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Abstract

In this paper we propose a quantum random number generator (QRNG) which utilizes an entangled pho-

ton pair in a Bell singlet state, and is certified explicitly by value indefiniteness. While “true randomness” is

a mathematical impossibility, the certification by value indefiniteness ensures the quantum random bits are

incomputable in the strongest sense. This is the first QRNG setup in which a physical principle (Kochen-

Specker value indefiniteness) guarantees that no single quantum bit produced can be classically computed

(reproduced and validated), the mathematical form of bitwise physical unpredictability.

The effects of various experimental imperfections are discussed in detail, particularly those related to

detector efficiencies, context alignment and temporal correlations between bits. The analysis is to a large

extent relevant for the construction of any QRNG based on beam-splitters. By measuring the two entan-

gled photons in maximally misaligned contexts and utilizing the fact that two rather than one bitstring are

obtained, more efficient and robust unbiasing techniques can be applied. A robust and efficient procedure

based onXORing the bitstrings together—essentially using one as a one-time-pad for the other—is proposed

to extract random bits in the presence of experimental imperfections, as well as a more efficient modification

of the von Neumann procedure for the same task. Some open problems are also discussed.
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I. INTRODUCTION

Random numbers have been around for more than 4,000 years, but never have they been in

such demand as in our time. People use random numbers everywhere. Thereby, randomness is

understood through various “symptoms.” Here are three of the largely accepted ones:

(i) Unpredictability: It is impossible to win against a random sequence in a fair betting game.

(ii) Incompressibility: It is impossible to compress a random sequence.

(iii) Typicalness: Random sequences pass every statistical test of randomness.

Can our intuition on randomness be cast in more rigorous terms? Randomness plays an essen-

tial role in probability theory, the mathematical calculusof random events. Kolmogorov axiomatic

probability theory assigns probabilities to sets of outcomes and shows how to calculate with such

probabilities; it assumes randomness, but does not distinguish between individually random and

non-random elements.

For example, under a uniform distribution, the outcome ofn zeros, 000· · ·0
︸ ︷︷ ︸

n times

, has the same

probability as any other outcome of lengthn, namely 2−n. A similar situation appears in quantum

mechanics: quantum randomness is postulated, not defined ordeduced.

Algorithmic information theory (AIT) [1], developed in the1960s, defines and studies individ-

ual random objects, like finite bitstrings or infinite sequences. AIT shows that “pure randomness”

or “true randomness” does not exist from a mathematical point of view. For example, there is no

infinite sequence passing all tests of randomness. Randomness cannot be mathematically proved:

one can never be sure a sequence is random, there are only forms and degrees of randomness.

Computers offer “random numbers” produced by algorithms. Computer scientists needed a

long time to realize that randomness produced by software isnot random, but only pseudo-random.

This form of randomness mimics well the human perception of randomness, but its quality is

rather low because computability destroys many symptoms ofrandomness, e.g. unpredictability.

It is not totally unreasonable to put forward that pseudo-randomness rather reflects its creators’

subjective “understanding” and “projection” of randomness [2]. And although no computer or

software manufacturer claims that their products can generate truly random numbers, recently such

formally unfounded claims have re-appeared for randomnessproduced with physical experiments

suggesting that “truly random numbers have been generated at last” [3, 4].
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II. QUANTUM RANDOMNESS

A. Theoretical claims to quantum randomness

Quantum mechanics has a credible claim to be one of (if not) the best sources of randomness.

There are many quantum phenomena which can be used for randomnumber generation: nuclear

decay radiation sources, the quantum mechanical noise in electronic circuits (known as shot noise),

or photons traveling through a semi-transparent mirror.

What is the rationale for the claim that quantum randomness is indeed a better form of

randomness than, say, pseudo-randomness? A quantum randomexperiment certified by value

indefiniteness—the fact that there can, in general, be no co-or pre-existing definite values pre-

scribable to certain sets of measurement outcomes [5, 6]—via the Kochen-Specker Theorem [7]

generates aninfinite (strongly) incomputable sequence of bits: every Turing machine can repro-

duce exactly only finitely many scattered digits of such an infinite sequence, i.e. the sequence is

bi-immune [5]. Such certification, as has already previously been pointed out in [5], is based on the

assumption that there are no contextual hidden variables. Actually, a stronger statement is true: no

Turing machine can be proved to reproduce exactly any digit of such an infinite sequence, i.e. it is

Solovay bi-immune [8]. Indeed, if the value of a bit could be computed before measurement then

we could assign a definite value to the observable, a contradiction. The tricky part is that we need

to look at infinite sequences to prove the incomputability ofindividual bits. It is this formal incom-

putability which corresponds to the physical notion of indeterminism in quantum mechanics—the

inability even in principleto predict the outcome of certain quantum measurements—rather than

the mathematically vacuous notion of “true randomness.”

Quantum random number generators (QRNGs) based on beam splitters [9, 10] have been real-

ized by the Zeilinger group in Innsbruck and Vienna [11] and applied for the sake of violation of

Bell’s inequality under strict Einstein locality conditions [12].

The Gisin group in Geneva [13], and in particular its spin-off id Quantique, produces and

markets a commercial device calledQuantis[14]. In order to eliminate bias, the device employs

von Neumann normalization (actually a more efficient iterated version due to Peres is used [15])

which requires theindependenceof individual events: bits are grouped into pairs, equal pairs (00

or 11) are discarded and we replace 01 with 0 and 10 with 1 [16].

A group in Shanghai and Beijing [17] has utilized a Fresnel multiple prism as polarizing beam
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splitter. As a normalization technique, previously generated experimental sequences have been

used as one time pad to “encrypt” random sequences.

