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Abstract

In this paper, we continue the study of the geometry of Brownian motions which are encoded by
Kolmogorov-Chaitin random reals (complex oscillations). We unfold Kolmogorov-Chaitin complexity
in the context of Brownian motion and specifically to phenomena emerging from the random geometric
patterns generated by a Brownian motion.
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1 Introduction

Finally, we would like to comment on the hidden role of Kolmogorov complexity in the real
life of classical computing ....

The inherent tension, incompatability of shortest descriptions with most-economical algorith-
mical processing, is the central issue of any computability theory.

The place-value notation of numbers that played such a great role in the development of human
civilizations is the ultimate system of short descriptions that bridges the abyss. Kolmogorov
complexity goes far beyond this point. ([Manin 2010] p 327.)

It is well-known that the notion of randomness, suitably refined, goes a a long way in dealing with this
tension. (See, for example, [Chaitin 1987, Martin-Löf 1966, Nies 2008].) In this paper, we continue to
explore this interplay between short descriptions and randomness in the context of Brownian motion
and its associated geometry. In this way one sees how random phenomena associated with the geom-
etry of Brownian motion, are implicitly enfolded in each real number which is complex in the sense of
Kolmogorov. These random phenomena range from fractal geometry, Fourier analysis and non-classical
noises in quantum physics.

We study in this paper algorithmically random Brownian motion, the representations of which were
also called complex oscillations in [Fouché(1) 2000, Fouché(2) 2000] for example. This terminology was
suggested to the author by the following Kolmolgorov theoretic interpretation of this notion by Asarin
and Prokovskii [Asarin and Prokovskii 1986], who are the pioneers of this theme. One can characterise a
Brownian motion which is algorithmically random (or, equivalently Martin-Löf random) as an effective
and uniform limit of a sequence (xn) of “finite random walks”, where, moreover, each xn can be encoded
by a finite binary string sn of length n, such that the (prefix-free) Kolmogorov complexity, K(sn), of sn
satisfies, for some constant d > 0, the inequality K(sn) > n− d for all values of n.

Two other characterisations of the class of complex oscillations were developed by the author in
[Fouché(1) 2000] and [Fouché(2) 2000]. In [Fouché(1) 2000] the class of complex oscillations were de-
scribed in terms of effective subalgebras of the Borel σ-algebra on C[0, 1]) (with the supremum norm
topology). The central idea here was to effectivise the Donsker invariance principle, i.e., to focus on
Brownian motion as a scaling limit of finitary random walks. In [Fouché(2) 2000] they are shown to be
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2 Kolmogorov complexity and Brownian motion

exactly those real-valued continuous functions on the unit interval that can be computed from Martin-
Löf-random reals (relative to the Lebesgue measure) by means of an associated Franklin-Wiener series.
Here, the guiding motif was the fact that one can, as is well-known, also think of Brownian motion as
a linear superposition of deterministic oscillations with normally distributed random amplitudes. Fur-
ther applications and developments of this idea can be found in the papers [Fouché 2008, Fouché 2009,
Hoyrup and Rojas 2009, Potgieter 2012, Kjos-Hanssen and nerode 2009]. A sharper version, from a com-
putational point of view, of the main result in [Fouché(2) 2000] has recently been developed by George
Davie and the author [Davie and Fouché 2012].

Countable dense random sets arise naturally in the theory of Brownian motion [Tsirelson 2006], in non-
classical noises [Tsirelson 2004] and the understanding of percolation phenomena in statistical physics
(see [Tsirelson 2004], [Camia, Fontes and Newman 2005], for example). It is an interesting fact that
the study of countable dense random sets quite naturally brings one in contact with studying random
processes over spaces which are not even Polish. One has to do probability theory over orbit spaces under
the action of the group S∞, which is the symmetry group of a countable set, on the space of all injections
of N into the unit interval. These are examples of what Kechris [Kechris 1999] referred to as singular
spaces of Borel cardinality F2.

In [Tsirelson 2006] Tsirelson develops a very powerful approach to random processes over these sin-
gular spaces and his results imply that the Kechris-singularity manifests in very concrete and interesting
statistical properties of countable dense random sets and new aspects of Brownian motion.

Tsirelson [Tsirelson 2006] shows that the minimizers of a Browian motion are, in the language of
[Tsirelson 2004], instances of so-called stationary local random dense countable sets over the white noise
and that they play a pivotal role in the understanding of non-classical noises.

This work suggested to the author the problem of constructing the minimizers of Brownian motion
directly from an unbiased coin-tossing experiment. This can be seen as an extension of [Fouché(2) 2000]
where a generic Brownian motion was constructed from a generic point in the unit interval. We shall
again adopt the viewpoint of Kolmogorov complexity to define what we mean by the word generic. In this
way, we shall be able to find Σ0

3 definitions, within the arithmetical hierarchy, for countable dense random
sets, which can be considered to be “generic” countable dense sets of reals and moreover symmetrically
random over white noise. We provide an explicit computable enumeration of the elements of such sets
relative to Kolmogorov-Chaitin-Martin-Löf random real numbers. This opens the way to relate certain
non-classical noises to Kolmogorov complexity. For example, the work of the present paper enables one to
represent Warren’s splitting noise (see [Tsirelson 2004]) directly in terms of infinite binary strings which
are Kolmogorov-Chaitin-Martin-Löf random. This line of thought will also be pursued in a sequel to this
paper.

