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The structure of the Wadge degrees on zero-dimensional spaces is very simple (almost
well-ordered), but for many other natural non-zero-dimensional spaces (including the
space of reals) this structure is much more complicated. We consider weaker notions of
reducibility, including the so-called A%-reductions, and try to find for various natural
topological spaces X the least ordinal ax such that for every ax < 8 < wi the
degree-structure induced on X by the A%—reductions is simple (i.e. similar to the Wadge
hierarchy on the Baire space). We show that ax < w for every quasi-Polish space X,
that ax < 3 for quasi-Polish spaces of dimension # oo, and that this last bound is in
fact optimal for many (quasi-)Polish spaces, including the real line and its powers.
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1. Introduction

A subset A of the Baire space N' = w* is Wadge reducible to a subset B if and only if
A = f~Y(B) for some continuous function f: A" — N. The structure of Wadge degrees
(i.e. the quotient-structure of (Z(N), <w)) is fairly well understood and turns our to
be rather simple. In particular, the structure (B(N), <w) of the Wadge degrees of Borel
sets is semi-well-ordered by (Wadge 1984), i.e. it has no infinite descending chain and
for every A,B € B(N) we have A < B or N\ B <w A, which implies that the
antichains have size at most two. More generally: if all the Boolean combinations of
sets in a pointclass T' € F(N) (closed under continuous preimages) are determined,
then the Wadge structure restricted to I' is semi-well-ordered. For example, under the
Axiom of Projective Determinacy PD the structure of the Wadge degrees of projective
sets is semi-well-ordered, and under the Axiom of Determinacy AD, the whole Wadge
degree-structure remains semi-well-ordered.

The Wadge degree-structure refines the structure of levels (more precisely, of the Wadge
complete sets in those levels) of several important hierarchies, like the stratification of
the Borel sets in X9 and ITY sets, or the Hausdorfl-Kuratowski difference hierarchies, and
serves as a nice tool to measure the topological complexity of many problems of interest
in descriptive set theory (DST) (Kechris 1995), automata theory (Perrin and Pin 2004}
Selivanov 2008b)), and computable analysis (CA) (Weihrauch 2000).

There are several reasons and several ways to generalize the Wadge reducibility <w
on the Baire space. For example, one can consider

(1) other natural classes of reducing functions in place of the continuous functions;

(2) more complicated topological spaces instead of A/ (the notion of Wadge reducibility
makes sense for arbitrary topological spaces);

(3) reducibility between functions rather than reducibility between sets (the sets may be
identified with their characteristic functions);

(4) more complicated reductions than the many-one reductions by continuous functions.

In any of the mentioned directions a certain progress has been achieved, although in
many cases the situation typically becomes more complicated than in the classical case.

For what concerns the possibility of using other sets of functions as reducibilities
between subsets of N, in a series of papers, A. Andretta, D. A. Martin, and L. Motto
Ros considered the degree-structures obtained by replacing continuous functions with
one of the following classes:

(a) the class of Borel functions, i.e. of those f: N — AN such that f~(U) is Borel for
every open (equivalently, Borel) set U (see (Andretta and Martin 2003)));
(b) the class D, of A2-functions (for a < wy), i.e. of those f: N' — N such that f~1(D) €
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A for every D € AY (see (Andretta 2006) for the case o = 2, and (Motto Ros 2009)
for the general case);

(c) for v < wy an additively closed ordinal, the collection B, of all functions of Baire
class < v, i.e. of those f: N' — N for which there is o < 7 such that f~1(U) € 9
for every open set U (see (Motto Ros 2010&))|ﬂ;

(d) the class of X} functions (for n € w), i.e. the class of those f: N' — AN such that
fHU) € B! for every open (equivalently, 31) set U (see (Motto Ros 2010D).

It turns out that the degree-structures resulting from (a)—(c), as for the Wadge degrees
case, are all semi-well-ordered when restricted to the class of Borel sets or, provided
that all Boolean combinations of sets in I' are determined, to any pointclass ' C Z(N)
closed under continuous preimages (hence, in particular, to the entire £(N') when AD is
assumed) and that under the full AD also the degree-structures resulting from (d) are
semi-well-ordered (on the entire Z2(N)): thus, we obtain a series of natural classifications
of subsets of the Baire space which are weaker than the Wadge one.

Concerning Polish spaces different from the Baire space, using the methods developed
in (Wadge 1984)) it is immediate to check that the structure of Wadge degrees on any
zero-dimensional Polish space remains semi-well-ordered (this follows also from Propo-
sition [4). On the other hand, P. Hertling showed in (Hertling 1996) that the Wadge
hierarchy on the real line R is much more complicated than the structure of Wadge de-
grees on the Baire space. In particular, there are infinite antichains and infinite descend-
ing chains in the structure of Wadge degrees of AJ sets. Recently, this result has been
considerably strengthened in (Ikegami et al. 2012). Moreover, P. Schlicht also showed
in (Schlicht 2012) that the structure of Wadge degrees on any non zero-dimensional met-
ric space must contain infinite antichains, and V. Selivanov showed in (Selivanov 2005
that the Wadge hierarchy is more complicated also when considering other natural topo-
logical spaces (e.g. the so-called w-algebraic domains).

As already noted, if one passes from continuous reductions between sets to continuous
reductions between functions, the situation becomes much more intricate. Even when
considering the simplest possible generalization, namely continuous reductions between
partitions of the Baire space into 3 < k € w subsets, the degree-structure obtained is
rather complicated, e.g. there are antichains of arbitrarily large finite size. On the other
hand, it is still a well-quasi-order (briefly, a wqo), i.e. it has neither infinite descending
chains nor infinite antichains: hence it can still serve as a scale to measure the topological
complexity of k-partitions of the Baire space — see the end of Subsection and the
references contained therein.

In the fourth direction (more complicated reductions), the so called Weihrauch re-
ducibility became recently rather popular: it turns out to be very useful in characterizing
the topological complexity of some important computational problems, and also in under-
standing the computational content of some important classical mathematical theorems

T Notice that we cannot take a single level of the Baire stratification because in general it is not closed
under composition, and hence does not give a preorder when used as reducibility between sets of reals.

¥ In fact, for the cases of Borel functions and A9 -functions, the corresponding degree-structures are
even isomorphic to the Wadge one.
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— see e.g. (Hertling 1996; [Brattka and Gherardi 2011a; [Brattka and Gherardi 2011b;
Kudinov et al. 2010)).

In this paper we aim to make the first three kinds of generalizations interact with each
other, namely we will consider some weaker versions of the Wadge reducibility (including
the ones mentioned above), and study the degree structures induced by them on arbitrary
quasi- Polish spaces, a collection of spaces recently identified in (de Brecht 2011)) by M. de
Brecht as a natural class of spaces for DST and CA. Each of these degree-structures
should be intended as a tool for measuring the complexity of subsets (or partitions)
of the space under consideration: a structure like the Wadge one is nearly optimal for
this goal, but, as already noticed, we get a reasonable notion of complexity also if the
structure is just a wqo. If instead the degree structure contains infinite antichains but is
well-founded, then we can at least assign a rank to the degrees (even if this rank could be
not completely meaningful), while if it is also ill-founded it becomes completely useless as
a notion of classification. These considerations justify the following terminology: a degree-
structure obtained by considering a notion of reducibility (between sets or partitions) on
a topological space will be called
- very good if it is semi-well-ordered;

- good if it is a wqo;
- bad if it contains infinite antichains;
- very bad if it contains both infinite descending chains and infinite antichains.

By the results mentioned above, the Wadge hierarchy on any non zero-dimensional
Polish space is always bad, but we will show that for many other natural reducibilities,
the corresponding hierarchy is very good on a great number of spaces. This is obtained
by computing the minimal complexity of an isomorphism between such spaces and the
Baire space. In particular, after recalling some preliminaries in Section[2 and introducing
various reducibility notions in Section Bl we will show in Section Ml that all uncountable
quasi-Polish spaces are pairwise D,-isomorphic, and that any quasi-Polish space of topo-
logical dimension # oo is even D3-isomorphic to N (and that, in general, the indices w
and 3 cannot be lowered). This fact, together with the results from (Motto Ros 2009;
Motto Ros 2010al), implies that the degree-structures induced by the classes of functions
D, and B, (where v < w; is additively closed) on any uncountable quasi-Polish space
are very good (when restricted to the degrees of Borel sets, or even, under corresponding
determinacy assumptions, to the degrees of sets in any larger pointclass I' C Z(N))
whenever « > w, and that the same is true also for o > 3 when considering quasi-Polish
spaces of dimension # co. In Section [{l we will show that these results are nearly optimal
by showing that the degree-structure induced by the class of functions D2 is (very) bad
on many natural Polish spaces (like the real line R and its powers), and that the Wadge
hierarchy can fail to be very good also on extremely simple countable quasi-Polish spaces.

