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Ptolemy is an open-source and extensible modeling and simulation framework. It offers
heterogeneous modeling capabilities by allowing different models of computation, both untimed
and timed, to be composed hierarchically in an arbitrary fashion. This paper proposes a formal
semantics for Ptolemy which is modular, in the sense that atomic actors and their compositions are
treated in a unified way. In particular, all actors conform to an executable interface that contains
four functions: fire (produce outputs given current state and inputs), postfire (update state
instantaneously), deadline (how much time the actor is willing to let elapse) and time-update
(update state with passage of time). Composite actors are obtained from composition operators that
in Ptolemy are called directors. Different directors realize different models of computation. This
paper defines formally the directors for the following models of computation:
Synchronous-Reactive, Discrete Event, Continuous Time, Process Networks, and Modal Models.
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1. Introduction

Modeling has always been an essential component of system design. Building models of systems
before or even after building the systems themselves is beneficial for a number of reasons. The
model provides a means for experimenting with a virtual version of the system, analyzing its be-
havior, and asking “what-if” questions. Therefore, having a model of the system before actually
building the system allows to make design decisions based on the results of the analysis. On the
other hand, having a model of an existing system allows to subject the model to experimentation
that the physical system cannot be subjected to, for various reasons (cost, size, time scales, etc.).
Such experimentation can influence decisions such as adjustments to be made to the system and
future system evolution.

Building large and complex systems is not a trivial task. This task is often accompanied by the
task of building large and complex models, which is itself non-trivial. One of the main difficulties
of the modeling task comes from the fact that a large system cannot be modeled in a monolithic
way. That is, instead of developing a single model that captures the entire system, one develops
many smaller models, for parts of the system. These sub-models need to be combined somehow
into a single model. We refer to this problem as the problem of model composition.

Model composition may be easier (but by no means easy!) when the models to be composed
are of the same nature, or homogeneous. Homogeneity comes in different flavors:

— Homogeneity may be linguistic in the sense that the models to be composed are written in
the same language. In this case, the language typically provides some composition operators
which allow to compose these models and form a larger model.1

— Homogeneity may be syntactic, meaning that the models, even though they may be written in
different languages, share the same syntax or have similar syntaxes. For instance, a Simulink 2

model can be written in a block diagram notation, and so can a SysML “block definition
diagram”.3 The fact that the two models share a similar notation, however, does not imply

1 Even in this simplest case, composition may not be entirely straightforward. This is because existence of composition
operators does not ensure that the language is compositional, in the sense that an arbitrary composition of models can
be represented as an atomic (i.e., non-composite) model. Indeed, many languages are not compositional in this sense,
for instance, see (Lublinerman et al., 2009; Tripakis et al., 2010).

2 http://www.mathworks.com/products/simulink/
3 http://www.omgsysml.org/

http://www.mathworks.com/products/simulink/
http://www.mathworks.com/products/simulink/
http://www.omgsysml.org/
http://www.omgsysml.org/
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that it is easy to compose them, as this composition strongly depends on the semantics of the
corresponding notations, as well as on the desired semantics of the composition.

— Homogeneity may be semantic, meaning that the models share the same semantics, even
though they may have different syntaxes. For instance, a model written in a state-machine
notation may have a different syntax than a model written in the synchronous language Lus-
tre (Halbwachs et al., 1991), but they can both be given semantics in terms of sets of syn-
chronous input-output traces. This makes it easier to compose the models semantically, but
it is unclear how to do so syntactically. Syntax does matter in modeling and system design.
As an extreme thesis, one may claim that every model executable in a computer could be
encoded as a Turing machine, therefore Turing machines are the ultimate unifying modeling
language! But this language is of course not very useful.
Another practical problem with composing semantically homogeneous models but which are
not written in the same language or syntax is tool support. Often the individual models can
be handled by separate tools, but there is no tool that can handle the composition. A number
of attempts have been made in the past to build tool “bridges” (e.g., in the context of the EU
project SPEEDS4 or the earlier US project MoBIES5 unfortunately with limited success).

In practice models are often heterogeneous, in any of the senses mentioned above. That is, they
may have different syntaxes, semantics, or both. Heterogeneous models arise naturally because
different parts of the system have inherently distinct properties, and therefore require different
types of models. For instance, the dynamics of a car is natural to capture using a continuous-time
model, whereas a computerized controller is more natural to describe in discrete-time. If the
controller is implemented in hardware (say, as a synchronous digital circuit) or as a single read-
compute-write software control loop, then it may be easier to describe in Lustre or Simulink,
whereas if it is implemented as a set of concurrent threads, it may be easier to capture as a Kahn
Process Network (Kahn, 1974). Another reason for heterogeneity is also the fact that different
models are often built by different groups of people, with different traditions or processes.

The term model of computation (MoC) can be defined as the set of rules used to obtain a se-
mantically well-defined composite model from a set of sub-models.6 Thus, a MoC can be seen
as providing a solution to the model composition problem for homogeneous models. A num-
ber of modeling languages exist today, realizing different MoCs. Many of these languages are
gaining acceptance in the industry, in so-called model-based design methodologies. Examples
are UML/SysML, Matlab/Simulink/Stateflow, AADL, Modelica, LabVIEW, and others. These
types of languages are raising the level of abstraction in system design, by offering mechanisms
to capture concurrency, interaction, and time behavior, all of which are essential aspects of mod-
ern systems. Moreover, verification and code generation tools exist for many of these languages,
allowing to go beyond simple modeling and simulation, and facilitating the process of going
from high-level models to low-level implementations.

Despite these advances, however, the above languages offer little or no support for heterogene-
ity. Currently, no universally accepted solution exists for heterogeneous modeling.

4 http://www.speeds.eu.com/
5 http://w3.isis.vanderbilt.edu/Projects/mobies/
6 Often the term model of concurrency and communication (MoCC) is used instead.

http://www.speeds.eu.com/
http://www.speeds.eu.com/
http://w3.isis.vanderbilt.edu/Projects/mobies/
http://w3.isis.vanderbilt.edu/Projects/mobies/
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The modeling and simulation tool Ptolemy 7 has been a pioneering, long-term, and on-going
effort to provide a solution to the model composition problem in the presence of heterogene-
ity (Eker et al., 2003; Lee, 2010). Ptolemy follows the actor-oriented paradigm, where a system
consists of a set of actors, which can be seen as processes executing concurrently and commu-
nicating using some mechanism. In Ptolemy, the exact manner in which actors execute (e.g., by
interleaving, in lock-step, or in some other order) and the exact manner in which they communi-
cate (e.g., through message passing or shared variables) are not fixed but are defined by an MoC,
also called domain, in Ptolemy terminology. Each domain is implemented in the tool by a direc-
tor, which coordinates the execution of a set of actors as well as their communication. Ptolemy
is written in Java, and it is open-source and free. It is also architected to be easily extensible: new
domains (i.e., new directors) and new actors can be added with relatively small effort.

Currently, Ptolemy supports a number of MoCs and corresponding domains, including syn-
chronous data flow (SDF), synchronous reactive (SR), discrete event (DE), process networks
(PN), continuous time (CT), extended state machines (ESM), and modal models (MM). A rich
body of literature presents formal semantics for all of these MoCs (see Section 2 for references).
However, no unified formal semantics of Ptolemy has been provided so far. By “unified” we mean
a semantics that can encompass more than one, and in principle all, the domains implemented in
Ptolemy.

Ultimately, the semantics of a tool like Ptolemy is derived by its implementation, i.e., by “what
the simulator does”. This is the case for every tool that implements a language, even one with
a formal semantics, since the question of conformance of the implementation to the semantics
of the language is always a tricky one. Despite this inherent difficulty, a formal semantics is
desirable to have, for many reasons that we will not repeat here as these have been well argued
before (e.g., in (Floyd, 1967; Dijkstra, 1976)). Suffice it to say that we view conciseness and
readability as two of the most important reasons. It is much easier to read and understand a few
pages of formalism than many thousands of lines of Java code.

In this paper we propose a formal semantics for Ptolemy that unifies a number of domains, in
particular, SR, DE, CT, PN and MM. These domains have been chosen as they represent a sig-
nificant subset of Ptolemy, as well as the most often used subset. Apart from that, they also rep-
resent significantly heterogeneous models of computation. SR has a synchronous, “untimed” (or
“logical-time”) semantics akin to that of the synchronous languages (Benveniste and Berry, 1991;
Halbwachs et al., 1991; Benveniste et al., 2003). DE has a timed semantics based on streams of
timed events (Yates, 1993; Lee, 1999). CT approximates continuous-time semantics using nu-
merical solvers for differential equations. PN is based on Kahn Process Networks (KPN) (Kahn,
1974), which model asynchronous concurrent processes communicating via FIFO queues. And
MM capture control with state machines or hierarchical state machines (Harel, 1987; André,
1996). We believe that the approach proposed in this paper is not limited to the above domains
and could be extended to other MoCs as well. For instance, SDF can be seen as a static subclass
of KPN and therefore could be captured semantically as such.8

Ptolemy uses a graphical syntax, with hierarchy being the fundamental modularity mechanism

7 http://ptolemy.eecs.berkeley.edu/.
8 An implementation would typically distinguish SDF from PN for reasons of efficiency, since SDF admits specialized

algorithms for scheduling and analysis.

http://ptolemy.eecs.berkeley.edu/
http://ptolemy.eecs.berkeley.edu/
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at the syntactic level. This means that a model is essentially a tree of submodels. The leaves of the
tree correspond to atomic actors, available in the Ptolemy library of predefined actors or written
in Java by users. The internal nodes of the tree correspond to composite actors, which are formed
by composing other actors using the graphical syntax into an actor diagram (see Figures 3, 5,
etc., for examples).

Our semantics is designed to mirror this syntactic modularity mechanism. The semantics is
modular in the sense that it treats composite actors and atomic actors in a unified way. This is
achieved by identifying a unique formal “interface” (or “signature”) that characterizes all actors,
viewing them as extended, timed state machines. These machines are similar to the abstract state
machines of (Gurevich, 1993). They are characterized by a fire function F that produces outputs
based on the state and the inputs, and a postfire function P that updates the state based on the
same information. These are the standard functions found in state machines of type Mealy (Ko-
havi, 1978). Our machines also include a deadline function D and a time-update function T ,
which capture timed actors and the effect that passage of time has on the state. A summary of the
standardized actor interface is given in Figure 1 for reference purposes. A detailed description of
the interface is given in Section 4.

Spaces
space description

Î Input valuations

Ô Output valuations

Ŝ State valuations

s0 ∈ Ŝ Initial state

Interface
function type description

F Ŝ × Î → Ô Form outputs from inputs and state.

P Ŝ × Î → Ŝ Update state from inputs and state.

D Ŝ × Î → R∞
+ Return firing deadline.

T Ŝ × Î × R+ → Ŝ Update state over a given time.

Fig. 1. Actor interface: X̂ denotes the set of all valuations over set of variables X .

Directors are viewed as composition operators: they take as input an actor diagram and re-
turn a new actor as output. The returned actor is a composite actor, but obeys the same interface
as atomic actors and is therefore indistinguishable from the latter. In this way, we can define
the semantics of hierarchical Ptolemy models of arbitrary depth and domain combinations. In
particular, for each director we will show how the functions F, P,D, T of the composite actor
are defined in terms of the same functions of its sub-actors. The main ideas behind these defini-
tions are summarized in Figure 2, for reference purposes. Detailed descriptions of directors are
provided in Section 6.

Modularity greatly enhances conciseness and readability, because in order to understand the
semantics of a particular MoC it suffices to understand the semantics of the corresponding direc-
tor. This is often difficult to achieve by looking at the implementation of the director, as the Java
code has interdependencies that extend beyond the particular director class and require looking
at extensive parts of the code.

Our semantics, although not directly reflecting the implementation (this would mean formaliz-
ing the Java code!) aims to come as close to the implementation as possible while maintaining a
high-level view that allows to achieve conciseness and readability. In particular, our formalization
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fire F postfire P deadline D time-update T

SR least fixpoint on flat
CPO

P of components ∞ or fixed step state unchanged

DE same as SR same as SR minD of components T of components

CT same as SR same as SR
step determined state updated
by ODE solver by ODE solver

PN
least fixpoint on
stream CPO

same as SR ∞ or fixed step state unchanged

MM
possibly F of
source refinement,
and transition action

possibly P of
source refinement,
and transition action

D of (target) refinement T of (target) refinement

Fig. 2. Main ideas of composite actor definitions for the different Ptolemy domains.

captures the salient features of the implementation, and in particular the fire/postfire interface of
actors, called the abstract semantics (Eker et al., 2003).

The rest of this paper is organized as follows. Section 2 discusses related work. Section 3
briefly reviews the visual syntax of Ptolemy through an example. In Section 4 we provide a
formal semantics for actors. Section 5 formalizes actor diagrams. Section 6 formalizes directors
for the SR, DE, CT, PN and MM domains. Section 7 concludes the paper.

2. Related Work

The semantics of Ptolemy II has been described previously in the literature in a number of papers.
These papers differ from the current paper in the following ways.

— In some papers the semantics is presented in an informal or incomplete manner. For instance:
(Eker et al., 2003) discusses the principles of Ptolemy’s abstract semantics and domain poly-
morphism, but does not provide a formal semantics. It also limits its discussion to a restricted
actor interface that contains only fire and postfire, which are not sufficient to cover timed
actors. (Lee and Zheng, 2007) discusses the implementation principles and commonalities of
SR, DE and CT, including a discussion of the fireAt method for timed actors. However, this
paper does not provide a formal semantics either, nor a complete implementation policy. A
recent informal discussion can also be found in (Goderis et al., 2009).

— In other papers, formal semantics is presented for individual domains of Ptolemy. (Edwards
and Lee, 2003) presents the basis for the SR semantics. Different variants of formal semantics
for DE are presented in (Lee, 1999; Liu et al., 2006; Cataldo et al., 2006; Liu and Lee, 2008;
Bae et al., 2010), the last paper being the closest to the actual Ptolemy implementation.
Continuous-time and hybrid systems are considered in (Liu and Lee, 2003; Lee and Zheng,
2005). (Lee and Tripakis, 2010) presents a formal semantics for modal models (an informal
description can be found in (Lee, 2009)).

