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Abstract

In this paper we propose a quantum random number genera®M@Pwhich utilizes an entangled pho-
ton pair in a Bell singlet state, and is certified explicitiy\yalue indefiniteness. While “true randomness” is
a mathematical impossibility, the certification by valudeéfiniteness ensures the quantum random bits are
incomputable in the strongest sense. This is the first QRN@ $r which a physical principle (Kochen-
Specker value indefiniteness) guarantees that no singlguquabit produced can be classically computed
(reproduced and validated), the mathematical form of s#vghysical unpredictability.

The effects of various experimental imperfections areudised in detail, particularly those related to
detector efficiencies, context alignment and temporaletations between bits. The analysis is to a large
extent relevant for the construction of any QRNG based ombsggalitters. By measuring the two entan-
gled photons in maximally misaligned contexts and utitizthe fact that two rather than one bitstring are
obtained, more efficient and robust unbiasing techniquasheaapplied. A robust and efficient procedure
based orx0Ring the bitstrings together—essentially using one as atiome-pad for the other—is proposed
to extract random bits in the presence of experimental ifeptons, as well as a more efficient modification

of the von Neumann procedure for the same task. Some opeleprelare also discussed.
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I. INTRODUCTION

Random numbers have been around for more than 4,000 yeansever have they been in
such demand as in our time. People use random numbers everg/whhereby, randomness is

understood through various “symptoms.” Here are threeefdigely accepted ones:
(i) Unpredictability: It is impossible to win against a ramd sequence in a fair betting game.
(i) Incompressibility: It is impossible to compress a randsequence.
(iif) Typicalness: Random sequences pass every statigtgteof randomness.

Can our intuition on randomness be cast in more rigorousseriRandomness plays an essen-
tial role in probability theory, the mathematical calcubdsandom events. Kolmogorov axiomatic
probability theory assigns probabilities to sets of outesrand shows how to calculate with such
probabilities; it assumes randomness, but does not disihdetween individually random and
non-random elements.

For example, under a uniform distribution, the outcomenaferos, 000--0, has the same

ntimes
probability as any other outcome of lengthnamely 2. A similar situation appears in quantum

mechanics: quantum randomness is postulated, not defircestaced.

Algorithmic information theory (AIT)![1], developed in tHEO60s, defines and studies individ-
ual random objects, like finite bitstrings or infinite seqces AIT shows that “pure randomness”
or “true randomness” does not exist from a mathematicaltpudiiew. For example, there is no
infinite sequence passing all tests of randomness. Rand@neaanot be mathematically proved:
one can never be sure a sequence is random, there are onl/dachdegrees of randomness.

Computers offer “random numbers” produced by algorithmemg@uter scientists needed a
long time to realize that randomness produced by softwaretissndom, but only pseudo-random.
This form of randomness mimics well the human perceptionaotilomness, but its quality is
rather low because computability destroys many symptomarafomness, e.g. unpredictability.
It is not totally unreasonable to put forward that pseudwdoamness rather reflects its creators’
subjective “understanding” and “projection” of random®¢s]. And although no computer or
software manufacturer claims that their products can ggaémuly random numbers, recently such
formally unfounded claims have re-appeared for randompiesiced with physical experiments

suggesting that “truly random numbers have been generatast’a3, 4].
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. QUANTUM RANDOMNESS

A. Theoretical claims to quantum randomness

Quantum mechanics has a credible claim to be one of (if netp#st sources of randomness.
There are many quantum phenomena which can be used for ramagloiver generation: nuclear
decay radiation sources, the quantum mechanical noisedtrehic circuits (known as shot noise),

or photons traveling through a semi-transparent mirror.

What is the rationale for the claim that quantum randomnsssdeed a better form of
randomness than, say, pseudo-randomness? A quantum raxg@mment certified by value
indefiniteness—the fact that there can, in general, be n@icpre-existing definite values pre-
scribable to certain sets of measurement outcomes [5, &-the Kochen-Specker Theorem [7]
generates amfinite (strongly) incomputable sequence of bgsery Turing machine can repro-
duce exactly only finitely many scattered digits of such dmite sequence, i.e. the sequence is
bi-immune [5]. Such certification, as has already previphskn pointed out in [5], is based on the
assumption that there are no contextual hidden variabletsiafly, a stronger statement is true: no
Turing machine can be proved to reproduce exactly any digitioh an infinite sequence, i.e. itis
Solovay bi-immune [8]. Indeed, if the value of a bit could lmenputed before measurement then
we could assign a definite value to the observable, a cootradi The tricky part is that we need
to look at infinite sequences to prove the incomputabilityndfvidual bits. It is this formal incom-
putability which corresponds to the physical notion of iteminism in quantum mechanics—the
inability even in principleto predict the outcome of certain quantum measurementsestian

the mathematically vacuous notion of “true randomness.”

Quantum random number generators (QRNGSs) based on bedtarsph, 10] have been real-
ized by the Zeilinger group in Innsbruck and Vienna [11] apg@leed for the sake of violation of
Bell's inequality under strict Einstein locality conditie [12].

The Gisin group in Geneva [13], and in particular its spihidf Quantique produces and
markets a commercial device call@liantis[14]. In order to eliminate bias, the device employs
von Neumann normalization (actually a more efficient itedatersion due to Peres is used [15])
which requires thendependencef individual events: bits are grouped into pairs, equatg€0

or 11) are discarded and we replace 01 with 0 and 10 with/1 [16].

A group in Shanghai and Beijing [17] has utilized a Fresneltiple prism as polarizing beam
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splitter. As a normalization technique, previously getetaexperimental sequences have been

used as one time pad to “encrypt” random sequences.

QRNGs based on entangled photon pairs have been realizesdopad Chinese group in Bei-
jing and Ji'nan|[18], who utilized spontaneous parametawa-conversion to produce entangled
pairs of photons. One of the photons has been used as triggstly to allow a faster data pro-
duction rate by eliminating double counts. Again, von Neamaormalization has been applied

in an attempt to eliminate bias.

A group from the Hewlett-Packard Laboratories in Palo Altal @8ristol [19] has used entan-
gled photon pairs in the Bell basis stak& V) + [ViH2) (note that this is not a singlet state and
attains this form only for one polarization direction; in #ile other directions the state contains
alsoV,V, as well asHiH» contributions), where the outcomels,V; andHo, V> refer to observ-
ables associated with unspecified (presumably identicdldth particles) directions. In analogy
to von Neumann normalization, the coincidence evéhi% andViH, have been mapped into O
and 1, respectively. Thereby, as the authors have argue@-tfubit space of the photon pair is

effectively restricted to a two-dimensional Hilbert sudsp described by an effective-qubit state.