In this sequel to this paper, we shall study the images of certain Π0
2 perfect sets of Hausdorff dimension

zero under a complex oscillation. We have given a sketch in the extended abstract [Fouché 2009] of a
proof that there are instances of such sets where such images under complex oscillations have elements
all of which are linearly independent over the field of rational numbers. In Fourier analysis, these sets
are called sets of independence. (See, for example, Chapter 5 of Rudin’s book [Rudin 1960], pp 97-130.)
We shall provide a generalisation of this result and show in fact that one can obtain sets via complex
oscillations which are linearly independent over the field of recursive real numbers. Moreover, all the
elements in these images are non-computable.

The author is grateful to the Department of Mathematics at the Corvinus University, Budapest, for
hosting my frequent visits to the department and for sharing with me so much of the subtleties of measure
theory and stochastic processes.

The research in this paper has been supported by the National Research Foundation (NRF) of South
Africa and by the European Union grant agreement PIRSES-GA-2011-2011-294962 in Computable Anal-
ysis (COMPUTAL).

Many thanks are due to the referee whose remarks led to a significant strengtening of Theorem 5.
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2 Preliminaries and statements of the main theorems

A Brownian motion on the unit interval is a real-valued function (ω, t) 7→ Xω(t) on Ω × [0, 1], where Ω
is the underlying space of some probability space, such that Xω(0) = 0 a.s. and for t1 < . . . < tn in
the unit interval, the random variables Xω(t1), Xω(t2)−Xω(t1), · · · , Xω(tn)−Xω(tn−1) are statistically
independent and normally distributed with means all 0 and variances t1, t2−t1, · · · , tn−tn−1, respectively.
We say in this case that the Brownian motion is parametrised by Ω. Alternatively, the map X defines
a Brownian motion iff for t1 < . . . < tn in the unit interval, the random vector (Xω(t1), · · · , Xω(tn)) is
Gaussian with correlation matrix (min(ti, tj) : 1 ≤ i, j ≤ n).

It is a fundamental fact that any Brownian motion has a “continuous version”. This means the
following: Write Σ for the σ-algebra of Borel sets of C[0, 1] where the latter is topologised by the uniform
norm topology. There is a probability measure W on Σ such that for 0 ≤ t1 < . . . < tn ≤ 1 and for a
Borel subset B of Rn, we have

P ({ω ∈ Ω : (Xω(t1), · · · , Xω(tn)) ∈ B}) = W (A),

where
A = {x ∈ C[0, 1] : (x(t1), · · · , x(tn)) ∈ B}.

The measure W is known as the Wiener measure. We shall usually write X(t) instead of Xω(t).
In the sequel, we shall denote by (0, 1)∞ the Borel space consisting of the product of countably many

copies of the unit interval and with Borel structure being given by the natural product structure which
is induced by the standard Borel structure on the unit interval. We write (0, 1)∞6= for the Borel subspace
consisting of the infinite sequences in the unit interval which are pairwise distinct.

We write S∞ for the symmetric group of a countable set (which we can take to be N). We place on
S∞ the pointwise topology. We thus give S∞ the subspace topology under the embedding of S∞ into the
Baire space N

N. The group S∞ acts naturally (and continuously) on (0, 1)∞6= as follows:

σ.(uj : j ≥ 1) := (uσ−1(j) : j ≥ 1),

for all (uj) ∈ (0, 1)∞6= and σ ∈ S∞ (the logical action). The orbit space under this action is denoted by
(0, 1)∞6= /S∞. We place a Borel structure on this space via the topology induced by the canonical mapping

π : (0, 1)∞6= −→ (0, 1)∞6= /S∞.

Let Ω be standard Borel space. A strongly random countable set in the unit interval is a measurable
mapping X : Ω → (0, 1)∞6= /S∞ that factors through some (traditional) random sequence Y as shown:

Ω

(0, 1)∞6= /S∞

X

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

Ω (0, 1)∞6= .
Y // (0, 1)∞6= .

(0, 1)∞6= /S∞

π

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

One can think of X as a random countable set induced via S∞-equivalence, by a random sequence Y , both
in the unit interval. In the sequel, we shall sometimes denote the Borel space (0, 1)∞6= /S∞ by CS(0, 1).

As noted by Tsirelson [Tsirelson 2006] the natural question as to whether any measurable X : Ω →
(0, 1)∞6= /S∞ factors through some Y as above, is an open problem.

The following fundamental theorem of Tsirelson’s explains exactly what it means for two strongly
random countable sets to be “statistically similar”.

Theorem 1 ([Tsirelson 2006]). For standard measure spaces (Ω1, P1) and (Ω2, P2), let, for i = 1, 2,
there be, some Pi-measurable strongly random set Xi : Ωi → CS(0, 1) such that the induced probability
distributions on CS(0, 1) are the same, i.e., for every Borel subset Σ of CS(0, 1) it is the case that

P1(X
−1
1 (Σ)) = P2(X

−1
2 (Σ)).



