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Abstract

We define and study hierarchies of topological spaces induced by the classical Borel
and Luzin hierarchies of sets. Our hierarchies are divided into two classes: hierarchies of
countably based spaces induced by their embeddings into Pω, and hierarchies of spaces (not
necessarily countably based) induced by their admissible representations. We concentrate
on the non-collapse property of the hierarchies and on the relationships between hierarchies
in the two classes.

1 Introduction

A basic notion of Computable Analysis (CA) [Wei00] is the notion of an admissible representation
of a topological space X. This is a partial continuous surjection δ from the Baire space N onto
X satisfying a certain universality property (see Subsection 2.6 for some more details). Such a
representation of X induces a reasonable computability theory on X, and the class of admissibly
represented spaces is wide enough to include most spaces of interest for Analysis or Numerical
Mathematics. As shown by the first author [Sch03], this class coincides with the class of the
so-called QCB0-spaces, i.e. T0-spaces which are quotients of countably based spaces, and it
forms a cartesian closed category (with the continuous functions as morphisms). Thus, among
QCB0-spaces one meets many important function spaces including the Kleene-Kreisel continuous
functionals [Kl959, Kr59] interesting for several branches of logic and computability theory.

Along with the mentioned nice properties of QCB0-spaces, this class seems to be too broad to
admit a deep understanding. Hence, it makes sense to search for natural subclasses of this class
which still include “practically” important spaces but are (hopefully) easier to study. Interesting
examples of such subclasses are obtained if we consider, for each level Γ of the classical Borel or
Luzin (projective) hierarchies of Descriptive Set Theory (DST) [Ke95], the class of spaces which
have an admissible representation of the complexity Γ (below we make this precise). The study
of the resulting Borel and Luzin hierarchies of QCB0-spaces is one of the aims of this paper.
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within the 7th European Community Framework Programme. Both authors have been supported by DFG-RFBR
Grant 436 RUS 113/1002/01.
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Along with the hierarchies of QCB0-spaces, we will consider Borel and Luzin hierarchies of count-
ably based T0-spaces (CB0-spaces for short) which are induced by the well-known fact that any
CB0-space may be embedded in the algebraic domain Pω of all subsets of ω. The precise defini-
tion depends crucially on the possibility to find the “right” extensions of the classical hierarchies
from the class of Polish spaces to the arbitrary spaces (including Pω). Such extensions were intro-
duced by the second author in [Se04] and were studied in [Se05, Se05a, Se06, Se08, BY09, Br13].
In particular, it was shown that many properties of these hierarchies in ω-continuous domains
resemble the properties of classical hierarchies in Polish spaces [Ke95].

Hierarchies of spaces obtained in this way turn out to be closely related to the corresponding
hierarchies of QCB0-spaces. Moreover, among the first levels of the Borel hierarchy of CB0-
spaces we meet some classes of spaces which attracted attention of several researches in the field
of quasi-metric spaces, in particular the class of quasi-Polish spaces. The class of quasi-Polish
spaces identified and studied in [Br13] is a good solution to the problem from [Se08] of finding
a natural class of spaces that includes the Polish spaces and the ω-continuous domains and has
a reasonable DST.

In this paper we establish some basic properties of the above-mentioned hierarchies of spaces.
In particular, we show that the hierarchies of spaces do not collapse, and that any level of any
hierarchy is closed under retracts. As main technical tools to prove these results we use suitable
generalizations of some classical facts (e.g. of the injectivity property of Pω and of Lavrentyev’s
Theorem on extending partial homeomorphisms in Polish spaces). Some of those generalizations
might be also interesting in their own right. We also show that the class of all spaces in our
hierarchies forms in a sense the smallest cartesian closed category of QCB0-spaces containing the
discrete space ω of natural numbers, and establish the close relationship of the Luzin hierarchy
of QCB0-spaces to the continuous functionals of finite type. Hence the class of all spaces in the
Luzin hierarchy of QCB0-spaces seems to be a reasonable subclass of QCB0-spaces that contains
most of spaces of interest for CA, including the Kleene-Kreisel continuous functionals.

