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Abstract

Coding theory is useful for real world applications. A ndeabxample is digital television. Basically,
coding theory is to study a way of detecting and/or corrgctlata that may be true or false. Moreover
coding theory is an area of mathematics, in which there isimplay between many branches of math-
ematics, e.g., abstract algebra, combinatorics, disgebenetry, information theory, etc. In this paper
we propose a novel approach for analyzing proof nets of ididative Linear Logic (MLL) by coding
theory. We define families of proof structures and introdmogetric space for each family. In each family,

1. an MLL proof net is a true code element, and
2. aproof structure that is not an MLL proof net is a false (@rgpted) code element.

The definition of our metrics reflects the duality of the nplltative connectives elegantly. In this paper
we show that in the framework one error-detecting is posdihit one error-correcting not. Our proof
of the impossibility of one error-correcting is interesgtim the sense that a proof theoretic property is
proved using a graph theoretic argument. In addition, wevshat affine logic and MLL + MIX are not
appropriate for this framework. That explains why MLL isteetthan such similar logics.

Keywords: Linear Logic, proof nets, error-correcting cedgraph isomorphisms, combinatorics

1 Introduction

The study of the multiplicative fragment of Linear Logic tdtut multiplicative constants (for short MLL)
[Gir87] is successful from both semantical and syntactcaht of view. In semantical point of view there
are good semantical models including coherent spacesntacycal point of view the theory of MLL proof
nets has obtained a firm status without doubt. On the othed thanintuitionistic multiplicative fragment
of Linear Logic without multiplicative constants (for slidLL) is also studied, for example, i [MatD7].
IMLL can be seen as a subsystem of MLL. IMLL is easier to beistidnore deeply than MLL, because
we can use intuitions inspired from the conventional lambalaulus theory as well as graph-theoretic
intuitions from the MLL proof nets theory. We exploited bditbnefits in[[MatOl7].

In order to study MLL more deeply, how should we do? One apgrésto interpret MLL intuitionistically
by using Gddel's double negation interpretation. One exarnggHas05]. However in such an approach
multiplicative constants must be introduced. Definitelyaducing multiplicative constants makes things
complicated. Another approach we propose in this paperasiéptcoding theoretidramework.

Basically, coding theory [Bay98, MSB3] is to study a way ofedting and/or correcting data that may be
true or false. Moreover coding theory is an area of mathasdti which there is an interplay between many
branches of mathematics, e.g., abstract algebra, conobicgtdiscrete geometry, information theory, etc.
In this paper we propose a novel approach for analyzing pretsf of Multiplicative Linear Logic (MLL)
by coding theory. We define families of proof structures arttbiduce a metric space for each family. In
each family,


http://arxiv.org/abs/cs/0703018v24

1. an MLL proof netis atrue code element, which is usualljecbhcodewordn the literature of coding
theory;

2. a proof structure that is not an MLL proof net is a false @mrapted) code element.

Figure[d shows an explanatory example. All three exampl&sgare[1 are MLL proof nets in a standard
notation of [Gir87]. In our framework the left and the midglemof nets belong to the same family, because
when we forget® and’e symbols, these are the same (although in fact, these aréwitfuaut forgetting
those symbols. We will discuss the matter later). But thatriroof net does not belong to the family,
because when we forgetand= symbols from the right one, we can not identify this one wiith previous
one by the mismatch of the literagsand p-. The subtle point will be discussed later in a more precise
way (see Subsectidn 3.1). The definition of our metrics reflée duality of the multiplicative connectives
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Figure 1: An explanatory example

elegantly. Moreover introducing the framework makes itgiloie to apply different results and techniques
of other branches of mathematics to the study of MLL prookndh particular, our concern is closely
related to the following question: given a condition aborgqgd nets (for example, that of the number of
ID-links), how many proof nets do we have such that they fsatiiee condition? As far as we know, in the
literature, there are only a few discussions about such attwuproblem on proof theory.

So far, most of the study of MLL proof nets have focused onvitldial proof nets (e.g., sequentialization
theorem|([Gir87]) or the relationship between identifialyiegs nets (e.g., cut-elimination angexpansion).
On the other hand, our approach focuses on a relationshipebatsimilar, but different proof nets. In
particular, our notion of similarity of proof nets seems ®umable to be understood by conventional type
theory.

The main technical achievement of this paper is Thedrem &hndays that in our framework one error-
detecting is possible but one error-correcting not. Ouopod the theorem is interesting in the sense that a
proof-theoretic property is proved by a graph-theoretiiarent.

The Structure of the Paper: Sectiori 2 introduces basic properties of MLL proof nets. Mirbof nets
are defined and sequentialization theorem on them is destrildoreover, the notion of empires, which are
needed in order to prove the main theorems, is introducectid®€3 introduces the notion of PS-families
(families of proof structures) and distances on them. lhiswm that they are metric spaces. Then other
basic properties w.r.t PS-families and the main theorerastated. Most of details of the proofs of the
main theorems are put into Appendices. An example is alsengiZxampléll). Finally, future research
directions about PS-families and elementary results om te stated.

2 The MLL System
2.1 The Basic Theory of MLL Proof Nets

In this section, we present multiplicative proof nets. Weoatall theseMLL proof nets(or simply, proof
nety. First we define MLL formulas. In this paper, we only consiti#l L formulas with the only one
propositional variabl@ because the restriction does not give any essential diffesew.r.t our main results.
By the same reason we restrict ID-links to them with lite@hclusions. Moreover we do not consider Cut-
links and Cut-elimination because our main results do notem them.

Definition 1 (Literals) A literal is p or p-. The positive literal is p and the negative literal i$ .p

Definition 2 (MLL Formulas) MLL formulas (or simply formulas) F is any of the followings:



e Fisaliteral;
e FiskH®F, where i and F, are MLL formulas. Then F is calleg-formula.
e F is F’9F,, where i and F, are MLL formulas. Then F is calleg-formula.

We denote the set of all the MLL formulas by MLLFmI.

Definition 3 (Negations of MLL Formulas) Let F be an MLL formula. The negation‘Fof F is defined
as follows according to the form of F:

e ifFis p, then F- =gef pt;

o if Fis pt, then F- =er p;

o if F is Fy @ F, then F- =ger F{9F5;

o if F is FyeP, then F- =qef Ff- @ F5-.
So,F is actually an MLL formula.

Definition 4 (Indexed MLL Formulas) An indexed MLL formula is a paiff,i), where F is an MLL for-
mula and i is a natural number.

Figure[2 shows the links we use in this paper. We call eachififkigure[2an MLL link (or simply
link). In Figure 2,

1. InID-link, (A,i) and(A*, j) are called conclusions of the link.

2. In®-link (resp.’s-link) (Ai) is called the left premiseB, j) the right premise andA® B, k) (resp.
(AB, k)) the conclusion of the link.

Moreover we call links except ID-linkswltiplicative links

<A ,i> <B,j> <A,i> <B,j>

< p’ i> <pl' J > \/ \/
>

ID-link <A®B kK <A B, k>

®-link w9 —link

Figure 2: MLL links

Definition 5 (MLL Proof Structures) LetF be a finite set of MLL formula occurrences, i.e., a finite set
of indexed MLL formulas anfl. be a finite set of MLL link occurrences such that for each L, the
conclusions and the premises of L belond@tarhe pair® = (IF,1L) is an MLL proof structure (or simply, a
proof structure) if© satisfies the following conditions:

1. for any(Fo,i) and (R}, j) in F, if i = j, then b = Fj (i.e., inF, each element has a different index
number).

2. for each formula occurrence E F and for each link occurrence € L, if F is a premise of L then L
is unique, i.e., F is not a premise of any other lirfka L.

3. foreach formula occurrence €F, there is a unique link occurrenced I such that F is a conclusion
of L.

Remark. In the following, when we discuss proof structures or pragtbnin many cases, we
conveniently forget indices for them, because such inféionas superfluous in many cases. Moreover,
when we draw a proof structure or a proof net, we also forget sin index, because locative information
in such drawings plays an index.
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Figure 3: Two examples of MLL proof structures
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We say that in@ = (IF, 1), a formula occurrence < I is a conclusion o® if for any L € L, F is not a
premise ofL.

It is well-known that a proof structure does not necessaigrespond to a sequent calculus proof. For
example, two MLL proof structures in Figuré 3 do not the cepending sequent calculus proofs. The
following sequentializability is a judgement on the copesdence.

Definition 6 (Sequentializability) A MLL proof structure® = (F,IL) is sequentializable if any of the fol-
lowing conditions holds:

1. L={L} and Lis an ID-link;

2. There is ag-link L € IL such that the conclusior#B of L is a conclusion o® and(F — {A®B}, L. —
{L}) is sequentializable.

3. There is ag-link L € . and there are two subsely andF», of F and two subsetk.; and L, of
LL such that (a) the conclusion@B of L is a conclusion 0®, (b) F = F; WF,w {A® B}, (c) L =
LiwLow{L}, and (d){F1,L1) (respectivelyF,,1L,)) is an MLL proof structure and sequentializable,
wherew denotes the disjoint union operator.

Definition 7 (MLL Proof Nets) An MLL proof structureé® is an MLL proof net if© is sequentializable.

Next we give a graph-theoretic characterization of MLL gdnoets, following [Gir96]. The characterization
was firstly proved in[[Gir87] and then an improvement was give[DR89]. In order to characterize MLL
proof nets among MLL proof structures, we introdu@anos-Regnier graphs (for short, DR-graphgpt

© be an MLL proof structure. We assume that we are given a fon&from the set of the occurrences of
-links in © to {0, 1}. Such a function is called BR-switchingfor ©. Then the Danos-Regnier gra@h;
for ©® andSis a undirected graph such that

1. the nodes are all the formula occurrence®jrand
2. the edges are generated by the rules of Figure 4.

In the following we also use the alternative notati®) for the Danos-Regnier grafis.
The following theorem by Girard, Danos, and Regnier [GilBR8S], which is calledsequentialization
theoremis the most important theorem in the theory of MLL proof nets

Theorem 1 An MLL proof structure® is an MLL proof net iff for each switching function S fér the
Danos-Regnier grapBs is acyclic and connected.

2.2 Empires

In this subsection, we introduampiresfollowing [Gir06]. The notion is needed to establish our mai
results. First we fix a proof structu@= (Fg,Lg). Moreover we introduce the notations fi®l) =g Fo
and InK®) =gefLo.

