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TRACE SPACES OF DIRECTED TORI WITH RECTANGULAR
HOLES.

LISBETH FAJSTRUP

Abstract. In [4] the trace space of parallel non-looped, non-branching pro-
cesses is given as a prod-simplicial complex derived from an index category.
For looped processes, the state space is a torus and the trace space is a disjoint
union of tracespaces of deloopings. The index category for the trace space of
the deloopings is developed from the once delooped case. When just one pro-
cess is looped, the index category is generated as words in a regular language.
The automaton is constructed.

1. Introduction

A simple model of concurrency is provided by Dijkstra [1]. A set of processes
interact via shared objects. These objects are guarded by semaphores allowing
only a certain number of processes access at the same time. The geometric model
is a product of directed graphs with ”holes” corresponding to the restrictions on
the shared objects.
An execution is a directed path, non-decreasing in each coordinate, from an initial
point to a final point.
In [4], the special case of non-looped, non-branching processes is studied. There
is an algorithm for calculating the space of directed traces from an initial point
to a final point. The result is a prod-simplicial complex, which is generated from
an index category.
For processes with loops, the directed traces from the initial to the final point
may be considered as traces in deloopings, i.e., in non-looped space. The total
trace space is a disjoint union of the trace spaces of the deloopings, 2.9. And
the algorithm from [4] applies to each delooping. However, there is an obvious
periodicity arising from the loops, and it is this periodicity, which is made clear
here.

We restrict to the case of n processes, Pj j ∈ [1 : n], where each Pj = T ∗
j

is a loop. The general case will be developed along the same lines in another
paper. Thm. 4.15 gives the index category of a delooping Tm1

1 |Tm2
2 . . . |Tmn

n in
terms of objects in the index category of T1|T2 . . . |Tn, the one time delooping of
each process. And a deadlock check in the corresponding space, a cube minus
hyperrectangles. In particular, when mr = m and mi = 1 for i 6= r, the index
category is words in a language. We give an alphabet consisting of allowed
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2 LISBETH FAJSTRUP

schedule restrictions, objects in the index category for T1|T2 . . . |Tn. Words are
concatenations, corresponding to further delooping of Tr with the concatenated
schedule. Not all words are allowed, i.e., they may not support any executions.
The allowed words form a regular language.

By Th. 5.6, the language is recognized by an automaton with at most (2n −
1)l + 1 states, where l is the number of shared objects.

2. Processes with loops

The geometric model for n looped processes in parallel is a torus with rectan-
gular holes.

Definition 2.1. Notation

• For integers l ≤ m, [l : m] = {n ∈ Z|l ≤ n ≤ m}.
• For integer vectors V = (v1, . . . , vn) and W = (w1, . . . , wn), let [V : W ] =
{K = (k1, . . . , kn)|ki ∈ [vi : wi]}.

• ej is the j’th unit vector.
• For points a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Rn, define the closed n-
interval [a, b] = {x ∈ Rn|(ai ≤ xi ≤ bi}, and similarly ]a, b[, [a, b[ and
]a, b].

Definition 2.2. A d-space is a topological space Y and a subset, the dipaths,
~P ⊂ Y I s.t

• All constant paths are in ~P
• If µ, ν ∈ ~P , ν(1) = µ(0), then the concatenation µ ⋆ ν ∈ ~P

• For α : I → I non-decreasing and µ ∈ ~P , µ ◦ α ∈ ~P

~I is the d-space I with ~P the non-decrasing maps.
~In is the n-cube with coordinate wise non-decreasing dipaths.
For a vector M = (m1, . . . , mn), let ~IM = ×n

i=1[0, mi] with coordinate wise
ordering.

Definition 2.3. For p, q ∈ Y and Y a d-space, the space of dipaths ~P (Y, p, q) is
the set of dipaths initiating in p and ending in q. The topology is the compact
open topology. The trace space ~T (Y, p, q) is the quotient of the path space under
reparametrization, see [5].

Remark 2.4. In the following, d-spaces are state spaces and dipaths are (partial)
execution paths.

Definition 2.5. The geometric model of n non-looped processes, Tj, j ∈ [1 : n]

in parallel with conflicts at l shared objects: The state space is X = ~In\F , where
F = ∪l

i=1R
i, Ri =]ai, bi[ and aij, b

i
j ∈]0, 1[ for all i ∈ [1 : l] and all j ∈ [1 : n].

