
Under consideration for publication in Math. Struct. in Comp. Science

Attribute-based transactions in Service
Oriented Computing

L A U R A B O C C H I and E M I L I O T U O S T O †

Department of Computer Science, University of Leicester,
University Road, LE17RH, UK.

Email: [bocchi| emilio] @mcs. le. ac. uk

Received 10 January 2011; Revised 16 December 2011

We present a theory for the design and verification of distributed transactions in

dynamically reconfigurable systems. Despite several formal approaches have been

proposed to study distributed transactional behaviours, the inter-relations between

failure propagation and dynamic system reconfiguration still need investigation.

We propose a formal model for transactions in Service Oriented Architectures (SOAs)

inspired by the attribute mechanisms of the Java Transaction API. Technically, we

model services in ATc (after “Attribute-based T ransactional calculus”), a CCS-like

process calculus where service declarations are decorated with a transactional attribute.

Such attribute disciplines, upon service invocation, how the invoked service is executed

with respect to the transactional scopes of the invoker. A type system ensures that

well-typed ATc systems do not exhibit run-time errors due to misuse of the transactional

mechanisms. Finally, we define a testing framework for distributed transactions in SOAs

based on ATc and prove that under reasonable conditions some attributes are

observationally indistinguishable.

1. Introduction

The Service-Oriented Computing (SOC) paradigm envisages distributed systems as loosely-

coupled computational elements that dynamically discover and bind to each other. SOC

has imposed to re-think (among other concepts) the notion of transaction. The long-

lasting and cross-domain nature of SOC makes it unfeasible to adopt classic ACID

transactions, which are implemented by locking the involved resources. The formal in-

vestigation of SOC transactions – often referred to as long-running transactions– has

been a topic of focus in recent years (see § 8 for a non-exhaustive overview). Central to

this investigation is the notion of compensation, a weaker version of the classic rollback

mechanism of database systems. Typically, each activity in a long-running transaction is

† This work has been partially sponsored by the project Leverhulme Trust award “Tracing Networks”.

L. Bocchi and E. Tuosto 2

associated with a compensation that is installed upon execution of that activity. Run-

time failures of an activity inside a transaction are “backwardly” propagated and trigger

the compensations of the activities executed before.

Compensations have been studied in relation to the mechanisms of failure propagation,

for instance to determine the order of execution of different compensations in a complex

workflow as e.g. in (Bocchi et al., 2003; Bruni et al., 2005; Lanese, 2010). The intuition

is illustrated by the following example

〈〈send email ||C.P 〉〉 | S (1)

where a long-running transaction (represented by the angled brackets) executes the ac-

tivity send email, contextually installs a compensation C, and then behaves like P . The

transaction runs concurrently and interacts with a –possibly remote– service S (e.g., a

mail server). The interaction send email between the transaction and S installs C in the

transactional scope and leads (1) to the state (2)

〈〈P 〉〉C | S
′ (2)

where S′ represents the state of S after receiving the email. In (2), a failure occurring

in P would trigger the execution of the compensation C. Note that the activities of

C are application-dependent, and that in our example C may not be able to roll-back

send email (because the mail could have already reached the mail server) but C could

send a further message which asks to ignore the previous message, or pay a fee, etc.

We consider two different kinds of failures. The first arises from the misuse of transac-

tional attributes while the second arises from communication failures. The latter class of

failures is modelled by letting systems to interact with “observers” that can force com-

munication failures. Intuitively, observers model a faulty communication infrastructure.

For instance, if P in (2) has the form pay ||C ′.Q, the observer Epay.O would cause the

failure of action pay and lead the system (2) into the state

C | S′ (3)

where the compensation C is executed.

A service-oriented system possibly changes its configuration at each service invocation

that adds new instances of invoked services to the ongoing computation. There is still

a lack of agreement on how the run-time reconfiguration should affect the relationships

between existing and newly created transactional scopes. For example, consider the sys-

tem 〈〈invoke s.P 〉〉C consisting of a process that invokes a service s and then behaves like

P within a transactional scope with compensation C. For the sake of this example, as-

sume that the invocation triggers a (possibly remote) instance of the service s, say Q.

The configuration of the system after the invocation of s can be shaped according to

several possibilities: should 〈〈invoke s.P 〉〉C evolve so to include Q in the existing scope

(i.e., 〈〈P | Q〉〉C)? Should instead Q be running in a different scope (i.e., 〈〈P 〉〉C | 〈〈Q〉〉)?
Should otherwise Q be executed outside any transactional scope (i.e., 〈〈P 〉〉C | Q)? Or

raise an exception triggering the compensation C? Notice that each alternative is rea-

sonable and has an impact on the semantics of failure propagation. For instance, if the

invocation results in the transactional scope 〈〈P | Q〉〉C then a failure in Q would trigger

Attribute-based transactions in Service Oriented Computing 3

the compensation C while, in case the invocation becomes 〈〈P 〉〉C | Q a failure of Q would

not trigger C.

In this paper, we study failure propagation in dynamically reconfiguring scenarios,

specifically Service Oriented Architectures (SOAs). In order to discipline the reconfigu-

ration of transactional scopes, we use mechanisms inspired by the Container Managed

Transactions (CMT) adopted by Enterprise Java Beans (EJB). In CMT, objects are pub-

lished through containers (EJB, 2009; Panda et al., 2007) specifying, for each method,

an attribute that determines:

— the (transactional) requirements that the invoking party must satisfy (e.g., “calling

fooBar from outside a transactional scope throws an exception”),

— how the transactional scopes dynamically reconfigure (e.g., “fooBar is always exe-

cuted in a newly created transactional scope”).

Attributes in CMT express only the requirements of the callee (i.e., invokers cannot spec-

ify requirements on the invoked method). This limitation is not desirable in SOC where

service invocations are resolved at run-time by selecting one of the available implemen-

tations matching a given service description; typically, both the service requester and

the service provider are allowed to express their requirements, which are matched when

defining the Service Level Agreement (SLA) for an invocation. Hence, it is natural in

SOC to allow callers to express some requirements on the transactional behaviour of the

invoked service (e.g., the invocation of s in 〈〈invoke s.P 〉〉C may require Q to be executed

in the same transactional scope of P).

We argue that transactional attributes could let callers and callees to “negotiate” the

transactional behaviour resulting from their interaction. In this respect, transactional at-

tributes can be considered as part of the SLA “contract” between requester and provider.

The study of the mechanisms of negotiation do not fall under the scopes of this paper. Our

aim is, instead, to give an effective framework to certify compatibility of transactional

aspects between services and invokers.

1.1. Main contributions

Our main results are summarised below.

Attribute-based transactions in SOC. We propose a semantics for failure propaga-

tion inspired by CMT and adapted to SOC. To this purpose, we introduce a CCS-like

process calculus called ATc after “Attribute-based T ransactional calculus”) which

allows both invokers and callees to specify their own transactional requirements. Our

aim is not to provide a semantics for CMT but rather to investigate how CMT could

be borrowed to define a rigorous and flexible model for disciplining and analysing the

dynamic reconfiguration of transactional scopes in SOC.

Testing framework. We adapt the testing theory (De Nicola and Hennessy, 1984) to

ATc and propose a formal framework for analysing the interplay between communica-

tion failures and the observable behaviour of service-oriented systems. The two parts

of the paper relate to each other through prudent systems, namely systems that are

L. Bocchi and E. Tuosto 4

well-behaved with respect to may-testing (see next paragraph). In some sense, pru-

dent systems reconcile two different classes of failures, namely failures due to service

invocations and those due to communication mishaps. Interestingly, prudent systems

can be envisaged as a possible way of analysing ATc systems by exploiting the fact

that, for prudent systems, may-testing is a pre-congruence for transactional scope

contexts (Theorem 6.1).

Static analysis of distributed transactions. We present a type system to check that

no error will occur upon service invocation due to the incompatibility of the transac-

tional scopes of caller and callee (cf. Theorem 4.2). Despite its simplicity, our typing

system yields a characterisation of the class of prudent systems; intuitively, such sys-

tems are well-behaved according to may-testing; in fact, running a process P of a

prudent system within a transactional scope does not spoil successful tests, namely

〈〈P 〉〉 passes all the tests of P .

Preliminary versions of our results have appeared in (Bocchi and Tuosto, 2010a)

and (Bocchi and Tuosto, 2010b). Here we give a uniform and more complete account

with some novel contributions: we extend previous results of our framework proving

that –contrary to the general case– some transactional attributes are observationally in-

distinguishable (cf. Theorem 7.1), and some comparable (cf. Theorem 7.2), under mild

conditions. Namely, attributes can be replaced with each other without altering the ob-

servable behaviour. Also, under certain conditions some configurations of transactional

scope allow comparable observed behaviours (cf. Theorem 6.1). Some practical applica-

tions of these results to the design and engineering of business processes over SOAs have

been discussed in (Bocchi et al., 2010).

1.2. Synopsis

The transactional mechanisms of EJB are summarised in § 2. We present ATc in § 3 and

its typing discipline in § 4. In § 5 we present a testing framework for ATc to determine

whether ATc systems react correctly to failures. A system is considered correct when it

successfully passes some tests (which are defined ad hoc for each process, depending from

the application context). In § 6 we show that in the general case different configurations

of transactional scope cause different behaviours (§ 6.1). However for the class of prudent

systems, the structure of the transactional scopes is preserved upon reduction (§ 6.2). In

§ 7 we prove a number of relations on attributes. § 8 presents conclusions and discusses

related work (§ 8.1) and future work (§ 8.2). Proofs are mainly collected in Appendixes A,

B, and C.

2. Background: EJB Transactional Attributes

Enterprise Java Beans (EJB) (EJB, 2009; Panda et al., 2007) is a middleware for build-

ing distributed applications using reusable components. Objects in EJB are executed in

specialised run-time environment called containers. An EJB container supports typical

functionalities to manage e.g. the life-cycle of a bean (that is a component) and to make

components accessible to other components by binding them to a naming service.

Attribute-based transactions in Service Oriented Computing 5

invoker outside
a scope

invoker inside
a scope

transactional
attributes

before
invocation

after
invocation

before
invocation

after
invocation

(1) • • ◦ • • ◦ r (Requires)

(2) • • ◦ • • ◦ rn (Requires New)

(3) • • ◦ • • ◦ ns (Not Supported)

(4) • ⊗ • • ◦ m (Mandatory)

(5) • • ◦ • ⊗ n (Never)

(6) • • ◦ • • ◦ s (Supported)

Table 1. Informal semantics of EJB attributes

EJB containers also offer a mechanism for automatic transaction management, called

Container Managed Transactions (CMT). CMT relieves the programmer from the burden

of explicitly defining the boundaries of each transaction, namely its transactional scope,

in the code. A transactional scope is a portion of code encompassing a number of actions

that constitute a transaction: the failure of an action within a transactional scope causes

the failure of the transaction, and the failure of a transaction affects all the actions in

the transactional scope (e.g., they have to be interrupted or rolled back). The container

also determines how the transactional scopes should reconfigure upon method invocation.

More precisely, a container associates each method of a component with (exactly) one

transactional attribute: when a method is invoked, the transactional attribute specifies in

which transactional scope, if any, the instance of the invoked method should be executed

(e.g., in the scope of the action which is invoking the method, outside of any scope, etc.).

EJB features the following transactional attributes

A def
= {m, s, n, ns, r, rn} (EJB Transactional Attributes)

where, following the EJB terminology, m stands for mandatory, s for supported, n for

never, ns for not supported, r for requires, and rn for requires new. The intuitive seman-

tics of EJB attributes A (ranged over by a, a1, a2, . . .) is illustrated in Table 1, where

transactional scopes are represented by rectangular boxes, the caller is represented by

a filled circle • and the callee (or more precisely the new copy of the callee, which is a

method in a component) is represented by an empty circle ◦. Failed activities are repre-

sented by ⊗. Each row represents the behaviour of one transactional attribute and shows

how the transactional scope of the caller and the newly created instance of the invoked

method behave upon invocation. The first two columns show, respectively, invocations

from outside and from within a transactional scope. More precisely, in Table 1:

— (1) a callee supporting r is always executed in a transactional scope which happens

to be the same as the caller’s if the latter is already running in a transactional scope;

— (2) a callee supporting rn is always executed in a new transactional scope;

— (3) a callee supporting ns is always executed outside a transactional scope;

L. Bocchi and E. Tuosto 6

— (4) the invocation of a method supporting m fails if the caller is not in a transactional

scope, otherwise the method is executed in the transactional scope of the caller;

— (5) the invocation of a method supporting n is successful only if the caller is outside

a transactional scope, and it fails if the caller is running in a transactional scope (in

this case an exception is triggered in the caller);

— (6) a method supporting s is executed inside (resp. outside) the caller’s transactional

scope if the caller is executing in (resp. outside) a transactional scope.

2.1. EJB and ATc: Similarities and Differences

As mentioned earlier, the aim of this paper is to define a semantics for reconfiguring

transactions over SOAs, not a semantics for EJB. We took inspiration from the mecha-

nisms of automatic handling of reconfiguration of transactional scopes provided by EJB

and adapted them to SOAs. Although ATc presents many similarities with EJB, it also

differs from the former in a number of aspects.

ATc models the original semantics of each attribute with respect to the reconfiguration

of the transactional scopes. However, ATc focuses on services rather than methods. The

main technical difference is that, whereas a method invocation refers to a method of

an object offered in a specific container, a service invocation is resolved at run-time

discovering, matchmaking and selecting among a number of available implementations

offered by possibly different service providers. More precisely:

An invocation can match more than one published service: whereas each method

invocation in EJB matches the method of a specific instance, in ATc more than one

service implementation may be available, possibly associated with different transac-

tional attributes. Also, the choice among the available services is non-deterministic.

The requester can specify the desired transactional attributes: whereas in EJB

the association of one attribute with each method is made only by containers (there-

fore the invoking party must ensure that the invoked method supports the desired

attribute), in ATc both providers and requesters can specify which attribute should

be used.

ATc relies on a (service) environment which consists of a set of service providers

(providers for short), each publishing one or more services. We use the environment

to abstract the different providers: the environment is a relation that associates

— an abstract service reference s, specifying the offered functional properties,

— one transactional attribute a ∈ A
to an implementation (e.g., a process). We do not explicitly model the dynamic evolution

of the environment caused by the run-time publication and revocation of services by their

providers, nor the process of negotiation between requesters and providers. However,

we take these aspects into account by assuming that any service invocation eventually

matches a suitable service. Namely, an invocation does not fail when a suitable service

is not available; rather, it hangs until a service matching the invocation is published.

Unlike in EJB, each service invocation in ATc specifies a set of acceptable transactional

attributes, say A ⊆ A. The execution of the invocation triggers, at runtime, the discovery

Attribute-based transactions in Service Oriented Computing 7

Processes: message exchange
and compensation installation

Observed Systems: occurrence
of failures and test of systems

Systems: reconfiguration of
scopes upon service invocation

s = (a , R')

P R

O

Environment

Failure

Service invocation

Communication

Legend of symbols:

Processes

Systems

Observed Systems

Fig. 1. ATc layered structure

of a service supporting one of the attributes in A. In this case, the invocation of the service

triggers a new remote instance of the selected service.

3. Attribute-based Transaction calculus (ATc)

Transactional attributes in Table 1 are embedded in a simple process calculus in order to

give a general model for SOC. We define the ATc calculus by taking a technology-agnostic

standpoint on the service-oriented paradigm and abstract from its actual realisations.

The ATc calculus is built on top of two layers: processes and systems; also, systems

can run in parallel with observers which can communicate with processes and model

communication failures as illustrated in Figure 1.

The layer of processes is presented in § 3.1 and models distributed interactions in

presence of possibly nested transactional scopes. When a communication takes place

inside a transaction, the compensation associated to that communication is installed in

the enclosing transactional scope. The layer of processes does not model failures nor

dynamic reconfiguration.

The layer of systems is presented in § 3.2 and yields the formal account for service

definition and invocation, as well as for the reconfigurations due to service invocations.

Furthermore, systems model those failures that are caused by unappropriated usage of

the transactional attributes.

Later (cf. § 5), we will introduce observed systems to study the behaviour of systems

in presence of communication failures. The basic idea is that an observer (O in Figure 1)

may interact with processes by communicating with them (like O and P in Figure 1),

and trigger communication failures (like O and R in Figure 1).

3.1. ATc processes

An ATc process is a CCS-like process with three additional capabilities: service invoca-

tion, transactional scope, and compensation installation (service definition and invocation

will be dealt with in § 3.2). Let S and N be two countably infinite and disjoint sets of

names for services and channels, respectively; we let s, s′, . . . range over S, x, y, z, . . .

range over N , and u range over S ∪ N .