A more recent rendition of a QRNG [20], although not based lootgns and beamsplitters,
utilizes Boole-Bell-type setups “secured by” Boole-Bgipe inequality violations in the spirit of
guantum cryptographic protocols [21, 22]. This providemsadndirect “statistical verification”
of value indefiniteness (again under the assumption of naegtuality), but falls short of provid-
ing certification of strong incomputabilityia value indefiniteness|[5, 23]. With regard to value
indefiniteness, the difference between Boole-Bell-typiralitiesversusKochen-Specker-type
theorems is this: In the Boole-Bell-type case, the breactabfe indefiniteness needs not hap-
pen at every single particle, whereas in the Kochen-Spegkercase this must happér every
particle [6]. Pointedly stated, the Boole-Bell-type violation igstical, butnot necessarilyn
every quantum separately. Hence, because a Boole-Bélighation does not guarantee that
every bit is certified by value indefiniteness, one could pddly produce sequences containing
infinite computable subsequences “protected” by Boolé-§gk violations. Further, given that
such criticisms seem also to hold for the statistical vatfan of value indefiniteness [24-26], it
seems unlikely that statistical tests of the measuremeicbmes alone can fully certify such a
QRNG.



B. Shortcomings of current QRNGs

It is clear that any QRNG claiming a better quality of rand@ss has to produce at least
an infinite incomputable sequence of outputs, preferablirangly incomputable one. Do the
current proposals of QRNGs generate “in principle” strgngtomputable sequences of quantum
random bits? To answer this question one has to check whet€RNG is “protected” by value
indefiniteness, the only physical principle currently kmow guarantee incomputability; in most
cases the answer is either negative or cannot be verifiedibecd lack of information about the
mechanism of the QRNG.

In Ref. [27] tests based on algorithmic information theogrevused to analyze and compare
quantum and non-quantum bitstrings. Ten strings of lenfthigs each from two quantum sources
(the commerciaQuantisdevice [28] and the Vienna Institute for Quantum Optics anium
Information group![29]) and three classical sources (Matica, Maple and the binary expansion
of ) were analyzed. No distribution was assumed for any of theces, yet a test based on
Borel-normality was able to distinguish between the quamrdnd non-quantum sources of random
numbers. It is known that all algorithmically random stsreye Borel-normal [30], although the
converse is not true. Indeed, the tests found the quantumtes®do be less normal than the
pseudo-random ones. Is this a property of quantum rand@naoesvidence of flaws in the tested
QRNGs?

In Ref. [31] the probability distribution for an ideal QRNGaw discussed: not surprisingly,
such devices are seen to sample from the uniform distribufiesting the same strings aslin/[27]
against this expected distribution, strong evidence wasddhat the QRNGs tested aret sam-
pling from the correct distribution. Further, weaker evide suggests the pseudo-random sources
of randomness—Mathematica and Maple—are, on the cont@ynormal. The results of the

analysis are presented in Tafle I.

The notable exception to these findings are the Vienna biishytvhen viewed at the single-bit
level, appear unbiased. It appears that the good perfoeranihie 1-bit level has been achieved
(perhaps through experimental feedback control) at thefeacof the performance at the> 2
level, a property much harder to control without post-pssoeg. TheQuantisQRNG uses iterated
von Neumann normalization in an attempt to unbias the outpatfact that this is not completely
successful indicates either a significant variation in lonaer time, or non-independence of suc-

cessive bits [31].



QRNG k=1 k=2 k=3 k=4 k=5

Maple 0.79 0.15 0.83 0.47 0.97
Mathematica 0.18 0.38 0.35 0.45 0.99
T 0.38 0.27 0.05 0.62 0.21
Quantis <1010 <1010 <1010 <1010 <1010
Vienna 012 <100 <100 <1010 <1010

TABLE |. p-values for thex? test that the bitstring is sampled from the uniform distit. Bold values

indicate statistically significant evidence that the gfsimre not sampled from the uniform distribution.

These results highlight the need to pay extra attentionardésign process to the distribution
produced by a QRNG. Normalization techniques are an efiegtay to remove bias, but to have
the desired effect assumptions about independence anthnop®of bias must be satisfied [31].
While experiments will never realize the ideal QRNG, onedsa®e be aware of how much affect
experimental imperfections have. Any credible QRNG shaake these issues into account, as
well as the need of explicit certification of randomness bys@hysical law, e.g. value indefinite-

ness.

. THE SCHEME UNDER IDEAL CONDITIONS

In what follows, a proposal for a QRNG depicted in Fig. 1, poesly put forward in Ref.[[23],
will be discussed in detall. It utilizes the singlet statedwb two-state particles (e.g., photons of
linear polarization) proportional tgH;V>) — |V1H2), which is form invariant in all measurement
directions.

A single photon light source (presumably an LED) is atteed&o more than one photons are
rarely in the beam path at the same time. These photons impin@ source of singlet states of
photons (presumably by spontaneous parametric down-csionein a nonlinear medium). The
two resulting entangled photons are then analyzed withexgp their linear polarization state at
some directions which am/4 radians “apart,” symbolized bys” and “®,” respectively.

Due to the required four-dimensional Hilbert space, thidN@Hs “protected” by Bell- as well
as Kochen-Specker- and Greenberger-Horne-Zeilinger-tgue indefiniteness [32]. The proto-

col utilizes all three principal types of quantum indetarisim: (i) the indeterminacy of individual
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FIG. 1. Scheme of a quantum random number generator [23].

outcomes of single events as proposed by Born and Diracgantum complementarity (due
to the use of conjugate variables), as put forward by HesepPauli and Bohr; and (iii) value
indefiniteness due to Bell, Kochen & Specker, and Greenbdgene & Zeilinger.

This, essentially, is the same experimental configurat®tha one used for a measurement
of the correlation function at the angle of4 radians (4%). Whereas the correlation function
averages over “a large number” of single contributions,relom sequence can be obtained by
concatenating these single pairs of outcomes via additmiuto 2.