We keep the setup, except each process Tj is now a loop:
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Definition 2.6. Let X = ~In\F , where F = ∪l
i=1R

i as above. Consider n parallel
processes T ∗

j , i.e., each of them a loop, conflicts as above. The state space is the
torus X/∼. Here (x1, . . . , xi−1, 0, xi+1 . . . , xn) ∼ (x1, . . . , xi−1, 1, xi+1 . . . , xn), and
X/∼ has the quotient topology.
A d-path is a continuous path γ : I → X/∼ s.t. γ is locally non-dencreasing in
the following sense:
For each coordinate γi : I → ~I/(0 ∼ 1), let γ−1

i (0) = ∪mi
j=0[t

i
j , s

i
j], where ti0 = 0

and simi
= 1. Then γ is locally non-decreasing, if for all i, k the restriction

γi :]sik, t
i
k+1[→ ~I is order preserving. A d-path is an execution if γ(0) = 0,

γ(1) = 1.

Definition 2.7. With notation from above, for a vector M = (m1, . . . , mn) ∈ INn

the state space of the M delooping XM of X/∼ is the cube ~IM \ FM where
FM = ∪{Ri,K |i ∈ [1 : l], K ∈ [0 : M − 1]}, where (M − 1)i = mi − 1 and
Ri,K =]ai +K, bi +K[ .

Executions are order preserving paths γ : ~I → XM with γ(0) = 0, γ(1) = 1
. The projection ΠM : XM → X/∼ is ΠM(y1, . . . , yn) = (ȳ1, . . . , ȳn), where ȳ is
the fractional part of y.

Lemma 2.8. The projection ΠM : XM → X/∼ is continuous and maps execution
paths to execution paths.

Proof. For each coordinate, this is the covering map t → ei2πt from R to S1,
so ΠM is a restriction of the covering map from Rn to the torus. Hence, it
is continuous. A directed path γ : ~I → XM is increasing in each coordinate.
(ΠM ◦ γ)−1

j (1) = γ−1
j (IN). On a connected component C of ~I \ γ−1

j (IN), the
integer component of γj(t) is constant. Hence, for t1, t2 ∈ C γj(t1) ≤ γj(t2) if and
only if this holds for the fractional part. �

Proposition 2.9. The trace space ~T (X/∼)(0, 1) is a disjoint union of trace

spaces of the deloopings
⊔

M∈INn ΠM(~T (XM)(0,M)).

Proof. Let γ : ~I → X/∼, γ(0) = 0 = γ(1).
Let i : X/∼→ In/∼ be the inclusion. i◦γ represents a class [γ] ∈ π1(I

n/∼) Let the
directed loops µr(t) = ter be generators of π1(I

n/∼) and let M = (m1, . . . , mn) ∈
⊕n

r=1Z be the homotopy class represented by γ. Since γ is directed, all mi are

positive and there is a dipath γ̄ : ~I → XM , s.t., π ◦ γ̄ = γ. I.e., M is the index of
the corresponding delooping.

If µ : ~I → X/∼ is dihomotopic to γ, then i ◦ µ is homotopic to i ◦ γ, and
the delooping corresponding to µ is XM . Hence, trace spaces corresponding to
different deloopings are disconnected.

�
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3. Traces and delooping

In [4], trace spaces in the non-looped case are given as the geometric realization

of a prod-simplicial complex. This provides a description of ~T (XM , 0,M), and
there is an algorithm for determining this prodsimplicial complex and calculate
topological invariants of the trace space. However, in the case of a delooping,
there is an obvious periodicity. This may be exploited to simplify the algorithm
in this case. The reader is referred to [4] for a full definition of the prod-simplicial
complex. Here, we focus on the index category and periodicity.

Definition 3.1. A schedule restriction or schedule for X = In \ F , F = ∪l
i=1R

i

is a (set of) vectors J = (j1 . . . , jl), ji ∈ [1 : n]. The restricted space XJ is X \
FJ , where FJ = ∪l

i=1R
i
ji
and Ri

ji
= [0, bi1[× . . . [0, biji−1[×]aiji , b

i
ji
[×[0, biji+1[× . . .×

[0, bin[, the rectangle Ri extended to the lower boundary along all coordinates
except the j′ith.
For a set of vectors J = {J1, . . . Jr}, the restricted space is XJ = XJ1 ∩ XJ2 ∩
· · · ∩XJr This is defined similarly for deloopings XM = ~IM \ FM .