L. Bocchi and E. Tuosto 8

Definition 3.1 (Processes). The set P of ATc processes is defined as the set of terms

derivable by the following grammar:

P,Q ::= ∅ empty process π ::= x input∣∣ νx P channel restriction
∣∣ x output∣∣ P | Q parallel∣∣ !P replication∣∣ s ∝ A.P service invocation (A ⊆ A)∣∣ 〈〈P 〉〉Q transactional scope∣∣ π ||Q.P compensation installation

as usual π = π and restriction νx P binds x in P . The sets of free and bound channels

of P ∈ P are respectively denoted by fc(P) and bc(P) and, omitting the standard

definitions, defined as:

fc(s ∝ A.P) = fc(P) bc(s ∝ A.P) = bc(P)

fc(〈〈P 〉〉Q) = fc(P) ∪ fc(Q) bc(〈〈P 〉〉Q) = bc(P) ∪ bc(Q)

fc(x ||Q.P) = fc(x ||Q.P) = fc(P) ∪ fc(Q) ∪ {x} bc(π ||Q.P) = bc(P) ∪ bc(Q)

A standard process algebraic syntax is adopted for idle process, restriction, parallel com-

position, and replication. Process s ∝ A.P invokes a service s required to support one of

the transactional attributes in A ⊆ A (we abbreviate s ∝ {a}.P with s ∝ a.P); a trans-

actional scope 〈〈P 〉〉Q consists of a running process P and a compensation Q assumed to

be confined in the transactional scope and executed only upon failure; π ||Q.P executes π

and installs the compensation Q in the enclosing transactional scope then behaves as P .

Definition 3.2 (Structural Congruence). The structural congruence ≡⊆ P × P is

the smallest equivalence relation satisfying the following laws

!P | P ≡!P 〈〈∅〉〉Q ≡ ∅ if P ≡ Q then 〈〈P 〉〉R ≡ 〈〈Q〉〉R and 〈〈R〉〉P ≡ 〈〈R〉〉Q
νx 〈〈P 〉〉Q ≡ 〈〈νx P 〉〉Q, if x /∈ fc(Q) νx 〈〈P 〉〉Q ≡ 〈〈P 〉〉νxQ, if x /∈ fc(P)

νx νy P ≡ νy νx P νx ∅ ≡ ∅ νx (P | Q) ≡ (νx P) | Q, if x /∈ fc(Q)

and closed under α-renaming and the monoidal axioms for | and ∅.

Hereafter, π.P stands for π ||Q.P when Q ≡ ∅ and trailing occurrences of ∅ are omitted.

Also, νx1 . . . xn P abbreviates νx1 . . . νxn P .

In ATc, transactional scopes can be nested up to an arbitrary level. The nesting does

not alter the communication capabilities of processes; in other terms, transactions do not

guarantee isolation and the activities performed within a scope are immediately visible

from outside the transactional scope. Transactional scopes influence the behaviour of

processes only in case of failure.

To model the semantics of communications we use contexts.

Definition 3.3 (Contexts). A context CJ◊ # 4K is either a scope-avoiding AJ◊K or a

scope-containing context CJ◊ # 4K respectively defined by the following grammars:

AJ◊K ::= ◊
∣∣ P | ◊ ∣∣ ◊ | P CJ◊ # 4K ::= 〈〈CJ◊ # 4K〉〉Q

∣∣ 〈〈◊ | P 〉〉Q|4

Attribute-based transactions in Service Oriented Computing 9

We often omit the hole for the compensation, e.g., writing CJ◊K when the compensation

is not relevant.

Basically, in a scope-avoiding context the hole ◊ is not enclosed in a transactional scope

while in scope-containing one it is and the hole 4 is always in parallel with compensation

of the innermost scope. Definition 3.3 excludes νx CJ◊ # 4K from the set of contexts to

avoid name capture. As it will be clear when introducing the transition rules for systems

(Definition 3.6), the newly created instance of an invoked service may be executed, for

some transactional attributes, in the context of the callee. For example, CJ〈〈s ∝ r.P 〉〉 # 4K
would reconfigure into CJ〈〈P | R〉〉 # 4K (where R is the implementation of service s).

Considering, upon reconfiguration, whether the names bound by CJ◊ # 4K at the hole

are disjoint from fn(R) would make the semantic more complicated. Also, prefix contexts

α.CJ◊ # 4K (where α is either of the prefixes of ATc) are ruled out from Definition 3.3

as they prevent inner reductions.

The semantics of ATc process communications is defined by means of the reduction

relation in Definition 3.4.

Definition 3.4 (Process Reduction). The reduction relation of ATc processes is the
smallest relation →⊆ P ×P closed under the following axioms and rules:

CJCJπ ||Q.P # RK | C′Jπ̄ ||Q′.P ′ # R′K # R0K → CJCJP # R | QK | C′JP ′ # R′ | Q′K # R0K (p1)

CJCJπ ||Q.P # RK | π̄ ||Q′.P ′ # R0K → CJCJP # R | QK | P ′ # R0 | Q′K (p2)

CJπ ||Q.P | π̄ ||Q′.P ′ # R0K → CJP | P ′ # R0 | Q | Q′K (p3)

AJπ ||Q.P | π̄ ||Q′.P ′K → AJP | P ′K (p4)

P → P ′

νx P → νx P ′
P ≡ P ′ → Q′ ≡ Q

P → Q
(p5/p6)

Call transactional a process enclosed in a transactional scope.

In (p1÷p4) sender and receiver synchronise regardless of the relative nesting of their

transactional scopes. If communication actions are executed inside a transactional scope,

compensations are installed in the innermost scope enclosing the communicating pro-

cess, otherwise they are discarded. In (p1) the communication is between two parallel

transactional processes in different transactional scopes. In (p2) the communication is

between a transactional process and a second process which is transactional or not (in

the former case, the transactional scope includes the one of the first process). In (p3) the

communication is between two transactional processes included in the same innermost

transactional scope. In rule (p4) the communication is between two non-transactional

processes. Rule (p5) is necessary since contexts do not include hiding while (p6) is the

standard structural congruence rule.

Remark 3.1. Rules (p3) and (p4) could be merged in the rule

CJπ ||Q.P | π̄ ||Q′.P ′ # R0K → CJP | P ′ # Q | Q′ | R0K

For clarity, we prefer the presentation of Definition 3.4.

L. Bocchi and E. Tuosto 10

Like in (Guidi et al., 2009), Definition 3.4 allows for dynamic installation of compen-

sations that, in our case, are installed in parallel with existing ones (whereas in (Guidi

et al., 2009) it is possible to specify any kind of composition). Also, only the actions

executed before the failure are compensated, as illustrated by Example 3.1.

Example 3.1. Consider the transactional scope PbookNight = 〈〈Ptheatre | Pdinner〉〉 where:

Ptheatre = seat. seat. pay || refund Pdinner = table. table. confirm || freeTable

where refund and freeTable are dynamically installed to compensate pay and confirm, re-

spectively. Assume that PbookNight runs in parallel with two servers 〈〈Qtheatre〉〉 and 〈〈Qdinner〉〉
for theatre and restaurant booking defined as

Qtheatre = seat. seat. pay || refund Qdinner = table. table. confirm || freeTable

According to Definition 3.4 the process P = 〈〈Ptheatre | Pdinner〉〉 | 〈〈Qtheatre〉〉 | 〈〈Qdinner〉〉 has,
among others, the following two executions:

〈〈table.confirm || freeTable〉〉refund | . . . ∗ **
P

∗ 77

∗ **

〈〈∅〉〉freeTable | refund | 〈〈∅〉〉freeTable | 〈〈∅〉〉refund
〈〈seat.pay || refund〉〉freeTable | . . . ∗

44

Notice that a different interleaving of the interactions would let the client execute dif-

ferent compensations in case of failure. �

3.2. ATc systems

The semantics of service invocations is given at the level of systems (Definition 3.5) where

processes can invoke services published in the environment. An ATc environment models

a distributed service repository where a service can be published by one or more providers.

More precisely, an environment is defined as a relation Γ ⊆ S × A × P; if (s, a, P) ∈ Γ,

then the service s has “body” P and supports the attribute a. An invocation of s creates

a new instance of the service that executes P . A service s can be associated to more than

one pair in A × P since more than one provider may publish an implementation for s

(and possibly associate it to different transactional attributes).

Definition 3.5 (Systems). A system in ATc is a pair Γ ` P where P is derived by the

productions in Definition 3.1 augmented with P ::= err to represent erroneous processes.

Also, the following axioms

!err ≡ err νx err ≡ err 〈〈err〉〉Q ≡ err

extend the congruence relation (cf. Definition 3.2) to erroneous processes.

Given A ⊆ A, hereafter we adopt the following conventions

— P ∈ Γ(s,A) shortens ∃a ∈ A : (s, a, P) ∈ Γ and models a provider of s implemented

as P and supporting a (we shorten P ∈ Γ(s, {a}) as P ∈ Γ(s, a));

— S, S′, . . . range over systems and P,Q, . . . range over both P and erroneous processes

(note that processes in P are non-erroneous);

Attribute-based transactions in Service Oriented Computing 11

— terms where compensations contain err are ruled out; basically, err represent a run-

time error and cannot be used by the programmer.

A service invocation is transactional (resp. non-transactional) if it is (resp. it is not)

executed inside a transactional scope.

Definition 3.6 formalises the CMT mechanisms which are rendered in SOC by allow-

ing environments Γ to offer different implementations of the same service possibly with

different attributes. This results in a non-deterministic semantics where one of several

possible reductions is chosen. We write x̃ for the tuple of names x1, . . . , xn.

Definition 3.6 (Systems’ Reduction). The reduction relation of ATc systems is the

smallest relation ; closed under the rules/axioms below:

P → P ′

Γ ` P ; Γ ` P ′
(s1)

m ∈ A
Γ ` νx̃ AJs ∝ A.P K ; Γ ` νx̃ AJerrK

(s2)

R ∈ Γ(s, {s, n, ns} ∩A)

Γ ` νx̃ AJs ∝ A.P K ; Γ ` νx̃ (AJP K) | R
(s3)

R ∈ Γ(s, {r, rn} ∩A)

Γ ` νx̃ AJs ∝ A.P K ; Γ ` νx̃ (AJP K) | 〈〈R〉〉
(s4)

x̃ ∩ fc(R) = ∅ R ∈ Γ(s, {m, s, r} ∩A)

Γ ` νx̃ CJCJs ∝ A.P # QK # Q′K ; Γ ` νx̃ CJCJP | R # QK # Q′K
(s5)

n ∈ A
Γ ` νx̃ CJ〈〈s ∝ A.P | P ′〉〉Q # Q′K ; Γ ` νx̃ CJQ # Q′K

(s6)

ns ∈ A R ∈ Γ(s, ns)

Γ ` νx̃ CJCJs ∝ A.P # QK # Q′K ; Γ ` νx̃ (CJCJP # QK # Q′K) | R
(s7)

rn ∈ A R ∈ Γ(s, rn)

Γ ` νx̃ CJCJs ∝ A.P # QK # Q′K ; Γ ` νx̃ (CJCJP # QK # Q′K) | 〈〈R〉〉
(s8)

Rule (s1) lifts process behaviour to systems while rules (s2÷s8) yield the semantics of

the transactional attributes informally presented in § 2. The presence of restrictions in

rules (s2÷s8) takes into account name scoping; the reductions are possible because of

the structural laws on processes. Rules (s2÷s4) model the first column of Table 1 (i.e.,

non-transactional invocations) and (s5÷s8) model the second one (i.e., transactional

invocations); below we comment on such rules.

Rule (s2) states that a non-transactional invocation of a service supporting attribute

m results in a failure. Rule (s3) states that a non-transactional invocation of a service

supporting either s, n, or ns, causes the execution of the new service instance in parallel

with the continuation of the caller. By rule (s4), a service supporting r or rn will be

executed in a new scope (initially with idle compensation). By rule (s5), in case of

transactional invocation of a service supporting attributes m, s, or r, the service instance

is executed in the same scope of the caller. The channel names x̃ should not appear free

L. Bocchi and E. Tuosto 12

in R since the service instance is executed within the context of the invoking process,

which is within the scope of νx̃. Rule (s6) states that a transactional invocation of a

service supporting n results in a failure. Notice that, whereas failures occurring outside

a scope make the process to become erroneous, i.e., in (s2), failures occurring inside

a scope trigger its compensation, i.e., in (s6). By rule (s7) a transactional invocation

requesting ns will let the service instance to run outside the caller’s scope. Finally, rule

(s8) states that a transactional invocation requesting rn will let the service instance to

run in a new scope with idle compensation.

Remark 3.2. Rule (s2) may appear too restrictive as it introduces an error even if Γ

may offer a service supporting other attributes in A. An actual implementation may in

fact select more suitable services if there are any available. Here, more simply, we define

the conditions to correctly use attributes avoiding errors in any possible environment;

therefore (s2) models the worst case scenario.

The following examples motivate the need of a disciplined use of transactional at-

tributes. The typing system presented in § 4 ensures that a well-typed process will not

produce errors due to the fact that the attributes required by an invoker are not suitable

for the configuration of the transactional scope of the invoking process.

Example 3.2. Let 〈〈stickets ∝ m.Ptheatre〉〉scompensate∝m be a process that invokes stickets and

behaves as Ptheatre. Noticeably, in Ptheatre a failure cannot occur by rule (s6) since Ptheatre

is executed inside a transactional scope. Nevertheless, as it will be clearer from § 5, the

interference of an observer may cause a communication failure (see Definition 5.2). If such

a failure occurs in a communication with Ptheatre then the compensation scompensate ∝ m

is executed outside a transactional scope. Therefore, the non-transactional invocation to

scompensate will result in an error. �

Example 3.3. Let Ptheatre = askSeat.getSeat.pay || getRefund and consider

PbookTheatre = stickets ∝ {s, n, ns, r, rn}.Ptheatre

Ptickets = askSeats.getSeats.sbank ∝ m

The non-transactional invocation stickets in a Γ for which Ptickets ∈ Γ(stickets, s) causes

Ptickets to run outside a transactional scope; hence, invoking sbank leads to an error. �

On the one hand, requesters should check that the attributes of their service calls are

compatible with the context (transactional or not) in which the calls are done. On the

other hand, providers must guarantee that none of their services yields errors; namely, the

execution of (the body of) a service in any context resulting from its supported attributes

should be safe. For instance, stickets in Example 3.3 supports s by which the new service

instance can be executed either inside or outside a transactional scope, depending on

whether the invocation is done from inside or outside a transactional scope. Therefore,

the execution Ptickets should be safe regardless it will run inside or outside a transactional

scope.

Attribute-based transactions in Service Oriented Computing 13

4. A Type System for Transactional Services

This section yields a type system for ATc that can detect possible failures of invocations

due to misuse of transactional attributes. We give an algebra of types (§ 4.1), then define

a type system for ATc (§ 4.2), and finally we give a suitable notion of well-typedness

for ATc systems (§ 4.3) which is preserved by the reduction relation (Theorem 4.2) and

ensures error-freedom (Theorem 4.3).

4.1. Types for ATc

Our types record, for each possible invocation, its transactional modality (i.e., if it is

transactional or not) and the set of transactional attributes associated with it.

Definition 4.1 (Types). Let I ⊆ {i, o} × A where labels i and o are the transac-

tional modalities used to keep track of transactional and non-transactional invocations,

respectively. Types are defined as

t ::= ∅
∣∣ (I, t, t) (Types)

We write P . t to state that P ∈ P has type t.

If P . ∅ then P does not make any invocations; if P . (I, tc, tu),

I records the transactional modality/attribute pairs of the service invocations of P ;

tc yields the transactional modality/attribute pairs relative to the service invocations in

the compensations of the transactional scopes of P ;

tu yields modality/attribute pairs for the invocations in the compensation processes

pending in prefixes of P possibly outside any transactional scope.

Remark 4.1. The invocations in installation prefixes tu have to be considered only if

the process is within a transactional scope. In fact, installations associated with synchro-

nisations occurring outside transactional scopes vanish by Definition 3.6. Invocations in

tc are transactional only if the transactional scope is nested inside another transactional

scope. For example, upon failure, CJ〈〈P 〉〉Q # RK moves to CJQ # RK, thus the invocations

in the compensation Q are (resp. are not) transactional if CJ◊ # 4K is (resp. is not)

transactional.

