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We generalise both the notion of non-sequential process and the unfolding construction (previously
developed for concrete formalisms such as Petri nets and graph grammars) to the abstract setting of
(single pushout) rewriting of objects in adhesive categories. The main results show that processes are
in one-to-one correspondence with switch-equivalent classes of derivations, and that the unfolding
construction can be characterised as a coreflection, i.e., the unfolding functor arises as the right
adjoint to the embedding of the category of occurrence grammars into the category of grammars.
As the unfolding represents potentially infinite computations, we need to work in adhesive categories
with “well-behaved” colimits of ω-chains of monos. Compared to previous work on the unfolding of
Petri nets and graph grammars, our results apply to a wider class of systems, which is due to the use
of a refined notion of grammar morphism.

1. Introduction

When modelling concurrent or distributed systems one often needs a specification formalism that
is able to describe the intrinsic parallelism of the system, as well as a semantics providing explicit
information concerning causality, conflict and concurrency of events in computations. This is
clearly the case if one wants to understand and investigate the inherent concurrency of a given
system, but truly concurrent models are also a cornerstone of verification techniques based on
partial order methods (McMillan, 1993). In fact, the latter avoid the enumeration of all possible
interleavings of events, and in this way, especially in the case of highly concurrent systems, yield
compact descriptions of the behaviour of a system.

If the specification formalism itself is expressive enough to provide an explicit account of
concurrency and non-determinism, then the same formalism can be used, with suitable precautions,
as the semantic domain as well. This is for instance the case for Petri nets: it is well-known that
a concurrent computation of a net can be represented faithfully with a deterministic occurrence
net, i.e., a net satisfying suitable acyclicity and safety constraints, leading to the notion of net
process (Goltz and Reisig, 1983). Additionally, an unfolding construction has been defined which
“unravels” a net from a starting state and produces an occurrence net which fully describes its
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concurrent behaviour, including all reachable states and the mutual dependencies of all possible
steps (Winskel, 1987a).

The characterization of concurrent computations as processes and the unfolding construction
have been generalised along the years from Petri nets to more expressive rule based specification
formalisms, including contextual nets (Vogler, Semenov and Yakovlev, 1998; Baldan, Corradini
and Montanari, 2001) and graph transformation systems (Corradini, Montanari and Rossi, 1996;
Baldan, Corradini, Montanari and Ribeiro, 2007). But there are many types of graph transformation
formalisms, based on undirected and directed graphs, hypergraphs, graphs with scopes, graphs
with second-order edges, and so forth. With the introduction of adhesive categories (Lack and
Sobociński, 2005), an abstract and unifying framework for the definitions and analysis of this
kind of systems has been established, since all of them can be considered as rule-based systems
acting on an adhesive category.

As a consequence more abstract definitions of processes and unfoldings are called for, which,
unlike the previous proposals, do not assume any knowledge about the internal structure of the
objects that are transformed (such as multisets of places, graphs of various kinds, etc.), but only
exploit the properties that such objects enjoy, axiomatised by the laws of adhesive categories. This
is indeed the contribution of the present paper, which summarises and extends the conference
papers (Baldan, Corradini, Heindel, König and Sobociński, 2006; Baldan, Corradini, Heindel,
König and Sobocinski, 2009) and presents central results of (Heindel, 2009).

Following the line of research of (Ehrig, Habel, Kreowski and Parisi-Presicce, 1991; Lack and
Sobociński, 2005), we shall regard system states as objects of a category C satisfying suitable
properties. Part of the properties of C ensure a meaningful notion of C-object rewriting, while
other additional properties are required to guarantee, first, that the construction of processes and
the unfolding procedure are viable and, second, that the unfolding can be characterised as a co-
reflection in the style of (Winskel, 1987a). The latter result guarantees the compositionality of the
unfolding construction with respect to operations on grammars expressed as limits, as exploited
for example in the field of model-based diagnosis (Benveniste, Fabre, Haar and Jard, 2003; Baldan,
Chatain, Haar and König, 2010).

The approach to rewriting that we shall use is the single pushout approach (spo) (Löwe, 1993).
This is one of the most commonly used algebraic approaches to rewriting, alternative to the double
pushout (dpo) approach (Ehrig, Pfender and Schneider, 1973), where some subtle complications
due to the implicit negative application conditions of dpo rewriting are avoided. As a categorical
framework, as mentioned above, we consider adhesive categories, which turn out to be appropriate
for spo rewriting as the needed pushouts in the partial map category Par(C) can be shown to
exist. In addition, adhesivity is sufficient to build the process of a finite derivation as a colimit
of the corresponding diagram, as well as for constructing the finite prefixes of the unfolding.
Then a crucial step consists in joining these prefixes into a single structure. To ensure that this
is possible, we need that colimits of ω-chains of monos exist and satisfy suitable properties.
Adhesive categories having sufficiently well-behaved colimits of ω-chains of monos will be called
ω-adhesive (see also (Heindel and Sobociński, 2009; Cockett and Guo, 2007)).

The main results of the paper state that there is a one-to-one correspondence between processes
and switch-equivalence classes of derivations, and that the unfolding construction induces a
coreflection, i.e., it can be expressed as a functor that is right adjoint to the embedding of the
category of occurrence grammars, the category where unfoldings live, into the category of all
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Fig. 1. (a) Rule as a partial map; (b) Combined rule representation; (c) Schematic
representation of an unfolding step

grammars. In order to define the category of grammars we introduce an original notion of grammar
morphism which is similar to the graph grammar morphisms proposed in (Baldan et al., 2007) but
more concrete; as a consequence, we can treat uniformly the whole class of grammars, without
the need to restrict to so-called semi-weighted grammars as it was done in several approaches for
Petri nets (see, e.g., (Meseguer, Montanari and Sassone, 1997)) and for graph grammars (Baldan
et al., 2007).

Roadmap: In order to motivate at a more intuitive level the definitions and constructions that will
follow, we first sketch the general ideas of our work. We work in a setting of abstract objects
(which could be sets, multisets, graphs, etc.) that are rewritten according to a rule by removing (the
image of) its left-hand side and by gluing its right-hand side to the remaining object. According
to the spo approach, the left- and right-hand sides of a rule are related by a partial map, i.e., a
span L �� K → R in the underlying category where the left leg is a mono. As it is usually done
in unfolding approaches we restrict to linear rules where both legs are mono; for a schematic
representation see Figure 1(a).

A rule essentially indicates what is deleted ( ), what is preserved ( ) and what is created
( ). This can either be represented by a span as in Figure 1(a) or by a combined representation
(see Figure 1(b)). Very roughly, given a (linear) rule L �� K �� R, which is the generalization
of a pair of inclusions L ⊇ K ⊆ R, an object G that contains the left-hand side L is rewritten
to the counterpart of the set G\(L\K) ∪ R. This however is properly defined only if a suitable
complementation operation can be defined.

Already in the case of graphs, complementation is problematic if the so-called dangling
condition is not satisfied, i.e., it is unclear what happens if a node is to be removed, and this node
is attached to an edge that is not explicitly deleted. There are two ways to resolve this issue: the
dpo solution which forbids the rewriting step, and the spo solution which removes the edge; this
is the essential difference between the two approaches. In the present paper we follow the latter
path, which, as we shall discuss, amounts to defining the term G\(L\K) using the more general
construction of relative pseudo-complements, known from lattice theory. Previously, in (Baldan
et al., 2006) we studied a process semantics for dpo rewriting: the inhibiting effects arising in this
approach required some extra conditions in the notion of a process. These conditions could be
adapted also to the unfolding semantics, but at the price of some complications in the theory that
we have chosen to avoid in the present paper.

The unfolding of a given grammar with a fixed start object, which is the counterpart of a Petri
net with an initial marking, provides a partial order representation of all derivations from the start
object. Intuitively the construction works as follows: look for an occurrence of a left-hand side
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of a rule and, instead of replacing it, attach the right-hand side as in Figure 1(c) and record the
occurrence of the rule. Doing this iteratively one obtains a growing object, called a type object,
which is possibly infinite, and a set of rules that describe the dependencies on this type object.

Now, in order to characterise the unfolding construction abstractly and to show its universality,
we shall need the following concepts:

— A category with properties that ensure good behaviour of spo rewriting: For this we shall
use adhesive categories which can be used for defining abstractly a notion of rewriting which
enjoys suitable Church-Rosser properties (Section 2).

— An analogue of occurrence nets: The processes and the unfolding of a Petri net are a special
kind of nets, called occurrence nets; similarly, the processes and the structure produced by
the unfolding construction in this abstract setting will be a special kind of grammar, which
will be called occurrence grammar. In occurrence grammars suitable notions of causality,
concurrency and conflict can be defined, allowing for a “static” characterization of reachable
states as concurrent objects (Section 3).

— A category of grammars and grammar morphisms: We introduce a category of grammars,
defining a suitable notion of grammar morphisms which establish a simulation between the
source and target grammars (Section 4).

— Processes: The process of a derivation is an occurrence grammar, obtained as the colimit of
the derivation diagram or by a related inductive construction, with a morphims back to the
original grammar. As a main result we show that processes are in one-to-one correspondence
with shift-equivalence classes of derivations (Section 5).

— The unfolding construction: We show how to construct incrementally larger and larger finite
prefixes of the unfolding by taking suitable colimits. Such prefixes are occurrence nets
equipped with a morphism back to the original grammar (Section 6).

— Well-behaved ω-colimits: In order to construct potentially infinite unfoldings, we have to be
able to glue together a countable chain of finite prefixes of the unfolding. To this aim we
require that colimits of ω-chains exist and are well-behaved: adhesive categories enjoying this
property are called ω-adhesive. The notion of ω-adhesivity is a natural extension of adhesivity
that has several closure properties (Section 7).

— The coreflection result: Finally we shall present a coreflection result, i.e., we shall show that
the unfolding is in a sense the “best” approximation of the original grammar in the realm of
occurrence grammars (Section 7).

We illustrate the theory with two running examples: a simple graph transformation system and
a Petri net. We deliberately keep the examples simple. Note however, that due to the generality of
our results we could just as well apply the theory to more complex graph-like structures, such as
graphs with second-order edges or graphs with scopes.

2. Preliminaries

We assume familiarity with some basic notions of category theory, including limits, colimits and
natural transformations. We use boldface font for categories, such as C,X. For each category C,
we denote the collection of its objects by ob(C) and we write A ∈ C if A ∈ ob(C); given two
objects A, B ∈ C, the collection of morphisms with domain A and codomain B is denoted by
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C(A, B) and we write f : A→ B in C if f ∈ C(A, B). We use a calligraphic font for functors and
write F : C→ D if F is a functor from C to D. We use greek letters for natural transformations
between functors and thus τ : F ·→ G is a natural transformation between two functors F and G.
Finally, given two categories C and D, the category of functors and natural transformations among
them is denoted by [C,D].

2.1. Adhesive Categories as a Framework for Single-Pushout Rewriting

Rewriting objects of adhesive categories has become a standard in the theory of graph transforma-
tion, and since the original definition several weaker variants of adhesivity have been proposed in
the literature (e.g., (Lack and Sobociński, 2005; Ehrig, Ehrig, Prange and Taentzer, 2006; Hein-
del, 2009; Heindel, 2010)). For an analysis of the differences among these variants see (Heindel,
2009; Ehrig, Golas and Hermann, 2010). In this paper we consider plain adhesivity only to keep
the presentation simpler, but the results we present have been generalised to larger classes of
categories in (Heindel, 2009).

Definition 2.1 (Adhesive Category). A category is adhesive if

1 it has all pullbacks;
2 pushouts along monos exist, i.e., for each span B � f− A �m� C with monic m, a pushout

B −n� D �g−C exists, which completes the span to a pushout square B
D
↓q
←
←↓ A

C;
3 all pushouts along monos are Van Kampen squares: for every commuting cube diagram as

shown below on the left with: (i) m monic, (ii) the bottom square a pushout and (iii) the back
squares pullbacks, we have that the top square is a pushout iff the front squares are pullbacks.

B C

A

D

B′ C′
A′

D′

f m

⇒

 B C

A

D

B′ C′
A′

D′

m

⇐⇒

B C

A

D

B′ C′
A′

D′

m



The paradigmatic example of an adhesive category is the category of graphs and graph mor-
phisms; however there are several other well-known examples.

