Caires and Pfenning [2010] interpret session types as formulas of a suitable fragment
of linear logic: internal and external choices are modeled as additive disjunction ⊕ and additive
conjunction N respectively. In this view input actions are modeled as the linear implication A(
B, output actions are modeled as the tensor product A⊗B, and exponentials are used for denoting
non-linear resources, such as shared channels. Remarkably, the seminal work by Honda [1993]
on session types was clearly inspired by linear logic, as witnessed by the use of the symbols ⊕
and N for denoting branching points. The type-theoretic approach [Padovani, 2010] is based on
the observation that internal and external choices can be modeled as intersection and union types,
respectively. For example, a channel typed by !int.σ ∧ !bool.τ can be used by a process that
internally decides whether to send an integer or a boolean value, and then behaves according to
σ or τ , respectively. This is equivalent to saying that the channel has both type !int.σ and type
!bool.τ . Conversely, a channel typed by ?int.σ ∨ ?bool.τ has an “undefined” type: it can have
either type ?int.σ or type ?bool.τ . The process will figure out the exact type of the channel
from the type (either int or bool) of the first message received from it.

Luca Padovani 36

6. Conclusion

It is obvious that session types are behavioral types. Still, session types are normally associated
with channels and channels do not expose any behavior. These apparently inconsistent facts can
be reconciled by observing that the session type associated with a channel is the projection of
the behavior of a process restricted to the input/output operations that the process performs on
that channel. Not surprisingly the session types defined in this way are more general – one might
say more complicated – than the ones we usually encounter in other works. If only because,
when two parallel sub-processes access the same channel, its associated session type will be the
parallel composition of the session types obtained by projecting the two sub-processes separately.
Nonetheless, by taking this alternative point of view we have been able to define a theory of
session types that generalizes, clarifies, and semantically justifies many concepts that can be
found scattered in the current literature: (multi-party) session types are terms of a suitably defined
process algebra close to value-passing CCS; completeness expresses the property that a session is
well-formed and never yields a communication error; duality [Gay and Hole, 2005] σ ./ τ is the
special case where σ | τ is complete; viability characterizes well-typed process and corresponds
to the concept of inhabited (session) type; the subtyping relation between session types arises
semantically by relating those session types that preserve completeness in arbitrary contexts.

We envision two main directions in which this work can be further developed. First of all,
the semantics of session types naturally calls for some fairness property when moving from the
dyadic to the multi-party scenario. Although the fair subsession relation is difficult to character-
ize in general, it may be interesting to investigate its relationship with global types of multi-party
session type theories, from which session types are projected. Second, it would be interesting
to provide a general session type inference algorithm for processes along the lines of the pro-
jection we have proposed. The aspects of the type system defined in Section 4 that make it
non-algorithmic regard the application of the subsumption rule (T-SUB), the inference of chan-
nel orders, and above all the computation of the delegated behavior ρ in rule (T-OUTPUTS).
The first two aspects seem to be addressable by means of standard techniques (in fact, while
describing the typing rules we have already hinted at the critical places where subsumption is
actually necessary). As regards the delegated behavior in rule (T-OUTPUTS), we conjecture that
it can be inferred (in closed systems) by means of a standard unification algorithm exploiting
axiom (CH3). Nonetheless, the combination of these aspects with the fact that we work with
possibly infinite types makes the design of an inference algorithm quite challenging.

Acknowledgments. I wish to thank the anonymous referees for their detailed and thoughtful
comments on early versions of this paper. I would also like to thank Giuseppe Castagna, Mari-
angiola Dezani, Kohei Honda, and Nobuko Yoshida for the insightful discussions.

References

Lucia Acciai and Michele Boreale. A type system for client progress in a service-oriented cal-
culus. In Concurrency, Graphs and Models: Essays Dedicated to Ugo Montanari on the
Occasion of His 65th Birthday, LNCS 5065, pages 642–658. Springer, 2008.

Lorenzo Bettini, Mario Coppo, Loris D’Antoni, Marco De Luca, Mariangiola Dezani-

On Projecting Processes into Session Types 37

Ciancaglini, and Nobuko Yoshida. Global Progress in Dynamically Interleaved Multiparty
Sessions. In Proceedings of CONCUR’08, LNCS 5201, pages 418–433. Springer, 2008.

