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Statistical entropy was introduced by Shannon as a basic concept in information theory

measuring the average missing information in a random source. Extended into an entropy

rate, it gives bounds in coding and compression theorems. In this paper, I describe how

statistical entropy and entropy rate relate to other notions of entropy that are relevant to

probability theory (entropy of a discrete probability distribution measuring its unevenness),

computer sciences (algorithmic complexity), the ergodic theory of dynamical systems

(Kolmogorov–Sinai or metric entropy) and statistical physics (Boltzmann entropy). Their

mathematical foundations and correlates (the entropy concentration, Sanov,

Shannon–McMillan–Breiman, Lempel–Ziv and Pesin theorems) clarify their interpretation

and offer a rigorous basis for maximum entropy principles. Although often ignored, these

mathematical perspectives give a central position to entropy and relative entropy in

statistical laws describing generic collective behaviours, and provide insights into the notions

of randomness, typicality and disorder. The relevance of entropy beyond the realm of

physics, in particular for living systems and ecosystems, is yet to be demonstrated.

1. Introduction

Historically, many notions of entropy have been proposed. The first use of the word entropy

dates back to Clausius (Clausius 1865), who coined this term from the Greek tropos,

meaning transformation, and the prefix en- to recall its inseparable (in his work) relation

to the notion of energy (Jaynes 1980). A statistical concept of entropy was introduced by

Shannon in the theory of communication and transmission of information (Shannon 1948).
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It is formally similar to the Boltzmann entropy associated with the statistical description

of the microscopic configurations of many-body systems and the way it accounts for their

macroscopic behaviour (Honerkamp 1998, Section 1.2.4.; Castiglione et al. 2008). The

work of establishing the relationships between statistical entropy, statistical mechanics and

thermodynamic entropy was begun by Jaynes (Jaynes 1957a; Jaynes 1957b; Jaynes 1982b).

Starting from what was initially a totally different perspective, a notion of entropy rate

was developed in dynamical systems theory and symbolic sequence analysis (Badii and

Politi 1997; Lesne et al. 2009). The issue of compression is sometimes rooted in information

theory and Shannon entropy, while in other instances it is rooted in algorithmic complexity

(Gray 1990; Cover and Thomas 2006).

As a consequence of this diversity of uses and concepts, we may ask whether the use

of the term entropy has any meaning. Is there really something linking this diversity, or

is the use of the same term with so many meanings just misleading?

Thirty years ago, Jaynes gave a short historical account of the different notions of

entropy in Jaynes (1980). In the current paper, I propose to give a more detailed overview

of the relationships between the different notions of entropy as they appear today, rather

than from a historical perspective, and to highlight the connections between probability,

information theory, dynamical systems theory and statistical physics. I will base my

presentation on mathematical results related to Shannon entropy, relative entropy and

entropy rate, which offer a reliable guide, both qualitatively and quantitatively, for the

proper use and interpretation of these concepts. In particular, they provide a rationale, as

well as several caveats, for using what is called the maximum entropy principle.

2. Shannon entropy

2.1. Definitions

For a random variable X with values in a finite set X , Shannon entropy (Shannon 1948)

is defined by

H(X) = −
∑
x∈X

p(x) log2 p(x) � 0 (1)

Shannon entropy quantifies the unevenness in the probability distribution p. In particular,

the minimum H(X) = 0 is reached for a constant random variable, that is, a variable

with a determined outcome, which is reflected in a fully localised probability distribution

p(x0) = 1 and p(x) = 0 for x �= x0. At the opposite extreme, H(X) is maximal, equal to

log2(|X |), for a uniform distribution. An alternative notation for the Shannon entropy is

S(p), which underlines the fact that entropy is a feature of the probability distribution p.

Entropy does not depend on the graph x→ p(x), that is, it is not a feature of the random

variable itself, but only of the set of its probability values. This property is reflected in a

permutation invariance of H(X): if we let the variable σ.X be obtained by a permutation

of the states, that is, labelling states x ∈ X by an index i,

Prob(σ.X = xσ(i)) = p(xi),
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then H(X) = H(σ.X). Entropy trivially increases with the number of possible states: for

an unbiased coin,

H = log2 2 = 1

but for an unbiased dice,

H = log2 6 > 1.

According to the folklore (Avery 2003), the term entropy was suggested to Shannon by

von Neumann for both its fuzziness and resemblance to Boltzmann entropy†. Historically,

Shannon (Shannon 1948) introduced a function H(p1, . . . , pn), which, given a random

variable X with values x1, . . . , xn and corresponding probabilities p1, . . . , pn, with
∑n

i=1 pi =

1, satisfies the following three requirements:

(i) H is a continuous function of the pi;

(ii) if all pi are equal (to 1/n), then H(1/n, . . . , 1/n) is a monotonous increasing function

of n;

(iii) if we group

y1 = {x1, . . . , xk1
}

y2 = {xk1+1, . . . , xk1+k2
}

...

ym = {xn−km+1, . . . , xn}

so that

qi =

i=k1+...+ki−1∑
i=k1+...+k(i−1)

pl

is the probability of the realisation yi, then

H(p1, . . . , pn) = H(q1, . . . , qm) +

m∑
i=1

qiH
(
pk1+...+k(i−1)

qi
, . . . ,

pk1+...+ki−1

qi

)
.

This yields a functional form

H(p1, . . . , pn) = −K
n∑

i=1

pi log2 pi,

† Quoting Avery (2003): when von Neumann asked him how he was getting on with his information theory,

Shannon replied that ‘the theory was in excellent shape, except that he needed a good name for missing

information’. ‘Why don’t you call it entropy’, von Neumann suggested. ‘In the first place, a mathematical

development very much like yours already exists in Boltzmann’s statistical mechanics, and in the second place,

no one understands entropy very well, so in any discussion you will be in a position of advantage’. According

to another source (Tribus and McIrvine 1971), quoting Shannon: ‘My greatest concern was what to call it.

I thought of calling it “information”, but the word was overly used, so I decided to call it “uncertainty”.

When I discussed it with John von Neumann, he had a better idea. Von Neumann told me, ‘You should call

it entropy, for two reasons. In the first place your uncertainty function has been used in statistical mechanics

under that name, so it already has a name. In the second place, and more important, nobody knows what

entropy really is, so in a debate you will always have the advantage”’.
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which is unique up to the multiplicative constant K . Statistical entropy, which we will

denote by H(X) or S(p) from now on, is thus almost uniquely defined by the above

natural prescriptions (i)–(iii). It is easy to check from definition (1) that the entropy of a

compound of independent events Z = X1 . . . Xn such that pZ = pX1
. . . pXn

is simply

H(Z) =

n∏
i=1

H(Xi).

Another important property is entropy convexity. If we let

p = λp0 + (1− λ)p1,

then

S(p) � λS(p0) + (1− λ)S(p1)

or, equivalently,

H(X) � λH(X0) + (1− λ)H(X1)

where X, X0 and X1 are random variables with distributions p, p0 and p1, respectively.

The difference

S(p)− λS(p0)− (1− λ)S(p1)

measures the uncertainty added in mixing the two distributions p0 and p1.

2.2. Information-theoretic interpretation

Shannon initially developed information theory to quantify the information loss in

transmitting a given message in a communication channel (Shannon 1948). A noticeable

aspect of Shannon’s approach is that he ignored semantics and focused on the physical and

statistical constraints limiting the transmission of a message, irrespective of its meaning.

The source generating the inputs x ∈ X is characterised by the probability distribution

p(x). Shannon introduced the quantity

Ip(x) ≡ − log2 p(x)

as a measure of the information given by the observation of x knowing the probability

distribution p. In plain language, it could correctly be said (Balian 2004) that Ip(x)

is the surprise in observing x given some prior knowledge of the source summarised

in p. Shannon entropy S(p) thus appears as the average missing information, that is,

the average information required to specify the outcome x when the receiver knows

the distribution p. It equivalently measures the amount of uncertainty represented by a

probability distribution (Jaynes 1957a; Jaynes 1957b). In the context of communication

theory, it amounts to the minimal number of bits that should be transmitted to specify

x (we shall come back to this latter formulation in Section 5.2, which is devoted to

data compression and coding theorems). Ip(x) is now normally denoted by I(x), which,

regrettably, ignores the essential connection to the distribution p.

The actual message is just one message selected from a set of possible messages, and

information is produced when a single message is chosen from the set. A priori knowledge
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of the set of possible messages is essential in quantifying the information that the receiver

needs in order to properly identify the message. A classic example is the quantification

of the information needed to communicate a play by Shakespeare, depending on whether

the receiver knows in advance that he will receive one of the plays by Shakespeare (in

which case transmitting only the few first words is sufficient) or not (in which case the

whole text of the play has to be transmitted). What changes between the two situations

is the a priori knowledge, that is, the set of possible messages. In the above formalisation,

it is described through the a priori probability p(x) describing the source. It should thus

be emphasised that the meaning of information makes sense only with reference to the

prior knowledge of the set X of possible events x and their probability distribution p(x).

Information is not an absolute notion, but rather a highly subjective and relative one.

For this reason, it is advisable to speak of ‘missing information’ rather than ‘information’.

Moreover, the precise and technical meaning of information in Shannon theory is often

mixed up with the loose meaning of information in everyday language. From now on,

we shall use the term knowledge instead of information when the latter is used with its

non-technical everyday (plain language) meaning.

Shannon information and its statistical average, Shannon entropy, should not be

confused with Fisher information, which appears in parametric estimates, that is, the

estimate of a parameter a of a probability distribution pa(x). It is defined as

IF (a) =

∫
([∂ ln pa(x)/∂a)]2pa(x)dx (2)

(for a one-dimensional parameter a; for the multivariate extension, see, for example,

Amari and Nagaoka (2000) and Cover and Thomas (2006)). Its main interest comes from

the Cramer–Rao bound (Kagan et al. 1973), which relates Fisher information and the

variance Var(â) of the estimated value â of the parameter a through the inequality

Var(â).IF (a) � 1.

We shall say more about the geometric meaning of Fisher information in relation to

relative entropy in Section 2.4.

2.3. Conditional entropy, relative entropy and the Kullback–Leibler divergence

Shannon entropy can be extended (Gray 1990; Cover and Thomas 2006) to multivariate

random variables. It involves their joint distribution: for example, for two random

variables X and Y , it involves taking their values in two a priori different (discrete and

finite) spaces X and Y , so we have

H(X,Y ) = −
∑
x∈X

∑
y∈Y

p(x, y) log2 p(x, y). (3)

From this joint entropy, we then define the conditional entropy

H(X |Y ) ≡ H(X,Y )−H(Y ),
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which appears to be the average (over Y ) of the entropies of the conditional probability

distribution p(X |Y = y):

H(X |Y ) ≡ H(X,Y )−H(Y ) =
∑
y∈Y

p(y)

[
−

∑
x∈X

p(x|y) log2 p(x|y)
]
. (4)

Using a convexity argument (Honerkamp 1998, Section 1.2.4.), it is straightforward to

show that

H(X |Y ) � H(X) � H(X,Y ).

In particular, H(X|Y ) � H(X) reflects the fact that the uncertainty about X is never

increased by the knowledge of Y . In the case of multiple conditioning, we have

H(X|Y ,Z) � H(X|Y ) � H(X).

When the random variables X and Y have the same state space X and distributions pX
and pY , respectively, we can consider the relative entropy:

Hrel(X|Y ) ≡ Srel(pX |pY ) = −
∑
x

pX(x) log2[pX(x)/pY (x)]. (5)

It is easy to show (Cover and Thomas 2006) that Srel(pX |pY ) � 0. The opposite of the

relative entropy defines the Kullback–Leibler divergence (Kullback and Leibler 1951). For

two probability distributions p and q on the same space X ,

D(p||q) = −Srel(p|q) =
∑
x

p(x) log2[p(x)/q(x)] � 0. (6)

D(p||q) is not a distance since it is not symmetric and does not satisfy the triangle

inequality; the only property it shares with a distance is that D(p||q) � 0, with D(p||q) = 0

if and only if p = q. Nevertheless, we shall see that it has a useful geometric interpretation

and some useful properties (Section 2.4 and Section 3.2).

To give an illustration of the use and interpretation of these quantities, let us consider

a stationary Markov chain (Xt)t�0. Then H(Xt|X0) and H(X0|Xt) increase with time t,

while D(pt||pstat) decreases to 0 (where we use pt to denote the distribution at time t and

pstat to denote the stationary distribution). It is important not to confuse:

— the conditional entropy

H(X|Y ) = H(X,Y )−H(Y )

of the random variables X and Y , which could take their values in different sets X
and Y . Its computation requires us to know the joint distribution pXY of X and Y ,

defined on the product space X × Y;

— the relative entropy Hrel(X|Y ) between the random variables X and Y , taking their

values in the same set X , or, equivalently, the Kullback–Leibler divergence D(pX ||pY )

between their probability distributions, which are both defined on X .
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The distinction between relative and conditional entropies becomes even clearer when

we introduce the mutual information:

I(X;Y ) = H(X) + H(Y )−H(X,Y )

= H(X)−H(X|Y )

= H(Y )−H(Y |X)

(7)

of two random variables X and Y . This definition could be reformulated as

I(X;Y ) = D(pXY ||pXpY ) (8)

where pXY is the joint distribution of (X,Y ), and pX and pY are the marginal distributions.

Mutual information I(X;Y ) measures the full correlations between X and Y : it vanishes

if and only if X and Y are independent, and it equals H(X) if X = Y . This notion can

be extended into a conditional mutual information (mutual information between X and Y

given Z) defined by

I(X;Y |Z) = H(X|Z) + H(Y |Z)−H(X,Y |Z). (9)

2.4. Information geometry

The Kullback–Leibler divergence has another, geometric, meaning, related to the so-called

Fisher information metric (Amari and Nagaoka 2000). For a parametrised family p(x, a)

of probability distributions where a has d components, the Fisher information metric is

dp2(a) =
∑
i,j

gi,j(a)da
idaj (10)

where

gij(a) =

∫
∂ log2 p(x, a)

∂ai

∂ log2 p(x, a)

∂aj
p(x, a)dx,

so

dp2(a) = 2D[p(., a)||p(., a + da)]. (11)

This metric endows the parametrised family with a d-dimensional Riemannian differential

manifold structure. The parameters a give the coordinates on this manifold. Working

at the level of a space of probability distributions recovers a continuous setting even if

the underlying features (for example, the state space) are discrete. This makes the tools

of differential geometry available for the study of statistical structures as geometrical

structures.

The components of the parameter a now have to be estimated from the data. As

mentioned above for d = 1, a bound on the estimator is given by the Cramer–Rao

theorem, which states (Kagan et al. 1973) that Va(â) − G(a)−1 is a positive semi-definite

matrix, where Va(â) is the variance–covariance matrix of the estimator â with respect to

the distribution p (., a), and G(a) is the Fisher metric at point p (., a). This means that

the local geometry of the space of probability distributions, as described by the Fisher

information metric, expresses the sensitivity of the distributions with respect to their
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parameters, which is relevant both for making estimates from experimental data and for

control.

2.5. Behaviour of entropy for coarse graining and local averaging

The compositional law requirement (iii) involved in the construction of Shannon entropy

(see Section 2.1) explicitly expresses the behaviour of Shannon entropy when there is coarse

graining, in which elementary states (xi)i=1,...,n are grouped into macrostates (yj)j=1,...,m, with

Prob(y) =
∑
x∈y

p(x).

The entropy H(X) of the original variable X is equal to the entropy of the coarse-

grained variable Y , supplemented with the average entropy of a grain Y = y, that is, the

conditional entropy of X knowing Y = y averaged over the probability distribution of Y .

This additional term is just the conditional entropy H(X |Y )), from which it follows that

H(X) = Hcg(Y ) + H(X |Y ). (12)

Now Hcg(Y ) � H(X), with strict inequality when the coarse graining is non-trivial, that

is, when m < n.

On the other hand, Shannon noted in his seminal 1984 paper that any change towards

equalisation of the probabilities p1, . . . , pn increases H . In particular, such a change is

achieved through a local averaging. For instance, defining

p′i = [pi + pi+1]/2

where

p′n = (pn + p1)/2,

we get

Hav = S(p′) � H = S(p).

Local averaging should not be confused with coarse graining. Local averaging preserves

the number of elements and Hav(ε) increases with the scale ε at which the local averaging

is performed (ε = 2 in the above example). By contrast, coarse graining amounts to

grouping elements into a reduced number of macro-elements or grains, and this leads to

an entropy decrease

Hcg � H,

where the decrease gets stronger when the size ε of the grains increases.

Another puzzling situation is the case where the transmission in a communication

channel is incomplete and yields X as the outcome of an input (X,Y ). The first way to

model this situation is to describe a deterministic channel truncating the initial message.