4 Kolmogorov complexity and Brownian motion

Then there is a probability distribution P on Ω1×Ω2 such that the marginal of P to Ωi is Pi, and moreover,
for P almost all (ω1, ω2) ∈ Ω1 × Ω2 it is the case that

X1(ω1) = X2(ω2).

The statement “the marginal of P to Ωi is Pi”, means that for measurable Σi ⊂ Ωi i = 1, 2:

P(Σ1 × Ω2) = P1(Σ1);

and
P(Ω1 × Σ2) = P2(Σ2).

We say in this case that the strongly random sets X1 and X2 are statistically similar relative to the
probabilities P1, P2 and we simply write X1 ∼ X2.

A strongly random countable set X : Ω → CS(0, 1) is said to be generic relative to a probability
measure P on Ω if the following is true:

If B is a Borel subset of the unit interval such that λ(B) > 0, then P - almost surely, B∩X 6= ∅.
On the other hand, if λ(B) = 0, then P -almost surely, B ∩ X = ∅. Equivalently, if C is a
Borel set such that λ(C) = 1, then, almost surely, X ⊂ C.

Here we have written λ for the Lebesgue measure on the unit interval. Note that if X is generic and if
Y ∼ X , then Y too is generic.

A partial converse of this statement can be found in [Tsirelson 2006]: If X1, X2 are both strongly ran-
dom, each satisfying what Tsirelson calls the “independence condition” relative to a probability measure
Pi, and each being almost surely dense in the unit interval, then they are statistically similar provided
they are both generic!! (Tsirelson 2006).

Write λ∞ for the product measure on (0, 1)∞ which is the countable product of the Lebesgue measure
λ on the unit interval and write Λ for the measure on CS(0, 1) which is the pushout of λ∞ under π. In
other words, for a Borel subset Σ of CS(0, 1),

Λ(Σ) = λ∞(π−1Σ).

Write U : (0, 1)∞ → CS(0, 1) for the strongly random set as defined by the following commutative
diagram:

(0, 1)∞

CS(0, 1) = (0, 1)∞6= /S∞

U

��❄
❄❄

❄❄
❄❄

❄❄
❄

(0, 1)∞ (0, 1)∞.
Id // (0, 1)∞.

CS(0, 1) = (0, 1)∞6= /S∞

π

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

Then U is almost surely dense and generic. In statistics U is a model of an unordered uniform infinite
sample. Moreover, it follows from the Hewitt-Savage theorem, that for every Borel subset Σ of CS(0, 1),
it is the case that

Λ(Σ) ∈ {0, 1}. (1)

Note that Λ is non-atomic. Consequently, CS(0, 1) is not a Polish space! We shall refer to the strongly
random set U as the uniform random set.

If X is a continuous function on the unit interval, then a local minimizer of X is a point t such that
there is some closed interval I ⊂ [0, 1] containing t such that the function X assumes its minimum value
on I at the point t. We denote by MIN(X) the set of local minimizers of X . It is well-known that if X
is a continuous version of Brownian motion on the unit interval, then MIN(X) is almost surely a dense
and countable set and that all the local minimizers of X are strict. This means that, for each closed
subinterval I of the closed unit interval, there is a unique ν ∈ I where the minimum of X on I is assumed.
This, as will be explained in this paper, has the implication that there is a subset Ω0 of C[0, 1] of full
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Wiener measure such that one can define a measurable mapping min : C[0, 1] ⊃ Ω0 −→ (0, 1)∞6= in such a
way that the composition of min with the projection π will define a measurable mapping X 7→ MIN(X).
In the sequel this strongly random set will be denoted by MIN. To summarise, we have the following
commutative diagram:

C[0, 1] ⊃ Ω0

(0, 1)∞6= /S∞

MIN
��❄

❄❄
❄❄

❄❄
❄❄

❄
C[0, 1] ⊃ Ω0 (0, 1)∞6= .

min // (0, 1)∞6= .

(0, 1)∞6= /S∞

π

��⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧

The next theorem of Tsirelson (2006) says essentially that the local minimizers of a Brownian motion
is a generic countable dense random set. (It is quite trivial to show that it satisfies the independence
property.)

Theorem 2 [Tsirelson 2006]. If X is a continuous version of Brownian motion on the unit interval and
B is a Borel subset of the unit interval such that λ(B) > 0, then almost surely, B ∩ MIN(X) 6= ∅. On the
other hand, if λ(B) = 0, then almost surely, B ∩ MIN(X) = ∅. In particular, if λ(C) = 1, then, almost
surely, MIN(X) ⊂ C.

It follows that any generic countable dense random set with the independence property will be statistically
similar to the random set of minimizers of a Brownian motion. In particular

MIN ∼ U. (2)

The set of words over the alphabet {0, 1} is denoted by {0, 1}∗. If a ∈ {0, 1}∗, we write |a| for
the length of a. If α = α0α1 . . . is an infinite word over the alphabet {0, 1} , we write α(n) for the
word

∏

j<n αj . We use the usual recursion-theoretic terminology Σ0
r and Π0

r for the arithmetical subsets

of Nk × {0, 1}N×l, k, l ≥ 0. (See, for example, [Hinman 1978]). We again write λ for the Lebesgue
probability measure on {0, 1}. For a binary word s of length n, say, we write [s] for the “interval”
{α ∈ {0, 1}N : α(n) = s}. A sequence (an) of real numbers converges effectively to 0 as n → ∞ if for
some total recursive f : N → N, it is the case that |an| ≤ (m+ 1)−1 whenever n ≥ f(m).