QRNGs based on entangled photon pairs have been realized by asecond Chinese group in Bei-

jing and Ji’nan [18], who utilized spontaneous parametric down-conversion to produce entangled

pairs of photons. One of the photons has been used as trigger,mostly to allow a faster data pro-

duction rate by eliminating double counts. Again, von Neumann normalization has been applied

in an attempt to eliminate bias.

A group from the Hewlett-Packard Laboratories in Palo Alto and Bristol [19] has used entan-

gled photon pairs in the Bell basis state|H1V2〉+ |V1H2〉 (note that this is not a singlet state and

attains this form only for one polarization direction; in all the other directions the state contains

alsoV1V2 as well asH1H2 contributions), where the outcomesH1,V1 andH2,V2 refer to observ-

ables associated with unspecified (presumably identical for both particles) directions. In analogy

to von Neumann normalization, the coincidence eventsH1V2 andV1H2 have been mapped into 0

and 1, respectively. Thereby, as the authors have argued, the 2-qubit space of the photon pair is

effectively restricted to a two-dimensional Hilbert subspace described by an effective-qubit state.

A more recent rendition of a QRNG [20], although not based on photons and beamsplitters,

utilizes Boole-Bell-type setups “secured by” Boole-Bell-type inequality violations in the spirit of

quantum cryptographic protocols [21, 22]. This provides some indirect “statistical verification”

of value indefiniteness (again under the assumption of noncontextuality), but falls short of provid-

ing certification of strong incomputabilityvia value indefiniteness [5, 23]. With regard to value

indefiniteness, the difference between Boole-Bell-type inequalitiesversusKochen-Specker-type

theorems is this: In the Boole-Bell-type case, the breach ofvalue indefiniteness needs not hap-

pen at every single particle, whereas in the Kochen-Specker-type case this must happenfor every

particle [6]. Pointedly stated, the Boole-Bell-type violation is statistical, butnot necessarilyon

every quantum separately. Hence, because a Boole-Bell-type violation does not guarantee that

every bit is certified by value indefiniteness, one could potentially produce sequences containing

infinite computable subsequences “protected” by Boole-Bell-type violations. Further, given that

such criticisms seem also to hold for the statistical verification of value indefiniteness [24–26], it

seems unlikely that statistical tests of the measurement outcomes alone can fully certify such a

QRNG.
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B. Shortcomings of current QRNGs

It is clear that any QRNG claiming a better quality of randomness has to produce at least

an infinite incomputable sequence of outputs, preferably a strongly incomputable one. Do the

current proposals of QRNGs generate “in principle” strongly incomputable sequences of quantum

random bits? To answer this question one has to check whetherthe QRNG is “protected” by value

indefiniteness, the only physical principle currently known to guarantee incomputability; in most

cases the answer is either negative or cannot be verified because of lack of information about the

mechanism of the QRNG.

In Ref. [27] tests based on algorithmic information theory were used to analyze and compare

quantum and non-quantum bitstrings. Ten strings of length 232 bits each from two quantum sources

(the commercialQuantisdevice [28] and the Vienna Institute for Quantum Optics and Quantum

Information group [29]) and three classical sources (Mathematica, Maple and the binary expansion

of π) were analyzed. No distribution was assumed for any of the sources, yet a test based on

Borel-normality was able to distinguish between the quantum and non-quantum sources of random

numbers. It is known that all algorithmically random strings are Borel-normal [30], although the

converse is not true. Indeed, the tests found the quantum sources to be less normal than the

pseudo-random ones. Is this a property of quantum randomness, or evidence of flaws in the tested

QRNGs?

In Ref. [31] the probability distribution for an ideal QRNG was discussed: not surprisingly,

such devices are seen to sample from the uniform distribution. Testing the same strings as in [27]

against this expected distribution, strong evidence was found that the QRNGs tested arenot sam-

pling from the correct distribution. Further, weaker evidence suggests the pseudo-random sources

of randomness—Mathematica and Maple—are, on the contrary,too normal. The results of the

analysis are presented in Table I.

The notable exception to these findings are the Vienna bits which, when viewed at the single-bit

level, appear unbiased. It appears that the good performance at the 1-bit level has been achieved

(perhaps through experimental feedback control) at the sacrifice of the performance at thek ≥ 2

level, a property much harder to control without post-processing. TheQuantisQRNG uses iterated

von Neumann normalization in an attempt to unbias the output; the fact that this is not completely

successful indicates either a significant variation in biasover time, or non-independence of suc-

cessive bits [31].
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QRNG k= 1 k= 2 k= 3 k= 4 k= 5

Maple 0.79 0.15 0.83 0.47 0.97

Mathematica 0.18 0.38 0.35 0.45 0.99

π 0.38 0.27 0.05 0.62 0.21

Quantis < 10−10 < 10−10 < 10−10 < 10−10 < 10−10

Vienna 0.12 < 10−10 < 10−10 < 10−10 < 10−10

TABLE I. p-values for theχ2 test that the bitstring is sampled from the uniform distribution. Bold values

indicate statistically significant evidence that the strings are not sampled from the uniform distribution.

These results highlight the need to pay extra attention in the design process to the distribution

produced by a QRNG. Normalization techniques are an effective way to remove bias, but to have

the desired effect assumptions about independence and constancy of bias must be satisfied [31].

While experiments will never realize the ideal QRNG, one needs to be aware of how much affect

experimental imperfections have. Any credible QRNG shouldtake these issues into account, as

well as the need of explicit certification of randomness by some physical law, e.g. value indefinite-

ness.