Mario Bravetti and Gianluigi Zavattaro. Contract based multi-party service composition. In
Proceedings of FSEN’07, LNCS 4767, pages 207–222. Springer, 2007.

Mario Bravetti and Gianluigi Zavattaro. Towards a unifying theory for choreography confor-
mance and contract compliance. In Proceedings of the 6th International Symposium on Soft-
ware Composition, LNCS 4829, pages 34–50. Springer, 2007.

Mario Bravetti and Gianluigi Zavattaro. A foundational theory of contracts for multi-party ser-
vice composition. Fundamenta Informaticae, 89(4):451–478, 2009.

Michele Bugliesi, Damiano Macedonio, Luca Pino, and Sabina Rossi. Compliance preorders for
Web Services. In Proceedings of WS-FM’09. Springer, 2010. To appear.

Luis Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In Proceed-
ings of CONCUR’10. Springer, 2010. To appear.

Luis Caires and Hugo Vieira. Conversation types. In Proceedings of ESOP’09, LNCS 5502,
pages 285–300. Springer, 2009.

Sara Capecchi, Mario Coppo, Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, and Elena
Giachino. Amalgamating Sessions and Methods in Object Oriented Languages with Generics.
Theoretical Computer Science, 410:142–167, 2009.

Samuele Carpineti, Cosimo Laneve, and Luca Padovani. PiDuce - A project for experimenting
Web services technologies. Science of Computer Programming, 74(10):777–811, 2009.

Giuseppe Castagna and Alain Frisch. A gentle introduction to semantic subtyping. In Proceed-
ings of PPDP’05, pages 198–199. ACM, 2005.

Giuseppe Castagna and Luca Padovani. Contracts for mobile processes. In Proceedings of
CONCUR’09, LNCS 5710, pages 211–228. Springer, 2009.

Giuseppe Castagna, Rocco De Nicola, and Daniele Varacca. Semantic subtyping for the pi-
calculus. Theoretical Computer Science, 398(1-3):217–242, 2008.

Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Luca Padovani. Foun-
dations of session types. In Proceedings of PPDP’09, pages 219–230. ACM, 2009.

Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of contracts for Web services.
ACM Transactions on Programming Languages and Systems, 31(5):1–61, 2009.

Sagar Chaki, Sriram K. Rajamani, and Jakob Rehof. Types as models: model checking message-
passing programs. SIGPLAN Notices, 37(1):45–57, 2002.

Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science, 25:95–
169, 1983.

Rocco De Nicola and Matthew Hennessy. Testing equivalences for processes. Theoretical Com-
puter Science, 34:83–133, 1984.

Rocco De Nicola and Matthew Hennessy. CCS without τ’s. In Proceedings of TAP-
SOFT’87/CAAP’87, LNCS 249, pages 138–152. Springer, 1987.

Mariangiola Dezani-Ciancaglini, Ugo de’ Liguoro, and Nobuko Yoshida. On Progress for Struc-
tured Communications. In Proceedings of TGC’07, LNCS 4912, pages 257–275. Springer,
2008.

Mariangiola Dezani-Ciancaglini, Sophia Drossopoulou, Dimitris Mostrous, and Nobuko
Yoshida. Session Types for Object-Oriented Languages. Information and Computation,
207(5):595–641, 2009.

Luca Padovani 38

Sophia Drossopoulou, Mariangiola Dezani-Ciancaglini, and Mario Coppo. Amalgamating
the Session Types and the Object Oriented Programming Paradigms. In Proceedings of
MPOOL’07, 2007.

Alain Frisch, Giuseppe Castagna, and Veronique Benzaken. Semantic subtyping: dealing set-
theoretically with function, union, intersection, and negation types. Journal of the ACM,
55(4):1–64, 2008.

Simon Gay and Malcolm Hole. Subtyping for session types in the π-calculus. Acta Informatica,
42(2-3):191–225, 2005.

Simon Gay and Vasco T. Vasconcelos. Asynchronous functional session types. Technical Report
2007–251, Department of Computing, University of Glasgow, 2007.

Marco Giunti and Vasco T. Vasconcelos. A linear account of session types in the pi calculus. In
Proceedings of CONCUR’10. Springer, 2010. To appear.