From this viewpoint, the entropy of the output is H(X), which is lower than the entropy

H(X,Y ) of the source, and incomplete transmission would then be said to decrease

entropy. A second way to model the situation is to describe a noisy channel by replacing

Y by a fully random noise η with the same state space Y and fully independent of X.
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Now the entropy of the output is

H(X) + H(η) = H(X) + log2 |Y |,

which is larger than H(X) + H(Y ), which is itself larger than the entropy H(X,Y ) of the

source, so in this case, the truncated transmission corresponds to an increase in entropy.

Entropy is thus extremely sensitive to the set of possible events considered, here X or

X ×Y , respectively. This example underlines the irrelevance of talking about information

loss or information transfer between systems having different states spaces. Here again,

we recall the caveat that speaking of (missing) information makes sense only with respect

to our prior knowledge of the possible states.

2.6. Continuous extension

The extension of entropy to continuous-valued random variables was discussed in

Shannon (1948) and is now a textbook matter (Ihara 1993). In this case, the entropy

expression is

S(p) = −
∫
X
p(x) log2 p(x)dx

where p(x) is a density with respect to the measure dx. The difficulty in extending entropy

to a random variable taking its values in a continuous set comes from the fact that

−
∫

dx p(x) log2 p(x)

is not invariant under a change of coordinate y = f(x), leading us to replace p(x)dx

by q(y)dy with p(x) = |f′(x)|q(f(x))). While the discrete entropy is an absolute quantity,

this continuous entropy is relative to a coordinate system, and defined up to an additive

constant. The difficulty disappears when considering the relative entropy or, equivalently,

the Kullback–Leibler divergence (Ihara 1993), since the continuous extension

D(p||q) =

∫
X
p(x) log2[p(x)/q(x)]dx

is now invariant under a change of coordinates†. Here we see an instance of the general fact

that continuous probabilities fundamentally require more delicate handling, and can lead

to well-known paradoxes, such as the Bertrand paradox (namely, what is the probability

that a long needle drawn at random intersects a given circle with a chord longer than a

given length). The main point to bear in mind is that the meaningful quantity having a

proper mathematical behaviour (for example, under a change of coordinates) is not p(x),

but p(x)dx.

† In fact, D(μ||μ0) is defined for any pair of probability measures on a Polish topological space X (for example,

a closed subset of Rd), provided the probability measure μ is absolutely continuous with respect to μ0. In

that case, we have D(μ||μ0) =
∫
X dμ log(dμ/dμ0); otherwise D(μ||μ0) = +∞.

https://doi.org/10.1017/S0960129512000783 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000783


A. Lesne 10

3. Concentration theorems and maximum entropy principles

3.1. Types and entropy concentration theorems

In this section we consider sequences x̄N ∈ XN of N independent and identically

distributed random variables with values in a finite set X . In current terminology,

this space X is called the alphabet and its elements symbols, in reference to messages

in communication theory. The definitions and results of this section will apply equally

to configurations of N independent and identical elements with elementary states in X .

A first essential notion is the type px̄N of the sequence or configuration x̄N , which is the

relative number of occurrences of each symbol in x̄N . In other words, it is the empirical

distribution of the symbols in the sequence x̄N , and is thus an observable quantity that

can be derived from an observed sequence x̄N as the normalised histogram of the different

symbols.

The sequence space XN can be partitioned into classes of sequences having the same

type. By extension, these classes are called ‘types’. Each probability distribution p on X
defines a type, that is, a subset of XN . The space XN can be thought of as a microscopic

phase space (see Section 8.2); the types then define macrostates. There are at most

(1 + N)|X | different types (Cover and Thomas 2006), while the number of sequences

in XN grows exponentially. In consequence, at least one type has exponentially many

elements (Csiszár 1998). In fact, we shall see that, asymptotically, one type contains

most of the elements. In its simplest formulation, the entropy concentration theorem states

(Georgii 2003) that

lim
N→∞

1

N
log2 Card{x̄N ∈ XN, px̄N = p} = H(p) (13)

(where Card denotes the cardinal), which can be extended to the relaxed statement, for

any sequence pN tending to p as N → ∞,

lim
N→∞

1

N
log2 Card{x̄N ∈ XN, px̄N = pN} = H(p). (14)

Using Prob to denote the equiprobable distribution on the microscopic phase space XN

(that is, the normalised cardinal), this statement can be rewritten to give

lim
N→∞

1

N
log2 Prob[x̄N ∈ XN, px̄N = pN] = H(p)− log2 |X |. (15)

This can accommodate some fixed tolerance ε, namely, using |q−p| to denote any distance

(such as the quadratic distance) between the probability distributions q and p on X ,

lim
N→∞

1

N
log2 Prob[x̄N ∈ XN, |px̄N − p| < ε] = H(p)− log2 |X |. (16)

Let p∗ be the distribution maximising Shannon entropy, so

H(p∗) = log2 |X |

while

H(p)− log2 |X | < 0
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for any other type p �= p∗. This means that, asymptotically, the type of p∗ contains almost

all sequences. More precisely, it can be shown that

lim
N→∞

Prob[x̄N ∈ XN, |px̄N − p∗| < ε] = 1. (17)

Configurations with type p∗ form a typical set, which is exponentially large compared

with any other set containing sequences with type p with p �= p∗:

lim
N→∞

Prob[x̄N ∈ XN, px̄N = p] = 0

lim
N→∞

Prob[x̄N ∈ XN, |px̄N − p∗| > ε] = 0.
(18)

These probabilities decrease exponentially fast with N, as stated in (15). The type of

p∗, although typical, is nevertheless exponentially small compared with the set of all

possible configurations, which underlines the difference between possible and probable

configurations.

These statements extend to the case of a constrained subset D of probability distribu-

tions:

D = {p probability on X , 〈aα(X)〉p = Aα, α = 1, . . . , m }. (19)

The statistical average 〈aα(X)〉 computed with respect to the empirical distribution px̄N is

just the empirical average

(1/N)

N∑
i=1

aα(xi).

It is thus straightforward to check whether a given observation x̄N (actually a set of

independent individual observations) satisfies the constraints, that is, whether its type

belongs to D. Using p∗D to denote the distribution maximising Shannon entropy in D, the

conditional probability in XN that the type of a sequence is close to p∗D , within some fixed

tolerance ε > 0, converges to 1:

lim
N→∞

Prob[x̄N ∈ XN, |px̄N − p∗D| < ε | px̄N ∈ D] = 1. (20)

The entropy concentration theorem gives a quantitative description of the fact that almost

all configurations satisfying the constraints empirically (that is, having empirical averages

equal to Aα, α = 1, . . . , m) have an empirical distribution asymptotically close to the

maximum entropy distribution p∗D . The same statement also holds with relaxed constraints,

defining a larger set of probability distributions

Dδ = {p probability on X , |〈aα(X)〉p − Aα| < δ, α = 1, . . . , m } (21)

and replacing p∗D with the distribution p∗Dδ
maximising Shannon entropy in Dδ . It can be

shown (Robert 1990) that p∗D and p∗Dδ
are unique, and that p∗Dδ

weakly converges to p∗D
when δ converges to 0.

Since uncorrelated sequences are not always a realistic model, the question of a

concentration theorem for correlated sequences arises: we shall describe such an extension

in Section 5.1, where we show that the main modification required to capture correlations

is to replace H by an average entropy rate h.
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3.2. Relative entropy concentration and Sanov theorems

We might also want to make a statement about the asymptotic weight of the different

types, given the distribution p0 of the elements. Accordingly, we shall now consider

sequences of independent elements whose states are identically distributed according to

the distribution p0 on X (sometimes called the reference distribution). Since the sequences

in XN are uncorrelated, their probability distribution is just the product distribution

p⊗N0 . In this case, all the sequences with the same type have the same probability since

(Georgii 2003)

p⊗N0 (x̄N) = 2−N[H(px̄N )+D(px̄N ||p0)]. (22)

This identity shows that the quantity controlling the asymptotic behaviour is no longer

the entropy, but the relative entropy, or, equivalently, its opposite, the Kullback–Leibler

divergence (6):

lim
N→∞

1

N
log2 p

⊗N
0 [x̄N ∈ XN, px̄N = p] = −D(p||p0). (23)

This gives us (15) again when p0 is uniform; indeed, using punif to denote the equiprobable

distribution on X , we get

D(p||punif) = log2 |X | −H(p).

We can also accommodate some fixed tolerance ε > 0:

lim
N→∞

1

N
log2 p

⊗N
0 [x̄N ∈ XN, |px̄N − p| < ε] = −D(p||p0). (24)

This contains the well-known estimation theorem stating that the empirical distribution

px̄N converges to the actual one p0. In particular, the law of large numbers ensures that

almost surely

lim
N→∞

D(px̄N ||p0) = 0

(Csiszár and Körner 1981; Csiszár 1998). But the above statements go further and allow

us to control the remainder: that is, large deviations, finite-size errors in the estimate and

the convergence rate towards the true distribution p0.

A related issue is the inference of distributions satisfying linear constraints, typically

the knowledge of some moments, while modifying the reference distribution p0 in the

least biased way. Considering the same constrained sets Dδ and D as in Section 3.1, the

solution is given by the closest distributions to p0, as measured by the Kullback–Leibler

divergence, that belong to Dδ and D, respectively. More precisely, under the assumption

that D is not empty and contains at least one distribution having a non-vanishing relative

entropy with respect to p0, it can be proved (Robert 1990) that:

(i) there is a unique distribution p∗Dδ
in Dδ and a unique distribution p∗D in D maximising

the relative entropy with respect to the reference distribution p0, in Dδ and D,

respectively;

(ii) p∗Dδ
weakly converges to p∗D when δ converges to 0;

(iii) p∗Dδ
has the concentration property in Dδ: that is, for any neighbourhood Vδ of p∗Dδ

in Dδ (for the narrow topology, that is, the weak topology for bounded continuous
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real functions on X ), we have ∃α > 0, ∃N0 such that ∀N � N0, we have

p⊗N0 [x̄ ∈ XN, px̄N �∈ Vδ | px̄N ∈ Dδ] � e−Nα.

(iv) p∗D has the concentration property in D: that is, for any neighbourhood V of p∗D in

D, we have ∃α > 0, ∃N0 such that ∀N � N0, we have

p⊗N0 [x̄ ∈ XN, px̄N �∈ V | px̄N ∈ D] � e−Nα.

This is a large deviation result (Ellis 1985; Touchette 2009), stated in a way that

supplements the previous concentration theorem in Section 3.1 since it allows us to control

the remainder. It is valid only with the Kullback–Leibler divergence: other measures of

the distance between the two distributions, for example, the quadratic distance, do not

satisfy a large deviation statement (Robert 1990). Note that

D(p∗Dδ
||p0) � D(p∗D||p0)

since D ⊂ Dδ . We shall now consider the distribution σ∗ maximising the relative entropy

−D(σ||p0) in the complement of V in D, so, by construction,

D(σ∗||p0) > D(p∗D||p0).

The exponent α is given roughly by

D(σ∗||p0)− D(p∗D||p0).

The larger V is, the more distant σ∗ is from p∗D , the larger D(σ∗||p0) is, and hence the

larger is its difference form D(p∗D||p0), and the larger α is. This means that the exponential

decrease as N tends to infinity of the relative weight of the configurations whose type is

not in V is faster when V is larger, that is, the more distant these types are from p∗D . When

X is discrete and p0 is uniform (all states in X having the same probability 1/|X |), the

probability p⊗0 coincides with the normalised cardinal and we recover the specific theorem

derived by Jaynes (Jaynes 1982a).

For independent random variables identically distributed according to the distribution

p0, the above statements extend to convex subsets C of probability distributions on X
according to the Sanov theorem (Sanov 1957):

lim
N→∞

1

N
log2 p

N
0 (x̄N ∈ XN, px̄N ∈ C) = − inf

ν∈C
D(ν ||, p0). (25)

This is a large deviation result (Ellis 1985; Touchette 2009), which could also be thought

of as a projection (Georgii 2003) – see Section 3.3. The Sanov theorem can be extended

to continuous densities, where the space X becomes a continuous metric space. For any

convex subset C of probability densities on X ,

lim
N→∞

(1/N) log2 g
⊗N[x̄N ∈ XN, φN(x) ∈ C) = − inf

f∈C
D(f || g) (26)

where

φN(x) = (1/N)

N∑
i=1

δ(x− xi)

https://doi.org/10.1017/S0960129512000783 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000783


A. Lesne 14

is the empirical distribution (continuous type) and, for instance, C is defined according to

some constraint

φ(x) ∈ C ⇐⇒
∫
X
a(x)φ(x)dx = A. (27)

where we have used a(x) to denote some field and A to denote some fixed number. The

theorem states that the major contribution to

g⊗N[x̄N ∈ XN, φN(x) ∈ C]

comes from the distribution that maximises the relative entropy under the constraint of

belonging to C.

3.3. Geometric interpretation

The Kullback–Leibler divergence is a useful tool, and is suitable for use in a space of

probability distributions – here the space P(X ) of probability distributions on X . For

instance, for any subset C ⊂ P(X ) that does not contain the reference distribution p0, we

could consider

Q(p0) = argminq∈CD(q||p0). (28)

The distributions in C minimising D(.||p0) could be called the ‘orthogonal projections’ of

p0 onto C. When C is closed for the weak topology, such minimisers are guaranteed to

exist (Georgii 2003). If, moreover, C is convex, the minimiser Q(p0) is uniquely determined

(Csiszár 1975), and is called the I-projection of p0 on C, and D(Q(p0)||p0) measures the

‘distance’ between p0 and the set C. For this reason, the Kullback–Leibler divergence could

be more natural and more efficient than true functional distances, such as the quadratic

distance. Recall that the mapping p → D(p||p0) is lower semi-continuous in this weak

topology (Georgii 2003); it is also strictly convex.

Given a sample of probability distributions (pk)k=1,...,m, the Kullback–Leibler divergence

allows us to define a notion of empirical average p̄ of the sample by

p̄ = argminq∈P(X )

1

m

m∑
k=1

D(q||pk) (29)

(Georgii 2003; Balding et al. 2008). This definition of an average object is suitable when

the arithmetic mean of the sample does not make any sense (Balding et al. 2008); it shows

that the average can in fact be identified with a projection.

Another interesting interpretation of the Kullback–Leibler divergence is related to

conditional expectation. Let Σ be a sub-sigma algebra of the original Σ0. Let p be the

original probability density of the random variable X being considered and defined

on Σ0. The conditional expectation EΣp is the Σ-measurable density such that for any

Σ-measurable function f, ∫
f(x)p(x)dx =

∫
f(x)EΣp(x)dx. (30)
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EΣp corresponds to the coarse graining of p adapted to the coarser sigma-algebra Σ, that

is, a coarse description of the random variable X. An explicit computation using∫
p(x) log2[E

Σp(x)]dx =

∫
EΣp(x) log2[E

Σp(x)]dx

according to the above definition, leads straightforwardly to the relation

D(p||EΣp) = S(EΣp)− S(p) � 0. (31)

Moreover, we get

D(p||q)− D(p||EΣp) = D(EΣp||q)

for any Σ-measurable density q, and thus (Csiszár 1975)

argminq Σ−measurable D(p||q) = EΣp. (32)

3.4. Maximum-entropy inference of a distribution

An accepted heuristic principle in constructing a statistical model given some prior

knowledge (for example, experimental data) is to minimise the bias introduced in the

reconstruction: an observer with the same (in general, partial) knowledge would make

the same inference (Bricmont 1995). In particular, without any prior knowledge of the

observed process, we should consider equiprobable outcomes. This principle dates back

to the Laplace principle of indifference (or principle of insufficient reason) (Jaynes 1979;

Jaynes 1982a; Jaynes 1982b). When the constraints are linear with respect to the

probability distribution (for example, a condition on its support and/or prescribed values

for some of its moments), a constructive method for implementing this principle is to

maximise the Shannon entropy under the constraints. Reconstruction of the probability

distribution using the maximum entropy principle is by no means restricted to statistical

mechanics, or any other specific applications, but is a general method of inference under a

priori constraints, ensuring that no additional arbitrary assumptions, that is, no biases, are

introduced (Frank 2009). Any discrepancy between predictions and observations would

presumably be due to an ill-constrained maximum entropy principle, and provides evidence

supporting a need for additional constraints (or the need to relax spurious constraints).

Constraints amount to restricting the relevant space of probability distributions in which

the statistical model is to be reconstructed. Once the constrained probability space is

given, the distribution achieving maximum entropy is unique because of the concavity of

the entropy. Indeed, if p∗1 and p∗2 were two distinct distributions achieving the maximum

entropy value H∗, any convex combination λp∗1 + (1− λ)p∗2 with 0 < λ < 1 would achieve

a strictly larger value

H(λp∗1 + (1− λ)p∗2) > λH(p∗1) + (1− λ)H(p∗2) = H∗.