Example 2.2 (Examples of Adhesive and Non-Adhesive Categories). It is known that every
topos is adhesive (Lack and Sobociński, 2006), thus in particular Set is adhesive. Futhermore,
adesive categories enjoy several closure properties (Lack and Sobociński, 2005): if C and C′

are adhesive, X is a category and T is an object of C, then the product category C × C′, the
functor category [X,C], the slice category C↓T (see below) and the co-slice category T ↓C
are all adhesive. Therefore every presheaf [X,Set] is adhesive and in particular the category
Graph = [E ⇒ V,Set] is adhesive where E ⇒ V is the two object category with two morphisms
s, t : E → V .

Instead, the full subcategory of simple graphs, denoted by sGraph, is not adhesive (Johnstone,
Lack and Sobociński, 2007), where a graph G ∈ Graph is simple if for any two nodes, there is at



P. Baldan and A. Corradini and T. Heindel and B. König and P. Sobociński 6

most one edge from the first to the second. Finally, also Top, the category of topological spaces,
is not adhesive (Lack and Sobociński, 2005).

As observed above, given an object of an adhesive category C, the slice category over this
object is again adhesive; the reason is that all relevant constructions and properties are directly
inherited from C.

Definition 2.3 (Slice Category). For an object T ∈ C, the slice category over T , denoted
C↓T , has C-morphisms A−a�T with codomain T as objects. A C↓T -morphism ψ : (A−a�T )→
(B−b�T ) is a C-morphism ψ : A→ B that satisfies a = b ◦ ψ. Further, we denote by |�|T : C↓T →
C the forgetful functor, which maps each object A−a�T to A and acts as the identity on morphisms.

In this paper, we shall often use the fact that subobjects of any object in an adhesive category
form a distributive lattice (Lack and Sobociński, 2005) (see also Proposition 2.5).

Definition 2.4 (Subobject Poset). Let T ∈ C be an object, and let a : A �� T and a′ : A′ �� T be
two monos. The monos a and a′ are isomorphic, written a �T a′, if there exists an isomorphism
i : A→ A′ such that a = a′ ◦ i. A subobject of T is an isomorphisms class of a mono a : A �� T ,
denoted by [a], i.e., [a] = {a′ | a �T a′}. Given two monos a : A �� T and b : B �� T , [a] is
included in [b], written a vT b, if there exists an arrow j : A �� B such that a = b ◦ j. Finally, the
subobject poset over T is 〈Sub(T ),vT 〉 where Sub(T ) is the set of all subobjects of T .

In the sequel, when a is a mono we shall sometimes just write a in place of [a] to denote the
corresponding suboject.

In the category of sets and functions, we have a canonical choice of representatives for each
subobject, namely the inclusion of a subset. Hence subobject posets are just power set lattices.
As mentioned above, for adhesive categories, subobject posets can be proved to be distributive
lattices.

Proposition 2.5 (Distributive Subobject Lattices (Lack and Sobociński, 2005)). Any subob-
ject poset in an adhesive category is a distributive lattice, where the meet [a]u[b] of two subobjects
[a], [b] is obtained by taking the pullback of their representatives and the join [a]t [b] is obtained
by taking a pullback, followed by a pushout (i.e., adhesive categories have effective unions).

T

A

B

AuB

a

b

aub
T

A

B

AuB AtB

a

b

atb

Another operation on subobjects that is directly connected to the spo rewriting mechanism, as
shown in Proposition 2.10, is relative pseudo-complementation (Birkhoff, 1967).

Definition 2.6 (Relative Pseudo-Complement (RPC)). Let 〈L,v〉 be a lattice. A relative pseudo-
complement (rpc) of a with respect to b is an element d ∈ L that satisfies a u x v b ⇐⇒ x v d
for all x ∈ L. If such an element exists then it is unique, and it is denoted a � b. The lattice L is
relatively pseudo-complemented (rpc) if the rpc a � b exists for all pairs a, b ∈ L.
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(a) (b)

Fig. 2. A relative pseudo-complement

In a finite distributive lattice the rpc of a w.r.t. b always exists and can be characterised as
a � b =

⊔{y | a u y v b}. We consider the following two special cases:

— In the case of a powerset lattice, given two sets B, A ∈ ℘(M), the rpc of A w.r.t. B, is the set
M \ (A \ B) = {m ∈ M | m < A or m ∈ B}.

— In the case of subobject lattices, if [a], [b] ∈ Sub(T ), with [a] w [b], the rpc [c] = [a] � [b]
with c : (A � B) �� T gives rise to a pullback square. In fact, using the defining condition
of rpcs we have that [b] v [c] (because clearly [a] u [b] v [b]), and thus [a] u [c] v [b].
Furthermore, [c] is the largest pullback complemement of arrows i and a among the subobjects
of T : in fact, if [b] = [a] u [d] for some [d] ∈ Sub(T ), then [d] v [c] follows.

T

A

a

B
i

A � B
a�(a◦i)

The induced pullback square is sometimes referred to as an rpc square and is marked by an
asymmetric “double” corner. In adhesive categories, if a given pair of composable monos
has a final pullback complement (Dyckhoff and Tholen, 1987), then the largest and the final
pullback complements coincide (Corradini, Heindel, Hermann and König, 2006, Lemma 2).
Finally, note that the rpc [a]� [a] is [idT ] (if the top arrow of the pullback is an iso so is the
bottom arrow).
As an example we consider the category Graph of directed graphs and graph morphisms of
Example 2.2. Given the two graph inclusions that are shown in Figure 2(a), i.e., the middle
node of two consecutive edges and the empty graph, the rpc of the middle node w.r.t. the
empty graph are the extremal nodes, which is the graph inclusion on the bottom in Figure 2(b).

Next, we mention two lemmas about rpcs that will feature prominently in the proof of Proposi-
tion 2.18.
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A X

Y

B
m

n

f

g�
(m, f〉

(a)

A A A
id id

idA

(b)

A X

B

U

Z C
m

f k

h

p q

(m, f〉 (n,g〉

(n,g〉◦(m, f〉

(c)

Fig. 3. Partial maps, their identies and their composition

Lemma 2.7 (Vertical RPC Lemma). Let C be an arbitrary category and let the diagram below,
in (1) on the left, consist of two commuting squares of monos in C such that A �i� B �b′�C is
the pullback of A �a� T �c�C.

T C

A B

X Y

a

i

b′

c

x

j

y′

⇒

 T C

A B

X Y

a

i

b′

c

x

j

y′

⇐⇒

T C

X Y

c

j

b′◦y′a◦x


(1)

Then the two (small) squares are rpc squares if and only if the outer rectangle is an rpc square, i.e.,
[c] = [a] � [a ◦ i] (in Sub(T )) and [i] = [x] � [x ◦ j] (in Sub(A)) if and only if [c] = [a ◦ x] �
[a ◦ x ◦ j] (in Sub(T )).

Proof. Similarly to (Löwe, 2010, Proposition 5), the desired result can be verified in a straight-
forward manner using the universal properties of rpc squares and the fact that all arrows (and in
particular a) are monic.

Lemma 2.8 (RPC squares by pushout ((Lack and Sobociński, 2005, Lemma 2.3))). Let C be
an adhesive category, let B �m� A �n� C be a span of monos in C and let B �b� D �c� C be
its pushout. Then the resulting pushout square is an rpc square, i.e., [c] = [b] � [b ◦ m] (and
[b] = [c] � [c ◦ n]).

We will show that the existence of all relative pseudo-complements in subobject lattices ensures
that spo rewriting is “well-behaved”, i.e., as discussed later in detail, rules can always be applied
at (monic) matches. In spo rewriting, a rule is essentially a partial map which specifies what is
deleted, what is preserved and what is created in any rule application. The formal definition is in
terms of categories of partial maps, which we define next (see also (Robinson and Rosolini, 1988)).

Definition 2.9 (Partial Map Categories). Let C be a category with pullbacks. The category
Par(C) of partial maps (in C) has the same objects as C, i.e., ob(Par(C)) = ob(C). An arrow in
Par(C) is a C-span A�m� X − f� B with monic m, taken up to isomorphisms at X (Figure 3(a)). It
is called a partial map and is written (m(X) f〉 : A ⇀ B or just (m, f〉 : A ⇀ B.

If m is an isomorphism, then (m, f〉 is called a total map. The identity on an object A is
(idA, idA〉 : A ⇀ A (Figure 3(b)); composition is defined via pullbacks (Figure 3(c)). Note that a
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partial map (m, f〉 : A ⇀ B is monic in Par(C) if and only if it is total and f is monic in C; hence
we often write C �g� D instead of C −(id,g〉⇀ D.

We next examine pushouts along monos in the category of partial maps. This is later used for
defining spo rewriting “directly” in the category C, without explicitly referring to Par(C).

Proposition 2.10 (Partial Map Pushouts along Monos). Let C be an adhesive category. Then
pushouts along monos exist in Par(C) if and only if subobject lattices in C are relatively pseudo-
complemented.

Proof sketch. First, assume that we have pushouts along monos in Par(C). Let T ∈ C be an
object and let [a], [b] ∈ Sub(T ) be subobjects; now one can verify that the rpc [a] � [b] exists iff
the rpc [a] � [a] u [b] exists (since Sub(T ) is a meet-semilattice). Hence, w.l.o.g., we can assume
that [a] w [b], i.e., we have a unique morphism i : b→ a in C↓T . Next, construct the following
pushout in Par(C).

A

T

B

C

a

(i,idB〉

a′

( j,k〉

Now, it remains to verify that [ j] = [a] � [b].
Conversely, assume that subobject lattices in C have all rpcs. Now the pushout of a partial map

(α(K)β〉 : L ⇀ R along a mono m : L �� A can be constructed as in Figure 4: first, we construct
the rpc [m] � [m ◦ α]; second, we take the pushout of the (domain of the) constructed rpc and R
over K.

A

L K R
α β

m {

DA C

L K R
α β

m

ε

m�m ◦α

η

nd

Fig. 4. Construction of partial map pushouts using relative pseudo-complements

Another property that will play a crucial role in the paper is pullback stability of rpcs (in the
sense of Lemma 1.4.13 in (Johnstone, 2002)). In order to formalise it we need to introduce the
so-called pullback functor.

Definition 2.11 (Pullback Functor). Let C be a category with (some choice of) pullbacks, and
let f : T ′ → T in C be a morphism. The pullback functor (along f ), written f ∗ : C↓T → C↓T ′,
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maps every (A −a� T ) ∈ C↓T to the right morphism f ∗(A) − f ∗(a)� T ′ in the left diagram below.

A f ∗(A)

T T ′
a f ∗(a)

f

fa A f ∗(A)

T T ′
a f ∗(a)

f

fa

B f ∗(B)

b f ∗(b)

fb

ϕ f ∗(ϕ)

The functor f ∗ maps each morphism ϕ : a → b in C↓T to the unique C-morphism f ∗(ϕ) that
satisfies both fb ◦ f ∗(ϕ) = ϕ ◦ fa and f ∗(a) = f ∗(b) ◦ f ∗(ϕ) as shown above on the right.

Then we say that in a category C rpcs are pullback stable if for every morphism f : T ′ → T ,
the operation � on Sub(T ) is preserved by the pullback functor f ∗, i.e., the equation

[ f ∗(a � b)] = [ f ∗(a)] � [ f ∗(b)] (2)

holds for all subobjects [a], [b] ∈ Sub(T ) (where a � b is a representative of [a] � [b]).
Every topos and every regular category satisfies this requirement.

2.2. SPO Rewriting

In this section we define spo rewriting in adhesive categories. More precisely, throughout the
paper we fix an adhesive category C, where rpcs are pullback stable. Existence of rpcs will follow
from the fact that we work on finite grammars. Pullback stability of rpcs will play a crucial role
in the proof that that spo rewriting is preserved by grammar morphisms (Lemma 4.6).

Single-pushout rewriting is performed by taking a pushout of a partial map along a mono –
whence the name. Traditionally, partial maps are given by concrete representatives, which are
called rules. To avoid switching continuously between the category C and the partial map category
Par(C), we define rewriting “directly” in C (cf. Proposition 2.10).

Definition 2.12 (SPO Rules and Rewriting). A C-rule is a partial map span q = L�α�K −β�R,
i.e., a span where α is monic; it is called linear if the right hand morphism β is monic and
consuming if α is not an isomorphism. The class of consuming, linear C-rules is denoted by RC .