Matthew Hennessy. Algebraic Theory of Processes. Foundation of Computing. MIT Press, 1988.
Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and type disci-

plines for structured communication-based programming. In Proceedings of ESOP’98, LNCS
1381, pages 122–138. Springer, 1998.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session types. In
Proceedings of POPL’08, pages 273–284. ACM, 2008.

Kohei Honda. Types for dyadic interaction. In Proceedings of CONCUR’93, LNCS 715, pages
509–523. Springer, 1993.

Atsushi Igarashi and Naoki Kobayashi. A generic type system for the Pi-calculus. Theoretical
Computer Science, 311(1-3):121–163, 2004.

Naoki Kobayashi, Shin Saito, and Eijiro Sumii. An implicitly-typed deadlock-free process cal-
culus. In Proceedings of CONCUR’00, LNCS 1877, pages 489–503. Springer, 2000.

Cosimo Laneve and Luca Padovani. The pairing of contracts and session types. In Concur-
rency, Graphs and Models: Essays Dedicated to Ugo Montanari on the Occasion of His 65th
Birthday, LNCS 5065, pages 681–700. Springer, 2008.

Robin Milner. Communicating and Mobile Systems: the Pi-Calculus. Cambridge University
Press, 1999.

V. Natarajan and Rance Cleaveland. Divergence and fair testing. In Proceedings of ICALP ’95,
LNCS 944, pages 648–659. Springer, 1995.

Hanne Riis Nielson and Flemming Nielson. Higher-order concurrent programs with finite com-
munication topology (extended abstract). In Proceedings of POPL’94, pages 84–97. ACM,
1994.

Luca Padovani. Session types at the mirror. EPTCS, 12:71–86, 2009.
Luca Padovani. Session Types = Intersection Types + Union Types. In Proceedings of ITRS’10,

2010. To appear.
Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes. Mathemat-

ical Structures in Computer Science, pages 376–385, 1996.
Arend Rensink and Walter Vogler. Fair testing. Information and Computation, 205(2):125–198,

2007.
Davide Sangiorgi and David Walker. The π-calculus: a Theory of Mobile Processes. Cambridge

University Press, 2001.
Eijiro Sumii and Naoki Kobayashi. A generalized deadlock-free process calculus. Electronic

Notes in Theoretical Computer Science, 16(3):225–247, 1998.

On Projecting Processes into Session Types 39

Vasco T. Vasconcelos, Simon Gay, and Antonio Ravara. Type checking a multithreaded func-
tional language with session types. Theoretical Computer Science, 368:64–87, 2006.

Vasco T. Vasconcelos. Fundamentals of session types. In SFM’09, LNCS 5569, pages 158–186.
Springer, 2009.

Nobuko Yoshida and Vasco T. Vasconcelos. Language primitives and type discipline for struc-
tured communication-based programming revisited: Two systems for higher-order session
communication. Electronic Notes in Theoretical Computer Science, 171(4):73–93, 2007.

Appendix A. Supplement to Section 3

Theorem A.1 (Theorem 3.1). Let σ and τ be components. Then σ � τ if and only if:

1 τ ⇓ S implies σ ⇓ R and R ⊆ S;

2 σ viable and τ
bµc
=⇒ implies σ

bµc
=⇒ and σ(µ)� τ(µ) for every µ 6=X.

Proof. (“if” part) Let ρ be a session types that completes σ and consider a derivation ρ |τ =⇒
ρ ′ | τ ′. We must prove ρ ′ | τ ′ live. By unzipping the derivation we obtain a sequence ϕ of actions

such that ρ
ϕ

=⇒ ρ ′ and τ
ϕ

=⇒ τ ′. We distinguish two cases depending on the shape of ϕ .