2. Notation and preliminaries

In this section we introduce a great deal of notation that will be used throughout the
paper. The notation for pointclasses and for isomorphisms between topological spaces
will be introduced at the beginning of Sections Bl and [ respectively.
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2.1. Notation

Unless otherwise specified, we will always work in ZF 4+ DC, i.e. in the usual Zermelo-
Fraenkel set theory together with the Axiom of Dependent Choice.

We freely use the standard set-theoretic notation like |X| for the cardinality of X,
X x Y for the Cartesian product of X and Y, X UY for the disjoint union of X and
Y, Y¥X for the set of all functions f: X — Y, and Z(X) for the set of all subsets of X.
Given a product X x Y we denote by m (respectively, m1) the projection on the first
(respectively, the second) coordinate. For A C X, A denotes the complement X \ A of
Ain X. For A C #Z(X), BC(A) denotes the Boolean closure of A, i.e. the set of finite
Boolean combinations of sets in 4. We identify each nonzero natural number n with
the set of its predecessors {0,...,n — 1}, and the set of natural numbers, which will be
denoted by w, with its order type under <. The first uncountable ordinal is denoted by
w1, while the class of all ordinal numbers is denoted by On. Given a set X and a natural
number i € w, we let [X]' = {Y C X | |Y| =i}. Given an arbitrary partially ordered set
(X, <) (briefly, a poset), we denote by < its strict part, i.e. the relation on X defined by
<y <= x<yANzx#y.

2.2. Spaces and pointclasses

We assume the reader be familiar with the basic notions of topology. The collection of all
open subsets of a space X (i.e. the topology of X) is denoted by 7x or, when the space
is clear from the context, simply by 7. We abbreviate “topological space” to “space” and
denote by 2" the collection of all (topological) spaces. Let % C 2": we say that X € 2
is universal for % if every Y € % can be topologically embedded into X, i.e. there is a
subspace X’ C X such that Y is homeomorphic to X’ (where X’ is endowed with the
relative topology inherited from X). A space X is connected if there are no nonempty
clopen proper subsets of X, and totally disconnected if every connected subset contains
at most one point. A space X is called locally connected if every element has arbitrarily
small connected open neighborhoods. A space X is called o-compact if it can be written
as a countable union of compact sets. For any space X, define the transfinite descending
sequence (X(®) | o € On) of closed subsets of X as follows: X(©) = X X(@+1) — the set
of non-isolated points of X(®) (where z is an isolated point of a space X if {z} is open in
X), and X = N{X®) | B8 < a} if a is a limit ordinal. The space X is called scattered
if and only if (), con X = 0.

Let N = w® be the set of all infinite sequences of natural numbers (i.e. of all functions
&: w — w). Let w* be the set of finite sequences of elements of w, including the empty
sequence. For o € w* and £ € N, we write 0 C ¢ to denote that o is an initial segment
of £&. We denote the concatenation of o and £ by ¢ = o -¢ , and the set of all extensions
of o in N by o-N. For £ € N, we can write £ = £(0)€(1) - -- where £(i) € w for each
t < w. Notations in the style of regular expressions like 04, 0™1" or 0*1 have the obvious
standard meaning: for example, 0“ is the w-sequence constantly equal to 0, 0"*1" is the
sequence formed by m-many 0’s followed by n-many 1’s, 0*1 = {0™1 | m € w} is the set
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of all sequences constituted by a finite (possibly empty) sequence of 0’s followed by (a
unique) 1, and so on.

When we endow N with the product of the discrete topologies on w we obtain the so-
called Baire space. This topology coincides with the topology generated by the collection
of sets of the form o - N for 0 € w*. The Baire space is of primary interest for DST
and CA: its importance stems from the fact that many countable objects are coded
straightforwardly by elements of NV, and it has very specific topological properties. In
particular, it is a perfect zero-dimensional space and the spaces N2, N¥, w x N =
NUNU... (endowed with the product topology) are all homeomorphic to N.

The subspace C = 2% of N formed by the infinite binary strings (endowed with the
relative topology inherited from N) is known as the Cantor space. In this paper, we
will also consider the space w (with the discrete topology), the space R of reals (with
the standard topology), and the space of irrationals number (with the relative topology
inherited from R), which is homeomorphic to N.

A pointclass on the space X is a collection T'(X) of subsets of X. A family of point-
classes is a family T' = {T'(X) | X € 2"} indexed by arbitrary topological spaces such
that each I'(X) is a pointclass on X and T is closed under continuous preimages, i.e.
f71(A) € T(X) for every A € T'(Y) and every continuous function f: X — Y (families of
pointclasses are sometimes called boldface pointclasses by other authors). In particular,
any pointclass I'(X) in such a family is downward closed under the Wadge reducibility
on X.

Trivial examples of families of pointclasses are £, F, where £(X) = {0} and F(X) =
{X} for any space X € 2. Another basic example is given by the collection {rx | X €
2} of the topologies of all the spaces.

Finally, we define some operations on families of pointclasses which are relevant to hi-
erarchy theory. The usual set-theoretic operations will be applied to the families of point-
classes pointwise: for example, the union | J; I'; of the families of pointclasses I'o,T'y, ...
is defined by (|J,; I';)(X) = U, Ti(X). A large class of such operations is induced by the
set-theoretic operations of L. V. Kantorovich and E. M. Livenson which are now better
known under the name “w-Boolean operations” (see (Selivanov 2011) for the general def-
inition). Among them are the operation I — T, where I'(X),, is the set of all countable
unions of sets in I'(X), the operation T' — T, where I'(X),. is the set of all complements
of sets in I'(X'), and the operation I' — Iy, where I'(X), is the set of all differences of
sets in I'(X).

2.3. Classical hierarchies in arbitrary spaces

First we recall from (Selivanov 2004) the definition of the Borel hierarchy in arbitrary
spaces.

Definition 2.1. For a < wi, define the family of poinclasses X0 = {Z%(X) | X € 27}
by induction on « as follows: £9(X) = {0}, X9(X) = 7x, and Z9(X) = ((Z9(X))a)s
is the collection of all countable unions of differences of open sets. For a > 2, 9 (X) =
(Uﬁ<a(§]%(X))c)g is the class of countable unions of sets in Uﬁ<a(2%(X))c).
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We also let TIR(X) = (X%(X)). and AY = 2% NTIY,. We call a set proper Xj(X) if it
is in 2j(X) \ TIH(X).

Notice that by definition £ = € and II} = F. When A < w; is a limit ordinal, we let
22, =Uacr 29, and similarly T2, = (J, IS and A%, =J,., A%. Notice that all
of X%, MY, and AY, are families of pointclasses as well.

The sequence (X2(X), TI2(X), A% (X) | a < w;) is called the Borel hierarchy of X.
The pointclasses X9 (X), II? (X) are the non-selfdual levels of the hierarchy (i.e. they are
the levels which are not closed under complementation), while the pointclasses AY (X) =
30 (X)NIY(X) are the self-dual levels (as is usual in DST, we will apply this terminology
also to the levels of the other hierarchies considered below). The pointclass B(X) of Borel
sets of X is the union of all levels of the Borel hierarchy, and B = {B(X) | X € 27}
is the family of pointclasses of Borel sets. It is straightforward to check by induction on
a, 8 < wy that using Definition 2.I] one has the following result.

Proposition 2.2. For every X € 2 and for all o < 8 < wy, Z(X), I (X) C
AY(X) C ZH(X), Ij(X).

Thus if A\ < wy is a limit ordinal we have £%, =12, = A% .

Remark 2.3. Definition 2.1l applies to all the spaces X € 2", and Proposition 2.2l holds
true in the full generality. Note that Definition 2] differs from the classical definition
for Polish spaces (see e.g. (Kechris 1995, Section 11.B)) only for the level 2, and that for
the case of Polish spaces our definition of Borel hierarchy is equivalent to the classical
one. The classical definition cannot be applied in general to non metrizable spaces X
(like e.g. the non discrete w-algebraic domains) precisely because with that definition the
inclusion £9(X) C ¥3(X) may fail.

The Borel hierarchy is refined by the difference hierarchies (over the family of point-
classes X9, a < wy) introduced by Hausdorff and Kuratowski. Recall that an ordinal «
is called even (respectively, odd) if & = A + n where X is either zero or a limit ordinal,
n < w, and the number n is even (respectively, odd). For an ordinal o, let r(a) = 0 if «
is even and r(a) = 1, otherwise. For any ordinal 1 < o < w1, consider the operation D,

sending any sequence (Ag | 8 < a) of subsets of a space X to the subset of X

Da((4s 8 <)) = J{4s\UU,_, 4, | B<a,r(8) # r(@)}.

Definition 2.4. For any ordinal 1 < a < w; and any family of pointclasses I'; let
D, (T')(X) be the class of all sets of the form D, ({Ag | 8 < «)), where the Ag’s form an
increasing (with respect to inclusion) sequence of sets in I'(X), and then set Dy (T) =
{Da(D)(X) | X € 27}

To simplify the notation, when T' = X9 we set I,1(X) = Do(Z9)(X), I 1(X) =
{X\A] A e HX)}, and AJYX) = I;1(X) NI HX) for every 1 < a < w;.
Finally, we further set 5 (X) = {0} and TI;*(X) = {X}.