Let A ∈ C be an object. A (monic) match for a rule q = L �α� K �β� R into A is a mono
m : L �� A in C. An spo direct derivation from A to C for q and m is a double square diagram

X =

DA C

L K R
α β

m

ε

m�m ◦α

η

nd

where [ε] = [m] � [m◦α] in Sub(A) and C is the pushout of D and R over K in C; in this situation
we write X : A �=〈q,m〉⇒ C or simply X : A �=q⇒ C (if m is not relevant). The rule q rewrites A
(at m) to C, written A �=q⇒ C (A �=〈q,m〉⇒ C), if there exists a direct derivation X : A �=q⇒ C
(X : A �=〈q,m〉⇒ C).
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Remark 2.13 (Equivalence of Definitions). Note that, in the category Graph, the construction
in Definition 2.12 is a special case of Construction 2.6 of (Löwe, 1993); moreover, Proposition 2.10
is a special case of Theorem 2.7 of (Löwe, 1993). For the purposes of the present paper, it suffices
to generalise this special case to arbitrary adhesive categories to obtain a definition of single
pushout rewriting without reference to the category of partial maps.

Following a common practice for process and unfolding semantics (Baldan et al., 2007), we
restrict attention to linear and consuming rules. In order to understand this choice, observe
that the process and unfolding approaches to the semantics, dating back to the seminal work
in (Goltz and Reisig, 1983) and (Winskel, 1987a), are essentially based on the idea of tracing
the histories of items in computations, identifying item occurrences with their histories. This
allows one to properly define how item occurrences are related in terms of causality, conflict and
concurrency. Non-consuming rules are problematic since, once a match is found, an unbounded
number occurrences of such rules can be applied in parallel. Such occurrences have exactly the
same history and thus are causally indistinguishable, a phenomenon, called autoconcurrency.
Similarly, the idea of tracing univocally the histories of items in computations conflicts with the
presence of fusions (non right-linearity) and duplications (non left-linearity). For this reason, we
restrict to linear rules.

Instead, non-monic matches could in principle be allowed, without adding too many complica-
tions. Here we decided to use monic matches only, since, on the one hand, they allow for a simpler
presentation, and, on the other hand, they are typically more expressive than general matches (see,
e.g., (Habel, Müller and Plump, 2001) for the case of graphs).

S = q1 =
⊇ ⊆

q2 =
⊇ ⊆

Fig. 5. The running graph transformation example

q1
�⇒

q2
�⇒

Fig. 6. Two rewriting steps in the running example

Example 2.14. The graph S in Figure 5 models a tiny network: vertices are network nodes, edges
are directed network links, and looping edges represent stored messages. Further, the rules q1

and q2 in Figure 5 model message dispatching and failure of network nodes, respectively. Now
the rule q1 can rewrite the state S as it is shown in the first line of Figure 6; this rule application
corresponds to the dispatching of the message to the right. In the latter state, the failure of the
network node at which the message has arrived is captured by the application of the rule q2 at that
node as shown on the bottom in Figure 6.
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Any two consecutive direct derivations X : A �=q⇒ B and X′ : B �=q′⇒ C might either be
dependent on each other – or not. The formal definition is as follows.

Definition 2.15 (Sequential Independence). Let X : A �=q⇒ B and X′ : B �=q′⇒ C be two direct
derivations as shown in the following display.

D′B C

L′ K′ R′
α′ β′

m′

ε′ η′

n′d′

DA B

L K R
α β

m

ε η

nd

st

n m′

Then X and X′ are sequential-independent if there exist arrows s : R→ D′ and t : L′ → D such
that the above diagram commutes, i.e., such that the two equations ε′ ◦ s = n and η ◦ t = m′ hold.

Intuitively, consecutive direct derivations are considered independent of each other if the first
rule does not create anything that is a pre-condition for the second rule (i.e., the first rule should
not cause the second one) and the second rule does not destroy anything that is in the pre-condition
of the first rule (i.e., the second rule should not prevent the application of the first one).

1

2

1

2

1

2

1

2

3

1

2

3

1

2

3

1

1

2

3

2

3

2

3

 
Fig. 7. (Counter-)example to sequential independence

Example 2.16 (Sequential Independence). Using the rules of our running example, two direct
derivations that are not sequential-independent are given in Figure 7 where the involved graph
morphisms act as the identity on the numbers of the nodes. Intuitively, this is due to the fact that
the second derivation deletes node 1 which is used (preserved) by the first one. Hence they cannot
be applied in reverse order. An example of two sequential-independent rewriting steps are the
following ones.

q1
�⇒ q1

�⇒

The relevant objects of the rules of Definition 2.15, namely K, R, L′ and K′, can all be seen as
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subobjects of B. This is used in the following succinct characterisation of sequential independence.

Lemma 2.17 (Sequential Independence). Let the following be a pair of direct derivations as in
Definition 2.15.

D′B C′

L′ K′ R′
α′ β′

l′

ε′ η′

n′d′

DA B

L K R
α β

m

ε η

rd
k k′

They are sequential-independent if and only if [r] u [l′] v [k] u [k′] holds in Sub(B).

Proposition 2.18 (Sequential Commutativity). Let q1 and q2 be a pair of linear rules, and let
X1 : A �=〈q1,m1〉⇒ B1 and X2 : B1 �=〈q2,n2〉⇒ C be a pair of sequential-independent direct deriva-
tions. Then there exists a pair of sequential-independent direct derivations X′2 : A �=q2⇒ B2 and
X′1 : B2 �=q1⇒ C.

A X

D1

B1K1

R1

L1 E2

C

K2

R2

L2

α1

β1

κ1

λ1

m1

i1

f1 α2

β2
µ2

ν2

n2

j2

f2

D2

B2

E1

κ2

λ2 µ1

ν1

t1 s2

u1 u2

s1 t2
ξ1 ζ2

ξ2 ζ1

Fig. 8. Construction sketch for switching couples

Construction. The construction is essentially the same as the one for double pushout rewriting
(see (Ehrig, 1979) and (Heindel, 2009, Proposition 3.6)); the main technical tools are Lemma 2.7
and Lemma 2.8. The construction is summarised in Figure 8. First X is constructed as the pullback
of D1 and E2 over B1; then there exist uniquely determined mediating morphisms u1 : K1 → X
and u2 : K2 → X that make the diagram commute. Further, D2 is the rpc of D1 w.r.t. X where these
objects are considered as subobjects of A; now there is a morphism s1 : L1 → D2 that satisfies
m1 = κ2 ◦ s1. Next, E1 is the pushout of X and R2 over K2; there is a morphism v1 : E1 → C that
makes the diagram commute and yields a pushout square. Finally, B2 is the pushout of D2 and E1

over X. In the end, applying Lemma 2.7 and Lemma 2.8, and using the morphisms in Figure 8,
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we have the following two sequential-independent direct derivations.

B2 E1 C
D2A

R2K2L2

L1 K1 R1
λ2◦s1

ζ1◦u1
ν2◦t1

µ1◦t2
ξ2◦u2

κ1◦s2

α2

α1

λ2 µ1

β2
β1

κ2 ν1

Definition 2.19 (Switching Couple). Let XZ : A �=⇒ C and Z′X′ : A �=⇒ C be two pairs of
sequential-independent direct derivations; then 〈XZ,Z′X′〉 is a switching couple if Z′X′ is obtained
from XZ by the construction for Proposition 2.18.

Remark 2.20. In the proposed construction all new objects are determined by universal con-
structions, and therefore they are unique up to a unique “canonical” commuting isomorphism.
Furthermore, if the construction is applied again to the resulting pair of sequential-independent
direct derivations, the resulting derivation is isomorphic to the original one (in the sense of
Definition 2.24). This fact has a lengthy direct proof but is also a consequence of Proposition 5.3
and Proposition 5.6. Note also that there can also exist “non-canonical” switchings of pairs of
direct derivations, i.e., sometimes two rules can be applied in the opposite order but with different
matches than the ones that are used above.

2.3. Grammars and Concurrent Computations

A grammar is a set of rules with a start object. This is in analogy to Petri nets: rules play the role
of transitions, the start object is the counterpart of the initial marking. More precisely, as described
in detail in (Baldan et al., 2007), the token game of a Petri net with place set P can be modelled
by spo rewriting in the slice category S↓P, where S is the category of (finite) sets and functions:
multisets are encoded as functions with co-domain P where the multiplicity of p ∈ P is the size of
the inverse image of {p}. Abstracting away from sets, we work in the slice category C↓T for a
given “place” object T , also called type object. The definition of grammars in slice categories will
be exploited in Section 4 for defining simulation morphisms between grammars.
Notation: We fix the following convention for rules q ∈ RC↓T : we assume q = lq �αq� kq �βq� rq

and |q|T = Lq �αq� Kq �βq� Rq ∈ RC , where the latter is the obvious untyped version of q.
If C is adhesive and rpcs are stable under pullback, then every slice category C↓T has the same

properties (cf. Proposition 7.9 and (Lack and Sobociński, 2005)). Grammars in the slice category
are called typed grammars.

Definition 2.21 (Typed Grammars). Let T ∈ C be an object, which will be referred to as type
object. A T-typed grammar G is a pair G = 〈Q, s : S → T 〉 where Q ⊆ RC↓T is a set of linear,
consuming C↓T -rules, and s : S → T ∈ C↓T is the start object; it is mono-typed if s : S �� T is
monic and the left and right hand sides lq and rq of all rules q ∈ Q are monic.

The G-rewriting relation over C↓T -objects, denoted by �=G⇒, contains all pairs a, b ∈ C↓T
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such that a �=q⇒ b holds for some q ∈ Q; further an object a ∈ C↓T is reachable in G if s �=G⇒∗ a,
where �=G⇒∗ is the transitive-reflexive closure of �=G⇒.

Example 2.22 (Typed Grammar). We obtain a typed version of our running example by fixing
the type graph T that is shown on the bottom left in Figure 9 where all messages are (implicitly)
mapped to the arc with the triangular tip and all network links to the other edge. Hence the
typing of the rules is given implicitly by the uniquely determined morphisms that preserve the
two different kinds of arrow tips. The typed versions of the two example derivations are given in
Figure 10.

S̄ = q̄1=
⊇ ⊆

T= q̄2=
⊇ ⊆

Fig. 9. The typed version of the running graph transformation example

q1
�⇒

q2
�⇒

Fig. 10. The typed versions of the rewriting steps in Example 2.14

Example 2.23 (Petri Nets and Typed Set Rewriting). We give a simple example to illustrate
the relation between Petri nets and rewriting of typed sets. Consider the following Petri net with
an initial marking.

p1

p2

t p3

2

The corresponding grammar has the set of places P = {p1, p2, p3} as type object. The initial
marking can be seen as a function from {(1, p1), (1, p3), (2, p3)} that maps each pair (i, p) to
the second component p. In general, each subset M ⊆ N × P yields a function m : M → P by
composition with the projection π2 : N × P → P and thus can be seen as an object of Set↓P.
Similarly, the following pair of inclusions

qt = {(1, p1), (1, p2), (2, p2)} ⊇←− ∅ ⊆−→ {(1, p3)}
can be seen as a rule qt in Set↓P where Kqt is the empty set; this rule is the counterpart of the
transition t.

A rule in Set↓P can have a non-empty set in the middle: in this case it corresponds to a Petri
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net transition with read arcs, which allow the transitions to test for the presence of tokens without
consuming them. For example, the rule

q = {(1, p1), (1, p3)} ⊇←− {(1, p3)} ⊆−→ {(1, p3), (1, p2)}
would be represented as

p1

p2

tq p3

where we have a read arc between tq and p3, which indicates that tq can fire only if there is a token
in p3. Note that in general, given a set of places P, rules in Set↓P are “more concrete” than net
transitions over P, in the sense that to each (non-safe) marking enabling a transition there could
correspond several different matches to which the rule is applicable. However, as discussed in
Remark 7.8, there is an exact correspondence between safe nets and “safe” typed set rewriting as
well as between their unfoldings.

A derivation in a grammar is just a sequence of “composable” direct derivations that only use
rules of the grammar.

Definition 2.24 (Derivation). Let G = 〈Q, s : S → T 〉 be a T -typed grammar; a G-derivation
is defined inductively as follows: εG : s �=⇒ s is a G-derivation (of length 0), called the empty
derivation; whenever X̃ : s �=⇒ a is a G-derivation (of length n), q ∈ Q is a rule and Z : a �=q⇒ b
is a direct derivation, then X̃Z : s �=⇒ b is a G-derivation (of length n + 1).