— Some papers present formal semantics that unify more than one models of computation. In
particular, a denotational semantics is proposed in (Lee and Sangiovanni-Vincentelli, 1998)
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where processes are seen as relations between signals, where a signal is a set of tagged
events (events with timestamps in some abstract time domain). Only a single composition
operator, essentially based on intersection, is provided. It is difficult to see how this can
capture different domains which, as mentioned above, are viewed as different composition
operators in this paper.
Another denotational semantics is proposed in (Liu and Lee, 2008), based on fixpoints on
CPOs with a prefix order. This allows this semantics to be applied directly to a number of
domains that can be naturally described using CPOs, in particular SR (Edwards and Lee,
2003) and PN (Kahn, 1974). The authors also show how to incorporate timed systems (e.g.,
DE) in the same framework. A similar denotational semantics is proposed in (Benveniste
et al., 2009) with the difference that a special “absent” value is not used.9 It is unclear how
this work can be extended to include other MoCs, in particular continuous-time and modal
models.
Finally, an abstract framework reminiscent of trace theory (Dill, 1988) is provided in (Burch
et al., 2001). The latter can be seen as a “meta-framework” under which the heterogeneous
composition of specific MoCs can be formulated, but does not include such formulations for
the MoCs considered in this paper.

An additional concern with some (although by no means all) of the above papers is also how
close the formal semantics is to the actual tool implementation. This is particularly a concern
with papers that present denotational semantics. Although we do not pretend in this paper to
present a semantics that exactly captures the tool implementation, we believe our semantics is
much closer to the implementation than in previous works.

Aside from the above literature, most of which focuses on the Ptolemy tool in particular, a
rich body of research is concerned with the semantics of the individual MoCs considered in this
paper. Our work builds upon all this previous work, our focus being to develop a composable
semantics that integrates multiple models of computation. We next list the relations of our work
to the previous work for each of the MoCs considered in this paper.

The semantics of SR is strongly related to those of the synchronous languages (Benveniste
and Berry, 1991; Halbwachs et al., 1991; Benveniste et al., 2003), and in particular the idea of
constructive semantics of Esterel (Malik, 1994; Berry, 1996; Shiple et al., 1996). These ideas
have been adapted in (Edwards and Lee, 2003) for a block-diagram notation, which is also the
one used in Ptolemy in the case of SR. Our semantics follows the one of (Edwards and Lee, 2003)
and extends it to “open” systems, in the sense that a composite block can have inputs. The theory
of fixpoints of Scott-continuous functions on CPOs (complete partial orders) is used to give an
unambiguous meaning to models with feedback loops. Feedback loops may result in causality
cycles, but these are resolved by adding a special “bottom” value ⊥ representing an unknown
value. As a result, the set of values becomes a “flat” CPO with ⊥ being the smallest element and
all other values being incomparable. A monotonic function in this CPO is guaranteed to have a
unique least fixpoint, and this is defined to be the semantics of a model.

9 This results in some loss of expressiveness, attested by the fact that the Adder actor cannot be specified in a satisfac-
tory manner.
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The semantics of PN is based on Kahn Process Networks (Kahn, 1974). This semantics is
also given in terms of the least fixpoint of a continuous function on a CPO, however, the CPO is
different here than the one used in SR. In SR, inputs and outputs are individual values, whereas
in PN they are streams, i.e., finite or infinite sequences of values. Streams are ordered with the
prefix order, and the empty sequence is the minimal element of the corresponding CPO. The
stream CPO is not flat, in fact, it has infinite height (since finite streams can be of arbitrary
length). As a result, monotonicity of functions does not generally imply Scott-continuity. Scott-
continuity is a reasonable assumption to make, however, and it is satisfied by actors in practice.

The PN semantics is a denotational semantics. The stream CPO has infinite height, therefore,
the least fixpoint may not be reachable in a finite number of iterations. In fact, problems such
as deciding whether in a given PN model the length of a produced stream is finite are undecid-
able (Buck, 1993). Algorithmic ways of executing a PN model that satisfy different properties
are provided in (Lee and Parks, 1995) and (Geilen and Basten, 2003). The semantics of PN is
unified with the semantics of dataflow models in (Lee and Matsikoudis, 2009). Reactive process
networks which extend process networks with event-based control are defined in (Geilen and
Basten, 2004).

The semantics of DE has been an old topic of discussion (Reed and Roscoe, 1988; Yates,
1993), which is also related to fixpoint semantics based on metric spaces or CPOs (Arnold and
Nivat, 1980; Baier and Majster-Cederbaum, 1994). The DE domain is related to other models
of computation that have a dense-time semantics. An example is timed automata (Alur and Dill,
1994). A timed automaton has a finite number of clocks, whereas in DE a separate clock may be
required for each token, which makes the number of clocks a-priori unbounded. For this reason,
DE models are not directly representable as timed automata. They could be representable as some
form of timed Petri nets (Sifakis, 1977) but to our knowledge, this link has not been explored yet.

SR, PN and DE have semantical similarities that have been explored and exploited in the liter-
ature (Broy and Stolen, 2001; Liu and Lee, 2008; Benveniste et al., 2009). Particularly relevant
is the work on FOCUS (Broy and Stolen, 2001) which offers a general framework for specifying
systems based on stream-processing elements. FOCUS can capture both untimed and timed sys-
tems, as well as asynchronous and synchronous systems. It provides formal refinement relations
and guarantees of compositionality.

The semantics of CT is based on numerical methods for solving differential equations. Combi-
nations of CT models with discrete logic (e.g., modal models) result in models similar to hybrid
systems (Manna and Pnueli, 1992). The faithful reproduction of the semantics of such systems
by a computer, for instance, by simulation, is a difficult problem and still an active area of re-
search (e.g., see (Zhu et al., 2010)). (Liu and Lee, 2003) uses the notion of an ideal solver, which
can solve a set of differential equations exactly, provided the equations satisfy a Lipschitz condi-
tion over a given time interval. This is not as far-fetched as it might sound, because closed form
expressions can sometimes be given for the solution over the intervals of continuous behavior.
Even when we do not have closed form solutions, for many special cases, numerical solutions
yield exact answers (using appropriate solvers). But even in cases where the solution must be
approximated, it is valuable to separate the issue of approximate ODE solutions from the other
semantic issues (such as determinacy of the model). Hence, the idealization remains useful.

Modal models are based on hierarchical state machines, various versions of which have been
studied in the literature or are available as commercial products, including Statecharts (Harel,
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1987), SyncCharts (André, 1996), Stateflow from the Mathworks, Safe State Machines from Es-
terel Technologies (André, 2003) (SSMs are based on SyncCharts), and UML state machines.
A variety of different semantics has been proposed for Statecharts for instance, see (Beeck,
1994; Eshuis, 2009). Some of these semantics are synchronous in nature. SyncCharts also uses a
synchronous semantics. An alternative for incorporating mode switching into synchronous lan-
guages is presented in (Maraninchi and Rémond, 2003). The semantics of Stateflow are based on
the “run-to-completion” principle which is not really synchronous, although it can be approxi-
mated by a synchronous model (Scaife et al., 2004). Operational and denotational semantics for
Stateflow are presented in (Hamon and Rushby, 2004; Hamon, 2005). Timed versions of State-
charts and UML have been proposed in (Damm et al., 1998; Graf et al., 2006). In Ptolemy modal
models the hierarchy is not restricted to contain only state machines or concurrent state machines
(built with AND states). Also, contrary to Statecharts, SyncCharts and Stateflow, Ptolemy modal
models do not use broadcast events for communication. Instead, communication is done via
ports, as in the block-diagram based notation of Ptolemy.

A number of other modeling frameworks exist that provide mechanisms for mixing MoCs. An
early systematic approach to such mixed models was realized in Ptolemy Classic (Buck et al.,
1994). The Metropolis environment (Balarin et al., 2003; Goessler and Sangiovanni-Vincentelli,
2002) focuses on modeling both function and architecture, as well as the mapping of the former
to the latter. Metropolis includes the concepts of constraints and quantity managers that are used
to constrain the behaviors of a model and annotate them with quantities such as time, energy
or other metrics. The Generic Modeling Environment (GME) (Karsai, 1995; Nordstrom et al.,
1999; Ledeczi et al., 2001) uses metamodeling techniques to create domain-specific modeling
and program synthesis environments. BIP (Basu et al., 2006; Bliudze and Sifakis, 2008a; Bozga
et al., 2009) models are built by composing behavioral components with n-ary rendezvous based
interactions and then restricting those interactions using priorities. An important problem that re-
searchers working on BIP have tackled is that of glue expressiveness, namely, what is the relative
expressive power of two modeling formalisms with same sets of basic components but differ-
ent composition operators (Bliudze and Sifakis, 2008b). Specifying interaction as a first-class
citizen is also at the heart of the Reo model of concurrency (Arbab, 2004). In Reo, complex
interaction protocols (connectors) can be formed by combining simpler protocols (channels),
such as bounded/unbounded and lossless/lossy versions of FIFO queues. Composition is per-
formed by creating channels and connecting their end-points in a graph-oriented manner using
operators such as join or split. Glue expressiveness has been studied in the context of Reo as
well: (Arbab, 2004) shows examples of how protocols that can be expressed as regular expres-
sions over I/O operations can also be captured by Reo connectors composed of five primitive
channels. The ModHel’X environment (Hardebolle et al., 2007; Boulanger et al., 2011) shares a
number of concepts with Ptolemy, such as hierchical composition of MoCs, and emphasizes the
use of interface blocks that perform “semantic adaptation” between heterogeneous models. For
instance, when embedding an SDF model within a DE model, an interface block can be used to
add timestamps to the typically untimed outputs of SDF. ForSyDe (Jantsch, 2003; Sander and
Jantsch, 2004) provides a set of libraries for capturing heterogeneous MoCs based on the func-
tional programming language Haskell. ForSyDe includes different model transformations that
are used to refine an abstract specification model into a detailed implementation model, which
can be translated into a target implementation language. SystemC is capable of realizing multiple



S. Tripakis, C. Stergiou, C. Shaver, E. A. Lee 10

MoCs with a discrete-event simulation flavor (Patel and Shukla, 2004; Herrera and Villar, 2006).
An interesting way of expressing the semantics of a MoC is given by “42” (Maraninchi and
Bhouhadiba, 2007), which integrates with an application model a specification of a customized
MoC. A mechanism to create domain-polymorphic components similar in spirit to Ptolemy is
proposed in (Feredj et al., 2009). Close in spirit to this paper are also the works (Bliudze and
Krob, 2009; Aiguier et al., 2011), whose goal is to provide a sound semantical framework for
heterogeneous systems, in particular with respect to the integration of systems operating at dif-
ferent time dimensions and scales. In (Bliudze and Krob, 2009) a system (in our terms, actor)
is captured as a kind of timed Turing machine, where non-standard analysis is used to represent
continuous time via infinitesimals. In (Aiguier et al., 2011) a system is captured as a kind of timed
Mealy machine. The interface of these machines contains two functions, an output function and a
state-update function, as in a Mealy machine, except that time is an additional input argument to
both functions. Composition in this framework is achieved by three operators: parallel composi-
tion, feedback and abstraction. Therefore, in the approach of (Aiguier et al., 2011), the different
MoCs are not realized by the composition operators (as is the case with Ptolemy).

Perhaps the work most closely related to our paper is (Denckla and Mosterman, 2008). There,
the authors present two types of semantics for a block-diagram language with hierarchy: a
stream-based semantics where blocks are viewed as functions from streams to streams; and a
state-based semantics where each block is represented by an initial state and a kind of ‘step’
function which, given the current input and state, returns the current output and an ‘implicit out-
put’. For discrete systems the latter is interpreted as ‘next state’, whereas for continuous systems
it is interpreted as the time derivative of the state. A solver is then used to transform continuous
systems to discrete systems. The state-based semantics of (Denckla and Mosterman, 2008) is
closely related to the semantics we present in this paper. However, the (single) step function used
there is different from our 4-function actor interface. In particular, their step function does not
appear to be able to explicitly manipulate time (e.g., to specify a deadline).

Comparing the above frameworks among themselves as well as with Ptolemy, stating precisely
the strengths and weaknesses of each, is a difficult task. This is partly because each of the above
projects pursues slightly different goals, ranging from “pure” modeling and simulation, to verifi-
cation, to design-space exploration, mapping and implementation. Ptolemy focuses on modeling
and simulation, and leverages external tools (e.g., model-checkers) and code-generators for other
tasks (e.g., verification).

In terms of expressiveness, many frameworks are equivalent in the sense of being Turing-
complete. However, other types of expressiveness may be more appropriate in the context of
heterogeneous modeling, such as glue expressiveness (Bliudze and Sifakis, 2008b). A formal
comparison of the semantics of Ptolemy viewed as a kind of “glue” and compared to other glues
is beyond the scope of this paper, but a worth-pursuing future research direction.

Another, perhaps a more fundamental issue is that modeling and design are ultimately creative
tasks and therefore inherently subjective to human taste, experience, and other factors. Which
types of designs are easier to build or more intuitive to understand in each of the above ap-
proaches? This is at least as difficult as the question: which kind of programs are easier to write
in each of the existing programming languages. Most designs could in principle be captured
in any of the frameworks listed above, and even in homogeneous modeling frameworks, using
clever encodings. The question is how much effort is required to do so, as well as to understand
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the result, modify it when necessary, use it for analysis or implementation, and so on. Ptolemy
strives to offer a framework which is as general as possible (integrating many MoCs), yet at the
same time as intuitive as possible, so that an individual model written in, say, SDF or CT, behaves
in Ptolemy as one familiar with SDF or CT would expect it to behave.

Finally, a number of component-oriented frameworks come from the fields of traditional pro-
gramming and software engineering, e.g., object-oriented programming languages such as Eif-
fel (Meyer, 1992), component diagrams in UML and other notations, and component models
such as CORBA CCM, .NET, EJB, or Fractal (Bruneton et al., 2006), to name a few. The com-
mon characteristic that these frameworks have with ours is that they also provide notions of
standardized interfaces, from the level of notation, as with UML-based frameworks, to the level
of execution, as with concrete implementations of frameworks like Fractal. The above frame-
works have a variety of objectives, which are quite different from ours. Our main goal is to come
up with the right actor interface to express the behavioral semantics of many different MoCs.