For any finite binary word a we denote its (prefix-free) Kolmogorov complexity by K(a). Recall that
an infinite binary string α is Kolmogorov-Chaitin complex if

∃d∀n K(α(n)) ≥ n− d. (3)

In the sequel, we shall denote this set by KC and refer to its elements as KC-strings. (See, e.g.,
[Chaitin 1987], [Martin-Löf 1966] or [Nies 2008] for more background.)

For n ≥ 1, we write Cn for the class of continuous functions on the unit interval that vanish at 0 and
are linear with slopes ±√

n on the intervals [(i − 1)/n, i/n] , i = 1, . . . , n. With every x ∈ Cn, one can
associate a binary string a = a1 · · · an by setting ai = 1 or ai = 0 according to whether x increases or
decreases on the interval [(i− 1)/n, i/n]. We call the sequence a the code of x and denote it by c(x). The
following notion was introduced by Asarin and Prokovskii in [Asarin and Prokovskii 1986].

Definition 1 A sequence (xn) in C[0, 1] is complex if xn ∈ Cn for each n and there is a constant d > 0
such that K(c(xn)) ≥ n−d for all n. A function x ∈ C[0, 1] is a complex oscillation if there is a complex
sequence (xn) such that ‖x− xn‖ converges effectively to 0 as n → ∞.

The class of complex oscillations is denoted by C. It was shown by Asarin and Prokovskii [Asarin and Prokovskii 1986]
that the class C has Wiener measure 1. In fact, they implicitly showed that the class corresponds exactly,
in the broad context and modern language of Hoyrup and Rojas [Hoyrup and Rojas 2009], to the Martin-
Löf random elements of the computable measure space ([Weihrauch 1999, Weihrauch 2000, Gács 2005])

R = (C0[0, 1], d, B,W ), (4)
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where C0[0, 1] is the set of continuous functions on the unit interval that vanish at the origin, d is the
metric induced by the uniform norm, B is the countable set of piecewise linear functions f vanishing at
the origin with slopes and points of non-differentiability all rational numbers and where W is the Wiener
measure.

For recent refinements of this result, the reader is referred to the work of Kjos-Hanssen and Szabados
[Klos-Hanssen and Szabados 2011]. They note that Brownian motion and scaled, interpolated simple
random walks can be jointly embedded in a probability space in such a way that almost surely, the n-step
walk is, with respect to the uniform norm, within a distance O(n− 1

2 logn) of the Brownian path, for all
but finitely many positive integers n. In the same paper, Kjos-Hanssen and Szabados show that, almost
surely, their constructed sequence (xn) of n-step walks is complex in the sense of Definition 1 and all
Martin-Löf random paths have such an incompressible close approximant. This strengthens a result of
Asarin [Asarin 1988], who obtained instead the bound O(n− 1

6 logn).
The following theorem can be extracted from [Fouché(2) 2000]:

Theorem 3 There is a bijection Φ : KC → C and a uniform algorithm that, relative to any KC-string
α, with input a dyadic rational number t in the unit interval and a natural number n, will output the first
n bits of the the value of the complex oscillation Φ(α) at t.

The construction in [Fouché(2) 2000] of the complex oscillation Φ(α) from a given α ∈ KC is as
follows. Beginning with α ∈ KC we can construct a sequence of reals ξ0, ξ1, ξjn, j ≥ 1, 0 ≤ n < 2j; the
sequence is computable in α, j and n. Thereafter, we recursively find x(n/2j) for n, j ∈ N with n ≤ 2j

from the ξ-sequence by solving the equations

x(1) = ξ0, 2x(
1

2
) = ξ0 + ξ1,

and

2x

(

2n+ 1

2j+1

)

= 2−j/2ξjn + x

(

n+ 1

2j

)

+ x
( n

2j

)

.

By the arguments in [Fouché(2) 2000], the complex oscillation Φ(α) associated with a given α ∈ KC turns
out to be the unique continuous function which assumes, for every dyadic rational d, the value x(d). In
this way, one can effectively compute any finite initial segment of the value of Φ(α) at a given dyadic
rational number from some initial segment of α. It also follows from the construction in [Fouché(2) 2000]
that

Φ(α) = −Φ(α̂). (5)

Here α̂ denotes the binary string obtained from α by replacing each bit αi of α by 1− αi.
The mapping Φ is also measure-preserving in the following sense: Let B be a Borel subset of C[0, 1].

Then
λ(α ∈ KC : Φ(α) ∈ B) = W (B).

Let N be the function that associates with every x ∈ C, the set of local minimizers of x. We shall
discuss the measurability and computability of N in Section 4 of this paper. Thus N is the restriction
of MIN to C. We then define the function

MIN : KC −→ (0, 1)∞6= /S∞

by
α 7→ MIN(Φ(α));

this means that the diagram

KC

C

Φ

��❄
❄❄

❄❄
❄❄

❄❄
❄❄

KC (0, 1)∞6= /S∞
MIN // (0, 1)∞6= /S∞

C

??