For example, ¥, (X) and 2;(X) consist of the the sets of the form, respectively,
(A1\Ao)U(A3\ A2) and |, ., (A2i11\ A2i), where the A;’s form an increasing sequence of
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open subsets of X. Notice that the requirement that the sequence of the Ag’s be increasing
can be dropped (yielding to an equivalent definition of the pointclass D, (T")(X)) when
I'(X) is closed under countable unions. This in particular applies to the case when T is
the pointclass of open sets or one of the pointclasses Zg. Moreover, it is easy to see that
any level of the difference hierarchy over %, o < wy, is again a family of pointclasses.

2.4. w-continuous domains

In this section we will briefly review the notation and some (basic) facts concerning w-
continuous domains which will be used in the following sections. For all undefined notions
and for a more detailed presentation of this topic (as well as for all omitted proofs) we
refer the reader to the standard monograph (Giertz et al. 2003).

Let (X, <) be an arbitrary poset. The Alexandrov topology on (X, <) is formed by
taking the upward closed subsets of X as the open sets. The continuous functions between
two spaces endowed with the Alexandrov topology coincide with the monotone (with
respect to their partial orders) functions.

Let (X, <) be a poset. A set D C X is directed if any two elements of D have an upper
bound in D. The poset (X, <) is called a directed-complete partial order (briefly, dcpo)
if any non-empty directed subset of X has a supremum in X. The Scott topology on a
depo (X, <) is formed by taking as open sets all the upward closed sets U C X such that
DNU # () whenever D is a non-empty directed subset of X whose supremum is in U. As
it is well-known, every dcpo endowed with the Scott topology is automatically a Ty space
(it is enough to observe that if # £ y then z € U and y ¢ U for U = {z € X | z £ y},
which is clearly Scott open). Note that the order < may be recovered from the Scott
topology because it coincides with its specialization order: x < y if and only if = belongs
to the closure of {y} with respect to the Scott topology. An element ¢ € X is compact
if the set ¢ = {z | ¢ < x} is open, and the set of all compact elements of X is denoted
by Xo. Note that for every ¢ € Xg, Tc is the smallest open neighborhood of ¢, and that
if (X, <) has a top element, then the closure of every non-empty open set is the entire
space.

A depo (X, <) is an algebraic domain if {Tc | ¢ € Xy} is a basis for the Scott topology
of X. An w-algebraic domain is an algebraic domain X such that Xy is countable. An
important example of an w-algebraic domain is the space Pw of subsets of w with the
Scott topology on the directed-complete lattice (£ (w), C) (Pw is sometimes called the
Scott domain): in this space, the compact elements are precisely the finite subsets of w.
Another natural example which will be frequently considered in this paper is (wS*, C),

where wS¥ = w* Uw®: in this case, the compact elements are exactly the sequences in

w*.

For any dcpo (X, <) and z,y € X, let x < y mean that y € int(1z) where int is the
interior operator. This relation is transitive and & < y implies x < y. A depo (X, <)
is a continuous domain if for any Scott-open set U and any x € U there is b € U with
b < z. (X, <) is an w-continuous domain if there is a countable set B C X such that
for any Scott-open set U and any x € U there is b € U N B with b < x. Note that any

w-algebraic domain is an w-continuous domain because we can take B = X.
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In the next proposition we characterize scattered dcpo’s with the Scott topology.

Proposition 2.5. Let (X, <) be a dcpo with the Scott topology. Then X is scattered if
and only if there is no infinite <-ascending chain z¢p < 1 < ... in X.

Proof. Let X have no infinite ascending chain, i.e. (X,>) is well-founded. Consider
the (unique) rank function rk: X — On defined by rk(z) = sup{rk(y) + 1 | < y} for
each z € X. By induction, X(® = {z € X | tk(z) > a} for every ordinal a € On, hence
Nacon X @ =0 and X is scattered.

It remains to show that if X has an infinite ascending chain z¢9 < 1 < ... then X is
not scattered. It suffices to check that the supremum 2z of this chain is in (), o, X (),
First notice that for every X’ C X containing all the x,,’s, each z,, is not isolated in X'
because x,, € tx, N X’ (the smallest open set of X’ containing x,,) for every m > n. In
particular, by induction on « € On one can easily show that x,, € X(®) for every n € w.
We now check by induction that 2 € X(® for each o € On. This is obvious when o = 0
or « is a limit ordinal, so assume that o = § + 1. Suppose, for a contradiction, that
z ¢ X, Then by the inductive hypothesis z € X\ X#+1) 5o {2} is Scott-open
in X, Since x, € X for all n < w, then x, € {z} for some n < w, which is a
contradiction because necessarily z,, # x for every n € w. ]

Corollary 2.6. In any scattered dcpo, the Scott topology coincides with the Alexandrov
topology. The continuous functions between scattered dcpo’s coincide with the monotone
functions.

For future reference, we recall a characterization of the levels of the difference hierarchy
over open sets in w-algebraic domains obtained in (Selivanov 2004) (in (Selivanov 2008al)
this was extended to the context of w-continuous domains). Let (X, <) be an w-algebraic
domain. A set A C X is called approzimable if for any x € A there is a compact element
¢ <z with [¢,z] C A, where [c,z] ={y € X |ec <y < a}.

Let (X, <) be a dcpo endowed with the Scott topology. Given A C X and n € w, a
nondecreasing sequence ag < ... < a, of compact elements of X is said to be alternating
for Aifa; € A <= a1 ¢ A for every i < n. Notice that in this case we necessarily
have ap < ... < a,. For this reason, a sequence as above will be also called alternating
chain for A. An alternating tree for A C X is a monotone function f: (T,C) — (Xo, <)
such that:

(1) T C w* is a well-founded tree (i.e. the partial order (T, 3J) is well-founded), and
(2) flo) e A < f(on) & A, for each on € T (i.e. the image under f of any branch of
T is an alternating chain for A).

The rank of f is the rank of (T, J). An alternating tree f is called 1-alternating (respec-
tively, O-alternating) if f(0) € A (respectively, f(0) & A).

Theorem 2.7. ((Selivanov 2004, Theorem 2.9) and (Selivanov 2005, Proposition 4.13))
Let X be an w-algebraic domain, o < wy, and A C X. Then A € X! if and only if A
and X \ A are approximable and there is no 1-alternating tree of rank a for A. Moreover,
if & < w then any set in ;1\ TI;! (resp. in A1, \ (251 UTILY)) is Wadge complete
in 331 (resp. in A1)



L. Motto Ros, P. Schlicht and V. Selivanov 10

2.5. Polish and quasi-Polish spaces

Recall that a space X is Polish if it is countably based and admits a metric d compatible
with its topology such that (X, d) is a complete metric space. Examples of Polish spaces
are the Baire space, the Cantor space, the space of reals R and its Cartesian powers R"
(n € w), the closed unit interval [0, 1], the Hilbert cube [0,1]*, and the space R¥. It is
well-known that both the Hilbert cube and R“ are universal for Polish spaces (see e.g.
(Kechris 1995, Theorem 4.14)).

A natural variant of Polish spaces has recently emerged, the so-called quasi-Polish
spaces. This class includes all Polish spaces and all w-continuous domains (the main
objects under consideration in DST and domain theory, respectively), and provides a
unitary approach to their topological analysis. Moreover, it has shown to be a relevant
class of spaces for CA. In the rest of this section we will provide the definition of these
spaces and recall some of their properties that will be used later.

Given a set X, call a function d from X x X to the nonnegative reals quasi-metric
whenever x = y if and only if d(z,y) = d(y,z) = 0, and d(z,y) < d(z, z) + d(z,y) (but
we don’t require d to be symmetric). In particular, every metric is a quasi-metric. Every
quasi-metric on X canonically induce the topology 74 on X, where 74 is the topology
generated by the open balls By(z,¢) = {y € X | d(x,y) <e} for z € X and 0 # ¢ € R™.
A (topological) space X is called quasi-metrizable if there is a quasi-metric on X which
generates its topology. If d is a quasi-metric on X, let d be the metric on X defined by
d(z,y) = max{d(x,y),d(y,z)}. A sequence (x, | n € w) is called d-Cauchy sequence if
for every 0 # ¢ € R* there is N € w such that d(xy, ) < € for all N < n < m. We
say that the quasi-metric d on X is complete if every d-Cauchy sequence converges with
respect to d (notice that this definition is coherent with the notion of completeness for a
metric d, as in this case d = d).

Definition 2.8. A Tj space X is called quasi-Polish if it is countably based and there is a
complete quasi-metric which generates its topology. When we fix a particular compatible
complete quasi-metric d on X, we say that (X, d) is a quasi-Polish metric space.