More explicitly, let us consider a random variable X having n possible outcomes

x1, . . . , xn. We do not know the corresponding probabilities p(x1), . . . , p(xn), but only the
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value of some averages

〈aα(X)〉p =

n∑
i=1

p(xi)aα(xi), α = 1, . . . , m,

and we want to estimate another average 〈b(X)〉 (which is precisely the issue encountered

in statistical mechanics – see Section 8). As just explained, the problem can be reformulated

as follows. What is the distribution p(x) on the finite space X = {x1, . . . , xn} maximising

Shannon entropy under the following constraints:

(i) p(x) � 0 for any x ∈ X ;

(ii)
∑

x∈X p(x) = 1;

(iii) for α = 1, . . . , m, ∑
x∈X

p(x)aα(x) = Aα.

The solution (Jaynes 1982a; Frank 2009) is

p(xj) = C exp

(
−

m∑
α=1

λαaα(xj)

)
(33)

where the Lagrange multipliers λα are determined by the need to satisfy the constraints

(iii) and the multiplicative constant C ensures the proper normalisation given by (ii). This

solution had already been established by Shannon for continuous distributions in some

specific contexts (Shannon 1948): the distribution on [−∞,∞[ maximising entropy at fixed

average μ and fixed variance σ2 is the Gaussian distribution N (μ, σ2); and the distribution

on [0,∞[ maximising entropy at fixed average μ is the exponential distribution

f(x) = (1/μ)e−x/μ.

Underlying the maximum entropy principle is the view of probabilities as an expression

of our ignorance: the maximum entropy approach belongs to the subjective probability

viewpoint, as opposed to the frequentist viewpoint (Gillies 2000). As discussed in

Section 9.1, probability distributions represent our state of knowledge, rather than an

intrinsic feature or behaviour of the observed system. There should be no confusion

between the maximum entropy principle and the maximum entropy production principle

(if any): entropy production represents the part of the thermodynamic entropy variation

due to an irreversible process, setting apart the contribution of matter transfer (see

Section 8.5), and has no direct statistical counterpart.

Prior knowledge about the system in the absence of constraints is expressed in the

form of a reference probability distribution p0, reflecting, for instance, symmetries and

invariance properties. This additional knowledge has to be taken into account in statistical

inference of the actual probability distribution by maximising the relative entropy Srel(p|p0)

under constraints, or, equivalently, minimising the Kullback–Leibler divergence

D(p||p0) = −Srel(p|p0)

under constraints (Banavar et al. 2010). This turns the maximum entropy principle into a

maximum relative entropy principle. Note that while the maximum entropy principle applies
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to discrete distributions, the maximum relative entropy principle can also be applied to

continuous distributions without any ambiguity (see Section 2.6). The density maximising

relative entropy under the constraint 〈a(X)〉 = A is given (up to a normalisation factor)

by (Kagan et al. 1973)

fλ(x) ∼ g(x)eλa(x) (34)

and λ is such that ∫
X
a(x)fλ(x)dx = A. (35)

A similar statement holds with an array of conditions, in which case a(x) and λ are

vectors, and the product has to be replaced by a scalar product λt.a(x). A justification of

the maximum relative entropy principle was given in Van Campenhout and Cover (1981):

the distribution maximising the relative entropy can be characterised as the limit of a

sequence of conditional probabilities. We shall now consider independent and identically

distributed variables X1, . . . , XN with density p0. The conditional probability of X1 under

the constraint

(1/N)

N∑
i=1

a(Xi) = A

on the empirical average converges to the distribution maximising the relative entropy,

namely,

lim
N→∞

dProb

(
X1 = x | 1

N

N∑
i=1

a(Xi) = A

)
= fλ(x)dx. (36)

The usefulness of this theorem depends largely on the proper identification of the

observable a(x). The ideal situation is to identify a function h(x) such that

āN = (1/N)

N∑
i=1

a(Xi)

is a sufficient statistics summarising all the relevant knowledge about the sample at the

macroscopic scale. In this case, given āN , the sample associated with the maximum relative

entropy distribution is maximally random and conveys no further information.

Note the transitivity of the maximum relative entropy principle. Specifically, starting

from a reference distribution p0, we could first determine the maximum relative entropy

distribution p∗1 associated with a set of constraints

〈ai〉 = Ai, i = 1, . . . , n.

Then starting with p∗1 as the reference distribution, we could determine the maximum

relative entropy distribution p∗2 associated with a set of constraints

〈ai〉 = Ai, i = n + 1, . . . , n + m.

This would then be the same as determining the maximum relative entropy distribution

associated with the set of constraints

〈ai〉 = Ai, i = 1, . . . , n + m

starting from the reference distribution p0.
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A serious conceptual problem in the practical application of the maximum entropy

inference method was pointed out in Haegeman and Etienne (2010): the distribution

obtained by maximising entropy seems to depend on the chosen setting. Consider, for

instance, a system composed of M cells and N individuals, and investigate the distribution

of the pattern formed by the partition of individuals in the different cells. From one

viewpoint, the system configuration is described by labelling the individuals and the cells,

and recording the cell mi in which the individual i lies; we thus obtain NM possible

configurations m = (m1, . . . , mN). From a second viewpoint, the M cells are labelled but

the individuals are now indistinguishable, and the system configuration is described by

the occupancy numbers nm of the cells; we thus obtain at most MN � NM configurations

n = (n1, . . . , nM). Note that the later description follows from a coarse graining of the

former through

nm =

N∑
i=1

δ(m,mi).

The maximum entropy principle applied to an inference of the distribution p(m) yields a

uniform distribution, for which all configurations m are equiprobable, and the maximal

entropy is S = N log2 M. By contrast, the maximum entropy principle applied to an

inference of the distribution p(n) yields a uniform distribution for the coarse-grained

configuration n, which obviously does not coincide with the coarse-grained distribution

obtained from an equipartition of the elementary configurations m.

This discrepancy is quite puzzling. It means that taking into account the identity of the

individuals is a piece of information that strongly modifies the inference; another clue

about this difference comes from the different levels of description and the fact that entropy

does not commute with coarse graining (the entropy of a coarse-grained description is

always smaller than the entropy computed at a more refined level). This leads to the

open question of the proper a priori choices to be made in using the maximum entropy

inference method, since the choice of the configuration space has a strong influence

on the resulting distribution and the macroscopic quantities (averages and moments)

that can be computed from it. The paradoxes are solved by a consistency argument

(constraints must be consistent with the distribution under consideration) or by a return

to the mathematical foundations (types and the entropy concentration theorems). Here,

the concentration theorems only apply to the convergence of the empirical distribution n

of the population among the different spatial cells towards the actual spatial distribution

(spatial type). By contrast, there is no rigorous mathematical foundation for the application

of the maximum entropy principle to the reconstruction of either the distribution p(m)

or p(n).

It should be stressed that the maximum entropy principle is justified not only as the

formalisation of the intuitive indifference principle of Laplace, but also, rigorously, by the

entropy concentration theorems of Section 3.1. These theorems state that, asymptotically

(that is, for a large enough number N of independent and identical elements with

elementary states x ∈ X ), the number of configurations whose empirical distribution

(their type) is the probability distribution p on X behaves as 2NH(p). In consequence,

an exponentially dominant set of configurations yields the distribution p∗ achieving the
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maximum entropy. The experimental observation of a microscopic configuration yielding

a different empirical distribution pobs �= p∗ has an exponentially small probability, which

decreases like 2−[H(p∗)−H(pobs]. This statement can be extended to constrained distributions:

the configurations whose type satisfies a set of linear constraints concentrate about the

distribution maximising relative entropy under the same constraints. Accordingly, almost

all microscopic configurations behave in the same way with respect to their macroscopic

features. It is thus legitimate to predict that real distributions in X will almost surely

agree with the prediction of the maximum entropy principle in the limit N → ∞. A similar

statement holds when a reference distribution p0 is given, thus replacing Shannon entropy

H(p) with the relative entropy −D(p||p0). The asymptotic nature of the statement, which

is reflected in a condition on the sample size N, could nevertheless be limiting in some

situations. Moreover, it relies on the independence of the different elements or individuals,

which often cannot be assumed. We shall see an extension of the concentration theorems

to correlated populations or samples in Section 5.1, which involves an average entropy rate

h instead of the entropy or relative entropy. We stress that maximum entropy prediction

only applies to the empirical distribution or type, that is, a probability distribution in the

elementary state space X . Its application to probability distributions describing another

feature of the system, in a different space, leads to paradoxical results, as illustrated above.

Another example used by Boltzmann (Cover and Thomas 2006) is that of N dice thrown

on the table such that the sum of the spots on their visible faces is some integer value

Nα. We wish to know the most probable macrostate, where a macrostate describes the

number of dice showing k spots for each k = 1, . . . , 6. The answer is given by maximising

the entropy of the probability distribution, namely, (pk)k=1,...,6, under the constraint

6∑
k=1

kpk = α

on its average and the normalisation constraint

6∑
k=1

pk = 1.

This gives

pk = exp(λ0 + kλ1)

where λ0 and λ1 are chosen to satisfy the normalisation and average constraints. The

rationale for using the maximum entropy principle here comes from the theory of types

and the concentration theorems (see Section 3.1): for any fixed ε, the asymptotic behaviour

for the conditional probability is given by

lim
N→∞

Prob

{
x̄N, |px̄N − p∗| < ε

6∑
k=1

kpx̄N (k) = αN

}
= 1 (37)

where αN is a sequence tending to α when N tends to infinity (and such that NαN is an

integer), and p∗α is the probability distribution on the elementary state space maximising the

entropy at fixed average α. Prob corresponds to equiprobable configurations: specifically,
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in the case of dice, it is given by the cardinal divided by the total number 6N of

configurations (a uniform reference distribution).

In conclusion, maximum entropy can only be applied safely to the inference of the

elementary distribution in a population of independent and identical individuals with

discrete states. It supplements the standard estimation method of a distribution from the

empirical one (normalised histogram) by providing bounds on the rate of convergence

to the true distribution and in controlling the finite-sampling errors. Maximum entropy

arguments can also be used to justify a parametric expression of the form given in (33) or

(34) for a distribution. An ecological example in the form of the reconstruction of species

spatial distribution as a function of bioclimatic fields can be found in Phillips et al. (2006)

and Phillips and Dudı́k (2008). The maximum entropy principle can be extended to

form a maximum relative entropy principle when we wish to update a prior distribution

(a reference distribution p0) with additional knowledge and constraints, basically, by

replacing entropy with relative entropy in the statements.

A corollary of the Shannon maximum entropy principle is the Burg maximum entropy

theorem, which states that the process that maximises entropy subject to correlation

constraints is an appropriate autoregressive Gaussian process (Cover and Thomas 2006).

More explicitly, the stochastic process maximising the entropy rate given the correlations

〈XjXj+k〉 = αk for k = 0, . . . , K is the Kth-order Gauss–Markov process

Xj = −
K∑
k=1

akXj−k + Zj

where Zj is an independent and uncorrelated centred Gaussian process of variance σ2, and

the values of (ak)k=1,...,K and σ2 are chosen so that the constraints are satisfied. A corollary

is the fact that the entropy of a finite segment of a stochastic process is bounded above by

the entropy of a segment of a Gaussian process with the same covariance structure (Cover

and Thomas 2006). This theorem validates the use of autoregressive models as the least

biased fit of data knowing only their correlations. Nevertheless, it does not validate an

autoregressive model as an explanation of the underlying process. In the same spirit, the

fact that the least biased fit of a distribution with a given mean μ and variance σ2 is the

normal distribution N (μ, σ2) does not prove that the distribution is indeed a Gaussian

distribution. Dedicated hypothesis testing should be developed here to check whether the

underlying process is indeed linear, or not.

3.5. An illustration: types for uncorrelated random graphs

In this section we discuss a possible extension of the method of types to uncorrelated

random graphs – this belongs to the expanding field of the statistical mechanics of

networks. A graph is fully specified by a set of N nodes and an adjacency matrix A

describing the edges between these nodes (that is, Aij = 1 if there is an edge between the

nodes i and j, otherwise Aij = 0, in particular, Aii = 0). Defining the degree ki of the

node i as the number of edges linked to i (explicitly, ki =
∑N

j=1 Aij), a degree sequence

[k](A) can be associated with the adjacency matrix A. We then deduce the normalised

https://doi.org/10.1017/S0960129512000783 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129512000783


Shannon entropy 21

histogram pA(k) of this sequence, which is just the empirical degree distribution. The

average degree 〈k〉pA with respect to this empirical distribution pA coincides with the

degree average
∑N

i=1 ki/N, which is itself equal to 2M(A)/N where M(A) is the number

of edges of the graph. These are random variables insofar as A is itself a random variable

when considering statistical ensembles of random graphs. A graph can be considered at

four different hierarchical levels:

— the adjacency matrix A ∈ {0, 1}N2

, containing full knowledge about the graph, at the

level of the pairs of nodes;

— the degree sequence [k](A) ∈ NN , at the node level, in which permutations (of the

nodes) matter;

— the empirical degreee distribution pA(k) ∈ P(N), which is invariant under node

permutations;

— the empirical average 2M(A)/N of the degrees, which coincides with the statistical

average according to the distribution pA.

At this stage, we can work with two different statistical ensembles of graphs:

— the microcanonical ensemble

EN
micro(M0) = {A,M(A) = M0}

endowed with a uniform probability distribution

QN
micro(M0) = 1/|EN

micro(M0)|

(we can use some tolerance δM to relax the condition M(A) = M0 with no quantitative

consequence at the level of entropy in the limit N →∞);

— the canonical ensemble EN endowed with the Gibbs probability distribution QN
can(M0)

satisfying the maximum entropy criterion under the constraint

〈M〉QN
can(M0) = M0.

Let us consider the case of an uncorrelated graph with degree distribution p0, namely,

the N degrees are drawn at random and independently according to the distribution p0.

The degree sequence [k] is thus a realisation of an uncorrelated and uniform sequence

with distribution p0, and it is distributed according to the product distribution p⊗N0 .

The empirical degree distribution pA can be thought of as the type p[k](A) of the degree

sequence [k](A), in a way similar to the type of a random sequence in probability theory.

We use NN(p) to denote the number of sequences of length N having the type p ∈ P(N).

The Csiszár–Körner theorem (Csiszár and Körner 1981) then states that for any sequence

(pN)N such that limN→∞ pN = p0, we have

lim
N→∞

(1/N) logNN(pN) = H(p0), (38)

and for any convex set C ⊂ P(N), Sanov’s large deviation theorem states that

lim
N→∞

(1/N) log p⊗N0 {[k], p[k] ∈ C)} = − inf
p∈C

D(p||p0). (39)
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4. Shannon entropy rate

4.1. Definition

For a stationary stochastic process (Xt)t�0 (in discrete time t) with values in a finite set X ,

the Shannon entropy of the array (X1, . . . , Xn) is called the block entropy of order n and

denoted by Hn. This is the Shannon entropy of the n-word distribution pn, namely,

Hn ≡ −
∑
w̄n

pn(w̄n) log2 pn(w̄n) = h(pn) (40)

where the sum runs over all the possible n-words w̄n. The n-block entropy quantitatively

captures all the correlations having a range shorter than n, by contrast with the simple

entropy H = H1, which is only sensitive to the frequencies of the different elementary

states (which we shall call ‘symbols’ from now on). Note that n-words and the associated

block-entropy should not be confused with coarse graining or local averaging – see

Section 2.5. The latter take place in the state space of a single variable X , while pn is a

probability distribution in X n. For a stationary process, the definition and properties of

the conditional entropy (Karlin and Taylor 1975, Section 9.6) give us

0 � H(Xn+1 |X1, . . . , Xn)

� H(Xn+1 |X2, . . . , Xn)

=H(Xn |X1, . . . , Xn−1). (41)

This inequality could be rewritten as

0 � Hn+1 −Hn

� Hn −Hn−1,

which implies the existence of the Shannon entropy rate (Karlin and Taylor 1975,

Section 9.6; Cover and Thomas 2006):

h = lim
n→∞

Hn+1 −Hn = lim
n→∞

H(Xn+1 |X1, . . . , Xn) = H(X0 |
←
X) (42)

where
←
X= (Xi)−∞<i�−1.

This entropy rate h can be equivalently defined (Karlin and Taylor 1975, Section 9.6;

Cover and Thomas 2006) as the limit

h = lim
n→∞

Hn

n
. (43)

This limit exists if limn→∞Hn+1 − Hn exists, and it then takes the same value; we shall

here consider situations where the two limits exist, and thus coincide. h is an asymptotic

quantity characterising the global statistical features of the source. In particular, it captures

correlations of any range, and thus provides a quantitative measure of the overall temporal
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organisation of the process. We will use the denotations:

hn = Hn+1 −Hn = H(Xn+1|X1, . . . , Xn)

hn,av =
Hn

n
.