Examples 4.1 and 4.2 give an intuitive illustration of typing in ATc by showing two

simple processes and their respective types. The formal definition of the typing rules is

presented in § 4.2.

Example 4.1. Consider P2 = s ∝ A.y ||P1 with P1 . t1. The type of P2 is defined below

P2 . t2 with t2 = ({o} ×A,∅, t1)

The first component of t2 collects information on the invocation of P2 to s, which is

non-transactional and with attributes A. The third component of t2 is t1 which is the

type of the process P1 to be installed as a compensation for prefix y. �

L. Bocchi and E. Tuosto 14

Example 4.2. Take the process P3 = 〈〈P2〉〉, where P2 is defined in Example 4.1,

P3 . t3 with t3 = ({i} ×A, t1,∅)

The first component of t3 records the invocations of P2 (transactional, in this case);

therefore the first component of t3 is {i} × A. Since P2 is inside a transaction the com-

pensations in t1 are installed (thereby in the second component of t3). �

The next example illustrates the use of the second components of types.

Example 4.3. Let P4 = 〈〈P3〉〉PC
where P3 (cf. Example 4.2) is in a transactional scope

with compensation PC . Assume PC . tc; then

P4 . t4 with t4 = ({i} × (A ∪A1), tc,∅)

where t1 = ({o}×A1,∅,∅). Observe that the invocations in the second component of t3
are now merged in the first component of t4 (where they appear to be transactional). �

Note that in Example 4.3 the second and third components of t1 could be non-idle; this

would make the ‘merging’ of t1 and t4 more complex (the rules for the general case are

presented in Definition 4.2).

It is convenient to treat types as binary trees whose nodes are labelled with subsets of

{i, o}×A. More precisely, the type (I, tc, tu) can be represented as a tree where the root

is labelled I, tc is the left child, and tu is the right child (∅ is the empty tree which is

conventionally labelled with the empty set). The operators ↓1, ↓2, and ↓3 are used to

“traverse” types (and respectively are the projections of the tuple-like representation of

types); the operator ⊕ “adds” types; the formal definitions of such operators are

∅↓1= ∅, ∅↓2= ∅↓3= ∅, (I, tc, tu)↓1= I, (I, tc, tu)↓2= tc, (I, tc, tu)↓3= tu

∅⊕ t = t, (I, tc, tu)⊕ (I ′, t′c, t
′
u) = (I ∪ I ′, tc ⊕ t′c, tu ⊕ t′u)

(⊕ has lower precedence than unary operators). We identify (∅,∅,∅) and ∅ because

they have the same behaviour with respect to the type operators.

4.2. Typing ATc

This section introduces a typing system for ATc. Recall that the ATc programmer has

to write non-erroneous processes for which we give the following typing rules.

Attribute-based transactions in Service Oriented Computing 15

Definition 4.2 (Typing Rules). The typing rules for non-erroneous processes (cf.

Definition 3.5) are

(idle)
∅ . ∅

P . t

νx P . t
(res)

(par)
P . t P ′ . t′

P | P ′ . t⊕ t′
P . t

!P . t
(repl)

(inv)
P . tp I = {o} ×A

s ∝ A.P . (I ∪ tp ↓1 , tp ↓2, tp ↓3)
P . tp Q . tq

π ||Q.P . (tp ↓1, tp ↓2, tq ⊕ tp ↓3)
(comp)

(scope)
P . t I = t↓1 tc = t↓2 tu = t↓3 Q . tq

〈〈P 〉〉Q . ((I ∪ tc ↓1)[o 7→ i], tu ⊕ tc ↓2 ⊕tc ↓3 ⊕tq,∅)

where, for I ⊂ {i, o} × A, I[o 7→ i]
def
= {(i, a) : (o, a) ∈ I} ∪ (I ∩ {i} × A).

The first five rules in Definition 4.2 are straightforward. Rule (comp) states that the

type of the installation of a compensation Q records the invocations in Q as potential

invocations of P by adding them to the third component of the type of π ||Q.P . Rule

(scope) is the most complex rule therefore we give a more detailed explanation. Recall

that, given a type (I, tc, tu), tc is the type of the compensations installed in the main

process and tu is the type of the compensations to install. The information in tc is

kept separated from I until (in the proof tree) it is possible to determine whether the

compensations are enclosed in a transactional scope (i.e., the main process is enclosed

in at least two transactional scopes). The information of tu is kept separated until it is

possible to determine whether the respective compensations will be actually installed in

an enclosing transactional scope or discarded. In (scope), P is enclosed in a transactional

scope therefore the compensations of P will be surely executed inside a transactional

scope (as in Example 4.3). Hence, if t′ denotes the type of 〈〈P 〉〉Q in the conclusion of the

rule (scope)

— the invocations of P (i.e., t↓1) and its installed compensation (i.e., tc ↓1) are included

in the first component of t′ applying the substitution [o 7→ i];

— the other components of tc (i.e., tc ↓2 and tc ↓3) are added to those in the compensation

Q and to those that prefixes in P will install (i.e., tu); in fact, the latter invocations

become possible, hence they are recorded in t′ ↓2 in (scope);

— finally, t′ ↓3= ∅ since the pending compensations of prefixes of P would be installed

in parallel with Q.

Example 4.4 illustrates how (scope) acts.

Example 4.4. Let us type 〈〈P 〉〉 where P = 〈〈s ∝ m〉〉π || s′∝m. First we have

s ∝ m . ((o, s),∅,∅) π || s′ ∝ m . (∅,∅, (o, m))

〈〈s ∝ s〉〉π || s′∝m . ((i, s), (∅,∅, (o, m)),∅)
(scope)

namely, the type of the compensation is held in the second component. Hence, again by

rule (scope), 〈〈〈〈s ∝ s〉〉π || s′∝m〉〉 . ((i, s), ((o, m),∅,∅),∅). �

L. Bocchi and E. Tuosto 16

In Example 4.4, the installations of the compensations will not be discarded but installed

in the transactional scope enclosing P . Therefore the invocation in the installation (o, m)

is moved to the first component of the type of the second component. Note that the

type of 〈〈〈〈P 〉〉〉〉 (where P is the process in Example 4.4) is (((i, s), (i, m)),∅,∅) and it is

obtained by applying again (scope). Indeed, the invocation of s′ will be executed inside

the outermost transactional scope, hence (scope) adds (i, m) to the first component of

the resulting type.

The following example illustrates the typing of a more complex process.

Example 4.5. Consider the process P = π1 ||Q where

Q = π2 ||R and R = s1 ∝ A1.π3 || s2 ∝ A2

The type of P is t = (∅,∅, (∅,∅, (I1,∅, I2))) as proved by the type inference below.

I2 = {o} ×A2 ∅ . ∅
(inv)

s2 ∝ A2 . (I2,∅,∅) ∅ . ∅
(Comp)

π3 || s2 ∝ A2 . (∅,∅, I2) I1 = {o} ×A1
(inv)

s1 ∝ A1.π3 || s2 ∝ A2 . (I1,∅, I2) ∅ . ∅
(Comp)

π2 ||R . (∅,∅, (I1,∅, I2)) ∅ . ∅
(Comp)

π1 ||Q . (∅,∅, (∅,∅, (I1,∅, I2)))
�

Proposition 4.1. For each non-erroneous P ∈ P
— there is a unique type t such that P . t, and

— for all non-erroneous Q ∈ P, if P ≡ Q and P . t then Q . t

Proof. Straightforward by induction on the structure of P and the derivation of the

structural congruence.

The tree-like structure of ATc types is useful to apply the rules in Definition 4.2. Once

a process P is assigned its type t, we need to extract from t the actual set of invocations

done by P . To this aim we define flat types below.

Definition 4.3. The flat type t̂ of t is defined as follows:

∅̂ = ∅ t̂ = t↓1 ∪Flatten(t↓2), if t 6= ∅

where

Flatten(∅) = ∅ Flatten(t) = t↓1 ∪Flatten(t↓2) ∪ Flatten(t↓3), if t 6= ∅

is a function that “flattens” types into sets.

In the interpretation of a type t as a tree, the flat type of t is the union of the sets labelling

all the nodes of t, excluding those of the subtree t↓3 which corresponds to “dead code”

(cf. Example 4.6); if the typed process is not in a scope then its pending compensations

can be ignored, otherwise t↓3 is empty because of rule (scope).

Lemma 4.1. For any types t and t′, t̂⊕ t′ = t̂ ∪ t̂′.

Attribute-based transactions in Service Oriented Computing 17

Proof. Directly from the definition of ⊕ and from an auxiliary lemma (i.e., that for

any types t and t′, Flatten(t⊕t′) = Flatten(t)∪Flatten(t′)) whose proof, relegated

to Appendix A.1, is by induction on the structure of t⊕ t′.

4.3. Well-typedness in ATc

The definition of well-typedness requires some care. We must adopt a different notion

of well-typedness depending on whether an ATc process is intended to be published as

a service or not (e.g., run by a user in the traditional way, without run-time discovery).

In Definitions 4.4 and 4.5 below we implicitly use Proposition 4.1 that guarantees that

non-erroneous processes have a unique corresponding type.

If P is not published as a service then it suffices to specify, for each service invocation

in P , the attributes for which no run-time errors are possible. This enables us to adopt

the following definition.

Definition 4.4 (Well-typedness for Processes). A process P ∈ P; is well-typed iff

(o, m) 6∈ t̂, where P . t.

Example 4.6. Process P in Example 4.5 is (trivially) well-typed since t̂ = ∅. In fact,

the only service invocations of P are in the compensations to install (that are dead code

since P is not included in any transactional scope). �

Intuitively, a system is correct if it executes without producing erroneous processes.

The correctness of systems depends not only on the well-typedness of the processes that

are in the initial configuration of the system, but also on the well-typedness of the services

invoked by those processes.

Ensuring correctness for services is a bit more complex than ensuring it for simple

processes, since a service instance may be executed in different (transactional) contexts.

Whether or not the invocations in the body of (the instance of) a service, say s, are

transactional depends on which attributes s supports and on whether the invocation to

s is transactional or not; well-typedness of services must consider both the possibilities

according to the attributes s has to support.

Definition 4.5 (Well-typedness for Services). Let (s, a, P) ∈ S ×A× P. Service s

is well-typed in (s, a, P), if P is non-erroneous and both (4) and (5) below hold.

〈〈P 〉〉 . t ∧ a ∈ {r, rn, m, s} =⇒ (o, m) 6∈ t̂ (4)

P . t ∧ a ∈ {s, n, ns} =⇒ (o, m) 6∈ t̂ (5)

An environment Γ is well-typed iff for all (s, a, P) ∈ Γ, s is well-typed in (s, a, P).

Example 4.7. Let the process P in Example 4.5 be the body of a service s support-

ing s ∈ A. Both the well-typedness of P and of 〈〈P 〉〉 must be checked. As argued in

Example 4.6, P is well-typed. For 〈〈P 〉〉 we just need to apply rule (scope) as follows:

π1 ||Q . (∅,∅, (∅,∅, (I1,∅, I2))) ∅ . ∅
(scope)

〈〈π1 ||Q〉〉∅ . (∅, (∅,∅, (I1,∅, I2)),∅)

L. Bocchi and E. Tuosto 18

Clearly, well-typedness of 〈〈P 〉〉 depends on whether (o, m) ∈ I1 ∪ I2 or not. �

Our notion of well-typedness is stricter than necessary; a weaker notion could be

adopted by defining flat types that contain the labels of only some of the ‘right chil-

dren’. Though yielding less restrictive types, this would make the definition of flat types

(Definition 4.3) more complex and less clear (we opted for simplicity rather than gener-

ality).

Proposition 4.2. For any context CJ◊ # 4K and π ||Q.P,R,R0 ∈ P, if CJ〈〈π ||Q.P 〉〉R #
R0K . t then CJ〈〈P 〉〉R|Q # R0K . t.

Proof. The proof is by induction on the structure of CJ◊ # 4K (see Appendix A.2).

Proposition 4.3. For any scope-avoiding context AJ◊K and π ||Q.P,R ∈ P,

AJπ ||Q.P K . t ∧ AJP K . t′ =⇒ t = t′ ⊕ (∅,∅, tQ)

where Q . tQ.

Proof. Let P . tP . If AJ◊K = ◊ then t = (tP ↓1, tP ↓2, tQ⊕ tP ↓3) by direct application

of the hypotheses. In the other cases the proof is similar by using rule (par).

The following theorem is a straightforward implication of Propositions 4.2 and 4.3.

Theorem 4.1. For any P,Q ∈ P, if P is well-typed and P → Q then Q is well-typed.

Proof. For any P,Q ∈ P, let P . tP and Q . tQ, if P → Q then t̂Q ⊆ t̂P by

Propositions 4.2 and 4.3.

Theorem 4.2. Let the environment Γ and P ∈ P be well-typed. If Γ ` P ; Γ ` Q then

Q is well-typed.

Proof. The proof is by case analysis on the derivation of Γ ` P ; Γ ` Q (cf. Defini-

tion 3.6), and is relegated in Appendix A.3.

A straightforward corollary of Theorem 4.2 is

Theorem 4.3. If Γ and P ∈ P are well-typed and Γ ` P ; Γ ` Q then Q is a

non-erroneous process.

5. Testing ATc Systems

The intuition behind the testing theory (De Nicola and Hennessy, 1984) is that an ob-

server interacts with the system to check whether it passes or not a test; two systems are

equivalent if they pass the same tests. In this section, we tailor the testing theory to ATc.

After motivating our approach in § 5.1, we define the class of observers used to model

communication failures in § 5.2. Well-typedness is linked to observed systems in § 5.3

where Theorems 5.1 and 5.2 show that well-typed systems are free from communication

errors. Then, § 5.4 gives an observational semantics relying on the notion of observer

defined in § 5.2.

Attribute-based transactions in Service Oriented Computing 19

5.1. A motivating example

Intuitively, ATc systems are tested by defining a set of observers that reveal how systems

react to communication failures. Two systems are considered equivalent when they react

in the same way to the same set of observers.

Before introducing the testing framework for ATc, we give an example that highlights

the interplay of transactional scopes reconfiguration with the observed behaviour of sys-

tems. The example motivates the design choices of ATc by showing that two systems

differing only for one transactional attribute may behave differently.

Consider a scenario where a service s acts as a proxy R of a shared resource. The

resource is not explicitly represented and can be thought of as a process running in

parallel with R, that accepts an input on p (to acquire the resource) and an input on v

(to release it). The body R of s is

R = p || v.u.q.v

The expected behaviour is that, upon invocation, s interacts with the resource to acquire

a lock on the resource through the action p || v; the compensation v is meant to release the

resource if a failure occurs during the access. Then, s waits for a request of usage from

the client (action u). When the client does not need the resource any longer, it stops the

computations by sending a signal (on q) to s that finally releases the resource (v).

Let Γ be an environment such that R ∈ Γ(m, s) and R ∈ Γ(rn, s), namely there are (at

least) two providers for s with the same body R but supporting different attributes. Both

providers enforce R to be executed within a transactional scope, so that the compensation

v of p can be installed.

Consider the two possible clients P1 and P2 below

P1 = 〈〈s ∝ m.u.q〉〉 P2 = 〈〈s ∝ rn.u.q〉〉

where P2 is obtained by replacing the attribute m with rn in the invocation to s of P1.

Both clients invoke s, use (u), and then release the resource (q). The different attributes

generate two different behaviours as the invocations of s from P1 and P2 result in the

following systems (by rules (s5) and (s8) in Definition 3.6, respectively)

S1 = Γ ` 〈〈u.q | p || v.u.q.v〉〉 S2 = Γ ` 〈〈u.q〉〉 | 〈〈p || v.u.q.v〉〉

Observe the difference between S1 and S2; the invocation of s activates an instance of R

in both cases, however in S1 the new instance of the service runs in the same transactional

scope of the invoker (due to the attribute m), while in S2 it runs in a different transactional

scope (due to the attribute rn).

Now take the following process O = p.Eu.v.X where Eu is an action that forces a failure

of u and X is a distinguished action to denote the success of the test; in other words,

O is an observer that checks if, after the resource is acquired, it is released regardless

of possible failures on clients’ requests of use. The executions of S1 and S2 in parallel

with O result, after the synchronisation on p, in the continuation of O Eu.v.X to run in

parallel with either of the following systems

S′1 = Γ ` 〈〈u.q | u.q.v〉〉v S′2 = Γ ` 〈〈u.q〉〉 | 〈〈u.q.v〉〉v

L. Bocchi and E. Tuosto 20

Intuitively, O can tell apart S′1 and S′2. In fact, in S′1 the failure Eu forced by O triggers

the compensation v which eventually releases the resource so that O ends with the success

action, while in system S′2 this is not the case as O is stuck after forcing the failure.