Definition 8 (Empires) The empire of a formula A in a proof nét= (F,L) (denoted by g(A)) is defined
in the following manner: let S be a DR-switching ®r Then an undirected maximal connected graph
(©s)* (or simply®s?) is defined as follows:

1. If there is a link Le E such that A is a premise of L and there is the edge e from A todhelusion
of L in Og, then(@s)A is the maximal connected graph including A obtained f@gby deleting e;



. : 1.
@ if A J.occurs in @then A——A is an edge of @S

A
(2 ifA B occursin @ then A and B are two edges of @S
A®B A®B A®B
. A B
@ i A B occursin @ and S( \/ ) :O then A is an edge of @S
S AxB AN
A»B A3%B
A B
@ i A B occursin @ and S( \/ ) = 1 then B is an edge of @S
S A%B /
AnB AxB

Figure 4: The rules for the generation of the edges of a D&w®ggiier grapl®s

2. otherwise(@s)" = Os,

Then the empire A i® (denoted by g(A)) is defined as follows:

eo(A) =def N fml(©g")
Sis a DR-switching fo®

From the definition it is obvious thak € eg(A). Although the empireg(A) is defined as a set of
formula occurrences, by considering thelsgf(a)of links whose conclusions and premises are all included
in eg(A), the empireeg(A) can be considered as the p@g(A), Ley (a))-

AppendiXB gives basic properties on empires. Many of thezruaed in Sectionl 3.

3 Families of Proof Structures

3.1 Our Framework

Firstly we define families of proof-structures. Informatiyo proof structure®; and®; that belong to the
same family means th&; is obtained fron®; by replacing severak-links (resp. z-links) by »-links
(resp.®-links). We define such families using graph isomorphismdioected graphs in a mathematically
rigorous way. The reader might feel that the following déiimis in this subsection are too cumbersome.
But there is a subtle point of the definitions. That is the o@aghy we insist on a rigorous style. We will
discuss this matter at the end of the subsection.

Definition 9 (Strip Function) A functionstrpg : MLLFmI — {p, p*,®,’%} is defined as follows:

1. strpas (p) = p andstrpys(pt) = p;
2. strpye (A®B) = A® B andstrpys (A®B) =7.
Definition 10 (Labelled Directed Graphs) Let A andB be sets. A labelled directed graph with lab&ls

(resp.A andB) is a tuple(V,E, /g : E — B) (resp.(V,E, 4 :V — A (g : E — B)) satisfying the following
conditions:

1. Visaset

2. E is a set with two functiorsc :E — V andtgt:E — V.

In the following, we supposé = {p, p*,®,’®} andB = {L,R,ID}.
Next we define a translation from proof structures to lalgetizected graphs and that with a function
f : MLLFmI — A as a parameter.

Definition 11 (Labelled Directed Graphs Induced by Proof Stuctures) Let® = (F, L) be a proof struc-
ture and f: MLLFmI — A. A labelled directed graph ®) = (V,E, /g : E — {L,R,ID}) and G'(@) =

v, E,é\f, 'V — A lg:E—{L,R,ID}) is defined fron® in the following way:



1. V={i|(Ai)eF} and (! = {{i, F(A) | (AT} e F};
Since in®, each formula occurrence has a unique index, we can ea®lIytsa V is bijective tdr.

2. E and/g is the least set satisfying the following conditions:

e IfL € Lis an ID-link occurrence with conclusiorig,i) and(p*, j), then there is an edgeeE
such thaisrqe) =i andtgt(e) = jand (e, ID) € (g;

e IfL € L is a®-link occurrence with the fornﬁAA@T then there are two edges € E and

e € E such thasroe;) =i, tgt(er) =k, srez) = j, tgt(ez) =k, {eq,L) € g, and(ey,R) € (k;

e IfL € L is a’g-link occurrence with the forrﬁAA,T then there are two edges € E and

e € E such thasrger) =i, tgt(e;) =k, srqex) = |, tgt(ex) =k, (e1,L) € ¢g, and(ez,R) € (k.
The next definition is a slight extension of the standard defimof graph isomorphisms.

Definition 12 (Graph Isomorphisms on Labelled Directed Graghs) Let

Gy = (V1,E1,0g,) (resp. G = (V1,Eq, 0y, 0g;)) and G = (2, Bz, fy,, (k,) (resp. G = (V2,Ez, lE,)) be
labelled directed graphs. Then a graph homomorphism franoG; is a pair (hy : Vi — Vs, hg : E; — Ep)
satisfying the following conditions:

1. for any ec E;, hy(srde)) = srdhe(e)) and K, (tgt(e)) = tat(he(e));
2. (only the case wher&, andéy, are specified) for any & V1, 4y, (V) = by, (hv (V));
3. forany ec Eq, {g, (€) = (g, (he(e)).

The graph homomorphisiiny,hg) is a graph isomorphism if\h: Vi — V, and he : E; — E; are both
bijections (then, we writéhy,hg) : G1 ~ Gy).

Definition 13 (PS-families) Let ©; and©, be proof structures. The®; ~ O, if there is a graph isomor-
phism¢hy : Vi — Vo, he : E1 — Ep) from G(©1) = (Vi,E1, lE,) 10 G(O2) = (V»,Ep, fE,). Itis obvious that-

is an equivalence relation. Therefore for a given proof stiue ©, we can define the equivalence clé®%
such tha®’ € (O] iff ©@ ~ ©@'. Then we saj@| is aPS-family of ©. We also sa belongs to the PS-family
[O].

Remark. We define a PS-family as an equivalence class generated bglhien~. Of course, we can
define a PS-family as an MLL proof structure in which all thewtences of multiplicative links are of
A—BB instead of- ande-links, where @ is a new symbol. The reader might prefer ®fivim. But it
seems a matter of taste.

We denote a PS-family hyF.
Next, given a PS-family, we introduce a metridz on .%.

Definition 14 Let .# be a PS-family. We assume that two MLL proof struct@®gsand ©, belong to
F. So, by definition we have at least one graph isomorpKsmhg) from G©;) to G(©,). Moreover

let G () = <V1,E1,€S "% (g,) and G2 (@,) = <v2,E2,eS”pW (g,). Then dz(01,0;) € N is
defined as follows:

d7(01,0;) = min{ [ {vy € Va |, (v (va)) # 5, (Vi) }| | (v, he) : G(©1) ~ G(©,)}

Before proving that.%,d ») is a metric space, we must define an equality between two Mbbfmstruc-
tures, because the statement concerns the equalify.dn order to define the equality, we use Definitiom 11
with the parameter stips.

Definition 15 (Equality on MLL Proof Structures) Let ®; and ®, be proof structures. The@l =0,
if there is a graph isomorphisrthy : Vi — Vs, he : E; — Ey) from G'Po% (@) = (Vl,El,é\,rlqg lg,) to

GoP7 (@) = (Va, Ea. fy, % Uk,

It is obvious that= is an equivalence relation.



Proposition 1 The pair(#,ds : # — N) is a metric space.

Proof. The non-negativity ofl # is also obvious. It is obvious thdt; is symmetry.

The formula®; = ©; = d#(01,0,) = 0 is obvious. Next we prove thdt: (01,0,) = 0= ©; = ©,. Let
G(©1) = (V1,Eq, ¢e,) andG(0O,) = (V2, Ez, (E,). Since®; and®; belong to the same PS-famil7, there
is a graph isomorphisrthy : Vi — Vo, he : E; — E») from G(©;) to G(O,). By Definition[12, this means
that bothhy : V1 — V, andhg : E; — E; are bijections and

1. for anye € E;, hy(srqe)) = srhe(e)) andhy (tgt(e)) = tgt(he(e));
2. foranye € Ey, (g, (e) = ¢g,(he(e)).

On the other hand, sinakz (©1,0,) = 0, we find a graph isomorphism

(hv : V1 =V, he 1 E; — Ep) : G(©1) — G(O2) with the following additional property: for anye Vi,
P (v) = £3,7 (hv (V). So, we have a graph isomorphism fr@#P:= (0;) to G¥P+# (). By
Definition[I5, we obtai®; = ©,.

In order to prove the triangle equality o3, we need the following claim.

Claim 1 Let®; and©, be two proof strucswres belonging ts(t)r the same PS-fafilyloreover let

(v, he) 1 G(O1) ~ G(O2), Vh = {v1 € V1|, (I (V1)) # £, % (va)}, and dz (O1,02) = [Vi. In
addition let V C Vj, and®g be the proof structure obtained fro®y by replacing thex-link (resp. the
-link) corresponding to v by the-link (resp. thex-link) for each ve V'. Then ¢z (©1,0q) = |V'|.

proof of Clainll: We assume thats(©1,0) < [V'|. Then we havéhd, h) : G(©;) ~ G(Qp) such that
d(©1,00) = [{v € Va | 5" 7 (W) (va)) # &, 7 (vo)} .

On the other handhy, he) : G(©1) ~ G(®,) can be decomposed intbl?, hi% : G(0,) ~ G(®p) and
(h% h&2) : G(@o) ~ G(©,) (i.e., (hv, he) = (h%2, h€2) o (hi0, hi) such thaiVio| + [Vo| = [Vh|, where

Vio = {v1 € V1| 5,7 (hP(v1)) # 45,7 (va)} andVoz = {Vo € Vo| (5,7 (h?(vo)) # (3,7 (Vo) }. We
note|V’| = [Vio|. Then(h%20h9 h%ohl) : G(0g) ~ G(O,) and

1 1
H{vieVi| é\s/zrpm ((NPoh))(ve)) # é\s/lrpm (v1)}
= dz(01,00) 4 V20| < [V'| 4 [Vo2l = [Vio| + Vo2l = [Vh| = d#(©1,02) .

This is a contradictionthe end of the proof of Claifd 1
Using the claim, we can prove the triangle equalitydgnsimilar to that of the set of all the binary words
with a fixed length O

We give a justification of the definitions above using Fidurd &t ©,, ©,, and®3 be the left proof net,
the middle proof net, and the right proof net of Figlfe 1 respely. ThenG(01) ~ G(0>), sinceG(01)
andG(@®,) are graph-isomorphic to the left directed graph of Figurd@6t note that there are two graph
isomorphismg® — ®,7® —} and{® —®,? — ®} betweenG(©;) andG(©;). By the former one,
we can identify®; with ©,, while in the latter one, there are two differences w.r.t tiplitative nodes.
Thereforedr(©1,0,) = 0. That's why we need the min operator for the definitiondg{®1,0;). So,
©1 and®; belong to the same PS-family. Bu{G(®1) ~ G(03)) (and also~(G(©;) ~ G(©3))), since
G(@3) is graph-isomorphic to the right directed graph of Figure8 #he left one of Figurlel5 are not graph-
isomorphic to the right one. S&3 does not belong to the same PS-familyeasand©,.