Notice that every Polish space is automatically quasi-Polish, but, as recalled above,
also every w-continuous domain is quasi-Polish by (de Brecht 2011, Corollary 45). For
example, a complete quasi-metric which is compatible with the topology of the Scott
domain Pw is given by d(z,y) = 0 if 2 C y and d(z,y) = 2=+ if n is the smallest
element in x \ y (for every, z,y C w). De Brecht’s paper (de Brecht 2011)) shows that
there is a reasonable descriptive set theory for the class of quasi-Polish spaces which
extends the classical theory for Polish spaces in many directions, for example:

Proposition 2.9. (de Brecht 2011, Corollary 23) A subspace of a quasi-Polish space X
is quasi-Polish if and only if it is TI3(X).

It is not difficult to see that if (X, d) is a quasi-Polish metric space then (X,d) is a
Polish metric space, and that the following holds.

Proposition 2.10. (de Brecht 2011 Corollary 14) For every quasi-Polish metric space
(X,d), 74 € 75 € 29(X, 74). Hence, in particular, % (X, 74) = 2% (X,7;), and the



Wadge-like reducibilities on arbitrary quasi-Polish spaces 11

identity function idy is continuous from (X,7;) to (X,74) and is X9-measurable from
(X, 71q) to (X, 7).

This implies that each quasi-Polish space is in fact a standard Borel space, and
hence that the Souslin’s separation theorem holds in the context of quasi-Polish spaces
(de Brecht 2011, Theorem 58): if X is quasi-Polish then B(X) = Al(X). Moreover, the
Borel hierarchy on uncountable quasi-Polish spaces does not collapse.

Proposition 2.11. (de Brecht 2011, Theorem 18) If X is a quasi-Polish space, then for
all a < < wi, B(X), T(X) € AJ(X) ¢ Z3(X), I(X).

As for universal quasi-Polish spaces, we have the following result:

Proposition 2.12. (de Brecht 2011l Corollary 24) A space is quasi-Polish if and only
if it is homeomorphic to a II9-subset of Pw (with the relative topology inherited from
Pw). In particular, Pw is a universal quasi-Polish space.

A quasi-Polish space need not to be T;. However one can still prove that the complexity
of the singletons is not too high. Recall from e.g. (de Brecht 2011]) that a space X satisfies
the Tp-aziom if {z} is the intersection of an open and a closed set for every = € X.

Proposition 2.13.

(1) (de Brecht 2011, Proposition 8) If X is a countably based Ty-space then {z} € II3(X)
for any z € X.

(2) (de_Brecht 2011, Theorem 65) A countably based space is scattered if and only if it
is a countable quasi-Polish space satisfying the Tp-axiom.

(3) (Folklore) If (X, <) is a dcpo endowed with the Scott topology, then {c} is the inter-
section of an open set and a closed set for every compact element ¢ € Xj.

Of course, a quasi-Polish space need not to have any other special topological property:
for example, all nondiscrete w-continuous domain are not Hausdorff and not regular. As
for metrizability, we have the following result:

Proposition 2.14. (de Brecht 2011} Corollary 42) A metrizable space is quasi-Polish if
and only if it is Polish.

Finally, among the various characterizations of the class of quasi-Polish spaces pre-
sented in (de Brecht 2011)), the following one will be of interest for the results of this

paper.
Proposition 2.15. (de Brecht 2011, Theorem 53) A topological space X is a quasi-

Polish space if and only if it is homeomorphic to the set of non-compact elements of
some w-algebraic domain.

2.6. Reducibilities

In this subsection we introduce and briefly discuss some notions of reducibility which

serve as tools for measuring the topological complexity of problems (e.g. sets, partitions,
and so on) in DST and CA.
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Definition 2.16. Let X € 2 be a topological space. A collection of functions F from
X to itself is called reducibility (on X ) if it contains the identity function idx and is
closed under composition.

Given a reducibility F on X, one can consider the preorder <% on Z(X) associated
to F obtained by setting for A, B C X

A<EB < A= f(B) for some f € F.
The preorder §§ canonically induces the equivalence relation
A=%¥B < A<y BAB<3 A.

Given A C X, the set [A]X = {B C X | A =X B} is called the F-degree of A (in
X). We denote the set of F-degrees by DX. Notice that <% canonically induces on
DX the partial order [A]X < [B]X¥ <= A <& B. The structures (Z(X),<%X) or its
=Z%-quotient (D¥, <) are both called F-hierarchy (on X ) or hierarchy of the F-degrees.
When the space X is clear from the context, we drop the superscript referring to X
in all the notation above. Notice that if F is the collection of all continuous functions,
then <x coincides with the Wadge reducibility <yw. We will also sometimes consider
the restriction of the F-hierarchy to some suitable pointclass I'(X): in this case, the
structure (T'(X), <x) and its =z-quotient (whenever it is well-defined) will be called
(T, F)-hierarchy.

An interesting variant of the reducibility between subsets of X considered above is
obtained by considering X-namings instead of subsets of X.

Definition 2.17. Let X be a topological space. An X-naming is a function v with
domain X.

There are several natural reducibility notions for namings, the most basic of which is
the following generalization of <.

Definition 2.18. (Selivanov 2005} [Selivanov 2011)) An X-naming p is Wadge reducible
to an X-naming v (in symbols u <w v) if 4 = v o f for some continuous function
X - X.

An X-naming p is Wadge equivalent to v (in symbols pu =w v), if p <w v and v <w p.

For any set S, one can then consider the preorder (SX, <w) (or its =w-quotient struc-
ture). This gives a generalization of the preorder formed by the classical Wadge reducibil-
ity on subsets of X, because if S = {0, 1} then the structures (Z(X), <w) and (S, <w)
are isomorphic: A <y B if and only if ¢4 <w cp, where c4: X — 2 is the character-
istic function of the set A C X. Passing to an arbitrary set S, the Wadge reducibility
between X-namings on S corresponds to the continuous reducibility between partitions
of X in (at most) |S|-many pieces. For this reason, when S = & is a cardinal number the
elements of K~ are also called xk-partitions of X. Moreover, as for the Wadge reducibility
between subsets of X, we can consider the restriction of (S¥, <) to a pointclass T'(X).
In particular, when S = k (for some k € w) we denote by (I'(X))s the set of k-partitions
v € kX such that v=1(i) € T'(X) for every i < k.
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Already for 3 < k € w, the structure (kN ,<w) becomes much more complicated
than the structure of Wadge degrees on N, but when restricted to suitable point-
classes it is quite well understood. In (van Engelen et al. 1987) it is shown that the
structure ((A1(N))k, <w) is a wqo, i.e. it has neither infinite descending chain nor infi-
nite antichain. In (Hertling 1993} [Selivanov 2007) the =w-quotient structures of, respec-
tively, ((BC(Z9)(N))k, <w) and ((AY(N))k,<w) were characterized in terms of the
relation of homomorphism between finite and, respectively, countable well-founded k-
labeled forests. The mentioned characterizations considerably clarify the corresponding
structures ((BC(Z9)(N))k, <w) and ((AY(N))k, <w), and led to deep definability the-
ories for them developed in (Kudinov and Selivanov 2007; [Kudinov and Selivanov 2009;
Kudinov et al. 2009)). In particular, both structures have undecidable first-order theo-
ries, and their automorphism groups are isomorphic to the symmetic group on k. Similar
results are also known for k-partitions of w=¥, see (Selivanov 2010).

Of course one can consider other variants on the notion of continuous reducibility
between X-namings. For example, given a reducibility F on X and a set S, one can
consider the F-reducibility S?_-’X between X-namings defined in the obvious way (as
usual, when S and/or X are clear from the context we will drop any reference to them in
the notation): in this paper we will also provide some results related to this more general
notion of reducibility.

3. Some examples of reducibilities

There are various notions of reducibility F that have been considered in the literature
(see e.g. (Andretta 2006; [Andretta and Martin 2003} Motto Ros 2009; Motto Ros 20104}
Motto Ros 2010b)). In this section we will provide several examples which are relevant
for this paper.

Let T', A be two families of pointclasses and X, Y be arbitrary topological spaces. We
denote by TA(X,Y) (respectively, TA[X,Y]) the collection of functions f: X — Y such
that f~*(A) € I'(X) for all A € A(Y) (respectively, f(A) € A(Y) for all A € T'(X)).
Notice that if f: X — Y is an injection then f € TA(X,Y) < f~! € AT[f(X), X].
If moreover f: X — Y is such that f(X) € A and A is closed under finite intersections,
then f € TA[X,Y] < f~! € AT(f(X), X). We abbreviate I'T(X,Y) with T'(X,Y)
and I'T[X,Y] with T'[X,Y]. When writing T' C IV we mean that T'(X) C IV(X) for all
topological spaces X.

Remark 3.1. Let I',T', A, A’, A be families of pointclasses and X,Y, Z be arbitrary

topological spaces.

(1) T C T and A C A’ then TA’(X,Y) C TVA(X,Y) and T'A[X, Y] C TA'[X,Y].