After recalling some notions and known facts in the next section, we establish the main technical
facts in Section 3. In Sections 4 and 5 we introduce and study the mentioned hierarchies of CB0-
spaces and of QCB0-spaces. In Section 6 we establish close relationships between hierarchies of
CB0-spaces to those of QCB0-spaces (namely, any level of the CB0-hierarchies coincides with the
class of CB0-spaces in the corresponding level of the corresponding QCB0-hierarchy). In Section
7 we relate the Luzin hierarchy of QCB0-spaces to the Kleene-Kreisel continuous functionals. In
Section 8 we discuss the cartesian closedness of the corresponding categories, and we conclude
in Section 9.

2 Notation and Preliminaries

2.1 Notation

We freely use the standard set-theoretic notation like dom(f), rng(f) and graph(f) for the
domain, range and graph of a function f , respectively, X × Y for the Cartesian product, X ⊔ Y
for the disjoint union of sets X and Y , Y X for the set of functions f : X → Y (but in the
case when X,Y are QCB0-spaces we use the same notation to denote the space of continuous
functions from X to Y ), and P (X) for the set of all subsets of X. For A ⊆ X, A denotes the
complement X \ A of A in X. We identify the set of natural numbers with the first infinite
ordinal ω. The first uncountable ordinal is denoted by ω1. The notation f : X → Y (resp.
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f :⊆ X → Y ) means that f is a total (resp. a partial) function from a set X to a set Y .

2.2 Topological Spaces

We assume the reader to be familiar with the basic notions of topology. The collection of all open
subsets of a topological space X (i.e. the topology of X) is denoted by τX ; for the underlying
set of X we will write X in abuse of notation. We will usually abbreviate “topological space”
to “space”. Remember that a space is zero-dimensional if it has a basis of clopen sets.

A space Y is called a (continuous) retract of a space X if there are continuous functions s :
Y → X and r : X → Y such that composition rs coincides with the identity function idY on
Y . Such a pair of functions (s, r) is called a section-retraction pair. Note that the section s
is a homeomorphism between Y and the subspace s(Y ) = {x ∈ X | sr(x) = x} of X, and
s−1 = r|s(Y ).

Let ω be the space of non-negative integers with the discrete topology. Of course, the spaces
ω × ω = ω2, and ω ⊔ ω are homeomorphic to ω, the first homeomorphism is realized by the
Cantor pairing function 〈·, ·〉.

LetN = ωω be the set of all infinite sequences of natural numbers (i.e., of all functions ξ : ω → ω).
Let ω∗ be the set of finite sequences of elements of ω, including the empty sequence. For σ ∈ ω∗

and ξ ∈ N , we write σ ⊑ ξ to denote that σ is an initial segment of the sequence ξ. By σξ = σ ·ξ
we denote the concatenation of σ and ξ, and by σ · N the set of all extensions of σ in N . For
x ∈ N , we can write x = x(0)x(1) . . . where x(i) ∈ ω for each i < ω. For x ∈ N and n < ω,
let x<n = x(0) . . . x(n− 1) denote the initial segment of x of length n. Notations in the style of
regular expressions like 0ω, 0∗1 or 0m1n have the obvious standard meaning.

By endowing N with the product of the discrete topologies on ω, we obtain the so-called Baire
space. The product topology coincides with the topology generated by the collection of sets
of the form σ · N for σ ∈ ω∗. The Baire space is of primary importance for DST and CA.
The importance stems from the fact that many countable objects are coded straightforwardly
by elements of N , and it has very specific topological properties. In particular, it is a perfect
zero-dimensional space and the spaces N 2, N ω, ω×N = N ⊔N ⊔· · · (endowed with the product
topology) are all homeomorphic to N . Let (x, y) 7→ 〈x, y〉 be a homeomorphism between N 2 and
N . The Baire space N has the following universality property for zero-dimensional CB0-spaces:

Proposition 2.1 [Ke95, Theorems 1.1 and 7.8] A topological space X embeds into N iff X is
a zero-dimensional CB0-space.