Let X̃ : s �=⇒ a and X̃′ : s �=⇒ a′ be two G-derivations of length n > 0 where each direct
derivation is of the form:

Xi =

diai−1 ai

li ki ri
αi βi

mi

εi ηi

niji and X′i =

d′ia′i−1 a′i

l′i k′i r′i
α′i β′i

m′i

ε′i η′i

n′ij′i

for all i ∈ {1, . . . , n}. Then X̃ and X̃′ are isomorphic, written X̃ � X̃′, if there exist two families
{ϕi : di → d′i }i∈{1,...n} and {ψi : ai → a′i}i∈{0,...n} of isomorphisms (in C↓T ) such that the diagram

diai−1 ai

li ki ri
αi βi

mi

εi ηi

niji

d′ia′i−1 a′i

m′i n′i

ε′i η′i

ψi−1 ψiϕi

commutes for all i ∈ {1, . . . , n} and ψ0 = ids.

Isomorphic derivations are usually identified. Moreover, from a true concurrency point of view
two derivations that can be obtained from each other by switching pairs of sequential-independent
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direct derivations should be considered the “same” concurrent computation. This is formalised as
follows.

Definition 2.25 (Switch-Equivalence). Let G = 〈Q, s〉 be a grammar and let X̃, Z̃ : s �=⇒ a
be two derivations of length n > 1; they are switchings of each other, written X̃ ∼sw Z̃, if
〈XiXi+1,ZiZi+1〉 is a switching couple for some i ∈ {1, . . . , n − 1} and X j = Z j for all j ∈
{1, . . . , n} \ {i, i + 1}. Switch equivalence, denoted by ≈sw, is the reflexive transitive closure
(∼sw ∪ �)∗ where � is the isomorphism relation of G-derivations.

In the rest of the paper we restrict ourselves to finite grammars, similar to (Braatz, Ehrig,
Gabriel and Golas, 2010).

Definition 2.26 (Finite Grammar). Let G = 〈Q, s : S → T 〉 be a grammar; then G is finite if the
start object and all left and right hand sides are finite, i.e., Sub(S ) is finite and Sub(Lq), Sub(Rq)
are finite for all q ∈ Q. Moreover there are only finitely many isomorphisms between left hand
sides of rules, i.e., the set {i : lq → lq′ | q′ ∈ Q, i iso } is finite for each q ∈ Q.

Lemma 2.27 (Finiteness Lemma). Every reachable object in a finite grammar is finite.

Proof. The proof is by induction on the length of derivations. The base case is trivial. Thus let
G = 〈Q, s : S → T 〉 be a finite grammar and let a : A→ T be a finite reachable object in G. Let
q = (l �α� k �β� r) ∈ Q be a rule and let

da c

l k r
α β

m

ε

m�m ◦α

η

nh

be a direct derivation. Clearly d is finite because so is a. Let [µ] ∈ Sub(c) be any subobject; now
we have µ = µ u (η t n) = (µ u η) t (µ u n). Thus, each subobject of c is the union of a pair
of subobjects of d and r; hence – since d and r are finite – c is finite, whence the desired result
follows.

As a consequence of this lemma, of Proposition 2.10, and of the existence of rpcs in finite lattices,
we have that for each rule q and every match m of q into a reachable object, the pushout of q and
m exists in Par(C): thus (as it is usual for the spo approach) rewriting is possible at any match.

3. Occurrence Grammars and their Properties

In this section, we introduce the semantic domain that will be used to model (sets of) concurrent
computations, namely occurrence grammars. Among the rules of an occurrence grammar suitable
dependencies can be defined, including causality, conflicts and disabling, which are required
to be acyclic. Occurrence grammars will be a central ingredient of the concurrent semantics
of grammars: each single concurrent computation will correspond to a certain deterministic
occurrence grammar (with additional information, which will be made precise in Definition 5.1).
Furthermore, occurrence grammars turn out to enjoy a useful property: reachable objects can
be characterised statically in terms of suitable dependency relations (causality and asymmetric
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conflict) among their rules. As a consequence, we shall not have to solve reachability problems
when constructing the unfolding of a grammar in Section 6. In other words, an algorithm can be
defined which builds unfoldings in a static manner without executing the rules dynamically.

3.1. Occurrence Grammars

We introduce now occurrence grammars formally. The definition will be based on two dependency
relations among rules that have been introduced by the authors in (Baldan et al., 2006). The
possible dependencies between two rules q and q′ can roughly be described as follows: q causes
q′ if q produces something needed by q′ to become activated, and q can be disabled by q′ if q′

destroys something on which q depends.

Example 3.1 (Causality and Disabling in a Petri Net). Consider the following three Petri nets.

t1 t2 t′1 t′2 t′′1 t′′2

The role of rules in grammars is played by transitions. In the first net, t1 causes t2, in the second
net t′1 can be disabled by t′2 and vice versa. Finally, in the third net, we have a read arc, i.e., t′′1
only checks for the presence of a token in the place in the middle without consuming it whenever
it should fire; as a result, only t′′2 can disable t′′1 while t′′1 cannot disable t′′2 .

Definition 3.2 (Causality, Conflict). Let G = 〈Q, s : S → T 〉 be a mono-typed grammar; hence
for each rule q ∈ Q, its components lq, kq and rq represent subobjects [lq], [kq] and [rq] ∈ Sub(T ).
A pair of rules q, q′ ∈ Q may be related in any of the following ways.

< : q directly causes q′, written q < q′, if [rq] u [lq′ ] @ [kq]
� : q can be disabled by q′, written q � q′, if [lq] u [lq′ ] @ [kq′ ]

Further, the asymmetric conflict relation is defined as ↗ := <+ ∪ (� \ idQ), where <+ is the
transitive closure of < and� \ idQ the irreflexive version of�; moreover

— the direct causes of q, are given by xqy = {q′ ∈ Q | q′ < q}, and
— the (complete) causes of q, are given by bqc = {q′ ∈ Q | q′ <∗ q}.
Any subobject [a] ∈ Sub(T ) may be related to a rule q ∈ Q in a similar way:

< : q directly causes [a], written q < a, if [rq] u [a] @ [kq], and
<co : [a] is (partly) consumed by q′, written a <co q′, if [a] u [lq′ ] @ [kq′ ].

Finally, we have the following sets:

— the consumers of [a], are paq = {q′ ∈ Q | a <co q′} and
— the (complete) causes of [a], are bac = {q′ ∈ Q | ∃q ∈ Q. q′ <∗ q < a}.

Now we are ready to define occurrence grammars, which are a generalization of occurrence
nets. We shall see later that in an occurrence grammar with type object T , all rule applications
operate on subobjects of T , which is the counterpart of safety for occurrence nets (see also
Proposition 3.5).
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Definition 3.3 (Occurrence Grammar). An occurrence grammar is a mono-typed grammar
O = 〈Q, s : S �� T 〉 with a countable set of rules Q such that

1 the type object is the union of all right hand sides, i.e., [idT ] = [s] t⊔
q∈Q[rq],

2 the transitive-reflexive closure <∗ of causality < is a partial order,
3 for each rule q ∈ Q, bqc is finite, and↗|bqc :=↗∩ (bqc×bqc) is acyclic,
4 the start object has no causes, i.e., bsc = ∅,
5 there are no backward conflicts, i.e., [rq] u [rq′ ] v [kq] t [kq′ ] for all q , q′ ∈ Q,
6 left-hand sides are properly produced, i.e., [lq] v [s] t⊔

p′∈bqc[rp′ ] for all q ∈ Q.

The occurrence grammar O = 〈Q, s : S �� T 〉 is deterministic if there are also no forward
conflicts, i.e., [lq] u [lq′ ] v [kq] t [kq′ ] for all q , q′ ∈ Q.

S = 3 0 1 2 q01
1 = 0 1 0 1 0 1

⊇ ⊆

T ′= 3 0 1 2 q0
2 = 0

⊇ ⊆

q03
1 = 03 03 03

⊇ ⊆

Fig. 11. Example occurrence grammar

Example 3.4. Consider the occurrence grammar in Figure 11, in which each rule captures a
possible event in our running example, namely passing the message one step to the left or the
right and the failure of the node 0. Again, the morphisms into the type object T ′ are implicitly
expressed by the numbering of the items. In this example rule q01

1 can be disabled by q0
2, i.e.,

q01
1 � q0

2 and rules q01
1 , q

03
1 can disable each other. Note that this occurrence grammar would

become deterministic if we removed the rule q03
1 together with the loop at node 3 in T ′. The loop

has to be removed because the type graph must be the union of the start object and all right hand
sides of rules.

3.2. Properties of Occurrence Grammars

In the theory of Petri nets, a characteristic property of occurrence nets is their safety, which means
that every reachable marking is a set of places, rather than a proper multiset. The analogous result
for occurrence grammars reads as follows.

Proposition 3.5 (Safety). Let O = 〈Q, S �s� T 〉 be an occurrence grammar and let a ∈ C ↓ T
be a reachable object, i.e., s �=O⇒∗ a. Then a is monic.

Proof. The proof is by induction on the length of derivations. As auxiliary properties, we shall
show that for each derivation Z̃ : s �=⇒ a

—each cause of a is a rule that has been applied in Z̃, which we express by writing bac C Z̃;
—each rule that is applied in Z̃ is preceded by all its causes, for which we shall say that Z̃ is

downward closed;
—each consumer of a does not occur in Z̃, written Z̃ C paq.
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The base case is trivial. Hence let X̃ : s �=⇒ a, be a derivation, let q = (l �� k �� r) ∈ Q be a
rule such that l v a, and let X : a �=q⇒ b be the following direct derivation.

da b

l k r
α β

m

ε

m�m ◦α

η

nh

First, we observe that, since O is consuming, q is a consumer of a and thus it is a “new” rule, i.e.,
q has not been applied in X̃ because X̃ C paq is part of the induction hypothesis.

To show that b is a mono we can use the fact that adhesive categories have effective unions
(see Proposition 2.5) and prove that [k] = [d] u [r] in Sub(T ). For this it suffices to show that
[d] u [r] v [k], which follows from the fact that q < bac (which in turn is a consequence of
bac C X̃).

Now it remains to verify that the auxiliary properties hold for X̃X:

—bbc C X̃X.
Let q′′ ∈ bbc, which means that that there is a rule q′ = (l′ �� k′ �� r′) ∈ Q such that q′′ <∗ q′

and r′ u b @ k′; we have to show that q′′ occurs in X̃X. Now we derive

r′ u b = r′ u (d t r) = (r′ u d) t (r′ u r).

Hence either q′ ∈ bdc ⊆ bac and q′′ <∗ q′ occurs in X̃ (by the induction hypothesis) or q = q′

(since q 6< q′ and r u r′ v k t k′ by the definition of occurrence grammar if q , q′). In the
latter case, i.e., if q = q′, we have q′′ <∗ q ∈ bbc and thus q′′ occurs in X (if q′′ = q′) or in X̃

(since bac C X̃ and l v a).
—X̃X is downward closed.

Let q′ = (l′ �� k′ �� r′) ∈ Q be a rule such that q′ < q, i.e., r′ u l @ k′. Using bac C X̃ and
l v a, we conclude that q′ occurs in X̃, as desired.

—no consumer of b has been applied before, i.e., X̃X C pbq.
For this let q′ = (l′ �� k′ �� r′) ∈ pbq, i.e., l′ u b @ k′. Now we have l′ u b = l′ u (d t r) =

(l′ u d) t (l′ u r). If l′ u d @ k′ then q′ is a consumer of a and thus q′ does not occur in X̃;
moreover q′ , q since q is not a consumer of d and we have shown that q′ has not been applied
in X̃X in case that l′ u d @ k′ holds. Otherwise, if l′ u d v k′ and l′ u r @ k′, we at least know
that q , q′ since one easily verifies that l u r = k using the fact that asymmetric conflict is
acyclic (see (Heindel, 2009, Corollary D.2)); in this second case, it remains to show that q′

has not been applied in X̃. As a last case distinction, assume first that q < q′. This however
implies that q′ also has not been applied in X̃ by downward closedness of X̃X (and the fact
that q has not been applied in X̃ as it is a consumer of a). If instead, q 6< q′, i.e., ru l′ v k, then
r u l′ = r u l′ u k = l′ u k and thus (using l′ u r @ k′) the rule q′ is a consumer of k and thus a
consumer of a. This implies that q′ has not been applied in X̃ by the induction hypothesis.

By the result above, reachable objects of occurrence grammars can be seen as subobjects of the
type object. We next show that for occurrence grammars, instead of considering reachable objects,
we can concentrate on the statically characterised concurrent subobjects, as they are exactly the
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ones contained in reachable objects. This will be used for the definition of the unfolding algorithm.