(ϕ = ε) From condition (1) we deduce that there exists σ ′ such that σ =⇒ σ ′ and {bµc ∈
binit(σ ′)c | σ(µ) viable} ⊆ {bµc ∈ binit(τ ′)c | τ(µ) viable}.
As regards the τ ′ component, from the hypothesis ρ |σ complete we deduce ρ ′ |σ ′ complete,
in particular eitherX ∈ init(σ ′) or init(ρ ′)∩ init(σ ′) 6= /0. We conclude eitherX ∈ init(τ ′) or

init(ρ ′)∩ init(τ ′) 6= /0 because {bµc ∈ binit(σ ′)c | ρ ′ bµc=⇒}⊆ {bµc ∈ binit(τ ′)c | ρ ′ bµc=⇒}.
As regards ρ ′ let ρ ′∼= ρ1 |ρ2 where ρ1 is a component and supposeX 6∈ init(ρ1) for otherwise
there is nothing to prove. We have ρ ′ | τ ′ ∼= ρ1 | (ρ2 | τ ′) and we distinguish two sub-cases:

(init(ρ2)∩ init(τ ′) = /0) Then init(ρ2)∩ init(σ ′) = /0 and from the hypothesis ρ |σ complete
we conclude /0 6= init(ρ1)∩ init(ρ2 | σ ′) = init(ρ1)∩ (init(ρ2)∪ init(σ ′)) ⊆ init(ρ1)∩
(init(ρ2)∪ init(τ ′)) = init(ρ1)∩ init(ρ2 | τ ′).

(init(ρ2)∩ init(τ ′) 6= /0) Then there exist ρ ′2, τ ′′, and µ such that ρ2
µ

=⇒ ρ ′2 and τ ′
µ

=⇒ τ ′′.

From condition (2) we deduce σ
bµc
=⇒ and σ(µ)� τ(µ), hence ρ1 | (ρ ′2 | τ ′′) is complete.

This means init(ρ1)∩ init(ρ ′2 | τ ′′) 6= /0 and we conclude since init(ρ ′2 | τ ′′)⊆ init(ρ2 | τ ′).

(ϕ = µϕ ′) Then ρ
µ

=⇒ ρ ′′
ϕ
′

=⇒ ρ ′ and τ
µ

=⇒ τ ′′
ϕ

=⇒ τ ′ for some ρ ′′ and τ ′′. From the hypothesis

ρ |σ complete we deduce σ viable. From condition (2) we deduce σ
bµc
=⇒ and σ(µ)� τ(µ)

and ρ ′′ |σ(µ) complete, hence ρ ′′ |τ(µ) complete. We conclude ρ ′ | τ ′ live since τ(µ)=⇒ τ ′′.

(“only if” part) As regards condition (1), suppose by contradiction that there exists S such
that τ ⇓ S and σ ⇓ R implies R 6⊆ S. Let T

def
=

⋃
σ⇓R R \ S; let C(µ)

def
= {σ ′ | σ =⇒ µ−→ σ ′}; let

X = {†1t1, . . . ,†ntn} be a finite set such that:

1 †v ∈ init(σ) implies v ∈ t and †t ∈ X for some t;
2 for every †t ∈ X there exists v ∈ t such that C(†v) 6= /0;
3 for every †t ∈ X and for every v,w ∈ t we have C(†v) =C(†w).

Luca Padovani 40

Observe that X always exists because the set {C(†v) | † ∈ {?, !},v ∈ V } is a finite set since
{σ ′ | ∃µ : σ =⇒ µ−→ σ ′} is a subset of the set of σ ’s subtrees and the set of distinct σ ’s subtrees
is finite by regularity of σ . Now let

ρ
def
= ∑

†t∈X

†t.ρ†t{+ ?θ .ρ!�}!�∈T{+ !0.ρ?�}?�∈T{+1}X∈T (3)

where

— ρ†t completes σ(†v) for every v ∈ t;
— ρ!� completes σ(!θ);
— ρ?� completes σ(?0)
and the existence of θ is granted from the definition of ready set. By definition of ρ we have that
ρ |σ is complete while ρ | τ is not, which contradicts the hypothesis σ � τ .

As regards condition (2), assume σ viable and τ
bµc
=⇒ for some µ 6= X and suppose by con-

tradiction that σ Y
bµc
=⇒. Let ρ

def
= ρ ′+ µ.0 where ρ ′ is some arbitrary session type that completes

σ . Without loss of generality we may assume that ρ ′ is a component. Indeed, if σ is viable we
can build a component that completes it similar to that defined in (3) above. Then ρ completes

σ but not τ , which is absurd. Hence σ
bµc
=⇒. If σ(µ) is not viable there is nothing left to prove.