In general, different attributes generate different observational behaviours. Interest-

ingly, as shown in § 7, it is sometimes possible to inter-change the transactional attributes

while preserving the observed behaviour of a system.

5.2. Observed systems

The notion of observer is pivotal in our setting. Observers abstract a faulty communica-

tion infrastructure and are formally defined as follows.

Definition 5.1 (Observers). An observer is derived by the following grammar:

O ::= ∅ empty process∣∣ X success∣∣ π.O prefix∣∣ Eπ.O failure

∣∣ O +O sum∣∣ rec X.O recursion∣∣ X variable

The structural congruence is extended with the monoidal axioms of +.

The set Obs of observed systems (called states) is the set of pairs of the form Γ ` P ‖ O
where Γ ` P is a system. Hereafter, when writing (Γ ` P) ‖ O we mean the observed

system Γ ` P ‖ O.

Basically, observers are “low-level” processes modelling some aspects of the communica-

tion environment where ATc processes run. Observers can be thought of as the transport

layer where communication faults may happen. Failing and successful tests are repre-

sented by ∅ and X, respectively; prefix π.O allows observers to communicate with the

system, while prefix Eπ.O causes the failure of a communication capability π and contin-

ues as O; observers can be composed with the (external) choice operator + and recursively

defined as rec X.O (where the occurrences of X in O are supposed guarded by prefixes).

Example 5.1. The observer in § 5.1 (O = p.Eu.v.X) represents a test that checks if

the system will release the resource in case of failure but it sets no requirements on the

normal execution. For instance, O would be satisfied by a system Sbad where the resource

proxy releases the resource only in case of failure:

Sbad = Γ ` 〈〈u.q | p || v.u.q〉〉

To rule out Sbad we can refine O as the observer O′ = p.(v.X+ Eu.v.X) that checks if a

resource is released (action v) after having been acquired (action p) regardless of possible

failures on clients’ requests of use (action Eu). �

Notice that observers cannot be composed in parallel and therefore they do not com-

municate among themselves. This, and the absence of name passing in ATc, allow us to

avoid using name restriction in observers. Moreover, observers do not run in transactional

scopes and they are not allowed to invoke services. Extending our framework to deal with

failures on service invocations would be straightforward. However, we contend that such

Attribute-based transactions in Service Oriented Computing 21

failures should be dealt with other mechanisms. For instance, a failing invocation may

raise an exception which allows the invoker to look for another service provider (rather

than triggering a compensation).

Definition 5.2 presents the reduction semantics of observed systems.

Definition 5.2 (Semantics of Observed Systems). The smallest relation ⊆ Obs×
Obs satisfying the following axioms and rules yields the semantics of observed systems.

Γ ` νx̃ CJπ ||Q.P # RK ‖ π.O Γ ` νx̃ CJP # R | QK ‖ O, if π, π 6∈ x̃ (os1)

Γ ` νx̃ CJ〈〈π ||Q.P | P ′〉〉Q′ # RK ‖ Eπ.O Γ ` νx̃ CJQ′ # RK ‖ O, if π, π 6∈ x̃ (os2)

Γ ` νx̃ AJπ ||Q.P K ‖ Eπ.O Γ ` νx̃ AJerrK ‖ O, if π, π 6∈ x̃ (os3)

S ; S′

S ‖ O S′ ‖ O
S ‖ O S′ ‖ O′

S ‖ O +O′′ S′ ‖ O′
(os4/os5)

S ‖ O1 ≡ S1 ‖ O1 S2 ‖ O2 S′ ‖ O′

S ‖ O S′ ‖ O′
(os6)

An observer can interact with the system and cause communication failures which trig-

ger the compensations associated with the enclosing transactional scopes (if any). Axiom

(os1) models a communication step involving (a part of) the system and the observer.

Axiom (os2) triggers the compensation when there is a communication failure within a

transactional scope. Axiom (os3) yields an error when a failure occurs outside a trans-

actional scope. Rule (os4) models a step due to transitions of the system that does not

involve the observer. The interactions of the system with non-deterministic observers are

defined by rule (os5). Rule (os6) is the usual rule for congruence.

Remark 5.1. In the following, we rule out systems where err occurs within trans-

actional scopes. In fact, by our assumption that programmers cannot use err and by

Definitions 3.5 and 5.2, err can be introduced only in scope-avoiding contexts.

5.3. Typing and observed systems

Theorem 4.3 can be extended to observed systems. For this we refine the syntax of error

processes as follows:

err ::= ierr
∣∣ cerr

to distinguish between invocation (ierr) and communication (cerr) errors. Note that

if we replace err with ierr in rule (s2) of Definition 3.6 and err with cerr in rule

(os3) of Definition 5.2, then Theorem 4.3 still holds. In the following we then assume

that the semantics of systems and observed systems is obtained by replacing (s2) and

(os3) respectively with

Γ ` νx̃ AJs ∝ A.P K ; Γ ` νx̃ AJierrK, if m ∈ A (s2’)

Γ ` νx̃ AJπ ||Q.P K ‖ Eπ.O Γ ` νx̃ AJcerrK ‖ O, if {π, π} ∩ x̃ = ∅ (os3’)

L. Bocchi and E. Tuosto 22

Moreover, we can prove the following theorem.

Theorem 5.1. If Γ and P ∈ P are well-typed and

Γ ` P ‖ O Γ ` Q ‖ O′ (6)

then Q does not contain ierr.

Proof. The proof is by induction on the derivation of (6). The thesis follows trivially if

the proof is an instance of the axioms (os1) or (os2) (as they do not introduce errors).

If the proof is an instance of axiom (os3’) the only possible error in the right-hand-side

is a communication error cerr. If the last rule in the proof of (6) is an instance of (os4)

the thesis follows by Theorem 4.3. If the last rule in the proof of (6) is an instance of

(os5) or (os6) the thesis directly follows by the inductive hypothesis.

It is worth noticing the following is a corollary of Theorem 5.1

Theorem 5.2. If Γ and P ∈ P are well-typed and

Γ ` P ‖ O . . . Γ ` Q ‖ O′

then Q does not contain ierr.

Proof. This result is an immediate consequence of the fact that reductions of observed

systems preserve the well-typing. To prove this one can use induction on the structure of

derivation or a reduction observing that the only non-trivial case is when the proof ends

with an application of rule (os2), say

Γ ` νx̃ CJ〈〈π ||Q.P | P ′〉〉Q′ # RK ‖ Eπ.O Γ ` νx̃ CJQ′ # RK ‖ O

(where {π, π} ∩ x̃ = ∅). In fact, if the system on the right-hand-side is not well-typed,

then CJ◊ # 4K is scope-avoiding and the type t of Q′ should be such that (o, m) 6∈ t̂. This

yields a contradiction because, by our typing rules (cf. Definition 4.2) the initial system

would not be well-typed as its type would contain t̂.

5.4. A testing framework for ATc

Two basic elements of the testing theory in (De Nicola and Hennessy, 1984) are the

notions of successful and (non-)diverging computation.

Definition 5.3 (Computation). The set Comp (ranged over by c) of computations is

the set of (possibly infinite) sequences

S0 ‖ O0, · · · , Sn ‖ On, · · · (7)

such that Si ‖ Oi Si+1 ‖ Oi+1 for each index i. We say that (7) is a computation

starting from S0 ‖ O0.

Intuitively, a computation is successful if the test is passed (i.e., the corresponding

observer halts with X). Non-diverging computations are successful computations that

reach X before the occurrence of an error.

Attribute-based transactions in Service Oriented Computing 23

Definition 5.4 (Success and Divergence). Let O % X stand for O ≡ X + O′ for

some observer O′. Call successful a state S ‖ O where O % X and call erroneous a state

Γ ` P ‖ O ∈ Obs when P is erroneous.

— c = S0 ‖ O0, S1 ‖ O1, . . . , Sn ‖ On, . . . ∈ Comp is successful if Si ‖ Oi is successful for

some i (unsuccessful otherwise);

— c is diverging if either c is unsuccessful or there is i such that Si ‖ Oi is erronous and

Oj 6% X for all j < i.

The possible outcomes of computations are defined in terms of result sets (as customary

in testing theory); a result set is a (non-empty) subset of {>,⊥} where ⊥ and > denote

divergence and non-divergence, respectively.

Definition 5.5 (Result Set). The result set of S ‖ O ∈ Obs, <(S ‖ O) ⊆ {>,⊥}, is

defined by

— > ∈ <(S ‖ O) ⇐⇒ there is a non-diverging c ∈ Comp that starts from S ‖ O,

— ⊥ ∈ <(S ‖ O) ⇐⇒ there is a diverging c ∈ Comp that starts from S ‖ O.

As in (De Nicola and Hennessy, 1984), we consider may- and must-preorders and the

corresponding induced equivalences.

Definition 5.6. Given a system S and an observer O, we say that

S mayO ⇐⇒ > ∈ <(S ‖ O) and S mustO ⇐⇒ {>} = <(S ‖ O)

We define the preorders vm (may-preorder) and vM (must-preorder) on systems:

— S vm S′ ⇐⇒ (S mayO =⇒ S′mayO), for all observers O

— S vM S′ ⇐⇒ (S mustO =⇒ S′mustO), for all observers O.

The two equivalences 'm and 'M corresponding to vm and vM are defined as expected

'm = vm ∩ v−1
m and 'M = vM ∩ v−1

M

Example 5.2. Consider the systems S1 and S2 in § 5.1 and the observer O′ in Exam-

ple 5.1. It is immediate from the definitions above that S1 mayO
′ and S2 mayO

′. Also,

⊥ ∈ <(S2 ‖ O′), hence S2 mustO
′ does not hold, while S1 mustO

′ holds true. �

6. Comparing Configurations of Transactional Scopes

As shown in previous examples, different attributes enact different behaviours (e.g., § 5.1);

in fact,

(i) upon service invocation, different attributes may lead to configurations where the

transactional scopes are arranged in a different way, and

(ii) different configurations may have different behaviours in case of failure.

While (i) is a direct consequence of the transition rules for systems (Definition 3.6), to

illustrate (ii) we give a few examples (cf. § 6.1) showing that the testing preorders defined

for ATc are able to tell apart systems, whose processes have transactional scopes that

are differently configured.

L. Bocchi and E. Tuosto 24

We show in § 6.2 that, under reasonable assumptions on the types of ATc systems, it

is possible to relate the behaviour of different configurations of transactional scopes.

6.1. Transactional scopes and may-testing

The following example shows that the behaviour of a system changes depending on how

its processes are nested in transactional contexts.

Example 6.1. Consider the following inequalities

Γ ` 〈〈x | y〉〉z 6vm Γ ` 〈〈x〉〉z | 〈〈y〉〉 (8)

Γ ` 〈〈x ||w | x.y〉〉z 6vm Γ ` 〈〈x ||w〉〉z | 〈〈x.y〉〉z (9)

Γ ` 〈〈x | y〉〉z 6vm Γ ` 〈〈x〉〉z | y (10)

Γ ` 〈〈x〉〉z | 〈〈y〉〉 6vm Γ ` 〈〈x | y〉〉z (11)

Γ ` 〈〈x〉〉z | 〈〈y〉〉z 6vm Γ ` 〈〈x | y〉〉z (12)

Γ ` 〈〈x〉〉z | y 6vm Γ ` 〈〈x | y〉〉z (13)

It is straightforward to verify that

— Ey.z.X distinguishes the systems in (8) and (10)

— Ey.w.X distinguishes the systems in (9)

— Ex.y.X distinguishes the systems in (11), (12), and (13)

In fact, the observers are successful for the systems on the left-hand side of the inequal-

ities, and fail on the others. �

Example 6.1 yields just some instances of the fact that, in general,

Γ ` 〈〈P | R〉〉Q 6vm Γ ` 〈〈P 〉〉Q | 〈〈R〉〉
Γ ` 〈〈P | R〉〉Q 6vm Γ ` 〈〈P 〉〉Q | 〈〈R〉〉Q
Γ ` 〈〈P | R〉〉Q 6vm Γ ` 〈〈P 〉〉Q | R

Γ ` 〈〈P | R〉〉Q 6wm Γ ` 〈〈P 〉〉Q | 〈〈R〉〉 (14)

Γ ` 〈〈P | R〉〉Q 6wm Γ ` 〈〈P 〉〉Q | 〈〈R〉〉Q (15)

Γ ` 〈〈P | R〉〉Q 6wm Γ ` 〈〈P 〉〉Q | R (16)

Inequalities (14) and (15) highlight that transactional scopes do not distribute with par-

allel composition. Moreover, by (16), transactional scopes do not commute with the

parallel operator and compensations do not distribute over scopes. Notice that similar

inequalities hold for vM as well.

6.2. Prudent systems and structure preservation

Intuitively, Γ ` 〈〈P 〉〉Q | R ‖ O behaves similarly to Γ ` P | R ‖ O until a failure occurs or

until a service invocation causes different scope reconfigurations in the two systems.

Proposition 6.1. Given Γ ` 〈〈P 〉〉Q | R ‖ O ∈ Obs, if there is S ‖ O′ ∈ Obs non-diverging,

Γ ` 〈〈P 〉〉Q | R ‖ O S ‖ O′ (17)

then S = Γ ` 〈〈P ′〉〉Q | R′ ‖ O′ or S = Γ ` Q | R ‖ O′ .

Proof. The proof is by induction on the derivation of (17) considering that axiom

(os3) cannot be applied otherwise S ‖ O′ would be diverging (see Appendix B.1).

Later in this section, we show that if attributes are used “wisely” then it is possible use

may-testing to compare the behaviours of two systems where the same process executes

in different transactional contexts. Such results are based on the notions of structure

Attribute-based transactions in Service Oriented Computing 25

preserving attributes

a = s a = rn a = ns
Γ ` AJPK ; Γ ` AJP ′′ | P̂K

Γ ` AJ〈〈P〉〉QK ; Γ ` AJ〈〈P ′′ | P̂〉〉QK
Γ ` AJPK ; Γ ` AJP ′′K | 〈〈P̂〉〉

Γ ` AJ〈〈P〉〉QK ; Γ ` AJ〈〈P ′′〉〉QK | 〈〈P̂〉〉
Γ ` AJPK ; Γ ` AJP ′′K | P̂

Γ ` AJ〈〈P〉〉QK ; Γ ` AJ〈〈P ′′〉〉QK | P̂

non-preserving attributes

a = n a = r a = m
Γ ` AJPK ; Γ ` AJP ′′K | P̂
Γ ` AJ〈〈P〉〉QK ; Γ ` AJQK

Γ ` AJPK ; Γ ` AJP ′′K | 〈〈P̂〉〉
Γ ` AJ〈〈P〉〉QK ; Γ ` AJ〈〈P ′′ | P̂〉〉QK

Γ ` AJPK ; Γ ` AJerrK
Γ ` AJ〈〈P〉〉QK ; Γ ` AJ〈〈P ′′ | P̂〉〉QK

Table 2. Evolution of transactional scopes wrt attributes, with P̂ ∈ Γ(s, a)

preserving attributes and prudent systems, namely systems in which the configuration of

the transactional scopes is preserved through reduction.

Consider the systems

S1 = Γ ` P | R and S2 = Γ ` 〈〈P 〉〉Q | R (18)

where P = s ∝ a.P ′′ invokes a service s with an (unspecified) attribute a and then

behaves like P ′′. The invocation of s launches the execution of P̂ (i.e., P̂ ∈ Γ(s, a)). We

are interested in discerning for which transactional attributes (i.e., values of a) S1 and

S2 preserve their structure, namely when, for some P ′, A′J◊K:

Γ ` νx̃AJP K ; Γ ` νx̃A′JP ′K =⇒ Γ ` νx̃AJ〈〈P 〉〉QK ; Γ ` νx̃A′J〈〈P ′〉〉QK

Table 2 summarises what happens depending on the value of a. If a ∈ {s, ns, rn} then

the structure of both S1 and S2 is preserved:

— if a = s, the service instance “adapts” to the structure of the invoker’s scope;

— if a = ns then the service instance behaves as in the previous case for non-transactional

invocations, otherwise it can be “assembled” with R preserving the same structure

of (18) (i.e., A′J◊K = AJ◊K | 〈〈P̂ 〉〉);
— the case a = rn is similar to the case a = ns but for the fact that the service instance

is executed in a new transactional scope (i.e., A′J◊K = AJ◊K | P̂).