The subspace C = 2ω of N formed by the infinite binary strings (endowed with the relative
topology inherited from N ) is known as the Cantor space. Along with N and C, the space Pω
is of principal importance for this paper. This is the space of subsets of the natural numbers
with the Scott topology on (P (ω);⊆). The basic open sets of this topology are of the form
{A ⊆ ω | F ⊆ A}, where F ranges over the finite subsets of ω.

The importance of Pω for this paper is explained by its following well-known properties. First,
Pω is universal for CB0-spaces.

Proposition 2.2 A topological space X embeds into Pω iff X is a CB0-space.

Proof. Since Pω is a CB0-space, any space X homeomorphic to a subspace Pω is a CB0-space
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as well. Conversely, if {βi | i ∈ ω} is a base for a countably-based T0-space X, then the function
e : X → Pω mapping x to {i ∈ ω |x ∈ βi} is a homeomorphic embedding of X into Pω. ✷

The second property shows that Pω is an injective object in the category of all topological
spaces.

Proposition 2.3 [G+80, Proposition 3.5] Let Y be topological space and X be a subspace of Y .
Then any continuous function f : X → Pω can be extended to a continuous function g : Y → Pω.

Completely metrisable spaces satisfy the following extension theorem by Kuratowski.

Proposition 2.4 [Ke95, Theorem 3.8] Let X be a metrisable space and Y be a completely
metrisable space. Then any continuous function f : A → Y defined on a subset A of X can be
extended to a continuous function g : G→ Y , where G is a Gδ-subset of Y with A ⊆ G.

2.3 Families of Pointclasses

Here we recall a useful technical notion of a family of pointclasses introduced in [Se11].

A pointclass on X is simply a collection Γ(X) of subsets of X. We need the following “param-
eterized” version of the notion of pointclass. A family of pointclasses is a family Γ = {Γ(X)}
indexed by arbitrary topological spaces X such that each Γ(X) is a pointclass on X and Γ is
closed under continuous preimages, i.e. f−1(A) ∈ Γ(X) for every A ∈ Γ(Y ) and every contin-
uous function f : X → Y . In particular, any pointclass Γ(X) in such a family is downward
closed under the Wadge reducibility on X. Recall that A ⊆ X is Wadge reducible to B ⊆ Y if
A = f−1(B) for some continuous function f on X.

Trivial examples of families of pointclasses are E ,F , where E(X) = {∅} and F(X) = {X} for
any space X. A basic example of a family of pointclasses is given by the family O = {τX} of
the topologies of all the spaces X.

Finally, we define some operations on families of pointclasses which are relevant to hierarchy
theory. First, the usual set-theoretic operations will be applied to the families of pointclasses
pointwise: for example, the union

⋃
i Γi of the families of pointclasses Γ0,Γ1, . . . is defined by

(
⋃

i Γi)(X) =
⋃

i Γi(X).

Second, a large class of such operations is induced by the set-theoretic operations of L.V. Kan-
torovich and E.M. Livenson (see e.g. [Se11] for the general definition). Among them are the
operations Γ 7→ Γσ where Γ(X)σ is the set of all countable unions of sets in Γ(X), the operation
Γ 7→ Γc where Γ(X)c is the set of all complements of sets in Γ(X), the operation Γ 7→ Γd

where Γ(X)d is the set of all differences of sets in Γ(X), and the operation Γ 7→ Γp defined by
Γp(X) = {prX(A) | A ∈ Γ(N × X)} where prX(A) = {x ∈ X | ∃p ∈ N ((p, x) ∈ A)} is the
projection of A ⊆ N ×X along the axis N .

The next subsection contains some important examples of families of pointclasses from hierarchy
theory.

2.4 Classical Hierarchies on Topological Spaces

Let us recall the definition of the Borel hierarchy on arbitrary spaces introduced in [Se04].
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Definition 2.5 For α < ω1, define the family of pointclasses Σ0
α = {Σ0

α(X)} by induction on
α as follows: Σ0

0(X) = {∅}, Σ0
1(X) = τX is the collection of the open sets of X, Σ0

2(X) =
((Σ0

1(X))d)σ is the collection of all countable unions of differences of open sets, and Σ0
α(X) =

(
⋃

β<α(Σ
0
β(X))c)σ (for α > 2) is the class of countable unions of sets in

⋃
β<α(Σ

0
β(X))c.