If σ(µ) is viable, then consider an arbitrary ρ ′′ that completes it and let ρ
def
= ρ ′+ µ.ρ ′′. From

σ | ρ complete and the hypothesis σ � τ we deduce that ρ ′′ | τ(µ) is complete. We conclude
σ(µ)� τ(µ) since ρ ′′ is arbitrary.

Theorem A.2 (Theorem 3.3). Let σ and τ be components. Then σ v τ if and only if:

1 τ ⇓ S implies σ ⇓ R and R ⊆ S;

2 τ
bµc
=⇒ implies σ

bµc
=⇒ and σ(µ)� τ(µ) for every µ 6=X.

Proof. (“if” part) It is enough to show that σ +ρ and τ +ρ satisfy the conditions (1) and (2)
of Theorem 3.1 for an arbitrary component ρ .

As regards condition (1), let τ +ρ ⇓ S. By definition of ready set there exist τ ′ and ρ ′ such
that τ =⇒ τ ′ and ρ =⇒ ρ ′ and S = {bµc ∈ binit(τ ′+ρ ′)c | (τ +ρ)(µ) viable}. Let S′

def
= {bµc ∈

binit(τ ′)c | τ(µ) viable}. From hypothesis (1) we deduce σ ⇓ R′ for some R′ ⊆ S′. By definition
of ready set we deduce that there exists σ ′ such that σ =⇒ σ ′ and R′ = {bµc ∈ binit(σ ′)c |
σ(µ) viable}. Let R

def
= {bµc ∈ binit(σ ′+ ρ ′)c | (σ +ρ)(µ) viable}. To prove R ⊆ S, assume

bµc ∈ R and observe that this implies (σ +ρ)(µ) viable. If we show that bµc ∈ binit(τ ′+ρ ′)c
we are done, because � is a pre-congruence for ⊕ hence (τ +ρ)(µ) is viable and we conclude
bµc ∈ S. The only interesting case is when bµc ∈ binit(σ ′)\ init(ρ ′)c. From (σ +ρ)(µ) viable
we deduce σ(µ) viable, hence bµc ∈ R′ ⊆ S′, which implies bµc ∈ binit(τ ′)c.

As regards condition (2) of Theorem 3.1 suppose σ + ρ viable and let τ + ρ
bµc
=⇒ for some

µ 6=X. From hypothesis (2) we deduce σ +ρ
bµc
=⇒ and we conclude (σ +ρ)(µ) � (τ +ρ)(µ)

because of pre-congruence of � with respect to ⊕.
(“only if” part) Since σ v τ implies σ � τ condition (1) follows immediately from Theo-

rem 3.1. From the hypothesis σ v τ we also deduce σ +1� τ +1. Observe that σ +1 is viable.

Suppose τ +1
bµc
=⇒ for some µ 6=X. From Theorem 3.1 we deduce σ +1

bµc
=⇒ and (σ +1)(µ)�

On Projecting Processes into Session Types 41

(τ+1)(µ). We conclude σ
bµc
=⇒ and σ(µ)� τ(µ) since σ(µ)= (σ +1)(µ)� (τ+1)(µ)= τ(µ).

Appendix B. Supplement to Section 4

In the type system and the proofs that follow we sometimes implicitly use some properties of
channel orders that we collect below:

Proposition B.1. Let C be a channel order. Then the following properties hold:

1 if a 6= c, then C {c/x}\a = (C \a){c/x};
2 if C ` v≺ u does not hold, then C ,u≺ v is a channel order;
3 if neither C ` c≺ x nor C ` x≺ c do hold, then C {c/x} is a channel order;
4 if a 6= c and (C \a){c/x} is a channel order, then C {c/x} is a channel order.

Proof. We prove only item (1), the remaining items are easy exercises.

— (“only if” part) Suppose (u,v) ∈ C {c/x} \ a. Then u,v 6= a and (u′,v′) ∈ C for some u′,
v′ such that u = u′{c/x} and v = v′{c/x}. We deduce u′,v′ 6= a, hence (u′,v′) ∈ C \ a. We
conclude (u,v) ∈ (C \a){c/x}.