3. Ptolemy’s Graphical Syntax

Before presenting the formal semantics, we give a brief overview of Ptolemy’s graphical syntax,
via an example, shown in Figure 3. There are 9 actors in this model:

1 The top-level actor is a composite actor, composed with the DE director. This top-level actor
contains three sub-actors.

2 The DiscreteClock actor with period 2.5 embedded in the top-level actor.
3 The TimedPlotter actor embedded in the top-level actor.
4 The ModalModel actor embedded in the top-level actor. The ModalModel actor is also a

composite actor, composed with the MM director.
5 The controller automaton of the ModalModel actor, which has two locations, regular

and irregular.10

6 The composite actor refining state regular of ModalModel. This composite actor is com-
posed with the DE director.

7 The composite actor refining state irregular of ModalModel. This composite actor is
composed with the DE director.

8 The DiscreteClock actor with period 1.0 embedded in the composite actor refining
regular.

9 The PoissonClock actor embedded in the composite actor refining irregular.

Out of these 9 actors, 4 are composite actors and 5 are atomic actors.11 Each composite actor
is associated with an actor diagram, therefore, the model also contains 4 actor diagrams.

Actors in Ptolemy have ports, rendered graphically as small triangles attached to the “boxes”
that represent the external view of actors. In composite actors, ports appear also internally in the
corresponding actor diagram. Ports can be input or output. For example, DiscreteClock has
four input ports and one output port. ModalModel has one input port and one output port.

10 For state machines and modal models, we use the term location instead of state, in order to distinguish it from the
semantical concept of state (defined formally in Section 4).

11 We classify the automaton of the modal model as an atomic actor. It could also be classified as a composite actor,
composed from basic states and transitions, but this would make things more complex than necessary.
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Fig. 3. A Ptolemy model.

Actors can have parameters which may be instantiated with different values at different in-
stances of the actor. An example is the period parameter of the two DiscreteClock actors in
the model of Figure 3. In Ptolemy parameters can be modified dynamically (during execution).
In our model, we will represent such dynamically modifiable parameters as state variables of an
actor (see examples of actors in Section 4). We will reserve the term parameter in our model for
static parameters whose value does not change once an actor is instantiated.

State machines in Ptolemy consist of a finite set of locations, one of which is the initial loca-
tion. Initial locations are indicated by a bold outline; the initial location of the state machine in
Figure 3 is regular. A transition links a source location to a destination location. A transition
is annotated with a guard, a number of output actions and a number of set actions. Guards are
expressions written in the Ptolemy expression language. Actions are written in the Ptolemy ac-
tion language. We omit a detailed formal definition of guards and actions, as they are standard in
most modeling languages.

Transitions of Ptolemy state machines can be of different types, including default transitions
that are to be taken when no other transition is enabled, reset transitions that result in the re-
finement of the destination location being reset to its initial state, and preemptive transitions
(indicated by a red circle at the start of the transition) which “abort” the execution of the current
refinement (see Section 6.5 for the precise semantics). Both transitions shown in Figure 3 are
non-preemptive and non-reset. A preemptive transition is shown in Figure 12.

http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII8.0/jnlp-books/doc/books/design/modal/SpontaneousFSM.htm
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Briefly, the behavior of the model of Figure 3 is that the ModalModel actor switches be-
tween two modes of operation every 2.5 time units: in the regular mode it generates a
regularly-spaced clock signal while in the irregular mode, it generates pseudo-randomly
spaced events, as illustrated in Figure 11. See Section 6.5 for a more detailed description of the
behavior of this model.

4. Actors

4.1. Variables, Assignments and Timers

Let S be a set of variables (more precisely, variable names). We will assume that all variables take
values in some universe of values U . A valuation (or assignment) over S is a function x : S → U
that assigns to each variable v ∈ S some value x(v) ∈ U . The set of all assignments over S is
denoted Ŝ. Note that if S1 and S2 are disjoint sets of variables, then Ŝ1 ∪ S2 is isomorphic to
Ŝ1 × Ŝ2. If x1 ∈ Ŝ1 and x2 ∈ Ŝ2 we write (x1, x2) for the valuation x ∈ Ŝ1 ∪ S2 such that
x(v1) = x1(v1) for all v1 ∈ S1 and x(v2) = x2(v2) for all v2 ∈ S2. If S′ ⊆ S and x ∈ Ŝ

then x �S′ is the restriction (or projection) of x to S′, that is, the valuation x′ ∈ Ŝ′ such that
x′(v) = x(v) for all v ∈ S′.

We use the following notation for valuations. If x ∈ Ŝ, v ∈ S, and α ∈ U , then {x | v 7→ α}
denotes the new valuation x′ obtained from x by setting v to α and leaving other variables
unchanged. A new valuation is denoted by listing the assignments for all variables in S. For
example, if S = {v1, v2} and α1, α2 ∈ U , then {v1 7→ α1, v2 7→ α2} denotes the valuation
x ∈ Ŝ such that x(v1) = α1 and x(v2) = α2.

We will often use a special type of variables called timers. Timers are implicitly typed to take
values in R+, the set of non-negative real numbers. We use R∞+ to denote the set R+ ∪ {∞},
where∞ denotes (positive) infinity.

Two special values in U are⊥, representing “bottom” or “unknown”, and absent, representing
the “absence” of a signal at a particular point in time. Unknown values are useful when defining
the semantics of diagrams of actors that contain feedback loops, as the fixpoint of some function.
We define such fixpoint semantics for SR, DE and CT (see Sections 6.1, 6.2 and 6.3). Absent
values are useful in models with discrete events, where at any given time either an event occurs
or it does not: in the former case, the corresponding signal is present (and assumes some value),
whereas in the latter case, the signal has value absent. Note that the concepts of absent and un-
known are very different. A signal that takes absent values is perfectly legal in a model. However,
a signal that is sometimes unknown corresponds to a “bad”, ambiguous model. In the rest of the
paper we present concrete examples of actors and models that manipulate these values.

4.2. Actors

An actor is a tuple

A = (I,O, S, s0, F, P,D, T ) (1)
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where I is a set of input variables, O is a set of output variables,12 S is a set of state variables,
s0 ∈ Ŝ is a valuation over S representing the initial state, and F, P,D, T are total functions with
the following types:

F : Ŝ × Î → Ô (2)

P : Ŝ × Î → Ŝ (3)

D : Ŝ × Î → R∞+ (4)

T : Ŝ × Î × R+ → Ŝ (5)

We assume that I,O, S are pair-wise disjoint, i.e., I ∩ O = I ∩ S = O ∩ S = ∅. We use the
terms input, output, state to mean valuations over I,O, S, respectively. For example, x : I → U
is an input, y : O → U is an output, and s : S → U is a state.

Note that any of the sets of variables I,O, S may be empty or infinite. By convention, the set
of valuations over an empty set of variables is a singleton, i.e., a set with a single element that we
will denote ∗. Even if all its sets of variables are finite, an actor need not be finite-state, since its
state space, i.e., Ŝ, can still be infinite. This is because the domains of variables can be infinite.
Similarly, the input and output spaces can be infinite.
F, P,D and T are called the fire, postfire, deadline and time-update functions of A, respec-

tively. F and P are similar to the output and transition functions of a state machine. F produces
an output given a state and an input. P produces a new state, given the same information as F .
D returns a deadline, indicating how much time the actor is willing to let elapse. T updates the
state given information on the actual delay chosen by the environment. Delays and deadlines are
useful to model the semantics of timed actors. Their role should become clear when we explain
timed behaviors below.

4.3. Actor Behaviors

An actor A = (I,O, S, s0, F, P,D, T ) defines a set of behaviors. Our model of behaviors is
inspired from the semantic models of timed or hybrid automata (Alur et al., 1995). A timed
behavior of A is a sequence

s0

x0/y0 // s′0
x′
0/d0 // s1

x1/y1 // s′1
x′
1/d1 // s2

x2/y2 // s′2
x′
2/d2 // · · · (6)

where for all i ∈ N, si, s′i ∈ Ŝ, di ∈ R+, xi ∈ Î , yi ∈ Ô, and

yi = F (si, xi) (7)

s′i = P (si, xi) (8)

di ≤ D(s′i, x
′
i) (9)

si+1 = T (s′i, x
′
i, di) (10)

The intuition is as follows. Suppose that at some point in time, say t ∈ R+, A is at state si.
The environment provides input xi to A and A instantaneously produces output yi using its F

12 In Ptolemy terminology, the term ports is used for input and output variables.
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function, and moves to state s′i using its P function. The environment then proposes to advance
time and “asks” A whether it has any restrictions on the amount of time that may elapse. A
“replies” by returning a deadline D(s′i, x

′
i) on the amount of time that may elapse. To compute

this deadline, A may in general use input value x′i which is provided by the environment. This
value can be viewed as an estimate of the environment of the value of input variables during the
next interval of time. Next, the environment chooses to advance time by some concrete delay di ∈
R+, making sure that di does not violate the deadline provided by A. Finally, the environment
notifies A that it advanced time by di and A updates its state to si+1 accordingly, using its T
function. The new time is t+ di and execution repeats from then on in the same fashion.

It is worth noting that in our model of actors and behaviors, the “interesting points in time”
are determined by the environment, and not the actor. In fact, the actor has no explicit notion of
time (although it can measure time by using state variables, e.g., timers). However, the actor can
impose constraints on the advancement of time using deadlines.

The fact that F, P,D, T are functions makes our actors deterministic. This is done for reasons
of simplicity, and because our main focus is heterogeneity. Non-deterministic actors could be
modeled, however, as deterministic actors using extra input variables.

4.4. Actor Classification and Special Cases

Consider an actor A = (I,O, S, s0, F, P,D, T ).

— A is called a source if it has no input variables, i.e., I = ∅.
— A is called a sink if it has no output variables, i.e., O = ∅.
— A is called stateless if it has no state variables, i.e., S = ∅.
— A is called untimed if D is a constant function that always returns infinity, i.e., for any state

s and input x, D(s, x) =∞. Otherwise A is called timed.
— A is called delay-independent if T leaves the state unchanged, i.e., for any state s, input x,

and delay d, T (s, x, d) = s. Otherwise A is called delay-dependent.
— A is called a dataflow actor if its input and output variables range over streams.

When a set of variables is empty or a function is independent of one or more of its parameters,
the type of the function simplifies, and we accordingly simplify our notation. For instance, if A
is a source then Î is a singleton, therefore, F does not depend on the input. Because of this, we
can assume that F is a function with a simpler type F : Ŝ → Ô and we can write F (s), for state
s. We similarly simplify notation for other special cases of actors. For example, for a stateless
actor, we write F (x), for input x. For an actor that is both stateless and a source, we write F ().
Also note that for a stateless actor functions P and T are trivial: they are the constant functions
that return the unique element ∗, therefore they need not be specified.

4.5. Examples of Atomic Actors

4.5.1. Constant: The Constant actor parameterized by some value α ∈ U is an actor that intu-
itively produces the constant value α every time it is fired. This actor can be modeled as follows:

Constα = (∅, {o}, ∅, ∗, F, P,D, T ) (11)
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where

F () = {o 7→ α} and D() =∞ (12)

F returns the valuation y ∈ {̂o} which assigns α to the unique output variable o. Constα is a
source, and it is also stateless, untimed, and delay-independent.

4.5.2. Identity: The Identity actor simply “copies” its input to its output. This actor can be mod-
eled as follows:

Id = ({v}, {o}, ∅, ∗, F, P,D, T ) (13)

where

F (x) = {o 7→ x(v)} and D(x) =∞ (14)

for any input x.
F returns the valuation y ∈ {̂o} which assigns to the unique output variable o the value x(v)

of the unique input variable v at the input valuation x. Id is a stateless, untimed, and delay-
independent actor.

4.5.3. Adder: The Adder actor intuitively produces a value that corresponds to the sum of its
inputs every time it is fired. This actor can be modeled as follows:

Add = ({v1, v2}, {o}, ∅, ∗, F, P,D, T ) (15)

where

F (x) =

{
{o 7→ (x(v1)⊕ x(v2))} if x(v1) 6= ⊥ and x(v2) 6= ⊥
{o 7→ ⊥} otherwise

(16)

u1 ⊕ u2 =


u1 + u2 if u1 6= absent and u2 6= absent

u1 if u1 6= absent and u2 = absent

u2 if u1 = absent and u2 6= absent

absent if u1 = absent and u2 = absent

(17)

D(x) = ∞ (18)

for any input x. That is, F returns the valuation y ∈ {̂o} which assigns to the unique output
variable o the sum x(v1) + x(v2) of the values of the two input variables v1 and v2, provided
none of these values are unknown (i.e., ⊥), or absent. If any of the input values is unknown, the
output is unknown. If one of the inputs is absent, the output is equal to the other input. If both
inputs are absent, the output is absent.
Add is stateless, untimed and delay-independent.

4.5.4. Logical-and: The And actor intuitively produces a value that corresponds to the logical-
and (conjunction) of its inputs every time it is fired. This actor can be modeled as follows:

And = ({v1, v2}, {o}, ∅, ∗, F, P,D, T ) (19)
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where

F (x) =


{o 7→ false} if x(v1) = false or x(v2) = false

{o 7→ true} if x(v1) = true and x(v2) = true, otherwise:
{o 7→ x(v1)} if x(v2) = absent

{o 7→ x(v2)} if x(v1) = absent

{o 7→ ⊥} otherwise

(20)

D(x) = ∞ (21)

for any input x.
Note that And is non-strict in the sense that it returns false if one of its inputs is false , even

if the other input is unknown or absent. This can be useful to “break” input-output dependencies
in feedback loops, as in the model shown in Section 6.1. On the other hand, if one input is true
and the other input is unknown, the result is unknown. Finally, if one input is true and the other
is absent, the result is true .
And is stateless, untimed and delay-independent.

4.5.5. Memory: The Memory actor13 parameterized by some initial value α ∈ U intuitively
stores a value in a slot of memory. It returns the value as an output every time it fires and updates
it every time it postfires. This actor can be modeled as follows:

Memα = ({v}, {o}, {m}, s0, F, P,D, T ) (22)

where

s0 = {m 7→ α} (23)

F (s, x) = {o 7→ s(m)} (24)

P (s, x) = {m 7→ x(v)} (25)

D(s, x) = ∞ (26)

T (s, x, d) = s (27)

for any state s, input x and delay d ∈ R+. Memα is untimed and delay-independent.