(2)If f €e TA(X,Y) and g € AA(Y, Z) then go f € TA(X, Z).

(3)If f e TA[X,Y] and g € AAJ[Y, Z] then go f €e TA[X, Z].

(4) T'(X, X) is closed under composition and contains the identity function (hence is a
reducibility on X).

In this paper, we will often consider the sets of functions given by using the levels of the
Borel hierarchy in the above definitions. For ease of notation, when I' = X and A = 2§
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(for o, 8 < wi) we will write 39 5(X,Y) and X9, 4[X,Y] instead of X93%4(X,Y) and
30, 33[X, Y], respectively. Similarly, we will write 2 | 5(X,Y") instead of 2, 33(X,Y).
Moreover, we will often denote the class of continuous functions X¢(X,Y’) by W(X,Y),
and write W(X) (or even just W, if X is clear from the context) instead of W(X, X).
(The symbol W stands for W. Wadge, who was the first to initiate in (Wadge 1984) a
systematic study of the quasi-order <y on N.)

Some of these classes of functions are well-known in DST. For example, X9 (X,Y)
coincides (for &« > 1 and X = Y = N) with the class of functions D, considered
in (Motto Ros 2009): for this reason, the class X9 (X, Y") will be often denoted by D, (X, Y).
When X =Y we will simplify a little bit the notation by setting Dy (X) = Do (X, X),
and even drop the reference to X when such space is clear from the context. Notice
that the classes Dy (X) are always reducibilities by Remark B.I(4). It follows immedi-
ately from the above definitions that Do (X,Y) = II2(X,Y) for 1 < a < wy, and that if
a > 2 then Do (X,Y) = A%2(X,Y); when Y is zero-dimensional, then we also have that
D1(X,Y) = A)X,Y).

Another well-known class is 3, | (X,Y"), the collection of all X -measurable functions
from X to Y. Recall that by (Kechris 1995, Theorem 24.3) if « = 8+ 1 and X,Y are
metrizable with Y separable, the class 22,1 coincides with the class of Baire class 8
functions (as defined e.g. in (Kechris 1995, Definition 24.1)). The classes X2, | (X, X) are
not closed under composition if o > 1: as computed in (Motto Ros 2010al, Theorem 6.4),
the closure under composition of X9 | (X, X) is given by B,(X) = Uz, X5 (X, X),
where v = « - w is the first additively closed ordinal above « (as usual, we will drop the
reference to X whenever such space will be clear from the context). Hence, when + is
additively closed the set B, (X) is a reducibility on X. The reducibilities 5. (X) and their
induced degree-structures have been studied in (Motto Ros 2010al). Notice also that in
general {J, -, Da(X) C B,(X) € 22, (X, X)

We now state some properties of these classes of functions.

Proposition 3.2.
DIf1 < a < B < w then Da(X,Y) C Dy(X,Y), and if B is limit Do(X,Y) C
B
£0,(X,Y) C Dy(X, V).
(2)Let 1 < a,8 < w; and 6 = max{a,B} - w (i.e. § is the first additively closed
ordinal strictly above a and ). Then X9 ;(X,Y) C 32;(X,Y). In particular,
Uacy Z01(X,Y) C B2 (X,Y) € D, (X,Y) for every additively closed v < w;.

Proof. The proof of (1) is straightforward, so we just consider (2). If a < S then
) 5(X,Y) € Z%(X,Y) € B25(X,Y) by (1), hence we can assume 3 < a. Arguing by
induction on v < wy, one easily obtains 39, 5(X,Y) C Eg_w’m_v(X,Y). Let o/ < a be
such that S+ o' = a, and let vy = a+ (¢ -w) = f+ (¢ - w) < a-w = §. We claim
that 39 5 € X2 (X,Y), which obviously implies the desired result. Let f € X9 5(X,Y)
and A € £%_(Y). Then for some k < w we have A € Egﬂa,,k) (Y), hence f~1(A) €

ot (o (X) € B2 (X)), as required. 0

In particular, by Proposition B.2(2) all Baire class 1 functions (i.e. the functions in
29 ,(X,Y)) are in % (X,Y), and hence also in D, (X,Y).
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Other kind of reducibilities which will be considered in this paper are given by classes
of piecewise defined functions. Given a family of pointclasses I', a T'-partition of a space
X is a sequence (D, | n € w) of pairwise disjoint sets from I'(X) such that X = J,, ., Dn.
Notice that, in particular, every $0-partition of X is automatically a A%-partition of X
(for every a < wy).

Definition 3.3. (Motto Ros 2011)) Given two spaces X,Y € 27, a collection of functions
F from (subsets of) X to Y, and an ordinal o < w1y, we will denote by D (X,Y) [§l the
collection of those f: X — Y for which there is a X0-partition (equivalently, a A%-
partition) (D,, | n € w) of X and a sequence (f,: D,, = Y | n € w) of functions from F

such that f = U, c,, fn-

In particular, we will be interested in the classes DY (X,Y) = D\(;V(QX’Y)(X, Y'), where
W(C X,Y) = Uxcx W(X',Y), for various o < wi. Notice also that X9(X,Y) =

DE= (S )X, Y) with £2(C X, V) = Uy ZU(X',Y), and that DY(X,Y) € Da(X,Y).
As for the other classes of functions, we will write DY (X)) instead of DY (X, X), and even
drop the reference to X when there is no danger of confusion. It is not hard to check
that each of the DY (X) is a reducibility on X.

It is a remarkable theorem of Jayne and Rogers (Jayne and Rogers 1982, Theorem 5)
(but see also (Motto Ros and Semmes 2010t [Kacena et al. 2012)) for a shorter and simpler
proof) that if X, Y are Polish spaces@ then Do(X,Y) = DY (X,Y). This result has been
recently extended to the level 3 (for the special case X =Y = A) by B. Semmes.

Theorem 3.4. (Semmes 2009) D3(N) = DY (V).

Whether this result can be extended to all 3 < n < w is a major open problem,
but notice however that, as observed e.g. in (Andretta 2007; [Motto Ros 2009), it is not
possible to generalize the Jayne-Rogers theorem to levels o > w. To see this we need
to recall the definition of containment between functions introduced in (Solecki 1998)),
and the definition of a very special function, called the Pawlikowski function. We call
embedding any function between two topological spaces which is an homeomorphism on
its range.

Definition 3.5. (Solecki 1998)) Let Xy, X1,Yp, Y1 € 2 be topological spaces and con-
sider f: Xo — Yp and g: X3 — Y1. We say that f is contained in g, and we write
f E g, just in case there are two embeddings ¢: Xo — X3 and ¢: f(Xo) — Y7 such that
Yof=gop.

It is not hard to check that if f and g are as in Definition and f C g, then
g€ Zg_ﬂ(Xl,Yl) implies f € Zg_ﬂ(XO,YO) for every 1 < o, 8 < wy.

§ Notice that for X =Y = A/, this class of functions was denoted by I~3a}_ in (Motto Ros 2011)). However,
here we will not use the other class of piecewise defined functions considered in that paper, so we can
safely simplify the notation dropping the decoration on the symbol D.

9 In fact the Jayne-Rogers result is even more general, in that its conclusion holds also when X,Y are
arbitrary metric spaces with X an absolute Souslin-.Z set.
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Let us endow the space (w+ 1) with the product of the order topology on w+ 1. The
Pawlikowski function is the function P: (w+ 1)¥ — N defined by

z(n)+1 ifz(n)ew

Ple)(m) = {0 if z(n) = w.

Since (w + 1)“ is a perfect nonempty compact metrizable zero-dimensional space, it is
homeomorphic to the Cantor space C by Brouwer’s theorem (Kechris 1995, Theorem 7.4):
therefore, using the fact that N is homeomorphic to a Gs subset of C, P can actually be
regarded as a function from C to C .

Definition 3.6. Let X, Y be arbitrary Polish spaces. We say that a function f: X — Y
can be decomposed into countably many continuous functions (briefly, it is decomposable)
if there is some partition (D,, | n € w) of X into countably many pieces (of arbitrary
complexity) such that f [ D,, is continuous for every n < w.

Notice in particular that all the functions in {J, DWY(X,Y) are decomposable by defi-
nition, and that if f C g and g is decomposable, then f is decomposable as well. The func-
tion P was introduced as an example of a Baire class 1 function (hence P € X9 ,(C,(C))
which is not decomposable — see e.g. (Solecki 1998). Using this fact, we can now prove
that the Jayne-Rogers theorem cannot be generalized to the infinite levels of the Borel
hierarchy for several uncountable quasi-Polish spaces.

Proposition 3.7. Assume that X,Y are uncountable quasi-Polish spaces and w < a <
wy. If C can be embedded into Y, then DY (X,Y) € D, (X,Y). In particular, DY (X,Y) C
Do (X,Y) for Y a Polish space, Y = w<* or Y = Pw.

Proof. First observe that P € X% (C,C) C D,(C) by Proposition B2, but P ¢
Uacw, DW(C) because P is not even decomposable. Suppose now that X,Y are arbi-
trary uncountable quasi-Polish spaces, and further assume that C embeds into Y.