III. THE SCHEME UNDER IDEAL CONDITIONS

In what follows, a proposal for a QRNG depicted in Fig. 1, previously put forward in Ref. [23],

will be discussed in detail. It utilizes the singlet state oftwo two-state particles (e.g., photons of

linear polarization) proportional to|H1V2〉− |V1H2〉, which is form invariant in all measurement

directions.

A single photon light source (presumably an LED) is attenuated so more than one photons are

rarely in the beam path at the same time. These photons impinge on a source of singlet states of

photons (presumably by spontaneous parametric down-conversion in a nonlinear medium). The

two resulting entangled photons are then analyzed with respect to their linear polarization state at

some directions which areπ/4 radians “apart,” symbolized by “⊕” and “⊗,” respectively.

Due to the required four-dimensional Hilbert space, this QRNG is “protected” by Bell- as well

as Kochen-Specker- and Greenberger-Horne-Zeilinger-type value indefiniteness [32]. The proto-

col utilizes all three principal types of quantum indeterminism: (i) the indeterminacy of individual
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FIG. 1. Scheme of a quantum random number generator [23].

outcomes of single events as proposed by Born and Dirac; (ii)quantum complementarity (due

to the use of conjugate variables), as put forward by Heisenberg, Pauli and Bohr; and (iii) value

indefiniteness due to Bell, Kochen & Specker, and Greenberger, Horne & Zeilinger.

This, essentially, is the same experimental configuration as the one used for a measurement

of the correlation function at the angle ofπ/4 radians (45◦). Whereas the correlation function

averages over “a large number” of single contributions, a random sequence can be obtained by

concatenating these single pairs of outcomes via addition modulo 2.

Formally, suppose that for theith experimental run, the two outcomes areO⊕
i ∈ {0,1} corre-

sponding toD⊕
0 or D⊕

1 , andO⊗
i ∈ {0,1} corresponding toD⊗

0 or D⊗
1 . These two outcomesO⊕

i

andO⊗
i , which themselves form two sequences of random bits, are subsequently combined by the

XOR operation, which amounts to their parity, or to the additionmodulo 2 according to Table II (in

what follows, depending on the formal context,XOR refers to either a binary function of two binary

observables, or to the logical operation). Stated differently, one outcome is used as aone time pad

to “encrypt” the other outcome, andvice versa. As a result, one obtains a sequencex= x1x2 . . .xn

with

xi = O⊕
i +O⊗

i mod 2. (1)

For theXORd sequence to still be certifiably incomputable (via value indefiniteness), one must

prove this certification is preserved underXORing—indeed strong incomputability itself isnotnec-

essarily preserved. By necessity any QRNG certified by valueindefiniteness must operate non-

trivially in a Hilbert space of dimensionn ≥ 3. To transform then-ary (incomputable) sequence

into a binary one, a functionf : {0,1, . . . ,n−1} → {0,1,λ} must be used (λ is the empty string);
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O⊕
i O⊗

i O⊕
i XOR O⊗

i

0 0 0

0 1 1

1 0 1

1 1 0

TABLE II. The logical exclusive or operation.

to claim certification, the strong incomputability of the bits must still be guaranteed after the ap-

plication of f . This is a fundamental issue which has to be checked for existing QRNGs such

as that in Ref. [20]; without it one cannot claim to produce truly indeterministic bits. In general

incomputability itself is not preserved byf ; however by consideration of the value indefiniteness

of the source the certification can be seen to hold underXOR as well as when discarding bits [8].

IV. “RANDOM” ERRORS OR SYSTEMATIC ERRORS

In what follows we shall discuss possible “random” (no pun) or systematic errors in experi-

mental realizations of this QRNG (many of these errors may appear in other types of photon-based

QRNGs.) Our aim is to draw attention to the specific nature of such errors and how they affect the

resulting bitstrings. A good QRNG must, in addition to the necessary certification (e.g. by value

indefiniteness), take into account the nature of these errors and be carefully designed (along with

any subsequent post-processing) so that the resultant distribution of bitstrings the QRNG samples

from is as close as possible to the expected uniform distribution [31]. Both the uniformity of the

source and incomputability are “independent symptoms” of randomness, and care must be taken

to obtain both properties.

A. Double counting

One conceivable problem is that the detectors analyzing thedifferent polarization directions

do not respond to photons of the same pair, but to two photons belonging to different pairs. This

seems to be no drawback for the application of theXOR operation since (at least in the absence of

temporal correlations between bits) the postulates of quantum mechanics state that the individual
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outcomes occur independently and indeterministically (the last property is mathematically mod-

eled by strong incomputability [5, 8]). If, however, eventsare not independent then more care is

needed. However, correlation between events is an undesirable property in itself, and as long as

care is made, it is unlikely to be made worse by double counting.

B. Non-singlet states

The state produced by the spontaneous parametric down-conversion may not be exactly a sin-

glet. This may give rise to a systematic bias of the combined light source-analyzer setup in a very

similar way as for beam splitters.

C. Non-alignment of polarization measurement angles

No experimental realization will attain a “perfect anti-alignment” of the polarization analyzers

at anglesπ/4 radians apart. Only in this ideal case are the bases conjugate and the correlation

function will be exactly zero. Indeed, “tuning” the angle toobtain equi-balanced sequences of

zeroes and ones may be a method to properly anti-align the polarizers. However, one has to keep

in mind that any such “tampering” with the raw sequence of data to achieve Borel normality (e.g.

by readjustments of the experimental setup) may introduce unwanted (temporal) correlations or

other bias [27].

Incidentally, the angleπ/4 is one of the three points at angles 0,π/4 andπ/2 in the interval

[0,π/2] in which the classical and quantum correlation functions coincide. For all other angles,

there is a higher ratio of different or identical pairs than could be expected classically. Thus,

ideally, the QRNG could be said to operate in the “quasi classical” regime, albeit fully certified by

quantum value indefiniteness.