(44)

These intermediate quantities are monotonically decreasing toward their common limit h,

and thus provide upper bounds on the entropy rate according to

hn,av � hn � h = lim
n→∞

hn = lim
n→∞

hn,av. (45)

An important point in using the entropy rate for data analysis (Lesne et al. 2009) is that

h makes sense for both deterministic and stochastic sources. If we consider a sequence

(X1, . . . , Xn) of length n, it can be shown (Karlin and Taylor 1975, Section 9.6) that a

random shuffle σ increases entropy, that is,

Hn(σ.X) � Hn(X)

except for an uncorrelated stationary process, for which

Hn(σ.X) = Hn(X) = nH1(X).

This property is exploited in surrogate methods for assessing that an experimental sequence

is not produced by an uncorrelated stationary source. The argument relies on showing that

its estimated entropy rate is significantly lower than most of the entropy rates estimated

from the shuffled sequences. Entropy rate estimation from data and the interpretation to

be used in practical contexts is a whole domain of research, deserving of its own a critical

review (Kantz and Schreiber 1997; Lesne et al. 2009), and is far beyond the scope of the

current paper.

4.2. Examples and special cases

For a sequence of independent and identically distributed random variables, h = H1, that

is, h reaches its upper bound (at given symbol frequencies). Temporal correlations always

reduce h. For a stationary Markov chain of order 1, we have

h = H2 −H1,

while for a stationary Markov chain of order q, we have

Hn = Hq + (n− q)h

when n � q. In this case, hn = h exactly when n � q, while hn,av gives only an approximation

for h, with a remaining positive term [Hq − qh]/n. Accordingly, in the general case, hn is

the entropy rate of the Markov approximation of order n of the source. Note that the

entropy rate of a first-order Markov chain with transition matrix

M(p) =

(
1− p p

p 1− p

)
(46)
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equals that of a Bernoulli process B with probability Prob(B = 1) = p, and both entropy

rates are equal to

h = −p log2 p− (1− p) log2(1− p).

This illustrates the fact that there is no one-to-one correspondence between entropy rates

and processes. There is no way to directly infer any insights into the underlying process

and its features from the value of h itself: only a differential study makes sense, and

this could be based on a comparison between two experimental systems (for classification

purposes) or between a real system and a model (for quality assessment), or between two

models (for model selection purposes). Only h = H1 is directly meaningful, and indicates

the absence of temporal correlations in the process. Even h = 0 does not lead to a clear-cut

conclusion since it may be observed for both a periodic dynamics and a dynamics at the

onset of chaos.

We will now consider a more complicated situation, namely, a hidden Markov model

Yt = Xt ⊕ Et where ⊕ is the exclusive-or logical operation, X is a binary Markov chain

with the symmetric transition matrix (46) as above, and E is a Bernoulli noise process

with parameter ε. The common entropy rate is

h(E) = H1(E) = −ε log2 ε− (1− ε) log2(1− ε).

In other words, Yt is obtained by randomly flipping the symbol Xt with a probability ε

without any correlation between the successive flips. This is the typical case of a noisy

transmission, where Y is the outcome of a noisy channel fed with an input X. It can be

shown (Zuk et al. 2005) that for small ε, we have

h(Y ) = h(X) + εc1 + O(ε2)

with

c1 = 2(1− 2p) log2[(1− p)/p].

It is notable that c1 > 0 when 0 < p < 1, so h(Y ) > h(X) for small enough noise.

Observing Yt is associated with a greater surprise than observing Xt, since an additional

degree of randomness, the noise Et, sets in. Using the fact that Hn(Y ) � h(Y ), it follows

that for δ small enough and n0 large enough, the inequality

Hn(Y ) > δ + Hn(X)

holds for any n � n0. It should also be noted that

H1(X) = H1(Y ) = 1,

that is, the noise does not break the symmetry inasmuch as the stationary state of both

processes X and Y corresponds to equiprobability between symbols 0 and 1. Accordingly,

the difference between the input and output in terms of the information content and the

influence of noise on the transmission cannot be appreciated using the Shannon entropy

alone.
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4.3. Information-theoretic interpretation

The inputs in the information-theoretic interpretation of Shannon entropy H (see

Section 2.2) were the elementary states or symbols x ∈ X . We will now consider the

more realistic case where the message is formed by the concatenation of symbols emitted

successively by the source. For independent symbols, the source is still fully characterised

by the entropy H of the elementary distribution. In the general case, time correlations are

present between sucessive symbols and we have recourse to h to characterise the source.

It is thus important to distinguish H and h: we have

h � H � log2 |X |

and h < H when correlations are present.

Indeed, using the stationarity of the process (Feldman 2002), we have

h= lim
N→∞

H(X0|X−1, . . . , X1−N)

=H(X0)− lim
N→∞

I(X0 ; X−1, . . . , X1−N)

=H(X0)− I(X0;
←−
X ), (47)

from which we deduce that for a stationary source, h = H1 if and only if there are no

correlations between X0 and
←−
X . The entropy rate h captures both the unevenness of

the symbol distribution and the correlations along the sequence in a non-additive way,

so it is impossible to disentangle the two contributions. By contrast, H only provides

a quantitative characterisation of the unevenness of the probability distribution of the

symbols. Using the expression

h = lim
n→∞

H(X0|X−1, . . . , X−n),

another interpretation of h is the information required to predict X0 knowing the whole

past.

By definition and the information-theoretic interpretation of Shannon entropy (see

Section 2.2), h is the average information given by the observation of an additional

symbol (Feldman 2002). Equivalently, the average missing information to predict the

value of the next symbol in X is not log2 |X | bits (1 bit for a binary sequence) but h bits.

Indeed, some knowledge is brought by both the time correlations and the unevenness

of the symbol frequency distribution. This means that some redundancy is present in a

sequence of length N and, on average,

Neff = Nh/ log2 |X |

bits are enough to represent the sequence (Neff = Nh in the case of a binary sequence).

The entropy rate also plays a role in statistics in that it captures the time correlations of

the process, which is central in controlling the error bars in estimating issues. For instance,

for a stationary Gaussian process X, it can be shown (Cover and Thomas 2006) that the

variance σ2
∞ of the error of the best estimate of Xn given the infinite past is related to the

entropy rate h(X) of the process through

2πeσ2
∞ = 22h(X).
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More generally, when making estimates from an experimental sequence,

Neff = Nh(X)/ log2 |X |

is the effective length of the sequence, which is relevant in appreciating the importance of

finite-size effects. The notions of entropy rate H(X) and effective length Neff thus provide

the foundations for estimation theorems for correlated samples: for example, in estimating

the underlying distribution from the observation of a time-correlated trajectory (Sokal

and Thomas 1989; Sokal 1997; Lesne et al. 2009).

4.4. Derived notions

There remains a wide range of possible temporal structures for a dynamics characterised

by a given entropy rate h. This observation motivated the search for additional measures

to derive quantitative characterisations of temporal structures or patterns and their

statistical complexity (Feldman and Crutchfield 1998; Feldman 2002). A first direction

was to consider a quadratic function

Q(p) = (H(p)/Hmax)[1−H(p)/Hmax]

where

Hmax = log2 |X |
is the maximum entropy observed for distributions on the same space X as p. The idea

is to enforce the expected behaviour of a statistical measure of complexity, namely one

vanishing for regular, for example, periodic, and for fully random distributions (Shinner

et al. 1999). Nevertheless, this quantity Q(p) contains almost exactly the same knowledge

about the distribution p as the entropy H(p). It describes its features almost exactly at

the same level and in the same way, as shown by the inverse formula

H(p)/Hmax = [1±
√

1− 4Q]/2.

In fact, Q contains slightly less information since H and H − Hmax correspond to the

same value of Q, meaning that an additional degeneracy is introduced into p → Q(p)

compared with p→ H(p). Similarly, the quantity h(hmax − h) is not a complexity measure

since it does not give us any further insights into the structure and organisation of the

system compared with the entropy rate h (it is not enough that it vanishes for regular

and fully random sources). A more insightful notion is the effective measure complexity

(Grassberger 1986; Gell-Mann and Lloyd 1996; Gell-Mann and Lloyd 2003), also called

the excess entropy (Feldman 2002):

E = I(
←
X |

→
X) = I(X−1

−∞ ; X+∞
0 ). (48)

For instance, h = 0 is observed in several very different cases, for example, for periodic

signals and at the onset of chaos. Excess entropy allows us to discriminate the different

situations associated with a vanishing entropy by capturing the way Hn/n converges to

h = 0. For instance, Hn = const for a periodic signal, while Hn ∼ log2 n at the onset of
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chaos (Feldman 2002). More generally (Grassberger 1986),

Hn ∼ E + nh + h.o..

An equivalent expression for excess entropy is (Badii and Politi 1997)

E = lim
n→∞

(Hn − nh)

= lim
n→∞

2Hn −H2n

n

=

∞∑
n=1

n(hn−1 − hn) + H1 − h.

(49)

A natural extension of the entropy rate is the mutual information rate (Gray 1990; Blanc

et al. 2008)

i(X;Y ) = lim
n→∞

(1/n)I([X1, . . . , Xn]; [Y1, . . . , Yn]). (50)

Using θ.X to denote the shifted sequence, such that

(θ.X)t = Xt+θ,

it can be shown (Blanc et al. 2011) that the mutual information rate satisfies

i(X, θ.X) = h(X)

i(X, θ.Y ) = i(X,Y ).

Shannon actually introduced the mutual information rate between the input and output

signals in the section of his historic 1948 paper devoted to transmission in a noisy channel,

and called it the rate of actual transmission. Using X to denote the input (message emitted

by the source) and Y the output (message after transmission in the channel, or, more

generally, any input–output device), the conditional entropy rate

h(X|Y ) = h(X,Y )− h(Y )

measures the average ambiguity of the output signal, that is, the entropy of the message

X emitted by the source given the output Y . We have h(X|Y ) = 0 when knowledge of

the output sequence (y1, . . . , yN) allows us to determine the input message. In other words,

h(X|Y ) is the amount of additional information that must be supplied per unit time to

correct the transmitted message Y and recover X, while h(Y |X) is the part due to noise in

h(Y ). These two quantities are directly related to the mutual information rate as follows:

i(X;Y ) = h(X)− h(X|Y ) = h(Y )− h(Y |X). (51)

Another extension is based on the introduction of the Rényi entropy of order α (Rached

et al. 2001)

H (α)(p) ≡ 1

1− α
log2

(∑
i

pαi

)
(52)

and the Rényi divergence of order α

D(α)(p||q) ≡ 1

α− 1
log2

(∑
i

pαi q
1−α
i

)
, (53)
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which recovers the Shannon entropy and the Kullback–Leibler divergence for α = 1

through the equations

lim
α→1

H (α)(p) = H(p)

and

lim
α→1

D(α)(p||q) = D(p||q),

respectively.

Similarly, the Rényi entropy of order α can be extended into an entropy rate

h(α) = lim
n→∞

H (α)(pn)/n

where pn is the n-word distribution of the source. The rationale for considering these

extended entropy rates is to give a tunable weight to rare events: for example, rare events

contribute relatively more in h(α) for α < 1 than in h. Their drawback is the lack of a

subadditivity property except for α = 0 and α = 1. This is also a problem for non-extensive

thermostatistics, which is based on these generalised entropies (Balian 2004; Balian 2005).

4.5. Spatial extension

Block-entropies and entropy rates are statistical descriptors of a time series. Technical

care is needed to extend these notions and apply them to the quantification of a

spatially extended structure by considering spatial labels (x, y) or (x, y, z) instead of time

t (Grassberger 1986). We can obviously compute the Shannon entropy of the probability

distribution describing the fraction of space occupied by the different species forming

the pattern (normalised over the different species). A more refined quantification involves

Shannon entropies at different observation scales ε (local averages). Considering a partition

of the space into N(ε) disjoint cells of size ε, and using pi(ε) to denote the measure of the

cell i, with

N(ε)∑
i=1

pi(ε) = 1,

normalised over the different spatial cells, a meaningful index is the information dimension

(Badii and Politi 1997; Castiglione et al. 2008), which describes the ε-dependence of the

entropy and is given by

D = lim
ε→0

∑N(ε)
i=1 pi(ε) log2 pi(ε)

log2 ε
. (54)

Another promising but not yet much developed index is the multivariate extension of

the entropy rate devised for a time sequence. For this, we have to consider increasing

sequences (Bn)n of multidimensional blocks (for example, squares for a spatial structure

in the plane) and

h = lim
n→∞

HBn
/|Bn|.
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We then check that the resulting entropy rate does not depend on the chosen sequence:

that is, if

An ⊂ Bn ⊂ An+1,

then h([A]) = h([B]). This would allow us to provide evidence for the existence of

patterns, in exactly the same way as the entropy rate h is exploited in time series analysis

to provide evidence for non-trivial temporal organisation (Kantz and Schreiber 1997;

Lesne et al. 2009). In this context, one should not confuse:

(i) the quantification of spatial structures by means of statistical entropy;

(ii) the investigation of thermodynamic entropy production in dissipative spatial struc-

tures.

As far as I am aware, the question as to whether there is any relationship between

the degree of spatial order of the structure and pattern and the thermodynamic entropy

production when this structure or pattern is associated with a nonequilibrium state of some

process (dissipative structure) is still open (Mahara and Yamaguchi 2010). Presumably,

there is no universal link since entropy production directly involves the dynamics of the

system, while the pattern statistical entropy quantifies only the stationary outcome of

the dynamics. In particular, different dynamics (with different entropy productions) could

produce the same stationary patterns, and thus be associated with the same statistical

entropy.

5. Asymptotic theorems and global behaviour of correlated sequences

5.1. Shannon–McMillan–Breiman theorem

An extension of the concentrations theorems to the case of correlated sequences is

provided by the Shannon–McMillan–Breiman theorem, which had been stated for Markov

chains in Shannon (1948, Theorem 3) and then extended in McMillan (1953) and Breiman

(1957). Under an assumption of stationarity and ergodicity of the stochastic process under

consideration, this theorem states that the number of typical m-words (that is, those that

have the same properties corresponding to almost sure behaviour) behaves like emh as

m→ ∞, where the exponent h is the entropy rate of the source (Cover and Thomas 2006).

A corollary of this theorem is the Asymptotic equipartition property, which states that the

probability pm(w̄m) that a typical m-word w̄m asymptotically takes the value e−mh, which

is common to all typical m-words, hence the name ‘equipartition’. The statement has to

be made more rigorous since the limiting behaviour of the probabilities when m → ∞
is still a function of m. Introducing the random variables P̂m (depending on the whole

realisation x̄ of the symbolic sequence) such that

P̂m(x̄) = pm(x0, . . . , xm−1),

the asymptotic equipartition property is given by

lim
m→∞

(− 1/m) log2 P̂m → h in probability, (55)
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that is, for any δ > 0 and ε > 0 (arbitrary small), there exists a word-size threshold

m∗(δ, ε) such that

Prob({x̄, pm(x0, . . . , xm−1) > 2m(−h+δ)}) < ε

and

Prob({x̄, pm(x0, . . . , xm−1) < 2m(−h−δ)}) < ε

for any m � m∗(δ, ε), or equivalently, in terms of the m-word subset

pm({w̄m, pm(w̄m) > 2m(−h+δ)}) < ε

and

pm({w̄m, pm(w̄m) < 2m(−h−δ)}) < ε.

The asymptotic equipartition property for a sequence of independent and identically

distributed variables is simply a consequence of the law of large numbers, stating that

(−1/N)

N∑
i=1

log2[p(Xi)]

converges to

〈log2[p(X)]〉 = H(p)

for N tending to infinity. The Shannon–McMillan–Breiman theorem extends the law to

cover correlated sequences. Nevertheless, all available results apply only to stationary

sources, which could be a strong limitation in practical situations.

Another corollary of the Shannon–McMillan–Breiman theorem provides a quantitative

description of how h accounts in an effective way for the correlations present within the

sequence. Specifically, the effective probability of a new symbol, knowing the sequence of

length l that precedes it, is asymptotically (that is, for l → ∞) either e−h or 0 depending

on whether the ensuing (l + 1)-word is typical or not. By contrast, it is equal to the

symbol frequency in the case where there are no correlations within the sequence. We thus

recover the interpretation of h as the average information brought by the observation

of an additional symbol. A pedagogical proof is given in Algoet and Cover (1988) and

Karlin and Taylor (1975, Section 9.6).

For N asymptotically large, the Shannon–McMillan–Breiman theorem guarantees

that, up to second-order terms, we have HN ≈ log2 NN where NN is the number

of (asymptotically equiprobable) typical sequences. We shall see in Section 8.2 that

this approximate formulation of the Shannon–McMillan–Breiman theorem parallels the

definition of Boltzmann entropy in the microcanonical ensemble. Here we can interpret

HN as the average information given by the reception of a message (that is, one of these

NN messages). It is important to note that the Shannon–McMillan–Breiman theorem

deals with probable sequences, while a grammar describes the set of possible sequences, or,

equivalently, the rules for generating all possible sequences.