— (“if” part) Suppose (u,v) ∈ (C \a){c/x}. Then u = u′{c/x} and v = v′{c/x} for some u′, v′

such that (u′,v′) ∈ C \a. We deduce u′,v′ 6= a and (u′,v′) ∈ C , namely (u,v) ∈ C {c/x}. We
conclude (u,v) ∈ C {c/x}\a because u,v 6= a.

Lemma B.1 (substitution). The following properties hold:

1 if Γ,x : t;C ` P : ∆ and v ∈ t, then Γ;C ` P{v/x} : ∆;
2 if Γ;C ` P : ∆∪{x : τ} and c 6∈ dom(∆), then Γ;C {c/x} ` P{c/x} : ∆∪{c : τ}.

Proof. Item (1) follows immediately from the assumption that (dom(Γ)∪{x})∩dom(∆) = /0
and by assuming that the substitution lemma holds for the language of expressions e over which
we have parametrized our language of processes. As regards item (2), we do an induction on P.
Most cases are obvious so we only show here the interesting ones.

Suppose P = u?(y).Q where we may assume, without loss of generality, that x 6= y. We distin-
guish two subcases:

(x = u) Then ∆∪{x : τ} � ∆′∪{x : ?ρ.σ} where (1) Γ;C ,y≺ x ` Q : ∆′∪{x : σ ,y : ρ} and (2)
C ` x≺ dom(∆′) and (3) dom(∆′)∪{x} ⊆ dom(∆)∪{x}. From the hypothesis c 6∈ dom(∆) and
(3) we deduce c 6∈ dom(∆′). From (1) and the induction hypothesis we have Γ;C {c/x},y ≺
c ` Q{c/x} : ∆′∪{c : σ ,y : ρ}. From (2) we deduce C {c/x} ` c≺ dom(∆′). By (T-INPUTS)
we derive Γ;C {c/x} ` c?(y).Q{c/x} : ∆′ ∪{c : ?ρ.σ} and we conclude with an application
of (T-SUB).

(x 6= u) Then ∆∪{x : τ}� ∆′∪{x : θ ,u : ?ρ.σ}where (1) Γ;C ,y≺ u `Q : ∆′∪{x : θ ,u : σ ,y : ρ}
and (2) C ` u≺ dom(∆′)∪{x} and (3) dom(∆′)∪{x,u} ⊆ dom(∆)∪{x}. From the hypothesis
c 6∈ dom(∆) and (3) we deduce c 6∈ dom(∆′)∪{u}. From (1) and the induction hypothesis we
derive Γ;C {c/x},y≺ u`Q{c/x} : ∆′∪{c : θ ,u : σ ,y : ρ}. From (2) we deduce C {c/x} ` u≺
dom(∆′)∪{c}. By (T-INPUTS) we derive Γ;C {c/x} ` u?(y).Q{c/x} : ∆′ ∪{c : θ ,u : ?ρ.σ}
and we conclude with an application of (T-SUB).

Suppose P = u!v.Q. We distinguish three subcases:

Luca Padovani 42

(x = u) Then ∆∪{x : τ} � ∆′∪{x : !ρ.σ ,v : ρ |θ} where (1) Γ;C `Q : ∆′∪{x : σ ,v : θ} and (2)
C ` v≺ x and (3) dom(∆′)∪{x,v} ⊆ dom(∆)∪{x}. From the hypothesis c 6∈ dom(∆) and (3)
we deduce x 6∈ dom(∆′)∪{v}. From (1) and the induction hypothesis we derive Γ;C {c/x} `
Q{c/x} : ∆′∪{c : σ ,v : θ}. From (2) we deduce C {c/x} ` v≺ c. By (T-OUTPUTS) we derive
Γ;C {c/x} ` c!v.Q{c/x} : ∆′∪{c : !ρ.σ ,v : ρ |θ} and we conclude with an application of (T-
SUB).

(x = v) Then ∆∪{x : τ} � ∆′∪{u : !ρ.σ ,x : ρ |θ} where (1) Γ;C `Q : ∆′∪{u : σ ,x : θ} and (2)
C ` x≺ u and (3) dom(∆′)∪{u,x} ⊆ dom(∆)∪{x}. From the hypothesis c 6∈ dom(∆) and (3)
we deduce c 6∈ dom(∆′)∪{u}. From (1) and the induction hypothesis we derive Γ;C {c/x} `
Q{c/x} : ∆′∪{u : σ ,c : θ}. From (2) we deduce C {c/x} ` c≺ u. By (T-OUTPUTS) we derive
Γ;C {c/x} ` u!c.Q{c/x} : ∆′∪{u : !ρ.σ ,c : ρ |θ} and we conclude with an application of (T-
SUB).