Formally, suppose that for thigh experimental run, the two outcomes &€ < {0, 1} corre-
sponding toDy or DY, andO;” € {0,1} corresponding t®f or DY. These two outcome®;”
andOy, which themselves form two sequences of random bits, argesuiently combined by the
XOR operation, which amounts to their parity, or to the additiemdulo 2 according to Table Il (in
what follows, depending on the formal conte3@R refers to either a binary function of two binary
observables, or to the logical operation). Stated diffiyeone outcome is used aae time pad
to “encrypt” the other outcome, anice versa As a result, one obtains a sequeRGe X1Xz. .. Xn
with

X = 07 + 0O mod 2 (1)

For theXORd sequence to still be certifiably incomputable (via valugeimiteness), one must
prove this certification is preserved und@ring—indeed strong incomputability itself mtnec-
essarily preserved. By necessity any QRNG certified by valdefiniteness must operate non-
trivially in a Hilbert space of dimension > 3. To transform ther-ary (incomputable) sequence

into a binary one, a functiofi: {0,1,...,n—1} — {0,1,A} must be used\(is the empty string);

7



0" Of O X0R O

0 O 0
0 1 1
1 0 1
11 0

TABLE Il. The logical exclusive or operation.

to claim certification, the strong incomputability of thésdmust still be guaranteed after the ap-
plication of f. This is a fundamental issue which has to be checked foriegiQRNGs such
as that in Ref./ [20]; without it one cannot claim to produaéytrindeterministic bits. In general
incomputability itself is not preserved iy however by consideration of the value indefiniteness

of the source the certification can be seen to hold urdelas well as when discarding bits [8].

IV. “RANDOM” ERRORS OR SYSTEMATIC ERRORS

In what follows we shall discuss possible “random” (no punkygstematic errors in experi-
mental realizations of this QRNG (many of these errors mg@gapin other types of photon-based
QRNGs.) Our aim is to draw attention to the specific naturaiohserrors and how they affect the
resulting bitstrings. A good QRNG must, in addition to theemsary certification (e.g. by value
indefiniteness), take into account the nature of thesesamd be carefully designed (along with
any subsequent post-processing) so that the resultanbdigin of bitstrings the QRNG samples
from is as close as possible to the expected uniform distaby31]. Both the uniformity of the
source and incomputability are “independent symptoms’aatiomness, and care must be taken

to obtain both properties.

A. Double counting

One conceivable problem is that the detectors analyzinglifferent polarization directions
do not respond to photons of the same pair, but to two photelmning to different pairs. This
seems to be no drawback for the application oftbe operation since (at least in the absence of

temporal correlations between bits) the postulates of iyuamechanics state that the individual
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outcomes occur independently and indeterministicallg (st property is mathematically mod-
eled by strong incomputability[5) 8]). If, however, eveatge not independent then more care is
needed. However, correlation between events is an untiespeoperty in itself, and as long as

care is made, it is unlikely to be made worse by double cogntin

B. Non-singlet states

The state produced by the spontaneous parametric dowre«sdon may not be exactly a sin-
glet. This may give rise to a systematic bias of the combiigdd Eource-analyzer setup in a very

similar way as for beam splitters.

C. Non-alignment of polarization measurement angles

No experimental realization will attain a “perfect antiggiment” of the polarization analyzers
at anglesrt/4 radians apart. Only in this ideal case are the bases cdsjaga the correlation
function will be exactly zero. Indeed, “tuning” the angledbtain equi-balanced sequences of
zeroes and ones may be a method to properly anti-align tlagipets. However, one has to keep
in mind that any such “tampering” with the raw sequence cadatachieve Borel normality (e.g.
by readjustments of the experimental setup) may introdueeanted (temporal) correlations or
other bias|[27].

Incidentally, the anglet/4 is one of the three points at anglesrfi4 andty/2 in the interval
[0,11/2] in which the classical and quantum correlation functionsa@de. For all other angles,
there is a higher ratio of different or identical pairs thald be expected classically. Thus,
ideally, the QRNG could be said to operate in the “quasi @atsegime, albeit fully certified by
guantum value indefiniteness.

Quantitatively, the expectation function of the sum of tiv® toutcomes modulus 2 can be
defined by averaging over the sum modulo 2 of the outcch?e@i9 € {0,1} at angled “apart” in
theith experiment, over a “large number” of experiments; i.e.,

Exon(6) = lim — i(oi%o? mod 2) .
N—oo N . &
This is related to the standard correlation function,

= lim = Zoo of

N—o0 N



C(8) -1
En(8) = 9O~
where
it 00— No
0000 1, ifoP=0P,
| [
~1, if OP£0P.

A detailed calculation yields the classical linear exptietefunctionEg,; (8) = 1— 28/, and the

quantum expectation functidexeg (0) = (1/2)(1+ cos D).

1

E(6)

FIG. 2. (Color online) The classical and quantum expeatdiimctions and the linear quantum approxima-

tion aroundrt/4.

Thus, for angles “far apart” fromm/4, the XOR operation actuallydeterioratesthe two ran-
dom signals taken from the two analyzeegparately.The deterioration is evegreater quantum
mechanically than classicallygs the entangled particles are more correlated and thus itles
dependent.” Potentially, this could be utilized to ensum/4 mismatch more accurately than
possible through classical means. This will be discusseéddtior ¥ below.

In order to avoid this negative feature while generating,bitstead okORing outcomes of

identical partner pairs, one coulkoR time-shifted outcomes; e.g., instead of the expression in
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Eq. (1) one may consider

x =00+ 0P, ; mod 2 with j > 0. (2)

One should makglarge enough so that, taking in to account double countiregetis no chance of
accidentally causing two offset but correlated outcomdseX0R’'d together. Theoretical analysis
of the effects of experimental imperfections andxba operation are discussed later in the paper,

andXO0Rring shifted pairs is an efficient and effective procedureréalucing such errors.

D. Different detector efficiencies

Differences in detector efficiencies result in a bias of taguence. This complicating effect
is separate from non-perfect misalignment of polarizationtext. Suppose that the probabilities
of detection are denoted y,, pH,, Pv;, Pv,. Sincepn, + pv; = PH, + Pv, = 1, the probability
to find pairs adding up to 0 and 1 modulo 2 3¢ pH, + Pv, Pv, = 1 — (PH, + PH,) + 2PH, PH,
and pH, Pv, + Pv; PH, = PH; + PH, — 2PH, PH,, respectively (adding up to 1). If botby, # py,
andpn, # pv, then the resulting0R'd sequence is biased. The two obtained sequences could be
unbiased before or aft&0Ring by the von Neuman method [16, p. 768], although any tealpor
correlations would violate the condition of independeneguired by this method. One should
keep in mind, however, that the von Neumann normalizatiocguiure necessarily discards many
bits (more efficient methods exist [15]). The efficiency canificreased by utilizing both strings

more carefully, and such a method is discussed in Section VID

E. Unstable detector bias

Von Neumann type normalization procedures will only remioizes due to detector efficiencies
if the bias remains constant over time. If the bias driftsravee due to instability in the detectors,
the resulting normalized sequence will not be unbiasednstiead will simply be less biased [31].
It is difficult to overcome this, as experimental instalyii inevitable. However, bounds on the
bias of the normalized sequence based on reasonable egpéasirparameters [31] can be used to
determine the length for which the source samples “closabyigh” from the uniform distribution.