Two derived formulations of the Shannon–McMillan–Breiman theorem can be useful.

For the first, we let NN(ε) be the cardinal of the smallest ensemble E of N-sequences
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whose total measure overwhelms 1− ε. Then

lim
N→∞

(1/N) log2 NN(ε) = h.

The second formulation was given in Shannon (1948, Theorem 4). For this, we first sort

the sequences of length N in order of decreasing probabilities and define n(q) as the

number of sequences (starting with the most probable one) needed to accumulate a total

probability q (where 0 < q < 1 is fixed and independent of N). Then

lim
N→∞

(1/N) log2 n(q) = h.

5.2. Compression of a random source

In this section, we address the issue of compressing a random source. We shall deal here

with ensemble compression, that is, how to transmit most economically any one message

from a given set. The question is to determine the minimal piece of knowledge that

should be transmitted to discriminate faithfully one message from all the other possible

messages. The reference to a specific ensemble of messages, or more generally of events,

is essential, and is now normally achieved through a probability distribution. A special

case is a source generating successive symbols, for which we consider the compression

of an ensemble of sequences. An essentially different issue is the compression of a single

sequence, which will be addressed in Section 6.2.

In the most general case, the optimal encoding for source compression was introduced

by Shannon and is known today as the Shannon–Fano code. Given a finite set X of

elements x and their probability distribution p(x), a binary code is a correspond-

ence x → w(x) where w(x) is a binary word, that is, a finite string of 0s and 1s

representing x. We use W to denote the finite set of codewords representing the

elements of X , and lw to denote the length of the codeword w. The code is unam-

biguously and locally decodable if the following condition, known as Kraft’s inequality, is

satisfied:

Σ(l) =
∑
w∈W

2−lw � 1. (56)

The code is said to be compact if the inequality is replaced by an equality. Compact

codes correspond to optimal codes insofar as their codewords have a minimal length.

Otherwise, it is possible to compress the coding of the elements of X while preserving the

unambiguous and locally decodable character of the code: indeed, if l′w � lw for any word

w, then Σ(l′) � Σ(l). Given the probability p̃(w) ≡ p[x(w)], minimisation of the average

length
∑

w∈W lwp̃w at fixed Σ(l) = 1 gives

lw = log2(1/p̃w), (57)
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which is equal to the missing information required to specify x(w). The average codeword

length is then

l̄ =−
∑
w∈W

p̃(w − log2 p̃(w)

=−
∑
x∈X

p(x) log2 p(x)

= I(p) (58)

The Shannon entropy thus gives the average codeword length for an optimal binary

code, achieving the optimal compression of the information needed to represent events x

knowing only their probability of occurrence p(x) in the event set X .

The Kullback–Leibler divergence D(p||q) (see Section 2.3) measures the extra average

length of the codewords when an ill-adapted Shannon–Fano binary code is used, namely,

a code adapted to a probability distribution q when the actual probability is p (think, for

instance, of a Morse code optimised for English being used to transmit a French text).

Indeed, the prescription of a Shannon–Fano code adapted to the probability distribution

q is to use a codeword of length lx = − log2 qx to represent an event x ∈ X of probability

qx. If the actual probability is p, the average length is

〈l〉 = −
∑
x∈X

px log2 qx,

while the optimal average length is

〈l〉opt = −
∑
x∈X

px log2 px,

giving

〈l〉 − 〈l〉opt = D(p||q).
In the case of a sequence-generating source, the source X emits with probability p(x̄N)

a message x̄N of length N written in the alphabet X (that is, the set of elementary events,

usually called ‘symbols’). For transmission or storage purposes, the message is encoded

into a binary sequence w̄, with the additional aim of minimising the length of the coded

message. A complete absence of knowledge at time t of the next symbol xt+1 generated

by the source X is achieved in the case of a sequence of independent and equiprobable

symbols (an uncorrelated and fully random source), in which case

h(X) = H1 = log2 |X |.

Accordingly, Shannon defined the redundancy of a source X as

1− h(X)/ log2[X |.

Compression takes advantage of any divergence from such full randomness, which

originates either from an uneven distribution of the elementary events (meaning that some

symbols are observed more often), or from time correlations (meaning that observing a

symbol xt at time t somehow conditions the subsequent observation xt+1), or both.

Source compression is already possible for a sequence of independent and identically

distributed discrete random variables. It takes advantage of the unevenness in the
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frequencies of the different symbols: in the asymptotic limit N → ∞, there are only

2NH(p) typical sequences instead of the maximal number 2N|X | of possible sequences. More

constructively, for each realisation (x1, . . . , xN), there exists a binary string w̄N(x1, . . . , xN)

given by a one-to-one mapping and such that for any arbitrary small ε, there exists Nε

for which the average length satisfies

〈|w̄N |〉 /N � H(p) + ε

for any N � Nε. This means that on average, a realisation x̄N of the original sequence is

encoded by NH bits for N large enough.

For a correlated sequence-generating source X, compression also takes advantage of

the temporal correlations, and the compression rate is controlled by the entropy rate h(X),

with h(X) < H(X). After an optimal compression of the source X, there shoud be no

further redundancy in the compressed source W . In other words, there should be no bias in

the symbol distribution and no correlations between the successive symbols in the binary

sequences w̄ so that knowing w1, . . . , wt gives no clue about the next symbol wt+1: the

entropy rate of the source W is equal to 1, meaning that the average missing information

per symbol in sequences w̄ takes its maximal value, which is 1. Such an optimal encoding

is achieved by the Shannon–Fano code (where events are now sequences of length N).

According to this coding procedure, the length of the binary sequence w̄x̄N encoding the

sequence x̄N is

l(w̄x̄N ) ∼ log2(1/p(x̄N).

Asymptotically,

lim
N→∞

(1/N)〈l(w̄x̄)〉 = h(X),

from which it follows that h(X) is the average number of bits required to give an optimal

encoding of a symbol emitted by the source. A realisation of the original sequence being on

the average encoded by Nh(X) bits, the shortest binary sequences faithfully representing

the original source during a duration N will have an average length Nh(X). We see

here that the compression of sequences (with no loss of information) is controlled in the

asymptotic limit N → ∞, where only typical sequences (in the sense of the Shannon–

McMillan–Breiman theorem) are to be taken into account. In this limit, the entropy rate

h(X) gives a lower bound (per symbol of the original sequence) on the compression that

could be achieved.

6. Relation to algorithmic complexity

6.1. Kolmogorov complexity

Algorithmic complexity, which is also called Kolmogorov complexity, was introduced

independently by Chaitin, Kolmogorov and Solomonoff (Chaitin 1966; Solomonoff 1978;

Durand and Zvonkine 2007) to characterise a single sequence. The notion of (average)

missing information introduced in a probabilistic setting is replaced in the algorithmic

approach by the length of the shortest program, without reference to an ensemble of

sequences or an a priori probability. More explicitly, a single binary sequence x̄N of length
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N can be compressed into a binary sequence of minimal length K(x̄N) describing the

shortest program able to generate x̄N . Any other program generating the sequence has a

length L(x̄N) such that

K(x̄N) � L(x̄N),

that is, K(x̄N) provides a lower bound. Moreover, as it is related to the shortest program

generating the binary sequence x̄N of length N, we have

K(x̄N) � N + c

where c depends on the language (or, from another point of view, on the universal

Turing machine taken as reference). Also, a specific (finite) sequence can always have a

very low complexity in an ad hoc language, where printing this sequence is a primitive.

But for arbitrarily long sequences, the language-specific contribution to K(x̄N) becomes

relatively negligible, hence one can speak of ‘the’ algorithmic complexity (Durand and

Zvonkine 2007). Since entropy is not a measure of complexity, the name algorithmic

complexity is misleading: characterising the complexity of a source is of little help

(Gell-Mann and Lloyd 1996; Gell-Mann and Lloyd 2003). It should instead be called

‘algorithmic information’ as recommended in Badii and Politi (1997). The theory is of

limited power for short sequences, but stationarity of the sequence is no longer mandatory.

The main problem with algorithmic complexity, and its conditional extensions, is its non-

computability. This leads us to resort to lossless compression algorithms to approximate

(upper bound) algorithmic complexity – see Section 6.2.

In the same way as we can define an entropy rate h, we can consider an algorithmic

information density for a given sequence x̄, defined as

C(x̄) = lim
n→∞

K(x̄n)/n

where x̄n is an n-word extracted from x̄ (the limit does not depend on the choice of this

block) (Badii and Politi 1997). Remarkably, it has been shown (Ziv and Lempel 1978)

that for a stationary and ergodic source, C(x̄) coincides up to a normalisation factor with

the entropy rate of the source for almost all sequences x̄ (typical sequences in the sense

of the Shannon–McMillan–Breiman theorem), specifically,

C(x̄) = h/ log2 |X |.

It follows that on average,

lim
N→∞

〈K(x̄N)〉
N

= h/ log2 |X |. (59)

The average-case growth rate of Kolmogorov complexity is thus related to the Shannon

entropy rate through

〈K(x̄N)〉 ∼ h/ log2 |X |
for N large enough (Feldman and Crutchfield 1998). The notion can be fruitfully extended

to the notion of the conditional Kolmogorov complexity K(x|y) of a sequence or random

object x. This describes the length of the shortest program able to generate x when
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making use of extra knowledge y, for instance K(x|A) knowing x ∈ A (Gell-Mann and

Lloyd 1996; Gell-Mann and Lloyd 2003).

6.2. Lempel–Ziv compression scheme and coding theorems

We mentioned in Section 5.2 that two compression issues should be carefully distinguished:

compression of an ensemble of sequences (source compression) and compression of a

single sequence. In both cases, compression is achieved by the most efficient/economical

encoding, hence coding and compression issues are thus solved jointly, and they are limited

by the same bounds, involving either (Csiszár and Körner 1981; Badii and Politi 1997;

Falcioni et al. 2003):

— the Shannon entropy rate for the compression of a source of known probability, that

is, the compression of the set of sequences emitted by the source (Section 5.2); or

— the algorithmic complexity for a single sequence emitted by an unknown source.

We shall focus on the second of these. Compression of a single sequence x̄ is possible if

the Kolmogorov complexity of this sequence is strictly smaller than its length: K(x̄) < |x̄|.
Accordingly, a sequence x̄ with K(x̄) = |x̄| is said to be incompressible.

The difficulty for practical purposes, where we have to consider finite-length sequences

x̄N , is the incomputability of K(x̄N). In order to circumvent this incomputability,

compression algorithms with no loss of information can be used to obtain upper

bounds, the better the algorithm, the more efficient the compression is. One of the

most successful algorithms is the Lempel–Ziv algorithm (a variant is used today in JPEG

compression software). The general principle of this algorithm is to enumerate new

substrings discovered as the sequence is read from left to right (Badii and Politi 1997;

Cover and Thomas 2006). According to the Lempel–Ziv scheme, the sequence of length

N is parsed into Nw words. Two different parsings have been proposed: either (Lempel

and Ziv 1976)

1 • 0 • 01 • 10 • 11 • 100 • 101 • 00 • 010 • 11...

which delineates as a new word the shortest word that has not yet been encountered; or

(Ziv and Lempel 1977)

1 • 0 • 01 • 101 • 1100 • 1010 • 001011 • ...

which delineates as a new word the shortest subsequence that has not yet been encountered

(the fourth word in the above example is thus 101 and not the 2-sequence 10 since the latter

has already been seen). The parsing allows us to encode the original sequence efficiently

with no loss of information. Indeed, each new word appearing in the parsing is uniquely

specified by the already encountered word with which it begins and the additional symbol

with which it is completed. We then compute

L̂0 =
Nw[1 + logk Nw]

N
, (60)

which provides an upper bound on the algorithmic complexity rate of the original

sequence.
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A remarkable result for a stationary and ergodic source is the Lempel–Ziv theorem

(Ziv and Lempel 1978), which states that both the algorithmic complexity rate and the

Lempel–Ziv complexity rate are asymptotically equal to h (up to a constant normalisation

factor depending on the definitions and choice of the logarithm base) for almost all

sequences:

lim
N→∞

K(x̄N)

N
= lim

N→∞
L̂0(x̄N)

=
h

ln k
. (61)

This means that for N large enough, L̂0(x̄N) not only gives an upper bound on K(x̄N)/N,

but also an approximation

L̂0(x̄N) ≈ K(x̄N)/N

with asymptotic equality. The Lempel–Ziv theorem also means that almost all symbolic

sequences have the same compressibility features, so the computation can be performed

equivalently with any typical sequence. From the Shannon–McMillan–Breiman theorem

(see Section 5.1), typical sequences have a full measure, so sequences drawn at random or

observed experimentally are typical; only sequences generated from a specially chosen non-

generic initial condition might happen to be non-typical. Hence, in practice, computing the

Lempel–Ziv complexity L̂0 gives an estimate of the entropy rate h, up to a normalisation

factor and provided a sufficient convergence (N enough large) is achieved (Lesne

et al. 2009). A simpler computation is

L̂ =
Nw log2 N

N
(62)

with

lim
N→∞

L̂ = h

Replacing logk by log2 makes the limit directly comparable to h, while the original

definition is normalised with a common upper bound equal to 1. Several variants and

improvements of the original Lempel–Ziv algorithms have been developed – see, for

instance, Wyner and Ziv (1989).

6.3. Randomness of a sequence

One of the first formalisations of the randomness of a sequence is due to von Mises:

a single binary sequence is random if the limiting frequency of 1 exists and does not

change when considering an infinite subsequence chosen at random (that is, chosing the

subset of labels without involving the actual values 0 or 1 associated with each of them).

Kolmogorov refined this notion into the notion of (N, ε)-randomness, which is relevant

for finite sequences of length N with a fixed tolerance ε – see Vovk and Shafer (2003) for

a detailed historical account and original references.

Nowadays, algorithmic complexity theory gives a rigorous basis to what we mean by the

randomness of a sequence (Falcioni et al. 2003; Parisi 2003; Castiglione et al. 2008). An
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incompressible sequence x̄, that is, one such that K(x̄) = |x̄|, is said to be algorithmically

random (Li and Vitanyi 1997; Durand and Zvonkine 2007). This notion of randomness

is stronger than statistical randomness since some statistically random sequences (whose

digits pass the statistical test of being uniformly distributed, for example, the decimal

digits of π), are not algorithmically random. It was applied to real numbers by Martin-

Löf (Martin-Löf 1966): by introducing a dyadic representation of real numbers, he proved

that almost all binary sequences thus obtained (for the Lebesgue measure on the associated

set of real numbers) have a maximal algorithmic complexity C = 1.

7. Relation to the ergodic theory of dynamical systems

7.1. Metric entropy

Shannon entropy for discrete-valued and discrete-time stochastic processes has an exact

analogue in the ergodic theory of dynamical systems. It was developed by Kolmogorov

(Kolmogorov 1965) and Sinai (Sinai 1959), and is thus called metric entropy or

Kolmogorov–Sinai entropy. Given a discrete-time evolution xn+1 = f(xn) on a compact

topological space, we consider a finite partition P0 and the refinements generated in the

course of time by the map f, namely

Pn = P0 ∨ f−1(P0) ∨ . . . ∨ f−n(P0).

We then compute

h̃n(P0) = − 1

N

∑
An∈Pn

m(An) lnm(An) (63)

where m is the invariant measure under the action of f, and

h̃(P0) = lim
n

h̃n(P0) = h̃(X0). (64)

Finally, the metric entropy, or Kolmogorov–Sinai entropy is given by (Wehrl 1978)

hKS = sup
P0

h̃(X0). (65)

This is actually a rate of entropy. Note that we use ln instead of log2 in dynamical systems

theory. This is a purely conventional choice, which is motivated by practical and historical

reasons since the two quantities are related by a factor of ln 2, namely hKS = h . ln 2

(that is, ehKS = 2h). The metric entropy hKS was introduced to solve the ‘isomorphism

problem’, that is, determining whether there is a mapping between two seemingly different

dynamical systems, while preserving the dynamical and statistical relationships betwen the

successive states. Since hKS is invariant under any isomorphism, two dynamical systems

with different values for hKS are non-isomorphic.