4.5.6. Discrete Clock: The Discrete Clock actor parameterized by some value α ∈ U and some
period π ∈ R+ intuitively produces an event with value α every π time units. This actor can be
modeled as follows:

Clkα,π = (∅, {o}, {c}, s0, F, P,D, T ) (28)

13 This actor is called Sample Delay in Ptolemy. We prefer to use the term Memory to distinguish it from the
Constant Delay actor.
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where

s0 = {c 7→ 0} (29)

F (s) =

{
{o 7→ α} if s(c) = 0

{o 7→ absent} otherwise
(30)

P (s) =

{
{c 7→ π} if s(c) = 0

{c 7→ s(c)} otherwise
(31)

D(s) = s(c) (32)

T (s, d) = {c 7→
(
s(c)− d

)
} (33)

for any state s, and delay d ∈ R+ such that d ≤ D(s).

Clkα,π has a single state variable c, which is a timer. When the actor is fired, it produces an
output event with value α if its timer has expired, that is, has reached the value 0. Otherwise, it
produces an output with the special value absent representing the fact that the output is absent
at this point in time. The state update of Clkα,π works as follows. When the timer c reaches
the value 0 it is reset to π, so that it counts a new period. If c is not yet 0, then its value is
left unchanged, as denoted by the mapping c 7→ s(c). In the above formalization, the timer is
initialized to 0, which means it is initially expired. An alternative could be to initialize the timer
to π which would imply that the timer does not produce a value until the first π time units have
elapsed.

Clkα,π is timed: its deadline function D returns s(c), the current value of c. This imposes
constraints on the environment which calls the functions of Clkα,π on the times at which these
functions may be called (Section 4.3). Clkα,π is delay-dependent: its time-update function T
decrements the timer by the amount of time d that the environment chooses to let elapse. Notice
that d ≤ D(s) implies d ≤ s(c), therefore, the new value of the timer, s(c) − d, is guaranteed
to be non-negative. Also note that the condition d ≤ D(s) is ensured by the rules defining actor
behaviors (Section 4.3).

4.5.7. Constant Delay: The Constant Delay actor parameterized by a delay ∆ ∈ R+ intuitively
delays each input event by ∆ time units. This actor can be modeled as follows:

Del∆ = ({v}, {o}, {Active}, s0, F, P,D, T ) (34)

where Active is a state variable: Active is a FIFO (first-in first-out) queue of tuples of the form
(α, d) ∈ U × [0,∆]. Tuple (α, d) represents the fact that the actor must “remember” to produce
an event with value α in d time units. Let [] denote the empty queue, head(q) denote the head of
a queue q, and tail(q) its tail. Let q · e denote the queue obtained by appending element e at the
end of q. Finally, for d′ ∈ R+, let q 	 d′ denote the queue obtained by replacing each element
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(α, d) of q by (α, d− d′). Then, we have:

s0 = {Active 7→ []} (35)

F (s, x) =

{
{o 7→ α} if s(Active) 6= [] and head(s(Active)) = (α, 0)

{o 7→ absent} otherwise
(36)

P (s, x) =

{
{Active 7→

(
A′ · (α,∆)

)
} if x(v) = α and α 6= absent

{Active 7→ A′} otherwise
(37)

A′ =

{
tail(s(Active)) if s(Active) 6= [] and head(s(Active)) = (α, 0)

s(Active) otherwise
(38)

D(s, x) =

{
d if s(Active) 6= [] and head(s(Active)) = (α, d)

∞ otherwise
(39)

T (s, x, d) = {Active 7→
(
s(Active)	 d

)
} (40)

for any state s, input x, and delay d ∈ R+ such that d ≤ D(s, x).
The intuition is as follows: s0 initializes Active to the empty queue. F produces an event with

value α at the output if the head of the queue reads (α, 0), which means it is time to produce
such an event, otherwise the event with absent value is produced. P updates the queue by first
removing its head in the case where a non-absent event is produced, and then appending a new
element (α,∆) at the end of the queue, if a non-absent input is received. A′ is an intermediate
variable denoting the queue obtained after potentially removing the head of Active.

The deadline function D returns the delay of the head of Active if the queue is non-empty, and
∞ otherwise. Note that the fact that the delay ∆ is constant ensures that elements in Active are
always ordered with respect to their delay field. This ensures that the head of the queue has the
smallest delay. The time-update function T decrements all delays in the queue by the delay d′

chosen by the environment.
Del∆ is timed and delay-dependent.

4.5.8. Sinusoid: The sinusoid actor generates a continuous sinusoidal signal parameterized by
frequency ω ∈ R, amplitude α ∈ R, and phase offset φ ∈ R. The sinusoid actor has a single
state variable r representing the current phase of sinusoid generated, which is updated by the
time-update function. The signal generated follows the function α sin(ωr + φ).

Sinω,α,φ = (∅, {o}, {r}, s0, F, P,D, T ) (41)

where

s0 = {r 7→ 0} (42)

F (s) = {o 7→ α · sin(ω · s(r) + φ)} (43)

P (s) = s (44)

D(s) = ∞ (45)

T (s, d) = {r 7→ s(r) + d} (46)

for any state s and delay d ∈ R+.
Sinω,α,φ is a source, untimed but delay-dependent actor.
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4.5.9. Integrator: The Integrator actor Integratorα, parameterized by initial value α ∈ R+, is
used by the CT director (Section 6.3) to perform integration. Integratorα is in fact identical to
Memα. However, we use a special name as a syntactic mechanism that permits the CT director
to identify the integrator actors in a given model.

It may appear surprising that Integrators are nothing else but memories, but this is the case for
numerical solvers of Runge-Kutta type (see Section 6.3). Integrators would be less trivial under
a different solver, for instance, a fixed-step Euler solver. In that case, Integrators can be defined
to perform the integration, at the same time eliminating the need for a special CT director: in the
case of Euler integration, the DE director is sufficient.

4.5.10. Upsampling and Downsampling: Ptolemy’s library of atomic actors contains a number
of actors that can be called dataflow actors, in the sense that they operate on streams of values.
A stream is a finite or infinite sequence of values. The elements of a stream are called tokens.
Dataflow actors are useful in domains such as PN (Process Networks) where communication hap-
pens using FIFO (first-in, first-out) queues of unbounded size. We illustrate how data actors can
be modeled in our framework by considering first two static dataflow (also called synchronous
dataflow or SDF) actors (Lee and Messerschmitt, 1987).

The Upsampling actor parameterized by a constant k ∈ N copies each token it receives at its
input n times at its output. This actor can be modeled as follows:

Upn = ({p}, {q}, ∅, ∗, F, P,D, T ) (47)

where the values of variables p, q are streams.
If α is a value, αn denotes the stream of length n consisting of n consecutive copies of α.

Then, the F and D functions of Upn can be defined as follows:14

F (x) =

{
{q 7→ head(x(p))n · F (x′)} if x(p) 6= [], where x′(p) = tail(x(p))

{q 7→ []} otherwise
(48)

D(x) = ∞ (49)

for any input x. Upn is stateless, untimed and delay-independent.
We can similarly define the Downsampling actor parameterized by a constant n ∈ N, which

repeatedly consumes a stream of n consecutive tokens at its input and returns the first of these
tokens at its output. This actor can be modeled as follows:

Downn = ({p}, {q}, ∅, ∗, F, P,D, T ) (50)

Let |ρ| denote the length of a stream ρ. If ρ is infinite then |ρ| = ∞. If |ρ| ≥ k then let ρ(k..)

denote the substring obtained from ρ by removing the first k elements of ρ. Then:

F (x) =

{
{q 7→ head(x(p)) · F (x′)} if |x(p)| ≥ n, where x′(p) = (x(p))(n..)

{q 7→ []} otherwise
(51)

D(x) = ∞ (52)

for any input x. Downn is stateless, untimed and delay-independent.

14 we use a recursive definition for F as it is easier to express, and can also be directly mapped into an implementation
in a functional programming language such as Haskell
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4.5.11. Switch and Select: Upn and Downn are SDF actors. We now describe Switch and Select
which are dynamic dataflow actors, in the sense that the number of tokens the consume or produce
is not fixed and can vary from one firing to the next (Buck, 1993).

The Switch actor has a data input queue, a control input queue, and two data output queues.
The control input queue carries boolean tokens. Switch uses each control token to choose in
which of the two output queues to “route” the token it receives from the (single) input queue.
This actor can be modeled as follows:

Switch = ({p, pc}, {q1, q2}, ∅, ∗, F, P,D, T ) (53)

where:

F (x) =



{(q1, q2) 7→
(
head(x(p)), []

)
· F (x′)},

if x(p) 6= [] and x(pc) 6= [] and head(x(pc)) = true,

where x′(p) = tail(x(p)) and x′(pc) = tail(x(pc))

{(q1, q2) 7→
(
[], head(x(p))

)
· F (x′)},

if x(p) 6= [] and x(pc) 6= [] and head(x(pc)) = false,

where x′(p) = tail(x(p)) and x′(pc) = tail(x(pc))

{(q1, q2) 7→ ([], [])}, otherwise

(54)

D(x) = ∞ (55)

for any input x.
The Select actor is in some sense the “dual” of Switch. Select has two data input queues, a

control input queue and a data output queue. It uses each control token to select which of the two
input queues to read from, and copies the corresponding input token to its output queue. This
actor can be modeled as follows:

Select = ({p1, p2, pc}, {q}, ∅, ∗, F, P,D, T ) (56)

where:

F (x) =


{q 7→ head(x(p1)) · F (x′)} if x(pc) 6= [] and head(x(pc)) = true and x(p1) 6= [],

where x′(pc) = tail(x(pc)), x
′(p1) = tail(x(p1)), x′(p2) = x(p2),

{q 7→ head(x(p2)) · F (x′)} if x(pc) 6= [] and head(x(pc)) = false and x(p2) 6= [],

where x′(pc) = tail(x(pc)), x
′(p2) = tail(x(p2)), x′(p1) = x(p1),

{q 7→ []} otherwise
D(x) =∞

for any input x.
The output variables n, kc, k1 and k2 of Switch and Select capture the number of tokens con-

sumed at a given firing from each of the input queues of these actors.
Both Switch and Select are stateless, untimed and delay-independent actors.

4.5.12. Extended State Machines: User-defined extended state machines (ESMs) can be natu-
rally modeled as actors. ESMs are useful to capture various types of behaviors, and they are also
part of the syntax used to describe modal models: a modal model is an ESM whose locations are
refined into other composite actors (see Section 5.2).

An ESM naturally defines an actor A = (I,O, S, s0, F, P,D, T ) as follows. I is the set of
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input ports and O the set of output ports that the ESM may use. S includes all state variables
(i.e., dynamic parameters) of the ESM, plus a variable ranging over the set of locations of the
ESM. s0 initializes the parameters to their default value provided by the user, and the location
variable to the initial location, also specified by the user. To compute F and P , an outgoing
transition from the current location specified by s is chosen15 such that the transition is enabled,
that is, its guard evaluates to true , on s and x. F and P are then defined by the output and
set actions, respectively, of the chosen transition. Output variables that are not mentioned in the
output action are implicitly set to absent, while state variables not mentioned in the set action are
implicitly left unchanged. If no transition is enabled, this corresponds to a self-loop transition
which leaves the state unmodified and sets all outputs to absent. D always returns ∞ and T
leaves the state unchanged. Thus, A is untimed and delay-independent.

We do not formalize the above intuitive semantics of ESMs, as they are standard in the litera-
ture.

5. Actor Diagrams

As mentioned earlier, actors in Ptolemy can be connected to form diagrams, which can in turn be
encapsulated into composite actors. For most composite actors, actor diagrams follow a block-
diagram notation. That is, they are formed by instantiating actors and connecting output ports
of an actor into input ports of another actor. The top-level diagram of the model of Figure 3
follows this block-diagram notation. Another example is the model of Figure 5. A different type
of actor diagram is used in the case of modal models, where the composite actor is defined by
an ESM whose locations contain other diagrams. An example is the ModalModel actor shown
in Figure 3. In this section we show how these two types of actor diagrams are formalized in our
framework.

5.1. Block Diagrams

We will formalize the structure of the first type of composite actors, namely, block-diagram
composite actors, as a set of actors where variables that have the same name are implicitly con-
nected. More precisely, we define a block diagram to be a set of actors H = {A1, ..., An}, with
Ai = (Ii, Oi, Si, s0,i, Fi, Pi, Di, Ti), such that

— All Ii are pair-wise disjoint, i.e., for i, j ∈ {1, ..., n}, if i 6= j then Ii ∩ Ij = ∅.
— All Oi are pair-wise disjoint.
— All Si are pair-wise disjoint.

When multiple actors are instances of the same actor, the above disjointness requirements are
achieved by appropriate renaming. For example, ifH contains two Const actors, say,A3 andA5,
their output variables are renamed o3 and o5. On the other hand, we allow two sets Ii and Oj
not to be disjoint, so that if v ∈ Ii ∩Oj then this means that the output variable v of actor Aj is
connected to the input variable with the same name of actor Ai.

15 In Ptolemy, if more than one outgoing transitions are enabled then one is chosen non-deterministically. As stated
earlier we consider here only deterministic actors for simplicity. This results in no loss of expressiveness as non-
deterministic actors can be modeled as deterministic actors using extra input variables.
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Fan-out, where an output variable o of some actor is connected to the input variables v1, v2, ...

of multiple actors, is modeled by adding an explicit actor Fanout with input o and outputs
v1, v2, .... Fanout is a stateless actor that “copies” its input to all its outputs every time it fires.

Feedback loops can be formed by connecting an output variable of an actor to one of its input
variables. However, since in order to avoid confusion we assume that input and output variables
are disjoint, we model feedback by including an additional Id actor in the connection.