Note that direction of edges labelled wifh are indispensable, because if we eliminated the informatio
then the two graphs of Figuié 5 would be isomorphic. Howadieection of edges labelled with or R is
redundant, because we can always identify the conclusiahe graph without the information by looking
for the nodes without an outgoing edge. But we prefer to tmyentional definition of directed graphs.

In order to avoid the min operator for the definitiondaf(©1, ©2), we need to consider only PS-families in
which there is the unique graph isomorphism betw&é®;) andG(©-) for each two membei®; and®,.

In order to do that, we restrict PS-families to them with @a@ne conclusion, because each multiplicative
link in an elementin such a PS-family is given an absolutétjppsfrom the root of the proof structure. We
call such a PS-familglosed PS-familyA closed PS-family is PS-connected in the sense of Defirldif
(Subsection 314). For example, two proof structures in FEfflibelonging to the same closed PS-family
has the unique graph isomorphism between them. The réstristsimilar to that of closed loops in knot
theory (seel[Ada94]).

On the other hand, for any MLL proof net without closednesdition, the following proposition holds.
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Figure 6: Two elements of a closed PS-family

Proposition 2 Let® be an MLL proof net. Then the identity mégdy ,idg) is the only one graph automor-
phism on GP% (@) = (V, E, (™7, ().

Our proof of Propositiohl2 is given in Appendix C.

3.2 Basic Results

Our proposal in this paper starts from the following triviabposition. We note that this proposition is
stated in Subsection 11.3.3 6f [GIr06].

Proposition 3 Let® be an MLL proof net.

1. Let L® A®B B be a®-link in ©. Let @ be the proof structure® except that L is replaced by

L% : S Then@'is not an MLL proof net.

2. Let L@ C?D D he ap-link in ©. Let ®” be the proof structur@® except that k is replaced by

L., : &2 Then® is not an MLL proof net.

Proof.

1. Itis obvious that there is a formuka(resp.Y) in fml(®) such thaX # A (resp.Y # B) and
X € eg(A) (resp.Y € eg(B)) since ifA (resp.B) is a literal, then we just tak¥ (resp.Y) as the other
conclusion of the ID-link whose conclusionAs(resp.B), and otherwise, we just také (resp.Y) as
the formula immediately abov& (resp.B). On the other hand sinag(A) Neg(B) = 0 by
Propositio 14, when we pick up a DR-switchiBdor © arbitrarily, the unique patX fromY in
S(©) always passe&, A® B, B. Then letS be a DR-switching fo®’ obtained fronSby adding a
selection forL),. Then it is obvious thaX andY is disconnected i§ (©').

2. LetShbe a DR-switching fo®. Then by Proposition 15 there is the unique pé&tihom C to D in
S(0©) such thaih does not includ€D. Then LetS’ be the DR-switching fo®” obtained forns
by deleting theg-switch forL. Itis obvious thaS’(®”) has a cycle including andC @ D. O

Remark. Propositio B does not hold in neither MLL+MIX[GirB7] nor fiie Logic [Bla92]. For
example(pgpl) ® (peph) is provable in MLL, MLL+MIX, and Affine Logic. The formula
(pept)e(pept) is not provable in MLL, but provable in both MLL+MIX and Affinkogic,

The following corollary is obvious.



Corollary 1 Let®; and®; be MLL proof nets belonging to the same PS-fardfilyThen dz (©1,0,) > 2.

This corollary says that if a PS-family¥ hasn MLL proof nets, then# can be used as@ne error-
detecting code systemwith n different code elements(see Appendix A). But since neikiel+MIX nor
Affine Logic has the property, these can not be used as suchtensy
The following proposition is basically a slight extensidrGmrollary 17.1 of Subsection 11.A.2 of [Gir06].
The extension is by a suggestion of an anonymous referee @irtlvious version of this paper.

Proposition 4 Let® = (Fo,Lo) be an MLL proof net. Lay, Lg, andL§ be the set of the ID-links, the-
links, and theg-links in L respectively andong be the set of the conclusionslily. Then|cong|+|Lg| =
ILY|+1and|LE| - |Lg| = 1.

Proof. We prove this by induction ofiLg|.

1. The case whené.q| = 1:
Then|LD| = |L| =1, |cons| = 2, and|Lg | = |Lg| = 0. The statements holds obviously.

2. The case wher.g| > 1:

(@) The case wher® includes ag-formula as a conclusion:
We choose on@-link Ly among suche-links. Let©g = (Fe,,Le,) be® except that s is
removed. Sinc®y is also an MLL proof net (otherwis@ is not an MLL proof net), by
inductive hypothesitong,| + [L§ o = ILE |+1and|IL | —ILg ,| = 1. Butsince
ILE| = L&, cone = cong, — 1, and|]L?| L&, +1, |]L | = |]L o, » the statements hold.
(b) The case Where the conclusions®flo not have anyy-formula:
In this case|Lg| must be greater than 0. Then by Splitting lemma (Leriina 2),ave
®-conclusionA® B and its®-link Lagp in © such tha® is decomposed int@l =ep(A),
O, = ep(B), and®-link Lagg By inductive hypothesigons, | + L& = LY +1
|L'gl| —[Lg,| =1, [coms, | + L | = LS| + 1, and|LE | — |Lg,| = 1 hold. Moreover since
LS| = IL'&I +|L&,, [core| = |core, |+ |core,| - 1, |Lg | = [L§ | +|Lg, . and
IL3| = IL§ A+ LS o, 11, the statements holds.

Remark. Propositio 8t does not hold in MLL+MIX. A counterexample irLM+MIX is again
(P2pt)e(peph).

Corollary 2 Let.# be a PS-family. Le®; and®» be MLL proof nets belonging t&. Then the number of
®-links (resp.g-links) occurring in@1 is the same as that @,.

Proof. Since®; and®; are members of?, |cong, | = |cone,| and|LE = |IL'D |. Therefore by
Propositio #|Lg | = [Lg,| and|Lg | = [Lg,|. O

Next, we define an important notion in the next subsection.

Definition 16 (®-9-exchange)Let® be a proof structure. Moreover Ietgl_ ASB BandLs: & &0 D he a®-
link and a’e-link in © respectively. Theaxzs(0,Lg,Ly) be a proof structure obtained frof replacing
Lo by Ly : Gg and Ly by L, : &2 simultaneously. Theex5 (O, L, L) is called aw-s-exchange of
O by Ly and Ls.

More generally, whetiLe,, ..., Lg,, ) is alist of@-links and(Lg,, ..., Ls,,) a list of »-links, then
eXg5(0,(Lgy,-- -, L®(1>, (Logys---s L?Q)) is defined to be a proof structure obtained fr@rby replacing
Loy Loy, by the list of’g-links Lfg)l,...,L%,(1 and Ly, gy, by the list of®-links L’g@l,...,L’&2
simultaneously.

Itis obvious tha® and ex (O, Ly, L) belong to the same PS-family. Moreover,

eXyp (EXe5(0,Ls, L), Ll , L) is ©. Then for each two proof structur@; and®;, we define a relation
0©1 & O3 if there are®-link Ly and’g-link Ly in ©1 such that®, is exy5(01,Ls,Ls). Thens is a
symmetric relation from the observation above. On the dtlagid, if© is an MLL proof net and® < @',
then®’ is not always an MLL proof net. Figufé 7 shows such an exampteoren 2 below describes a
necessary and sufficient condition ti@itis an MLL proof net.



As to generaly-g-exchange exs (0, (Lg,,.. "L®f:1>’ <L>gl,...,|_>9(2>), note that we do not assume that
each elementofLg,,..., L®(l> (resp.(Lsg,, .-, L?Q)) does not appear i@ like substitution ofA -calculus,
because of convenience. 'In addition, note that PropodBistates wher® is an MLL proof net and
Lo : 5 (resp.Lis : G332 ) appears i@, then ex5 (O, (Ls), () (resp. %5 (0, (), (Lg))) is notan MLL
proof net (although these two belong to the same PS-fami@)as

Moreover from Corollary 2, we can easily see tha®if and®, are MLL proof nets that belong to the

-
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Figure 7: A counterexample

same PS-family, then there is a sequence of proof strucBjres.,©, (k> 0) suchtha®; < 0| & --- <
L < ©2. Theoreni B below says that we can always find such a seq@nce, ©; such that each element
O/ (1<i <Kk)is anMLL proof net . This does not seem trivial.

3.3 Main Theorems

In this section, we answer the following question: “in ouarfrework is error-correcting possible?” Our
answer is negative. Corollary 3 says that this is impossitém for one error-correcting.

Before that, we state a characterization of the condiligi©,,0;) = 2, where% is a PS-family and®;
and©, are MLL proof nets belonging t¢#. The characterization is used in the proof of Lenima 1 of
AppendiXE, which is needed to prove Theofgm 3.

Theorem 2 Let® be an MLL proof net. Moreover letk : 4= and Ly : =& be a®-link and a'g-link
in © respectively. Theaxg (0O, L1g,Lg2) is an MLL proof net iff one of the followings holds@n

(1) Cis aconclusion ofgA) and D is a conclusion of&(B);
(2) Dis aconclusion of g A) and C is a conclusion ofB).

Our proof of Theorerfl2 is given in AppendiX D.

Theorem 3 Let® and®’ be two MLL proof nets belonging to the same PS-failyThen there is e N
and a sequence of MLL proof néfs, ..., ®, such that

000,20,

Proof. We assume tha and®’ are MLL proof nets, but we do not have such a sequence of MLbfpro
nets for anyn € N. Moreover we can choose two MLL proof nésand®’ in .# such that there is no

MLL proof net®” such thad(©,0”) < d(©,@) andd(©@”,@) < d(©,@’) since it is sufficient to prove
the theorem. Then from Corollaty 2, we can easily deducedh@®,@') is even, i.e.d#(©,0') = 2m. In

addition there aren ®-links Loy : 521 .. Lom: o2 in © andm’g-links

A@B;
L1t Bpds- - Lem: LB in © such thal®' is exos (0, (Let, -, Lem), (L1, -, Ligm)). Let

G (1<i,j <m)be ex(0,Lgi,Lyj). Then our assumption means tieay; is not an MLL proof net for
anyi, j (1 <i,j <m) (The assumption is used in the proof of Lenimha 1 of AppehdlixTen we derive a
contradiction from these settings by induction on lexiagic ordekm,|Lg|), where|Lg| is the number
of link occurrences if®.