Remark 3.2. As in [4], observe that XJ = X \ FJ where FJ = ∪r
i=1FJi and

∪r
i=1FJi = ∪l

i=1 ∪r
k=1 R

k
(Ji)k

Hence, the l-tuple of sets, (J1, . . . , Jl) Jk = {(Ji)k|i = 1, ·, r]} defines XJ . Since
such an l-tuple represents several J , the l-tuples of sets give a smaller indexing
category. In the following a schedule restriction is such an l-tuple (J1, . . . , Jl),
where Ji ⊂ [1 : n] and Ji 6= ∅. i.e., all rectangles are extended.

Proposition 3.3. ~T (XJ)(0, 1) is either empty or contractible.

Proof. This is [4] Prop 2.8 (2) �
The index category defining the prod-simplicial set is

Definition 3.4. Let C(XM) be the poset category with objects all non-empty
~T (XM

J )(0,M) for J = {Ji,K |i ∈ [1 : l], K ∈ [0,M − 1]}, a non-empty subset
Ji,K ⊂ [1 : n] for each of the l|M | forbidden cubes. The partial order, the
morphisms in the poset category, J ≤ J ′ if Ji,K ⊂ J ′

i,K for all i, K. Hence,

J ≤ J ′, if XM
J ⊇ XM

J ′

In [4], a pasting scheme is given to build the trace space ~T (XM)(0,M) as a
prod-simplicial complex from this poset category. An element J is represented
very efficiently as an l|M |×n binary matrix BJ , where Bst = 1 if t ∈ Jf(s), where
f : [1 : l|M |] → {(i, K)i ∈ [1 : l], K ∈ [0,M − 1]} is a fixed bijection. Moreover,

by [4], section 4, ~T (XM
J )(0,M) is empty if and only if the extended rectangles

intersect to give a deadlock. p ∈ XM
J is a deadlock if all dipaths initiating in p

are empty. Hence, p is the infimum of the intersection of n extended rectangles.
Since rectangles producing the deadlock are extended to 0 in all directions except
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one, all points in the hyperrectangle [0, p] are unsafe in the sense that no dipath
initiating there will leave the hyperrectangle and in particular, they will not reach
1. The hyperrectangle [0, p] is the unsafe region associated to the deadlock p. For
more on deadlocks and unsafe areas, see [4] and [2].

For large M , this gets out of hand. In the following, the obvious periodicity in
a delooping is explored.

4. Periodicity in the trace algorithm

Definition 4.1. Given a schedule J = {Ji,K|i ∈ [1 : l], K ∈ [[0,M − 1]} for
a delooping XM and K0 ∈ [0 : M − 1]. The restriction J |K0 is the schedule
{J1, . . . , Jr} for X1 with Ji = Ji,K0 for i ∈ [1, l]. Ri,K , i = 1, . . . , l

Remark 4.2. In J |K0, the rectangle Ri is extended according to the schedule of
Ri,K0, i = 1, . . . , l. However, XJ |K0

6= XM
J ∩ XK0 since in the latter, rectangles

Ri,K with K > K0 may be extended to intersect XK0 .

Proposition 4.3. If
−→
Tr(XJ1, 0, 1) = ∅, and J is a schedule for XM such that

J |K = J1 for some K ∈ [0 : M − 1], then ~T (XM
J , 0,M) = ∅

Proof. Since ~T (XJ1, 0, 1) = ∅, there is a deadlock in XJ1 which is the intersection
of (at least) n extended rectangles Rr

J1r . Inserting XJ1 in XM , the schedule
requirement causes the rectangle Rr to be extended to a product of intervals
]arJ1r , b

r
J1r [ and [0, bri ] for i 6= J1r, in XM . Thus, [0, bri [ is extension to the lower

i’th boundary in XM . The unsafe region of that deadlock will then contain the
minimum, 0 of XM �

The schedule restriction in XM is given by schedule restrictions J for all K ∈
[1 : M ], and Prop. 4.3 gives a necessary condition for, when J is allowed. It is
not a sufficient condition:

Example 4.4. Let X = ~I3 \R where R =]1/4, 3/4[×]1/4, 3/4[×]1/4, 3/4[. Con-
sider the three schedules J = 1, J = 2 and J = 3. They are all allowed - there are
no deadlocks. In the following, these are the schedules considered. I.e., unions
such as J = {1, 2} are not considered.