5.2. Modal Model Diagrams

The structure of the second type of composite actors, namely, modal-models, is formalized
as a modal-model diagram, namely, a set of actors M = {Ac, A1, ..., An}, with Ac =

(Ic, Oc, Sc, s0,c, Fc, Pc, Dc, Tc), and Ai = (Ii, Oi, Si, s0,i, Fi, Pi, Di, Ti), such that

— Ac is an ESM actor, called the controller of the modal model. Ac must have exactly n loca-
tions denoted `1, ..., `n. Location `i of Ac is refined into actor Ai.

— All actors in M have the same sets of input and output variables, that is, Ic = I1 = · · · = In
and Oc = O1 = · · · = On.

— All Si are pair-wise disjoint.

In Ptolemy it is possible that some locations have no refinement. We model this as follows.
Let `i be such a location. We then define Ai to be the stateless, untimed and delay-independent
actor with input variables Ic and output variables Oc such that Fi assigns all output variables to
absent.

6. Directors

In Ptolemy, models of computation (also called domains) are implemented by directors. Directors
“tell actors what to do”. In particular, they choose when to call the different functions of the
actor interface and they also manage the data exchanges between the actors. Therefore, directors
implement the model of concurrency and communication.

We formalize directors as composition operators. Specifically, a director takes as input an actor
diagram (which can be either a block-diagram or a modal-model diagram) and returns an actor
A as output. A is a composite actor, but has the same interface as an atomic actor, therefore, can
be used in further compositions.

In the rest of the paper we define the directors for various domains of Ptolemy.

6.1. Synchronous-Reactive (SR)

The SR domain covers a broad class of models that use the synchronous model of computation.
The latter is suitable for modeling a wide variety of systems, from digital circuits to embedded
control software.

Let H = {A1, ..., An} be a block diagram, with Ai = (Ii, Oi, Si, s0,i, Fi, Pi, Di, Ti), for
i = 1, ..., n. H can be composed using the SR director provided every actor Ai is untimed and
delay-independent. Then, the SR composite actor is defined to be the actor

SR(H) = (I,O, S, s0, F, P,D, T )
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where:

V =

n⋃
i=1

Oi (57)

I =

n⋃
i=1

Ii \ V (58)

O = V \
n⋃
i=1

Ii (59)

S =

n⋃
i=1

Si (60)

s0 = (s0,1, ..., s0,n) (61)

V is intermediate notation for the set of all output variables of all actors in H . The set of input
variables I of the composite actor SR(H) is the set of all input variables of actors in H that
are not connected to an output variable, i.e., that are not in V . The set of output variables O of
SR(H) is defined to be the set of all output variables V minus those variables that are connected
to an input variable.16

We proceed to define the functions F, P,D, T of SR(H). Let s = (s1, ..., sn) ∈ Ŝ be a state
and x ∈ Î be an input of SR(H), where si ∈ Ŝi, for i = 1, ..., n. We define the function

F̃s,x : V̂ → V̂ (62)

such that, for y ∈ V̂ and o ∈ Oj , for some j ∈ {1, ..., n}, we have(
F̃s,x(y)

)
(o) = Fj

(
sj , (x, y) �Ij

)
(o) (63)

Recall that (x, y) �Ij denotes the restriction of (x, y) to variables in Ij and (x, y) is the combined
valuation composed of x and y. The above definition states that, to compute the value of a given
output variable o of Aj , function F̃s,x uses the fire function of Aj , i.e., Fj . This function takes as
inputs the local state sj of Aj , and the local input of Aj , which is precisely (x, y) �Ij .

The semantics of SR(H) is defined provided F̃s,x is a continuous function over a certain
CPO, for any s and x. In Ptolemy this is usually ensured as follows: First, the fire function of
every atomic actor is designed so that it is monotonic over the “flat” CPO that consists of the
minimal element ⊥ and all other elements in U being greater than ⊥ in the CPO order: this
CPO is illustrated in Figure 4. Second, the fact that monotonicity implies continuity for flat
CPOs. Third, the fact that Cartesian products of CPOs are CPOs, and composing corresponding
continuous functions over such CPOs yields a continuous function over the product CPO (Davey
and Priestley, 2002).

A continuous function f over a CPO has a unique least fixpoint, that is, a unique x∗ such that
f(x∗) = x∗ and for any other fixpoint x of f , x∗ ≤ x with respect to the order≤ of the CPO. Let

16 We could also define O to be equal to V . We opt not to do so, as we should then also introduce a hiding operator that
removes some unnecessary outputs. The definition we use results in this hiding happening by default to all connected
outputs. This results in no loss of generality, as we can always add explicit actors that copy the outputs that we do not
wish to hide.
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⊥

1 2 · · ·0absent

Fig. 4. The flat CPO used to ensure existence of a unique least fixpoint that defines the
semantics of SR, DE and CT.

y∗s,x be the unique least fixpoint of F̃s,x. Note that y∗s,x is a valuation over V , that is, it assigns a
value to every output variable of each actor Ai of H . We then define:

F (s, x) = y∗s,x �O (64)

P (s, x) =
(
P1

(
s1, (x, y

∗
s,x) �I1

)
, ..., Pn

(
sn, (x, y

∗
s,x) �In

))
(65)

Note that in the case of flat CPOs the fixpoint y∗s,x can be computed effectively in a finite
number of iterations. Indeed, y∗s,x is equal to the limit limn→∞ F̃ns,x(⊥), where F̃ 0

s,x(⊥) = ⊥
and F̃n+1

s,x (a) = F̃s,x(F̃ns,x(a)) for all a. In the case of a flat CPO this limit can be reached in a
finite number of iterations because the CPO has a finite height and therefore a variable can only
change value at most one time: from⊥ to some value other than⊥. Since the number of variables
is finite, the total number of possible changes is also finite. More “clever” methods to compute
the fixpoint have been studied, for instance, in (Edwards and Lee, 2003). In the special case
where the block diagram H is acyclic (i.e., connections do not form cycles, or these cycles are
“broken” by special actors such as Mem whose outputs do not depend on the current inputs) the
fixpoint can be computed in a single iteration, by firing all actors in H just once, in topological
order according to the diagram dependencies.

Note that the fixpoint y∗s,x may contain absent or unknown values, that is, there may exist
variables to which y∗s,x assigns either absent or ⊥. As mentioned earlier, absent is a perfectly
legal value, just like other values (booleans, integers, etc.) but especially useful in defining actors
in the DE domain. On the other hand, a fixpoint that contains ⊥ values would normally indicate
an erroneous model, whose semantics are ambiguous. An example will be discussed below.

It remains to define functions D and T . There are different options in defining D. One option
is to treat SR(H) as an untimed actor, in which case

D(s, x) = ∞ for any state s and input x. (66)

Another option is to treat SR(H) as a timed actor and have D return a constant value h ∈ R+

provided by the user as a parameter:

D(s, x) = h for any state s and input x. (67)

Both options are available in Ptolemy, and the user can select between the two by configuring
the appropriate parameter of the SR director.

In both cases, T is defined so as to leave the state unchanged:

T (s, x, d) = s for any state s, input x and delay d. (68)

Note that SR(H) is by definition delay-independent.
A simple Ptolemy model that uses the SR director is shown in Figure 5. This model contains
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Fig. 5. An SR model (left) and its output (right).

four actors: Constfalse , And, Display and Fanout. The Fanout actor is denoted by the small
black rhombus. The Display actor merely serves for outputting the results of the Ptolemy simu-
lation on the screen, and does not influence the behavior of the rest of the model. Ignoring the
Display actor, and applying the SR director to the remaining block diagram, we obtain a com-
posite actor with no input variables and a single output variable (one of the outputs of Fan-out).
The composite actor is a stateless, untimed and delay-independent actor that outputs false every
time it is fired. Indeed, during the computation of the fixpoint y∗, the non-strictness of the And

actor (Equation 20) results in its output being computed as false despite the fact that one of its
inputs is ⊥.

To see how some models may be erroneous, consider a slight modification of this model, where
the Constfalse actor is replaced by a Consttrue actor producing a signal with value true instead
of false . In that case, the fixpoint results in the output being ⊥, since the logical and of true and
⊥ is ⊥ (Equation 20). Indeed this is an ambiguous model that could be seen as admitting both
true and false as possible solutions. Instead, our semantics declares the output to be unknown,
as is done in the case of constructive semantics of synchronous languages like Esterel.

6.2. Discrete Event (DE)

In SR the notion of time is not quantitative in the sense that synchronous reactions are simply
ordered as a sequence, but do not necessarily correspond to any “real” notion of time (e.g., in an
implementation, the time that elapses between successive reactions may vary dynamically). The
DE domain aims at capturing systems where a quantitative notion of time is important. Time in
DE models is continuous (the real numbers) but the dynamics of the systems that operate within
this time frame are discrete. We therefore speak of discrete events. DE therefore covers a broad
class of timed systems that follow this discrete behavior, including real-time control systems.

Let H = {A1, ..., An} be a block diagram, with Ai = (Ii, Oi, Si, s0,i, Fi, Pi, Di, Ti), for
i = 1, ..., n. The DE composite actor is defined to be the actor

DE(H) = (I,O, S, s0, F, P,D, T )

where I,O, S, s0, F, P are defined as in the case of SR(H), and D,T are defined as follows:

D(s, x) = min{Di

(
si, (x, y

∗
s,x) �Ii

)
| i = 1, ..., n} (69)

T (s, x, d) =
(
T1

(
s1, (x, y

∗
s,x) �I1 , d

)
, ..., Tn

(
sn, (x, y

∗
s,x) �In , d

))
(70)

for any state s, input x and delay d ∈ R+.

modularSemantics/SRConstructiveFeedback/index.html
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Fig. 6. A DE model (left) and its output (right).

A simple Ptolemy model that uses the DE director is shown in Figure 6. This model contains
four actors: Clk0.5,0.6, Clk0.3,1, Add, and TimedPlotter.17 The TimedPlotter actor serves for
displaying the output of the model resulting from simulation on the screen, and can be ignored
when defining the composite actor. Recall that the first parameter of the Clk actor is the output
value and the second is the period. Therefore, Clk0.5,0.6 denotes a clock that fires every 0.6 time
units and outputs the value 0.5 every time it fires. Similarly, Clk0.3,1 fires every 1 time unit and
outputs 0.3. Ignoring the TimedPlotter actor and applying the DE director to the remaining block
diagram, we obtain a composite actor with no input variables and a single output variable. The
results of firing this composite actor until time 5.0 are shown to the right of Figure 6. Notice that
there are instants when both clock actors produce an event (at times 0.0 and 3.0) in which case
the Add actor produces an output corresponding to the sum of the two values. At other times
(e.g., 0.6, 1, 1.2, and so on) only one clock produces an event, which the Add actor reproduces
at its output.

6.3. Continuous Time (CT)

The CT domain is used for modeling and simulating the broad class of continuous-time systems.
This includes systems modeled by differential equations, with applications in control, mechanics,
biology, and other types of dynamical systems.

Let H = {A1, ..., An} be a block diagram, with Ai = (Ii, Oi, Si, s0,i, Fi, Pi, Di, Ti), for i =

1, ..., n. H may contain integrator actors as defined in Section 4.5.9. We require that H satisfies
the following property: for any actor Ai that has an output which is connected to the input of an
integrator,Ai must produce only numerical values. In particular, it must never produce absent on
that output. This requirement aims to characterize a “continuous” signal in the essentially discrete
computation framework which underlies Ptolemy (as well as most computers). This assumption
is used by numerical integration algorithms which implicitly assume that a signal always has a
numerical value that can be “polled”.

Then, the CT composite actor with parameters initStepSize, maxStepSize and errorTolerance

17 Clock actors in Ptolemy have inputs that we will ignore for the purposes of this paper.

modularSemantics/DEWithAdd/index.html
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is defined to be the actor

CT(H, initStepSize,maxStepSize, errorTolerance) = (I,O, S, s0, F, P,D, T )

where I,O are defined as in the case of SR(H). S and s0 are defined as follows:

S = {stepSize} ∪
n⋃
i=1

Si (71)

s0 = {stepSize 7→ initStepSize} ∪
n⋃
i=1

s0,i (72)

that is, the composite CT actor uses an additional state variable called stepSize, initialized to
initStepSize.

Functions F and P of the composite CT actor do not use nor modify the state variable stepSize
and are otherwise defined as in the case of SR(H).

The deadline and time-update functionsD and T are described in pseudo-code in Procedures 1
and 2. Together with Procedure 3 the three procedures implement a Runge-Kutta 2(3) ODE
solving method. Procedure Runge-Kutta23 performs an integration step, given a state and an
input valuation for the composite actor as well as a step size for the integration. The procedure
returns the set of local truncation errors (LTEs) and the values at the inputs for each of the
integrators after the integration step.

The following notation is used in the procedures: Ix denotes the set of indices of integrator
actors in the block diagram H , i.e., Ix = {i | Ai is an integrator}. I∫ denotes the set of all input
variables of all integrators in H , i.e., I∫ =

⋃
i∈Ix Ii. The state variable of an integrator actor Ai

is denoted mi and its input variable is denoted vi. Notation DE.D and DE.T refers to the D and
T functions of DE(H), respectively. Thus, DE.D(s, x) is the value obtained by evaluating the
right-hand side of (69). Assignment is denoted := and local variables are introduced with let.

Procedure 1 – Function D(s, x) of the CT composite actor.

Input: s ∈ Ŝ, x ∈ Î
Output: h ∈ R+

h := min{s(stepSize),DE.D(s, x)};
loop

(LTEs, _) = Runge-Kutta23(s, x, h);
if max{LTEs(i) | i ∈ Ix} > errorTolerance then
h := h/2;

else
break;

end if
end loop
return h;

The Runge-Kutta procedure roughly works by performing two smaller integration steps at
times 0.5 ·h and 0.75 ·h from the current time. Before each integration the fixpoint y∗ of function
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Procedure 2 – Function T (s, x, d) of the CT composite actor.

Input: s ∈ Ŝ, x ∈ Î , d ∈ R+

Output: s′ ∈ Ŝ
let stepPrediction : Ix→ R+;
(LTEs, z) := Runge-Kutta23(s, x, d);
s′ := DE.T (s, x, d);
for i ∈ Ix do
s′ := {s′ | mi 7→ Pi(s �{mi}, z �{vi})};
stepPrediction(i) := d · (errorTolerance/LTEs(i))

1/3;
end for
s′(stepSize) := min{maxStepSize, stepPrediction(i) | i ∈ Ix};
return s′;

F̃ is computed as in the SR semantics and the value of the state variable m of each integrator in
the model is updated.