(1) The case whema= 0 andm=1:
Itis obvious.

(2) The case werm > 1:

10



(a) The case wher® consists of exactly one ID-link:
In this case there is neitherzlink nor a’g-link in ©. This is a contradiction ton > 1.

(b) The case wher® includes ag-formulaCeD as a conclusion:

We choose sucha-link L : &2.

() The case wher€gD is notCj’Dj foranyj (1 < j < mj:
Let ©g be © except that. is eliminated. Then we can apply inductive hypothesi®o
and a subproof net &', exy(p, (Lg1,---,Lam), (Ls1,---,Lgm)). We derive a
contradiction.

(i) The case wher€D is Cj,’wDj, for somejo (1 < jo < my):
In this case, by Lemnid &' is not an MLL proof net. This is a contradiction.

(c) The case where the conclusionglo not have anyp-formula:
In this case, by Splitting lemma (Lemifla 2), we have-aonclusionrA® B and its®-link Lags
in © such tha® is decomposed inte§N(A), egN(B), and®-link Laze

(i) The case wherA® Bis notA; ® B; for anyi (1 <i <m):
In this case if the number @f-links from Ly, ...,Lemin eg(A) is the same as the
number of®-links fromLgs,...,Lgm in €a(A), then we can apply inductive hypothesis to
eo(A) and a subproof net @', exys(€a(A), (Le1,---,Lem), (L1, ..,Lem)). Then we
derive a contradiction. Otherwise, I8}, be
eXwg (€a(A), (Lat,---,Lem), (Lg1,- .., Lem)). Then by CorollaryRP@, is not an MLL
proof net. Therefor®' is not an MLL proof net. This is a contradiction.

(i) The case wherd® Bis A @ B; for somei (1 <i < m):
Then we can find a DR-switchirg for @ such thaS (@) is disconnected since The
®-link Lg; is replaced by &-link L. Therefore®’ is not an MLL proof net. This is a
contradiction.

Therefore, for some, jo (1 < io, jo < M), Bjy, jo (= €Xe9 (O, Ly, Lijy)) is an MLL proof net. We have
done.O

Lemma 1 The assumptions are inherited from the case (2-b-ii) of tle®fpabove of Theorein 3. Then,
O =exyp(0,(Lat,---,Lem), (Lg1,-- -, Ligjgs - - -, Ligm)) is not an MLL proof net.

A proof of the lemma is given in AppendiX E.
When a PS-family# has at least two MLL proof nets, we define the distaahc& ) of .# itself in the usual
manner:

d(ZF) =min{d£(01,0,)|01,0, € F A (©1andd,are MLL proof net§ A ©1 # Oy}
Then from Theorerl3 the following corollary is easily dedve

Corollary 3 For any PS-familyZ, if the number of the MLL proof nets i# is equal to or greater than 2,
thend.7) = 2.

Corollary[3 means that one error-correcting is impossibteahy PS-family of MLL.

Example 1 Our proof of Theorel3 states that wh®rand©’ are MLL proof nets belonging to the same
PS-family.# and d(©,0’) > 2, we can always find an MLL proof né&’ such that ¢-(©,0”) = 2 and
dz(0",0') =dz#(0,0) — 2. We show an example in the following.

For two MLL proof nets® of the left side of Figur€l8 an@’ of the right side of Figurgl8 belonging to
the same PS-family,(®,0") = 4 holds. Then when we let the left side of Figlire 9@ then®; =
eX25(0, Ly, Lg2) (ANdO = exyp (@1, L5, L51)). Moreover we find @@,0;1) =2and d©,,0') = 2. But
such a®@; is not unique. In fact when we I€, be the right side of Figure]9, theBy, = exg9(©,Lg2, Lig2)
(and® = exg (02, L5, L,)). By the way, the PS-family has nine MLL proof nets.

Warning: This example is not a substitute for Corollaty 3. The statg@méCorollary(3 is a universal one.
Therefore one example is not enough to prove the statement.

11
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Figure 9: MLL proof net$; and©,

3.4 Other Topics

In this section we discuss ongoing research directionsiirfiramework.

3.4.1 The Number of MLL Proof Nets in a PS-family

It is interesting to consider how many MLL proof nets a gives-family has. We have a characterization
of the PS-families without any MLL proof nets as an elemantasult.

Firstly we note that the number of the multiplicative linksan element of a given PS family is always
the same.

Definition 17 (PS-connected)Let .# be a PS-family. Ther# has the elemer®; that has only®-links
as its multiplicative links (if any). Then there is exacthedR-switching S foBg, that is empty set% is
PS-connected if the uniqgue DR-grap(€5) is connected.

Proposition 5 Let.# be a PS-family. The&f does not have any MLL proof nets.if is not PS-connected.

Proof.

1. If part:
We assume that tha# is not PS-connected. We can easily see that for each eléneht” and
each DR-switchingfor ©, the DR-grapl®s is disconnected. Therefore, there is no MLL proof
nets in.%.

2. Only-if part:
We prove that if# is PS-connected, the# has at least one MLL proof nets by induction on the
numbem of the multiplicative links in#.

(@) The case wheme= 0:
Z is PS-connected? must be the singleton consisting of exactly one ID-link. rEfiere. %
has exactly one MLL proof net.

(b) The case whene > 0:
i. The case where there is an elem@mf .7 such that by removing one multiplicative link

L: 4gs of © and its conclusioA@B, two disjoint proof structure®; with a conclusion

A and®, with a conclusiorB is obtained:

12



Let #; and.%> be the PS-families th&; and®, belong to respectively. Botk, and.%,
are PS-connected. Therefore by inductive hypoth&giand.#, have MLL proof nets;
and©), respectively. Then |e®’ be the proof structure obtained fra®j and©, by
connectingA andB via ®-link L’ : AATBB. Then it is obvious tha®’ is an MLL proof net
and®’ is an element of7.

ii. Otherwise:
Then there is an eleme@tof .% such that by removing one multiplicative lirk: ﬁvg
of ©® and its conclusioM@B, one proof structur®q with conclusionA andB is
obtained. Let%j be the PS-family tha®g belongs to.%; is PS-connected. Therefore by
inductive hypothesis?g has an MLL proof ne®y,. Then let®’ be the proof structure
obtained fron®}, by connectingh andB via s-link L' : 2. Then it is obvious tha®’ is
an MLL proof net andY’ is an element of#. O

But it is not so easy to give a similar characterization offe&ilies with exactlym MLL proof nets for
a givenm(> 1). At this moment we just obtain the following elementary ffesu

Proposition 6 For any positive integer m, there are denumerable PS-familith exactly m MLL proof
nets.

Proof. If m= 1, thenitis enough to see the left side of Figurk 10 in ordeptafirm that the statement is
correct. Similarly ifm > 1, it is enough to see the right side of Figliré 10 for the sampqse.0
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Figure 10: Witnesses for Propositioh 6

But it seems difficult to obtain a characterization of thefR®ilies even with exactly one MLL proof net.
The reason is as follows:

1. There are primitive patterns of such PS-families.

2. Moreover by combining such primitive patterns apprapfiawe can get compound PS-families with
exactly one MLL proof net.

In order to get such a characterization, it seems that aropppte language that describes (denumerable)
sets of PS-families is needed like the regular languagedseribing sets of words. But since the purpose of
this paper is to introduce the new notion of PS-families aettrimspaces associated with them, the question
is left open as an interesting one.

13



3.4.2 The Composition of PS-families

MLL proof nets are composable: we get a MLL proof net by coningadwo MLL proof nets via Cut-link.
But this is not the case about MLL proof structures: we mayainbé vicious circle by connecting two
MLL proof structures via Cut-link (see Section 11.2.6 [of {@8]). Therefore we need a care about the
composition of PS-families because a PS-family alwaysuihes MLL proof structures that are not MLL
proof nets. Moreover this issue is closely related to reaemks of Samson Abramsky and his colleagues
about compact closed categories (For example/see [AbrBud})since the paper is already long, the issue
will be treated elsewhere.

4 Concluding Remarks

In this paper, we introduced the notion of PS-families ovérlMroof structures and metric spaces with
associated with them. Moreover we proved that in the caseendS-family has more than two MLL
proof nets, the distance of the PS-family is 2.

Although our main result is the impossibility of one errar@cting in MLL, the remedy is possible. By
introducing generaRp-links and’ep-links [DR89], wheren > 3 and these general links hamgremises
instead of exactly two premises, we can construct a PS¥agisuch thad(.#) = n. For example, when
let ©1 (resp. ®; be the general MLL proof net of the left (resp right) side;(©1,02) = 4, where.Z is
the PS-family belonging t®; and®,. Moreover it is obvious thad(.%) = 4. But at this moment we are
not sure whether such an easy modification makes good collesu@h our main purpose is not to find
good codes from PS-families). Nevertheless, we believeTthaoreni B is a fundamental theorem in this
direction of study, because a general version of Theaterei®s¢o be derived in the extended framework.
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Figure 11: General MLL proof ne®; and©,
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A Codes over Binary Words

In this appendix, we present basic knowledge about codeshivary finite words. The contents are ele-
mentary. The reader can find these materials in any codimgytiseextbooks, for examplée [Bay88, MS93].
The purpose of the appendix is to help the reader underdtésgaper easily by comparing with the stan-
dard theory. If the reader knows these things already, plgg®ore the appendix.

Definition 18 (Binary Finite Words) A binary word w with length (e N) is an element of0,1}". For
eachi(1 <i <n), w(i] (€ {0,1}) denotes i-th element of w.

Definition 19 (Distance of Binary Words with the Same Length)Let wy and w be binary words with
the same length n. The the distance gfamnd w, d(w1,ws) is defined as follows:

d(wi,Wp) = |{W1[I] S {O, 1} [1<i< n/\wl[i] #+ W2[I]}|
For exampled (0011010011 = 3.