It has also proved to be very useful in quantifying the seemingly erratic and irregular

behaviour of chaotic dynamical systems (Kantz and Schreiber 1997). In some cases

(for example, one-dimensional Anosov maps), there exist partitions P , called generating

partitions, such that the continuous dynamics is exactly isomorphic to a discrete stochastic

process. It is then enough to know at each time the location of the trajectory in P (that
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is, the symbol labeling the corresponding element of the partition at each time) to

specify uniquely the initial condition in the continuous phase space, and to reconstruct

the continuous trajectory from the symbolic sequence. For a generating partition P ,

we have h̃(P) reaches its maximum value hKS , and coincides up to a factor ln 2 with

the Shannon entropy rate of the symbolic sequence, that is, hKS = h/ ln 2. Accordingly,

the metric entropy can also be computed on discretised trajectories. We could say more:

according to the Jewett–Krieger theorem (Krieger 1970; Krieger 1972; Falcioni et al. 2003;

Glasner 2003, Section 15.8), a continuous-valued dynamical system in discrete time and

with finite entropy hKS > 0 is equivalent to a stochastic process with a finite number of

states, and the minimal number m of states satisfies

ehKS � m < 1 + ehKS .

These results are the basis and justification for symbolic dynamics, replacing the analysis of

the dynamical system generated by a continuous map by that of the symbolic sequences

describing the evolution at the level of the generating partition P .

For a deterministic dynamics, a positive metric entropy hKS > 0 is currently considered

to be a criterion and quantitative index of chaos (Laguës and Lesne 2008; Castiglione

et al. 2008). A justification for this is the relationship between hKS and the sum of positive

Lyapounov exponents (Pesin 1997):

hKS �
∑
i, γi�0

γi =
∑
i

γ+
i . (66)

This inequality, which is known as the Pesin inequality, turns into an equality for sufficiently

chaotic systems, such as Anosov systems (Ledrappier and Strelcyn 1982; Castiglione

et al. 2008). This means that the production of information (that is, the gain in information

about initial conditions from observing the trajectory for one more step) is only provided

by unstable directions, so

hKS �
∑

γ+
i .

Negative Lyapunov exponents γi < 0, which are associated with stable directions, play no

role here. The relevance of metric entropy in data analysis for globally quantifying the

temporal organisation of the evolution has been recognised in numerous applications. It

is now a standard tool of non-linear time series analysis for both continuous-valued and

discrete (symbolic) sequences (Kantz and Schreiber 1997).

We define the so-called ε-entropy by considering a partition Pε of the phase space with

cells of diameter bounded above by ε, instead of taking the supremum over all possible

partitions as in (65). The notable point here is that ε-entropy can be defined and computed

for any dynamical process, whether deterministic or stochastic. A behaviour

lim
ε→0

h(ε) = hKS

with 0 < hKS < ∞ is characteristic of a deterministic chaotic system. For a truly stochastic

process, h(ε) diverges as ε tends to 0, and the form of its increase as a function of 1/ε

discriminates between different kinds of stochastic processes, with trajectories becoming
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more irregular as the increase becomes steeper. For instance, it behaves as (1/ε)2 for a

Brownian process (Nicolis and Gaspard 1994; Falcioni et al. 2003; Castiglione et al. 2008).

7.2. Topological entropy

Another entropy-like quantity, topological entropy htop, is relevant when describing the

overall statistical behaviour of a dynamical system. Writing N (n, ε) to denote the maximal

number of trajectories ε-separated over n time steps (that is, for at least one time between

0 and n, the distance between the trajectories is larger than ε), it is defined by

htop = lim
ε→0

lim sup
n→∞

1

N
logN (n, ε). (67)

Unlike metric entropy h, which is relative to an invariant ergodic measure, htop depends

only on the distance endowing the phase space. It describes how many trajectories are

required to span the phase space with a prescribed resolution. Like h, it is defined as a rate

(entropy per unit time). When a generating partition exists and allows us to investigate

the statistical features of the dynamics on a reduced symbolic version, the topological

entropy is given by

lim
n→∞

(1/n) logNn

where Nn is the number of admissible n-words. This formula shows that topological

entropy was in fact already present in Shannon’s seminal paper and coincides with the

notion of the capacity of a deterministic communication channel (Shannon 1948):

C = lim
N→∞

(1/N) log2 MN

where MN is the number of signals of length N that could be transmitted in the channel.

The introduction of Rényi entropy rates (see Section 4.4) allows us to unify metric and

topological entropies in a unique framework: indeed, we can recover

h(α = 1) = hKS/ ln 2

h(α = 0) = htop/ ln 2.

The generalised framework of Rényi entropies is relevant in the application of the

thermodynamic formalism to dynamical systems and their multifractal analysis (Badii

and Politi 1997), which we shall discuss briefly in the next section.

7.3. Thermodynamic formalism

A unifying framework has been developed for systematically deriving all the relevant

statistical features of a discrete-time dynamical system. It is formally reminiscent of the

Boltzmann–Gibbs formalism in statistical mechanics, and for this reason it is called the

thermodynamic formalism (Ruelle 1978). The basic idea is to introduce the analogue of a

partition function, where the role of the n-particle configurations is played by stretches of

trajectories of duration n. Within a symbolic description of the dynamics, these stretches

correspond to n-words, and the partition function is given by (Badii and Politi 1997;
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Lesne 1998)

Z(n, q) ≡
∑
wn

[pn(wn)]
q = 〈[pn(wn)]

q−1〉. (68)

The exponent q − 1 can be thought of as an inverse temperature. The relevant analogue

of the free energy is

I(n, q) = − lnZ(n, q)

(q − 1)
(69)

and its density is

J(q) = lim
n→∞

J(n, q) (70)

where

J(n, q) =
I(n, q)

n
.

It is straightforward to show that J(q = 1) coincides with the metric entropy hKS . Now

I(n, q) is just the Rényi entropy (Section 4.4) for n-words. The graph q → J(n, q) actually

encapsulates the fluctuations of the local entropy

κ(wn) = −(1/n) ln pn(wn).

The average ∑
wn

κ(wn)p(wn)

tends to hKS as n → ∞. Furthermore, the Shannon–McMillan–Breiman theorem ensures

that local entropies κ(wn) tend to hKS almost surely (with respect to the ergodic invariant

measure of relevance) as n→∞. A large deviation formulation,

e−N(q−1)Jq =

∫
e−N[qκ−g(κ)] dκ, (71)

yields the following Legendre reciprocal transformations:

(q − 1)Jq = inf
κ

[qκ− g(κ)] (72)

g(κ) = inf
q

[qκ− (q − 1)Jq]. (73)

The large deviation function g(κ) is called the entropy spectrum (Badii and Politi 1997;

Lesne 1998), and it provides a full characterisation of the local singularities of the ergodic

invariant measure.

7.4. Typicality, compressibility and predictibility

The Shannon–McMillan–Breiman theorem can be re-formulated in the context of dynam-

ical systems as the following asymptotic statement (Badii and Politi 1997). The probability

μ(ε, n, x0) (with respect to the invariant ergodic measure μ) of finding an orbit remaining

for n steps at a distance smaller than ε from the orbit of x0 behaves as

μ(ε, n, x0) ∼ eD1+nhKS

for μ-almost every x0 in the limit as n→∞.
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On the other hand, Brin and Katok proved a kind of topological version of the

Shannon–McMillan–Breiman theorem for any dynamical system with ergodic invariant

measure μ. It states that

lim
ε→0

lim sup
n→∞

(1/n) log μ[B(x, n, ε)] = h(μ)

where B(x, n, ε) is the set of initial conditions whose orbit remains during n steps at a

distance less than ε from the orbit of x (Brin and Katok 1983). This means that the

probability (with respect to the invariant measure μ) that two trajectories stay close

together for n steps decays exponentially with n.

The relationship between the Shannon entropy rate and the metric entropy reinforces

the relevance of a probabilistic description of chaotic (deterministic) dynamical systems,

that is, the use of statistical descriptors to quantify their apparent randomness (Nicolis and

Gaspard 1994). In particular, it gives another interpretation to their unpredictability by

relating it to the incompressibility of the source and the high algorithmic complexity of μ-

almost all trajectories when encoded using a generating partition (Castiglione et al. 2008).

In addition to this global view, in which we consider a dynamical system as a random

source, we could also consider each trajectory in isolation and compute the algorithmic

complexity of its symbolic description. In this context, a theorem by Brudno and White

(Brudno 1983; White 1993; Castiglione et al. 2008) says that for an autonomous ergodic

dynamical system, the Kolmogorov complexity of almost all trajectories (almost all with

respect to the invariant ergodic measure) is equal to hKS up to a constant normalisation

factor. This theorem is just the deterministic version of the Lempel–Ziv theorem (Ziv and

Lempel 1978). Accordingly, for a symbolic trajectory, we have an equivalence between

being unpredictable, being incompressible and being algorithmically complex (Falcioni

et al. 2003).

8. Relation to statistical physics

8.1. The second law of thermodynamics

Thermodynamic entropy was introduced by Clausius in 1865 (Clausius 1865). He postulated

that there exists a state function Sth defined for equilibrium states, such that

ΔSth(AB) ≡ Sth(B)− Sth(A) =

∫ B

A

δQ/Tsource

where δQ is the quantity of heat exchanged between the system and external sources at

temperature Tsource during an arbitrary transformation of the system from the equilibrium

state A to the equilibrium state B. The variation ΔSth(AB) does not depend on the

transformation, but only on the initial and final states since Sth is assumed to be a state

function (Gallavotti 2006). Equality holds if and only if the transformation is reversible.

For isolated systems, more precisely thermodynamically closed systems for which δQ = 0,

we have ΔSth � 0. This statement is known as the Second Law of thermodynamics. It is

an empirical principle discriminating the phenomena that could occur from those that are

thermodynamically forbidden. It is not expected to hold at a molecular scale (Castiglione
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et al. 2008), and, in fact, it does not. Recent advances describe divergences from the

second law arising in small systems in the form of fluctuation theorems (Gallavotti 1998;

Cohen and Gallavotti 1999; Evans and Searles 2002).

The second law should not be confused with the H-theorem (Cercignani 1988b). The

former is indeed a universal but empirical principle, which is (presumed to be) valid for

any thermodynamically closed macroscopic system, while the latter is an exact (that is,

rigorously proved) property of the Boltzmann kinetic equation, which is why it is called a

theorem (Castiglione et al. 2008). This equation, which is central to the kinetic theory of

dilute gases, describes the evolution of the one-particle probability distribution function

f(�r,�v, t) of the gas within the framework of the continuous-medium approximation. The

H-theorem then states that the quantity

HB =

∫
f(�r,�v, t) ln f(�r,�v, t)d3�rd3�v

can only decrease in the course of time. In order to relate it to a Shannon entropy, we

have to write this quantity B in a discrete form∑
i

f(�ri,�vi, t) log f(�ri,�vi, t)Δ
3�rΔ3�v

where

Δ3�rΔ3�v

is the elementary volume in the one-particle phase space (Castiglione et al. 2008). The

fact that HB can only increase is based on the decorrelation approximation involved in

the derivation of the Boltzmann equation (Cercignani 1988a). This amounts to replacing

the 2-particle distributions arising in the interaction kernel by a product of one-particle

distributions. Hence, the H-theorem only indirectly and approximately describes a feature

of the real world, insofar as the system behaviour is properly accounted for by the

Boltzmann kinetic equation. It should not be confused with a property of irreversibility

of the real system.

8.2. Boltzmann entropy and microcanonical ensembles

The term entropy in classical statistical mechanics is basically the Boltzmann entropy,

namely, a quantity related to the number ΓN of N-particle microstates that have the same

prescribed macroscopic properties:

SB = kB ln ΓN (74)

where kB is the Boltzmann constant kB = 1.38 . 10−23 J/K. This formula was proposed by

Boltzmann in 1877 (Boltzmann 1877; Cercignani 1988b; Castiglione et al. 2008) and is

written (in the form S = logW ) as an epitaph on his grave. Boltzmann had a discrete

viewpoint, defining microstates as elementary volumes in the microscopic phase space (a

space of dimension 6N if the system consists of N particles).

The starting point for the statistical description is usually the microcanonical ensemble –

see Castiglione et al. (2008) for a discussion of its relevance and validity. This corresponds
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to considering equiprobable microscopic configurations at a fixed volume V and fixed

energy U with a tolerance δU. The Boltzmann entropy is then proportional to the

logarithm of the associated phase space volume Γ(N,V ,U, δU). Note that δU plays no

role in the thermodynamic limit N →∞. Since Γ(N,V ,U, δU) behaves as

Γ(N,V ,U, δU) ∼ ΓN
1 δU,

the Boltzmann entropy is extensive (proportional to N), and the contribution of δU in

ln Γ is a higher-order term in SB , which can be neglected for large N (that is, ln δU is

negligible compared with N ln Γ1 for large N). The Shannon–McMillan–Breiman theorem

allows us to make a formal bridge between the Boltzmann entropy and the Shannon

entropy rate: the number of typical sequences of length N behaves as

NN ∼ 2Nh.

For N large enough, this asymptotic relation becomes

h ∼ (1/N) log2 NN,

which is reminiscent of the Boltzmann entropy per particle

SB/N = (kB/N) ln ΓN.

The Boltzmann entropy SB , which is defined at the level of N-particle microscopic

configurations (phase space XN), should not be confused with the Shannon entropy of

the empirical distribution (normalised histogram) of the individual states in X (the type

Lx̄ of the configuration x̄ – see Section 3.1). The former is an entropy in the phase space

XN; the latter is the entropy of a distribution Lx̄ in the individual state space X , that is

H(Lx̄) = −
∑
x

(nx/N) log(nx/N)

where nx is the number of particles (among N) in the individual state x (Mugur-

Schächter 1980; Georgii 2003; Cover and Thomas 2006).

Thermodynamic entropy is derived (in fact, it is just postulated) from phenomenological

considerations based on the (observed) second law of thermodynamics (Clausius 1865;

Gallavotti 2006). A major achievement of Boltzmann was the identification of Boltzmann

entropy with thermodynamic entropy: Boltzman entropy of the macrostate (U,V ,N)

coincides to first order (in the thermodynamic limit N → ∞) with the thermodynamic

entropy Sth(U,V ,N), thereby providing Clausius entropy with a microscopic interpretation.

This is justified by comparing the macroscopic predictions of statistical mechanics with

the empirical laws of thermodynamics, such as in the expression of the entropy of an ideal

gas. The identification requires the multiplicative factor kB (which is equal to the ideal

gas constant divided by the Avogadro number) in the definition of SB , when compared

with a dimensionless statistical entropy. A definition of physical entropy is only possible in

the framework of quantum mechanics by exploiting its intrinsically discrete formulation.

Introducing the density matrix D̂ characterising the quantum state of the system (a positive

Hermitian operator with trace 1), the entropy is defined by

S(D̂) = −kBTr(D̂ ln D̂).
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This entropy, which was introduced by Von Neumann in 1927, measures our ignorance

about the system, and accordingly vanishes in the case of a pure state, which is described

by a single wave function (Wehrl 1978; Balian 2004; Balian 2005). Moreover, it is an

absolute entropy, which vanishes at zero absolute temperature, in agreement with the

Nernst principle. Deciding whether it is a useful physical quantity is another matter, as

is determining how it can be measured and related to the macroscopic (thermodynamic)

entropy. Another interpretation of this entropy is as a measurement of the amount of

information gained in a quantum measurement (yielding a pure state). When considering

an evolving system

ı � dD̂t/dt = [Ĥ, D̂t],

we have that

S(t) = Tr(D̂t ln D̂t)

remains constant. Any reduction of the density operator to essential variables yields a

reduced operator D̂0
t , for which the associated entropy S(D̂0

t ) increases. See Wehrl (1978),

Balian (2004) and Balian (2005) for a detailed discussion of quantum-mechanical entropy.

8.3. The maximisation of Boltzmann entropy and large deviations

Any macroscopic variable m appears as an additional constraint in defining the microca-

nonical ensemble. A Boltzmann entropy S(m,U) can be associated with this reduced

ensemble. To each value of m, there is a corresponding ‘shell’ of volume eS (m,U)/kB in the

complete microcanonical space (for the energy value U). The distribution of m is thus

given by the large deviation formula, which was derived by Einstein (Einstein 1910):

P (m|U) = eΔS (m,U)/kB (75)

where

ΔS(m,U) = S(U,m)− S(U) � 0

is proportional to the number N of particles, that is, to the size of the system. In the

limit N → ∞, the macrostate distribution becomes sharply peaked around the value

m∗, giving the maximum Boltzmann entropy. This property follows essentially from a

concentration theorem and reflects the fact that, in the thermodynamic limit N → ∞,

an exponentially dominant fraction of microscopic configurations are associated with the

macroscopic variable m∗. For N large enough, the distribution is sharply peaked and the

typical behaviour can be identified with the most probable behaviour. In other words, we

observe the most probable macrostate. At leading order in N, we have that m∗ is also

the average value of the macrostate m. Note that (75) is a large deviation formula, with

ΔS(m,U)/kB as a large deviation function (Ellis 1985; Touchette 2009): it is not restricted

to values of m close to m∗.