The deadline procedure refines the step size of the integration until the local truncation errors
reported for each integrator by the Runge-Kutta procedure are all less than errorTolerance. In
cases where there is no guarantee of convergence, i.e., that the loop of Procedure 1 will terminate,
an additional parameter bounding the number of iterations may be used to enforce termination.

The time-update procedure updates the actor states in two steps. First it runs a time-update
function as defined for the DE director and second it uses the Runge-Kutta procedure to calculate
the inputs of the integrator actors at the end of an integration with a step size d, which is the
amount of time to elapse. For every actor that is not an integrator the new state is equal to the
result of the DE time-update function. For each integrator, the state variable m is updated to
the value of its input after the integration. Finally the state variable stepSize of the director is
updated using a prediction from each integrator for the next integration step size value.

An example of a CT Ptolemy model is shown in Figure 7. This model captures a nonlinear
feedback system that exhibits chaotic behavior, known as a Lorenz attractor. The model contains
three Integratorα actors,18 all with initial state α = 1.0. The model also contains three actors
of type Expression, which can model generic stateless input-output functions. For example,
the actor Expression 1 has two inputs, x1 and x2, and its output is equal to σ · (x2 − x1), where
σ is a parameter set to 10.0 in this model. The outputs of the first two integrators, plotted in 2
dimensions over time, are shown to the right of the figure.

A model that mixes the CT and DE domains is shown in Figure 8. The top-level actor of this
model is a composite DE actor modeling a simple closed-loop control system. The system to be
controlled is a helicopter and the controller is a simple periodic sampling proportional controller.
The top-level actor contains a composite CT actor called Helicopter Model. The internals
of this actor are shown at the bottom-left of the figure and the output of the model at the bottom-
right. The Const0.0 actor specifies the desired state of the plant. As seen from the plot, the plant
converges to that state after about 3 time units.

18 As with Clocks, Integrators in Ptolemy have additional inputs that we will ignore for the purposes of this paper.
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Procedure 3 – Runge-Kutta23(s0, x, h).

Input: s0 ∈ Ŝ, x ∈ Î , h ∈ R+

Output: LTEs : Ix→ R+, z ∈ Î∫
let k0, k1, k2 ∈ Î∫ ;

let s1, s2, s3 ∈ Ŝ;
k0 := (x, y∗s0,x) �I∫ ;
s1 := s0;
for i ∈ Ix do
s1 := {s1 | mi 7→ x(vi) + 1

2 · h · k0(vi)};
end for
k1 := (x, y∗s1,x) �I∫ ;
s2 := s1;
for i ∈ Ix do
s2 := {s2 | mi 7→ x(vi) + 3

4 · h · k1(vi)};
end for
k2 := (x, y∗s2,x) �I∫ ;
s3 := s2;
for i ∈ Ix do
z(vi) := x(vi) + h ·

(
2
9 k0(vi) + 1

3 k1(vi) + 4
9 k2(vi)

)
;

s3 := {s3 | mi 7→ z(vi)};
end for
k3 := (x, y∗s3,x) �I∫ ;
for i ∈ Ix do

LTEs(i) := h ·
(
− 5

72 k0(vi) + 1
12 k1(vi) + 1

9 k2(vi)− 1
8 k3(vi)

)
;

end for
return (LTEs, z);

Most of the actors used in the model of Figure 8 have been defined formally in Section 4.
The Scale actors simply multiply their input by a constant number. The ZeroOrderHold
actor serves to transform the discrete-event input port of Helicopter Model to a
“continuous-time” signal, that is, a signal with no absent values, as required by our CT director.
ZeroOrderHold is essentially the same as the Mem actor (Section 4.5.5) with only difference
on how absent inputs are handled. In Mem, absent is handled like any other value, i.e., it can
be stored in the memory and produced as output. In ZeroOrderHold, only non-absent values
can be stored in memory. Thus, the postfire function of ZeroOrderHold is as follows (contrast
this to Definition (25)):

P (s, x) =

{
{m 7→ x(v)} if x(v) 6= absent

{m 7→ s(m)} otherwise
(73)

The Sampler samples its input at discrete points in time, as provided by the input trigger
of Helicopter Model, which is generated by a periodic clock actor Clk. That is, every time
the Sampler is fired, it checks its trigger input: if the trigger is absent, the output is absent;
otherwise, the output is equal to the input. Sampler is untimed and stateless.
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Fig. 7. A CT model (left) and its output (right).

Fig. 8. A model mixing the DE and CT domains: top-level model (top), internals of the
Helicopter Model composite actor (bottom-left) and output of the model (bottom-right).

6.4. Process Networks (PN)

The PN domain is often used to capture asynchronous distributed systems that communicate
through FIFO queues. In general, in such systems the order of execution of individual actors
(interleaving) influences the results. In the Kahn PN model, however, which we follow here, the
semantics is independent from interleaving. This is a desirable feature as it offers determinism in
the presence of asynchrony.

modularSemantics/CTLorenz/index.html
modularSemantics/DECTController/index.html
modularSemantics/DECTController/index.html
modularSemantics/DECTController/index.html
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Let H = {A1, ..., An} be a block diagram, with Ai = (Ii, Oi, Si, s0,i, Fi, Pi, Di, Ti), for
i = 1, ..., n. H can be composed using the PN director provided every actor Ai is a dataflow,
untimed and delay-independent actor. The fact that Ai is dataflow means that variables in Ii and
Oi range over streams. Then, the PN composite actor is defined to be the actor

PN(H) = (I,O, S, s0, F, P,D, T )

where I,O, S, s0 are defined as in the case of SR(H).
The semantics for PN follows the semantics of Kahn Process Networks (Kahn, 1974). Specifi-

cally, F is defined using a fixpoint semantics similarly to the SR case, but with a major difference:
in the SR case the CPO is the flat CPO shown in Figure 4, whereas in the PN case the CPO is the
set of all (finite or infinite) streams ordered with the prefix order. Stream ρ is a prefix of stream ρ′

iff there exists stream ρ′′ such that ρ′ = ρ · ρ′′, where · denotes stream concatenation. Notice that
ρ′ = ρ · ρ′′ implies that either ρ is finite, or it is infinite in which case ρ′ = ρ and ρ′′ = []. The
least element in the CPO of streams is the empty stream [] (i.e., the sequence of length 0). Actors
are required to be monotonic (in fact, continuous) in this CPO, essentially meaning that longer
input streams can only result in longer output streams. Then, the definitions of F and P for PN
can be given by the same Equations (62)–(65) used for SR, and will therefore not be repeated
here. This definition ensures that continuity is preserved, that is, if all actors Ai are continuous
then so is the resulting composite actor PN(H).

The definition of D for PN can also follow the definition for SR. PN is essentially an un-
timed model of computation, but, like SR, could be given timed semantics for convenience of
embedding it into timed models. The definition of T for PN is also as in SR: PN(H) is a delay-
independent actor, like its sub-actors.

A simple Ptolemy model that uses the PN director is shown in Figure 9. This model contains
five actors: Ramp, AddSubtract, SampleDelay, Display and Fanout. Ramp produces
the infinite stream [1, 2, · · · ]. SampleDelay produces as output the stream it receives as input
prefixed by the element 0. For example, if it receives [1, 2] it produces [0, 1, 2]. AddSubtract
is the extension of Add to streams: it adds streams in an element-wise fashion, up to the length
of the shorter input stream.19

6.5. Modal Models (MM)

Modal models are hierarchical models where the top level model consists of an ESM, the states
of which are refined into other models (possibly from different domains). Modal models are
suitable for a number of applications. They are especially useful in describing event-driven and
modal behavior, where the system’s operation changes dynamically by switching among a finite
set of modes. Such changes may be triggered by user inputs, sensor data, hardware failures, or
other types of events, and are essential in fault management, adaptivity, and reconfigurability

19 In Ptolemy, many actors are polymorphic in the sense that they can operate under different directors and with different
types of inputs and outputs. AddSubtract is such an actor: it can add scalars of numerical type (integers, reals, etc.)
as well as streams. We do not provide a formal treatment of actor polymorphism, as this would involve a more or less
complete type theory for actors, which is beyond the scope of this paper.
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Fig. 9. A PN model (left) and its output (right).

(see, for instance, (Sztipanovits et al., 1993; Simon et al., 2000)). A modal model is an explicit
representation of this type of behaviors and the rules that govern transitions between behaviors.

The syntax of modal models is captured by modal-model diagrams, as described in Section 5.2.
Let M = {Ac, A1, ..., An} be such a diagram, with Ac = (Ic, Oc, Sc, s0,c, Fc, Pc, Dc, Tc), and
Ai = (Ii, Oi, Si, s0,i, Fi, Pi, Di, Ti), for i = 1, ..., n. Recall thatAc is the controller of the modal
model, which is an ESM as described in Section 4.5.12. Let {`1, ..., `n} be the set of locations of
Ac and assume that Ai is the actor refining location `i, for i = 1, ..., n. Recall that by definition
of modal-model diagrams (enforced by Ptolemy’s syntax), we have Ic = I1 = · · · = In and
Oc = O1 = · · · = On. Without loss of generality, we assume that the initial location of Ac is `1
(in Ptolemy, an ESM has a single initial location).

The MM composite actor is defined to be the actor

MM(M) = (I,O, S, s0, F, P,D, T )

where

I = Ic = I1 = · · · = In (74)

O = Oc = O1 = · · · = On (75)

S = Sc ∪ {tr} ∪
n⋃
i=1

Si (76)

s0 = (s0,c, {tr 7→ ⊥}, s0,1, ..., s0,n) (77)

Variable tr is used to “remember” which transition was taken, between the calls of F, P andD,T
(this is necessary, because the state and/or inputs may have changed in the meantime, therefore
also altering the enabledness of transitions). The value of tr can be one of the following:

— ⊥: unknown, initially;
— none: no transition taken;
— preemptive(i, j): preemptive transition taken from `i to `j ;
— nonpreemptive(i, j): nonpreemptive transition taken from `i to `j .

We proceed to define functions F, P,D, T . We first define F and P . Consider a state s ∈ Ŝ
and an input x ∈ Î . Let s = (sc, {tr 7→ α}, s1, ..., sn), with sc ∈ Ŝc and si ∈ Ŝi, for all
i = 1, ..., n. Suppose the location of Ac at sc is `i, for some i ∈ {1, ..., n}.

modularSemantics/PNRampAdd/index.html
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6.5.1. Strict modal models: We will first present a strict interpretation of the semantics of modal
models, where we can assume that the enabledness status of all outgoing transitions from `i
(that is, whether the guard of each transition evaluates to true or false) can be determined. The
enabledness of a transition may not be known due to some inputs being unknown (i.e., ⊥). E.g.,
if x is an input variable and x = ⊥, then the guard x ≥ 0 evaluates to neither true nor false , but
to ⊥. Figure 10 shows an example, which will be discussed later.

In the strict interpretation, if guards are unknown then all outputs can be also set to be ⊥. In
Section 6.5.2 we provide a non-strict interpretation where outputs can be assigned to values other
than unknown, even if some inputs are unknown. This is inspired by non-strict but constructive
semantics, such as those we presented for SR, or those used in Esterel.

For the strict interpretation, we distinguish the following cases:

1 There are no outgoing transitions of Ac from location li that are enabled at s and x. Then:

F (s, x) = Fi(si, x) (78)

P (s, x) = (sc, {tr 7→ none}, s1, ..., si−1, Pi(si, x), si+1, ..., sn) (79)

2 There exists a preemptive outgoing transition from `i to `j that is enabled at s and x. Denote
the output action and set action of this transition by β and γ, respectively. Then:

F (s, x) = β(s, x) (80)

P (s, x) = (s′c, {tr 7→ preemptive(i, j)}, s1, ..., sj−1, s
′
j , sj+1, ..., sn) (81)

where:

(a) β(s, x) denotes the output obtained by applying the output action β to s and x,
(b) s′c is obtained by applying the set action γ to s and x and setting the location of Ac to `j ,
(c) s′j is obtained by applying the set action γ to s and x.

3 There are no preemptive outgoing transitions from `i that are enabled at s and x, but there
exists a non-preemptive outgoing transition from `i to `j that is enabled at s and x. Denote
the output action and set action of this transition by β and γ, respectively. Then:

F (s, x) = β(s, x, Fi(s, x)) (82)

P (s, x) = (s′c, {tr 7→ nonpreemptive(i, j)}, s1, ..., s
′
i, ..., s

′
j , ..., sn) (83)

where:

(a) β(s, x, Fi(s, x)) denotes the output obtained by first computing the output y = Fi(s, x)

and then applying the output action β to y, s and x,
(b) s′c is obtained as in Case 2b,
(c) s′j is obtained as in Case 2c,
(d) s′i is obtained by first computing s′′i = Pi(si, x) and then applying the set action γ to s′′i ,

Item 1 treats the case where no transition of the controller is enabled: in this case, the location
of the controller remains unchanged and the modal model M behaves (i.e., fires and postfires)
like its current refinement Mi.

Item 2 treats the case where preemptive transitions of the controller are enabled (possibly in
addition to non-preemptive transitions). In this case the preemptive transitions preempt the firing
and postfiring of Mi, and the outputs and state updates are produced solely by the output and
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set actions of the transition. We will not define formally the effect of those actions, as they are
standard. Note that the set action γ may reset some state variables of the target refinement Aj
to their initial values. This is done in particular if the transition is a reset transition. Also, γ may
“copy” the value of some other state variable, possibly of another refinement, to a state variable
of the target refinement. In particular, when modeling hybrid systems (Manna and Pnueli, 1992),
the state variables in all refinements are typically the same, i.e., copies of each other. In that case,
when moving from one mode of operation to the next, the state of the system must be preserved.
This can be done with the appropriate set actions.

Item 3 treats the case where only non-preemptive transitions of the controller are enabled. In
this case, before taking such a transition, the current refinement Mi is fired and postfired.

Ptolemy modal models are inspired by formalisms such as Statecharts (Harel, 1987), Es-
terel (Berry, 1996) and SyncCharts (André, 1996), which also include concepts such as preemp-
tive vs. non-preemptive transitions, albeit sometimes using different terminology (for instance,
Esterel uses the terms strong and weak abortion, respectively).