N

⑧⑧
⑧⑧
⑧⑧
⑧⑧
⑧⑧
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commutes. It follows from (1), (2) and the fact that Φ is measure-preserving, that, for every Borel subset
Σ of (0, 1)∞6= /S∞:

λ(α ∈ KC : MIN (α) ∈ Σ) ∈ {0, 1}.
(The zero-one law for the minimizers of complex oscillations.)

What is essentially at stake here is the Hewitt-Savage theorem together with the statistical similarity
of three strongly random sets:

U ∼ N ∼ MIN .

Remark. It would be interesting to better understand the Borel subsets Σ of (0, 1)∞6= /S∞ having Λ
measure one such that MIN (α) ∈ Σ for all α ∈ KC In this paper we shall prove

Theorem 4 There is a uniform procedure that, relative to a given α ∈ KC, will yield, for any closed
dyadic subinterval I of the unit interval, a sequence t1, t2, . . . of rationals in I that converges to the
(unique) local minimizer of the complex oscillation, Φ(α), in I. Moreover all the local minimizers of a
complex oscillation are non-computable real numbers.

We shall also prove

Theorem 5 There is a Σ0
3 predicate C(α, ν) over {0, 1}N × {0, 1}N such that for α, ν ∈ {0, 1}N

C(α, ν) ⇐⇒ ν ∈ MIN(Φ(α)) ∧ α ∈ KC.

This is a Σ0
3-representation, in effective descriptive set theory, of countably random dense sets, indepen-

dent and generic as explained above and given by the minimizers of Brownian motions which are encoded
by KC-strings.
Remark. By specialising to a ∆0

2-element Ω0 in KC (a Chaitin real), we thus find a Σ0
4-predicate

describing the local minimizers of the complex oscillation Φ(Ω0).
The proofs of these theorems appear in Section 4 of this paper.

3 Effective descriptions of Brownian motion

It is a daunting task to reflect sample path properties of Brownian motion (nowhere differentiability,
law of the iterated algorithm, fractal geometry) into complex oscillations by defining these phenomena
in terms of the basic events in B (see (4)) which is an effective basis for the uniform norm topology in
C[0, 1]. For this reason the author introduced in [Fouché(1) 2000] another characterisation of the class C
by using basic descriptions relative to effective Boolean subalgebras of the Borel algebra on C[0, 1].

In order to describe this characterisation, we follow [Fouché(1) 2000] to define an analogue of a Π0
2

subset of C[0, 1] which is of constructive measure 0. If F is a subset of C[0, 1], we denote by F its
topological closure in C[0, 1] with the uniform norm topology. For ǫ > 0, we let Oǫ(F ) be the ǫ-ball
{f ∈ C[0, 1] : ∃g∈F ‖f − g‖ < ǫ} of f . (Here ‖.‖ denotes the supremum norm.) We write F 0 for the
complement of F and F 1 for F .

Definition 2 A sequence F0 = (Fi : i < ω) in Σ is an effective generating sequence if

1. for F ∈ F0, for ǫ > 0 and δ ∈ {0, 1}, we have, for G = Oǫ(F
δ) or for G = F δ, that W (G) = W (G),

2. there is an effective procedure that yields, for each sequence 0 ≤ i1 < . . . < in < ω and k < ω a
binary rational number βk such that

|W (Fi1 ∩ . . . ∩ Fin)− βk| < 2−k,

3. for n, i < ω, a strictly positive rational number ǫ and for x ∈ Cn, both the relations x ∈ Oǫ(Fi) and
x ∈ Oǫ(F

0
i ) are recursive in x, ǫ, i and n, relative to an effective representation of the rationals.
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Remark. This definition was motivated by the desire to have a class of basic statistical events, which,
firstly, are relevant to the practice of Brownian motion, and, secondly, is such that one can prove an
effective version of the Donsker invariance principle and therefore, thirdly, to capture the entire class of
complex oscillations.

If F0 = (Fi : i < ω) is an effective generating sequence and F is the Boolean algebra generated by F0,
then there is an enumeration (Ti : i < ω) of the elements of F (with possible repetition) in such a way,
for a given i, one can effectively describe Ti as a finite union of sets of the form

F = F δ1
i1

∩ . . . ∩ F δn
in

where 0 ≤ i1 < . . . < in and δi ∈ {0, 1} for each i ≤ n. We call any such sequence (Ti : i < ω) a recursive
enumeration of F . We say in this case that F is effectively generated by F0 and refer to F as an effectively
generated algebra of sets.