Definition 20 (Code over Words with Lengthn) A code C over words with length n is a subsef@f1}".
An element of C is calledodeword The distance of C is defined as follows:

d(C) = min{d(wy,w2) [w1,Wy € CAWy # Wo}

Example 2 (Hamming(7,4) code) The Hamming(7,4) code C is the subset dD, 1}7 such that we
{0,1}" is an element of C iff w satisfies the following three equaiaheres denotes "exclusive or’):

w[l] & w[2] & w[4] sw[5]=0
w[2] & wW[3] ®w[4] dw[6] =0
w[l] e w3 ew[4]ew[7]=0

Then we can easily sé€| = 16 and dC) = 3 by easy calculation. As a result the Hammif¥g4) code
is one error-correcting because when a given@{0,1}’, if d(w,w) = 1 for some We C, then for any
w(#w) e C, dw,w’) > 1. Therefore we can judge that w is with one error. Moreover the Hamming
(7,4) code istwo error-detecting because when a givenav{0,1}’, if d(w,w') = 2 for some We C, then
for any w/(#£ w') € C, d(w,w”’) > 2. Therefore we can judge that w has exactly two errors. Bugesthere
may be a different codeword'ie C from w such that dw,w") = 2, we can not judge that w is"with two
errors.

On the other hand, in the Hammin@,4) code C, we can not do one error-correcting and two error-
detecting at the same time, because there arawve C and w € {0,1}’ — C such that ¢w;,w) = 2 and
d(w,w,) = 1. Therefore we can not decide whethérisww, with two errors or vg with one error. We have
to decide whether we adopt the one error-correcting intetation or the two error-detecting interpretation.
If we adopt the one error-correcting interpretation, thehisms with one error. If we adopt the two error-
detecting interpretation, then’vaas two errors, but we can not say i w; with two errors by the reason
of the paragraph above.

15



B Basic Properties of Empires

In this section we prove basic properties of empires. Thespauties are well-known in the literature,
for example [[Gir87 BW9I5, Gir96, Gir06]. Before presentigults, we fix terminology about paths of
indexed formulas in a DR-graph.

Definition 21 Let® be an MLL proof net, S be a DR-switching for and AB € fml(®). Then there is a
unique pathd from A to B in@s. We say thab passes immediately above or adjacent té (resp. B) if

6 includes a formula C such that there is the link L whose caichuis A (resp. B) and C is a premise or
another conclusion of L. We say th@tpasses immediately belovA (resp. B) if6 includes a formula C
such that there is the link L whose premise is A (resp. B) arglt@a conclusion of L.

Proposition 7 Let Be ep(A) and L€ Lg,(a) such that the conclusion of L is B. Then ffi8a premise or
a conclusion of L, then'B: eg(A).

Proof. We prove this by case analysis.Bf= B, then it is obvious. So we assurBe# B in the
following.

1. The case whetleis an ID-link:
ThenB andB’ are literals which are dual each other. Sice eg(A), for each DR-switching,
B ¢ fml(©¢"). Then it is obvious tha®’ € fml(©s"). So,B’ € eg(A).

2. The case wherkeis a®-link:
ThenB' is a premise of.. The rest of the proof of this case is similar to the case above

3. The case whereis ag-link:
ThenB' is a premise of. Without loss of generality, we can assume tais the left premise of.
We assum@’ ¢ eg(A). Then there a DR-switchin§such thaB’ ¢ fml(©<*). By the assumptio
selects the right premi€g® in L. Since@sis acyclic and connected, there is a unique ghffom B
to B’ in Os. If 8 does not includé, then by the definition of fnfPs™) and byB € fml(©5*), we
deriveB’ € fml (G)SA), which is a contradiction. S@ includesA andé has two subpath&, from B
to A that passes immediately above or adjacert &md6, from A to B’ that passes immediately
belowA. Then if 6 includesB”, then6; includesB” and lettingS be SexceptS selectsB’, we
obtainB ¢ fml(©g”) and therB ¢ eg(A), which is a contradiction. Therefodoes not include
B”. Then letS be the DR-switching such th&t is Sexcept tha8 selects the left premidg in L.
Then®g has a cycle. This is a contradiction.

The following corollary is easily derived from the propdsit above.

Corollary 4 The pair(eg(A),Leg(a)) is an MLL proof structure.

Proposition 8 If B; € eg(A), B, € eg(A), and L is a@g-link such that B and B, are the premise of L, then
the conclusion B of L does not belongs &(&).

Proof. We assume th@ < eg(A). Then by Propositionl B, € eg(A). This is a contradiction

Proposition 9 If B € eg(A) such that B# A and L is a®-link such that B is a premise of L, then the
premises and the conclusion of L belong ¢34&).

Proof. Similar to the case 2 of the proof of Propositidn’?.

Proposition 10 If B1,B; € eg(A) such that B # B,,B; #£ A B, £ A and L is ag-link such that B and B,
are the premises of L, then the conclusion B of L belongg (8 e

Proof. From the assumption for each DR-switchi@&épr ©, B1,B; € fmI(OsA). If SselectB; in L, then
there is an edge betwe@ andB in ©<*. That isB € fml(©¢*). On the other hand, BselectsB; in L,
then there is an edge betweBnandB in 5. That isB € fml(©s"). HenceB € eg(A). O

Next, we prove that there is a DR-switchiBguch that fm(Os") = eg(A).
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Definition 22 Let S be a DR-switching for an MLL proof n@tincluding A. we say that S is a principal
DR-switching (or simply principal switching) for A @ if S satisfies the following conditions:

1. if there is ag-link L such that a premise of L is A, then S selects A, not thergiremise of L in L
and

2. if there is ag-link L such that one premise;B®f L belongs to g(A) and the other premiseBof L
does not belong tosg A), then S selectsBn L.

When a given MLL proof ne® and a formulaA in ©, we can easily see that we can always find a
principal DR-switching forA in © from the definition above, since if we find’@-link satisfying any of
the assumptions of the conditions, then we can always chibesswitch for theg-link that satisfies the
conditions.

Proposition 11 Let S be a DR-switching for an MLL proof @t Then S is a principal DR-switching for a
formula Ain@ iff fml(0") =eg(A).

Proof. The if-partis obvious. Hence we concentrate on the onlif n the following.
Let Sbe a principal DR-switching. It is obvious theg(A) C fml(©g”) from the definition of empires. In
order to prove fml@s*) C eg(A), we need the following claim.

Claim 2 Let Be fml(©5"). If the unique patt® from A to B in@s” includes as-formula CsD, then C
and D must belong togfA).

Proof of Claim2. We prove the claim by induction on the numbersformulas inf.

If 6 does not include ang-formula, then the claim is obvious.

LetCoD be the nearesp-formula toB in 8 andE be the formula immediately befo€esD in 6. Then we
consider the subpa of 8 from Ato E. Then the number of-formulas inf’ is less than that of. So
by inductive hypothesis, the premises of eacfiormula in 8’ belong toeg (A). Then from Propositionl 7,
Propositio ®, and Propositién]10, the formula®irmust belong t@g(A). SOE € eg(A). Then the
following two cases are considered:

1. The case whet€ is eitherC or D:
Without loss of generality, we can assume thas C. Then we assume th&teD ¢ eg(A). But this
contradicts tha§is a principal DR-switching.

2. The case wherE is neitherC norD:
SinceE € eg(A), from Propositiofl7 we can deriveeD € eg(A). Then again by Propositidn T,
andD must belong t@g(A). the end of proof of Clairnl 2.

the end of proof of Claiml 2
Hence using the claim, from Propositioh 7, Proposifibn @ Bropositiod 10, we can deriBec eg(A). O

Corollary 5 (eg(A),Ley(a)) is an MLL proof net.

Proof. Since®’ = (eg(A),Ley(a)) iS @ proof structure by Corollafy 4, we concentrate on thesminess
criterion. LetS be a DR-switching foeg(A), e, (a)). Then there is a principal DR-switchir&for Ain
© which is an extension &. Then by Propositiof 11, fri®s*) = eg(A) = fml(@'g). Therefore

O = @g. This means tha®'g is acyclic and connected

Corollary 6 (eg(A),Ley(a)) is the greatest MLL sub-proof net & among the MLL sub-proof nets &
with a conclusion A.

Proof. Let®’ be an MLL sub-proof net o® with conclusionA such thatg(A) C fml(©@'). Then, ifSis

a principal switching foA in ©, then by Proposition 11, fri®s*) = eg(A). So there is a formula

B € fml(@') such thaB ¢ fml(©s"). Next we consider the MLL proof n&’ as theroot proof net instead
of ©. Note that for any DR-switchin&, for @, there is no patié’ in G)’% such tha®’ passes immediately

belowA. Moreover sinceg(A) C fml(@'), by extending a principal switching, for Ain eg(A), we can
obtain a DR-switchingg, for ©'. But thenA andB are disconnected i@’% by the note above. Thisis a

contradictionOd
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Corollary 7 If A is a conclusion of an MLL proof n@, then(eg(A), Legy (a)) = ©.
Corollary 8 If B is a conclusion of g(A), then Ac eg(B) (but A is not necessarily a conclusion f(®)).
Proposition 12 If B ¢ eg(A) and A¢ ep(B), then &(A) Neg(B) = 0.

Proof. We derive a contradiction from assumptidg eg(A), ea(A) Nep(B) # 0, andA € ep(B). We
assume that € eg(A) Neg(B). We claim the following.

Claim 3 There is a principal switching[‘;ﬁ‘or B such that there is no path from A to B(I@Sé)A.

Proof of Clain3 Let Sg be a principal switching foB. Then by Proposition11, frmOSB)B) = ep(B).
SinceA ¢ ep(B) = fmI((G)gB)B), in ©g, there is a unique patf from Ato B in Og, such thatd passes
immediately belowB. Then if each formula i exceptA is not included in(©s,)*, then we have done.
We just IetSé beSs. Next we assume th& includes a formula irf®g, )" exceptA. Then, sincé®s, is
acyclic and connected and by the definitior(@i:EB)A, 6 from A to B must be included i1i®g,)". On the
other hand, sincB ¢ eg(A), there is ag-link L : WFF such that exactly one premiselofi.e.,E or F)
andE’gF are not included ig(A). Without loss of generality we can assume thaE(& eg(A), (ii)

F ¢ eg(A), and (iii) 6 includes the subpath, E'9F by picking up the firste-link in 6 among such
2-links. Moreover we can show that suckpalink is unique in@ (otherwise, we have kg : EO?FFOO in®
such that (i"Eo € eg(A), (ii") Fo € ea(A), and (iii") 8 includes the subpathy®Fy, Eg without loss of
generality. Thergg(©) has a cycle becau$8g(©) has a path fronk to Ep other than the subpath 6f
from E to Eg. This is a contradiction).