6.5.2. Non-strict modal models: The above completes the description of the semantics for the
case where all outgoing transitions from the current location `i have known enabledness status.
In general, however, a Modal Model may be used in situations where Î and Ô are in spaces that
can include ⊥. Then, the behavior of Modal Models must accomodate the non-strict evaluation
of transition guards. This is the case, for instance, when a Modal Model is a composite inside of
a SR model. The behavior of the Modal Model in an SR model must be defined over partially
determined inputs for a constructive fixed point to be determined. When inputs involve bottom
values, transition guards are lifted into standard non-strict logic where logical connectives are
modeled as is described by the following truth table (the operations are symmetric):

a b ¬b a ∧ b a ∨ b

true true false true true

true ⊥ ⊥ ⊥ true

true false true false true

⊥ ⊥ − ⊥ ⊥
⊥ false − false ⊥

false false − false false

The predicates themselves may vary in their definition over non-strict values depending on
the nature of the predicate. Equality for instance is usually interpreted strictly, such that either
operand being bottom evaluates the predicate to logical bottom. As a consequence of these se-
mantics for the evaluation of guards, given a particular set of inputs, each guard can either be
evaluated to true , false , or ⊥. Given the implicit prioritization of preemptive transitions over
non-preemptive ones, certain additional constraints can be given to predicate the enabling and
disabling of some transitions.

For example, if a preemptive transition is known to be enabled, then the enabledness status of
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nonpreemptive transitions is irrelevant.20 If after these additional constraints are used, only one
transition can be taken, then the transition is taken in the manner described above for the case
where the enabledness status of all transitions is known. Likewise, if no transition can be taken,
then the current refinement is executed and the location does not change, as described above.

However, if there are some transitions the guards of which are ⊥, and hence given more infor-
mation in the input (a monotonic increase in the input domain) one of several transitions can be
taken, the set of possible actions on output signals taking each of these transitions or taking none
of them must be considered. In the circuit-style constructive semantics as described in (Berry,
1996), the presence of a signal cannot be concluded unless it is made present by a totally defined
behavior, but if amongst all determined possible actions an output value is not declared as having
a present value it can be conclusively set to absent.

To make this notion exact, let there be two sets TP and TN representing respectively the pre-
emptive and non-preemptive transitions emanating from the current location `i. For a given set of
transitionsX , let can(X) denote the subset of transitions inX the guards of which evaluate non-
strictly to true or ⊥ (not false). Also, let must(X) be the subset of transitions in X the guards
of which evaluate to true . (Note that by the determinism assumption must(TP ) and must(TN )

are either singletons or empty.) Finally, let there be a special transition ε representing not taking
any actual transition.

The algorithm to determine this non-strict behavior is as follows:

if must(TP ) = {tp} take(tp)

else if can(TP ) = ∅ ∧ must(TN ) = {tn} take(tn)

else if can(TP ) = can(TN ) = ∅ take(ε)

else check(can(TP ) ∪ can(TN ) ∪ {ε})

where take means to take the corresponding transition as described for the strict case (Sec-
tion 6.5.1). The function check takes a set of possible transitions X and checks whether the
actions of those transitions can declare present values on the outputs. An output is determined to
be absent if no such declarations can be found; otherwise, the output is set to ⊥. It is beyond the
scope of this paper to provide a complete definition of check, as this involves static analysis of
the action language of Ptolemy, the details of which have been omitted. Instead, we illustrate the
behavior of check in the example that follows.

Figure 10 shows a simple model that can be interpreted under these non-strict semantics. At
State 1, the guards of both non-preemptive outgoing transition express the predicates x = absent

and ¬(x = absent). If the input variable x is valued at ⊥, under the non-strict logic given
above both predicates will evaluate to ⊥. Intuitively, this means either of the transitions might
be enabled given more information about x. Since both predicates evaluate to ⊥ and there are
no preemptive transitions, can(TP ) = must(TP ) = must(TN ) = ∅, and can(TN ) contains
both transitions. This means that the output y must be determined by function check applied on
these two transitions. Assuming that the refinements of both locations are empty, i.e., that this
modal model is simply an ESM, check can “safely” conclude that y is absent. This is because
the actions associated with both transitions emanating from State 1 are empty.

20 Note that the case where more than one transitions are enabled is excluded by our determinism assumption. Therefore,
if one preemptive transition is known to be enabled, the rest must be disabled.
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Fig. 10. A model that under the non-strict interpretation, given unknown input x =⊥,
concludes that output y = absent from State 1, but y =⊥ from State 2.

The situation is similar at State 2. Again, can(TP ) = must(TP ) = must(TN ) = ∅, and
can(TN ) contains both transitions emanating from State 2. Again, check must be used to deter-
mine the value of the output y. In this case, however, and despite the fact that y is set to true

in both transitions emanating from State 2, check concludes that y = ⊥, which implies that this
model has ambiguous semantics. This model exemplifies the biasing of output values to absent,
in accordance with a constructive interpretation such as the one of (Berry, 1996).

6.5.3. Deadline and time-update functions for modal models: We now defineD and T . Consider
a state s ∈ Ŝ, an input x ∈ Î and a delay d ∈ R+. Let s = (sc, {tr 7→ α}, s1, ..., sn), with
sc ∈ Ŝc and si ∈ Ŝi, for all i = 1, ..., n. We distinguish cases:

1 α = none. Suppose the location of Ac at sc is `i, for some i ∈ {1, ..., n}. Then:

D(s, x) = Di(si, x) (84)

T (s, x, d) = (sc, {tr 7→ ⊥}, s1, ..., si−1, Ti(si, x, d), si+1, ..., sn) (85)

2 α = preemptive(i, j). Then:

D(s, x) = Dj(sj , x) (86)

T (s, x, d) = (sc, {tr 7→ ⊥}, s1, ..., sj−1, Tj(sj , x, d), sj+1, ..., sn) (87)

3 α = nonpreemptive(i, j). Then D and T are defined as in (86) and (87).

In Case 1 no transition was taken during fire and postfire, and the deadline and time-update
are determined by the current refinement Ai. In Case 2, where a preemptive transition was taken,
the deadline and time-update are determined by the target refinement Aj . The same holds when
a non-preemptive transition was taken (Case 3).

6.5.4. Examples: We illustrate modal models with the example of Figure 3. This is a timed
modal model, in the sense that the top level actor and the refinements of the ModalModel actor
are DE models. The ModalModel actor switches between two modes every 2.5 time units,
according to the events it receives by the outermost DiscreteClock. In the regular mode
it generates a regularly-spaced clock signal with period 1.0 and value 1. In the irregular
mode, it generates pseudo-randomly spaced events using a PoissonClock actor with a mean
time between events set to 1.0 and value set to 2. The result of a typical run is plotted in Figure 11,
with a shaded background showing the times over which it is in the two modes. A variant of the
same model is shown in Figure 12, the difference being that the transition from regular to

modularSemantics/FSMInFeedback/index.html
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Fig. 11. A plot of the output from one run of the model in Figure 3.
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Fig. 12. A variant of Figure 3 where a preemptive transition prevents the initial firing of
the innermost DiscreteClock actor of that model.

irregular is now preemptive. A number of observations worth making arise from the two
plots:

First, note that two events are generated at time 0, a first event with value 1, and a second event
with value 2. The first event is produced by (the innermost) DiscreteClock, according to the
semantic rules of Case 3a. If we had instead used a preemptive transition, as shown in Figure 12,
then that first output event would not appear: this is according to the semantic rules of Case 2a
and the fact that the transitions of this model contain no output or set actions.

In both cases (non-preemptive and preemptive transition), the event at time 0 with value 2 is
produced by PoissonClock, according to the fire and postfire semantic rules, Case 1. The
reason why this event occurs at time 0, even in the variant of the model with the non-preemptive
transition, is the rule for determining the deadline in a modal model (Cases 2 and 3). When
the model is initialized, the timer of PoissonClock is set to zero. In both non-preemptive
and preemptive cases, the irregular location is entered after postfiring the modal model
for the first time. Therefore, the deadline function of the refinement of irregular (i.e., of
PoissonClock) is used to determine the deadline of the modal modal. When the deadline
function of PoissonClock is called at time 0, it returns 0, since the timer of PoissonClock
is 0. This forbids time from advancing until the PoissonClock is fired.

http://ptolemy.eecs.berkeley.edu/ptolemyII/ptII8.0/jnlp-books/doc/books/design/modal/SpontaneousFSM.htm
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Another interesting observation concerns the output events with value 1 occurring at times 3.5,
4.5, 8, and so on, in the plot of Figure 11. These events occur at times during which the model is
at the regular mode. As explained above, the model begins in the regular mode but spends
zero time there, since it immediately transitions to the irregularmode. In the non-preemptive
case, the DiscreteClock is postfired before entering irregular (Case 3d). Hence, the
timer of DiscreteClock has value 1 when irregular is entered. When regular is re-
entered at time 2.5, this timer still has value 1, since it has not been updated in the meantime.
It therefore expires one time unit later, i.e., at time 3.5, which explains the event at that time.
Moreover, the timer is reset to 1 during postfire(). It expires again one time unit later, which
explains the event at time 4.5. Finally, it is reset to 1 at time 4.5, suspended at time 5, and
resumed at time 7.5, which explains the event at time 8.

Consider also the event with value 1 at time 2.5, in the plot of Figure 12. This event is
generated when regular is re-entered at time 2.5. In the case of a preemptive transition,
DiscreteClock has not been postfired at time 0, therefore, its timer has value 0 at time 2.5.
This explains the event at that time.

7. Conclusions and Future Work

This paper proposes a formal semantics for the heterogeneous modeling environment Ptolemy.
The semantics is modular in the sense that it unifies atomic and composite actors within a single
executable interface. Directors, which realize specific models of computation, are composition
operators: they take as input a diagram of actors and return a new (composite) actor. Because
composite actors have the same interface as atomic actors, they can be seen as “black boxes”. This
enables reasoning about a hierarchical model in a modular, actor-by-actor basis, thus minimizing
the complexity that arises from cross-cutting dependencies between levels of the hierarchy.

An implementation of our framework in the functional programming language Haskell is on-
going. Prototype implementations of the SR, DE, CT and PN domains are currently available.
Implementation of MM is under way. Our goal for the Haskell-based implementation is not to
be a replacement for the current Java implementation of Ptolemy (the primary reason being the
better performance of the latter). Instead we intend to use it mainly as a tool for validating the se-
mantics. This validation can be performed by comparing the results of the two implementations
on different models. All the examples described in this paper, with the exception of the example
containing a modal model (Figure 3), have been modeled both in Ptolemy and in the Haskell
implementation, and give equivalent results, modulo minor numerical discrepancies.

Adding more models of computation to the collection presented in this paper is one of the
directions for future work. Another direction is to examine the properties of the directors as
composition operators, for instance, properties related to associativity and commutativity. We
hope that this will lead to a better understanding of the properties of heterogeneous modeling
in general. We also hope that this framework will serve as a starting point for a more in-depth
discussion on how to unify different models of computation (for instance, which are the possible
actor interfaces and what are their relative merits?) as well as how to formally represent them
(e.g., what would be the right language for writing directors?).



S. Tripakis, C. Stergiou, C. Shaver, E. A. Lee 40

References

Aiguier, M., Golden, B., and Krob, D. (2011). Complex Systems Modeling II: A minimalist and unified
semantics for heterogeneous integrated systems. Applied Mathematics and Computation. To appear.

Alur, R., Courcoubetis, C., Halbwachs, N., Henzinger, T. A., Ho, P.-H., Nicollin, X., Olivero, A., Sifakis,
J., and Yovine, S. (1995). The algorithmic analysis of hybrid systems. Theor. Comput. Sci., 138:3–34.

Alur, R. and Dill, D. L. (1994). A theory of timed automata. Theoretical Computer Science, 126(2):183–
235.

André, C. (1996). SyncCharts: A visual representation of reactive behaviors. Technical Report RR 95–52,
rev. RR (96–56), I3S.

André, C. (2003). Semantics of S.S.M (Safe State Machine). Technical report, Esterel Technologies.
Arbab, F. (2004). Reo: A channel-based coordination model for component composition. Mathematical

Structures in Computer Science, 14(3):329–366.
Arnold, A. and Nivat, M. (1980). Metric interpretations of infinite trees and semantics of non deterministic

recursive programs. Fundamenta Informaticae, 11(2):181–205.
Bae, K., Csaba Olveczky, P., Feng, T. H., Lee, E. A., and Tripakis, S. (Accepted for publication, Oct 2010).

Verifying Hierarchical Ptolemy II Discrete-Event Models using Real-Time Maude. Science of Computer
Programming.

Baier, C. and Majster-Cederbaum, M. E. (1994). Denotational semantics in the CPO and metric approach.
Theoretical Computer Science, 135(2):171–220.

Balarin, F., Hsieh, H., Lavagno, L., Passerone, C., Sangiovanni-Vincentelli, A. L., and Watanabe, Y. (2003).
Metropolis: an integrated electronic system design environment. Computer, 36(4).

Basu, A., Bozga, M., and Sifakis, J. (2006). Modeling heterogeneous real-time components in BIP. In
International Conference on Software Engineering and Formal Methods (SEFM), pages 3–12, Pune.

Beeck, M. v. d. (1994). A comparison of Statecharts variants. In Langmaack, H., de Roever, W. P., and
Vytopil, J., editors, 3rd Intl. Symp. Formal Techniques in Real-Time and Fault-Tolerant Systems, volume
863 of LNCS, pages 128–148, Lübeck, Germany. Springer-Verlag.

Benveniste, A. and Berry, G. (1991). The synchronous approach to reactive and real-time systems. Pro-
ceedings of the IEEE, 79(9):1270–1282.

Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Le Guernic, P., and de Simone, R. (2003). The
synchronous languages 12 years later. Proceedings of the IEEE, 91(1):64–83.

Benveniste, A., Caspi, P., Lublinerman, R., and Tripakis, S. (2009). Actors without directors: a Kahnian
view of heterogeneous systems. In Hybrid Systems – Computation and Control (HSCC), volume LNCS.
Springer.