If the bias varies independently between detectorsxtieng process should serve to reduce
the impact of varying detector efficiencies and applying M@umann normalization to tf&R’d

bitstring is advantageous compared working with a singkgiing from a source of varying bias.
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F. Temporal correlations, photon clustering and “bunching’

Due to the Hanbury-Brown-Twiss effect, the photons may Ineptarally correlated and thus
arrive clustered or “bunched.” Temporal correlations @p@dso at “double-slit analogous exper-
iments” in the time domain_[33], in which the role of the slissplayed by windows in time of
attosecond duration. This can, to an extent, be avoided byreg successive photons are suf-
ficiently separated, although this poses a limit on the t@itcd such a device. However, since
the case where two or more singlet pairs are in the beam paihcatis potentially of sufficient
importance, this effect needs further careful considenati

Another conceivable source of temporal correlations istddiee detector dead-tim&y, during
which the detector is inactive after measurement [13]. Ifmeasured,” = 0, the detectoD
corresponding to O is unable to detect another photon foral ssmount of time, significantly
increasing the chance of detecting a photon at the othectdetéuring this time, obtaining a 1.
This leads to higher than expected chances of 01 and 10 bezagured. This is problematic as
such a correlation will not be removed BgRing, even with an offset of. However, this can be
avoided by discarding any measurements within tfigné&om the previous measurement.

In view of conceivable temporal correlations, it would b&ehesting to test the quality of the
random signal a$ is varied in Eq.[(R). As previously mentioned, any tempomatelations will
violate the condition of independence needed for von Netrmammalization making it difficult to
remove any bias in the output; if the dependence can be bduhde unbiasing techniques such as
that proposed by Blum [34] could be used instead of von Neursgmocedure. It seems desirable
and simpler to avoid temporal correlations with carefuldsidned experimental methodology as

opposed to post-processing where possible.

G. Fair sampling

As in most optical tests of Bell's inequalities [35, 36], timefficiency of photon detection
requires us to make ttair sampling assumptiof37-+40]: the loss is independent of the measure-
ment settings, so the ensemble of detected systems pravifdsstatistical sample of the total
ensemble. In other words, we must exclude the possibiligy ‘@femon” in the measuring device

conspiring against us in choosing which bits to reject.

The strength of the proposed QRNG relies crucially on vatdefiniteness, so without this fair
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sampling assumption we would forfeit the assurance of b#vimcomputability of the generated
sequence. As an example let us consider the extreme cagbdtdstection efficiency is less that
50%:; our supposed demon could reject all bits detected ad Bewithin the bounds given by this
efficiency, while the produced sequence would be computdbléhe more general case for any
efficiencyp < 1 the demon could reject bits to ensure evdry(1 — p))’th bit is a zero; this would
introduce an infinite computable subsequence, a propestgting the strong incomputability of
the output bitstring produced by our QRNG, and still be cstesit with the detection efficiency.
Note that this condition is stronger than the fair samplisguanption required in tests for
violation of Bell-type inequalities because, without tagsumptionanyinefficiency can lead to a

loss of randomness.

V. BETTER-THAN-CLASSICAL OPERATIONALIZATION OF SPATIALO RTHOGONALITY

As has already been pointed out, for no temporal offset artldnregime of relative spatial
angles around/4 — i.e., at almost half orthogonal measurement directiorthe-€lassical linear
expectation functiofEg!, (8) = 1— 26/, for 0 < 8 < 11/4 is strictly smaller, and form/4 < 6 <
i/ 2 is strictly greaterthan the quantum expectation functiBgog (0) = (1/2)(1+ cos®). This
can be demonstrated by rewritig= 11/4+ A8, and by considering a Taylor series expansion
aroundrt/4 for smallA8 < 1, which yieldsExgg (T1/4+ AB) ~ (1/2) F A8, whereasEg,, (T1/4 +
AB) = (1/2) F (2/m)AB (see FigR).

Phenomenologically this indicates less-than-classigallers of equal pairs of outcomes “0—
0” as well as “1-1,” and more-than-classical non-equalsgpairoutcomes “0-1" as well as “1-0,”
respectively, for the quantum case in the region 8 < 11/4; as well as the reverse behavior in
the regionm/4 < 8 < 1/2. This in turn results in “less zeroes” and “more ones” of dgulting
sequence obtained ByRing the pairs of outcomes in the regiord® < 11/4, as well as in “more
zeroes” and “less ones” in the regioi4 < 6 < 1/2 as compared to classical non-entangled
systems|[41]. Hence, with increasing aberration from ngsahentAB the quantum device “drifts
off” into biasedness of the output “faster” than any claakdevice. As a result, Borel normality
is expected to be broken more strongly and quickly quantucham@cally than classically.

This effect could in principle be used to operationalizetispharthogonality through the fine-
tuning of angular directions yielding Borel normality. lmetresulting protocols, quantum mechan-

ics outperforms any classical scheme due to the differeindbg correlation functions.
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VI. THEORETICAL ANALYSIS ON GENERATED BITSTRINGS

Here we analyze the output distribution of the proposed QRING the ability to extract uni-
formly distributed bits from the two generated bitstringshe presence of experimental imper-

fections.

A. Probability space construction

With reference to Fid.]1 for the setup, we write the generBigtsinglet state with respect the
top (“@”) measurement context (this is arbitrary as the singlatisifinvariant in all measurement
directions) as\%(|01) —1]10)). The lower (®") polarizer is at an angle d to the top one. After
beam splitters we have the state
\i@ [cos0(00) — |11) — sind(|01) + [10))].
so we measure the same outcome in both contexts with pritgatui’ 8 and different outcomes
with probability sirf 6.

More formally, the QRNG generates two strings simultangogs the probability space con-
tains pairs of strings of length Let &, & for x,y = 0,1 be the detector efficiencies of thg’
and Dg‘? detectors respectively. For perfect detectorsgj.e= ef?, we would expect a pair of bits
(a, b) to be measured with probability 2(sir? 0)2°(cos 8)1-2¢P; non-perfect detectors alter this
probability depending on the valuesa.

Let B = {0,1}, and forx,y € B" letd(x,y) be the Hamming distance between the strixngad
y, i.e the number of positions at whietandy differ, and let #(x) be the number abs inx.