Subclaim 1 Let & be the DR-switchinggSexcept that §chooses the other formula, i.e., F in L. Then,
Sg is a principal switching for B.

Proof of Subclairi]lWe suppose not. On the other hand, sifgés principal forB, 6 in (Os,)* passes
immediately above or adjacentfoand immediately below (Otherwise 8 passes immediately above or
adjacent td. This means thah € fml(Os;) = eo(B)). Sincel includesE andE’eF, we haveE ¢ eg(B)
andEgF ¢ eg(B). Therefore we must have € eg(B), because otherwise (i.E. ¢ eg(B)), it is obvious
thatS; is a principal switching foB. SinceF € eg(B), we have a unique pa#)f from B to E’gF through
Fin (@SrB)B. On the other hand, the subpdhof 6 from E’9F to B in Og, survives in@g . Therefored’
and6y make a cycle ir(-)gs. This is a contradictionthe end of proof of Subclai 1

Then the following two cases can be considered:

1. The case where there is no path fréro F in (G)gB)A:
We suppose that there is a unique péftifrom Ato B in (G)gB)A. Thené’ does not pasE, because if
0’ includesE, then®’ fromAtoBin (egB)A survives in(Os,)* and therefor® and6’ makes a
cycle includingB, E’2F, E in (Og,)". Moreover8’ does not pasE’sF because if’ includesE’sF,

then@’ also includes=, which contradicts the assumption. Thereféfeurvives in(@s,)*. Theno
and@’ make a cycle including andB in (Os,)*. This is a contradiction. Therefore since there is no

path’ fromAtoBin (OSB)A, we have done. We just |a;8 beOg .

2. The case where there is a unique pétfromAto F in (OSB)A:

SinceF ¢ eg(A), there is ag-link L’ in 6 such that exactly one premise and the conclusion of the
link are not included ireg (A). Moreover it is obvious that suchglink is unique inf’. Let

L' : £F be the uniques-link. Without loss of generality we assume tiftpasses’,

E' c en(A), andF’ ¢ eg(A). Let § be the DR-switchingy; exceptS} chooses the other formula,
i.e.,F’in L. Moreover by the similar discussion to that®f, ; is a principal switching foB.

Then if S does not satisfy the condition f&, then we repeat the discussions abov&foSince
the number ofg-links in @ is finite, we can eventually find a principal switchiﬁéfor B such that

there is no path fronA to Biin (@Sé)A.

the end of proof of Clairin] 3
Then sincesé is a principal switching foB in © andA ¢ eg(B), for any formulaC € eg(B), there is no
path fromAtoCin (G)Sé)A. This means tha® ¢ eg(A). This contradicts the assumption

Ccep(A)Neg(B). O
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The following proposition is given in a stronger form thamhma 5 of [Gir96] slightly.

Proposition 13 If B ¢ eg(A) and A< eg(B), then A is not a conclusion 0g€B) and & (A) C ep(B).

Proof.

1. The proof thaf is not a conclusion o&y(B):
We suppose thad is a conclusion oég(B). Let She a DR-switching. Then we claim that
B € fml(©"). We prove this using case analysis.

(a) The case wher@is a principal switching foB:
By Propositiof Il fml©s?) = eg(B). From assumptions we can easily see thahdB are a
leaf or the root in the tre®<E. Moreover sincél is a conclusion oég(B), the unique patlf
from A to B in ©s® immediately above or adjacent£o This means tha e fml (G)SA).

(b) The case wher8is not a principal switching foB:
ThenA € eg(B) ¢ fml(0sB). Then there is a unique pahfrom A to B in ©sB. We suppose
that® passes immediately below Then there is the link/ whose premise ié and the linkL’
must be ag-link, sinceA is a conclusion oég(B). MoreoverSchooses the premigein L.
This means that a formula that is not includea{B) is included in@. On the other hand let
S be a principal switching foB obtained fromS with the minimal effort. Then for ang-link
Lo € Ley(m)» Ss(Lo) = S(Lo) because of the minimal assumption. Therefore there is rio§jat
fromAtoBin G)SBB such tha®’ passes immediately above or adjacemtbecause there is
no such path i®s?. MoreoverSs chooses another premise other tidnecausés is a
principal switching forB. Hence there is no pa#il from Ato B in ©g, such thai’ passes
immediately belowA because&; selects the other premise other thim L'. This means that
there is a patl®” from B to A in ©g, such tha®” passes immediately beldand
immediately above or adjacent£o This contradicts thah € eg(B). Thereforef passes
immediately above or adjacent£o This means thaB € fml(0").

Therefore,
Be N fml(0s") = en(A).
Sis a DR-switching fol©

This contradicts the assumpti@nZ eg(A).

2. The proof ofeg(A) C ep(B):
Let Sa be a principal switching foA. By Propositiofi B ¢ eg(A) = fml((©s,)?). LetSs be a
principal switching forB obtained fronS, by changings-switches with the minimal effort.

Claim 4 Then still B¢ fml((©g,)").

Proof of ClainT4. We assume thad fml((GSB)A). Then there is a unique paghfrom Ato B in
(O©s,)” such tha passes immediately above or adjacemt&inceB ¢ fml ((GSA)A) and

B e fml ((G)SB)A), the path@ must include the conclusion ofg-link Lo such thatSa(Lo) # Sg(Lo).
On the other hand, by the minimal assumption about the chiaogeS, to Ss, the conclusion ok
is not included ireg(B). Moreover sincé\ € eg(B) = (G)SB)B, there is a patl®’ fromAtoBin
(@SB)B such that all thep-formulas in6’ are included ireg(B). Therefore since these two patfis
and6’ fromAto Bin Og, are differentp and6’ make a cycle irBs,. This is a contradictionthe
end of proof of Clairhl4

Then we can prove the following.

Claim 5 fml((©g,)") C fml((©g,)®)
Proof of ClainTh. We assume that there is a form@ae fmI((G)gB)A), butC ¢ fmI((OSB)B). Since
Aceg(B) = fml((OsB)B) andSs is a principal switching foB, the unique pati’ fromAtoC in

O©s, must includeB in order to go out froneg (B) = fmI((G)sB)B). On the other hand, since
C e fml((©s,)"), there is the unique path’ from A to C in (©g,)* such thatt” passes immediately
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above or adjacent ta. By uniquenesst’ and7t’ coincide in@s,. Therefore there is a subpatj of
' from Ato B such thatry passes immediately above or adjacent to Fo#mdB. Hence we can
deriveB € fml((®g,)*). This contradict® ¢ fml((©g,)*). the end of proof of Claiffl5
Thereforeeg(A) C fmI((GSB)A) - fml((GSB)B) =ep(B). O

Proposition 14 Let® be an MLL proof net including-link L : 52. Then g(A) Neg(B) = 0.

Proof. We assumeg(A)Neg(B) # 0. ThenA® B ¢ eg(A) Nep(B). Otherwise, there is a DR-switching
Sfor © such thag has a cycle including andA® B. Therefore there is a formu@such that

C € eg(A) Nep(B) andk # ¢£. Then when we consideg (AR B), we can easily see that there is an
arbitrary DR-switchingSfor © such thaPs has a cycle includin@ andA’$B, since there is a unique path
fromAtoCin G)’g and there is also the unique path frénto C in ©sP. This is a contradictiona

Proposition 15 Let® be an MLL proof net includingg-link L : 42 Then @(A) = eo(B).

Proof.
Claim 6 eg(A)Nep(B) #0

Proof of Claim®. We assume thag(A) Neg(B) = 0. We take a principal switchings for B. Then there
is no path fromAto B in Og;. In order to prove this, we assume that there is a fdtiom Ato B in Osg;.
The pathf does not pass immediately bel®wvIf so, sinceSg is a principal switching foB, S selectB
in thee-link L. Thereforef passes immediately above or adjacertdloreover by the assumptio#,
includes the subpattveB, B. Then letSy be Sg except thaB, choosed\ in L. ThenSy(©) has a cycle
including the subpath d from A to A¢B and the pativeB, A. Therefore the patB does not pass
immediately belowB. On the other hand, the pathdoes not pass immediately above or adjacei® to
becauseé\ ¢ eg(B) (sinceeg(A) Neg(B) = 0) and fm((Os,)B) = eg(B). Thereforeds, is disconnected.
This is a contradictionthe end of proof of Claiiin]6

Then by Proposition 1B € eg(A) or A € eg(B).

1. The case wherB € eg(A) andA € eg(B):
It is obvious thaiveB ¢ eg(A), since otherwise we can easily find a DR-switch8such thatds
has a cycle including andA¢B. Similarly AeB ¢ eg(B). SoB is a conclusion oég(A) andAis a
conclusion ofeg(B).
Let S5 be a principal switching foB. In addition, letSy be a principal switching foA obtained from
S by changingg-switches with the minimal effort. Then the following claimolds.

Claim 7 Let Ce fml( @SB)B) and 6 be a unique path from Ato C i@t—)SB)B. Then each formulain
6 is included in(©s, )",

Proof of ClainY. At first we note thaB passes immediately above or adjacem toecauses
selectsB in thee-link L. We assume that the statement does not hold. Then withaubfos
generality, there is a subpahE’9F in 6 such that the subpath 6ffrom Ato E in (OSB)B survives
in (©s,)" andE € fml((®s,)"), butEF ¢ fml((Os,)*). Moreover, sincéa is principal forA,
there is a pathrin ©g, from Ato F such thatrr passes immediately belovin ©s,. Then each
formula in 1T exceptA does not belong to fmaeSB)B). In fact, letG be the first formula it except
AsuchthaG e fmI((G)gB)B). Then the subpatit of rfrom AB to G in Og, survives inBg,. On
the other hand, sind8 € fml((@sB)B), there is a unique pathfromBto Gin (GSB)B such thag
passes immediately above or adjacerBtdhen sinceSs selectsB in theg-link L, 7 andé makes
acycle inOg,. This is a contradiction. Therefore, each formulazexceptA does not belong to
fml((©s,)®). ButF e fml((@s,)®) becaus&sF belongs tod and@ is included in(Og,)®. This is
a contradiction.the end of proof of Claif] 7

SinceSg (resp.Sa) is a principal switching foB (resp.A), Claim[Z meangg(B) C eg(A). Similarly
we can proveg(A) C ep(B). Soeg(A) = eg(B).