Let (Ti : i < ω) be a recursive enumeration of the algebra F which is effectively generated by the
sequence F0 = (Fi : i < ω) in Σ. It is shown in [Fouché(1) 2000] that there is an effective procedure that
yields, for i, k < ω, a binary rational βk such that

|W (Ti)− βk| < 2−k,

in other words, the function i 7→ W (Ti) is computable.
A sequence (An) of sets in F is said to be F -semirecursive if it is of the form (Tφ(n)) for some total

recursive function φ : ω → ω and some effective enumeration (Ti) of F . (Note that the sequence (Ac
n),

where Ac
n is the complement of An, is also an F -semirecursive sequence.) In this case, we call the union

∪nAn a Σ0
1(F) set. A set is a Π0

1(F)-set if it is the complement of a Σ0
1(F)-set. It is of the form ∩nAn

for some F -semirecursive sequence (An). A sequence (Bn) in F is a uniform sequence of Σ0
1(F)- sets if,

for some total recursive function φ : ω2 → ω and some effective enumeration (Ti) of F , each Bn is of the
form

Bn =
⋃

m

Tφ(n,m).

In this case, we call the intersection ∩nBn a Π0
2(F)-set. If, moreover, the Wiener-measure of Bn converges

effectively to 0 as n → ∞, we say that the set given by ∩nBn is a Π0
2(F)-set of constructive measure 0.

The proof of the following theorem appears in [Fouché(1) 2000].

Theorem 6 Let F be an effectively generated algebra of sets. If x is a complex oscillation, then x is in
the complement of every Π0

2(F)-set of constructive measure 0.

This means, that every complex oscillation is, in an obvious sense, F -Martin-Löf random. The converse
is also true.

Definition 3 An effectively generated algebra of sets F is universal if the class C of complex oscillations
is definable by a single Σ0

2(F)-set, the complement of which is a set of constructive measure 0. In other
words, F is universal iff a continuous function x on the unit interval is a complex oscillation iff x is
F-Martin-Löf random.

We introduce two classes of effectively generated algebras G and M which are very useful for reflecting
properties of one-dimensional Brownian motion into complex oscillations.

Let G0 be a family of sets in Σ each having a description of the form:

a1X(t1) + · · ·+ anX(tn) ≤ L (6)

or of the form (6) with ≤ replaced by <, where all the aj , tj (0 ≤ tj ≤ 1) are non-zero computable real
numbers, L is a recursive real number and X is one-dimensional Brownian motion.

We require that it be possible to find an enumeration (Gi : i < ω) of G0 such that, for given i, if Gi

is gi ven by (6), we can effectively compute the sign, and for every n, a rational approximation to each
of aj , tj with error at most 1/n.
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As in [Fouché(2) 2000] in can be shown that G0 = (Gi : i < ω) is an effective generating sequence
in the sense of Definition 2. The argument on p 325 of [Fouché(2) 2000] holds verbatim for this slight
generalisation. The associated effectively generated algebra of sets G will be referred to as a gaussian
algebra.

It is shown in [Fouché(1) 2000] that if G0 is defined by events of the form (6) with n = 1 and a1 = 1,
then the associated G is in fact universal in the sense of Definition 3.

For a closed subinterval I of the unit interval and a real number b, we write [M(I) ≥ b] for the event
[sup{X(t) : t ∈ I} ≥ b] and [m(I) ≤ b] for the event [inf{X(t) : t ∈ I} ≤ b], where X is one-dimensional
Brownian motion on the unit interval. We let M0 be the set of the events of the form [M(I) ≤ b] or
[m(I) ≤ b] where b is an arbitrary rational number and where I is a subinterval of the unit interval with
rational endpoints. It follows from the arguments on pp 434 - 438 in [Fouché(1) 2000] that the elements
of M0 can be effectively enumerated rendering M0 an effective generating sequence. We denote by M
the Boolean algebra generated by M0. It is shown in [Fouché(1) 2000] that M too is in fact universal.

We shall also make frequent use of the following result from [Fouché(1) 2000] which is an easy con-
sequence of Theorem 6. It is the analogue, for continuous functions, of the well-known fact that Kurtz-
random reals contain the class of Martin-Löf random reals.

Theorem 7 If B is a Σ0
1(F) set and W (B) = 1, then C, the set of complex oscillations, is contained in

B.

4 Local minimizers of Brownian motion

In this section we shall prove Theorems 4 and 5. A crucial remark is that the the local minimizers in
subintervals of the unit interval of complex oscillations are uniquely determined:

Proposition 1 If x ∈ C, and I1, I2 are closed disjoint subintervals of the unit interval having rational
endpoints, then

inf
t∈I1

x(t) 6= inf
t∈I2

x(t).

The proof is a constructive version of the argument on p 20 of [Peres]. We shall need the following

Lemma 1 Let Z1, Z2 be independent real-valued random variables on some probability space with Z2

having a non-atomic distribution. Then, almost surely, Z1 + Z2 6= 0.

Proof. For i = 1, 2, write µi for the distribution measure of Zi. Then Z1 + Z2 has the convolution
product µ1 ∗ µ2 as its distribution measure, which will be non-atomic when µ2 is. Indeed, for a Borel set
A of real numbers,

(µ1 ∗ µ2)(A) =

∫

R

µ2(A− t)dµ1(t),

and for A = {0}, it is the case that µ2(A− t) = 0 for all t (the measure µ2 being non-atomic). The result
follows since µ1 ∗ µ2({0}) is the probability of the event [Z1 + Z2 = 0].
Proof of Proposition 1. It is well known (see p20 of [Peres]) that, under the hypotheses on I1, I2,
almost surely, m(I1) 6= m(I2). Indeed, let I1 = [a1, b1] and I2 = [a2, b2] denote the lower and higher
interval, respectively. Then the event [m(I1) = m(I2)] is the same as

X(a2)−X(b1) = (m(I1)−X(b1))− (m(I2)−X(a2)).