LetM = (3, 1, 1), then XM = [0, 3]×[0, 1]×[0, 1]\(R1∪R2∪R3), where R1 = R
R2 =]5/4, 7/4[×]1/4, 3/4[×]1/4, 3/4[ and R3 =]9/4, 11/4[×]1/4, 3/4[×]1/4, 3/4[.

There are 27 schedules for XM , namely the vectors v ∈ [(1, 1, 1) : (3, 3, 3)],
where (v1, v2, v3) assigns v1 to R1, v2 to R2 and v3 to R3.
There is no deadlock if vi = vj and j 6= i, since the corresponding extended
rectangles intersect trivially - one is contained in the other.
The 6 remaining schedules are (1, 2, 3),(1, 3, 2),(2, 1, 3),(2, 3, 1), (3, 1, 2) and (3, 2, 1).

• (1, 2, 3) and (1, 3, 2) give a deadlock at (1/4, 1/4, 1/4):
R1

1 =]1/4, 3/4[×[0, 3/4[×[0, 3/4[, R2
2 = [0, 7/4[×]1/4, 3/4[×]0, 3/4[ and

R3
3 = [0, 11/4[×[0, 3/4[×]1/4, 3/4[. Hence, (1/4, 1/4, 1/4) ∈ XM

(1,2,3) and it
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Figure 1. Not all schedules can be repeated.

is a deadlock. Moreover, (0, 0, 0) is unsafe, as may be seen by inspection
here, or in general by the deadlock algorithm. Similarly for (1, 3, 2).

• (2, 1, 3), (2, 3, 1), (3, 1, 2) and (3, 2, 1) do not produce deadlocks. Let v =
(2, 1, 3). R1

2 = [0, 3/4[×]1/4, 3/4[×[0, 3/4[,R2
1 =]5/4, 7/4[×[0, 3/4[×[0, 3/4[

and R3
3 = [0, 11/4[×[0, 3/4[×]1/4, 3/4[. Since R1

2 ∩ R2
1 = ∅, there is no

deadlock. Similarly for the other cases.

In the example, allowed schedules on X are combined to give a schedule on
XM . Rectangles are extended in the global setting XM producing deadlocks
“below”. This explains why the condition in 4.3 is not sufficient. Notice also the
non-commutativity, that (1, 2, 3) gives a deadlock, but (2, 1, 3) does not.

An allowed schedule may not be repeatable:

Example 4.5. Let X = ~I2\F , where F = R1∪R2 and R1 =]1/8, 3/8[×]1/8, 3/8[
and R2 =]5/8, 7/8[×]5/8, 7/8[, two diagonal holes. The schedule J = ({2}, {1})
extends the forbidden area toR1

2 = [0, 3/8[×]1/8, 3/8[ andR2 =]5/8, 7/8[×[0, 7/8[.
This is an allowed schedule. see Fig.1. But the concatenated schedule (2, 1, 2, 1)
for the 4 forbidden rectangles in [0, 2]× [0, 1] has a deadlock at (5/8, 1/8).

Definition 4.6. The replacement operator ρ replaces symbols. E.g.

ρ(
n∏

j=1

[cj, dj]; ([ck, dk], [f, g])) =

[c1, d1]× [c2, d2]× . . . [ck−1, dk−1]× [f, g]× [ck+1, dk+1]× . . . [cn, dn].

When a rectangle is extended to the maximal or minimal point, the replacement
is denoted

ρkm(×n
j=1]aj, bj [) := ρ(×n

j=1]aj , bj[, (]ak, bk[, ]ak, 1])(]am, bm[, [0, bm[)

Iteratively, for subsets K,M ∈ {1, . . . , n} ρKM is the replacement of ]ak, bk[ by
[ak, 1[ for all k ∈ K and ]am, bm[ by ]0, bm] for all m ∈ M . If s ∈ M ∩K ]as, bs[
is replaced by [0, 1].