2. The case wherB ¢ eg(A) andA € eg(B):
Then by Proposition 13(A) C eg(B) andAis not a conclusion oég(B). But this implies
A9B € eg(B), which contradicts the definition of empires. Therefore ttase never happens.
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3. The case wherB € eg(A) andA ¢ eg(B):
Similar to the case immediately above.

The next goal is to prove Splitting lemma (Lemfia 2). In oraedd that, we introduce a strict partial
order on®-formulas in a MLL proof net.

Definition 23 Let® be an MLL proof net. Let L5_2 and L' : % be®-links in®. Then,

A@B< A @B iffeg,(A®B) C eg,(A') Veg,(A® B) C eg,(B')
Proposition 16 < is a strict partial order.

Proof.

e transitivity:
We assume thai® B < A'® B’ andA’ ® B' < A” ® B”. By definition,
(€0, (AR B) € g, (A') V eg, (A® B) C ey (B)) A (g, (A @ B') C egy(A”) Veg, (A @ B') C egy(B")).
We only consider the case whezg, (A® B) C eg,(A) Aeg,(A'®@ B') C eg,(B”) because the other
three cases are similar. Sineg,(A® B) C eg,(A") andeg,(A) C eg, (A @ B'), we obtain
€0, (A® B) C eg, (A’ @ B'). Therefore froneg, (A @ B') C eg,(B”), we obtain
eo,(A®B) C eg,(B”). So,A®B< A" ®B".

o irreflexivity:
We assume thai® B < A® B. Then by definitioreg,(A® B) C eg,(A) V eg,(A® B) C eg,(B). We
only consider the case wheeg,(A® B) C eg,(A), because the other case is similar. Then
B € eg,(A®B) C eg,(A) andB € eg,(B). Soeg,(A) Neg,(B) # 0. From Proposition 14 We derive
a contradiction™D

Lemma 2 (Splitting Lemma) Let © be an MLL proof net whose conclusions does not includerany
formulas. Then there is a conclusion %BB in © such thatml(©) = {A® B} Wep(A) Weg(B).

Proof. LetT ={A;1®B;,...,A;®B,} be the conclusions i® that are an-formula. Then let

lo(1 < 4o < ¢) be an index such th#y,, ® By, is a maximal element il w.r.t the strict partial ordex.

We can always find the index by the finitenes©ofWe claim thatd,, @ By, is A® B of the the statement.
We assume théah is not. Then without loss of generality, there is a conclosiof eg(A,,) such thaC is
not a conclusion 0®. Then without loss of generality there is an indéfd < ¢’ < /) such thaC is
hereditarily abovd,. Hence by Propositidd G € eg(B). Moreover, from the definition of empires,
By € ea(Ay,). Then, by Proposition 12y, € eg(By). Hence by Propositidn 18e(A,) < ea(By). So,
sinceeg (A, ® By,) C €a(By). HenceA,, ® By, < Ay ® By. This contradicts the maximality @, © B,
w.rt<overT. O

C Proof of Proposition[2

Proof of Propositiod PWe prove this proposition by induction on the number of th&siin©. Before
that, we prove the following claim.

Claim 8 Let(hy,hg) be an other graph automorphism orf'®:¢ () than (idy,idg). Then
YWweV.hy(v) #v.

proof of Claim8: We assuméy = idy. Since(hy,hg) # (idy,ide), there isep € E such that

ey = ide(ep) # he(ep). On the other hand, singéy, hg) is a graph automorphism,

le(ep) = le(he(ep)) € {L,R,ID}. Therefore the link that inducesy is different from the link.’ that
induceshe (ep). Then since (a) two different links does not share the sammufla except that the formula
is one premise of the one link and one conclusion of the othlerbut (b) sr¢ep) is a conclusion (resp.
premise) ofL iff src(hg (ep)) is a conclusion (resp. premise)ldf hence,

hy (srdep)) = sradhe(ep)) # sraep). Thereforehy # idy.

So, there isp € V such thawp = idy (Vo) # hv (Vo). The the following subclaim holds.
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Subclaim 2 For any ec E and ve V, if srqe) = vp andtgt(e) = v, or srge) = v andtgt(e) = vp, then

v hy (V).

proof of Subclairhl2: We only consider the case where (&)= vp and tgfe) = v, because the other case
is similar. Sincevo # h(vo) andy ™ (vo) = £ (hv (Vo)), henceg # he (). Then since

le(e) = le(he(e)) € {L,R,ID }, by the same discussion above, we can derive

v =tgt(e) # hy(tgt(e)) = hy(v). the end of the proof of Subclalth 2

Since® is an MLL proof net, starting fromp € V, we can reach anye V by moving from a node; € V

to another node, € V repeatedly such that andv, are a premise or a conclusion of the same link. Then
through the travelling, by applying the subclaim, we carivigthe claim. the end of the proof of Claifd 8
Then we prove the proposition using the claim above.

1. The case wher® consists of exactly one ID-link  pt:
It is obvious that the identity map is the only graph autorhism onGS"P=s (©).

2. The case where there issaformula (A’®B, k1) among the conclusions i:
Let (hy,hg) be an other graph automorphism@#™== (0) than(idy,idg). By Claim[8,0 must
have a conclusiofA'®B, ko) such thak; # kp, hy (k1) = kp, andhy (kp) = k1. Let©g be the proof
net obtained fron® deleting the twog-links associated withA®B, k;) and(AeB, kz) (let the two

2-links belLg; : % andL.g : % respectively). We apply inductive hypothesis to

©p. Then the only graph automorphism &&= (Qg) (= (Vo, Eo,éf‘,gpm,égoﬂ is (idy,, idg,)-
Therefore(hy, hg) must be an extension didy,,idg,). But it is impossible, because since
h\/(kl) = k2, andh\/(kz) = kl, we must haVéi\/(il) = i2, h\/(lz) = il, h\/(jl) = j2, andh\/(jz) = jl-

3. The case where there is roformula among the conclusions @t
In this case, by applying Lemnia 2 (Appenfix B)@owe can find(A; ® By, ki) such that
fml(©) = {{A1®By, ki) } Wee((Ai1)) Wea({(B,j1)). Let (hy,hg) be an other graph automorphism
on GSt"P= (@) than(idy,idg). By Claim[8,0 must have a conclusiof\ ® B, ky) such thak; # ko,
hy (k1) = ko, andhy (k2) = k1. Moreover by symmetry, we must have
fml(©) = {{(A®B,kz) } Wea((A,i2)) Wea((B, j2)). Moreover by symmetry, it is enough to consider
the following two cases.

(&) The case where

fml(©) = {{A® B, k1), (A® B, ka)} Wea((Ai1)) Wea((A,iz)) W (ea((B, j1)) Nea((B, j2)))
(b) The case where

fml(©) = {(A®B,k1), (A® B, kz)} Weo((B, j1)) Wea((B, j2)) W (ea((Ai1)) Nea((A/i2)))

We only consider the case (a) because the case (b) is siiffilan let®y be the proof net whose
formulas areeg((B, j1)) Nea((B, j2)). We apply inductive hypothesis ®y. Then the only graph
automorphism oiBSP=% (Q) (= <VO,E0,€\S,BFP%’,€EO>) is (idy,, idg,). Therefore(hy,hg) must be an
extension ofidy,,idg,). But it is impossible, because sinbg(k;) = ko, andhy (ko) = ki, we must
haVEh\/(il) = i2, h\/(lz) = il, h\/(jl) = j2, andh\/(jz) = jl- O

D Proof of Theorem[2

Proof of Theorerfil2. At first we fix our notation. Le®’ be ex,5(©, L1, L2) andLy,, andL,, be 52

CcC D H
and;y respectively.

o If part

1. The case wher@ is a conclusion 0ég(A) andD is a conclusion oég(B):
Let S be a DR-switching fo®'. We assume th@y has a cycle or is disconnected.

(a) The case wher® selectsAin L'y:
By the assumption 0@y, (i) there is a cycle includinG ® D in © or (i) AandB are
disconnected i®g. Then letSbe the DR-switching fo® such thaSis S except thas
chooses the left or the right premiselgf; and the domain aBdoes not includé’.. Then
there are two unique patlés and6, in ©s from A to C and fromB to D respectively. From our
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assumption abo@ andD, we can easily see that all the indexed formula8iiand 6, are
included ineg(A) andeg(B) respectively. In particular,

o 6, passes immediately above or adjacent to Fo#imdC, and
o 6, passes immediately above or adjacent to B#mdD.

Moreover, by our assumption and Proposifioh 14 we ol#gi\) Neg(B) = 0. Therefore if
we consideif; and6, as two sets of indexed formula®, and 6, are disjoint. Moreover, two
paths6; and6, in Os are preserved i@y becausd; (resp.6,) includes neitheA® B nor
CeD. Hence if we let 6,)" be the reverse di,, then6;,C® D, (6>)" is the unique path from
to Bin ©g. Hence the case (ii) is impossible. So the case (i) holds.

If ©5 has a cyclet, then one of the following conditions must be satisfied:

(a-1) The case where the cyaign © includesC,C® D, D:
SinceC € eg(A), D € eg(B) andeg (A) Neg(B) = 0, mmust include at least one indexed
formula from each of the following three types of indexedfiotas excepE,C® D, D: (1)
indexed formulas froneg (A) different fromA, (l1) indexed formulas froneg (B) different
from B, and (l11) indexed formulas that are not includedeis(A) Ueg(B). LetE be an
indexed formula of the type (1) that is includedmmandF be an indexed formula of the
type (I1) that is included int. Then there is a path from Ato E in ©g such that all the
indexed formulas irr; are included ireg(A) andt; passes immediately above or adjacent
to A. Similarly, there is a path, from B to F in ©g such that all the indexed formulas in
T, are included ireg (B) andt, passes immediately above or adjacerBt®n the other
hand sincar has indexed formulas of type (ll1), there is the subpatbf T from E to F
such that? includes at least one indexed formula that is not includesbii®\) U eg(B).
Since® is an MLL proof net®@s must be acyclic and connected. But there is the cycle
A®B, 11,1, (12)",A®Bin Os. This is a contradiction.

(a-2) The case where the cyaiEn Qg includesC andC ® D, but does not includ®:
In this case there is the subpathof mTfromCtoC®Din G)’S such thatp passes
immediately above or adjacent@and immediately belo®€ @ D. We let the
DR-switchingSfor © selectC in Lyg. Since® is an MLL proof net®s must be acyclic
and connected. But singg in O survives in@s, Os has a cycle. This is a contradiction.