Since successive increments of Brownian motion are statistically independent, the random variable
given by the expression on the right-hand side of this equation is independent from the the random
variable on the left-hand side while the latter is non-atomic, being absolutely continuous with respect to
Lebesgue measure. It follows from the preceding lemma that m(I1) 6= m(I2) almost surely.

The event [m(I1) 6= m(I2)] is described by the following Σ0
1(M) event of Wiener measure one:

∃r∈Q

(

m(I1) < r < m(I2)
)

∨
(

m(I2) < r < m(I1)
)

.
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The proposition follows from Theorem 7 with F = M.
The proposition has the following

Corollary 1 For every complex oscillation, for every dyadic interval I in the unit interval, there is a
unique point in I where the minimum of x is assumed.

We shall refer to this point as the minimizer of x in I. We shall also need

Lemma 2 If x ∈ C and d1, d2 are distinct rational numbers in the unit interval, then x(d1) 6= x(d2).

Proof. Indeed, for a one-dimensional Brownian motion X , the random variable X(d1)−X(d2) is normal
with variance |d1 − d2| and is therefore non-atomic being absolutely continuous with respect to Lebesgue
measure. Consequently, almost surely, X(d1) 6= X(d2).

Moreover, the almost sure event [X(d1) 6= X(d2)] has a Σ0
1(G) description with respect to a suitable

gaussian algebra G. The description is given by the predicate

∃r∈Q+ |x(d1)− x(d2)| > r

over C[0, 1]. Next apply Theorem 7 with F = G.
Remark. The preceding argument can very easily be adapted to show that each complex oscillation is
injective when restricted to the computable reals in the unit interval.

A consequence of Proposition 1 is that for x ∈ C, one can associate, with every dyadic subinterval
I of the unit interval, the unique real number τxI ∈ I which is the local minimizer of x in the interval
I. By using this fact we shall now show that one can find a measurable mapping N : KC → (0, 1)∞6=
which upon composition with the projection π : (0, 1)∞ → (0, 1)∞6= /S∞ yields the strongly random set
MIN : KC → (0, 1)∞6= /S∞.

To define N we firstly note that it follows from Lévy’s arcsine law that the distribution of the variables
τxI are all absolutely continuous with respect to Lebesgue measure. (See, for example [Peres].)

In fact, it follows from Lévy’s arcsine law that, if I = [a, b] and a < α < β < b then

W (α < τxI < β) =
1

π

∫
β−a
b−a

α−a
b−a

dt
√

t(1− t)
.

In particular, for a recursive real number r in and a dyadic subinterval I of the unit interval, the event
A given by

x ∈ A ⇔ τxI = r

is such that W (A) = 0. Moreover, writing D for the set of dyadic rationals in the unit interval:

x ∈ A ⇔ ∀q∈D x(r) ≤ x(q),

which means that A has a Π0
1(G) description relative to a suitable gaussian algebra G. It again follows

from Theorem 7 that A contains no complex oscillations.
Therefore, writing Rr for the field of recursive real numbers, we have:

Theorem 8 If α ∈ KC then

MIN(Φ(α)) ∩Rr = ∅.

We now define the mapping N : KC → (0, 1)∞6= in stages. At stage 0 we select the unique minimizer
of Φ(α) in the unit interval. At stage n, we first select

(

τ
Φ(α)

[ k
2n

,k+1

2n
]
: 0 ≤ k < 2n

)
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and only add the local minimizers that haven’t been selected at an earlier stage. The enumeration is
well-defined for the minimizers are all, by Theorem 8, not endpoints of the intervals.
Remark. It would be interesting to know, whether, for α ∈ KC it is the case that

MIN(Φ(α)) ⊂ KC.

Proof of Theorem 4. In the sequel we shall, for α ∈ KC, denote the function Φ(α) also by xα.
Let I be a fixed dyadic interval. For n ≥ 1, set

Dn = { k

2n
: 0 ≤ k < 2n ∧ [

k

2n
,
k + 1

2n
] ⊂ I}.

For d ∈ Dn, set Id = [ k
2n ,

k+1
2n ), when d = k

2n . Note that, for each β ∈ I, there is some N such that
β ∈ ∪d∈Dn

Id for all n ≥ N .
It follows from Lemma 2 and Theorem 3 that for α ∈ KC and dyadic rationals d1, d2, the relation

xα(d1) < xα(d2) is decidable in α, d1, and d2. It is because we know that xα(d1) 6= xα(d2). (Lemma 2.)
Fix α ∈ KC and write xα for the associated complex oscillation. The sequence T = (tn) is computed

by the prescription that for all n with Dn nonempty, we let tn be the unique element of Dn such that
xα(tn) < xα(d) for all d ∈ Dn with d 6= tn. In view of Theorem 3, the sequence T is computable from α.