(x 6= u,v) Then ∆∪{x : τ} � ∆′ ∪{x : θ ,u : !ρ.σ ,v : ρ |θ ′} where (1) Γ;C ` Q : ∆′ ∪{x : θ ,u :
σ ,v : θ ′} and (2) C ` v≺ u and (3) dom(∆′)∪{x,u,v} ⊆ dom(∆)∪{x}. From the hypothesis
c 6∈ dom(∆) and (3) we deduce c 6∈ dom(∆′)∪{u,v}. From (1) and the induction hypothesis
we derive Γ;C {c/x} ` Q{c/x} : ∆′ ∪ {c : θ ,u : σ ,v : θ ′}. From (2) and by (T-OUTPUTS)
we derive Γ;C {c/x} ` u!v.Q{c/x} : ∆′∪{c : θ ,u : !ρ.σ ,v : ρ |θ ′} and we conclude with an
application of (T-SUB).

Suppose P = (new a)Q where we may assume, without loss of generality, that a 6= c. Then
C = C ′ \ a and ∆∪{x : τ} � ∆′ ∪{x : θ} where (1) Γ;C ′ ` Q : ∆′ ∪{x : θ ,a : θ ′} and (2) θ ′ is
complete and (3) dom(∆′)∪{x}⊆ dom(∆)∪{x}. From the hypothesis c 6∈ dom(∆) and (3) and a 6=
c we deduce c 6∈ dom(∆′)∪{a}. From (1) and the induction hypothesis we derive Γ;C ′{c/x} `
Q{c/x} : ∆′∪{c : θ ,a : θ ′}. From (2) and by (T-RES) we derive Γ;C {c/x} `Q{c/x} : ∆′∪{c : θ}
and we conclude with an application of (T-SUB).

Lemma B.2 (Lemma 4.1). If Γ;C ` P : ∆ and P≡ Q, then Γ;C ` Q : ∆.

Proof. We reason by induction on the derivation of P ≡ Q and by cases on the last structural
congruence rule applied, using the fact that� is a precongruence with respect to |,⊕, and external
choices when branches are guarded. Most cases are trivial, we focus on the interesting ones:

(P = Q |nil≡ Q) Then ∆ � {ui : σi | τi}i∈I where Γ;C ` Q : {ui : σi}i∈I and {ui : τi}i∈I � /0. We
deduce τi � 1 for every i ∈ I. We conclude by observing that ∆ � {ui : σi | τi}i∈I � {ui :
σi |1}i∈I � {ui : σi}i∈I .

(P≡ P |nil) Let ∆′
def
= {u : 1 | u ∈ dom(∆)} and observe that Γ;C ` nil : ∆′. Since ∆ ≈ ∆ |∆′ we

conclude with an application of rule (T-PAR) followed by (T-SUB).
(P = (new a)(P1 |P2)≡ P1 | (new a)P2 = Q where a 6∈ fn(P1)) Then ∆� ∆1 |∆2 for some ∆1 and

∆2 such that Γ;C ` P1 : ∆1∪{a : σ1} and Γ;C ` P2 : ∆2∪{a : σ2} where σ1 |σ2 is complete.
From a 6∈ fn(P) we deduce σ1 � 1, hence σ1 |σ2 � 1 |σ2 ≈ σ2, namely σ2 is complete. We
deduce Γ;C ` (new a)P2 : ∆2. We conclude by observing that Γ;C ` P1 : ∆1 since a 6∈ fn(P1).

(P = P1 | (new a)P2 ≡ (new a)(P1 |P2) = Q where a 6∈ fn(P1)) Then ∆� ∆1 |∆2 for some ∆1 and
∆2 such that Γ;C ` P1 : ∆1 and Γ;C ` P2 : ∆2∪{a : σ2} and a 6∈ dom(∆1) and σ2 is complete.
By rule (T-SUB) we derive Γ;C ` P1 : ∆1∪{a : 1}. By rule (T-PAR) we derive Γ;C ` P1 |P2 :
(∆1 |∆2)∪{a : 1 |σ2}. We conclude with an application of (T-RES) followed by (T-SUB) since
1 |σ2 is complete.