The probability space [42] of bitstrings produced by the @RiN(B" x B, 2B"xB" Py2), where
the probabilityP.» : 28"<B" —; [0, 1] is defined for allX C B" x B" as follows:

Pe(X) = 5 5 (SiPO)I) (coe)™ 4 ef Yl (&5 0 (ol (6 1),
M (xy)ex
and the term
Zn = Z (sinf0)40%Y) (cog e)nfd(xyy)(egB)#o(X)(e?)#l(X)(ego)#o(y)(egé)#l(y)
(x,y)EBNx BN

= [(sirPB(ej ey +efel) +cogB(ejes +efer)]"
ensures normalization.
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We can check easily that this is indeed a valid probabiligcsp(i.e. that is satisfies the Kol-
mogorov axioms [43]). Note that for equal detector efficierave have
Zo=(e)"(")" 5 (sirP8) Y (cogl)"IY) = 2(e?)"(e")",
(x,y)eB"xB"n
hence the probability has the simplified form
Pe(X)= 5 27(sif8)*Y)(cosg)" 0.
(xy)eX
Given that the proposed QRNG produces two (potentiallyatated) strings, it is worth consid-
ering the distribution of each string taken separatelye@ithe rotational invariance of the singlet
state this should be uniformly distributed. However, baeathhe detector efficiencies may vary in

each detector, this is not, in general, the case. For evislyibgx € B" we have

P2({x} xB") = Zi % (sin2 e)d(xyy)(cog e)nfd(xyy)(egB)#o(X)(e?)#l(X)(eg)#o(y)(egé)#l(y)
n yEpn

_ (ega)#O(X;(e?)#l(X) % (Sinze)d(x7y)(cosze>n—d(x7y)(eEG)Q)#o(y)(e?)#l(y)
n yeBn

= o (e (e si?0 15 cog0)) " (e (65 PO+ ¢ c028)) " (3

We see that each bitstring taken separately appears to comeaf constantly biased source

where the probabilities that a bit is O orfdg, p1, are given by the formulae
Po = €5 (€] Sinf 6+ € co$8) /Zy, p1 = €7 (€5 Sin? 6+ €] cos*8) /Zs.

This can alternatively be viewed as the distribution olgdiif we were to discard one bitstring
after measurement. Note that if eithgf = €]’ or we have perfect misalignment (i.@= 1/4)

then the probabilities have the simpler formulae:

Px=€//(e) +¢€),xe {0,1}.

In this case, if we further have thej = €]’, we obtain the uniform distribution by discarding one
string after measurement.

The analogous result for the symmetrical cRseB" x {y}) also holds.

B. Independence of the QRNG probability space

If we were to discard one bitstring it is clear the other bitgf is generated independently in

a statistical sense since the probability distributionrseyproducing it is constantly biased and
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independent [31]. However, we would like to extend our notd independence defined in [31]
to this 2-bitstring probability space.
We say the probability spagd" x B”,ZB"XBn,an) is independentf for all 1 < k < n and

X1,..., % Y1,--.,Yk € Bwe have

Ro(X1.. . XB" K xy1...yiB"®) =Ra(x1.. . % 1B" 1 x y1 ...y 1B" K
% an(Bk—lkan—k % Bk—lkan—k)‘

For allx,y € BX and 0< k+ |x| < nwe have
Pre (B xB X x BYHYBTR) = Pua((x,y).

Indeed, using the additivity of the Hamming distance and the functions, e.g.

d(X1.. X Y1 Yk) = d(X1.. . %-1,Y1.-.Yk-1) +d (X, Yk), we have:

Pnz(ankXankf\x\ x B kyBh-k-Ixly — Z Z P2 ((agxby, azyhy))
al,aZGankbl,bZGBn*kﬂ)q
=Pe(xy) > P2 ((azhby, azbz))

ag,ape Bn-k by,bye Bn—k=Ix

=Py2((X.Y))Pn_xy2(B™ X 5 B M)
=Py2((%.y)).

As a direct consequence we deduce that the probability $padefined above is independent.

C. XOR application

We now consider the situation where the two output bitsgingndy areX0R'd against each
other (effectively using one as a one-time pad for the otteeproduce a single bitstring, and we
investigate the distribution of the resulting bitstringatRer than only considering the effect of
X0Ring paired (and potentially correlated) bits, we also cdesiORing outcomes shifted by > 0
bits as described in Sectibn 1V C.

For j > 0 andx,y € B™/ define the offsek0R fucntionX; : B™1 x B™J — B" asX;(x,y) = z
wherez = x @Y+ fori =1,...,n. Forze B" the set of pairgx,y) which produce whenXor'd

with offset j is
Aj(2) = {(xy) | xy € B X;(x,y) =2} = {(uab(ux0r 2) |u€ B",a,b € B}
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The probability space of the output produced by the QRNCBWSZBH,QM), whereQnj : 28"
[0,1] is defined for alX C B" as:

Qnj(X Z(Pnﬂ 2(Aj(2) (4)

We note thatA;(z)| = 2"+2 and check this is a valid probability space. Inde@g;(0) =0, is

trivially true,

Qmj(Bn) = P(n+j)2(AJ'( n+1 (UAJ ) n+1) (Bnﬂ X BnH) =1,

zeBn

bcause aliAj(z) are disjoint and thus
|UAJ (z)| =2"2"2 = (2M1)2 so UA =B™ % B,

and for disjointX,Y C B" we haveQn j(XUY) = Qn j(X) +Qnj(Y).
We now explore the form of theoR'd distributionQp j for j = 0 andj > 0.
Letze B"andj > 0. By zZilm,k] we denote the substrirgg,...z,1 < m<k <n. We have

an( ) n+]) (Aj(z>)>
=5 Prnt-j)2((ua b(u XOR 2))

a,be2i ue2"

_ Z P jy2 ((ulj +1,n], (UXOR 2)[1,n— j]))

Y Pa((@,(uUX0R Z)[n—j+1,n))) 3 Pi((u[1,j],b)).

ac2! bc2i

For j = 0, we note thatl(u, u XOR z) = #1(z), and thus we have:

Qn,o( P (UXOR 2)))
o(z ;n 2 (
Zn(smze>#l (co0) % (65l (619 ol 100 g7 3om
ue

Zln (sirPB(ede] +e§9e§’)) (cosze(e0 &+ ))#0( 2

We recognize this as a constantly biased source where
po = cos B(ey ey +€/'€])/Z1, pr = Sirf6(ej €] +e7ey) /Zs.

It is interesting to compare the form @f, o to the distribution of the constantly biased source

Eqg. (3) by discarding one output string—the former is moms#&e to misalignment, the latter
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to differences in detection efficiencies. In the case ofgmf&qual detector efficiencies (but non-
perfect misalignment), discarding one string produce$oumily distributed bitstrings, whereas
XO0Ring does not.