The sequence {Σ0
α(X)}α<ω1

is called the Borel hierarchy of X. We also let Π0
β(X) = (Σ0

β(X))c
and ∆0

α(X) = Σ0
α(X) ∩Π0

α(X). The classes Σ0
α(X),Π0

α(X),∆0
α(X) are called the levels of the

Borel hierarchy of X.

By the definition and remarks at the end of the previous subsection, any of Σ0
α,Π

0
α,∆

0
α is a

family of pointclasses. It is straightforward to check by induction on α, β that using Definition
2.5 one has the following result.

Proposition 2.6 For every topological space X and for all α < β < ω1, Σ
0
α(X) ∪ Π0

α(X) ⊆
∆0

β(X).

Remark. Definition 2.5 applies to all spaces X, and Proposition 2.6 holds true in the full
generality. Note that Definition 2.5 differs from the classical definition for Polish spaces (see e.g.
[Ke95, Section 11.B]) only for the level 2, and that for the case of Polish spaces our definition of
the Borel hierarchy is equivalent to the classical one. Notice that the classical definition cannot
be applied in general to non metrizable spaces (like e.g. the non discrete ω-algebraic domains)
precisely because the inclusion Σ0

1 ⊆ Σ0
2 may fail.

Let {Σ1
n(X)}1≤n<ω be Luzin’s projective hierarchy in X (cf. [Br13]). Using the corresponding

operation on families of pointclasses from the previous subsection we have Σ1
1(X) = (Π0

2(X))p
and Σ1

n+1(X) = (Π1
n(X))p for any n ≥ 1. Let also Σ1

0 = Π1
0 = ∆1

1. The reason why the
definition of the first level of the Luzin hierarchy is distinct from the classical definition Σ1

1(X) =
(Π0

1(X))p for Polish spaces is that the inclusion Σ0
1(X) ⊆ (Π0

1(X))p may fail in general.

Any level Σ1
n,Π

1
n,∆

1
n of the Luzin hierarchy is a family of pointclasses, and we have the natural

inclusions among them similar to the inclusions for levels of the Borel hierarchy.

Levels of the introduced hierarchies in an arbitrary space have closure properties similar to those
known for the classical hierarchies in Polish spaces, in particular:

Proposition 2.7 Any non-zero Σ-level of the Borel hierarchy on an arbitrary topological space
is closed under finite intersections, countable unions and binary products (for the case of binary
product this means that A ∈ Σ0

α(X) and B ∈ Σ0
α(Y ) imply A×B ∈ Σ0

α(X ×Y )). Any non-zero
Σ-level of the Luzin hierarchy in an arbitrary space is closed under countable unions, countable
intersections, binary products and the projection along N -axis (for the case of projection this
means that A ∈ Σ1

n(N ×X) implies prX(A) ∈ Σ1
n(X)).

We will often use the following straightforward result which also extends the corresponding
well-known facts for the classical hierarchies.

Proposition 2.8 Let X be a subspace of a topological space Y , A ⊆ X, and let Γ be a Σ- or a
Π-level of the introduced hierarchies. Then A ∈ Γ(X) iff A = X ∩ B for some B ∈ Γ(Y ). If in
addition X ∈ Γ(Y ), then A ∈ Γ(X) iff A ∈ Γ(Y ).

We will often cite the following topological complexity of the equality test EQX := {(x, x) | x ∈
X} on a topological space X.
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Proposition 2.9 If X is a CB0-space then EQX ∈ Π0
2(X × X). If X is a Hausdorff space,

then EQX ∈ Π0
1(X ×X).

Proof. The first statement has been shown in [Br13]. The second (well-known) statement

follows from the fact that in the Hausdorff case the complement of EQX is equal to
⋃

{U ×

V |U, V open and disjoint} and therefore open. ✷

Let Γ be a family of pointclasses and X,Y be spaces. A function f : X → Y is called Γ-
measurable if f−1(A) ∈ Γ(X) for each open set A ⊆ Y . Note that the continuous functions
coincide with the Σ0

1-measurable functions.

We will also use the following basic property of Γ-measurable functions. Note that addition +
on ordinal numbers is associative, but not commutative.