Instead, if a ∈ {n, r, m} then the structure of either of S1 and S2 is not preserved:

— if a = n only Γ ` P | R moves to a configuration that includes the service instance P̂

whereas Γ ` 〈〈P 〉〉Q | R triggers the compensation process;

— if a = r then the transactional scope of P̂ in the transactional invocation is different

from the existing one (i.e., there are no A′J◊K and P ′ for which the configurations of

P and 〈〈P 〉〉Q are preserved after the invocation);

— if a = m only in the transactional invocation the configuration includes a new instance

of the invoked service P̂ whereas, in the other case, it includes an erroneous process.

An interesting class of systems can be characterised in terms of the types for ATc

defined in § 4.

L. Bocchi and E. Tuosto 26

Definition 6.1 (Prudent Systems). A well-typed process P ∈ P is prudent iff P . t

and (o, n), (o, r) 6∈ t̂. A system Γ ` P is prudent if P is prudent and, for each Q such

that (s, a,Q) ∈ Γ for some s ∈ S and a ∈ A, Q is prudent.

By definition, processes in prudent systems can use only “structure preserving” attributes

(notice that (o, m) is also ruled out by well-typedness of P). Consider the systems S1 and

S2 in (18); the assumption that they are prudent allows us to say that each transition

to non-erroneous processes of S1 corresponds to a transition of S2 that preserves the

relationship between the configurations. More formally, a prudent process preserves its

behaviour in any parallel context when it is executed in a transactional scope with any

compensation.

Lemma 6.1. Let Γ ` P be a prudent system. For any observer O and any R ∈ P

Γ ` P | R ‖ O Γ ` P ′ | R′ ‖ O′ =⇒ Γ ` 〈〈P 〉〉Q | R ‖ O S ‖ O′ (19)

where S = Γ ` 〈〈P ′〉〉Q | R′ or S = Γ ` Q | R′.

Proof. The proof is by induction on the derivation of the transition of the hypothesis

in the implication (19). The full proof is relegated in Appendix B.2.

Theorem 6.1. If Γ ` P is a prudent system then

Γ ` P | R vm Γ ` 〈〈P 〉〉Q | R

for all Q,R ∈ P.

Proof. Let O0 be an observer, P0 = P | R, and

Γ ` P0 ‖ O0, . . . ,Γ ` Pi ‖ Oi (20)

be a non-diverging computation of Γ ` P such that Γ ` Pi ‖ Oi is a successful state.

Since all the states in (20) are non-erroneous (because (20) is non-diverging), by induc-

tion on i, we exhibit a non-diverging from Γ ` 〈〈P 〉〉Q | R ‖ O0 with the same observers,

using Lemma 6.1.

7. Testing-Preserving Attribute Substitutions

In this section we apply the testing framework of ATc to prove that, under suitable

conditions, attributes are interchangeable. Namely, using an attribute instead of another

in a service invocation does not alter the observational behaviour of systems.

Example 7.1. The example in § 5.1 illustrates how different attributes yield different

observable behaviours, however, the observational behaviour of Q = 〈〈s ∝ r.u.q〉〉 does not

change by replacing r with m (which yields the process P1 in § 5.1) or s. �

We investigate a preorder relation on attributes defined in terms of the may-testing

preorder and show that systems exhibit the same behaviour when all occurrences of an

attribute are replaced with an equivalent one. More precisely, we define the preorder

≤m⊆ A×A, (m stands for may) that correspond to the preorder vm for systems. The

Attribute-based transactions in Service Oriented Computing 27

intuition is that if S′ is obtained by replacing b for a in a system S and a ≤m b, then

S vm S′. Preorder ≤m is defined in terms of preorders ≤o
m and ≤i

m which differ on

whether the replacement of the attributes affects only the calls done outside or inside a

transactional scope, respectively.

Before introducing ≤m (cf. Definition 7.3), we give some auxiliary definitions and

results on substitutions of transactional attributes.

7.1. Attribute substitutions

We consider two special notions of substitutions of attributes; one replaces attributes that

appear in transactional invocations and the other replaces those outside transactional

scopes. Let [b/a] denote a standard substitution, namely a substitution that replaces any

occurrence of a with b; given A ⊆ A, let [b/a]A abbreviate {[b/a](a′)|a′ ∈ A}

Definition 7.1 (Attribute substitution on P). The action of substitutions [b/a]o

and [b/a]i on processes are defined as follows:

∅[b/a]o = ∅
(νx P)[b/a]o = νx (P [b/a]o)

(P | Q)[b/a]o = P [b/a]o | Q[b/a]o

(!P)[b/a]o = !P [b/a]o

(π ||Q.P)[b/a]o = π ||Q[b/a]o.P [b/a]o

(s ∝ A.P)[b/a]o = s ∝ [b/a]A.(P [b/a]o)

〈〈P 〉〉Q[b/a]o = 〈〈P 〉〉Q[b/a]o

∅[b/a]i = ∅
(νx P)[b/a]i = νx (P [b/a]i)

(P | Q)[b/a]i = P [b/a]i | Q[b/a]i

(!P)[b/a]i = !P [b/a]i

(π ||Q.P)[b/a]i = π ||Q[b/a]i.P [b/a]i

(s ∝ A.P)[b/a]i = s ∝ A.(P [b/a]i)

〈〈P 〉〉Q[b/a]i = 〈〈P [b/a]〉〉Q[b/a]i

Hereafter, we denote any substitution (standard or not) with σ and define errσ = err.

Intuitively, [/]o acts as the standard substitution except for the case of transactional

scope where the running process P is not subject to further substitutions, while the

compensation Q is (since it would be executed outside the current transactional scope).

Substitution [/]i acts as expected but for service invocation and transactional scopes.

In the former case, the substitution does not change the attributes of the invocation

to s, since the process is outside a transactional scope; in the latter case, the standard

substitution of a for b is applied to the running process of the scope P (the substitutions

have to act on all the invocations in P) while [b/a]i is applied to the compensation Q (as

Q could be executed outside a transactional scope).

Definition 7.2 (Attribute substitution on systems). The action of an attribute

substitution σ on a system Γ ` P is defined as (Γ ` P)σ = Γσ ` Pσ where

Γσ =
⋃

(s,a,P)∈Γ

{(s, a, P), (s, σ(a), Pσ), (s, a, Pσ)}

Moreover, (S ‖ O)σ = Sσ ‖ O for any attribute substitution σ.

The substitution on Γ replicates a service description so that the body is available for

both invocations of s done with a and with σ(a). For example, if P makes a transactional

invocation to s with attribute a, then P [b/a]i must be able to make a corresponding

L. Bocchi and E. Tuosto 28

transactional invocation of s with attribute b. Furthermore, the environment must still

be able to offer a service for attribute a as P [b/a]i may still include non-transactional

invocations with attribute a.

Proposition 7.1. Attribute substitutions are idempotent.

Proof. The idempotency of [/]o and [/]i descends from the idempotency of [/]; the

latter is trivially obtained by induction on the structure of processes.

Lemma 7.1. For any system S and any a ∈ A, S[a/a]o = S[a/a]i = S[a/a] = S.

Proof. By induction on the structure of S.

7.2. Attribute substitutions and reduction semantics

We consider the relationship between attribute substitutions on the one hand and the

reduction semantics of processes, systems, and observed systems on the other hand. The

results of this section will be used in § 7.3 to prove the equivalence and order relations

on transactional attributes.

We first show that attribute substitutions preserve processes’ reductions.

Proposition 7.2. Given an ATc process P

P → Q =⇒ Pσ → Qσ

holds for any attribute substitution σ.

Proof. The proof easily follows by observing that the reduction semantics of processes

(cf. Definition 3.4, 9) does not depend on attributes.

For systems the situation is different; the reduction semantics of ATc systems does

depend on the transactional attributes used in service invocations or those supported in

containers. We focus on substitutions that will be used in the proof of Theorem 7.2.

Proposition 7.3. Let S be a prudent system such that S ; S′ for a system S′. If

σ ∈ {[rn/ns]o} ∪ {[b/a]o
∣∣ a ∈ {m, n, r} ∧ b ∈ A} ∪ {[b/a]o ∣∣ a, b ∈ {n, s, ns}} then there is

S′′ such that

Sσ ; S′′ and S′σ vm S′′ (21)

Proof. By case analysis on the derivation of S ; S′ as per Definition 3.6 (page 11).

The proof is relegated in Appendix C.1.

In some cases, Proposition 7.3 can be generalised as attribute substitutions preserve

transitions of systems as shown by Corollary 7.1.

Corollary 7.1. If a, b ∈ {n, ns, s},

S ; S′ =⇒ S[b/a]o ; S′[b/a]o

for any system S.

Attribute-based transactions in Service Oriented Computing 29

Proof. By inspection of the proof of Proposition 7.3 when σ = [b/a]o with a, b ∈
{n, ns, s}, observing that Sσ ; S′σ and the hypothesis that S is prudent is not necessary

in none of the cases.

Furthermore, the following corollary shows that we obtain a similar property by allowing

non-transactional invocations with attribute m.

Corollary 7.2. Let σ = [a/m]
o with a ∈ A. For any system S, if S ; S′ then there

exists S′′ such that

(Sσ ; S′′ ∧ S′σ vm S′′) ∨ S′σ vm Sσ

Proof. By inspection of the proof of Proposition 7.3 when σ = [a/m]
o, observing that

the case of non-transactional invocations with attribute m (which in the proof of Propo-

sition 7.3 is ruled out) satisfies S′σ vm Sσ (i.e., after the reduction with rule (s2) S

would move to an errouneous state).

Proposition 7.4. Let σ be either of the substitutions [rn/ns]
i or [b/a]i with a, b ∈

{r, s, m}, then

S ; S′ =⇒ Sσ ; S′′ with S′σ vm S′′

for any system S.

Proof. Similarly to the proof of Proposition 7.3, the proof proceeds by cases on the

derivation of S ; S′, and is relegated in Appendix C.2.

Corollary 7.3 yields an analogous result as Corollary 7.1.

Corollary 7.3. If a, b ∈ {r, s, m}

S ; S′ =⇒ S[b/a]i ; S′[b/a]i

for any system S.

Proof. By inspection of the proof of Proposition 7.4 when σ = [b/a]i with a, b ∈
{r, s, m}, observing that Sσ ; S′σ.

Lemma 7.2. Let t be a transition S ‖ O S′ ‖ O′ of an observed system S ‖ O. Then

(S ‖ O)[b/a]o (S′ ‖ O′)[b/a]o if a, b ∈ {n, ns, s}
(S ‖ O)[b/a]i (S′ ‖ O′)[b/a]i if a, b ∈ {r, s, m}

Proof. The proof is by induction on the derivation of t (see Appendix C.3).

7.3. Ordering transactional attributes

Attribute substitutions and may-preorder on systems induce preorders on transactional

attributes as per Definition 7.3.

Definition 7.3 (Attribute Order). Let a, b ∈ A and S be a system. We define

a ≤o
m b ⇐⇒ S vm S[b/a]o and a ≤i

m b ⇐⇒ S vm S[b/a]i

L. Bocchi and E. Tuosto 30

r rn

nsn

s m

≤m
r rn

m

≤m
o

nsn

s

r rn

nsn

s m

≤m
i

Fig. 2. Order on attributes (the dashed arrows assume prudent systems)

also, ≤m
def
= ≤i

m ∩ ≤o
m and =m

def
= ≤m ∩ ≤−1

m (similar definitions are assumed for

=o
m and =i

m).

Figure 2 illustrates the relationships among attributes for the order relations in Defi-

nition 7.3; note that

— dashed edges hold only for prudent systems (cf. Theorem 7.2) and point at the smaller

element (e.g., in the leftmost box, r← rn reads as r ≤o
m rn);

— unarrowed edges represent the equality corresponding to the preorder (e.g., in the

leftmost box, s—n stands for s =o
m n) and correspond to the equivalences in Theo-

rem 7.1.

Theorems 7.1 and 7.2 below give a formal account of Figure 2.

Theorem 7.1. The following equivalences on A hold

ns =o
m n =o

m s (22)

m =i
m r =i

m s (23)

Proof. Assume that there is a successful computation c from S ‖ O. By induction on

the length of c and Lemma 7.2 it follows that there is a successful computation from

(S ‖ O)σ for any σ ∈ {[b/a]o
∣∣a, b ∈ {n, ns, s}} ∪ {[b/a]i

∣∣a, b ∈ {r, s, m}}.
Theorem 7.2. Consider the order relations

(a) ns ≤o
m rn (b) m ≤o

m a, a ∈ A
(c) a ≤o

m b, a ∈ {n, r}, b ∈ A (d) ns ≤i
m rn

We have that (a), (c), and (d) hold for prudent systems, while (b) holds for any system.

Proof. By induction on the derivation of S ‖ O S′ ‖ O′ (see Appendix C.4).

7.4. The missing arrows

In this section we discuss why some arrows are missing from Figure 2. Below we write

a 6=i
m b to denote a 6≤i

m b or a 6≥i
m b (and similarly for a 6=o

m b).

Figure 3 explicitly illustrates the arrows that are missing from Figure 2, representing

them as dotted arrows. The numbering on the arrows refers to the counterexamples

Attribute-based transactions in Service Oriented Computing 31

r rn

ns,n,s

m

≤m
o

rn

ns

n

≤m
i

1

2

3

1
2 3

4

5

r,s,m

6

Fig. 3. Inequalities that do not hold in Figure 2

provided in the rest of this section for both [/]o and [/]i substitutions. The attributes

ns, n, and s have been grouped together in the left-hand side diagram as they are

equivalent with respect to =o
m. The same conventions are adopted for r, s, and m and

=i
m in the right-hand side diagram.

We first consider the missing arrows for [/]o substitutions, that is

1 rn 6≤o
m ns, rn 6≤o

m n, and rn 6≤o
m s

2 ns 6≤o
m m, n 6≤o

m m, and s 6≤o
m m

3 rn 6≤o
m r

For each of the inequalities above, we consider the corresponding attribute substitution

σ and exibit a system S and observer O such that S passes the test while Sσ does not.

(1) Let σ = [ns/rn]
o, Γ = {(s, rn, y), (s, ns, y)}, and S = Γ ` s ∝ rn.x. Then

Γσ = Γ and Sσ = Γ ` s ∝ ns.x

After invoking s, S and Sσ reduce respectively to Γ ` x | 〈〈y〉〉 and Γ ` x | y. Hence,

S passes the test Ey.x.X while Sσ fails it.

The inequalities rn 6≤o
m n and rn 6≤o

m s follow by contradiction from ns =o
m n =o

m s

(cf. (22) in Theorem 7.1) and rn 6≤o
m ns.

(2) Let σ = [m/ns]
o, Γ = {(s, m, y), (s, ns, y)}, and S = Γ ` s ∝ ns.x. Then

Γ = Γσ and Sσ = Γ ` s ∝ m.x

After invoking s, S and Sσ reduce respectively to Γ ` x | y and Γ ` err. Hence, S

passes the test x.X while Sσ fails it.

The inequalities n 6≤o
m m and s 6≤o

m m follow by contradiction from ns =o
m n =o

m s (cf.

(22) in Theorem 7.1) and ns 6≤o
m m.

(3) Let σ = [r/rn]
o, Γ = {(s, rn, s′ ∝ rn.x), (s′, rn, y)}, and S = Γ ` s ∝ rn. Then

Γσ = Γ ∪ {(s, r, s ∝ r.x), (s, rn, s ∝ r.x), (s′, r, y)} and Sσ = Γσ ` s ∝ r.

After invoking s, S and Sσ reduce respectively as follows:

S = Γ ` s ∝ rn ; Γ ` 〈〈s′ ∝ rn.x〉〉 ; Γ ` 〈〈x〉〉 | 〈〈y〉〉
Sσ = Γσ ` s ∝ r ; Γσ ` 〈〈s′ ∝ r.x〉〉 ; Γσ ` 〈〈x | y〉〉

L. Bocchi and E. Tuosto 32

Hence, S passes the test Ex.y.X while Sσ fails it.

We now turn our attention to the missing arrows for [/]i substitutions, namely

1 r 6=i
m rn, s 6=i

m rn, and m 6=i
m rn

2 r 6=i
m n, s 6=i

m n, and m 6=i
m n

3 rn 6≤i
m ns

4 r 6=i
m ns, s 6=i

m ns, and m 6=i
m ns

5 rn 6=i
m n

6 ns 6=i
m n

For each of the inequalities above but (3), we consider the corresponding attribute substi-

tution σ together with its inverse and exhibit two systems S1 and S2 such that S1 = S2σ

and S2 = S1σ
−1 together with two observers such that each Si passes one test but not

the other. For (3), we proceed as for the missing arrows for [/]o substitutions.