Berry, G. (1996). The Constructive Semantics of Pure Esterel. Book Draft.
Bliudze, S. and Krob, D. (2009). Modelling of complex systems: Systems as dataflow machines. Fundam.

Inf., 91:251–274.
Bliudze, S. and Sifakis, J. (2008a). The algebra of connectors - structuring interaction in bip. IEEE Trans.

Computers, 57(10):1315–1330.
Bliudze, S. and Sifakis, J. (2008b). A notion of glue expressiveness for component-based systems. In van

Breugel, F. and Chechik, M., editors, CONCUR 2008, volume 5201 of LNCS, pages 508–522. Springer.
Boulanger, F., Hardebolle, C., Jacquet, C., and Marcadet, D. (2011). Semantic Adaptation for Models of

Computation. In Proceedings of ACSD 2011 (Application of Concurrency to System Design), pages
153–162. IEEE Computer Society.

Bozga, M., Sfyrla, V., and Sifakis, J. (2009). Modeling synchronous systems in BIP. In Chakraborty, S.
and Halbwachs, N., editors, EMSOFT, pages 77–86. ACM.

Broy, M. and Stolen, K. (2001). Specification and Development of Interactive Systems, volume 62 of
Monographs in Computer Science. Springer.



A Modular Formal Semantics for Ptolemy 41

Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., and Stefani, J.-B. (2006). The FRACTAL component
model and its support in Java. Softw. Pract. Exper., 36:1257–1284.

Buck, J. T. (1993). Scheduling Dynamic Dataflow Graphs with Bounded Memory Using the Token Flow
Model. Ph.d. thesis, University of California, Berkeley.

Buck, J. T., Ha, S., Lee, E. A., and Messerschmitt, D. G. (1994). Ptolemy: A framework for simulating and
prototyping heterogeneous systems. Int. Journal of Computer Simulation, special issue on “Simulation
Software Development”, 4:155–182.

Burch, J. R., Passerone, R., and Sangiovanni-Vincentelli, A. L. (2001). Overcoming heterophobia: Model-
ing concurrency in heterogeneous systems. In International Conference on Application of Concurrency
to System Design, page 13.

Cataldo, A., Lee, E., Liu, X., Matsikoudis, E., and Zheng, H. (2006). A constructive fixed-point theorem
and the feedback semantics of timed systems. In Proceedings of the 8th International Workshop on
Discrete-Event Systems (WODES’06).

Damm, W., Josko, B., Hungar, H., and Pnueli, A. (1998). A Compositional Real-time Semantics of STATE-
MATE Designs. In Compositionality: The Significant Difference, volume 1536 of LNCS, pages 186–238.
Springer.

Davey, B. A. and Priestley, H. A. (2002). Introduction to Lattices and Order. Cambridge University Press,
2nd edition.

Denckla, B. and Mosterman, P. (2008). Stream- and state-based semantics of hierarchy in block diagrams.
In 17th IFAC World Congress, pages 7955–7960.

Dijkstra, E. W. (1976). A Discipline of Programming. Prentice Hall.
Dill, D. L. (1988). Trace theory for automatic hierarchical verification of speed-independent circuits. Ph.d.,

Carnegie-Mellon University.
Edwards, S. A. and Lee, E. A. (2003). The semantics and execution of a synchronous block-diagram

language. Science of Computer Programming, 48(1).
Eker, J., Janneck, J. W., Lee, E. A., Liu, J., Liu, X., Ludvig, J., Neuendorffer, S., Sachs, S., and Xiong, Y.

(2003). Taming heterogeneity—the Ptolemy approach. Proceedings of the IEEE, 91(2):127–144.
Eshuis, R. (2009). Reconciling statechart semantics. Sci. Comput. Program., 74(3):65–99.
Feredj, M., Boulanger, F., and Mbobi, A. M. (2009). A model of domain-polymorph component for hetero-

geneous system design. The Journal of Systems and Software, 82:112–120.
Floyd, R. W. (1967). Assigning meaning to programs. In Proc. of Symposium on Applied Mathematics,

volume 19, pages 19–32. A.M.S.
Geilen, M. and Basten, T. (2003). Requirements on the execution of Kahn process networks. In European

Symposium on Programming Languages and Systems, LNCS, pages 319–334. Springer.
Geilen, M. and Basten, T. (2004). Reactive process networks. In 4th ACM international conference on

Embedded Software, EMSOFT ’04, pages 137–146. ACM.
Goderis, A., Brooks, C., Altintas, I., Lee, E. A., and Goble, C. (2009). Heterogeneous composition of

models of computation. Future Generation Computer Systems, 25(5):552 – 560.
Goessler, G. and Sangiovanni-Vincentelli, A. (2002). Compositional modeling in Metropolis. In Second

International Workshop on Embedded Software (EMSOFT), Grenoble, France. Springer-Verlag.
Graf, S., Ober, I., and Ober, I. (2006). A real-time profile for UML. Soft. Tools Tech. Transfer, 8(2):113–127.
Gurevich, Y. (1993). Evolving algebras: An attempt to discover semantics. In Rozenberg, G. and Salomaa,

A., editors, Current Trends in Theoretical Computer Science, pages 266–292. World Scientific.
Halbwachs, N., Caspi, P., Raymond, P., and Pilaud, D. (1991). The synchronous data flow programming

language LUSTRE. Proceedings of the IEEE, 79(9):1305–1319.
Hamon, G. (2005). A denotational semantics for stateflow. In EMSOFT ’05: Proceedings of the 5th ACM

international conference on Embedded software, pages 164–172, New York, NY, USA. ACM.



S. Tripakis, C. Stergiou, C. Shaver, E. A. Lee 42

Hamon, G. and Rushby, J. (2004). An operational semantics for Stateflow. In Fundamental Approaches to
Software Engineering (FASE), volume 2984 of LNCS, pages 229–243, Barcelona, Spain. Springer.

Hardebolle, C., Boulanger, F., Marcadet, D., and Vidal-Naquet, G. (2007). A generic execution frame-
work for models of computation. In Proceedings of the Fourth International Workshop on Model-Based
Methodologies for Pervasive and Embedded Software, MOMPES ’07, pages 45–54, Washington, DC,
USA. IEEE Computer Society.

Harel, D. (1987). Statecharts: A visual formalism for complex systems. Science of Computer Programming,
8:231–274.

Herrera, F. and Villar, E. (2006). A framework for embedded system specification under different models
of computation in SystemC. In Design Automation Conference (DAC), San Francisco. ACM.

Jantsch, A. (2003). Modeling Embedded Systems and SoCs - Concurrency and Time in Models of Compu-
tation. Morgan Kaufmann.

Kahn, G. (1974). The semantics of a simple language for parallel programming. In Proc. of the IFIP
Congress 74. North-Holland Publishing Co.

Karsai, G. (1995). A configurable visual programming environment: A tool for domain-specific program-
ming. IEEE Computer, pages 36–44.

Kohavi, Z. (1978). Switching and finite automata theory. McGraw-Hill.
Ledeczi, A., Bakay, A., Maroti, M., Volgyesi, P., Nordstrom, G., Sprinkle, J., and Karsai, G. (2001). Com-

posing domain-specific design environments. IEEE Computer, pages 44–51.
Lee, E. A. (1999). Modeling concurrent real-time processes using discrete events. Annals of Software

Engineering, 7:25–45.
Lee, E. A. (2009). Finite State Machines and Modal Models in Ptolemy II. Technical Report UCB/EECS-

2009-151, EECS Department, University of California, Berkeley.
Lee, E. A. (2010). Disciplined heterogeneous modeling. In D.C. Petriu, N. Rouquette, O. H., editor,

Proceedings of the ACM/IEEE 13th International Conference on Model Driven Engineering, Languages,
and Systems (MODELS), pages 273–287. IEEE.

Lee, E. A. and Matsikoudis, E. (2009). The semantics of dataflow with firing. In Huet, G., Plotkin, G.,
Lévy, J.-J., and Bertot, Y., editors, From Semantics to Computer Science: Essays in memory of Gilles
Kahn. Cambridge University Press.

Lee, E. A. and Messerschmitt, D. G. (1987). Synchronous data flow. Proceedings of the IEEE, 75(9):1235–
1245.

Lee, E. A. and Parks, T. M. (1995). Dataflow process networks. Proceedings of the IEEE, 83(5):773–801.
Lee, E. A. and Sangiovanni-Vincentelli, A. (1998). A framework for comparing models of computation.

IEEE Transactions on Computer-Aided Design of Circuits and Systems, 17(12):1217–1229.
Lee, E. A. and Tripakis, S. (2010). Modal Models in Ptolemy. In EOOLT 2010 – 3rd International Workshop

on Equation-Based Object-Oriented Modeling Languages and Tools. Linköping University Electronic
Press.

Lee, E. A. and Zheng, H. (2005). Operational semantics of hybrid systems. In Morari, M. and Thiele,
L., editors, Hybrid Systems: Computation and Control (HSCC), volume LNCS 3414, pages pp. 25–53,
Zurich, Switzerland. Springer-Verlag.

Lee, E. A. and Zheng, H. (2007). Leveraging synchronous language principles for heterogeneous modeling
and design of embedded systems. In EMSOFT, Salzburg, Austria. ACM.

Liu, J. and Lee, E. A. (2003). On the causality of mixed-signal and hybrid models. In 6th International
Workshop on Hybrid Systems: Computation and Control (HSCC ’03), Prague, Czech Republic.

Liu, X. and Lee, E. A. (2008). CPO semantics of timed interactive actor networks. Theoretical Computer
Science, 409(1):110–125.

Liu, X., Matsikoudis, E., and Lee, E. A. (2006). Modeling timed concurrent systems. In CONCUR 2006 -
Concurrency Theory, volume LNCS 4137, Bonn, Germany. Springer.



A Modular Formal Semantics for Ptolemy 43

Lublinerman, R., Szegedy, C., and Tripakis, S. (2009). Modular Code Generation from Synchronous Block
Diagrams – Modularity vs. Code Size. In 36th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages (POPL’09), pages 78–89. ACM.

Malik, S. (1994). Analysis of cyclic combinational circuits. IEEE Trans. Computer-Aided Design,
13(7):950–956.

Manna, Z. and Pnueli, A. (1992). Verifying hybrid systems. Hybrid Systems, pages 4–35.
Maraninchi, F. and Bhouhadiba, T. (2007). 42: Programmable models of computation for a component-

based approach to heterogeneous embedded systems. In 6th ACM International Conference on Genera-
tive Programming and Component Engineering (GPCE), pages 1–3, Salzburg, Austria.

Maraninchi, F. and Rémond, Y. (2003). Mode-automata: a new domain-specific construct for the develop-
ment of safe critical systems. Sci. Comput. Program., 46:219–254.

Meyer, B. (1992). Applying "design by contract". Computer, 25(10):40–51.
Nordstrom, G., Sztipanovits, J., Karsai, G., and Ledeczi, A. (1999). Metamodeling - rapid design and

evolution of domain-specific modeling environments. In Proc. of Conf. on Engineering of Computer
Based Systems (ECBS), pages 68–74, Nashville, Tennessee.

Patel, H. D. and Shukla, S. K. (2004). SystemC Kernel Extensions for Heterogeneous System Modelling.
Kluwer.

Reed, G. M. and Roscoe, A. W. (1988). Metric spaces as models for real-time concurrency. In 3rd Workshop
on Mathematical Foundations of Programming Language Semantics, pages 331–343, London, UK.

Sander, I. and Jantsch, A. (2004). System modeling and transformational design refinement in ForSyDe.
IEEE Transactions on Computer-Aided Design of Circuits and Systems, 23(1):17–32.

Scaife, N., Sofronis, C., Caspi, P., Tripakis, S., and Maraninchi, F. (2004). Defining and Translating a
“Safe” Subset of Simulink/Stateflow into Lustre. In Proceedings of the 4th ACM Intl. Conf. on Embedded
Software (EMSOFT’04), pages 259–268. ACM.

Shiple, T., Berry, G., and Touati, H. (1996). Constructive analysis of cyclic circuits. In European Design
and Test Conference (EDTC’96). IEEE Computer Society.

Sifakis, J. (1977). Use of petri nets for performance evaluation. In Measuring, modelling and evaluating
computer systems, pages 75–93. North-Holland.

Simon, G., Kovácsházy, T., and Péceli, G. (2000). Transient management in reconfigurable systems. In
IWSAS’ 2000: Proc. 1st Intl. Workshop on Self-Adaptive Software, pages 90–98, Secaucus, NJ, USA.
Springer.

Sztipanovits, J., Wilkes, D., Karsai, G., Biegl, C., and Lynd, L. (1993). The multigraph and structural
adaptivity. IEEE Trans. Signal Proc., pages 2695–2716.

Tripakis, S., Bui, D., Geilen, M., Rodiers, B., and Lee, E. A. (Accepted for publication, Dec 2010). Com-
positionality in Synchronous Data Flow: Modular Code Generation from Hierarchical SDF Graphs.
ACM Transactions on Embedded Computing Systems (TECS). Preprint available as a technical re-
port from http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-143.

html.
Yates, R. K. (1993). Networks of real-time processes. In Best, E., editor, Proc. of the 4th Int. Conf. on

Concurrency Theory (CONCUR), volume LNCS 715. Springer-Verlag.
Zhu, Y., Westbrook, E., Inoue, J., Chapoutot, A., Salama, C., Peralta, M., Martin, T., Taha, W., O’Malley, M.,

Cartwright, R., Ames, A., and Bhattacharya, R. (2010). Mathematical equations as executable models of
mechanical systems. In Proceedings of the 1st ACM/IEEE International Conference on Cyber-Physical
Systems, ICCPS ’10, pages 1–11. ACM.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-143.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-143.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-143.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-143.html

	Introduction
	Related Work
	Ptolemy's Graphical Syntax
	Actors
	Variables, Assignments and Timers
	Actors
	Actor Behaviors
	Actor Classification and Special Cases
	Examples of Atomic Actors

	Actor Diagrams
	Block Diagrams
	Modal Model Diagrams

	Directors
	Synchronous-Reactive (SR)
	Discrete Event (DE)
	Continuous Time (CT)
	Process Networks (PN)
	Modal Models (MM)

	Conclusions and Future Work
	References