Quantitatively, the expectation function of the sum of the two outcomes modulus 2 can be

defined by averaging over the sum modulo 2 of the outcomesO0
i ,O

θ
i ∈ {0,1} at angleθ “apart” in

the ith experiment, over a “large number” of experiments; i.e.,

EXOR(θ) = lim
N→∞

1
N

N

∑
i=1

(

O0
i +Oθ

i mod 2
)

.

This is related to the standard correlation function,

C(θ) = lim
N→∞

1
N

N

∑
i=1

O0
i ·Oθ

i
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by

EXOR(θ) =
|C(θ)−1|

2
,

where

O0
i ·Oθ

i =







1, if O0
i = Oθ

i ,

−1, if O0
i 6= Oθ

i .

A detailed calculation yields the classical linear expectation functionEcl
XOR

(θ) = 1−2θ/π, and the

quantum expectation functionEXOR(θ) = (1/2)(1+cos2θ).

0 Π

4
Π

2

0

1
2

1

Θ @radD

E
HΘ
L

FIG. 2. (Color online) The classical and quantum expectation functions and the linear quantum approxima-

tion aroundπ/4.

Thus, for angles “far apart” fromπ/4, theXOR operation actuallydeterioratesthe two ran-

dom signals taken from the two analyzersseparately.The deterioration is evengreater quantum

mechanically than classically,as the entangled particles are more correlated and thus “less in-

dependent.” Potentially, this could be utilized to ensure aπ/4 mismatch more accurately than

possible through classical means. This will be discussed insection V below.

In order to avoid this negative feature while generating bits, instead ofXORing outcomes of

identical partner pairs, one couldXOR time-shifted outcomes; e.g., instead of the expression in
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Eq. (1) one may consider

xi = O0
i +Oθ

i+ j mod 2, with j > 0. (2)

One should makej large enough so that, taking in to account double counting, there is no chance of

accidentally causing two offset but correlated outcomes tobeXOR’d together. Theoretical analysis

of the effects of experimental imperfections and theXOR operation are discussed later in the paper,

andXORing shifted pairs is an efficient and effective procedure forreducing such errors.

D. Different detector efficiencies

Differences in detector efficiencies result in a bias of the sequence. This complicating effect

is separate from non-perfect misalignment of polarizationcontext. Suppose that the probabilities

of detection are denoted bypH1, pH2, pV1, pV2. SincepH1 + pV1 = pH2 + pV2 = 1, the probability

to find pairs adding up to 0 and 1 modulo 2 arepH1 pH2 + pV1 pV2 = 1− (pH1 + pH2)+2pH1 pH2

and pH1 pV2 + pV1 pH2 = pH1 + pH2 − 2pH1 pH2, respectively (adding up to 1). If bothpH1 6= pV1

andpH2 6= pV2 then the resultingXOR’d sequence is biased. The two obtained sequences could be

unbiased before or afterXORing by the von Neuman method [16, p. 768], although any temporal

correlations would violate the condition of independence required by this method. One should

keep in mind, however, that the von Neumann normalization procedure necessarily discards many

bits (more efficient methods exist [15]). The efficiency can be increased by utilizing both strings

more carefully, and such a method is discussed in Section VI D.

E. Unstable detector bias

Von Neumann type normalization procedures will only removebias due to detector efficiencies

if the bias remains constant over time. If the bias drifts over time due to instability in the detectors,

the resulting normalized sequence will not be unbiased but instead will simply be less biased [31].

It is difficult to overcome this, as experimental instability is inevitable. However, bounds on the

bias of the normalized sequence based on reasonable experimental parameters [31] can be used to

determine the length for which the source samples “closely enough” from the uniform distribution.

If the bias varies independently between detectors, theXORing process should serve to reduce

the impact of varying detector efficiencies and applying vonNeumann normalization to theXOR’d

bitstring is advantageous compared working with a single bitstring from a source of varying bias.
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F. Temporal correlations, photon clustering and “bunching”

Due to the Hanbury-Brown-Twiss effect, the photons may be temporally correlated and thus

arrive clustered or “bunched.” Temporal correlations appear also at “double-slit analogous exper-

iments” in the time domain [33], in which the role of the slitsis played by windows in time of

attosecond duration. This can, to an extent, be avoided by ensuring successive photons are suf-

ficiently separated, although this poses a limit on the bitrate of such a device. However, since

the case where two or more singlet pairs are in the beam path atonce is potentially of sufficient

importance, this effect needs further careful consideration.

Another conceivable source of temporal correlations is dueto the detector dead-time,Td, during

which the detector is inactive after measurement [13]. If wemeasureO⊕
i = 0, the detectorD⊕

0

corresponding to 0 is unable to detect another photon for a small amount of time, significantly

increasing the chance of detecting a photon at the other detector during this time, obtaining a 1.

This leads to higher than expected chances of 01 and 10 being measured. This is problematic as

such a correlation will not be removed byXORing, even with an offset ofj. However, this can be

avoided by discarding any measurements within timeTd from the previous measurement.

In view of conceivable temporal correlations, it would be interesting to test the quality of the

random signal asj is varied in Eq. (2). As previously mentioned, any temporal correlations will

violate the condition of independence needed for von Neumann normalization making it difficult to

remove any bias in the output; if the dependence can be bounded then unbiasing techniques such as

that proposed by Blum [34] could be used instead of von Neumann’s procedure. It seems desirable

and simpler to avoid temporal correlations with carefully designed experimental methodology as

opposed to post-processing where possible.