(1) Assume Γ = {(s, r, y), (s, rn, y)} and consider

S1 = Γ ` 〈〈s ∝ r.x〉〉z and S2 = Γ ` 〈〈s ∝ rn.x〉〉z
(note that S1 = S2[rn/r]

i and S2 = S1[r/rn]
i). After invoking s, S1 and S2 respectively

reduce to Γ ` 〈〈x | y〉〉z and Γ ` 〈〈x〉〉z | 〈〈y〉〉. Hence, only S1 passes the test Ey.z.X while

only S2 passes the test Ex.y.X.

The inequalities s 6=i
m rn and m 6=i

m rn follow by contradiction from r =i
m s =i

m m

(cf. (23) in Theorem 7.1) and r 6=i
m rn.

(2) Assume Γ = {(s, r, x), (s, n, x)} and consider

S1 = Γ ` 〈〈s ∝ r〉〉z and S2 = Γ ` 〈〈s ∝ n〉〉z
(note that S1 = S2[r/n]

i and S2 = S1[n/r]
i). After invoking s, S1 and S2 respectively

reduce Γ ` 〈〈x〉〉z and Γ ` z. Hence, only S1 passes the test Ex.z.X, while only S2

passes z.X.

The inequalities s 6=i
m n and m 6=i

m n follow by contradiction from r =i
m s =i

m m (cf.

(23) in Theorem 7.1) and r 6=i
m n.

(3) Assume Γ = {(s, rn, x), (s, ns, x)} and consider

S1 = Γ ` 〈〈s ∝ rn〉〉z and S2 = Γ ` 〈〈s ∝ ns〉〉z
(note that S2 = S1[ns/rn]

i). After invoking s, S1 and S2 respectively reduce to Γ ` 〈〈x〉〉
and Γ ` x. Hence, only S1 passes the test Ex.X.

(4) Assume Γ = {(s, r, y), (s, ns, y)} and consider

S1 = Γ ` 〈〈s ∝ r.x〉〉z and S2 = Γ ` 〈〈s ∝ ns.x〉〉z
(note that S1 = S2[r/ns]

i and S2 = S1[ns/r]
i). After invoking s, S1 and S2 respectively

reduce to Γ ` 〈〈x | y〉〉z and Γ ` 〈〈x〉〉z | y. Hence, only S1 passes the test Ey.z.X while

only S2 passes Ex.y.z.X.

The inequalities s 6=i
m ns and m 6=i

m ns follow by contradiction from r =i
m s =i

m m

(cf. (23) in Theorem 7.1) and r 6=i
m ns.

Attribute-based transactions in Service Oriented Computing 33

(5) Let Γ = {(s, rn, y), (s, n, y)} and consider

S1 = Γ ` 〈〈s ∝ rn〉〉z and S2 = Γ ` 〈〈s ∝ n〉〉z

(note that S1 = S2[rn/n]
i and S2 = S1[n/rn]

i). After invoking s, S1 and S2 respectively

reduce to Γ ` 〈〈y〉〉 and Γ ` z. Hence, only S1 passes the test y.X, while only S2 passes

z.X.

(6) Let Γ = {(s, ns, y), (s, n, y)} and consider

S1 = Γ ` 〈〈s ∝ ns〉〉z and S2 = Γ ` 〈〈s ∝ n〉〉z

(note that S1 = S2[ns/n]
i and S2 = S1[n/ns]

i). After invoking s, S1 and S2 respectively

reduce to Γ ` y and Γ ` z. Hence, only S1 passes the test y.X, while only S2 passes

z.X.

8. Conclusions

This paper proposes a semantics of dynamic reconfigurations of transactional scopes in

SOC, occurring when service invocations dynamically alter the configuration of transac-

tions possibly introducing new transactional scopes that have to run with the existing

ones.

Since both dynamic reconfiguration and LRT are key aspects in SOC, it is crucial to

provide a framework to analyse their inter-relationships and to understand and control

the mechanisms of failure. The need of a formal semantics for scope reconfiguration is

amplified when services support and rely on different kinds of transactional behaviour.

We present a formal model featuring mechanisms to determine and control the dynamic

reconfiguration of distributed transactions. Specifically, we embed a few primitives for

managing the dynamic reconfiguration of transactional scopes in ATc to generalise the

transactional mechanisms of EJB to SOC so to have consistent and predictable failure

propagation. We give a type system that guarantees absence of failures due to misuse of

transactional attributes.

Also, we define a testing framework to study reconfigurable SOC transactions in pres-

ence of failures. The proposed framework captures the interplay between the semantics

of processes and the dynamic reconfiguration of transactional scopes due to the run-time

invocation of new services. Our testing framework allows us to equip EJB-inspired trans-

actions with a suitable notion of may- and must-order and their induced equivalences.

The aim is to test the correctness of the system behaviour, including failure handling and

compensations. On this basis, we define notions of testing pre-orders for ATc systems

that show the equivalence of some transactional attributes under suitable conditions.

We show that it is possible to replace a transactional attribute with an equivalent one

without altering the observable behaviour of the system. Those relations yield a formal

framework for comparing transactional attributes. Remarkably, this allows one to specify

a larger set of transactional attributes for service invocations. Moreover, our framework

has also an impact on modelling aspects of distributed transactions (Bocchi et al., 2010).

L. Bocchi and E. Tuosto 34

8.1. Related work

The formal investigation of the mechanisms of failure propagation in service orchestration

and service-oriented business processes has been addressed by a number of authors.

Process Calculi and Transactions. Many existing approaches extend some process cal-

culi with primitives that allow a party to define transactional scopes, failure handlers,

and roll-back or compensation mechanisms. To the best of our knowledge, the formal

semantics for SOC transactions in reconfiguring scenarios has not been explicitly ad-

dressed; ATc is the first to focus on the interplay between dynamic reconfiguration and

failure propagation. Notably Web−π (Mazzara and Lanese, 2006; Laneve and Zavattaro,

2005) offers a general framework to dynamically relate transactional scopes; however

each specific reconfiguration pattern must be explicitly modelled and related to failure

propagation. For instance, the Web−π process (where we ignore time for simplicity)

〈|s(z, x).P ; z|〉x | !s(t, u).〈|R;u|〉t. (24)

encodes a pattern similar to an ATc transactional invocation with attribute r (we can

consider the two transactional scopes of (24) as a unique transactional scope since, as

illustrated below, the failure of one causes the failure of the other). The leftmost scope x

in (24) consists of (i) a main process that invokes service s with parameter z and behaves

like P , and (ii) a compensation process z. The rightmost process of (24) represents a

service provider that upon invocation creates a new instance of scope t with main process

R and compensation u. Upon synchronisation, the parameter t will be replaced by the

name of the newly created scope z. The failure of the transactional scope x (resp. z) is

triggered by the action x (resp. z). The failure handling of x and z are causally related

(since the compensation of x forces the failure z) although the triggering of the failure

propagation is not an atomic step as in ATc.

As in ATc, dynamic installation of compensations have been considered in (Guidi

et al., 2009) and (Vaz et al., 2008). Dynamic and static approaches have been compared

to failure recovery in (Lanese, 2010; Lanese et al., 2010). We point out that the primitives

for dynamic installation have been proved strictly more expressive than those for static

recovery (Lanese et al., 2010). A distinguishing feature of ATc with respect to the calculi

mentioned above is that dynamic installation is considered in dynamically reconfiguring

systems.

The notion of rollback in distributed communications has been studied in (de Vries

et al., 2010a) in the context of TransCCS, an extension of CCS with primitives for trans-

actional scope definition and error recovery; liveness and safety properties for TransCCS

have been studied in (de Vries et al., 2010b). Other approaches focus on the notion of

compensation. In (Bocchi et al., 2003), the πt−calculus, an extension of the asynchronous

π−calculus inspired by BizTalk, is introduced to model failure handling and compensa-

tion in orchestration processes. As πt−calculus, StAC (Butler and Ferreira, 2004) and

CJoin (Bruni et al., 2004) are process calculi modellig arbitrarily nested transactions;

they focus on the separation of process management with error/compensation. CJoin

allows to merge different transactional scopes but does not offer the flexibility of the

Attribute-based transactions in Service Oriented Computing 35

transactional attributes of ATc. Sagas (Bruni et al., 2005) and cCSP (Butler et al.,

2004) are workflow-based process algebras modelling the occurrence and propagation of

compensations in orchestrations with parallel branches.

Transactions and SLAs. The committed cc-pi (Buscemi and Melgratti, 2007) enriches

the transactional mechanisms of CJoin with primitives for SLA negotiation from cc-

pi (Buscemi and Montanari, 2007). Committed cc-pi models constraints on non-functional

requirements in a more general way with respect to ATc, for example involving more SLA

properties, e.g., price of the service, bandwidth. On the other hand, committed cc-pi does

not model transactional scope reconfiguration. ATc focuses on one specific SLA property

to investigate how it affects the observed behaviour of a system. Also, committed cc-pi

models constraint violation, e.g., the binding of two parties with incompatible constraints

causes a failure. For simplicity, ATc abstracts from discovery and matchmaking assuming

that binding happens only if the properties match and that the environment always offers

a suitable match.

8.2. Future Work

Some of the calculi mentioned above (e.g., πt−calculus and Sagas) feature a more refined

mechanism of commitment with respect to ATc. The mechanism of commit is used to

handle the activation of compensations in case of nested transactional scopes. For in-

stance, when the activity in the inner scope terminates without error, or ‘commits’, its

compensation is recorded in the outer scope; in ATc syntax:

〈〈P | 〈〈Q〉〉R2
〉〉
R1
→∗ 〈〈P | 〈〈Commit〉〉R2

〉〉
R1
→ 〈〈P 〉〉R1|R2

where Commit is the process that has terminated its activity without error. (Note that

the relation → is not the semantics of ATc and is used only for illustrative purposes.)

In this way, an error occurring in the outer scope would also trigger the compensations

R2 of the committed inner scope. In ATc the transactional scopes whose activities have

terminated without errors are erased. We illustrate how the example above is expressed

in ATc, using ∅ instead of Commit to underline the difference between the semantics of

ATc with the notion of commitment presented above. In ATc, the process would evolve

as follows:

〈〈P | 〈〈Q〉〉R2
〉〉
R1
→∗ 〈〈P | 〈〈∅〉〉R2

〉〉
R1
≡ 〈〈P 〉〉R1

by Definition 3.2

ATc models a simpler semantics for commitment that does not automatically include

the compensations of the terminated nested scopes in the compensation of the current

scope. Including such mechanisms in ATc, which explicitly models the mechanisms of

reconfiguration, would make the calculus (especially the type system) more complex. A

higher level notion of commitment which we refer to as ‘success’ is introduced in § 5 to

characterise, more generally, the correctness of the behaviour of an observed system even

in case of failure. We leave the investigation of an encoding of the mechanisms mentioned

above in ATc as a future work.

Another limitation of our approach is the lack of link mobility à la π-calculus; extending

L. Bocchi and E. Tuosto 36

ATc with name passing is left as future work. We argue that the type discipline proposed

here can be simply adapted to a name passing version of ATc. In fact, our type system is

orthogonal to the communication mechanisms. On the contrary, the testing framework

of ATc will be greatly affected by the introduction of name passing features. Allowing

attributes to be communicated is another possible interesting extension of ATc; also, a

primitive enabling a service s to make a parameterized invocation to a service s′ using

the same attribute supported by s (attributes are set when services are published in

containers).

An orthogonal topic is the modelling of protocols for deciding the outcome of dis-

tributed transactions. Some standards –like Business Transaction Protocol (BTP) (OA-

SIS, 2002) and Web Service Transaction (WS-Tx) (OASIS, 2009)– have been proposed for

LRTs. Such protocols involve a more general scenario than the classic atomic commit : the

global consensus is no longer necessary and is substituted by weaker constraints. In (Boc-

chi, 2004; Bocchi and Lucchi, 2006) BTP cohesion along with the properties ensured by

the “weakened” constraints have been studied via a formalisation in the asynchronous

π-calculus. The interested reader may also refer to (Dalal et al., 2003) for an overview

on the cohesion-base approach of BTP. The present paper provides a high level seman-

tics of failure propagation, compensation and transactional scope reconfiguration, while

abstracting from protocols necessary to implement them. Consider, for example, the pro-

cess 〈〈s ∝ r.P 〉〉Q invoking a service s whose body is x ||P ′.Q′. Since service s supports the

attribute r, its body is executed inside the same transactional scope (if any) of the caller,

according to Definition 3.6.

Γ ` 〈〈s ∝ r.P 〉〉Q ;∗ Γ ` 〈〈P | P ′〉〉Q|Q′

The scope on the right-hand side above includes compensations of different possibly cross-

domain and distributed processes. Noteworthy, the mechanisms that trigger Q and Q′

are not trivial and worth to be investigated. The higher level perspective we adopted has

the advantage of providing a concise but rigorous understanding of dynamic reconfigura-

tions of transactional scopes. We leave the investigation of the underneath coordination

protocols as a future work.

In § 7 we presented a number of properties holding for the may-equivalence. We con-

jecture that similar properties also hold for the must-equivalence. Noticeably, an environ-

ment affected by substitution allows more computations than the original one, since each

service can be instantiated either in its backward-compatible version or in its substituted

one. Whereas S vm Sσ follows from the fact that if there is a successful computation in

S then there is one in Sσ, proving the same property for vM would require a different

strategy with respect to the one adopted in § 7 (e.g., to check the substitution does not

add diverging computations).

The properties in Figure 2 ensure that successful computations are not “removed” by

attribute substitution. Namely, if S has a successful computation then also Sσ has a cor-

responding one. In fact, Sσ may introduce more possible computations, successful or not,

with respect to S. An interesting research direction is to investigate under which condi-

tions, that is under which substitutions σ, Sσ vm S holds. In other words, determine

for which attribute substitutions, Sσ does not have more successful computations than

Attribute-based transactions in Service Oriented Computing 37

S. We leave the investigation of safety as a future work. Here we just remark that such

investigation would require a new definition of how attribute substitutions are applied

to environments. In fact, the current definition of substitution adds extra behaviour to

environment since substituted systems correspond to the reuse of the available services

in new scenarios.

As an interesting future direction, we plan to revamp our theory to extend existing

semantic models of Java, for instance Featherweight Java (Igarashi et al., 1999).

Acknowledgements. We are grateful to Hernan Melgratti and Claudio Mezzina for

their valuable comments on the initial phases of this research. Also, we express our

gratitude to the anonymous reviewers for their suggestions and constructive criticisms

which enabled us to extend our results and significantly improve our paper.

References

Bocchi, L. (2004). Compositional nested long running transactions. In FASE, volume 2984 of

LNCS, pages 194–208. Springer.

Bocchi, L., Guanciale, R., Strollo, D., and Tuosto, E. (2010). Modelling transactional services

in dynamically reconfiguring systems. In Maglio, P., Weske, M., Yang, J., and Fantinato, M.,

editors, ICSOC 2010, volume 6470 of LNCS. Springer-Verlag.

Bocchi, L., Laneve, C., and Zavattaro, G. (2003). A calculus for long-running transactions. In

Najm, E., Nestmann, U., and Stevens, P., editors, FMOODS, volume 2884 of Lecture Notes

in Computer Science, pages 124–138. Springer.

Bocchi, L. and Lucchi, R. (2006). Atomic commit and negotiation in service oriented computing.

In COORDINATION, volume 4038 of LNCS, pages 16–27. Springer.

Bocchi, L. and Tuosto, E. (2010a). A Java inspired semantics for transactions in SOC. In

Wirsing, M., Hofmann, M., and Rauschmayer, A., editors, TGC 2010, volume 6084 of LNCS.

Springer-Verlag.

Bocchi, L. and Tuosto, E. (2010b). Testing attribute-based transactions in soc. In Hatcliff, J.

and Zucca, E., editors, FMOODS/FORTE, volume 6117 of LNCS. Springer-Verlag.

Bruni, R., Melgratti, H., and Montanari, U. (2004). Nested commits for mobile calculi: extending

Join. In Lévy, J.-J., Mayr, E., and Mitchell, J., editors, IFIP TCS 2004, pages 563–576.

Kluwer.

Bruni, R., Melgratti, H. C., and Montanari, U. (2005). Theoretical foundations for compensa-

tions in flow composition languages. In POPL, pages 209–220. ACM.