Definition 3.6 (Concurrent Subobject). Let O = 〈Q, S �s� T 〉 be an occurrence grammar. A
subobject [a] ∈ Sub(T ) is called a concurrent subobject of O if (i) bac is finite, (ii) bac ∩ paq = ∅,
and (iii)↗|bac is acyclic.

Intuitively, [a] is concurrent when its set of causes is finite and conflict-free (condition (i) and
(iii), respectively) and there are no causal dependencies between subobjects of [a] (condition (ii)).

Proposition 3.7 (Static Coverability). Let O = 〈Q, S �s� T 〉 be an occurrence grammar, and
[a] ∈ Sub(T ) be a subobject. Then [a] is concurrent if and only if there is some reachable object b
such that [a] v [b].

To obtain a reachable object that covers a concurrent object [a], one just has to apply all its
causes in any order compatible with asymmetric conflict. This fact establishes a bijective corre-
spondence between reachable subobjects and suitable finite subsets of rules, called configurations.

Definition 3.8 (Configuration). Let O = 〈Q, s : S �� T 〉 be an occurrence grammar. A configu-
ration is a set of rules C ⊆ Q such that

(i) asymmetric conflict on C does not contain cycles, i.e.,↗ |C is acyclic;
(ii) each rule in C has finitely many predecessors w.r.t. asymmetric conflict, i.e., for all q ∈ Q, the

set {q′ ∈ C | q′ ↗ q} is finite;
(iii) the configuration is downward closed w.r.t. causality, i.e., bqc ⊆ C holds for all q ∈ C.

Each (finite) configuration gives rise to derivations; independently of the order of rule applica-
tion, we obtain the same reachable subobject.

Proposition 3.9 (Reachable Objects). Let O = 〈Q, s : S �� T 〉 be an occurrence grammar and
let C ⊆ Q be a finite configuration. Then there is a subobject [a] ∈ Sub(T ) that is derivable
(s �=O⇒∗ a) using each rule of C exactly once. Further the subobject [a] can be described as
follows:

[a] =
⊔{

[x] ∈ Sub(T )
∣∣∣
(
bxc ⊆ C

)
and

(
pxq ∩C = ∅

)}
(3)

Proof sketch (see also (Heindel, 2009, Proposition D.8)). The proof is by induction on the size
of the configuration C with a trivial base case C = ∅. For the induction step, we choose a rule
q ∈ C that is maximal w.r.t. asymmetric conflict and show that its left hand side is contained in
the reachable subobject that corresponds to the smaller configuration C \ {q}. It remains to apply
the rule and verify that the obtained subobject is described by Equation (3).

Therefore, a finite configuration is essentially the same as a concurrent computation of an
occurrence grammar. This will become clearer in Section 5 where the process semantics of
computations in arbitrary grammars is discussed, and where the following fact will be exploited.

Proposition 3.10. Let O = 〈Q, S �s� T 〉 be a deterministic occurrence grammar. Then the set Q
is a configuration.
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4. Categories of Grammars

Intuitively, the semantics of a grammar in terms of occurrence grammars is obtained by using
occurrence grammars as representatives of (sets of) concurrent computations of the given grammar.
What is still missing is a way to relate computations in the “generated” occurrence grammars
to computations in the original grammar. Therefore we introduce a suitable notion of morphism
between grammars that will play the role of this link to the semantic domain. Grammar morphisms
will also play a crucial role in the main theorem about unfoldings, which characterises them as the
canonical way – universal in category theoretic terms – to capture all the concurrent computations
of a grammar by means of a single occurrence grammar.

The rough idea of grammar morphisms, which is already present in the literature on Petri nets
and graph transformation (Winskel, 1987a; Baldan, 2000), is a simulation relation between its
source an target. Thus, every computation in the source system is mapped to a computation of
the target system. Another desirable property is that a notion of morphism defined in our abstract
setting should specialise to the corresponding notions proposed for systems such as Petri nets and
graph grammars.

The morphisms we introduce below will satisfy the first requirement, i.e., a grammar morphism
will describe how the target grammar can simulate the source grammar. Concerning the second
property, as explained more detailed in Remark 7.8, the proposed notion of morphism is “more
concrete”: for example, when C is the category of graphs, a graph grammar morphism of (Baldan
et al., 2007) might be induced by several different ones according to our definition. However, this
greater explicitness allows us to characterise the unfolding as a coreflection without restricting to
the so-called semi-weighted grammars (Meseguer et al., 1997; Baldan, 2000; Baldan et al., 2007).

In analogy to work on Petri nets and their unfolding, where morphisms are monoid homomor-
phisms preserving the net structure, a morphism between two grammars typed over T and T ′,
respectively, will be a suitable functor F : C↓T → C↓T ′ that preserves the rules and the start
object. We dub the class of functors that we shall consider retyping operations.

Definition 4.1 (Retyping Operation). A retyping operation F : C↓T → C↓T ′ is a functor
F : C↓T → C↓T ′ such that there exists a natural transformation ϕ : (|�|T ′ ◦ F) ·→ |�|T that is
cartesian, i.e., for each arrow ψ : a→ b between objects A −a� T and B −b� T in C↓T , the span
A �ϕa− F(A) −|F(ψ)|� F(B) is a pullback of A −|ψ|� B �ϕb− F(B) (where F(A) and F(B) are the
domain of F(a) and F(b) respectively) and thus yields a pullback square B

A
↑q
→
→↑ F(B)
F(A).

T F(T ) T ′

A F(A)

B F(B)

b

ψ

a

ϕa

ϕb

ϕidT F(idT )

F(ψ)

F(b)

F(a)

Every morphism f : T → T ′ in C induces a (canonical) retyping operation f ◦ � : C↓T → C↓T ′,
which post-composes any C↓T -object with f and acts as the identity on morphisms.
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This definition is closely related to the
pullback-retyping used in (Baldan et al., 2007).
In fact, as illustrated to the right, a retyping op-
eration F : C↓T → C↓T ′ with some cartesian
natural transformation ϕ : (|�|T ′ ◦ F) ·→ |�|T acts
by pulling back along ϕidT followed by composi-
tion with F(idT ), which is retyping along the span
T ← F(T ) → T ′ in the terminology of (Baldan
et al., 2007).

T F(T ) T ′

A F(A)

B F(B)

b

ψ

a

ϕa

ϕb

ϕidT F(idT )

F(ψ)

F(b)

F(a)

Example 4.2 (Retyping Operation). We extend our example with a distinction between private
and public nodes, depicted as and , respectively, and a new type of broadband connections,
depicted using double lines . One possible way to map computations in the new system
“back” to the old one is to ignore private nodes and to “implement” broad-band links by parallel
“normal” links. The corresponding retyping operation is based on the span in Figure 12. The left

← →

7→

Fig. 12. An example span and its retyping operation applied to a state

leg maps the two double loops to the double loop on the public node and it acts as the inclusion on
all other entities; the right leg instead maps the loops such that the tips are preserved, i.e., all loops
in the middle are mapped to the outer loop on the right except for the loop with the triangular tip.
Pulling back along the left leg followed by (post-)composition with the right leg now corresponds
to deletion of private nodes and replacement of broadband links with a pair of parallel links, as
illustrated in the bottom part of Figure 12: first the pullback action deletes the left node, creates
two duplicates of the edge between the other two nodes, and preserves the rightmost loop; then,
post-composition with the right hand morphism of the span makes the duplicates “normal” links
and “preserves” the message.

Roughly, grammar morphisms are retyping operations that preserve the structure of grammars;
however it is also possible to “ignore” some rules if they do not induce any action in the target
system. The formal definition is as follows.

Definition 4.3 (Grammar Morphism). Let G = 〈Q, s : S → T 〉 and G′ = 〈Q′, s′ : S ′ → T ′〉 be
two typed grammars in C. Then a grammar morphism from G to G′, denoted by F : G → G′, is a
retyping operation F : C↓T → C↓T ′ such that



P. Baldan and A. Corradini and T. Heindel and B. König and P. Sobociński 24

(i) the start object is preserved, i.e., F(s) = s′, and
(ii) for any rule q ∈ Q, the image F(q) := F(lq) �F(αq)− F(kq) −F(βq)� F(rq) is either a rule in G′,

i.e., F(q) ∈ Q′, or an identity span, i.e., F(q) = F(lq)
id← F(lq)

id→ F(lq).

Grammar morphisms can be seen as generalizations of the Petri net morphisms introduced
in (Winskel, 1987a). For Petri nets they have been proved to enjoy useful properties: they ensure
the existence of products, which can be interpreted as asynchronous compositions, and of some
coproducts, modelling nondeterministic choice (Winskel, 1987b). An application of products in
unfolding-based diagnosis techniques can be found in (Baldan et al., 2010).

Example 4.4 (Grammar Morphism). To illustrate some crucial points of the definition, consider
the following grammar with the usual implicit typing that arises by those morphisms that preserve
the kind of entities.

S̃ = q̃1=
⊇ ⊆

T= q̃2=
⊇ ⊆

Now, we check whether the retyping operation of Example 4.2 is actually a grammar morphism
from the grammar above into the typed version of our running example, presented as Example 2.22.
First, the start object is preserved because the private nodes are deleted with all adjacent edges. The
rule q̃1 is mapped to the identity span on the empty graph, which is allowed (and is in analogy to
process calculi where silent transitions might be “ignored”). Instead, the rule q̃2 is left unchanged.
Hence, the retyping operation based on the span of Figure 12 is not a grammar morphism since
our running example grammar does not include any rule that transmits two messages at the same
time.

Example 4.5 (Petri Net Morphism). In order to illustrate the connection to Petri net morphisms,
we present here a morphism between two grammars encoding Petri nets, as described in Exam-
ple 2.23. Consider the two nets given below.

→

There is a grammar morphism from the left-hand net to the right-hand net, based on the span
depicted below.
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← →

Note that the net on the left contains several duplicates of places and transitions that occur only
once in the net on the right. Moreover it contains two new places that are deleted by the morphism.

This notion of morphism is closely related to, but more concrete than the net morphisms
of (Winskel, 1987a), which consist of partial mappings between sets of transitions and multi-
relations between sets of places. In fact, as multisets over a set of places P can be seen as objects
in the slice category Set↓P, multirelations can be represented by spans between the sets of places.

We next prove the Simulation Lemma: it shows that grammar morphisms map direct derivations
in the domain to corresponding ones in the co-domain, which are either again direct derivations in
the target grammar or “identity steps”. Hence grammar morphisms preserve reachability.

Lemma 4.6 (Simulation Lemma). Let F : G → G′ be a morphism between two grammars
where G = 〈Q, s : S → T 〉 and G′ = 〈Q′, s′ : S ′ → T ′〉. Then, if F(q) is not an identity
span, for any direct derivation X : a �=〈q,m〉⇒ b in G, there is a corresponding direct derivation
X′ : F(a) �=〈F(q),F(m)〉⇒ F(b) in G′.

Proof sketch (see also (Heindel, 2009, Lemma 6.4)). Let X : (A−a�T ) �=〈q,m〉⇒ (B−b�T ) be a
direct derivation that uses a match m : l �� a and a rule q = l �α− k −β� r ∈ Q. By definition,
X is a diagram of the form l

a

��qq→
→�� ��

q
←
←r

b. As pushouts and pullbacks in C↓T are constructed in C,
it is enough to consider the underlying C-diagram L

A

��qq→
→�� ��

q
←
←R

B. Now choose any cartesian natural
transformation ϕ : (|�|T ′ ◦F) ·→ |�|T ; it provides not only arrows ϕa : F(A)→ A and ϕb : F(B)→ B
into the “tips” of the two squares, but actually a pair of “fitting” pullback cubes over L

A

��qq→
→�� ��

q
←
←R

B.
The top face of the resulting double cube is F(L)

F(A)

��qq→
→�� ��
q
←
←

F(R)
F(B), because rpc squares and pushouts

along monos are stable under pullback.

As a consequence of the Simulation Lemma, grammar morphisms can be extended to map
derivations in their source grammar to derivations in the target grammar. This is made precise in
the following definition.

Definition 4.7 (Image of Derivations). Let G = 〈Q, s : S → T 〉 and G′ = 〈Q′, s′ : S ′ → T ′〉
be two typed grammars and let F : G → G′ be a grammar morphism. Further let the left of the
following diagrams be a direct derivation in C↓T .