Example 4.7. When Ji = {ji}, the i’th rectangle Ri is extended to ρ{j 6=ji}(R
i).
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Definition 4.8. The downward effect : Let S be the set of subsets of In and χ the
set of pairs (F, J), where F = ∪l

i=1R
i, Ri is an n-rectangle and J = (J1, . . . , Jl)

is a schedule restriction. Let ∅ 6= r ( [1 : n]. Somtimes r is denoted by a binary
vector r ∈ {0, 1}n via the correspondence k ∈ r if and only if rk = 1. The
downward effect Dr : χ → map(S, S) is defined:
Let Y ⊂ In, J = (j1, . . . , jl) and XJ as in 3.1. Then

Dr(XJ)(Y ) = Y \
⋃

ji /∈r
ρ
{k∈r}
{j 6=ji}(×

n
j=1]a

i
j , b

i
j[).

The rectangles removed are generalized cylinders:

Cyl(i, ji, r) = ρk∈r{j 6=ji}(×
n
j=1]a

i
j , b

i
j[) = [w, v]

where wji = aiji and wj = 0 otherwise. vk = 1 for k ∈ r and vj = bij otherwise.
In other words.

Cyl(i, ji, r) = ×n
j=1Sj

where Sk = [0, 1] for k ∈ r, Sji =]aiji, b
i
ji
[ and Sj = [0, bij [ otherwise.

Dr(XJ)(Y ) is the downwards effect from direction r of XJ on Y .
For a stringXJ1XJ2 · · ·XJk, the combined down effect is the composition: Dr(XJ1XJ2 · · ·XJk)(Y ) =
Dr(XJ1) ◦Dr(XJ2) ◦ · ◦Dr(XJk)(Y )

Remark 4.9. The cylinders are extensions of the extended rectangles;

Cyl(i, ji, r) = ρ{k∈r}(Ri
ji
).

If X = In\F , F a union of rectangles and J a schedule, D(XJ) means D(F, J).

The combined down effects is the effect of a union of schedule restrictions:

Proposition 4.10. The combined down effect of XJ1 . . . XJs is the effect of the
union of schedules: Dr(XJ1XJ2 . . .XJs) = Dr(XJ1∨J2...∨Js) were (J1, . . . Jl) ∨
(J ′

1, . . . , J
′
l) = (J1 ∪ J ′

1, . . . , Jl ∨ J ′
l) is the least upper bound in the poset C(X)

Proof. Let Y ⊂ In. Dr(XJ1XJ2 . . .XJs)(Y ) = Y \ F where

F = ∪{Cyl(i, ji, r)|j 6= ji, ji /∈ r, ji ∈ Jki for some k ∈ [1 : s]}
Now ji ∈ Jki for some k ∈ [1 : s] if and only if ji ∈ (J1 ∨ J2 . . . ∨ Js)i. �
Lemma 4.11. Let XM be the M delooping and let J be a schedule restriction.
Suppose Ji,K = {α} is a schedule restriction for Ri,K. Then Ri,K

α ∩ In is empty if
kα 6= 0. If kα = 0, then In \Ri,K

α = Dr(K)(Ji,K)(I
n), where r(K)j = inf{Kj, 1}.

Proof. The extended rectangle is

Ri,K
α = ×n

j=1Sj .

where Sα =]aiα + kα, b
i
α + kα[ and Sj = [0, biα + kα[ else. The intersection is

Ri,K
j0

∩ In = ×n
j=1(Sj ∩ [0, 1]). If kα 6= 0, then Sα ∩ [0, 1] = ∅ so the intersection is

empty.
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If kα = 0, then

• Sα ∩ [0, 1] = Sα,
• Sj ∩ [0, 1] = [0, bij [ if kj = 0, i.e.,if r(K) = 0 (and j 6= α)
• Sj ∩ [0, 1] = [0, 1] if kj ≥ 1, i.e., if r(K)j = 1.