Arguments based on Boltzmann entropy explain the irreversibility of the relaxation of

an isolated system from a prepared state towards an equilibrium state: for example, the

fact that your coffee always cools and never draws heat from its surroundings, despite the

invariance under time reversal of the microscopic dynamics (Lebowitz 1993a; Castiglione
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et al. 2008; Schulman 2010). The Liouville theorem indeed ensures the constancy in

time of the density in the microcopic phase space. The answer was given by Boltzmann

(Boltzmann 1877). Basically, the origin of this irreversibility lies in the non-typicality

of the initial configuration when considered under the final conditions, while the final

equilibrium state is typical. This asymmetry is quantified by means of the Boltzmann

entropy of the two macrostates, which amounts to comparing the volumes of the phase

space regions Γi and Γf associated with the prepared initial state and the final equilibrium

state, respectively (Lebowitz 1993a). Trajectories starting in Γi mostly evolve to Γf . Time-

reversed trajectories starting in Γi also mostly evolve to Γf . In both cases, the odds of

evolving to Γi rather than Γf are

|Γi|
|Γf |

= e−(S
f
B−Si

B )/kB . (76)

Accordingly, the spontaneous evolution corresponds to increasing Boltzmann entropy, and

the probability of the time-reversed evolution (that is, starting in Γf and evolving to Γi) is

exponentially small in the thermodynamic limit N →∞. The literature contains statements

like ‘obviously, the outcome cannot carry more information hence its entropy cannot be

smaller than the initial one’ given as an explanation of the observed irreversibility.

However, this argument is misleading since information is not a conserved quantity, but

rather a relative and context dependent notion. Here the information about the initial

state refers to the missing information with respect to some knowledge of the initial

context, and, similarly, information about the final state refers to some knowledge of the

(different) final context and constraints.

8.4. Boltzman–Gibbs entropy and the canonical ensemble

In statistical mechanics textbooks (such as Chandler (1987)), the canonical ensemble

is derived by imposing a fixed average energy on otherwise equiprobable microscopic

configurations. However, Jaynes long ago stressed the fact that statistical mechanics can

also be derived from the maximum entropy principle within a purely information-theoretic

framework (Jaynes 1957a; Jaynes 1957b). As presented in a general setting in Section 3.4,

this principle allows us to determine the least biased distribution satisfying a given set

of constraints on distribution moments. When applied to the velocity distribution of

N independent and identical particles at some fixed thermal energy (fixed mean square

velocity, vanishing mean velocity), it yields the well-known Maxwelll velocity distribution:

ρN(v̄N)d3Nv̄N =

N∏
i=1

ρ1(�vi)d
3�vi (77)

where

ρ1(�v)d
3�v = e−mv

2/kBT

(
m

2πkBT

)3/2

dvxdvydvz
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and v2 is the square modulus of�v, namely v2
x + v2

y + v2
z in Cartesian coordinates, which is

in agreement with the expression defining the thermal velocity:

〈mv2/2〉 = 3kBT/2. (78)

When applied to configurations x̄N and internal energy E(x̄N), the entropy maximisation

principle yields the well-known Boltzmann–Gibbs distribution in the microscopic phase

space XN:

P (x̄N |β) =
e−βE(x̄N )

Z(N, β)
(79)

with

Z(N, β) =

∫
XN

e−βE(x̄N ) dx̄N

where dx̄N is the integration element in the 3N-dimensional phase space (positions x̄N of N

particles). Note the factorisation of the distributions for the velocity and position degrees

of freedom in the Maxwell and Boltzmann–Gibbs distributions, respectively, which ensures

the decoupling of kinetic theory and equilibrium statistical mechanics. Compared with

the microcanonical ensemble, the Boltzmann–Gibbs distribution gives different weight to

the microstates defining the canonical ensemble. Nevertheless, the predictions of the two

ensembles for the thermodynamic quantities coincide in the thermodynamic limit N →∞
(Chandler 1987).

At a mesoscopic level, it is no longer relevant to describe the distribution of the

microscopic configurations. Partial integration within energy shells

dE =
∑

x, E(x) ∈ [E,E + dE]

amounts to using the microcanonical weight

eSB (E,N)/kN

of each shell, so we get the distribution

p(E | N, β) =
e−βE eSB (E,N)/kN

Z(N, β)
. (80)

The steepest-descent approximation of the partition function in the thermodynamic limit

N → ∞,

Z(N, β) =

∫
e−βE eSB (E,N)/kN dE, (81)

which exploits the extensivity of SB (Touchette 2009), demonstrates that the dominant

contribution is given by the maximum E∗, which also coincides with the average energy

〈E〉 ≡ U in the limit N → ∞. Consistency with classical thermodynamics leads us to

identify

F = −(1/β) lnZ(β,N)

with the free energy, the multiplier β with the inverse temperature 1/kBT and the

Boltzmann entropy at the maximum E∗ ≡ U with the thermodynamic entropy through

the relation F = U − TSth.
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The maximum entropy principle could also be applied to infer the distribution of energy

levels at fixed average energy, yielding

pi =
e−βEi

Z(β)
. (82)

However, there is a caveat: the energy levels have to be discrete and non-degenerate.

Indeed, the application of the maximum entropy principle at fixed average energy 〈E〉 to

a continuous energy density p(E)dE yields an inconsistent result: it misses the density of

states. Here we see again that the maximum entropy principle, and more generally the

Shannon entropy, is well defined and can only be used safely in discrete spaces of states

(see Section 3.4). As mentioned in Section 8.2, the only rigorous foundation of statistical

entropy lies at the quantum level, and other notions are derived by coarse graining and

projections in a more or less approximate way (Wehrl 1978; Balian 2004).

Another notion of entropy is encountered in statistical mechanics: namely Gibbs entropy.

It is defined by

SG(t) =

∫
ρ(x̄N, t) ln ρ(x̄N, t)d

6Nx̄N (83)

where x̄N is the system position in the full microscopic phase space (a configuration with

6N degrees of freedom for both the positions and the velocities of the N particles of the

system), and ρ(x̄N, t) is the density describing the probability of the system being in this

phase space. However, it has two flaws:

— it is defined up to an additive constant (as mentioned in Section 2.6, the continuous

extension of Shannon entropy is not invariant with respect to a cooordinate change);

and

— the Liouville theorem for the microscopic dynamics ensures that SG(t) remains constant

in time, even in conditions where the Second Law of thermodynamics predicts an

increase in the thermodynamic entropy.

Accordingly, the Gibbs entropy in this form cannot be identified with thermodynamic

entropy. Both flaws are cured by considering a coarse-grained version of Gibbs entropy

(Castiglione et al. 2008), that is, the Shannon entropy of a distribution describing the

location in the microscopic phase space with a finite resolution. It can be shown that

this coarse-grained version increases in time with a rate related to the metric entropy (see

Section 7.1) of the microscopic dynamics – see Castiglione et al. (2008) for a detailed

discussion of the connections between statistical mechanics and chaos theory (it occupies

several chapters and goes well beyond the scope of the present review).

8.5. Dissipative structures and the minimum entropy production principle

Prigogine (Prigogine 1967; Nicolis and Prigogine 1977) developed the notion of a

dissipative structure, though examples, such as the Bénard cell, had been observed and

studied well before his work. A dissipative structure is an organised pattern arising

in open systems, in which local order appears at the expense of energy or matter

input. Thermodynamic entropy Sth is only defined for equilibrium states, but for non-

equilibrium states, we can define an entropy production rate. The entropy production can
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be decomposed into

dSth = dSirr + dSexch

where dSexch is the contribution due to exchanges of matter and energy. At steady state,

dSth = 0, but we can have dSirr > 0 at the expense of dSexch < 0, which is precisely the

case for dissipative structures. dSirr is often thought of as a measure of the irreversibility

of the system, but its definition and interpretation are restricted to the framework of the

thermodynamics of irreversible processes, and is itself embedded in linear response theory.

Within this framework, Prigogine introduced a minimum entropy production principle

(not to be confused with the maximum entropy principle for statistical inference):

d[(dSth/dt)irr] = 0

where (dSth/dt)irr is the entropy production rate due to irreversible processes (Prigo-

gine 1967). Nevertheless, this principle, expressing the stability of a non-equilibrium steady

state, can only be rigorously derived under very restrictive conditions (assumptions of local

equilibrum thermodynamics and linear response, isotropic medium, time independence of

boundary conditions and linear response coefficients, and isothermal system in mechanical

and thermal equilibrium). Its general validity and application are thus highly questionable

(Kay 1984). As emphasised in Mahara and Yamaguchi (2010), while entropy production

could be used to discriminate between different patterns, minimising entropy production

is not a valid criterion for pattern selection.

Thirty years ago, Jaynes produced a very deep and stimulating analysis (Jaynes 1980)

in which he pointed out that Kirchhoff laws for determining the distribution of currents

in an electric circuit are already fully determined by conservation laws, with no need

for an additional entropic criterion. He raised this question in the context of the non-

equilibrium extension of Gibbs work on the characterisation of heterogeneous equilibrium

(phase coexistence) using a variational principle on thermodynamic entropy. It should be

stressed at this point that all the derivations and justifications of the minimum entropy

production principle (by Onsager, Prigogine and followers) are based on linear response

theory, where the evolution is ruled by linear relations between fluxes and forces.

8.6. Non-equilibrium systems and the chaotic hypothesis

Going beyond linear response theory, if we are to give a general definition of entropy

and entropy production in far-from-equilibrium systems, we will need to start at the

more basic level of the microscopic dynamics (Ruelle 2003; Gruber et al. 2004). Within

such a dynamic view of irreversible processes, it is currently assumed that the dynamics

is well described by a hyperbolic dynamical system (Cohen and Gallavotti 1999; Evans

and Searles 2002; Gallavotti 2006). This so-called chaotic hypothesis is the far-from-

equilibrum analogue of the assumption of ergodicity or molecular chaos (the assumption

of microscopic decorrelation). The local rate of entropy production e(x) is then equal to

the local rate of phase space volume contraction at point x. The global rate of entropy

production is obtained by integrating e(x) over the whole phase space according to the

weights given by the non-equilibrium steady state measure ρ(dx), that is,
∫
e(x)ρ(dx)

(Ruelle 2003).
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Gaspard introduced the Shannon time-reversed entropy rate (Gaspard 2004):

hR = lim
n→∞

(1/n)HR
n (84)

with

HR
n = −

∑
w̄

pn(w̄) log2 pn(w̄
R),

and

w̄R = (wn, . . . , w1).

He then showed that for Markov processes (at least), the entropy production rate is given

by

dS/dt = hR − h (85)

where

S(t) = −
∑
w

pt(w) log2 pt(w).

This time-reversal symmetry breaking, which is reflected in entropy production, corres-

ponds to the fact that the distributions of the incoming and outgoing particles differ

strongly. The latter is finely correlated due to the interactions between the particles within

the system. Observing the time-reversed steady state would require us to prepare the

incoming flux of particles according to such an intricately correlated distribution. The

formula (85) provides us with a rigorous and quantitative expression of the relationship

between irreversibility and the entropy production rate in a non-equilibrium stationary

state. We stress that the irreversibility of a system driven far-from-equilibrium by fluxes is

fundamentally different from the irreversibility observed in the relaxation of an isolated

system after lifting a constraint, as discussed in Section 8.3.

8.7. Thermodynamic cost of computation

In addition to the formal link based on the maximum entropy inference of the Boltzmann–

Gibbs distribution (Jaynes 1957a; Jaynes 1957b), another relationship between statistical

mechanics and information theory is the paradox called Maxwell’s demon, which was

first pointed out by Szilard (Szilard 1929). N particles are evenly distributed in two

compartments of the same size, but initially at different temperatures T1 < T2. The

demon stands in the hot compartment near a door between the two compartments. He

admits particles from the cold compartment if their velocity is greater than√
3kBT2/m,

and lets particles leave the hot compartment if their velocity is less than√
3kBT1/m.

In this way, the hot compartment gets hotter and the cold compartment gets colder,

against the prescription of the second law. Brillouin (Brilllouin 1951a; Brillouin 1951b)

suggested a way out of the Maxwell’s demon paradox by showing, in a specific example,
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that work has to be performed in order to achieve a measurement. In other words, the

demon needs information about the particle velocity, which has a cost (Brillouin 1956). In

a simpler variant, the compartments are at the same temperature and the demon allows

particles to pass from the first compartment to the second but prevents them going in

the opposite direction, so that in the final state of the system, all N particles will be

in the second compartment. The decrease in the thermodynamic entropy by kBN ln 2 is

equal to the amount of information required to know the position of each particle. In a

measurement, entropy increases by an amount at least equal to the information gained

(Balian 2004).

Later, Landauer (Landauer 1961) proposed another solution to the puzzle, giving a

lower bound on the work required for memory erasure. Zurek then showed that algorithmic

complexity sets limits on the thermodynamic cost of computation (Zurek 1984). Recently,

Sagawa and Ueda (Sagawa and Ueda 2009) unified these different results by demonstrating

the general inequality,

Wmeas + Weras � kBT I

where Wmeas is the work cost of making the measurement, Weras is the work cost of

erasing the memory storing the result and I is the mutual information shared between the

measured system and the memory (that is, the information gained about the system in the

measurement). The work Wmeas could vanish in some instances, in which case Landauer’s

result is recovered, while the complete inequality is also consistent with Brillouin’s result.

9. Typicality and statistical laws of collective behaviour

9.1. Probabilistic modelling and subjective probabilities

The notion of statistical entropy, being relative to a probability distribution, leads us

to question the very foundations of probability theory and the epistemic status of

a probabilistic description (Mugur-Schächter 1980). In practice, the question can be

focused on the reconstruction in a given experimental situation of the relevant probability

distribution.

The frequentist and subjective (or Bayesian) viewpoints are well-known alternatives

for considering the reconstruction and epistemic status of a probability distribution

(Jaynes 1957a; Jaynes 1957b; Bricmont 1995). Both viewpoints yield efficient reconstruc-

tion methods. The frequentist viewpoint belongs to the realm of statistical estimation from

independent samples, and is essentially based on the law of large numbers (Samengo 2002).

The Bayesian viewpoint belongs to the realm of learning and recursive algorithms, with

the updating from new data of a prior distribution into a posterior one. A seminal paper

by Cox (Cox 1946) underlined the fact that the frequentist definition is inseparable from

the existence of an ensemble (at least conceptually). He called the Bayesian viewpoint the

idea of ‘reasonable expectation’, which is related to the notion of ‘degree of rational belief’

formulated by Keynes. Some Bayesian probabilities cannot be cast in an ensemble (that

is, frequentist) viewpoint. Cox cited the inspiring examples of the probability that there

exists more than one solar system, the probability that a physical constant lies within

some bounds (today formulated as an ‘estimation problem’) and the probability that some
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property in number theory is true when considering all integers. The non-scientist might

prefer to think of the probabilistic proof of the existence of Santa Claus given by Howard

Buten (Buten 1989).

Jaynes (Jaynes 1973; Jaynes 1982b) had already highlighted the choice between the

frequentist view, trying to estimate the frequencies of various events, and the subjective

view, aiming at determining the probability distribution that describes our state of

knowledge. In this regard, information theory provides a constructive criterion, in the

form of the maximum entropy principle (Jaynes 1982a), for setting up probability

distributions on the basis of partial knowledge, which was discussed in Jaynes (1957a)

and Jaynes (1957b) in the context of statistical physics.

The subjective (Bayesian) view of probabilities (Cox 1946; de Finetti 1970; Gillies 2000;

Balian 2005) encapsulates a priori but incomplete knowledge, such as a set of possible

states, but also apparent randomness at the observation scales. In both cases, this means

that our limited perception is best represented by a probability distribution, irrespective

of whether the nature of the system is stochastic or not. The probabilistic aspect of

the description lies only in our representation of the reality, with no intention of saying

anything about the nature of the real phenomenon. A probability distribution does not

aim to be an intrinsic and absolute character ruling the system behaviour (as it is in

quantum mechanics), but only the best operational and faithful account of our knowledge

of the system. See Jaynes (1957a), Jaynes (1957b) and Jaynes (1973) for a detailed and

substantiated discussion of this viewpoint. Such a pragmatic view of a probabilistic

description is currently adopted for chaotic dynamic systems (Nicolis and Gaspard 1994),

where we give up a description in terms of the deterministic trajectories in favour of

a stationary and global description in terms of an invariant measure (the latter is just

the distribution describing the probability of occupying the phase space). In any case,

probability theory can be thought of purely as an operational tool, even if there is no

stochasticity involved in the problem, as in the probabilistic formulation of some properties

in number theory (Cox 1946; Ford 2007). The interpretation of entropy is thus far more

natural in the subjective viewpoint, where p describes our partial knowledge (and partial

ignorance) of the outcome. Entropy then measures the uncertainty of the observers.