Let (tnk
) be any convergent subsequence of T with limit ν, say. For given η > 0, we have for all k

sufficiently large (≥ L, say) that ν ∈ [tnk
− η, tnk

+ η]. Fix β ∈ I. Next choose L1 ≥ L such for k ≥ L1

we can find some dk in Dnk
such that β ∈ Idk

.
For k ≥ L1

xα(ν)− xα(β) = xα(ν)− xα(tnk
) + xα(tnk

)− xα(dk) + xα(dk)− xα(β),

and, since, by construction,

xα(tnk
) ≤ xα(dk),

the difference xα(ν)−xα(β) can be made to be arbitrarily small by first choosing η sufficiently small and
then k sufficiently large. We conclude that xα(ν) ≤ xα(β). In particular,

xα(ν) = m(I).

Recall that xα has a unique minimizer in I. Hence all the convergent subsequences of T have the
same limit. We can therefore conclude that T is a convergent sequence converging to the unique point in
I where the minimum of xα on I is assumed. This concludes the proof of the theorem.
Remark. Even though the construction of the sequence (ti : i ≥ 0) in the theorem is effective relative
to α ∈ KC, the proof renders no information on the rate of convergence to the local minimizer in the
dyadic interval. This problem will be addressed in a sequel of this paper (in collaboration with George
Davie where it will be shown how it can be uniformly computed from the incompressibility coefficient of
α ∈ KC).

We again write D for the dyadic rationals in the unit interval. For the proof of the Theorem 5, we
shall need the following

Proposition 2 The relations xα(µ) < xα(t) and xα(µ) > xα(t) are each Σ0
2 in α ∈ KC, µ ∈ {0, 1}N

and t ∈ D.

To prove this Proposition, we first discuss the following Lemma:

Lemma 3 There is a uniform algorithm that, having access to an oracle for α ∈ KC, will decide whether

Φ(α)(t) < q,

for t ∈ D and q ∈ Rr.
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Proof: It follows from [Fouché(1) 2000] that, under the above hypotheses on α, t and q

Φ(α)(t) 6= q.

Since

Φ(α)(t) > q ⇔ ∃nΦ(α)(t)(n) > q,

the inequality Φ(α)(t) > q can be algorithmically affirmed if true. (This a direct consequence of Theorem
3.)

To affirm the inequality Φ(α)(t) < q we need only apply (5) and note that

Φ(α)(t) < q ⇔ Φ(α̂)(t) > −q,

to conclude the proof of the lemma. It is shown in [Fouché(2) 2000] that every complex oscillation is
everywhere β-Hölder continuous for any 0 < β < 1

2 . The proof of of the Σ0
2-definability of the relation

xα(µ) < xα(t) now follows from this observation together with Lemma 3 which allows one to infer that:

xα(µ) < xα(t) ⇔ ∃q∈Q∃k∀L≥k xα(µ(L)) < q +
1

2L/3
∧ q < xα(t).

The Σ0
2-definability of xα(µ) > xα(t) now follows from symmetry. (Replace α by α̂.)

Proof of Theorem 5. Using the notation in the proof of the preceding theorem, define, for µ in the
Cantor space {0, 1}N, and for α ∈ KC , the predicate Id(µ, α) to mean that the real in the unit interval
corresponding to µ is the unique minimum on Id of xα. Here again, we have set Id = [ k

2n ,
k+1
2n ), when

d = k
2n . Note that for α ∈ KC.

Id(µ, α) ⇔ µ ∈ Id ∧ ∀t∈Id∩D [xα(µ) < xα(t)].

Since every local minimizer of a complex oscillation is a non-dyadic number, we can replace [xα(µ) < xα(t)]
by [xα(µ) ≤ xα(t)] in the definition of Id(µ, α). It therefore follows from Proposition 2 that the predicate
Id(µ, α) is a Π0

2-formula in µ and α. Writing again N (α) for the set of local minimizers of xα, we find,

µ ∈ N (α) ↔ ∃d∈D Id(µ, α).

This is a Σ0
3-formula in µ and α. Finally note that the set KC is Σ0

2-definable.
Remark: In view of Tsirelson’s Theorem [Tsirelson 2006] (see Theorem 2 above), it is an interesting
problem, to characterise, for x ∈ C, the Borel sets B of Lebesgue measure 0 that are disjoint from MIN(x).
This is not always the case. For instance, if B = {z} where z is the minimum of x on the unit interval
then of course B will intersect the local minimisers of x. On the other hand, if B = Zx, the zero set of
x, then B does have Lebesgue measure 0 and will be disjoint from MIN(x). To see this, note that if X
is a continuous version of one-dimensional Brownian motion, then, almost surely, no local minimum of
X will be a zero of X . For otherwise, there will be a neighbourhood of some zero of X containing no
other zeroes of X , which contradicts the well-known fact that the zero set of X is almost surely perfect
(the zero set being, for instance, almost surely, a set of non-zero Hausdorff dimension). It follows that,
we have, for each interval I in the unit interval, almost surely

∃r∈Q+ m(I) < −r ∨m(I) > r.

This is, for each closed interval I with rational endpoints, a Σ0
1(M) event of full Lebesgue measure and is

consequently reflected in every complex oscillation. We conclude that if x is a complex oscillation, then

Zx ∩ MIN(x) = ∅.
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