X =

da b

l k r
α β

m

ε η

nj F(X) =

F(d)F(a) F(b)

F(l) F(k) F(r)
F(α) F(β)

F(m)

F(ε) F(η)

F(n)F( j)

Moreover assume that F(α) is not an identity span. Then the image of X under F, written F(X), is
the direct derivation that is shown above on the right.
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Grammar morphisms and the Simulation Lemma will play a crucial role in the proof of the
main theorem about unfoldings; they also yield an elegant presentation of our theory of processes,
which generalises the work of (Goltz and Reisig, 1983).

5. Concurrent Computations as Processes

In this section, we show that switch-equivalence classes of derivations are in one-to-one corre-
spondence with so-called processes. We first introduce processes (of a given grammar); then we
show that any such process can be seen as a representative of a full switch-equivalence class of
typed derivations, all of which are “linearizations” of the process. Vice versa, given a derivation, a
colimit-based construction allows us to derive the corresponding process. These two constructions
are (essentially) inverse to each other, which is the main result about processes.

We shall now define the notion of G-process, i.e., a truly concurrent computation of a specific
grammar G that is represented by an occurrence grammar.

Definition 5.1 (Processes). Let G = 〈Q, s : S → T 〉 be a T -typed grammar. Then a G-process is
a pair P = 〈O,F : O→ G〉 where

1 O = 〈Q′, s′ : S ′ �� T ′〉 is a deterministic occurrence grammar over T ′ where Q′ is a finite set
and

2 F is a canonical retyping operation, i.e., F = g ◦ �, for some g : T ′ → T .

Let P1 = 〈O1,F1〉 and P2 = 〈O2,F2〉 be two G-processes. A process isomorphism I : P1 → P2

is an isomorphism from O1 to O2 in the slice category over G, i.e., I : O1 → O2 is an isomorphism
of grammars such that F1 = F2 ◦ I.

Intuitively, by Proposition 3.10 the occurrence grammar O represents a concurrent computation
and the morphism F provides a link back to the grammar G that specifies how each computation
in O can be retyped over the type object of G.

Given a G-process P, we can obtain a corresponding G-derivation by taking a “linearization”
of the rules in O in any order compatible with asymmetric conflict (see also Proposition 3.9): we
apply the rules in the chosen order and retype the obtained derivation over the type object of G.

Definition 5.2 (Derivations of a Process). Let P = 〈O,F〉 be a G-process, where O = 〈Q, s′〉. Let
X1 · · ·Xn : s′ �=⇒ a be an O-derivation of length n = |Q|; then F(X1) · · ·F(Xn) is a P-derivation.
The set of all P-derivations is denoted by Drv(P).

The next proposition shows that all derivations of a given process are “equivalent” from a
true concurrency point of view. Hence Drv induces a mapping from (isomorphism classes of)
processes to switch-equivalence classes of derivations.

Proposition 5.3. Let P and P′ be processes such that P � P′. Then for all X̃ ∈ Drv(P) and
Z̃ ∈ Drv(P′) it holds that X̃ ≈sw Z̃.

Proof. Without loss of generality we assume that P = P′ where P = 〈O,F〉. Moreover it is
enough to show that every pair of O-derivations X̃, Z̃ is switch-equivalent, i.e., X̃ ≈sw Z̃ (where
O = 〈Q, s : S �� T 〉 is the relevant occurrence grammar).

Let π[X̃, Z̃] be the permutation of {1, . . . , n}, where n = |Q| is the length of X̃ = X1 . . .Xn
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and Z̃ = Z1 . . .Zn, such that Xi and Zπ[X̃,Z̃](i) apply the same rule (at a possibly different match).
Further, let

∣∣∣π[X̃, Z̃]
∣∣∣ =

∣∣∣∣
{
(i, j) | i < j ∧ π[X̃, Z̃]( j) < π[X̃, Z̃](i)

}∣∣∣∣ ,

that is,
∣∣∣π[X̃, Z̃]

∣∣∣ is the number of pairs of positions that are switched by the permutation. The
proof proceeds by induction on

∣∣∣π[X̃, Z̃]
∣∣∣.

If
∣∣∣π[X̃, Z̃]

∣∣∣ = 0 then π[X̃, Z̃] is the identity, and it is straightforward to show that Z̃ � X̃ (as any
two derivations that apply the rules in the same order are isomorphic because the matches of rules
are uniquely determined by inclusion witnesses).

If instead
∣∣∣π[X̃, Z̃]

∣∣∣ = h > 0, let i = min
{
j | π[X̃, Z̃]( j + 1) < π[X̃, Z̃]( j)

}
, i.e., i is the first

position in X̃ which is switched in Z̃ with the next position: it is easy to check that such a position
exists. Let q = (l��k�� r) and q′ = (l′��k′�� r′) be the rules applied in direct derivations Xi and
Xi+1, respectively. Since q′ is applied before q in Z̃, from the auxiliary properties in the proof of
Proposition 3.5 we have that q 6< q′ and q′ < prq, and thus we can conclude that XiXi+1 is a pair of
sequential-independent direct derivations by Lemma 2.17. Now, let X̃′ be the derivation obtained
from X̃ by switching the direct derivations Xi and Xi+1, using the construction of Proposition 2.18.
We obviously have X̃′ ∈ Drv(P) and X̃′ ∼sw X̃ by construction. Furthermore

∣∣∣π[X̃′, Z̃]
∣∣∣ = h − 1,

and thus we have X̃′ ≈sw Z̃ by induction hypothesis, which allows us to conclude that X̃ ≈sw Z̃.

Vice versa, given any derivation in a grammar G, we can generate a corresponding process by
taking a colimit over the derivation (considered as a C↓T diagram).

s a1 · · · an�=q1⇒
X1

�=q2⇒
X2

�=qn⇒
Xn

t′
s′ a′1 a′n colimit

The domain of the colimit object is the type object of the occurrence grammar underlying the
process. The rules that are applied in the direct derivations become the rules of the process. The
morphism back to the type object of G is just the colimit object in C↓T . To make this formal, we
define processes of derivations by induction on the length of derivations.

Definition 5.4 (Process of a Derivation). Let G = 〈Q, s : S → T 〉 be a T -typed grammar and let
X̃ : s �=⇒ a be a G-derivation.

We define the process of X̃ by induction on the length of the derivation X̃; in our inductive
definition, we keep track of the end object of each process.

(n = 0) The process of εG : s �=⇒ s is 〈〈∅, idS 〉, s ◦ �〉; its end object is idS .
(n { n + 1) Let X̃Z : s �=⇒ an+1 be a G-derivation of length n + 1 where Z : an �=q⇒ an+1 is a

direct derivation for some q ∈ Q; its untyped image is depicted below.

|Z|T =

DAn An+1

L K R
α β

m

ε

m�m◦α

η

nd .
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Moreover let

PX̃ = 〈〈Q, sn : S → Tn〉, tn ◦ �〉
be the process of X̃ with end object ān : An → Tn. Construct the following pushout and
mediating morphism to T .

D

Tn

An+1

Tn+1

η

ān◦ε i

ān+1

T

tn

an+1

tn+1

(where the outer square commutes since tn ◦ ān = an and rule q is typed over T ). Now define
rule q′ as

q′ = (i ◦ ān ◦ m)
α←− (ān+1 ◦ n ◦ β)

β−→ (ān+1 ◦ n).

Finally,

〈〈i ◦ (Q) ∪ {q′}, i ◦ sn〉, tn+1 ◦ �〉
is the process of X̃Z; its end object is ān+1.

The process of a derivation X̃ is denoted by Prc(X̃).

It can be shown that the above definition is well-given, i.e., the described construction actually
produces a process.

Lemma 5.5. Let X̃ be a G-derivation. Then Prc(X̃) is a G-process.

The next proposition shows that if we start from two switch-equivalent derivations, the con-
struction described in Definition 5.4 produces isomorphic processes. Hence Prc can be seen as a
function from switch-equivalence classes of derivations to isomorphism classes of processes.

Proposition 5.6. Let X̃ and Z̃ be typed G-derivations such that X̃ ≈sw Z̃. Then Prc(X̃) � Prc(Z̃) .

Proof. The guiding idea is that colimits of switch-equivalent derivations (considered as dia-
grams) are isomorphic. Formally, the proof proceeds by induction on the number of switchings of
pairs of sequential-independent direct derivations that are needed to transform X̃ into Z̃. Now, let
G = 〈Q, s : S → T 〉 be a grammar with switch-equivalent derivations X̃ and Z̃.

For the base case, it is straighforward to show that isomorphic derivations have the same
colimit. For the induction step we first switch two direct derivations in X̃ to obtain Ỹ such that Ỹ is
“one switching closer” to Z̃. Then, we apply the induction hypothesis to obtain Prc(Ỹ) � Prc(Z̃);
therefore it is enough to show that Prc(X̃) � Prc(Ỹ) where X̃ ∼sw Ỹ are switchings of each other.

We split X̃ and Ỹ into a common prefix X̃′, a switching couple 〈X1Y2,Y
′
2X
′
1〉, and a common

suffix Ỹ′ such that X̃ = X̃′X1Y2Ỹ
′ and Ỹ = X̃′Y′2X

′
1Ỹ
′ . The process construction from Defini-

tion 5.4 applied to X̃′ yields the process Prc(X̃′) = 〈O′,F′〉 and also an end object ān. We retype
ān over T to obtain s′ := F′(ān). Now s′ serves as a “new” start object, i.e., X1Y2Y

′ and Y′2X
′
1Y
′

are switch-equivalent derivations in G′ := 〈Q, s′ : S ′ → T 〉. Now it suffices to show that the
process constructions for X1Y2 and Y′2X

′
1 yield isomorphic processes. The reason is that then also

X1Y2Y
′ and Y′2X

′
1Y
′ will have isomorhic processes (as they begin with the “same” process after
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two direct derivations) and moreover, we can “glue” the process for X̃′ in front by taking the
pushout of the end object ān and the start object of Prc(X1Y2Y

′) � Prc(Y′2X
′
1Y
′).

To prove that X1Y2 and Y′2X
′
1 have isomorphic processes Prc(X1Y2) � Prc(Y′2X

′
1), consider the

diagram in Figure 8. Assume that the “top” derivation is (the untyped version of) X1Y2 and that
Y′2X

′
1 is the (untyped) constructed switching. To see that the respective processes are the “same”,

i.e., isomorphic, take the pushout of A and C over X; this yields a “common” type object of a
process, which in fact is isomorphic to both Prc(X1Y2) and Prc(Y′2X

′
1).

The main result of this section makes precise that Prc and Drv can be seen as mutually inverse
functions between switch-equivalence classes of derivations and isomorphism classes of processes.

Theorem 5.7 (Pseudo-Inverses Prc and Drv). Let C be an arbitrary adhesive category, let T ∈ C
be an object, and let G be a finite T -typed grammar (see Definitions 2.26 and 2.21); let X̃ be a
typed G-derivation and let P be a G-process. Then:

1. Z̃ ∈ Drv
(
Prc(X̃)

)
implies Z̃ ≈sw X̃

2. P′ ∈ Prc
(
Drv(P)

)
implies P′ � P

Proof. For the first part, consider a derivation X̃. It is a derivation of the process Prc(X̃) as the
latter is “just” a colimt of the derivation; the desired now follows from Proposition 5.3.

For the second part, we first show that any process P can be “reconstructed” from an arbitrary
P-derivation. For this, we can show that any configuration C of an occurrence grammar induces a
(sub-)occurrence grammar consisting only of the rules in C and of the involved subobjects (by
induction on the size of configurations). Then we apply Proposition 3.10 and see that all rules
induce a (sub-)occurrence grammar that is isomorphic to the one of P. The desired then follows
from Proposition 5.3 and Proposition 5.6.

Example 5.8 (Processes and Derivations). As an example consider the process in Figure 13.
Two corresponding derivations, which are not explicitly depicted here, can be obtained by consid-
ering the rule sequences q01

1 , q
12
1 , q

0
2 and q01

1 , q
0
2, q

12
1 , respectively. The corresponding derivations

are switch-equivalent in the sense of Definition 2.25.

S ′= 3 0 1 2 q01
1 = 0 1 0 1 0 1

⊇ ⊆

T ′= 3 0 1 2 q12
1 = 1 2 1 2 1 2

⊇ ⊆

q0
2 = 0

⊇ ⊆

Fig. 13. A process that represents two switch-equivalent derivations

6. The Unfolding Construction

The unfolding of a system records all computations in a single “branching” structure which fully
describes the concurrent behaviour of the system itself, including all possible rule occurrences
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and their mutual dependencies. While processes, which represent single, specific computations of
systems are based on deterministic occurrence grammars, in order to capture a class of different
computations, unfoldings are usually general (or non-deterministic) occurrence grammars.