Hence, Ri,K
α ∩ In = Cyl(i, α, r(K). �

Similarly, if Ji,K has more than one element, there are several extended rect-
angles. Then In \ ∪α∈Ji,KR

i,K
α is Dr(K)(Ji,K)(I

n)

Example 4.12. When r has just one element, there is a Concatenation of XJ1

andXJ2 along the r’th direction: Let r ∈ {1, · · · , n}, then the subsetXJ1⋆rXJ2 ⊂
Iv, where v ∈ Rn, vr = 2 and vj = 1 else, is defined by x = (x1, . . . , xn) ∈
XJ1 ⋆r XJ2 if either xr ≥ 1 and x− er ∈ XJ2 or
xr ≤ 1 and x ∈ Dr(XJ2)(XJ1).
Iteratively, XJ1 ⋆r XJ2 ⋆r · · · ⋆r XJk ⊂ Iw, wr = k and wj = 1 otherwise. It is
defined by x ∈ XJ1⋆rXJ2⋆r · · ·⋆rXJk if xr ≥ 1 and x−er ∈ XJ2⋆rXJ3⋆r · · ·⋆rXJk

or xr ≤ 1 and x ∈ Dr(XJ2 ⋆r XJ3 ⋆r · · · ⋆r XJk)(XJ1)

Remark 4.13. The concatenated object XJ1 ⋆r XJ2 may also be obtained by glu-
ing X to X along the r’th face, enumerating the now 2l forbidden rectangles
consecutively - R1, . . . , Rl as before, in the lower copy of X (with 0 ≤ xr ≤ 1)
and Rl+m, the copy of Rm in the upper copy of X (where 1 ≤ xr ≤ 2). Then
XJ1 ⋆r XJ2 is obtained by extending rectangles according to the schedule restric-
tion J = (j11, . . . , j1l, j21 . . . , j2l)

Definition 4.14. For a delooping XM M = (m1, . . . , mn) and K ∈ [0 : M − 1],
XJK denotes X with extensions according to the restriction J |K . The combined
down effect on XJK0 is the composition

D(XM
J , K0)(XJK0) = ◦K∈]K0,M ]Dr(K−K0)(XJK)(XJK0)

Here r(K −K0) is the binary vector r(K −K0)k = inf((K −K0)k, 1).

Theorem 4.15. Let XM be the delooping given by M = (m1, . . . , mn). A sched-
ule J for XM is allowed if and only if for all K ∈ [0 : M − 1]

• If p is a deadlock in D(XM
J , K)(XJK), then pk = 1 for some k.

Proof. J is allowed if and only if there are no deadlocks on intersections of ex-
tended rectangles. Such deadlocks have coordinates (ai11 +k1, . . . , a

in
n +kn) where

ki ∈ IN and aj ∈]0, 1[.
As a consequence, if p is a deadlock XM and p ∈ XM ∩ XK , then it is in the
interior of XK .
By Lem. 4.11 extended rectangles Ri,K

j will intersect XK0 only if (K −K0)j = 0

and the intersection with XK0 is Dr(K−K0)(R
i
j)(XK0). Therefore, p corresponds

to an interior deadlock in D(XM)(XJK).
If q is a deadlock in D(XM)(XJK) with qk = 1, the corresponding point q̃ = q+K
is not a deadlock in XM , since it has an integer coordinate. �
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Remark 4.16. In particular, as noted before, all XJK should be allowed.

Corollary 4.17. A schedule J for XM is allowed if and only if for all K ∈
[0 : M − 1] There is a k s.t. ~T (D(XM

J , K)(XJK), 0, ∂
+
k ) 6= ∅, where ∂+

k = {x ∈
D(XM

J , K)(XJK)|xk = 1}
Proof. If there is a dipath to ∂+

k , then 0 is not in the unsafe area for an interior
deadlock, and hence there are no such deadlocks. If there is an interior deadlock,
then 0 is in the associated unsafe area and ~T (D(XM

J , K)(XJK), 0, ∂
+
k ) = ∅ for all

k. �

5. An alphabet of building blocks

A schedule for a delooping XM is a concatenation of allowed schedules for X ,
the delooping once of every loop of the torus, as above. The concatenations are
allowed, if no deadlocks are produced. Hence, the allowed schedules for X are
the fundamental building blocks for the schedules for XM . The allowed schedules
for XM , where M = (1, 1, . . . , m, 1, . . . , 1) is delooping in a fixed direction, are
words in a regular language over the allowed schedules on X .

Remark 5.1. Notation In the following, J is a schedule for the rectangles Ri, i =
1, . . . , l, XJ is the corresponding subset of X . In concatenations XJ1 ⋆r . . . ⋆r XJs

and also in XM , 0 denotes the minimal point and 1 the maximal point.