Claim 3.7.1. Let Z be an uncountable quasi-Polish space. Then there is a continuous
injection of C onto a II9 subset of Z.

Proof of the Claim. Let d be a complete quasi-metric on Z compatible with its topol-
ogy. By the Cantor-Bendixon theorem (Kechris 1995, Theorem 6.4), there is an embed-
ding ¢: C — (Z, 7;). Notice that the range of ¢ is automatically 7;-closed. Therefore by
Proposition 210 we have that ¢: C — (Z, 74) is continuous as well, and that its range is
a TI) set with respect to 74. 0

Let ¢: C — X be a continuous injection with ¢(C) € TI5(X), and let 1: C — Y be
an embedding. Pick an arbitrary yo € Y and define P': X — Y by setting P'(z) =
P(P(p~(x))) if z € o(C) and P'(x) = yo otherwise. It is straightforward to check that
P e 3§,(X,Y) C X% (X,Y) C Du(X,Y) by Proposition 3.2l We will now show that
P’: X =Y is not decomposable, which clearly implies that P’ ¢ DY (X,Y), as required.
Assume towards a contradiction that P’ is decomposable, and let (X, | n € w) be a
countable partition of X such that P, = P’ | X,, is continuous for every n € w. Then
(¢71(X,) | n € w) is a countable partition of C: we will show that for every n € w
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the function P, = P | ¢~!(X,,) is continuous, contradicting the fact that P is not
decomposable. Let U C C be open. Since 1 is an embedding, there is an open V C Y
such that ¥(U) = V N (C). By definition of P, P,y (U) = o *((P,)~(V)), which is
open in ¢~ 1(X,,) because ¢ and P/ are both continuous: therefore P, is continuous. [

Corollary 3.8. Assume that XY are uncountable quasi-Polish spaces and w < a < wy.
If Y is Hausdorff, then DV(X,Y) C D, (X,Y).

Proof. Tt is enough to show that if Y is an uncountable Hausdorff quasi-Polish space
then there is an embedding of C into Y. Let p: C — Y be a continuous injection (which
exists by Claim B.77T). We want to show that for every open U C C, ¢(U) is open in ¢(C).
Since C is compact, C \ U is compact as well. Since ¢ is continuous, then D = ¢(C \ U)
is compact as well, and hence also closed in Y. But then o(U) = (Y \ D) N¢(C) is an
open set with respect to the relative topology of ¢(C), as required. ]

The Pawlikowski function P can in fact be used to characterize decomposable functions
within certain Borel classes. In (Solecki 1998), Solecki proved that if f € £9,(X,Y) with
X,Y Polish spacesm, then f is decomposable if and only if P £ f. Using the technique
of changes of topologies and arguing by induction on n < w, this characterization can
easily be extended] to the wider context of functions in Ui<n<w 2211()(, Y).

Theorem 3.9. (Motto Ros 2012] Lemma 5.7) Let X, Y be Polish spaces and let f be in
E%)l(X, Y') for some 1 < n < w. Then f is decomposable if and only if P [Z f.

Finally, we recall from (Motto Ros 2010al, Proposition 6.6) the following result on the
topological complexity of P.

Proposition 3.10. For every n € w, P ¢ D,(C).

Combining all above results together, we have the following proposition (see also
Lemma 5.8 in (Motto Ros 2012)).

Proposition 3.11. Let X, Y be Polish spaces. For every n < w and f € D,,(X,Y), f is
decomposable.

Proof. By Proposition .10 and the observation following Definition [35] we have that
P Z f, hence f is decomposable by Theorem O

4. Isomorphisms of minimal complexity between quasi-Polish spaces

The following definition extends in various directions the topological notion of homeo-
morphism.

I Solecki’s theorem applies to a slightly wider context, i.e. to the case when X is an analytic space and
Y is separable metric.

Tt In (Pawlikowski and Sabok 2012l Theorem 1.1), Solecki’s characterization of decomposable functions
is further extended (using different and more involved methods) to the even wider context of all Borel
functions from an analytic space X to a separable metrizable space Y, but here we will not need the
above characterization in such generality.
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Definition 4.1.

(1) Let F be a collection of functions between topological spaces, and X,Y € 2Z°. We
say that X and Y are F-isomorphic (X ~z Y in symbols) if there is a bijection
f: X — Y such that both f and f~! belong to F.

(2) If T is a family of pointclasses, we say that two topological spaces X,Y are T'-
isomorphic (X ~r Y in symbols) if X ~7 Y where F = | {T'(X,Y) | X,Y € Z}.
This is obviously equivalent to requiring that X ~g Y where G = | {T'[X,Y] | X,Y €

(3) We say that X,Y € 2 are piecewise homeomorphic (X ~p, Y in symbols) if there
are countable partitions (X,, | n € w),(Y,, | n € w) of, respectively, X and Y such
that X,, and Y,, are homeomorphic for every n € w.

(4) Given a family of pointclasses I', we say that X and Y are I'-piecewise homeomorphic
(X ~pwr) Y in symbols) if and only if there are partitions (X, | n € w), (Y, |
n € w) of, respectively, X and Y counsisting of sets in T' such that X,, and Y, are
homeomorphic for every n € w.

It is obvious that if F C G are two sets of functions between topological spaces and
X,Y € 2 are such that X ~7 Y then X ~g Y. Since the notion of X0 -isomorphism,
IT-isomorphism, and AY-isomorphism all coincide for 2 < o < wi, for simplicity of
notation we will write X ~, Y instead of X ~xo Y. Similarly, when F = [J{D}(X,Y) |
X, Y € 27} we will simply write X ~Y Y instead of X ~5 Y.

Lemma 4.2. Let 1 <a <wj and X,Y € 2. Then X ~V YV if and only if X ~ow(z0) Y
(equivalently, if and only if X ~p,a0) Y).

Similarly, let F be the class of all decomposable functions. Then X ~x Y if and only
if X o~ Y.

Proof. We just consider the first part of the lemma, as the second one can be proved
in a similar way. The direction from right to left directly follows from the definition of
DW(X,Y), so let us assume that f: X — Y is a bijection such that f € D¥(X,Y) and
f~1 € DY(Y, X). By definition, there are partitions (X!, | n € w) and (Y, | m € w) of,
respectively, X and Y in 39 pieces such that f | X/ and f~! | Y/, are continuous for
every n,m < w. This implies that for every n,m < w the sets X, ,y = X, N Yy
and Y, »y = Y, N f(X],) (where (-,-) denotes a bijection between w x w and w) are in
30 as well and form two countable partitions of, respectively X and Y. Then it is easy
to see that f [ X(nm): Xinm) = Yim,n) is a bijection witnessing that X, ,,y and Y, )
are homeomorphic, hence we are done. ]

It is a classical result of DST that every two uncountable Polish spaces X,Y are B-
isomorphic (see e.g. (Kechris 1995, Theorem 15.6)). The next proposition extends this
result to the context of uncountable quasi-Polish spaces and computes an upper bound
for the complexity of the Borel-isomorphism according to Definition ET1

Proposition 4.3. Let F = [J{X§,(X,Y) | X,Y € 2"} and let X, Y be two uncountable
quasi-Polish spaces. Then X = Y. In particular, X = Ao Y and hence also X =, Y.
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Proof. Let dx and dy be complete quasi-metrics compatible with the topologies of, re-
spectively, X and Y, and let d X, dy be the metrics induced by dx and dy . Then by Propo-
sition ZI0idx : (X7 ) — (X, 7ay ) is a continuous function with Z-measurable inverse,
and similarly for idy: (Y,7; ) — (Y, 74, ). Since (X, 7; ) and (Y,7; ) are uncountable
Polish spaces, by e.g. (Kuratowski 1934} p. 212) there is a bijection g: (X, 75 ) — (Y, 75 )
such that both g and g~! are ¥9-measurable. Hence f = idy og o id;(1 is a bijection be-
tween (X, 74y ) and (Y, 74, ) such that both f and f~! are X8-measurable.

The second part of the Proposition follows from Proposition [3.2(2). ]

Proposition 4.4. Every quasi-Polish space is D}'-isomorphic to an w-algebraic domain.

Proof. Let Y be a quasi-Polish space. We can clearly assume that Y is infinite (oth-
erwise Y itself is an w-algebraic domain). By Proposition 2T5] there is an w-algebraic
domain X and a function f:Y — X such that f is an homeomorphism between Y and
X\ Xo, where X is the (countable) set of compact elements of X (see Subsection24]). By
Lemma[£2] it is enough to show that ¥ 2, a0y X. Let (z,, [ n € w) be an enumeration
without repetitions of Xy and (y, | » € w) be an enumeration without repetitions of an
infinite countable subset Y; of Y such that Y\ Yy is non-empty. Then (Y'\ Yo, {yn} | n € w)
and (X \ (XoU f(Y0)), {f(yn)},{zn} | n € w) are countable partitions of, respectively, Y’
and X into ITY pieces by Proposition 2.I3(1). The function f | (Y \ Yp) is an homeomor-
phism between Y \ Yy and X \ (Xo U f(Yp)). For every n € w, the function sending ya,
to f(yn) is an homeomorphism between {y2,} and {f(yn)}, while the function sending
Yon+1 1O T, is an homeomorphism between {y2,4+1} and {z,}. Hence Y Zow(ag) X, as
required. ]

Proposition 4.5.