Every typed grammar can be unfolded by recording all possible sequences of rewriting steps
originating from the start object. This is in analogy to the constructions for Petri Nets and graph
grammars. One effect, which becomes particularly clear in the case of Petri nets, is the unravelling
of causal cycles.

Example 6.1 (Unfolding of Petri nets). Consider the Petri net that is shown on the left below.

· · ·

(A prefix of) its unfolding is sketched on the right. For each transition in the original net we have
several rule occurrences on the right. In the unfolding we also have an infinite computation, which
consists of a sequence of infinitely many occurrences of the upper transition of the original net.

The result of the general construction that we shall present is a (non-deterministic) occurrence
grammar that gives a partial order representation of all possible events and concurrent computa-
tions. Finite initial parts of the (full) unfolding of the grammar – so-called prefixes or truncations –
give a compact representation of the behaviour of the grammar up to a certain causal depth.

The idea of the unfolding procedure for a given grammar G is to construct a chain of growing
occurrence grammars Un. Each Un represents all computations up to causal depth n where
the depth of a concurrent computation is the length of a maximally parallel execution of the
computation. Finally the full unfolding UG will arise as the “union” of the chain {Un “⊆” Un+1}n∈N.
This is a concrete algorithmic description of the unfolding. As shown in the next section, the
unfolding can be characterised in a succint and elegant way as the right adjoint functor to the
inclusion of the category of occurrence grammars into the category of grammars.

Definition 6.2 (Unfolding Algorithm). Let G = 〈Q, S −s� T 〉 be a finite grammar. We shall
construct a chain U0“⊆” U1“⊆” . . . “⊆” Un . . . of occurrence grammars Un = 〈Qn, S −sn� Tn〉 that
come equipped with folding morphisms Fn : Un → G mapping rule occurrences in each n-th
unfolding Un to the original grammar G; further each Fn will be induced by a folding arrow
Tn −λn� T , i.e., Fn = λn ◦ � (see Definition 4.1).

Base case. The 0-th unfolding U0 contains the start object of the grammar G and no rules,
i.e., U0 = 〈∅, S �id� S 〉, thus T0 = S . The folding arrow is λ0 = s : T0 → T , which induces
F0 = λ0 ◦ �.

Induction step. Going from Un to Un+1 consists in adding the next level of causal depth. The
central operation of this step can be described as the non-consuming application of all rules with
all possible (new) matches to Tn “in parallel” – here the non-consuming rule application of a
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rule q = L �α� K �β� R at a match m : L �� T is the application of q+ := K �id� K �β� R at
m ◦ α : K �� T (see Figure 1(c)).

A match or an occurrence of a rule q ∈ Q in the n-th unfolding 〈Qn, S −sn� Tn〉 via the folding
Fn is a mono ν : Lq �� Tn such that the corresponding subobject [ν] ∈ Sub(Tn) is concurrent and
the equation λn ◦ ν = lq holds; such a match ν is a new match if it is not an occurrence of q that is
already present in Qn, i.e., there is no rule q′ ∈ Qn such that ν = lq′ and q = Fn(q′) is the image of
q′ via Fn.

Let {νi : Lqi �� Tn}i∈In be the family of all new matches where the index set In = {1, . . . ,m}
is finite as G is finite and also Sub(Tn) is finite. Now consider the diagram in Figure 14, which
consists of the new matches νi and the rule morphisms αqi , βqi for i ∈ In. Take the colimit of

Lq1 Kq1 Rq1

Lqm Kqm Rqm

Tn

... ν1

νm
αqm βqm

αq1 βq1

Fig. 14. The diagram of new matches

the diagram of new matches in C, which can be obtained by stepwise construction of pushouts
of monos (see Figure 15). We obtain morphisms tn, ki, ri into the colimit object Tn+1 for i ∈ In.
Furthermore, every object in the colimit diagram is typed over T as we have the folding arrow
λn : Tn → T and each qi ∈ Q is a rule of G. Hence, we obtain the folding arrow λn+1 : Tn+1 → T
as a mediating arrow.

Lq1 Kq1 Rq1

Lqm Kqm Rqm

Tn Tn+1 T
λn+1

... ν1

νm
αqm βqm

rm

km

tnk1

r1

αq1 βq1

Fig. 15. The colimit construction of the diagram of new matches

Now the new rule occurrences form the set Q′n+1 := {(tn ◦ νi) �αqi− ki −βqi� ri | i ∈ In} and are at
depth level n + 1; further the complete set Qn+1 of rules of Un+1 is Qn+1 = Q′n+1 ∪ tn ◦ (Qn) where
tn ◦ (Qn) = {tn ◦ (q) | q ∈ Qn}.

To complete the object part of the (n+1)-th unfolding, we just need to define Un+1 :=
〈Qn+1, S �tn◦sn�Tn+1〉. Further the folding morphism Fn+1 : Un+1 → G is given by Fn+1 := λn+1◦�,
which is induced by the folding arrow Tn+1 −λn+1� T .

Lemma 6.3 (Soundness of finite unfoldings). For a given finite grammar G, each n-th unfolding
Un is an occurrence grammar.
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Proof. The verification of each property is a fairly straightforward induction with a trivial base
case; for the induction step we verify the properties of occurrence grammars as follows where we
use the fact that the colimit in Figure 15 can be constructed as an “iterated” pushout.

The type object is the union of all right hand sides since adhesive categories have effective
unions (as described in Proposition 2.5). Causality remains acyclic, since the newly added rules
are not the cause of any other rule. The causes of each rule obviously form a finite set (as there
are only finitely many rules). The start object remains without causes and no backward conflicts
are introduced as the colimit is an “iterated” pushout. Finally we can use Proposition 3.7 to show
that the (new) left-hand sides are properly produced.

Summarizing, we have inductively defined a growing sequence of occurrence grammars
U0“⊆” U1“⊆” · · · “⊆” Un . . .∞, where each Un has components 〈Qn, sn : S �� Tn〉, folding mor-
phisms λn ◦ � : Un → G, and “inclusion” morphisms tn ◦ � : Un �� Un+1.

S ′= 3 0 1 2 q01
1 = 0 1 0 1 0 1

⊇ ⊆

T ′= 3 0 1 2 q0
2 = 0

⊇ ⊆

q03
1 = 03 03 03

⊇ ⊆

q12
1 = 1 2 1 2 1 2

⊇ ⊆

T =

 q1
2 = 1

⊇ ⊆

q2
2 = 2

⊇ ⊆

q3
2 = 3

⊇ ⊆

Fig. 16. Unfolding of the running example

Example 6.4. Figure 16 presents the complete unfolding of the typed version of our running
example grammar, which stops at a certain causal depth. Note that, if the start object consisted of
a ring of nodes, the unfolding construction would never terminate.

The morphism from the type graph T ′ to the original type graph is again left implicit; it is the
one that preserves the kind of edges. The unfolding contains three occurrences of the rule q1 and
four occurrences of the rule q2. Note that all rule occurrences except for q12

1 belong to the level of
depth 0 of the unfolding, while q12

1 has depth 1, because it causally depends on q01
1 .

7. ω-Adhesive Categories and the Coreflection Result

In this section we propose ω-adhesive categories as a framework in which the unfolding construc-
tion can be completed and can be characterised as the right adjoint to the inclusion functor from
the full sub-category of occurrence grammars into the category of all finite grammars.
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As mentioned in Section 6, the unfolding UG of a grammar G will be a single occurrence gram-
mar that represents the complete chain of truncations generated by the algorithm of Definition 6.2.
The colimits that we shall use to construct UG and to prove the coreflection result are Van Kampen
(vk) fans: they are the ω-chain counterpart of Van Kampen squares, the latter being the central
concept in the definition of adhesive categories in (Lack and Sobociński, 2005).

A1 A2 A3 · · ·

A ω-fan

u1 u2 u3

a1

a2 a3

A1 A2 A3 · · ·

A ω-fan prism

u1 u2 u3

a1

a2 a3

B1 B2 B3 · · ·

Bx1 x2 x3

v1 v2 v3

b1
b2 b3

x

Definition 7.1 (ω-Adhesive Categories). Anω-fan is anω-chain diagram A = {An−un�An+1}n∈N
with a cocone α = {An −an� A}n∈N (see the left one of the displayed diagrams); it is a colimit ω-fan
if α is a colimit of A, and it is a Van Kampen fan if in each ω-fan prism over it, as illustrated in
the right of the displayed diagrams, having pullback squares Bi

Ai

↑q→
→↑Bi+1

Ai+1
as back faces, the top face is

a colimit ω-fan if and only if all lateral trapezia Bi→B↘
↘Ai→A

are pullbacks.

Now a category is ω-adhesive if it is adhesive, and moreover
— it has colimits of monic ω-chains {An �un� An+1}n∈N, and
— colimits of monic ω-chains give rise to Van Kampen fans.

From now on, we assume C to be ω-adhesive. To ensure soundness of the full unfolding
construction in Definition 7.3, we need the following lemma, which can be shown in analogy to
Lemma 2.3 of (Lack and Sobociński, 2005) (see also (Heindel, 2009, Lemma B.6)).

Lemma 7.2 (Monic VK-fans). Let C be any category, let {An �un� An+1}n∈N be a monic ω-chain
paired with a cocone {An −an� A}n∈N such that they together form a Van Kampen fan. Then each
ai : An �� A is monic.

Definition 7.3 (Full Unfolding). Let G = 〈Q, s : S → T 〉 be a finite grammar, and let the
family {Un �tn◦�� Un+1}n∈N be a chain that is constructed according to Definition 6.2, where
Un = 〈Qn, sn : S �� Tn〉 and tn : Tn �� Tn+1 for each n ∈ N. To define the full unfolding UG,
let ι = {in : Tn �� T U}n∈N be the colimit of the ω-chain diagram T = {Tn �tn� Tn+1}n∈N, and put
UG := 〈⋃n∈N in ◦ (Qn), i0 : S �� T U〉 .

Finally, to define the folding morphism F : UG → G, let λn : Tn → T be as in Definition 6.2 for
each n ∈ N. By the universal property of the colimit ι, there is a unique arrow λ : T U → T that
satisfies λ ◦ in = λn for all n ∈ N; now put F := λ ◦ � .

Lemma 7.4 (Soundness of the Unfolding Construction). The unfolding of a grammar is an
occurrence grammar.

Proof. The only non-trivial point concerns the type object, which is required to be the union of
all the right hand sides and the start object; this follows from Lemma 7.2. All other properties are
inherited from the finite “prefixes” of the full unfolding.

Proposition 7.5 (Completeness of the Unfolding). Let G be a grammar and λ ◦ � : UG → G
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be the folding morphism from the full unfolding UG. Then each derivation in G has a unique
counterpart in UG, i.e., for each G-derivation X1 · · ·Xn there is unique UG-derivation X′1 · · ·X′n
such that Xi = λ ◦ (X′i) for all i ∈ N.

Proof. Let G = 〈Q, s : S → T 〉 be a finite grammar. The proof is by induction on the length of
derivations. The base case is trivial. Now let X̃ : s �=⇒ a be a derivation, q = (l �α� k �β� r) ∈ Q
be a rule and let µ : l→ a be a match for q, which gives rise to a direct derivation X : a �=〈q,µ〉⇒ b
in G. Now we have to establish the existence of a unique counterpart of X̃X in UG.

By the induction hypothesis, the G-derivation X has a unique counterpart X̃′ : s′ �=⇒ a′ in UG.
Now a′ ◦ µ is a concurrent subobject and by finiteness of G and the construction of the unfolding
there is a unique rule q′ = (l′ �� k′ �� r′) of the unfolding such that l′ = a′ ◦ µ and λ ◦ l′ = l;
hence applying q′ to a′ (and chosing the right representatives of subobjects based on X) yields a
derivation X′ such that X = λ ◦ (X′). Now X̃′X′ is the unique counterpart of X̃X.

This proposition is sufficient for many applications, but it does not rule out that UG might
contain superfluous information. The coreflection result ensures that the unfolding with the folding
morphism F : UG → G is the “minimal” or – more precisely – universal choice of an occurrence
grammar O and a morphism H : O→ G.

Theorem 7.6 (Coreflection). Let C be an adhesive category in which all existing rpcs are
pullback stable (see Definition 2.11), let T ∈ C, and let G be a finite T -typed grammar (see Defi-
nitions 2.26 and 2.21).