We now look at the case wheje> 0. For the ideal situation d = 11/4 we have the same
result as for thg = 0 case, while if we have equal detector efficiencies then wehgeuniform
distribution. We show this as follows (note that, ; = 2"t1 in this case):

Qnj(2) —2—h—] Z (Sinze>un@zn—j@un—j(Coge)l—un@zn—j@unfj
un€B  un—jeB

% Z (SII’]2 e)Uj+l®Zl®u1 (COSz 9) 1-uj+10z0uL
uieB

=21y ... 5 (siPB+cose)- Y (siFO+cose)

uneB Un—j€B u1€B

=2 "I S 1

Un_j+1.--Un€EB]

=2""

However, in the more general case of non-equal detectoregféies, the distribution is no
longer independent, although in general is much closerdatfiform distribution than th¢ =0
case. (Recall that independence is a sufficient but not sagesondition for uniform distri-
bution [31].) It is indeed this “closeness”—the total véioa distance given byA(Un, Qnj) =
%zxeBn |27" — Qn,j (X)|—which is the important quantityJq is the uniform distribution om-bit
strings). However, sinc@p j for j > 0 is not independent, von Neumann normalization cannot
be applied to guarantee the uniform distribution; indeeddépendence is not even bounded to a

fixed number of preceding bits.

D. Criticisms and alternative operationalizations

This given, one may ask why not simply discard one string v gie distribution in Eq[{3)
and apply von Neumann normalization to obtain uniformhtriisited bitstrings. There are two
primary answers to this question.

(i) As discussed previously the effect of drift in bias anchporal correlations will ensure this
method will not produce the uniform distribution anywaydé®d, the distributio®y j for j > 0
should be more robust to those effed®, § for example is less sensitive to detector bias than

that in Eq.[(8)). It is extremely plausible th@, j gives as good results as discarding one string in
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x  bin(174  bin(487)  bin(973)

Q1o0(X) 5.90x 1074 9.70x 104 1.64x 104
Qi01(X) 9.75x 1074 9.71x 10°* 9.71x 10°*
Qi02(X) 9.78x 1074 9.70x 10°* 9.70x 10~*
Uo(X) 9.77x 104 9.77x 104 9.77x 104

TABLE lll. Emperical evidence for the quality &foRing with j > 0 compared tg = 0 and configuration
settings of6 = 1/5, &) = 0.30, €]’ = 0.33, ¢ = 0.29, €] = 0.30 — this is probably much worse (further
from the ideal case) that one would expect in an experimeetalp. The (small) value of= 10 has been
used as, unfortunately, the distribution is very costlyatzalate numerically. Here bim) denotes the (10-
bit zero-extended) binary representatiomofFor example, bifil) = 0000000001, bif2) = 0000000010,

etc.

A(Q100,U10)  0.770271
A(Q101,U10)  0.00441399
A(Q101,U10)  0.00440061

TABLE IV. The variation from the uniform distribution of thdistributionsQ1q j, using the same parameters

as Tablé1ll.

practice; it is indeed very close to the uniform distribatas can be seen from Tablg IV and Fig. 3.
To compare properly the distributions, the followiogen questiomust be answered: what is the
boundp depending ore,?,ef? and® such that\(Un, Qn j) < p, and how does that compare to that
given in [31] for normalization of a source with varying btas

Further,Qn j produces bitstrings of length whereas applying von Neumann to a single string
produces a string with expected length at my'et bits. This is a significant increase in efficiency,
making the shifted0Ring process extremely appealing for a high bitrate, un-mdimad QRNG.
Even thej = 0 case with von Neumann applied aftedRing would often be preferable to dis-
carding one string, since it is less sensitive to detectitcciency (the hardware limit) and more
sensitive to to misalignment (which is controlled by the exxmenter).

(i) If one insists on a perfect theoretical distributiortive presence of non-ideal misalignment

and unequal detector efficiencies, or perhapsQhe distribution is not sufficient for particular

19



0.001z- -0.0012
-e ¢ -e ¢ -e ¢ L] aBEsEe @ ¢ -e ¢ L] -e o L] L]
0.000€- - 0.000€
o
- 0.0004 -10.0004
(qV]
'|—__\ -e o -e o -e ¢ -e ¢ L]
o
o °° = = = °
—0.0004]- o o= @ o __0.000¢
L] o o o o o o o o
_OOOOE* L] L] o o L] o o [l Nt I ] L] ° o ° o ° o ] _00005
L] L] L] o o L] L] o o L] o o o o0 o> ED
L] L] L] L] L] 0‘

String Numbe

FIG. 3. (Color online) A plot 0Q;0j — 2~1° for each of the ¥ strings of length 10. The two casg¢s= 0
(blue) andj = 1 (red) show how much closer the probabilities giverQay, are to that expected from the

uniform distribution than foQ100. The same experimental configuration as in Table IV has bsed.u

requirements, then one can still operationalize bothgsrto improve the efficiency of the QRNG
over discarding a single string by a simple modification of Weumann’s procedure. To do
so, note that the pair of paif®iap, biby) have the same probability as the pajesay, boby).
By mapping those witla;b; < axb, (lexicographically) to 0, those with;b; > azb, to 1, and
discarding those with;b; = axb,, one will obtain the uniform distribution as for von Neumann
procedure. The key advantage is that this will obtain strioigexpected length up tan38, while

maintaining the desired property of sampling from the umifaistribution.

The problem of determining how best to obtain the maximumuamof information from the
QRNG is largely a problem of randomness extractors [44],iadrade off between the number
of uniformly distributed bits obtained and the processingte-a suitable extractor needs to op-
erate in real-time for most purposes. As we have seen, theHactwo (potentially correlated)
bitstrings are obtained allows more efficient operatiomthaQRNG using single-photons. We
have shown how the proposed QRNG can be operationalizedrie than one way: either by us-

ing shiftedX0Ring of bits to sample from a distribution which is close tofatto in the ideal limit)
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the uniform distribution and efficient and robust to vari@usors, or by utilizing both produced
bitstrings to allow a more efficient normalization proceslgiving (in absence of the aforemen-
tioned temporal effects) the uniform distribution. Manymmoperationalizations are undoubtedly

possible.

Vil. SUMMARY

Every QRNG claiming to produce a better form of randomneas fiseudo-randomness must
firstly be certified by some physical law implying the incortghility of the output bitstrings;
value indefiniteness is one such example. Most existinggsaig of QRNGs are based on single
beam splitters and work in a dimension-two Hilbert spacethey cannot be certified by value
indefiniteness given by the Kochen-Specker theorem (whadtishonly in a Hilbert space of di-
mension greater than 2). In this paper we have proposed a QRNsB, by utilizing an entangled
photon singlet-state in four-dimensional Hilbert spase;értified by value indefiniteness which
implies strong incomputability, the mathematical propedrresponding to physical indetermin-
ism. While this is an ingredient of fundamental importanceuny reasonable QRNG, we have
recognized that experimental imperfections will alwaysvent the QRNG from producing ex-
actly the theoretical uniform probability distributiomather essential symptom of randomness
(independent of incomputability). The form and effectslidde conceivable experimental errors
have been discussed, and care has been taken to make thequt@@RNG robust to these effects.