Definition 5.2. Let A = {XJ |~T (Xj, 0, 1) 6= ∅}.
Ar,m = {w = a1 ⋆r a2 ⋆r . . . ⋆r am|ai ∈ A1 and ~T (w, 0, 1) 6= ∅}

is the set of allowed r-words of length m.
Let w = w1w2 . . . wm be a word on an alphabet A. Then Alph(w) = {a ∈ A|a ∈
w}, the letters used in w.

Lemma 5.3. Properties of the operators Dr. Let w, z ∈ A∗, w = w1w2 . . . wk,
c ∈ A.

(1) Dr(w)(c) = Dr(∨k
i=1wi)(c), where ∨ is as in Prop. 4.10

(2) Dr is commutative in the following sense: Dr(w)◦Ds(z) = Ds(z)◦Dr(w)
(3) Dr is idempotent: Dr(w) ◦Dr(w) = Dr(w)

Proof. 1) and 3) follows from Prop. 4.10. The statement in 2) is (C \ A) \ B =
(C \B) \ A for sets, A,B,C. �
Lemma 5.4. Let w ∈ Ar,m and let a ∈ A. Then a ⋆r w ∈ Ar,m+1 if and only if
all deadlocks in Dr(w)(a) are on the upper boundary.

(1) If w ∈ Ar,m and ŵ is a subsequence of the letters in w, then ŵ is allowed.
(2) If w ⋆r w is allowed, then all cyclic permutations of w are allowed.
(3) If w ⋆r w is allowed, then wr,n = w ⋆r w ⋆r w ⋆r . . . ⋆r w, concatenation of

n copies of w is allowed for all n.
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Proof. a ⋆r w is allowed, if ~T (a ⋆r w, 0, 1) 6= ∅. The geometric object representing
a ⋆r w is the subset of C(m+1)r = ρ(×n

j=1[0, 1]j, ([0, 1]r, [0, m + 1]) given by x =
(x1, . . . , xn) ∈ a ⋆r w if xr ≥ 1 and x− er ∈ w, or xr ≤ 1 and x ∈ Dr(w)(a).

Hence, since w is allowed and thus has no deadlocks, it follows from Thm. 4.15
that ~T (a ⋆r w, 0, 1) 6= ∅ if and only if Dr(w)(a) has no interior deadlocks. 1), 2)
and 3) are then a consequence of Prop. 4.10

�

Corollary 5.5. Ar+1,m is the set of a ⋆r w for which (a, w) ∈ A1 × Ar,m and
Dr(∨b∈alph(w)b)(a) has no interior deadlocks.

Hence, since A is finite, the problem is now finite. A consequence of finiteness
is

Theorem 5.6. Let A be the alphabet of allowed schedule restrictions for X.
The language Lr ⊂ A∗, r ∈ [1 : n] consists of words w = a1a2 · am such that
a1 ⋆r a2 ⋆r · · · ⋆r am is allowed. Then Lr is a regular language. It is recognized by
an automaton with at most 2n − 1)l + 1 state.

Proof. This follows from the Myhill-Nerode theorem. For w1, w2 ∈ A∗, let w1 ∼
w2 if for all u ∈ A∗ uw1 ∈ L ⇔ uw2 ∈ L.
The number of equivalence classes is finite:

For w ∈ A∗ \ L, u ∈ A∗, uw ∈ A∗ \ L, so A∗ \ L is an equivalence class.
Let w ∈ L. Then uw ∈ L if and only if Dr(∨a∈Alph(w)a)(u) ∈ L. Hence, if

∨{Alph(w1)} = ∨{Alph(w2)}, then w1 ∼ w2.
For all w, ∨{Alph(w)} = (J1, . . . , Jl), where ∅ 6= Ji ⊂ [1 : n].
Hence |A∗/ ∼ | ≤ (2n − 1)l + 1. The Myhill-Nerode Theorem [3] chapter 3

says, that L is a regular language if and only if |A∗/ ∼ | is finite. And there is
an automaton with |A∗/ ∼ | states which recognizes it. �

Definition 5.7. An l×n binary matrixB represents the schedule JB = (J1, . . . , Jl)
where s ∈ Jk ⊂ [0 : n] if and only if Bks = 1.

Corollary 5.8. The automaton generating L has

• States: All l × n binary matrices B for which there is a word w ∈ L with
∨{a ∈ Alph(w)} = JB

• Transitions a : B → B ∨ a if Dr(B)(a) has no interior deadlocks.