Let F : UG → G be the folding morphism from the unfolding UG. Then for each
occurrence grammar O and morphism H : O → G there is a unique morphism
V : O→ UG such that H = F ◦ V.

UG G

O
H

F

V

Proof. For the existence and uniqueness of V : O→ UG where O = 〈Q′, s′ : S ′ → T ′〉 we shall
use that T ′ arises as the colimit ι′ = { jn : T ′n �� T ′}n∈N of some ω-chain {T ′n �t′n� T ′n+1}n∈N where
T ′0 = S ′ and each T ′n+1 arises by gluing the right hand side of a rule to T ′n; more precisely, there
is an (injective) enumeration {q′n}n∈N\{0} of Q′ that respects causality, i.e., q′n < q′m implies n < m,
such that jn = s′ t⊔

0<i≤n rq′i where rq′n is the right hand side of q′n and j0 = s′ (more details can
be found in (Heindel, 2009, Lemma D.10)).

Given such a “colimit decomposition” of O, we recursively define an image of jn in UG, which
we shall call V( jn), such that F(V( jn)) = H( jn). This growing sequence of images will determine
the image of idT ′ in the unfolding, which will give the central piece of data for the definition of V.

Now consider H(q′n) = (l �α� k �β� r) =: q in G. We have two cases: Either q is a proper rule
or not. In the first case, there is a unique rule q′ = (l′ �α′� k′ �β′� r′) ∈ QU in the unfolding such
that V( jn−1) ◦ |H(νn)| = l′ and F(q′) = q. Now the idea is that V( jn) is determined by V( jn−1), the
rule q′ and H. Formally, let jn−1 �t′n−1� jn �ρn� rq′n be the pushout of jn−1 �νn◦α′n� kq′n �β

′
n� rq′n in

C↓T ′. Now there is a unique V( jn) such that V( jn−1) �|H(t′n−1)|� V( jn) �|H(ρn)|� r′ is the pushout
of V( jn−1) �|H(νn)|◦α′� k′ �β′� r′ in C↓T U since H preserves pushouts along monos. In case
that H(q′n) = q is an identity span, we can use the same construction as V( jn−1) ◦ |H(νn)| =: l′

is still a concurrent subobject, and V( jn−1) �|H(t′n−1)|� V( jn) �|H(ρn)|� l′ is again the pushout of
V( jn−1)�|H(νn)|◦id� l′ �id� l′ (where H(t′n−1) is of course an isomorphism). Also F(V( jn)) = H( jn)
as H preserves pushouts along monos.
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Finally, the value of V(idT ′) is the unique mediating morphism from H(ι′). More precisely,
reasoning in C↓T , the slice category of the type object of G, the object H(idT ′) with the co-
projections H(ι′) = {H( jn)}n∈N is the colimit of the ω-chain {H(t′n)}n∈N; here we have used the
vk-fan property and that H is a retyping operation. Moreover the familiy {V( jn)}n∈N yields a
co-cone to λ (again considered as an object of C↓T ). Hence there is a unique mediating morphism
from u : H(idT ′ )→ λ in C↓T such that u ◦H( jn) = V( jn); now |u| is the value of V(idT ′ ).

In order to turn V into a functor, note that any object f ∈ C↓T ′ can be considered as a
morphism f ′ : F → idT ′ , which we map to V( f ) := |V(idT ′ )| ◦ |H( f ′)|; further for each morphism
φ : f → g, V(φ) is given by |H(φ)|. However V is actually a retyping operation, as every cartesian
transformation ϑ : |�|T ◦H → |�|T ′ yields a cartesian transformation ϑ′ : |�|T U ◦ V→ |�|T ′ where
ϑ′(u) = ϑ(λ ◦ u).

The proof for uniqueness of V is similar. Let W : O → UG be a grammar morphism that
satisfies F ◦W = H. Now W must coincide with V on s′ and on each rq′n , i.e., W(s′) = V(s′)
and W(rq′n ) = V(rq′n ) for all n. The equality W(s′) = V(s′) follows directly from the definition of
grammar morphism. For each rule q′n ∈ Q′, the equality W(rq′n ) = V(rq′n ) is shown by induction
on the length of the shortest derivation that applies q′n. Here we use that the left hand side lq′n is
properly produced by right hand sides of rules with shorter shortest derivations. By induction
hypothesis, V and W coincide on these right hand sides. If H(q′n) is not a rule in G then we have
W(rq′n ) = V(rq′n ) by the definition of grammar morphism. Otherwise, V(lq′n ) = W(lq′n ) =: l̄ is a
concurrent subobject with a unique rule q′ = (l′�� k′ �� r′) ∈ QU such that Fq′ = H(q) and l′ = l̄.
This implies that V(q′n) = q′ = W(q′n) and in particular W(rq′n ) = V(rq′n ).

As a consequence of the previous considerations with the help of a colimit decomposition of
O, we show that W and V must also coincide on idT ′ as they preserve colimits of ω-chains of
monos. The equality W = V is shown by using again the observation that each f ∈ C↓T ′ can
be seen as a morphism to the final object idT ′ and that for each morphism φ : f → g we have
|W(φ)| = |H(φ)| = |V(φ)| (see also (Heindel, 2009, Lemma E.12, Proposition E.15)).

This theorem directly implies that the unfolding construction extends to a functor from the
category of finite grammars to that of occurrence grammars, which in turn means that the category
of occurrence grammars is a coreflective subcategory of the category of finite grammars.

Example 7.7 (Coreflection). Figure 17 shows our example net N and its unfolding UN , given
earlier. The occurrence net O of Example 4.5 can be mapped to N. Then, by Theorem 7.6, there
exists a unique morphism from O to UN making the triangle commuting. This illustrates the fact
that the unfolding is in a sense the most general representation of the original net in the domain of
occurrence nets (or occurrence grammars).

Remark 7.8 (Relation to Petri Nets and their Unfolding). We mentioned before that typed
grammars in the category Set are closely related to Petri nets, although objects and morphisms
are, in a sense, more concrete. More precisely, there is a natural choice of a functor from
the category of typed grammars over Set to the category of Petri nets (with read arcs) (see,
e.g., (Winskel, 1987a; Baldan, 2000)). In fact each typed set c : C → P yields a P-multiset
mc : P→ N which maps each p ∈ P to the size of its inverse image, i.e., |c−1(p)|. Given a typed
set grammar, the type object becomes the set of places, the start object s : S → P gives a multiset
in the described way, each rule is the name of a transition with the obvious pre-set, post-set and
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· · ·

//
99OO

Fig. 17. The coreflection result, illustrated.

read-arcs. Each grammar morphism F, which is a retyping operation from Set↓P to Set↓P′, is
mapped to the multi-relation that maps each (p, p′) ∈ P × P′ to |F(p)−1(p′)| where F(p) is the
object of Set↓P′ to which the inclusion p ⊆ P is mapped by F. Call this functor the multiset
abstraction.

The multiset abstraction is surjective on objects and full, but neither injective on objects nor
faithful; however, any two grammars that are mapped to the same net are isomorphic and also
two grammar morphisms that are mapped to the same net-morphism are naturally isomorphic.
Thus, the functor has an “inverse functor”, which is essentially surjective and “essentially full”.
Thus (using the axiom of choice) we have an embedding of Petri nets to typed set rewriting and
the multiset-abstraction is “almost” its inverse. Finally, at least for the case of safe Petri nets, the
usual unfolding functor that maps into the categoy of occurrence nets factors as the embedding to
spo Set-rewriting, followed by the unfolding as described in the present paper and the multi-set
abstraction.

It is worth stressing that assuming that category C is ω-adhesive we could have relaxed the
assumption on grammar G from finite to countable.

As for examples of ω-adhesive categories: any elementary topos is ω-adhesive if and only if it
has countable sums (as a consequence of Theorem 9.8 and Theorem B.11 of (Heindel, 2009)).
Hence the category of sets is ω-adhesive, and more generally any Grothendieck topos is. Instead,
the category S of finite sets – the “primordial” elementary topos – is a counterexample, i.e., it is
not ω-adhesive. Further examples arise via the following constructions.

Proposition 7.9 (Closure of ω-Adhesivity). Let C and D be ω-adhesive categories. Then the
following categories are again ω-adhesive:

— the product category C×D;
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— the slice category C↓T for any T ∈ C;
— the co-slice category I↓C for any I ∈ C;
— the functor category [X,C] for any category X;
— the Artin-Wraith glueing C↓F, i.e., the comma category C↓F for any functor F : D→ C that

preserves pullbacks.

Proof sketch. Pullbacks and the relevant colimits are constructed componentwise.

In addition we know that the slice construction preserves stability of pseudo-complementation.
Note also that all examples of “graph categories” mentioned in the introduction (undirected
and directed graphs, hypergraphs, graphs with scopes, graphs with second-order edges, etc.) are
ω-adhesive and rpcs are stable under pullback.

8. Conclusion

The central contribution of this paper is the generalization of several standard concepts, con-
structions and results about concurrent computations of concrete systems like Petri nets and
graph transformation systems to the abstract setting of rule-based, single pushout systems over
ω-adhesive categories. In particular, we considered the construction of a process from a deter-
ministic computation, and the construction of the full unfolding of a grammar; we showed that
processes are in one-to-one correspondence with switch-equivalent classes of derivations, and
that the unfolding construction “unravelling” a grammar into an occurrence grammar can be
characterised as a coreflection.

Concerning the choice of the rewriting approach, we preferred to stick to the spo approach
in this paper just to keep the presentation simpler. In fact, the alternative dpo approach was
actually adopted in (Baldan et al., 2006) for the abstract definition of processes. Also the unfolding
construction could have been presented for dpo rewriting along the lines followed for inhibitor nets
in (Baldan, Busi, Corradini and Pinna, 2004) and for dpo graph transformations in (Baldan, 2000),
at the price of some additional complications. Processes and unfolding-like structures have
also been studied in the setting of subobject transformation systems (Corradini, Hermann and
Sobociński, 2008), incorporating negative application conditions (Hermann, Corradini, Ehrig and
König, 2010) as well.

As mentioned in Section 2.1, there exist several variations of adhesive categories that arise by
weakening the conditions of Definition 2.1. A natural question to ask is whether the results of the
present paper could be generalised, for instance, to partial map adhesive categories (Heindel, 2010).
This is in principle feasible (see (Heindel, 2009)), but it would be necessary to impose additional
conditions that hold in the relevant example categories, but are ad hoc. Hence we decided to
refrain from greater generality in order to obtain a simpler presentation. But we would like to state
that the presented constructions and results can also be applied to the non-adhesive categories
sGraph and Top of Example 2.2 (Heindel, 2009).

We have introduced a new notion of grammar morphisms where the retyping is given by a
functor. This allows us to treat also non-semi-weighted grammars, i.e., grammars where the start
graph or the right-hand sides of rules might not be monos. Otherwise technical complications
arise because of the presence of “too much symmetry” in the structure which is being unfolded
and hence the uniqueness of arrow V in Proposition 7.5 cannot be guaranteed. Another solution to
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the symmetry problem has been proposed in (Hayman and Winskel, 2008), for the case of Petri
nets and with a different notion of morphisms.

The unfolding represents all computations as well as all reachable objects of the original
grammar in a single acyclic branching structure. Hence, as observed in (McMillan, 1993; Baldan,
Corradini and König, 2008), it can serve as the basis for partial order verification techniques. For
instance, we plan to generalise the notion of finite complete prefix to the abstract framework of the
present paper. Another direction is to adapt the model-based diagnosis techniques of (Benveniste
et al., 2003; Baldan et al., 2010); the latter depend on the preservation of products of grammars
by the unfolding functor, which is ensured by the coreflection result. To this aim, in future work
we shall further investigate the existence of products and pullbacks in our category of grammar
morphisms.

References

Baldan, P. (2000). Modelling Concurrent Computations: from Contextual Petri Nets to Graph Grammars,
PhD thesis, Dipartimento di Informatica, Università di Pisa.

Baldan, P., Busi, N., Corradini, A. and Pinna, G. M. (2004). Domain and event structure semantics for Petri
nets with read and inhibitor arcs, Theor. Comput. Sci. 323(1-3): 129–189.

Baldan, P., Chatain, T., Haar, S. and König, B. (2010). Unfolding-based diagnosis of systems with an evolving
topology, Information and Computation 208(10): 1169–1192.

Baldan, P., Corradini, A., Heindel, T., König, B. and Sobociński, P. (2006). Processes for adhesive rewriting
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