Buscemi, M. G. and Melgratti, H. C. (2007). Transactional service level agreement. In Barthe,

G. and Fournet, C., editors, TGC, volume 4912 of Lecture Notes in Computer Science, pages

124–139. Springer.

Buscemi, M. G. and Montanari, U. (2007). Cc-pi: A constraint-based language for specifying

service level agreements. In Nicola, R. D., editor, ESOP, volume 4421 of Lecture Notes in

Computer Science, pages 18–32. Springer.

Butler, M. and Ferreira, C. (2004). An operational semantics for StAC, a language for modelling

long-running business transactions. In De Nicola, R., Ferrari, G., and Meredith, G., editors,

Coordination 2004, volume 2949 of LNCS, pages 87–104. Springer-Verlag.

Butler, M. J., Hoare, C. A. R., and Ferreira, C. (2004). A trace semantics for long-running

L. Bocchi and E. Tuosto 38

transactions. In Abdallah, A. E., Jones, C. B., and Sanders, J. W., editors, 25 Years Com-

municating Sequential Processes, volume 3525 of Lecture Notes in Computer Science, pages

133–150. Springer.

Dalal, S., Temel, S., Little, M., Potts, M., and Webber, J. (2003). Coordinating business trans-

actions on the web. IEEE Internet Computing, 7(1):30–39.

De Nicola, R. and Hennessy, M. C. B. (1984). Testing equivalences for processes. Theoretical

Computer Science, 34(1–2):83–133.

de Vries, E., Koutavas, V., and Hennessy, M. (2010a). Communicating transactions - (extended

abstract). In Gastin, P. and Laroussinie, F., editors, CONCUR, volume 6269 of Lecture Notes

in Computer Science, pages 569–583. Springer.

de Vries, E., Koutavas, V., and Hennessy, M. (2010b). Liveness of communicating transactions

(extended abstract). In Proc. APLAS. to appear.

EJB (2009). Enterprise JavaBeans (EJB) technology. Sun Microsystems, http://java.sun.

com/products/ejb/.

Guidi, C., Lanese, I., Montesi, F., and Zavattaro, G. (2009). Dynamic error handling in service

oriented applications. Fundam. Inf., 95(1):73–102.

Igarashi, A., Pierce, B., and Wadler, P. (1999). Featherweight java - a minimal core calculus for

java and gj. In ACM Transactions on Programming Languages and Systems, pages 132–146.

Lanese, I. (2010). Static vs dynamic sagas. In Bliudze, S., Bruni, R., Grohmann, D., and Silva,

A., editors, Third Interaction and Concurrency Experience (ICE 2010), number 38 in EPTCS,

pages 51–65.

Lanese, I., Vaz, C., and Ferreira, C. (2010). On the expressive power of primitives for compen-

sation handling. In Gordon, A. D., editor, ESOP, volume 6012 of Lecture Notes in Computer

Science, pages 366–386. Springer.

Laneve, C. and Zavattaro, G. (2005). Foundations of web transactions. In FoSSaCS, volume

3441 of LNCS, pages 282–298. Springer.

Mazzara, M. and Lanese, I. (2006). Towards a unifying theory for web services composition. In

WS-FM, volume 4184 of LNCS, pages 257–272. Springer.

OASIS (2002). Business Transaction Protocol (BTP).

OASIS (2009). Web Services Transaction (WS-TX).

Panda, D., Rahman, R., and Lane, D. (2007). EJB 3 in action. Manning.

Vaz, C., Ferreira, C., and Ravara, A. (2008). Dynamic recovering of long running transactions.

In TGC, volume 5474 of LNCS, pages 201–215. Springer.

Attribute-based transactions in Service Oriented Computing 39

Appendix A. Proofs of Section 4

Propositions A.1 and A.2 below will be tacitly used in the proofs of the lemmas and

theorems.

Proposition A.1. The operator ⊕ is idempotent, associative and commutative.

Proof. Directly from the definitions.

Proposition A.2. Operators ↓1, ↓2, and ↓3 distribute over ⊕ and (t1 ⊕ t2) ↓1=
t1 ↓1 ∪t2 ↓1.

Proof. Directly from the definitions.

A.1. Proof of Lemma 4.1

The proof of Lemma 4.1 uses the following lemma which proves a similar property for

Flatten(t).

Lemma A.1. For any types t and t′, Flatten(t⊕ t′) = Flatten(t) ∪ Flatten(t′).

Proof. The proof is by induction on the structure of t⊕ t′.
In the base case t = ∅ (or t′ = ∅) thus t⊕ t′ = t′ by definition of ⊕. Hence

Flatten(t⊕ t′) = Flatten(t′)

On the other hand, since Flatten(t) = Flatten(∅) = ∅ thus

Flatten(t) ∪ Flatten(t′) = Flatten(t′)

The base case holds since Flatten(t⊕ t′) = Flatten(t)∪Flatten(t′) = Flatten(t′).

The symmetric case (t′ = ∅) is similar.

In the inductive case neither t = ∅ nor t′ = ∅. Let t = (I, tc, tu) and t′ = (I ′, t′c, t
′
u).

By definition of ⊕, t⊕ t′ = (I ∪ I ′, tc ⊕ t′c, tu ⊕ t′u). By definition of Flatten(),

Flatten(t⊕ t′) = I ∪ I ′ ∪ Flatten(tc ⊕ t′c) ∪ Flatten(tu ⊕ t′u)

= (I ∪ Flatten(tc) ∪ Flatten(tu)) ∪ (I ′ ∪ Flatten(t′c) ∪ Flatten(t′u))

= Flatten(t) ∪ Flatten(t′)

where the last equality holds by inductive hypothesis which guarantees that

Flatten(tc ⊕ t′c) = Flatten(tc) ∪ Flatten(t′c)

Flatten(tu ⊕ t′u) = Flatten(tu) ∪ Flatten(t′u)

Next we proof Lemma 4.1. For any types t and t′, t̂⊕ t′ = t̂ ∪ t̂′.

Proof. We consider two cases, depending on the structure of t⊕ t′.

L. Bocchi and E. Tuosto 40

If t = ∅ (or t′ = ∅) then t⊕ t′ = t′ by definition of ⊕. Hence

t̂⊕ t′ = t̂′

On the other hand, since t̂ = ∅̂ = ∅ thus

t̂ ∪ t̂′ = t̂′

This case holds since t̂⊕ t′ = t̂ ∪ t̂′ = t̂′. The symmetric case t′ = ∅ is similar.

If t 6= ∅ and t′ 6= ∅ , let t = (I, tc, tu) and t′ = (I ′, t′c, t
′
u). By definition of ⊕, t ⊕ t′ =

(I ∪ I ′, tc ⊕ t′c, tu ⊕ t′u). By definition of ,̂

t̂⊕ t′ = I ∪ I ′ ∪ Flatten(tc ⊕ t′c)

On the other hand,

t̂ = I ∪ Flatten(tc) and t̂′ = I ′ ∪ Flatten(t′c)

thus

t̂ ∪ t̂′ = I ∪ I ′ ∪ Flatten(tc) ∪ Flatten(t′c)

The thesis is a consequence of Lemma A.1 by which

Flatten(tc ⊕ t′c) = Flatten(tc) ∪ Flatten(t′c)

A.2. Proof of Proposition 4.2

For any context CJ◊ # 4K and π ||Q.P,R,R0 ∈ P, if CJ〈〈π ||Q.P 〉〉R #R0K . t then CJ〈〈P 〉〉R|Q #
R0K . t.

Proof. If CJ◊ # 4K is scope-avoiding, the proof is straightforward noticing that

P . tp Q . tq
(comp)

π ||Q.P . (tp ↓1, tp ↓2, tq ⊕ tp ↓3) R . tr
(scope)

〈〈π ||Q.P 〉〉R . ((tp ↓1 ∪tp ↓2 ↓1)[o 7→ i], tp ↓3 ⊕tp ↓2 ↓2 ⊕tp ↓2 ↓3 ⊕tq ⊕ tr,∅)

R . tr Q . tq
(par)

R | Q . tr ⊕ tq
(scope)

〈〈P 〉〉R|Q . ((tp ↓1 ∪tp ↓2 ↓1)[o 7→ i], tp ↓3 ⊕tp ↓2 ↓2 ⊕tp ↓2 ↓3 ⊕tq ⊕ tr,∅)

yields the proof in the base case CJ◊ # 4K = ◊.

If CJ◊ # 4K is scope-containing, the proof is straightforward by induction on the struc-

ture of CJ◊ # 4K noticing that, for the base case we have CJ◊ # 4K = 〈〈◊ | P1〉〉4|Q1

and:

P . tP R | Q . t3
(scope)

〈〈P 〉〉R|Q . t2 P1 . t1
(par)

〈〈P 〉〉R|Q | P1 . t2 ⊕ t1 Q1 | R0 . t0
(scope)

〈〈〈〈P 〉〉R|Q | P1〉〉
Q1|R0

. t′

Attribute-based transactions in Service Oriented Computing 41

and

P . tP Q . tQ
(comp)

π ||Q.P . t4 R . tR
(scope)

〈〈π ||Q.P 〉〉R . t′2 P1 . t1
(scope)

〈〈π ||Q.P 〉〉R | P1 . t′2 ⊕ t1 Q1 | R0 . t0
(scope)

〈〈〈〈π ||Q.P 〉〉R | P1〉〉Q1|R0
. t

therefore, proving that t′2 = t2 we have t = t′. For this, first notice that t3 = tQ ⊕ tR.

Also, by definition of (scope) and (icomp), we have

t2 = ((tP ↓1 ∪tP ↓2 ↓1)[o 7→ i], tP ↓3 ⊕tP ↓2 ↓2 ⊕tP ↓2 ↓3 ⊕t3,∅)

t4 = (tP ↓1, tP ↓2, tQ ⊕ tP ↓3)

which, again by definition of (scope), yields t′2 = t2.

The case CJ◊ # 4K = 〈〈CJ◊ # 4K〉〉Q1
easily follows by induction.

A.3. Proof of Theorem 4.2

Let the environment Γ and P ∈ P be well-typed. If Γ ` P ; Γ ` Q then Q is well-typed.

Proof. The proof is by case analysis on the reduction Γ ` P ; Γ ` Q (cf. Defini-

tion 3.6). Hereafter, we assume P . t and Q . t′.

(s1)The thesis follows directly from Theorem 4.1.

(s2)This case does not apply because otherwise (o, m) ∈ t̂ with Γ ` νx̃ AJs ∝ A.P K . t,

contrary to the well-typedness hypothesis.

(s3)Assume P = AJs ∝ A.P1K for a scope-avoiding context AJ◊K andR ∈ Γ(s, {s, n, ns}∩
A) such that Γ ` νx̃ AJs ∝ A.P1K ; Γ ` νx̃ (AJP1K) | R. Let AJP1K . t1 and R . t2,

then (o, m) 6∈ t̂1 (by well-typedness of P and Definition 4.4) and (o, m) 6∈ t̂2 (by well-

typedness of Γ and Definition 4.5); therefore (o, m) 6∈ t̂1 ⊕ t2 (which gives the thesis

by Lemma 4.1).

(s4)This case is similar to the previous one.

(s5)Let P be of the form CJs ∝ A.P1 # P2K and R ∈ Γ(s, {m, s, r} ∩ A) such that Γ `
νx̃ P ; Γ ` νx̃ CJP1 | R # P2K. If R . tR, then t′ = t′′ ⊕ tR for a type t̂′′ ⊆ t̂ (i.e.,

t̂′′ may not include (i, a) for some a ∈ A). If (o, m) ∈ t̂′ then it must be (o, m) ∈ t̂R
(otherwise it would be (o, m) ∈ t̂′′ therefore (o, m) ∈ t̂ since t̂′′ ⊆ t̂). This would yield

a contradiction by the hypothesis that Γ is well-typed.

(s6)If P = CJCJs ∝ A.P1 # P2K # P3K with n ∈ A then the thesis follows by observing

that the type of CJP2 # P3K . tQ with t̂Q ⊆ t̂.
(s7), (s8)This cases are similar to the case for (s5).

L. Bocchi and E. Tuosto 42

Appendix B. Proofs of Section 6

The results proved below can be generalised to take into account name restriction. This

would just make the proofs more complex without bringing any advantage.

B.1. Proof of Proposition 6.1

Given an observed system Γ ` 〈〈P 〉〉Q | R ‖ O, if

Γ ` 〈〈P 〉〉Q | R ‖ O S ‖ O′ (25)

with S ‖ O′ non-diverging, then S = Γ ` 〈〈P ′〉〉Q | R′ or S = Γ ` Q | R.

Proof. The proof is by induction on the derivation of (25) considering that axiom

(os3) cannot be applied otherwise S ‖ O′ would be diverging.

To apply (os1), O must either synchronise with P or with R. If O synchronises with

R the thesis follows trivially; in the other case P has the form CJπ ||Q′.P ′ # R0K hence

S = Γ ` 〈〈CJP ′ # R0 | Q′K〉〉Q | R.

If (25) is an instance of (os2) then O = Eπ.O′ and it can let fail either an action of

P or one of R. In the latter case the thesis follows trivially, while in the former case we

have P = CJ〈〈π ||Q′ | P ′1〉〉Q.P1 # P2K, hence S = Γ ` Q | R if CJ◊ # 4K is scope-avoiding,

otherwise S = Γ ` 〈〈P2〉〉Q | R.

If (25) is obtained by (os4) then Γ ` 〈〈P 〉〉Q | R ‖ O progresses either (i) because P

and R communicate with each other or (ii) because one of them invokes a service in Γ.

Observing that rule (s2) (cf. Definition 3.6) cannot be used to derive (25) because, by

hypothesis, S ‖ O is non-diverging, we conclude that in both cases (i) and (ii) that S

has the form Γ ` 〈〈P ′〉〉Q | R′ for suitable P ′ and R′.

If (25) is obtained by applying rules (os5) or (os6) then the thesis follows from the

inductive hypothesis.

B.2. Proof of Lemma 6.1

Let Γ ` P be a prudent system. For any observer O and any R ∈ P

Γ ` P | R ‖ O Γ ` P ′ | R′ ‖ O′ =⇒ Γ ` 〈〈P 〉〉Q | R ‖ O S ‖ O′ (26)

where S = Γ ` 〈〈P ′〉〉Q | R′′ for some R′′ ∈ P or S = Γ ` Q | R′.

Proof. Call t the transition of the hypothesis of the implication (26). The proof is by

induction on the derivation of t.

The axioms in Definition 5.2 can be applied to let O interact with either P or R. In

the latter case it is easy to verify that Γ ` 〈〈P 〉〉Q | R ‖ O Γ ` 〈〈P 〉〉Q | R′ ‖ O′,
hence we focus on the former case. First consider that t is derived from the axioms in

Definition 5.2.

— If t is an instance of (os1), O = π.O′ for an observer O′ and P = CJπ ||Q′.P1 #R0K for a

context CJ◊ # 4K and P1, Q
′ ∈ P; hence Γ ` 〈〈P 〉〉Q | R ‖ O Γ ` 〈〈CJP1 # R0 | Q′K〉〉Q |

R ‖ O′, by (os1).

Attribute-based transactions in Service Oriented Computing 43

— If t is an instance of (os2) then O = Eπ.O′ for an observer O′ and

– either P = AJπ.P1K for a scope-avoiding context AJ◊K and P1 ∈ P; then, by

(os2), Γ ` 〈〈P 〉〉Q | R Γ ` Q | R ‖ O′;
– or P = CJ〈〈π ||Q′.P1 | R′〉〉P ′

1
P2K for a context CJ◊ # 4K and P1, P

′
1, R

′, Q′, P2 ∈ P;

then

Γ ` 〈〈CJ〈〈π ||Q′.P1 | R′〉〉P ′
1

P2K〉〉
Q
| R ‖ O Γ ` 〈〈CJP ′1 # P2K〉〉Q | R ‖ O

′

by (os2).

— If t is an instance of (os3) then O = Eπ.O′ for an observer O′ and P = AJπ ||Q′.P1K
for a scope-avoiding context AJ◊K and P1, Q

′ ∈ P; hence, 〈〈P 〉〉Q ≡ CJπ ||Q′.P1 # QK
for a scope-containing CJ◊ # 4K; hence, by (os2) and (os6), Γ ` 〈〈P 〉〉Q | R ; Γ `
Q | R ‖ O′.

If t is obtained with a derivation whose last rule is (os4), the thesis follows by inspection

of the rules for system reduction in Definition 3.6 noticing that rules (s3) and (s4)

cannot be used to derive t as Γ ` P is prudent. (Note that (s2) cannot be used as P is

prudent, hence well-typed.)