Remark 5.9. The automaton may be generated as follows:

• The initial state is {ε}
• Add a : {ε} → {a} the transition a and state {a} for all a ∈ A
• For all b ∈ A and all states B add a transition (and a state, if B ∨ b is
not already there) b : B → b ∨ B if Dr(B)(b) has no interior deadlocks.

Now iterate. This stops, since A is finite.
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Proposition 5.10. Let a1, a2 ∈ A, ai = XJi, J i = (J1i, J2i, . . . , Jli) where
Jki ⊂ [1 : n] for k ∈ [1 : l]. The partial order on the poset category C(X) is
a1 ≤ a2 if Jk

1 ⊂ Jk2 for all k ∈ [1 : l]. Let m = (1, . . . , 1)+(m−1)er. The objects
in the poset category C(Xm) for the m’th delooping are r-words of length m in
the regular language Lr over A. The partial order on words is wi = ai1a

i
2 . . . a

i
m,

w1 ≤ w2 if a1j ≤ a2j for all j.

Proof. Objects in the poset are allowed schedule restrictions. Words in the lan-
guage Lr are the allowed schedule restrictions. The partial order is the set inclu-
sion order on restrictions corresponding to individual rectangles. �

Example 5.11. For the 3-cube in Ex.4.4, the allowed schedule restrictions are
a = {1}, b = {2}, c = {3}, d = {1, 2}, e = {1, 3} and f = {2, 3}. So A =
{a, b, c, d, e, f}. The possible states are the 8 binary 1× 3 matrices, where (000)
is the initial state. They are all allowed states, since the word bca is allowed and
hence allows the matrix (111). However, not all transitions are allowed. The
transition a : (011) → (111) is not in the automaton, since the words abc and acb
are not allowed.

Example 5.12. The square with two diagonal holes, see Ex. 4.5 the allowed
schedules are a = {1}{1}, b = {2}{1},c = {1}{2},d = {2}{2}. So this is the
alphabet. Given as 2× 2 matrices.

a =

(
1 1
0 0

)
b =

(
0 1
1 0

)
c =

(
1 0
0 1

)
d =

(
0 0
1 1

)

Alph(db) =

(
0 1
1 1

)
Alph(da) =

(
1 1
1 1

)

Alph(ca) =

(
1 1
0 1

)
Alph(ba) =

(
1 1
1 0

)

All possible states are allowed. But not all transactions, e.g. b : {b} → {b} is
not allowed as we saw earlier.

For deloopings in general M = (m1, . . . , mn), Thm. 4.15 implies, that all the
n automata generating Lr for r ∈ [1 : n] should be combined. This will not be
developed here.

There are algorithmic gains in the following observations:

• If A, A′ are states, A′ ≤ A (as matrices) and a : A → A ∨ A is allowed,
then a : A′ → a∨A′ is allowed, since Dr(A)(a) ⊂ Dr(A

′)(a), so if there is
a dipath to an upper face in Dr(A)(a), it is a dipath in Dr(A

′)(a).
• The possible deadlocks are intersections of cylinders and extended rect-
angles. Finding them is a check of inequalities as in [4]. Some of these
inequalities are trivial - for intervals [0, 1].
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Remark 5.13. There is a dual of the index category C(X) where rectangles are

extended upwards. This corresponds to 1) Invert the order on ~I and hence on

X to get X∗. 2) Calculate ~T (X∗, 1, 0) as in [4]. The resulting automaton will
generate words iteratively w → wa, i.e., the letter a is a suffix, not a prefix.

6. Conclusion and further work.

The periodicity implies, that the index category C(XM) is described in terms
of deadlocks in X between extended rectangles and cylinders. For a delooping
in one direction, the index category is described in terms of words in a regular
language, and the automaton is given.

For general deloopings XM , the allowed schedules and the corresponding index
category C(XM) involves checking for deadlocks in Dr(XK)(XJ) r ∈ {0, 1}n, i.e.,
a check of inequalites, some of which are trivial. This will be explored in another
paper. Moreover, for general processes, which are not pure loops, deadlocks in
the deloopings appear in a combination of down effects from rectangles after the
loops and rectangles within the loop. The down effects from rectangles after the
loops give rise to cylinders penetrating the whole delooping, and hence there is
still a periodicity, which may be used for better algorithms.
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