G. Fair sampling

As in most optical tests of Bell’s inequalities [35, 36], theinefficiency of photon detection

requires us to make thefair sampling assumption[37–40]: the loss is independent of the measure-

ment settings, so the ensemble of detected systems providesa fair statistical sample of the total

ensemble. In other words, we must exclude the possibility ofa “demon” in the measuring device

conspiring against us in choosing which bits to reject.

The strength of the proposed QRNG relies crucially on value indefiniteness, so without this fair
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sampling assumption we would forfeit the assurance of bitwise incomputability of the generated

sequence. As an example let us consider the extreme case thatthe detection efficiency is less that

50%; our supposed demon could reject all bits detected as 0 and be within the bounds given by this

efficiency, while the produced sequence would be computable. In the more general case for any

efficiencyρ < 1 the demon could reject bits to ensure every(1/(1−ρ))’th bit is a zero; this would

introduce an infinite computable subsequence, a property violating the strong incomputability of

the output bitstring produced by our QRNG, and still be consistent with the detection efficiency.

Note that this condition is stronger than the fair sampling assumption required in tests for

violation of Bell-type inequalities because, without thisassumption,any inefficiency can lead to a

loss of randomness.

V. BETTER-THAN-CLASSICAL OPERATIONALIZATION OF SPATIAL O RTHOGONALITY

As has already been pointed out, for no temporal offset and inthe regime of relative spatial

angles aroundπ/4 — i.e., at almost half orthogonal measurement directions —the classical linear

expectation functionEcl
XOR

(θ) = 1−2θ/π, for 0< θ < π/4 is strictlysmaller, and forπ/4< θ <

π/2 is strictlygreaterthan the quantum expectation functionEXOR(θ) = (1/2)(1+ cos2θ). This

can be demonstrated by rewritingθ = π/4±∆θ, and by considering a Taylor series expansion

aroundπ/4 for small∆θ ≪ 1, which yieldsEXOR(π/4±∆θ) ≈ (1/2)∓∆θ, whereasEcl
XOR

(π/4±
∆θ) = (1/2)∓ (2/π)∆θ (see Fig. 2).

Phenomenologically this indicates less-than-classical numbers of equal pairs of outcomes “0–

0” as well as “1–1,” and more-than-classical non-equal pairs of outcomes “0–1” as well as “1–0,”

respectively, for the quantum case in the region 0< θ < π/4; as well as the reverse behavior in

the regionπ/4< θ < π/2. This in turn results in “less zeroes” and “more ones” of theresulting

sequence obtained byXORing the pairs of outcomes in the region 0< θ < π/4, as well as in “more

zeroes” and “less ones” in the regionπ/4 < θ < π/2 as compared to classical non-entangled

systems [41]. Hence, with increasing aberration from misalignment∆θ the quantum device “drifts

off” into biasedness of the output “faster” than any classical device. As a result, Borel normality

is expected to be broken more strongly and quickly quantum mechanically than classically.

This effect could in principle be used to operationalize spatial orthogonality through the fine-

tuning of angular directions yielding Borel normality. In the resulting protocols, quantum mechan-

ics outperforms any classical scheme due to the differencesin the correlation functions.
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VI. THEORETICAL ANALYSIS ON GENERATED BITSTRINGS

Here we analyze the output distribution of the proposed QRNGand the ability to extract uni-

formly distributed bits from the two generated bitstrings in the presence of experimental imper-

fections.

A. Probability space construction

With reference to Fig. 1 for the setup, we write the generatedBell singlet state with respect the

top (“⊕”) measurement context (this is arbitrary as the singlet is form invariant in all measurement

directions) as 1√
2
(|01〉− |10〉). The lower (“⊗”) polarizer is at an angle ofθ to the top one. After

beam splitters we have the state

1√
2
[cosθ(|00〉− |11〉)−sinθ(|01〉+ |10〉)] ,

so we measure the same outcome in both contexts with probability cos2 θ and different outcomes

with probability sin2 θ.

More formally, the QRNG generates two strings simultaneously, so the probability space con-

tains pairs of strings of lengthn. Let e⊕x ,e
⊗
y for x,y= 0,1 be the detector efficiencies of theD⊕

x

andD⊗
y detectors respectively. For perfect detectors, i.ee⊕x = e⊗y , we would expect a pair of bits

(a,b) to be measured with probability 2−1(sin2θ)a⊕b(cos2 θ)1−a⊕b; non-perfect detectors alter this

probability depending on the values ofa,b.

Let B= {0,1}, and forx,y∈ Bn let d(x,y) be the Hamming distance between the stringsx and

y, i.e the number of positions at whichx andy differ, and let #b(x) be the number ofbs in x.

The probability space [42] of bitstrings produced by the QRNG is(Bn×Bn,2Bn×Bn
,Pn2), where

the probabilityPn2 : 2Bn×Bn → [0,1] is defined for allX ⊆ Bn×Bn as follows:

Pn2(X) =
1
Zn

∑
(x,y)∈X

(sin2θ)d(x,y)(cos2 θ)n−d(x,y)(e⊕0 )
#0(x)(e⊕1 )

#1(x)(e⊗0 )
#0(y)(e⊗1 )

#1(y),

and the term

Zn = ∑
(x,y)∈Bn×Bn

(sin2 θ)d(x,y)(cos2 θ)n−d(x,y)(e⊕0 )
#0(x)(e⊕1 )

#1(x)(e⊗0 )
#0(y)(e⊗1 )

#1(y)

=
[
(sin2θ(e⊕0 e⊗1 +e⊕1 e⊗0 )+cos2 θ(e⊕0 e⊗0 +e⊕1 e⊗1 )

]n

ensures normalization.
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We can check easily that this is indeed a valid probability space (i.e. that is satisfies the Kol-

mogorov axioms [43]). Note that for equal detector efficiencies we have

Zn = (e⊕)n(e⊗)n ∑
(x,y)∈Bn×Bn

(sin2θ)d(x,y)(cos2 θ)n−d(x,y) = 2n(e⊕)n(e⊗)n,

hence the probability has the simplified form

Pn2(X) = ∑
(x,y)∈X

2−n(sin2θ)d(x,y)(cos2θ)n−d(x,y).