Note that in the realm of classical physics, we cannot assess whether a system is

intrinsically probabilistic unless we start at the quantum level (Lesne 2007). However,

the observed randomness of coin tossing, say, has a very different nature to quantum

uncertainty. For the most part, it can be accounted for by arguing about the chaotic

nature of the coin motion when it is flipped in the air. The randomness thus originates in

our lack of knowledge of the initial conditions and countless minute influences experienced

by the coin while it is tossed. The probabilistic nature is not that of the system, but belongs

to one of our possible descriptions. In particular, it depends essentially on the scale of

the description. A well-known example is diffusion, for which a hierarchy of descriptions

exist depending on the scale and the level of coarse graining, ranging from a deterministic

reversible description (molecular dynamics), through several stochastic descriptions (the

master equation, random walks and the Fokker–Planck equation, the Langevin equation)

to a deterministic irreversible description (the Fick law and the century-old diffusion

equation) (Castiglione et al. 2008).
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Finally, we shall now consider a binary event described by a Boolean variable X. The

statistical features of this variable are fully captured by a single real number p ∈ [0, 1]

describing the probability that X = 1. In the case of a structured population, explicitly

distinguishing subpopulations α with fraction fα (hence
∑

α fα = 1) allows us to describe

some heterogeneities in the process yielding the value of X by considering a specific value

pα in each sub-population. We are thus faced with a choice between a detailed description

using an array [(pα)α] and a global probabilistic view in the form of an effective description

of the knowledge available at the scale of the population given by a single number

p =
∑
α

pαfα.

This effective quantity p describes the probability that an individual chosen at random in

the overall population takes the value X = 1, while pα describes the probability that an

individual chosen at random in the subpopulation α takes the value X = 1. This abstract

example illustrates the existence of nested probabilistic descriptions, which prevents any

further attempt to talk about any would-be ‘intrisic stochastic nature’ of a system. We deal

only with models, that is, abstractions and representations of the reality. Our statements

thus refer to models, and are pertinent to the reality only insofar as it is properly captured

by the model.

9.2. Statistical laws and collective behaviours in physics

We have just argued that probability, in the subjective viewpoint, is a privileged framework

allowing us to take into account in a unified way observation scales and the limits

they set on our perceptions and representations. It is also a unified framework for

investigating collective behaviours and unravelling the mathematical structures underlying

emergent properties. A central physical example of this is thermodynamic behaviour. This

behaviour corresponds to a sharp distribution for macroscopic quantities, meaning that

almost all microscopic configurations yield the same macroscopic values. In such a case,

the probability distribution of the microscopic configurations (that is, their respective

frequencies of occurrence) has almost no macroscopic consequences when it is non-

singular. Accordingly, thermodynamics relies almost entirely on universal statistical laws,

mainly the law of large numbers and the central limit theorem. The counterpart of this

universality is that macroscopic behaviour is quite insensitive to microscopic features.

In particular, knowing the macroscopic behaviour gives no insight into the microscopic

distribution and is useless for inferring any knowledge about the microscopic elements.

The success of the maximum entropy approach provides evidence for the fact that

thermodynamic laws are based on universal statistical laws governing the structure and

features of emergent behaviours, rather than on specific physical laws (Jaynes 1957a;

Jaynes 1957b). More generally, statistical laws express rules of collective behaviour, no

matter what the physical nature of the elements and their interactions may be. They state

a general mathematical property of any high-dimensional system (for example, many-body

systems in physics or long messages in communication theory). They account, for instance,

for the ubiquitousness of Gaussian distributions (resulting from the central limit theorem).
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The same all-or-nothing law arises in different contexts and under different names (see

Sections 3.1 and Section 5.1):

— the law of large numbers and Lévy’s all-or-none law (Lévy 1965) in probability and

statistics;

— concentration theorems (Robert 1990) in probability, but also in geometry and func-

tional analysis (Gorban 2007);

— the asymptotic equipartition property (Shannon 1948; Cover and Thomas 2006) in

information theory;

— the ergodic theorem in dynamical systems.

Close connections can be established between these different laws (Lesne 1998). They

can be viewed as a universal mathematical structure of collective behaviours.

Let us consider again the Shannon–McMillan–Breiman theorem – see Section 5.1. The

property

lim
n→∞

(1/n) log2 P̂n − h = 0

is an asymptotic property insofar as modifying a finite number of random variables does

not change whether it is true or false; in particular, it is exchangeable, meaning that it

is unaffected by any permutation of a finite number of terms. The Shannon–McMillan–

Breiman theorem, when restricted to a stationary uncorrelated source, is thus an instance

of the all-or-none law established by P. Lévy (Lévy 1965), and also known as the Hewitt–

Savage 0-1 law, which states that an asymptotic property of a sequence of independent

and identically distributed random variables is true with probability either 0 or 1. Here,

lim
n→∞

(1/n) log2 P̂n(x̄)− h = 0

is true with probability 1, while for any h′ �= h,

lim
n→∞

(1/n) log2 P̂n(x̄)− h′ = 0

has a null probability of being true.

The predictability and simplicity of macroscopic physical phenomena arise from the

fact that at the macroscopic level, a wealth of behaviours result from a bottom-up

integration and emergence. They are governed by simple statistical laws, and a simple

description is available. Macroscopic properties are then almost fully defined by statistical

laws and geometrical constraints. Physics is only involved in prescribing the universality

class of the emergent behaviour. Basically, we have to discriminate between systems

with short-range correlations, which display scale separation between microscopic and

macroscopic levels, and systems with long-range correlations, which are associated with

criticality and anomalous statistical laws (Lesne 1998; Castiglione et al. 2008). A typical

example is diffusion, which passes from normal to anomalous in the case of long-range

correlations (self-avoiding walks). This corresponds to the passage from the universality

class of the Wiener process to that of fractal Brownian motions. Another anomaly

is observed in diffusive behaviour when the variance of the elementary steps diverge,

corresponding to the passage from the central limit theorem assessing convergence to a

Gaussian distribution to generalised limit theorems assessing convergence to Lévy stable
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laws (Lesne 1998; Castiglione et al. 2008). In general, universality and robustness arise

in physics when the statistics and geometry are sufficient to determine the emergent

features. A typical exemple is provided by percolation lattices (Lesne 1998; Laguës and

Lesne 2008). Microscopic details only matter insofar as they control the universality class

the system belongs to.

9.3. Typicality

The following list describes several notions of typicality, some of which have already been

discussed earlier in the paper:

(1) A notion based on concentration theorems for a configuration or a sequence (Xi)i of

independent and identical elements (see Section 3.1):

When reasoning about the configuration or sequence type, typical sequences belong

to the most populated type. Conversely, sequences are exceptional (non-typical) when

their type is represented by a vanishing fraction (exponentially small as a function of

the number of elements in the configuration or the length of the sequence) compared

with the most populated one. The law of large numbers can be thought of as a

statement about the typical behaviour of the empirical average

m̂N = (1/N)

N∑
i

Xi.

In other words, for any arbitrary small ε > 0 and δ > 0, there exists Nε,δ such that for

N > Nε,δ , the probability of the realisations of the sequence satisfying |m̂N −m] < ε is

smaller than δ, meaning that, asymptotically, almost all realisations of the sequence

are typical with respect to the behaviour of the empirical average.

(2) A notion based on the Sanov theorem for sequences of independent and identical

elements (see Section 3.2):

A pair of sequences (x̄N, ȳN) is jointly typical if each individual sequence is typical

with respect to hX and hY , respectively, and if

| − (1/N) log2 PN(x̄N, ȳN)− hX,Y |

is small. Given a joint distribution p(x, y), the probability that a pair of independ-

ent and identically distributed sequences (x̄N, ȳN) drawn according to the product

distribution

q(x, y) = p(x)p(y)

seems to be typical with respect to the joint distribution p is asymptotically equivalent

to

2−ND(p||q) = 2−NI(X,Y ).

(3) A notion based on a generalised asymptotic equipartition property:

Specifically, the fact that almost surely

lim
N→∞

(1/N) log2[p0(x̄N)/p1(x̄N)] = D(p0||p1).
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Hence a sequence x̄N of length N is said to be relative-entropy typical if

(1/N) log2[p0(x̄N)/p1(x̄N)]

is close to D(p0||p1).

(4) A notion based on the Shannon–McMillan–Breiman theorem for correlated sequences

(see Section 5.1):

A sequence x̄N of length N generated by a source of entropy rate h is typical if

| − (1/N) log2 PN(x̄N)− h|

is small. The realisations with probabilities that satisfy the Shannon–McMillan–

Breiman estimate form the typical set (strictly speaking, this is only defined once

some tolerance ε is given), which is quite small but of probability close to 1. For

correlated binary sequences of length N, we have 2N possible realisations, but only

about 2Nh typical ones.

(5) A notion of typicality connected with the Birkhoff ’s ergodic theorem:

Recall that a triplet (X , f, μ) composed of a transformation f on the phase space X
with invariant measure μ is ergodic if any f-invariant subset has either full or null

measure. Then for any functional φ from X to R, there exists a subset Xφ of full

measure (that is, with μ(X − Xφ) = 0) such that for any x ∈ Xφ, we have

lim
N→∞

(1/N)

N−1∑
i=0

φ[fi(x)] =

∫
X
φ(x)dμ(x).

In this sense, the elements of Xφ are typical since their behaviours are all identical and

coincide with an average quantity, that is, the time averages along a typical trajectory

equal the ensemble averages.

In Section 6.2, we encountered another ergodic theorem (Ziv and Lempel 1978),

which endows typical sequences with an additional property: for a stationary ergodic

finite-state source, almost all sequences share the same algorithmic complexity (hence

the same randomness), which coincides with the entropy rate of the source up to a

normalisation factor.

The converse of typicality is rarity. Exceptional events are non-typical events. However,

several notions overlap, and should be carefully distinguished. The sequence 123456789

can be called exceptional because it is of low complexity, namely a short program is able to

generate it. It is also intuitively atypical, or exceptional, insofar as we implicitly compare

the number of sequences (n, n+ 1, . . . , n+ 8) with the set of sequences that are not of this

form. In other words, we compare the types of the sequences rather than the sequences

themselves. This yields two ways of being random: either having the largest algorithmic

complexity or belonging to the most represented type. These two viewpoints are in fact

related: only an asymptotically vanishing fraction of sequences of length N → ∞ can

be generated by a program shorter than the typical length Nh equal to the length of

the programs generating a typical sequence. This is exactly the meaning of algorithmic

complexity. From this viewpoint, typicality coincides with (full) randomness. Note that

in all cases, typicality is an asymptotic feature, and is well defined only in the limit
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N → ∞ where N is the sequence length or number of elements. Genericity and typicality

arguments are ubiquitous in statistical physics, but we suspect that they cannot be applied

blindly in biology, where rare events could play an essential role – see Section 9.5.

9.4. Entropy, order and disorder

In this section we shall discuss in what way statistical entropy can be thought of as a

measure of disorder. However, although currently widespread and superficially appealing,

this view is flawed, and also somewhat fuzzy since it requires us first to define what

we mean by disorder, beyond the plain and non-technical meaning of the word. We

can again take two viewpoints, corresponding to the choice between the (statistical)

information-theoretic approach and the algorithmic one.

The first viewpoint is that order (for example, for a configuration of N elements) is

associated with the existence of a simple generating rule (Dessallles 2006). For instance,

the sequence 123456 is ordered since it can be generated by the simple rule xn+1 = 1 + xn.

The presence of a structure or pattern (in space or time) reflects a symmetry breaking with

respect to the full symmetry of a homogeneous/stationary distribution that is invariant

with respect to any translation. Specifying a structure amounts to specifying a lack of

invariance. This corresponds to a decrease in the entropy compared with the fully random

case (Leyton 2001).

Another viewpoint is that when we speak of order and disorder, we are, effectively,

comparing sets. For instance, the sequence 123456 is ordered insofar as it is a representative

of the set {(n, n+1, . . . , n+5)}, as opposed to its complement, in other words, any sequence

that is not of the form (n, n + 1, . . . , n + 5). The difficulty with this view is that it requires

a prior and necessarily subjective delineation of an ensemble from a single observation.

Order and disorder are then relative to the mind perceiving them.

Gorban gives the very inspiring example of a castle, a garden of stones and any pile of

stones (Gorban 2007): the relevant comparison for the castle is with any pile of stones

that is not a castle, but for the gardener, the garden of stones also has to be compared

with any pile of stones that is not that garden of stones. As such, a garden of stones

is as ordered and non-typical as a castle, but it is less ordered when using the criterion

of individual configuration complexity. A garden of stones is viewed very differently by

the gardener and most other people. In a formalised way, the relevant entropy is that

of the coarse-grained distribution associated with a partition of the space into weighted

subsets (currently, the weight is simply the cardinal). Disorder appears as a lack of specific

features, structures or patterns, so the class of configurations looking like the given one is

very large; the given configuration is then said to be disordered. Rather than a measure

of disorder, entropy is a measure of the typicality of the disorder, that is, a measure

of degeneracy: how many configurations share the same macroscopic observables and

constraints.

In the framework of equilibrium statistical mechanics, the key idea in describing order

is to consider an order parameter m. This is a macroscopic feature m(x̄N) measuring the

overall organisation in a physically or intuitively relevant way, such as the magnetisation

of ferromagnetic materials, the mass density in pure liquids or the orientation of molecules
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in liquid crystals. The same reasoning as we used in equations (80)–(82) in Section 8.4

can be followed, but now considering the order parameter m instead of total energy E.

The contribution of the phase space volume with fixed m was given in equation (75) in

Section 8.3 in terms of the Boltzmann entropy S(m). We can thus obtain the distribution

of the (macroscopic) order parameter, involving the free energy

F(m) = U − TS(m),

as

P (m) ∼ e−βF(m). (86)

This distribution depends on the temperature, and, in particular, its behaviour as

temperature varies reveals thermal phase transitions that are associated with a qualitative

change in the macroscopic order displayed by the system (Chandler 1987).

9.5. Beyond physics ... the application to living systems?

It is now acknowledged that the basic role of food is to provide enough energy to the

organism for it to free itself from the entropy produced while it is alive. In this respect,

a living organism is an instance of a dissipative structure – see Section 8.5. It is essential

here that the balance is written in terms of free energy. Boltzmann pointed out that life is

a struggle for entropy†. Schrödinger expanded on this view with the concept of negative

entropy, which is the opposite of an entropy (Schrödinger 1944), or negentropy, a term

first coined by Brillouin (Brillouin 1953). The problem with such formulations is that

the entropy of a driven system (an open system driven far from equilibrium by fluxes)

is undefined (Ruelle 2003), and the second law, which Schrodinger’s statement implicitly

refers to, does not apply directly to open systems, and thus, in particular, not to living

systems. So this idea should only be taken as giving an intuitive understanding, and not

as a technical or constructive theory.

Another caveat concerns the use of maximum entropy methods, which rely on a

genericity argument: the empirically observed configuration is one of the typical ones, so

it is legitimate to identify its type (empirical distribution) with p∗ maximising H(p). But

a genericity argument, which has currently only been established for physical systems, is

highly questionable for living systems, whose behaviour has been fine-tuned by biological

evolution into very specific regimes, and involving the non-generic co-adaptation of several

parameters.

Finally, the universal statistical laws (see Section 9.2) underlying thermodynamic

behaviour are valid in physical systems under the quite mild condition that correlations

between elements are summable. They only fail at critical points, where they are replaced

by self-similar features (Laguës and Lesne 2008; Castiglione et al. 2008). By contrast,

their validity is highly questionable in complex systems, and in particular for living

† The specific quote is ‘The general struggle for existence of animate beings is not a struggle for raw materials

– these, for organisms, are air, water and soil, all abundantly available – nor for energy, which exists in

plenty in any body in the form of heat, but of a struggle for entropy, which becomes available through the

transition of energy from the hot sun to the cold earth.’ (Boltzmann 1877; Cercignani 1988b)
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systems, because of top-down causation. Here we mean the existence of feedback loops

through which collective behaviours and emergent features can influence not only the

elementary states, but also their rules of interaction and evolution. Such feedbacks from

the macroscopic level to the underlying levels prevent the application of the law of

large numbers and the central limit theorem. At the moment, information theory is only

bottom-up, and is not suited to taking into account how an emerging feature modifies

the state space or the rules of an element. A first direction for extending this would

be to change the description level and investigate the relations between the distribution

of probabilities to capture invariants and predictable facts (Lesne and Benecke 2008).

Another direction would be to focus on interlevel relations and consistency, in the hope

of finding some universality in the regulatory schemes that is absent when we restrict

attention to a single level of organisation. In any case, novel statistical laws involving the

reciprocal coupling and consistency between the different levels of organisation at their

heart will need to be developed.
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Martin-Löf, P. (1966) The definition of random sequence. Information and Control 9 602–619.

McMillan, B. (1953) The basic theorems of information theory. Annals of Mathematical Statistics

24 196–219.
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