If the last step in the derivation of t is an application of (os5) or (os6), the thesis

follows from the inductive hypothesis.

Appendix C. Proofs of Section 7

It is convenient to generalise attribute substitutions to contexts. Given an attribute

substitution σ, we call ◊σ and 4σ generalised holes. A generalised context is a context

(as defined in Definition 3.3 on page 8) with generalised holes.

Remark C.1. Notice that contexts as in Definition 3.3 are generalised contexts where

all substitutions are identities (i.e., [a/a] for an a ∈ A).

When applying substitutions to contexts we obtain generalised contexts according to

the following definition.

Definition C.1 (Attribute substitution on contexts). Let σ be an attribute sub-

stitution. Define, for any scope-avoiding context AJ◊K

AJ◊Kσ def
=


◊σ, if AJ◊K = ◊

Pσ | ◊σ, if AJ◊K = P | ◊
◊σ | Pσ, if AJ◊K = ◊ | P

and for any scope-containing context CJ◊ # 4K

CJ◊ # 4Kσ def
=


〈〈CJ◊ # 4K〉〉Qσ, if CJ◊ # 4K = 〈〈CJ◊ # 4K〉〉Q ∧ σ = [b/a]o

〈〈◊ | P 〉〉Qσ|4σ, if CJ◊ # 4K = 〈〈◊ | P 〉〉Q|4 ∧ σ = [b/a]o

〈〈CJ◊ # 4K[b/a]〉〉Qσ, if CJ◊ # 4K = 〈〈CJ◊ # 4K〉〉Q ∧ (σ = [b/a]i ∨ σ = [b/a])

〈〈◊[b/a] | P [b/a]〉〉Qσ|4σ, if CJ◊ # 4K = 〈〈◊ | P 〉〉Q|4 ∧ (σ = [b/a]i ∨ σ = [b/a])

L. Bocchi and E. Tuosto 44

Finally, define CJ◊ # 4Kσ as AJ◊Kσ if CJ◊ # 4K = AJ◊K or as CJ◊ # 4Kσ if CJ◊ # 4K =

CJ◊ # 4K.

Remark C.2. The substitution action on contexts does not affect their structure as,

by Definition C.1, in CJ◊ # 4Kσ the substitution σ perculates parallel composition and

scopes.

C.1. Proof of Proposition 7.3

Let S be a prudent system such that S ; S′ for a system S′. If σ ∈ {[rn/ns]o}∪{[b/a]o
∣∣ a ∈

{m, n, r} ∧ b ∈ A} ∪ {[b/a]o
∣∣ a, b ∈ {n, s, ns}} then there is S′′ such that

Sσ ; S′′ and S′σ vm S′′ (27)

Proof. In the proof it is convenient to denote CJ◊ # 4Kσ as CσJ◊ # 4K.
We proceed by case analysis on the derivation of S ; S′ as per Definition 3.6 (page 11).

Below, for the cases [b/a]o with a = b ∈ {n, s, ns}, we tacitly use Lemma 7.1 which

trivially implies the thesis. For the cases [b/a]o with a ∈ {m, n, r} and b ∈ A the thesis

follows from the fact that, since S is prudent then S = Sσ for these substitutions.

Case (s1) In this case S = Γ ` P for a process P and P → P ′. By Proposition 7.2,

Pσ → P ′σ which gives the thesis (since S′′ = S′σ).

Case (s2) This case does not apply since S is prudent (hence well-typed).

Case (s3) As in the previous case, S = Γ ` νx̃ AJs ∝ A.P K and there is R ∈
Γ(s, {s, n, ns} ∩A) so that S ; S′ = Γ ` νx̃ AJP K | R by (s3).

If σ = [rn/ns]
o then Sσ = Γσ ` νx̃ AσJs ∝ σA.PσK. Assume first {s, n} ∩ A 6= ∅ and

R ∈ Γ(s, {s, n}), then also {s, n} ∩ σA 6= ∅ and Rσ ∈ Γσ(s, {s, n}), hence Sσ ; Γσ `
νx̃ AσJPσK | Rσ = S′σ by (s3).

Otherwise, by definition Rσ ∈ Γσ(s, σ(ns)) with σ(ns) = rn and Sσ ; Γσ `
νx̃ AσJPσK | 〈〈Rσ〉〉 = S′′ by (s4), hence S′σ vm S′′ by Theorem 6.1.

The cases in which r or m is the attribute to be substituted cannot occur since S is

prudent. If [b/a]
o with a 6= b ∈ {n, s, ns}, Rσ ∈ Γσ(s, {σ(n), σ(s), σ(ns)} ∩ σA) holds

by construction, therefore Sσ ; S′σ = νx̃ AσJPσK | Rσ by (s3).

Case (s4) In this case S = Γ ` νx̃ AJs ∝ A.P K and there is R ∈ Γ(s, {r, rn} ∩ A) so

that S ; S′ = Γ ` νx̃ AJP K | 〈〈R〉〉 by (s4). Note that r 6∈ A (since S is prudent),

that rn ∈ σA, and that Sσ = Γσ ` νx̃ AσJs ∝ σA.PσK by definition. Therefore

Sσ ; Γσ ` νx̃ AσJPσK | 〈〈R〉〉 = S′σ

is obtained by (s4) since R ∈ Γσ(s, {rn} ∩ σA) by construction.

Case (s5) In this case S = Γ ` νx̃ CJCJs ∝ A.P # QK #Q′K and there isR ∈ Γ(s, {m, s, r}∩
A) such that fc(R)∩ x̃ = ∅ and S ; S′ = Γ ` νx̃ CJCJP | R # QK # Q′K. By definition

Sσ = Γσ ` νx̃ CσJCJs ∝ A.P # QK # Q′K. Hence, by (s5)

Sσ ; Γσ ` νx̃ CσJCJP | R # QK # Q′K = S′σ

since R ∈ Γσ(s, {m, s, r} ∩A) by construction.

Case (s6) Given S = Γ ` νx̃ CJ〈〈s ∝ A.P | P ′〉〉Q # Q′K with n ∈ A, we have S ; S′ =

Attribute-based transactions in Service Oriented Computing 45

Γ ` νx̃ CJQ # Q′K. Also, S′σ = Γσ ` νx̃ CσJQ # Q′K. Then

Sσ = Γσ ` νx̃ CσJ〈〈s ∝ A.P | P ′〉〉Q # Q′K ; Γσ ` νx̃ CσJQ # Q′K = S′σ

by rule (s6) since n ∈ A.

Case (s7) In this case S = Γ ` νx̃ CJCJs ∝ A.P # QK # Q′K and there is R ∈ Γ(s, {ns}∩
A) such that S ; S′ = Γ ` νx̃ CJCJP # QK # Q′K | R. Similarly to the previous case,

S′σ = Γσ ` νx̃ CσJCJP # QK # Q′K | Rσ. By (s7),

Sσ = Γσ ` νx̃ CσJCJs ∝ A.P # QK # Q′K ; Γσ ` νx̃ CσJCJP # QK # Q′K | Rσ = S′σ

since Rσ ∈ Γσ(s, {ns} ∩A) by construction.

Case (s8) In this case S = Γ ` νx̃ CJCJs ∝ A.P # QK #Q′K ; S′ = Γ ` νx̃ CJCJP # QK #
Q′K | 〈〈R〉〉 for an R ∈ Γ(s, {rn} ∩ A). Therefore, S′σ = Γσ ` νx̃ CσJCJP # QK # Q′K |
〈〈R〉〉. Since by definition R ∈ Γσ(s, {rn} ∩A), by (s8)

Sσ = Γσ ` νx̃ CσJCJs ∝ A.P # QK # Q′K ; Γσ ` νx̃ CσJCJP # QK # Q′K | 〈〈R〉〉

which yields the thesis.

C.2. Proof of Proposition 7.4

Let σ be either of the substitutions [rn/ns]
i or [b/a]i with a, b ∈ {r, s, m}, then

S ; S′ =⇒ Sσ ; S′′ with S′σ vm S′′

for any system S.

Proof. The proof proceeds by case analysis on the derivation of S ; S′ as per Defini-

tion 3.6 (page 11).

Case (s1) Similarly to the case (s1) in the proof of Proposition 7.3.

Case (s2) In this case S = Γ ` νx̃ AJs ∝ A.P K ; S′ = AJerrK with m ∈ A; hence,

Sσ = Γσ ` νx̃ AσJs ∝ A.P K, therefore Sσ ; Γσ ` νx̃ AσJerrK = S′σ by (s2).

Case (s3) As in the previous case, S = Γ ` νx̃ AJs ∝ A.P K ; Γ ` νx̃ AJP K | R = S′

for an R ∈ Γ(s, {s, n, ns} ∩ A); hence Sσ = Γσ ` νx̃ AσJs ∝ A.P K and Rσ ∈
Γσ(s, {s, n, ns} ∩A). Therefore, Sσ ; Γσ ` νx̃ AσJP K | Rσ = S′σ by (s3).

Case (s4) We have S = Γ ` νx̃ AJs ∝ A.P K ; S′ = Γ ` νx̃ AJP K | 〈〈R〉〉 where

R ∈ Γ(s, {r, rn} ∩A). By (s4)

Sσ = Γσ ` νx̃ AσJs ∝ A.P K ; Γσ ` νx̃ AσJP K | 〈〈Rσ〉〉 = S′σ

since Rσ ∈ Γσ(s, {r, rn} ∩A) by construction.

Case (s5) In this case S = Γ ` νx̃ CJCJs ∝ A.P # QK #Q′K and for anR ∈ Γ(s, {m, s, r}∩
A) such that fc(R) ∩ x̃ = ∅, S ; S′ = Γ ` νx̃ CJCJP | R # QK # Q′K. Notice that

S′σ = νx̃ CσJCJPσ | Rσ # QK # Q′K. Since {m, s, r} ∩ σA 6= ∅, by (s5) and Defini-

tion 7.1, we have

Sσ = Γσ ` νx̃ CσJCJs ∝ σA.Pσ # QK #Q′K ; Γσ ` νx̃ CσJCJPσ | Rσ # QK #Q′K

since Rσ ∈ Γσ(s, {m, s, r} ∩ σA); hence Γσ ` νx̃ CσJCJPσ | Rσ # QK # Q′K = S′σ.

L. Bocchi and E. Tuosto 46

Case (s6) Assume S = Γ ` νx̃ CJ〈〈s ∝ A.P | P ′〉〉Q # Q′K with n ∈ A. We have S ; S′ =

Γ ` CJQ # Q′K. Then S′σ = Γσ ` νx̃ CσJQ # Q′K. By (s6) and the Definition 7.1,

Sσ = Γσ ` νx̃ CσJ〈〈s ∝ A.P | P ′〉〉Q # Q′K ; Γσ ` νx̃ CσJQ # Q′K

since n ∈ σA, therefore Γσ ` νx̃ CJQ # Q′K = S′σ.

Case (s7) We have S = Γ ` νx̃ CJCJs ∝ A.P # QK # Q′K ; S′ = Γ ` νx̃ CJCJP # QK #
Q′K | R by (s7) for an R ∈ Γ(s, {ns}∩A). Then S′σ = Γσ ` νx̃ CσJCJP # QK # Q′K |
Rσ.

If σ = [rn/ns]
i then σA = A \ {ns} ∪ {rn} and, by definition, Rσ ∈ Γσ(s, {rn} ∩ σA),

therefore, by (s8)

Sσ = Γσ ` νx̃ CσJCJs ∝ A.P # QK # Q′K ; Γσ ` νx̃ CσJCJP # QK # Q′K | 〈〈Rσ〉〉

Hence S′σ vm Γσ ` νx̃ CσJCJP # QK # Q′K | 〈〈Rσ〉〉 by Theorem 6.1.

For any σ such that ns is not in the domain of σ, ns ∈ σA and Rσ ∈ Γσ(s, ns) by

construction; hence Sσ ; Γσ ` νx̃ CσJCJP # QK # Q′K | Rσ by (s7).

Case (s8) We have S = Γ ` νx̃ CJCJs ∝ A.P # QK # Q′K ; S′ = Γ ` νx̃ CJCJP # QK #
Q′K | 〈〈R〉〉 for an R ∈ Γ(s, {rn}∩A). By definition, S′σ = Γσ ` νx̃ CσJCJP # QK #Q′K |
〈〈Rσ〉〉. Since Rσ ∈ Γσ(s, {rn} ∩ σA) by construction,

Sσ = Γσ ` νx̃ CσJCJs ∝ A.P # QK # Q′K ; Γσ ` νx̃ CσJCJP # QK # Q′K | 〈〈Rσ〉〉

by (s8); hence Γσ ` νx̃ CσJCJP # QK # Q′K | 〈〈Rσ〉〉 = S′σ.

C.3. Proof of Lemma 7.2

Let t be a transition S ‖ O S′ ‖ O′ of an observed system S ‖ O. Then

(S ‖ O)[b/a]o (S′ ‖ O′)[b/a]o if a, b ∈ {n, ns, s} (28)

(S ‖ O)[b/a]i (S′ ‖ O′)[b/a]i if a, b ∈ {r, s, m} (29)

Namely, t is preserved by the substitutions specified in (28) and (29).

Proof. The proof is by induction on the derivation of t according to Definition 5.2 (on

page 21). Hereafter, σ ∈ {[b/a]o, [b/a]i} (recall that (S ‖ O)σ = Sσ ‖ O by Definition 7.2).

If t is an instance of (os1) then S ‖ O is of the form Γ ` νx̃ CJπ.P # RK ‖ π.O (with

π, π ∩ x̃ = ∅) and S′ ‖ O′ of the form Γ ` νx̃ CJP # R | QK ‖ O′. Then Sσ = Γσ `
νx̃ CσJπ.P̂ # RK. Therefore

Sσ ‖ O Γσ ` νx̃ CσJP # QK ‖ O′

Hence, Γσ ` νx̃ C′JP # QK ‖ O′ = S′σ ‖ O′.
If t is an instance of (os2) or (os3) the proof is similar to the previous case.

If t is an instance of (os4) then, by Corollaries 7.1 and 7.3, Sσ ; S′σ, therefore

Sσ ‖ O S′σ ‖ O by (os4).

If t is obtained with a proof ending with an application of (os5) or (os6) the thesis

trivially follows by induction.

Attribute-based transactions in Service Oriented Computing 47

C.4. Proof of Theorem 7.2

Consider the order relations

(a) ns ≤o
m rn (b) m ≤o

m a, a ∈ A
(c) a ≤o

m b, a ∈ {n, r}, b ∈ A (d) ns ≤i
m rn

We have that (a), (c), and (d) hold for prudent systems, while (b) holds for any system.

Proof. Let S be a prudent system and σ one of the substitutions in (a), (c), or (d), or

let S be a (prudent or non-prudent) system and σ one of the substitutions in (b). Call t

the transition S ‖ O S′ ‖ O′ (cf. Definition 5.2, page 21); the proof is by induction on

the derivation t. We prove that, for a system S′′

(S ‖ O)σ S′′ ‖ O′ ∧ S′σ vm S′′ (30)

Notice that by (30), if there is a successful computation from S ‖ O, then there is one

for (S ‖ O)σ which proves the thesis.

Assume that t is an instance of axiom (os1), then (cf. Remark C.2) t has the form

Γ ` νx̃ CJπ ||Q.P # RK ‖ π.O′ Γ ` νx̃ CJP # R | QK ‖ O′ therefore (S ‖ O)σ = Γσ `
νx̃ CσJπ ||Q.P # RK ‖ π.O′, by definition. Hence,

(S ‖ O)σ Γσ ` νx̃ CσJP # RK ‖ O′

If t is an instance of (os2) or (os3), an argument similar to the previous one applies.

If t is obtained with a derivation ending with an application of rule (os4), the thesis

follows by Proposition 7.3 or Corollary 7.2 – the former for cases (a), (c), and (d), and

the latter for case (b) – if σ 6= [rn/ns]
i otherwise it follows by Proposition 7.4.

If t is obtained with a derivation ending with an application of rule (os5), then O =

O1 + O2 and S ‖ O1 S′ ‖ O′1. By inductive hypothesis systems, there is a system S′′

such that Sσ ‖ O1 S′′ ‖ O′1 and S′σ vm S′′. By (os5), Sσ ‖ O1 + O2 S′′ ‖ O′1
which yields the thesis.

Finally, the thesis trivially follows by the inductive hypothesis when t is obtained with

a derivation ending with an application of rule (os6).