Given that the proposed QRNG produces two (potentially correlated) strings, it is worth consid-

ering the distribution of each string taken separately. Given the rotational invariance of the singlet

state this should be uniformly distributed. However, because the detector efficiencies may vary in

each detector, this is not, in general, the case. For every bitstringx∈ Bn we have

Pn2({x}×Bn) =
1
Zn

∑
y∈Bn

(sin2 θ)d(x,y)(cos2θ)n−d(x,y)(e⊕0 )
#0(x)(e⊕1 )

#1(x)(e⊗0 )
#0(y)(e⊗1 )

#1(y)

=
(e⊕0 )

#0(x)(e⊕1 )
#1(x)

Zn
∑

y∈Bn

(sin2 θ)d(x,y)(cos2 θ)n−d(x,y)(e⊗0 )
#0(y)(e⊗1 )

#1(y)

=
1
Zn

(
e⊕0 (e

⊗
1 sin2 θ+e⊗0 cos2 θ)

)#0(x) (e⊕1 (e
⊗
0 sin2θ+e⊗1 cos2 θ)

)#1(x)
. (3)

We see that each bitstring taken separately appears to come from a constantly biased source

where the probabilities that a bit is 0 or 1,p0, p1, are given by the formulae

p0 = e⊕0 (e
⊗
1 sin2 θ+e⊗0 cos2 θ)/Z1, p1 = e⊕1 (e

⊗
0 sin2 θ+e⊗1 cos2 θ)/Z1.

This can alternatively be viewed as the distribution obtained if we were to discard one bitstring

after measurement. Note that if eithere⊗0 = e⊗1 or we have perfect misalignment (i.e.θ = π/4)

then the probabilities have the simpler formulae:

px = e⊕x /(e
⊕
0 +e⊕1 ),x∈ {0,1}.

In this case, if we further have thate⊕0 = e⊕1 , we obtain the uniform distribution by discarding one

string after measurement.

The analogous result for the symmetrical casePn2 (Bn×{y}) also holds.

B. Independence of the QRNG probability space

If we were to discard one bitstring it is clear the other bitstring is generated independently in

a statistical sense since the probability distribution source producing it is constantly biased and
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independent [31]. However, we would like to extend our notion of independence defined in [31]

to this 2-bitstring probability space.

We say the probability space(Bn×Bn,2Bn×Bn
,Rn2) is independentif for all 1 ≤ k ≤ n and

x1, . . . ,xk, y1, . . . ,yk ∈ B we have

Rn2(x1 . . .xkB
n−k×y1 . . .ykB

n−k) =Rn2(x1 . . .xk−1Bn−k+1×y1 . . .yk−1Bn−k+1)

×Rn2(Bk−1xkB
n−k×Bk−1ykB

n−k).

For all x,y∈ B|x| and 0≤ k+ |x| ≤ n we have

Pn2(Bn−kxBn−k−|x|×Bn−kyBn−k−|x|) = P|x|2((x,y)).

Indeed, using the additivity of the Hamming distance and the#x functions, e.g.

d(x1 . . .xk,y1 . . .yk) = d(x1 . . .xk−1,y1 . . .yk−1)+d(xk,yk), we have:

Pn2(Bn−kxBn−k−|x|×Bn−kyBn−k−|x|) = ∑
a1,a2∈Bn−k

∑
b1,b2∈Bn−k−|x|

Pn2 ((a1xb1,a2yb2))

=P|x|2((x,y)) ∑
a1,a2∈Bn−k

∑
b1,b2∈Bn−k−|x|

P(n−|x|)2 ((a1b1,a2b2))

=P|x|2((x,y))P(n−|x|)2(B
n−|x|×Bn−|x|)

=P|x|2((x,y)).

As a direct consequence we deduce that the probability spacePn2 defined above is independent.

C. XOR application

We now consider the situation where the two output bitstrings x andy areXOR’d against each

other (effectively using one as a one-time pad for the other)to produce a single bitstring, and we

investigate the distribution of the resulting bitstring. Rather than only considering the effect of

XORing paired (and potentially correlated) bits, we also considerXORing outcomes shifted byj > 0

bits as described in Section IV C.

For j ≥ 0 andx,y∈ Bn+ j define the offset-XOR fucntionXj : Bn+ j ×Bn+ j → Bn asXj(x,y) = z

wherezi = xi ⊕yi+ j for i = 1, . . . ,n. Forz∈ Bn the set of pairs(x,y) which producez whenXOR’d

with offset j is

A j(z) = {(x,y) | x,y∈ Bn+ j ,Xj(x,y) = z}= {(ua,b(u XOR z) | u∈ Bn,a,b∈ B j}.
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The probability space of the output produced by the QRNG is(Bn,2Bn
,Qn, j), whereQn, j : 2Bn →

[0,1] is defined for allX ⊆ Bn as:

Qn, j(X) = ∑
z∈X

P(n+ j)2(A j(z)). (4)

We note that|A j(z)|= 2n+2 j and check this is a valid probability space. Indeed,Qn, j( /0) = 0, is

trivially true,

Qn, j(B
n) = ∑

z∈Bn

P(n+ j)2(A j(z)) = P(n+ j)2

(
⋃

z

A j(z)

)

= P(n+ j)2
(
Bn+ j ×Bn+ j)= 1,

bcause allA j(z) are disjoint and thus

|
⋃

z

A j(z)|= 2n2n+2 j = (2n+ j)2, so
⋃

z

A j(z) = Bn+ j ×Bn+ j ,

and for disjointX,Y ⊆ Bn we haveQn, j(X∪Y) = Qn, j(X)+Qn, j(Y).