Since this QRNG produces two bitstrings, we have propdsaahg the bitstrings produced—
using one as a one-time pad for the other—to obtain bettde@ion against experimental im-
perfections, particuarly non-ideal misalignment and wagletector efficiencies, and utilize the
benefit of these two strings over simply using one. Rathar ¥@&ing corresponding bits, bits
x; andy;.j areX0R'd (for fixed j > 0) as this not only provides much better results, but alse mit
igates the effects of temporal correlations between adjduiés. Further, we have proposed an
alternative normalization method based on von Neumanosguture which uses both bitstrings.
This procedure is significantly more efficient yet still gaatees uniformly distributed strings in
the presence of non-ideal misalignment and unequal detefficiencies. We leave it as apen
guestionto improve upon the time-shiftexbR method and find a technique to extract bits which
are provably uniformly distributed and is more efficientrittbe improved von Neumann method

discussed.
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Analyses of sequences generated by the proposed QRNG dtmwlonducted, utilizing the
knowledge of the expected uniform distribution, aslin [2[f.particular, the quality of both the
individual strings produced should be compared with thahefXOR'd sequence, both with and
without von Neumann normalization applied, as well as tligpieace produced by our improved

von Neumann method.

Further, in view of conceivable temporal correlations kestw bits, the quality of the random
bits should be tested gsds varied in Eq.[(#). Since this has little effect on the biathe resultant
string (and normalization can subsequently remove thigjould allow investigation of the effect
and significance of these conceivable temporal correlation

The proposed QRNG produces bits which are both certifiedalizaindefiniteness and should
be distributed more uniformly than those produced by exis@QRNGs based on beam splitters.
It will be interesting to experimentally test the quality lmts produced via this method against

existing classical and quantum sources of randomness.

ACKNOWLEDGMENT

We thank A. Cabello and A. Zeilinger for many interestingodissions about quantum random-

ness.

[1] Gregory J. Chaitin, “Algorithmic information theoryiBM Journal of Research and Developm@it
350-359, 496 (1977), reprinted in Ref. [45].

[2] Psychologists have known for a long time that people terdistrust streaks in a series of random bits,
hence they imagine a coin flipping sequence alternates bathweads and tails much too often for its
own sake of “randomness.” A simple illustration of this pberenon, called the gambler’s fallacy, is
the belief that after a coin has landed on tails ten consextitnes there are more chances that the
coin will land on heads at the next flip.

[3] Mads Haahr, “True random number generator,” (2010p:Httww.random.org.

[4] Zeeya Merali, “A truth test for randomness,” Nature Ney2010), 10.1038/news.2010.181.

[5] Cristian S. Calude and Karl Svozil, “Quantum randomnearsd value indefiniteness,”

Advanced Science Lettels 165-168 (2008), arXiv:quant-ph/0611029.

22


http://www.random.org
http://dx.doi.org/10.1038/news.2010.181
http://dx.doi.org/ 10.1166/asl.2008.016
http://arxiv.org/abs/arXiv:quant-ph/0611029

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

Karl Svozil, “Quantum value indefiniteness,” Naturali@puting, in print (2010), eprint
arXiv:1001.1436, arXiv:1001.1436.

Simon Kochen and Ernst P. Specker, “The problem of hiddamables in quantum mechanics,”
Journal of Mathematics and Mechanics (now Indiana UnitgeMathematics Journal)7, 59-87 (1967),
reprinted in Ref.|[46, pp. 235-263].

Alastair A. Abbott, Cristian S. Calude, and Karl SvoZincomputability of guantum randomness,”
in preparation (2010).

Karl  Svozil, “The quantum coin  toss—testing  microploai  undecidability,”
Physics Letters A43 433-437 (1990).

J. G. Rarity, M. P. C. Owens, and P. R. Tapster, “Quantandom-number generation and key shar-
ing,” Journal of Modern Opticdl, 2435-2444 (1994).

Thomas Jennewein, Ulrich Achleitner, Gregor Weihs, rdalth Weinfurter, and
Anton Zeilinger, “A fast and compact quantum random numberenegator,’
Review of Scientific Instrumentsl, 1675-1680 (2000), quant-ph/9912118.

Gregor Weihs, Thomas Jennewein, Christoph Simon, IHard/einfurter, and An-
ton Zeilinger, “Violation of Bell's inequality under stitic Einstein locality conditions,”
Physical Review Letter81, 5039-5043 (1998).

André Stefanov, Nicolas Gisin, Olivier Guinnard, ltant Guinnard, and Hugo Zbinden, “Optical
guantum random number generator,” Journal of Modern Ogic§95-598 (2000).

ID Quantique SAQUANTIS. Quantum number generaf@Quantique, Geneva, Switzerland, 2001-
2010).

Yuval Peres, ‘“lterating Von Neumann's procedure for trasting random bits,”
The Annals of StatisticR0, 590-597 (1992).

John von Neumann, “Various techniques used in conmeetith random digits,” National Bureau of
Standards Applied Math Serid®, 36—38 (1951), reprinted idlohn von Neumann, Collected Works,
(Vol. V), A. H. Traub, editor, MacMillan, New York, 1963, p. 768—770.

P. X. Wang, G. L. Long, and Y. S. Li, “Scheme for a quantuendom number generator,”
Journal of Applied Physic$00, 056107 (2006).

Ma Hai-Qiang, Wang Su-Mei, Zhang Da, Chang Jun-Tao, igiLing, Hou Yan-Xue,
and Wu Ling-An, “A random number generator based on quantumangled photon pairs,”

Chinese Physics Letteld, 1961-1964 (2004).

23


http://dx.doi.org/arXiv:1001.1436
http://arxiv.org/abs/arXiv:1001.1436
http://dx.doi.org/ 10.1512/iumj.1968.17.17004
http://dx.doi.org/ 10.1016/0375-9601(90)90408-G
http://dx.doi.org/ 10.1080/09500349414552281
http://dx.doi.org/ 10.1063/1.1150518
http://arxiv.org/abs/quant-ph/9912118
http://dx.doi.org/10.1103/PhysRevLett.81.5039
http://dx.doi.org/ 10.1080/095003400147908
http://www.idquantique.com/images/stories/PDF/quantis-random-generator/quantis-whitepaper.pdf
http://www.jstor.org/stable/2242181
http://dx.doi.org/10.1063/1.2338830
http://dx.doi.org/10.1088/0256-307X/21/10/027

[19] M. Fiorentino, C. Santori, S. M. Spillane, R. G. Beawsipland W. J. Munro, “Secure self-calibrating
quantum random-bit generatar,” Physical Review2\ 032334 (2007).