(a-3) The case where the cyadign © includesD andC ® D, but does not includ€:
Similar to the case immediately above except that we let tResitchingSfor © select
Din ng.

(b) The case wherf selectBin L'p:
Similar to the case above.

2. The case wher® is a conclusion oég(A) andC is a conclusion oég(B):
Similar to the case above.

e Only-if part

We suppose tha@ and®'(= exgs (0, L1, Lyg2)) are proof nets, but neither (1) nor (2) of the statement of
the theorem holds. Then we derive a contradiction. Bagiead! find a DR-switchingS for @ such that
S(@') has a cycle. We prove this by case analysis.

1. The case whel@eD < eg(A):
By PropositioiVC € eg(A) andD € eg(A). Let Sbe a principal DR-switching fof in ©. Without
loss of generality we assume tiselectsC in Los. Since®sis acyclic and connected, there are
two unique path®; from Ato C and@, from Ato D in (©g)” such that boti#; and@, pass
immediately above or adjacent£o Moreover, sinceg (A) Neg(B) = 0 and all the formulas i
and, are included ireg(A), neitherf; nor 6, includesB. We have two cases.

(@) The case where both and6, passD:
In this case, botl; and 6, pass immediately belo@sD. Otherwise, le§ beSexcepts
selectd in Lys. ThenS(©) has a cycle including the subpath@ffrom A to C#D, the path
CeD,D, and(6,)" from D to A. This is a contradiction. Therefore sinSselectsC in Lo, 61
from Ato C is a subpath 06, fromAtoD in S(G))A. Henced, has the subpatb,; from CeD
to D such that,; passes immediately above or adjacer®4D. Let S be Sexcept that the
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'g-switch forL,g is deleted and the-switch forl),, selectsA or B. ThenS'is a
DR-switching for@’ andS (@) includes a cyclé,;,C® D.

(b) Otherwise:
In this case, neithe#; nor 6, includesCr¢D (otherwise, we have a cycle includi@gCeD in
Os or when we letsg be the DR-switching obtained froBby selectingD in Ly, we have a
cycle includingD,CeD in Og,). Therefored; (resp.6.) passes immediately above or adjacent
to C (resp.D). Then letS be Sexcept that thep-switch forL, is deleted and thg-switch
for L’lxg selectsA or B. Sinceeg(A) Nep(B) = 0 and all the formulas i, and8, are included
in eg(A), both8; and8s in (@) survive inS(@'). Then we find a cyclé;,C® D, (6,)" in
S(@).

2. The case whe@eD € eg(B):
Similar to the case above.

3. The case whel@sD ¢ eg(A) andCeD ¢ eg(B):
Moreover we divide the case into two cases.

(a) The case wherey(A® B) Neg(CeD) = 0:
LetS_ be a DR-switching fo® selectingC in Lps. Then there is the unique pahfrom D to
CeDin Og with length> 1. LetS beS_except that thep-switch forL,s is deleted and the
»-switch forl’y selectsA (or B). Then@fiL has a cyclé,D. This is a contradiction.

(b) The case wheres(A® B) Neg(CeD) # 0:
Then by Proposition 123D € eg(A® B) or A® B € eg(C¥D).

(b-1) The case whel@gD € eg(A® B):
Since neither (1) nor (2) of the statement of the theoremdy@de of the following four
cases must hold.

(b-1-1) The case where neith@morD is a conclusion oég(A):
In this case, sinc€eD ¢ eg(A), C € eg(A) andD ¢ eg(A). Let S_a be a principal
switching forA and® such tha§ a select<C in L. Then there are two unique paths
6, from Ato C and8, from Ato D in Og_, such that bott;, and8, pass immediately
belowA. Let S be S a except that thep-switch forLys is deleted and thg-switch
for L'15 selectsA (or B). ThenG)’S, has a cyclé;,C®D, (6:)". This is a contradiction.

(b-1-2) The case whef@is neither a conclusion @ (A) nor a conclusion oég(B):
SinceCeD ¢ ep(A) (resp.CoD ¢ ep(B)), We can easily see th@t¢Z eg(A) (resp
C ¢ eg(B)), since ifC € eg(A) (resp.C € eg(B)), thenC is a conclusion oég(A)
(resp.eo(B)). Let Sg be a principal switching foB in ©. SinceC ¢ eg(B), there is
the unique pati®; from B to C in Og, such that; passes immediately beldd Then
we have two cases:
(b-1-2-1) The case whe® includesA:
There is the unique path from Afrom D in Og,. Let 6; be the subpath d; from A
to C. Let S be S except that thep-switch forLyy is deleted and the-switch for
L'1s selectsA. Then@y is a cycled],C® D, (6,)" sinced; and6, are preserved
when moving ta9y from Os;.
(b-1-2-2) The case whe® does not includé:
There is the unique pat from Afrom D in Og;,. Let 6; be the subpath d#; from
A®B1toC. LetS beSs except that thep-switch forL, is deleted and thg-switch
for L'15 selectsA. Then©y is a cycled],C® D, (6,)",A® B sinced; and6, are
preserved when moving ©g from Og, exceptA® B is replaced byAB.

(b-1-3) The case where neith@morD is a conclusion oég(B):
Similar to the case (b-1-1) above.

(b-1-4) The case whel is neither a conclusion @ (A) nor a conclusion oég(B):
Similar to the case (b-1-2) above.

(b-2) The case whe@sD ¢ eg(A® B) andA® B € eg(C¥D)
By Proposition IBA® B is not a conclusion oég(CeD) andeg(A® B) C eg(CeD). In
this case we easily find a DR-switchifor @ such thag has a cycle including
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C®D. In the following we prove the claim. L&asp be a principal switching foA® B in
eo(C»D). Then we can obtain a principal switchiSgyp for C2D in © by extending
Sags- Then the unique path fromC to D in Sop(©) includes neitheA A® B, Anor
B,A® B, A, because in order th&tincludesA,A® B,Aor B,A® B,A, 8 must enter
eo(A® B) from a conclusion oég (A® B) other tharA® B. But this is impossible
becaus&csp is an extension 0Bag 5 that is a principal switching foA ® B. Then we
have three cases abaifromC to D.
(b-2-1) The case wher@includes neitheA, B, norA® B:
Let S be Sxp except that thep-switch forL g is deleted and thep-switch forl'y
selectsA or B. Sinced fromC to D in Soop(®) survives inS(@'), S(@') has a cycle
8,CxD,C.
(b-2-1) The case wher@includesA,A® Bor A® B, A:
Let S be Syp except that thep-switch forL g is deleted and thep-switch forl'y,
selectsA. Sincef fromCto D in Sopp(©) survives inS(@'), S(©') has a cycle
8,CxD,C.
(b-2-2) The case wher@includesB,A® B or A® B, B:
Let S be S&p except that thep-switch forL,s is deleted and the-switch forl' ;.
selectsB. Sinced fromCto D in Soxp(©) survives inS(@'), S(©') has a cycle
6,C®D,C. O

E Proof of Lemmal[l
In this section, we prove Lemria 1 by proving the following gexlized main lemma by induction.

Lemma 3 (Generalized Main Lemma) Let © be an MLL proof net with a conclusiong®Dg with the

. . A B, .
2-link Ligo : CcoongDoO- We assume thatym®-links Leg : 2521 . Lam, :;1®Bn:11 and m 9-links Lgs :
c Dy

11®Bl
R % occurin®, where m,my € N. Moreover we assume that @),j = €Xe (0, L, Lgj)
is not an MLL proof net for each j (1 <i<my,0< j <mp). Moreover we defin® as follows:

O’ =def€%22 (0, (Lo, --,Lom ), (Lzo, L1, - - Lgm,))
Then@' is not an MLL proof net.

Proof of Lemma&l3Let ©g be the MLL proof net obtained froi® by deletingL.oo : %. Moreover let
g be
ex@’?(OOa <L®17 ey L®m1>v <L’?17 DR L)gm2>)

We prove the lemma by induction on lexicographic or@fer, |Le|), |Le| is the number of link
occurrences i®. If m; = 0, then we can easily see that there is a DR-switcBjigr O such that there
is a path®’ from Cy to Dg in §,(©p). Therefore])(©') has a cycle.

In the following, we prove the induction step: we assume> 0.

e The case wheray = 0:
Sincermy > 0, it is obvious that there is a DR-switchiggfor ©; such thaS (@) is disconnected. If
S(©5) has more than two maximally connected components, then wedune. IfS(©g) has
exactly two maximally components, them = 1. Therefore by condition (al’ is not an MLL
proof net.

e The case wheray > 0:
By inductive hypothesigd; is not an MLL proof net. Therefore, there is a DR-switchBidor ©j
such thaS(6;) has a cycle or is disconnected If©;) has a cycle, then we have dorg(@’) also
has a cycle. I8(©;) has more than two maximally connected components, then weedune:
S (@) is disconnected. Therefore we can assume3H&l,) has exactly two maximally connected
components in which each component does not have any cyadaydDOR-switchingS for @ (note
that the number of the edges${Q;)) is always the same for any DR-switchiBgfor ©). Hence
there isig (1 <ig < my) such that one connected componenthAgsind the other haB;,. Moreover,
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since eXys(€a,(Ay), (Lots---,Lemy), (Lig1, .., Lism,)) is @ subproof structure @,
S(exzs(€ay(Ap): (Lets---,Lemy ), (Lig1, -, Lemy))) must be acyclic and connected for any
DR-switchingS for ©;. Therefore ex»(eg,(Aiy), (La1,---Lam ), (Ls1,-..,Lsm,)) is an MLL
proof net. Therefore by inductive hypothesis,

eXgs(€0,(Ag), (Let, -, Lam ), (Le1, .-, Lgmy)) = €0,(A,) (this meangg,(Aj,) has neither
®-link nor »-link to be exchanged). Moreover since by the condition (@)$i(©;) has exactly two
maximally connected components for e8lyfor any j (1 < j < mp), eg,(Ai,) has neithe€; norD;
as a conclusion (otherwise, the condition (a) is violated,ég,(A,) hasC; (resp.Dj) as a
conclusion an@g, (Bj,) hasD; (resp.C;) as a conclusion). For the same reason,i.e., the condition
(a), if Co(respDo) € eg,(Aj,), thenDg(respCo) € eg,(Ai,) (see Figuré12). Then when lﬁ,;qo be a
principal switching foreg, (Aj;) in @, S’AiO (@) is disconnected or has a cycle including

Co,Co® Do, Dg. O

Co®Dg

Figure 12:0/
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