We now explore the form of theXOR’d distributionQn, j for j = 0 and j > 0.

Let z∈ Bn and j ≥ 0. By z[m,k] we denote the substringzm. . .zk,1≤ m≤ k≤ n. We have

Qn, j(z) =P(n+ j)2(A j(z)))

= ∑
a,b∈2 j

∑
u∈2n

P(n+ j)2((ua,b(u XOR z))

= ∑
u∈2n

P(n− j)2 ((u[ j +1,n],(u XOR z)[1,n− j]))

· ∑
a∈2 j

Pj2 ((a,(u XOR z)[n− j +1,n])) ∑
b∈2 j

Pj2 ((u[1, j],b)) .

For j = 0, we note thatd(u,u XOR z) = #1(z), and thus we have:

Qn,0(z) = ∑
u∈2n

Pn2 ((u,(u XOR z)))

=
1
Zn

(sin2 θ)#1(z)(cos2θ)#0(z) ∑
u∈Bn

(e⊕0 )
#0(u)(e⊕1 )

#1(u)(e⊗0 )
#0(u XOR z)(e⊗1 )

#1(u XOR z)

=
1
Zn

(
sin2 θ(e⊕0 e⊗1 +e⊕1 e⊗0 )

)#1(z) (cos2θ(e⊕0 e⊗0 +e⊕1 e⊗1 )
)#0(z) .

We recognize this as a constantly biased source where

p0 = cos2 θ(e⊕0 e⊗0 +e⊕1 e⊗1 )/Z1, p1 = sin2θ(e⊕0 e⊗1 +e⊕1 e⊗0 )/Z1.

It is interesting to compare the form ofQn,0 to the distribution of the constantly biased source

Eq. (3) by discarding one output string—the former is more sensitive to misalignment, the latter
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to differences in detection efficiencies. In the case of perfect/equal detector efficiencies (but non-

perfect misalignment), discarding one string produces uniformly distributed bitstrings, whereas

XORing does not.

We now look at the case wherej > 0. For the ideal situation ofθ = π/4 we have the same

result as for thej = 0 case, while if we have equal detector efficiencies then we get the uniform

distribution. We show this as follows (note thatZn+ j = 2n+ j in this case):

Qn, j(z) =2−n− j ∑
un∈B

· · · ∑
un− j∈B

(sin2 θ)un⊕zn− j⊕un− j (cos2 θ)1−un⊕zn− j⊕un− j · · ·

× ∑
u1∈B

(sin2 θ)u j+1⊕z1⊕u1(cos2 θ)1−u j+1⊕z1⊕u1

=2−n− j ∑
un∈B

· · · ∑
un− j∈B

(sin2 θ+cos2θ) · ∑
u1∈B

(sin2θ+cos2 θ)

=2−n− j ∑
un− j+1...un∈B j

1

=2−n.

However, in the more general case of non-equal detector efficiencies, the distribution is no

longer independent, although in general is much closer to the uniform distribution than thej = 0

case. (Recall that independence is a sufficient but not necessary condition for uniform distri-

bution [31].) It is indeed this “closeness”—the total variation distance given by∆(Un,Qn, j) =

1
2 ∑x∈Bn |2−n−Qn, j(x)|—which is the important quantity (Un is the uniform distribution onn-bit

strings). However, sinceQn, j for j > 0 is not independent, von Neumann normalization cannot

be applied to guarantee the uniform distribution; indeed the dependence is not even bounded to a

fixed number of preceding bits.

D. Criticisms and alternative operationalizations

This given, one may ask why not simply discard one string to give the distribution in Eq. (3)

and apply von Neumann normalization to obtain uniformly distributed bitstrings. There are two

primary answers to this question.

(i) As discussed previously the effect of drift in bias and temporal correlations will ensure this

method will not produce the uniform distribution anyway. Indeed, the distributionQn, j for j > 0

should be more robust to those effects (Qn, j for example is less sensitive to detector bias than

that in Eq. (3)). It is extremely plausible thatQn, j gives as good results as discarding one string in
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x bin(174) bin(487) bin(973)

Q10,0(x) 5.90×10−4 9.70×10−4 1.64×10−4

Q10,1(x) 9.75×10−4 9.71×10−4 9.71×10−4

Q10,2(x) 9.78×10−4 9.70×10−4 9.70×10−4

U10(x) 9.77×10−4 9.77×10−4 9.77×10−4

TABLE III. Emperical evidence for the quality ofXORing with j > 0 compared toj = 0 and configuration

settings ofθ = π/5, e⊕0 = 0.30, e⊕1 = 0.33, e⊗0 = 0.29, e⊗1 = 0.30 — this is probably much worse (further

from the ideal case) that one would expect in an experimentalsetup. The (small) value ofn= 10 has been

used as, unfortunately, the distribution is very costly to calculate numerically. Here bin(m) denotes the (10-

bit zero-extended) binary representation ofm. For example, bin(1) = 0000000001, bin(2) = 0000000010,

etc.

∆(Q10,0,U10) 0.770271

∆(Q10,1,U10) 0.00441399

∆(Q10,1,U10) 0.00440061

TABLE IV. The variation from the uniform distribution of thedistributionsQ10, j , using the same parameters

as Table III.

practice; it is indeed very close to the uniform distribution as can be seen from Table IV and Fig. 3.