(1) Let X,Y be countable countably based Tp-spaces. Then X z\év Y if and only if
[ X| =Y.

(2) Let X,Y be countable T} spaces. Then X ~¥ Y if and only if | X| = |Y|.

(3) Let X,Y be scattered countably based spaces. Then X ~¥ Y if and only if | X| = |Y.

In particular, X ~% Y (respectively, ~WV'Y) for X,Y countable quasi-Polish (re-
spectively, Polish) spaces of the same cardinality.

Proof. (1) For the nontrivial direction, notice that by PropositionZI3|(1) any bijection
f: X =Y is a witness of X ~¥' Y.

(2) It is a classical fact that a space is T if and only if its singletons are closed: hence
any bijection between X and Y witnesses X ~¥ V.

(3) By Proposition ZI3(2), {z} is the intersection of an open set and a closed set
for every x € X, and similarly for every y € Y: hence any bijection between X and Y
witnesses X ~y' Y. O

Of course the general results above (Propositions [L.34.4] and [5]) do not give in gen-
eral an optimal bound (in the sense of Definition 1)) on the minimal complexity of an
isomorphism between two specific quasi-Polish spaces X and Y. In the next proposition
we collect some easy observations concerning the possible complexity of isomorphism
between concrete examples of quasi-Polish spaces, including the following:
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(1) w endowed with the discrete topology;
(2) the space R™ (n € w) endowed with the product of the order topology on R;
(3) the w-algebraic domain (w=*,C) endowed with the Scott topology.

Remark 4.6. It is straightforward to check that if f € DY (X,Y) with X o-compact
and Y an Hausdorff space, then the range of f is o-compact as well. In particular, if

X,Y are Polish spaces with X o-compact and Y non o-compact, then there is no onto
feDY(X,Y).

Proposition 4.7.

(N =Y wUN;

(2) if X is a o-compact quasi-Polish space then ' 2% X. In particular, N' ¥ C,
N £V R™ for every n < w, and N ¥ w=v;

(3) N =¥ C. More precisely, there is a bijection f: N’ — C such that f € DY¥(N/,C) and
[t e DY(C,N);

(4) N =¥ R™ for every 1 < n < w. More precisely, there is a bijection f: A" — R™ such
that f € DY(NV,R") and f~! € DY(R", N);

(5) N =¥ w=¥. More precisely, there is a bijection f: N' — w<% such that f € DY (N, w=¥)
and f~1 € DY (w=w, N).

Proof. (1) The space X = N\ {n0% | n € w} is a nonempty perfect zero-dimensional
Polish space whose compact subsets all have empty interior, hence it is homeomorphic to
N by the Alexandrov-Urysohn theorem (Kechris 1995, Theorem 7.7). Let f : X = N be
a witness of this fact, and extend f to a bijection f: N'— w U N by setting f(n0¥) =n
for every n € w. Since X is open in N and each {n0¥} is closed in A, the partition
(X,{n0%} | n € w) of N witnesses that f € D¥(N,w UN). Conversely, the partition
(N,{n} | n € w) is a clopen partition of w U N witnessing f~! € D¥(w UN,N).

(2) Since N is not o-compact, the claim follows from Remark

(3) By part (1), it is enough to prove the claim with A replaced by w U N. Let
f: N = C be the well-known homeomorphism between N and Y = {y € C | Vn3m >
n(y(m) = 1)} given by f(z) = 0°©10*10**10*®) .. Since C \ Y is countable, we
can fix an enumeration (y, | n € w) without repetitions of such a set. Extend ftoa
bijection f: w LUN — C by setting f(n) = y, for every n € w. Since each point of the
spaces w A and C is closed, AV is (cl)open in w UN, and Y is a (proper) II3(C) set, we
have that (N, {n} | n € w) is a clopen partition of w U N witnessing f € DY (w U N, C),
and (Y, {y,} | n € w) is a TI3-partition of C witnessing f~! € DY (C,w U N).

(4) Let first n = 1. By part (1), it is enough to prove the claim with N replaced by
wUN. Let {(qx | k¥ € w) be an enumeration without repetition of the set of rational
numbers Q. It is well-known that A and R\ Q are homeomorphic, so let f be a witness
of this fact. Extend f to a bijection f: wUN — R by setting f(k) = g for every k € w.
Since R\ Q is a (proper) IT3(R) set and each singleton of R (and hence of Q) is closed, we
have that (N, {n} | n € w) is a clopen partition of w LI N witnessing f € DY (w LN, R),
and (R\ Q,{g.} | n € w) is a II3-partition of C witnessing f~! € DY (R, w LIN).

Now assume n > 1. First observe that Z = (J,,,,([n]' X Q" X N) (where each [n]* x Q"
is endowed with the discrete topology) is homeomorphic to A, hence by part (1) and the
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fact that ' U N is homeomorphic to N it is enough to prove the claim with N replaced
by w UN U Z. For each 0 < i < n, a = {ag,...,a;—1} € [n]" and s € Q°, let f, s be an
homeomorphism between N and

Ro,s ={z € R" [ Vj <i(x(a;) = 5(j)) AVE ¢ a(z(k) € R\ Q)}

(such an homeomorphism exists because R, s is homeomorphic to (R \ Q)"~¢). Let also
f be an homeomorphism between N and (R\ Q)", and (t | k¥ € w) be an enumeration
without repetitions of Q™. Then define

frouUNUZ > R"

by setting f(k) = tx, f(z) = f(z), and f(a,s,x) = fos(x) for every k € w, z € N and
(a,8) € Upcicn([n]” x Q). It is easy to check that f is in fact a bijection. Moreover, since
all the R, s and (R \ Q)" are IT3(R™) sets and all points are closed in R™, we have that

Nk} {(a,s,2) [z €N [k ew, (a,5) € | (0] x Q")

0<i<n

is a clopen partition of w LN LI Z witnessing f € DY (w UN U Z,R"), and
@, R\ Q)" R | (a,5) € [ ([0 x Q")

0<i<n
is a ITI9-partition of R™ witnessing f~! € DY (R",w UN U Z).

(5) By part (1), it is again enough to prove the claim with A replaced by w U N Let
(0p | n € w) be an enumeration without repetition of w*. Define f: w UN — w<S¥ by
setting f(n) = o, and f(z) = z for all n € w and = € N. Since all the o € w* are
compact elements of w<*, their singletons are AY(w=*) subsets by Proposition 2.13(3),
hence N is a II3(w=*) set. Therefore, (N, {n} | n € w) is a clopen partition of w LN
witnessing f € DY (w U N,w=¥), while (N, {0} | 0 € w*) is a IIJ-partition of w=¥
witnessing f~1 € DY (w=¥,w LU N). O

A natural way to compute the complexity of an isomorphism between two topological
spaces is given by the following variant of the usual Schréder-Bernstein argument (see
also (Jayne and Rogers 1979b)).

Lemma 4.8. Let 1 < a <wi, X, Y € 27, and F be a collection of functions between
topological spaces closed under restrictions (i.e. f [ X' € F for every f: X - Y € F
and X’ C X). If X is F-isomorphic to a subset of ¥ via some f € IIY[X,Y] and Y is
F-isomorphic to a subset of X via some g € IIS[Y, X], then there are X’ € A?_ (X))
and Y € AY (V) such that X' ~7 Y’ and X \ X' ~z Y\ Y".

In particular, if X (respectively, Y') is homeomorphic to a IT? subset of Y (respectively,
X), then X ~% | V.

Proof. Inductively define X,, € X and Y,, C Y, n € w, by setting Xo = X, Yy =Y,
Xnt1 = 9(Yn), Yor1 = f(Xn). Let also Xoo = (¢, Xn and Yoo = ,,c,, Yn. By our
assumption on f and g, all of X,,, Y, Xoo, Yoo are in IIY. Let X' = Xoo U, e, (X2n \
Xony1) and Y’ = Yo U U, c,(Yant1 \ Yony2). By their definition, X’ and Y” are both

in 29, . Since X \ X’ = U,eo,(Xons1 \ Xon) and Y\ Y’ = [, c,(Yan \ Yany1) are
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both in 29, as well, we have that X', Y’ € AY_,. Finally, f | X’ and g~* | (X \ X’)
witness that X’ ~7 Y and X \ X' ~7 Y \ Y’ because F is closed under restrictions and
(fIX)t=f"1Y and (g7 [(X\X) " =g [ (Y \Y). [

We can immediately derive some corollaries from Lemma .8 We need to recall the
following definition from general topology: two spaces are of the same Fréchet dimension
type if each one is homeomorphic to a subset of the other.