[20] S. Pironio, A. Acin, S. Massar, A. Boyer de la Giroday,ND Matsukevich, P. Maunz, S. Olmschenk,
D. Hayes, L. Luo, T. A. Manning, and C. Monroe, “Random nurnshegrtified by Bell's theorem,”
Nature464, 1021-1024 (2010).

[21] Artur K. Ekert, “Quantum cryptography based on Bell's hebrem,”
Physical Review Letter§7, 661-663 (1991).

[22] Helle Bechmann-Pasquinucci and Asher Peres, “Quantwyptography with 3-state systems,”
Physical Review Letter85, 3313-3316 (2000).

[23] Karl Svozil, “Three criteria for quantum random-numbgenerators based on beam splitters,”
Physical Review A79, 054306 (2009), arXiv:quant-ph/0903.2744.

[24] J.-W. Pan, D. Bouwmeester, M. Daniell, H. Weinfurtenda\. Zeilinger, “Experimental test of quan-
tum nonlocality in three-photon Greenberger-Horne-Bgidir entanglement,” Natu#03 515-519
(2000).

[25] Yun-Feng Huang, Chuan-Feng Li, Yong-Sheng Zhang, -Wenh Pan, and Guang-
Can Guo, “Experimental test of the Kochen-Specker theorerth wsingle photons,”
Physical Review Letter80, 250401 (2003), quant-ph/0209038.

[26] Adan  Cabello, “Experimentally testable state-indegent quantum  contextuality,”
Physical Review Letter§01, 210401 (2008).

[27] Cristian S. Calude, Michael J. Dinneen, Monica Dunsitre and Karl Svozil, “Experimental evidence
of quantum randomness incomputability,” Phys. Re@20022102 (2010).

[28] ID Quantique SAQUANTIS. Quantum number generaf{@Quantique, Geneva, Switzerland, 2001-
2009).

[29] Thomas Jennewein, Private communication to auth@&$;ebruary 2009.

[30] Cristian Caludelnformation and Randomness—An Algorithmic Perspeciind ed. (Springer, Berlin,
2002).

[31] Alastair A. Abbott and Cristian S. Caludegn Neumann Normalisation of a Quantum Random Number Giemera
Report CDMTCS-392 (Centre for Discrete Mathematics andofdtecal Computer Science, Univer-
sity of Auckland, Auckland, New Zealand, 2010).

[32] Note that this is not the case for current QRNGs basedeammbsplitters, which operate in a Hilbert

space of dimension two.

24


http://dx.doi.org/10.1103/PhysRevA.75.032334
http://dx.doi.org/ 10.1038/nature09008
http://dx.doi.org/ 10.1103/PhysRevLett.67.661
http://dx.doi.org/ 10.1103/PhysRevLett.85.3313
http://dx.doi.org/10.1103/PhysRevA.79.054306
http://arxiv.org/abs/arXiv:quant-ph/0903.2744
http://dx.doi.org/10.1103/PhysRevLett.90.250401
http://arxiv.org/abs/quant-ph/0209038
http://dx.doi.org/ 10.1103/PhysRevLett.101.210401
http://dx.doi.org/10.1103/PhysRevA.82.022102
http://www.idquantique.com/true-random-number-generator/products-overview.html
http://www.cs.auckland.ac.nz/CDMTCS//researchreports/392cris.pdf

[33] F. Lindner, M. G. Schatzel, H. Walther, A. Baltuska,. Boulielmakis, F. Krausz, D. B.
MiloSevic, D. Bauer, W. Becker, and G. G. Paulus, “Attased double-slit experiment,”
Physical Review Letter85, 040401 (2005).

[34] Manuel Blum, “Independent unbiased coin flips from aretated biased source:80a finite state
markov chain,” Combinatoric, 97—108 (1986).

[35] J. F. Clauser and A. Shimony, “Bell's theorem: expemtad tests and implications,”
Reports on Progress in Physiéls 1881-1926 (1973).

[36] J. C. Garrison and R. Y. ChiaQuantum Opticg¢Oxford University Press, Oxford, 2008).

[37] Anupam Garg and David N. Mermin, “Detector inefficieegiin the einstein-podolsky-rosen experi-
ment,” Phys. Rev. [35, 3831-3835 (1987).

[38] JanAke Larsson, “Bell's inequality and detector inefficieridghys. Rev. A57, 3304—3308 (1998).

[39] Philip M. Pearle, “Hidden-variable @ example based upordata rejection,”
Phys. Rev. 2, 1418-1425 (1970).

[40] Dominic W. Berry, Hyunseok Jeong, Magdalena Stokaéfisknd Timothy C. Ralph, “Fair-sampling
assumption is not necessary for testing local realism,'sPRgv. A81, 012109 (2010).

[41] Asher Peres, “Unperformed experiments have no resaltserican Journal of Physic$6, 745-747 (1978).

[42] B"is the set of bitstrings of length|x| = n; 2X is the set of all subsets of the sét

[43] Patrick Billingsley,Probability and Measur¢John Wiley & Sons, New York, Toronto, London, 1979).

[44] Ariel Gabizon,Deterministic Extraction from Weak Random Sour(®pringer, Berlin Heidelberg,
201Springer-Verlag Berlin Heidelberg).

[45] Gregory J. Chaitinlnformation, Randomness and Incompleten@ssl ed. (World Scientific, Singa-
pore, 1990) this is a collection of G. Chaitin’s early pubtions.

[46] Ernst SpeckeiSelectaBirkhauser Verlag, Basel, 1990).

25


http://dx.doi.org/ 10.1103/PhysRevLett.95.040401
http://dx.doi.org/10.1007/BF02579167
http://dx.doi.org/ 10.1088/0034-4885/41/12/002
http://dx.doi.org/ 10.1103/PhysRevD.35.3831
http://dx.doi.org/ 10.1103/PhysRevA.57.3304
http://dx.doi.org/ 10.1103/PhysRevD.2.1418
http://dx.doi.org/10.1103/PhysRevA.81.012109
http://dx.doi.org/10.1119/1.11393

	A Quantum Random Number Generator Certified by Value Indefiniteness
	Abstract
	I Introduction
	II Quantum Randomness
	A Theoretical claims to quantum randomness
	B Shortcomings of current QRNGs

	III The scheme under ideal conditions
	IV ``Random'' errors or systematic errors
	A Double counting
	B Non-singlet states
	C Non-alignment of polarization measurement angles
	D Different detector efficiencies
	E Unstable detector bias
	F Temporal correlations, photon clustering and ``bunching''
	G Fair sampling

	V Better-than-classical operationalization of spatial orthogonality
	VI Theoretical analysis on generated bitstrings
	A Probability space construction
	B Independence of the QRNG probability space
	C XOR application
	D Criticisms and alternative operationalizations

	VII Summary
	 Acknowledgment
	 References