To compare properly the distributions, the followingopen questionmust be answered: what is the

boundρ depending one⊕x ,e
⊗
y andθ such that∆(Un,Qn, j)≤ ρ, and how does that compare to that

given in [31] for normalization of a source with varying bias?

Further,Qn, j produces bitstrings of lengthn, whereas applying von Neumann to a single string

produces a string with expected length at mostn/4 bits. This is a significant increase in efficiency,

making the shiftedXORing process extremely appealing for a high bitrate, un-normalized QRNG.

Even the j = 0 case with von Neumann applied afterXORing would often be preferable to dis-

carding one string, since it is less sensitive to detector efficiency (the hardware limit) and more

sensitive to to misalignment (which is controlled by the experimenter).

(ii) If one insists on a perfect theoretical distribution inthe presence of non-ideal misalignment

and unequal detector efficiencies, or perhaps theQn, j distribution is not sufficient for particular

19



-0.0008

-0.0004

0

0.0004

0.0008

0.0012

-0.0008

-0.0004

0

0.0004

0.0008

0.0012

String Number

Q
10

,j
-

2-
10

FIG. 3. (Color online) A plot ofQ10, j −2−10 for each of the 210 strings of length 10. The two casesj = 0

(blue) andj = 1 (red) show how much closer the probabilities given byQ10,1 are to that expected from the

uniform distribution than forQ10,0. The same experimental configuration as in Table IV has been used.

requirements, then one can still operationalize both strings to improve the efficiency of the QRNG

over discarding a single string by a simple modification of von Neumann’s procedure. To do

so, note that the pair of pairs(a1a2,b1b2) have the same probability as the pairs(a2a1,b2b1).

By mapping those witha1b1 < a2b2 (lexicographically) to 0, those witha1b1 > a2b2 to 1, and

discarding those witha1b1 = a2b2, one will obtain the uniform distribution as for von Neumann’s

procedure. The key advantage is that this will obtain strings of expected length up to 3n/8, while

maintaining the desired property of sampling from the uniform distribution.

The problem of determining how best to obtain the maximum amount of information from the

QRNG is largely a problem of randomness extractors [44], andis a trade off between the number

of uniformly distributed bits obtained and the processing cost—a suitable extractor needs to op-

erate in real-time for most purposes. As we have seen, the fact that two (potentially correlated)

bitstrings are obtained allows more efficient operation than a QRNG using single-photons. We

have shown how the proposed QRNG can be operationalized in more than one way: either by us-

ing shiftedXORing of bits to sample from a distribution which is close to (equal to in the ideal limit)
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the uniform distribution and efficient and robust to variouserrors, or by utilizing both produced

bitstrings to allow a more efficient normalization procedure giving (in absence of the aforemen-

tioned temporal effects) the uniform distribution. Many more operationalizations are undoubtedly

possible.

VII. SUMMARY

Every QRNG claiming to produce a better form of randomness than pseudo-randomness must

firstly be certified by some physical law implying the incomputability of the output bitstrings;

value indefiniteness is one such example. Most existing proposals of QRNGs are based on single

beam splitters and work in a dimension-two Hilbert space, sothey cannot be certified by value

indefiniteness given by the Kochen-Specker theorem (which holds only in a Hilbert space of di-

mension greater than 2). In this paper we have proposed a QRNGwhich, by utilizing an entangled

photon singlet-state in four-dimensional Hilbert space, is certified by value indefiniteness which

implies strong incomputability, the mathematical property corresponding to physical indetermin-

ism. While this is an ingredient of fundamental importance in any reasonable QRNG, we have

recognized that experimental imperfections will always prevent the QRNG from producing ex-

actly the theoretical uniform probability distribution, another essential symptom of randomness

(independent of incomputability). The form and effects of these conceivable experimental errors

have been discussed, and care has been taken to make the proposed QRNG robust to these effects.

Since this QRNG produces two bitstrings, we have proposedXORing the bitstrings produced—

using one as a one-time pad for the other—to obtain better protection against experimental im-

perfections, particuarly non-ideal misalignment and unequal detector efficiencies, and utilize the

benefit of these two strings over simply using one. Rather than XORing corresponding bits, bits

xi andyi+ j areXOR’d (for fixed j > 0) as this not only provides much better results, but also mit-

igates the effects of temporal correlations between adjacent bits. Further, we have proposed an

alternative normalization method based on von Neumann’s procedure which uses both bitstrings.

This procedure is significantly more efficient yet still guarantees uniformly distributed strings in

the presence of non-ideal misalignment and unequal detector efficiencies. We leave it as anopen

questionto improve upon the time-shiftedXOR method and find a technique to extract bits which

are provably uniformly distributed and is more efficient than the improved von Neumann method

discussed.
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Analyses of sequences generated by the proposed QRNG shouldbe conducted, utilizing the

knowledge of the expected uniform distribution, as in [27].In particular, the quality of both the

individual strings produced should be compared with that oftheXOR’d sequence, both with and

without von Neumann normalization applied, as well as the sequence produced by our improved

von Neumann method.

Further, in view of conceivable temporal correlations between bits, the quality of the random

bits should be tested asj is varied in Eq. (4). Since this has little effect on the bias of the resultant

string (and normalization can subsequently remove this), it would allow investigation of the effect

and significance of these conceivable temporal correlations.

The proposed QRNG produces bits which are both certified via value indefiniteness and should

be distributed more uniformly than those produced by existing QRNGs based on beam splitters.

It will be interesting to experimentally test the quality ofbits produced via this method against

existing classical and quantum sources of randomness.
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