Corollary 4.9. If XY are two quasi-Polish spaces which are of the same Fréchet di-
mension type then X ~% Y.

Proof. Apply the second part of Lemma [4.8 with o = 2, using the fact that the class
of quasi-Polish spaces is closed under homeomorphism and Proposition ]

The second part of the next corollary has been essentially already noticed in (Jayne and Rogers 1979b)
Theorem 6.5).

Corollary 4.10. If XY are two quasi-Polish spaces such that X is homeomorphic to a
closed subset of Y and Y is homeomorphic to a closed subset of X then X ~¥ Y.

In particular, if X,Y are compact Hausdorff quasi-Polish spaces of the same Fréchet
dimension type then X ~¥ Y.

Proof. The first part follows from Lemma with a = 1. The second part follows
from the first one and the classical facts that the class of compact spaces is closed under
continuous images, and that a compact subset of an Hausdorff space is closed. ]

Our next goal is to extend Proposition [ (3)—(5) to a wider class of quasi-Polish
spaces (see Theorem [L.2T]). Such generalization will involve the definition of the (induc-
tive) topological dimension of a space X, denoted in this paper by dim(X) — see e.g.
(Hurewicz and Wallman 1948| p. 24).

Definition 4.11. The empty set ) is the only space in .2~ with dimension —1, in symbols
dim(0) = —1.

Let « be an ordinal and ) # X € 2". We say that X has dimension < «, dim(X) < «
in symbols, if every z € X has arbitrarily small neighborhoods whose boundaries have
dimension < «, i.e. for every x € X and every open set U containing x there is an open
x € V C U such that dim(0V') < 8 (where 9V = cl(V) \ V and cl(V) is the closure of V'
in X) for some g < a.

We say that a space X has dimension «, dim(X) = « in symbols, if dim(X) < « and
dim(X) £ 8 for all § < a.

Finally, we say that a space X has dimension oo, dim(X) = oo in symbols, if dim(X) £
a for every o € On.

It is obvious that the dimension of a space is a topological invariant (i.e. dim(X) =
dim(Y") whenever X and Y are homeomorphic). Moreover, one can easily check that
dim(X) < « (for o an ordinal) if and only if there is a base of the topology of X consisting
of open sets whose boundaries have dimension < «. Therefore, if X is countably based
and dim(X) # oo, then dim(X) = « for some countable ordinal «.
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The following lemma shows that the notion of dimension is monotone.

Lemma 4.12. (Hurewicz and Wallman 1948 Theorem IIT 1) Let X € £  and « be an
ordinal such that dim(X) < . Then for every Y C X, dim(Y) < « (where Y is endowed
with the relative topology inherited from X).

Proof. This is proved by induction on «, using the fact that if Y C X and U is open
in X then the boundary in Y of U NY is contained in the boundary of U in X. ]

It is a classical fact that for every o < wy there is a compact Polish space of dimension
a, and that the Hilbert cube [0, 1]* is a compact Polish space of dimension co. Here we
provide various examples of computations of the dimension of some concrete quasi-Polish
spaces which are relevant for the results of this paper.

Example 4.13. Finite dimension.

(1) dim(N) = dim(C) = 0;

(2) dim(R™) = n for every 0 # n < w;

(3) for n < w, let L,, be the (finite) quasi-Polish space obtained by endowing the dcpo
(n, <) with the Scott (equivalently, the Alexandrov) topology: then dim(L,) = n—1.

Proof. (1) The canonical basis for /' and C (namely, the collection of all sets of the
form o - N for o € w* and, respectively, o - C for o € 2*) consist of clopen sets, hence
their elements have empty boundary.

(2) This is a classical (nontrivial) fact, see e.g. (Hurewicz and Wallman 1948, Theorem
IV 1).

(3) This is proved by induction on n > 0. If n = 0, then L,, = () and hence dim(Lg) =
—1 by definition. Now assume dim(L;) = ¢ for every ¢ < n and consider the space L.
Every open set of L, is of the form U; = {j € L,41 | j > i} for some i < n, and
OU; = L;: hence by the inductive hypothesis dim(0U;) < n + 1 for every i < n, which
implies dim(L,+1) < n + 1. Moreover, the set {n} is open in L, 11, and is obviously the
minimal open set containing n. Since d{n} = L,,, dim(L,+1) > dim(L,) = n. Therefore
dim(Ly4+1) = n + 1, as desired. [

Example 4.14. Transfinite dimension.

(1) the disjoint union X = | |54, ¢,[0,1]" of the n-dimensional cubes [0,1]" is a Polish
space of dimension w;

(2) let wS¥ be the w-algebraic domain (w=*,C) endowed with the Scott topology: then
dim(wSs¥) = w;

(3) for @ < wy, let Lo41 be the quasi-Polish space obtained by endowing the dcp
(a + 1, <) with the Scott topology. Then dim(Lqy41) = a.

Proof. (1) By part (2), each [0, 1]™ has dimension n. Since [0, 1]™ is topologically embed-
ded in X, by Lemma we have dim(X) > n for every n € w, and hence dim(X) > w.
Let B, = {Bp,m | m € w} be a countable basis of [0, 1] such that dim(9B,, ) < n for

# Here we cannot consider the limit case, as if « is limit then the poset (a, <) is not directed-complete,
and hence falls out of the scope of the spaces considered in this paper.
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every m € w. Then B = |J,,,, Bn is a basis for X with the property that for every U € B,
dim(0U) < w: hence dim(X) < w, and therefore dim(X) = w.

(2) Since every L,, can be topologically embedded in w=*, dim(w<¥) > w by LemmaI2
and ExampleT3(2). Consider the basis B of w=* consisting of the open sets generated by
its compact elements, i.e. of the sets o-w<® for ¢ € w*. Then do-w<* = {r Co | T # 0}
Therefore o - w=* is homeomorphic to L,,, where n is the length of o: this means that,
by Example EET3(2) again, dim(0U) < w for every U € B, and hence dim(w=*) < w.
Therefore dim(w=*) = w.

(3) By an inductive argument similar to the proof of Example ET3(3). O

Example 4.15. Dimension oc.

(1) the Hilbert cube [0, 1]*, the space R* (both endowed with the product topology), and
the Scott domain Pw have all dimension oo;

(2) Let Cs be the quasi-Polish space obtained by endowing the poset (w,>) with the
Scott (equivalently, the Alexandrov) topology. Then Co is a (scattered) countable
space with dim(Cy) = oo. Hence the space UCy, = Coo X N, endowed with the
product topology, is an (uncountable) quasi-Polish space of dimension oco.

Proof. (1) It is a classical fact that dim([0,1]*) = dim(R™) = co — see e.g. Corollary
on p. 51 of (Hurewicz and Wallman 1948)). Since the Hilbert cube can be topologically
embedded into Pw by Proposition 212 it follows from Lemma [£I2] that also the Scott
domain has dimension oo.

(2) To show that a topological space X has dimension oo it is enough to find a point
x € X and an open neighborhood U of x such that X can be topologically embedded into
9V for every open z € V C U. Consider the point 0 € C,. Since 0 is a compact element,
the basic open set U =10 = {0} generated by 0 is a minimal (with respect to inclusion)
open neighborhood for this point, hence it is enough to show that C,, can be topologically
embedded into OU. Since Co has a topmost element (i.e. 0 itself), OU = Co, \U; but then
the map sending n into n 4+ 1 (for every n € w) is clearly an homeomorphism between
Cox and Co \ U, and hence dim(Cy) = o0, as required. The second part of the claim
follows from Lemma T2l and the fact that Co, can be topologically embedded into UC,,
in the obvious way. ]

Remark 4.16. The definition of dimension is usually formulated for separable metric
spaces (Hurewicz and Wallman 1948) or for regular topological spaces. This is because
the received opinion is that outside this scope this notion becomes somewhat pathologi-
cal. Examples[. 13| A.14 and L TH show e.g. that there are finite (quasi-Polish) spaces with
nonzero dimension and countable (quasi-Polish) spaces with arbitrarily high ordinal
dimension, or even of dimension co: this seems to contradict our intuition of “geometric
dimension”. Nevertheless, Lemma [£.12] shows that some natural properties of the dimen-
sion function dim(-) are preserved when considering arbitrary spaces, and Theorem [1.21]
will show that it remains a quite useful notion also in this broader context.

88 Notice that there are also examples of H ausdorff countable spaces with nonzero dimension.
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We now recall some classical results that will be used later.

Lemma 4.17. (see e.g. (Hurewicz and Wallman 1948, pp. 50-51)) Let X be a Polish
space. Then the following are equivalent:

(1) dim(X) # oo;

(2) X = U, <, X with all the X, of finite dimension (i.e. dim(X,,) < w for every n < w);
(3) X = U< X with all the X, of dimension 0.

Notice that by Example 15(2), Lemma [L.17 cannot be extended to t