On Projecting Processes into Session Types 43

Theorem B.1 (Theorem 4.1). Let Γ;C ` P : ∆ and P→ Q and ∆ viable. Then Γ;C ` Q : ∆.

Proof. By induction on the derivation of P→ Q and by cases on the last rule applied. The
cases for rules (R-NEW) and (R-PAR) follow by a simple induction, the latter one since � is
preserved by |. The case for rule (R-CHOICE) is trivial because of the typing rule (T-CHOICE)
and the case for rule (R-CONG) follows from the inductive hypothesis and Lemma 4.1.

As regards rule (R-COMM), we have P = a!e.P′ |∑i∈I a?(x : ti).Pi → P′ |Pk{v/x} = Q where
e ↓ v and v ∈ tk for some k ∈ I. We deduce ∆� (∆′ |∆′′)∪{a : !t.σ |∑i∈I ?ti.σi} where Γ ` e : t and
Γ;C ` P′ : ∆′∪{a : σ} and Γ,x : tk;C ` Pk : ∆′′∪{a : σk}. By Lemma B.1(1) we deduce Γ;C `
Pk{v/x} : ∆′′∪{a : σk}. We conclude by observing that !t.σ |∑i∈I ?ti.σi −→ !v.σ |∑i∈I ?ti.σi −→
σ |σk, hence !t.σ |∑i∈I ?ti.σi � σ |σk.

As regards rule (R-COMMS), we have P = a!c.P1 | a?(x).P2 → P1 |P2{c/x} = Q. We deduce
∆ � (∆1 |∆2)∪{a : !ρ1.σ1 | ?ρ2.σ2,c : τ | ρ1} where (1) Γ;C ` P1 : ∆1 ∪{a : σ1,c : τ} and (2)
C ` c ≺ a and (3) Γ;C ,x ≺ a ` P2 : ∆2 ∪{a : σ2,x : ρ2} and (4) C ` a ≺ dom(∆2). From (2)
and (4) we derive c 6∈ dom(∆2). From (2) we also derive that (C ,x ≺ a){c/x} = C . From (3)
and by Lemma B.1(2) we deduce Γ;C ` P2{c/x} : ∆2 ∪{a : σ2,c : ρ2}. From the hypothesis ∆

viable we deduce ρ1 � ρ2. By (T-PAR) we derive Γ;C ` Q : (∆1 |∆2)∪{a : σ1 |σ2,c : τ |ρ2}.
We conclude by observing that !ρ1.σ1 | ?ρ2.σ2 −→ σ1 |σ2 hence !ρ1.σ1 | ?ρ2.σ2 � σ1 |σ2 and
furthermore τ |ρ1 � τ |ρ2 since � is a precongruence for | and ρ1 � ρ2.

Theorem B.2 (Theorem 4.2). If Γ;C ` P : ∆∪{c : σ} and σ complete and P ↓ c, then P→.

Proof. We have P ≡ P1 | · · · |Pn where each Pi is guarded by a prefix which subject is c. We
deduce that there exist ∆1, . . . ,∆n and σ1, . . . ,σn such that σ � σ1 | · · · |σn and Γ;C ` Pi : ∆i∪{c :
σi} for every i ∈ {1, . . . ,n} and each σi is the session type directly determined by the conclusion
of one of the rules (T-OUTPUT), (T-INPUT), (T-OUTPUTS), or (T-INPUTS). Let I ⊆ {1, . . . ,n}
be the set of indexes such that i ∈ I implies Pi = c!ei.P′i for some ei and P′i . Observe that ei ↓ vi

implies σi =⇒ !vi.σ
′
i for every i ∈ I. From the hypothesis σ complete we deduce that σ1 | · · · |σn

is also complete hence there exist i ∈ I and j ∈ {1, . . . ,n} \ I such that either ei ↓ vi and σ j
?vi−→

or ei = a and σ j
?�−→. We deduce Pi |Pj→ which implies P→.