Proposition 2.10 [BY09, Lemma 1] Let X,Y be CB0-spaces, let α, β < ω1 be ordinals, let
f : X → Y be a Σ0

1+α-measurable function, and let A ∈ Σ0
1+β(Y ) and B ∈ Π0

1+β(Y ). Then

f−1(A) ∈ Σ0
1+α+β(X) and f−1(B) ∈ Π0

1+α+β(X).

Notice that the case (α, β) = (0, 0) denotes the fact that the preimage of an open (closed) set
under a continuous function is open (resp. closed).

2.5 Polish and quasi-Polish spaces

Remember that a space X is Polish if it is countably based and metrisable with a metric d such
that (X, d) is a complete metric space. Important examples of Polish spaces are the Baire space,
the Cantor space, the space of reals R and its Cartesian powers R

n (n < ω), the closed unit
interval [0, 1], the Hilbert cube [0, 1]ω and the Hilbert space R

ω.

Below we will cite the following result known as Lavrentyev’s Theorem:

Proposition 2.11 [Ke95, Theorem 3.9] Let X,Y be Polish spaces, A ⊆ X, B ⊆ Y , and let f
be a homeomorphism of A onto B (equipped with the subspace topologies induced from X and
Y ). Then there exist A∗ ∈ Π0

2(X), B∗ ∈ Π0
2(Y ) and a homeomorphism f∗ of A∗ onto B∗ such

that A ⊆ A∗, B ⊆ B∗, and f∗|A = f .

A natural variant of the class of Polish spaces has recently emerged. Given a setX, call a function
d from X×X to the nonnegative reals quasi-metric whenever x = y iff d(x, y) = d(y, x) = 0, and
d(x, y) ≤ d(x, z)+d(z, y) (but we don’t require d to be symmetric). In particular, every metric is
a quasi-metric. Every quasi-metric on X canonically induces a topology on X which is denoted
by τd, where τd is the topology generated by the open balls Bd(x, ε) = {y ∈ x | d(x, y) < ε}
for x ∈ X and 0 < ε ∈ R. A space X is called quasi-metrisable if there is a quasi-metric on
X which generates its topology. If d is a quasi-metric on X, let d̂ be the metric on X defined
by d̂(x, y) = max{d(x, y), d(y, x)}. A sequence {xn}n<ω in X is called d-Cauchy sequence if for
every ε > 0 there is n0 ∈ ω such that d(xn, xm) < ε for all n0 ≤ n ≤ m. We say that the
quasi-metric d on X is complete if every d-Cauchy sequence converges with respect to d̂ (notice
that this definition is coherent with the notion of completeness for a metric d, as in this case
d̂ = d).

A T0-space X is called quasi-Polish if it is countably based and there is a complete quasi-metric
on X which generates its topology. In particular, every Polish space is quasi-Polish, but by
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[Br13, Corollary 45] also every ω-continuous domain is quasi-Polish. De Brecht [Br13] shows
that there is a reasonable DST for the quasi-Polish spaces which extends the classical DST for
Polish spaces [Ke95] and the DST for ω-continuous domains [Se06, Se08] in many directions.

An important example of a quasi-Polish space is the space Pω equipped with the following
quasi-metric d: if A ⊆ B then d(A,B) = 0, otherwise d(A,B) = 1/2a where a is the smallest
number in A \B. Note that Proposition 2.2 implies that any CB0-space is quasi-metrisable.

De Brecht proved the following characterization of quasi-Polish spaces (cf. [Br13, Corollary 24]):

Proposition 2.12 A topological space is quasi-Polish iff it is homeomorphic to a Π0
2-subset of

Pω (endowed with the relative topology inherited from Pω).

2.6 Admissible Representations and QCB0-spaces

A representation of a space X is a surjection of a subspace of the Baire space N onto X. Usually
it is denoted as a partial function from N to X. The notion of admissible representation is basic
in Computable Analysis (CA). A representation δ of X is admissible, if it is continuous and
any continuous function ν : Z → X from a zero-dimensional CB0-space Z to X is continuously
reducible to δ, i.e. ν = δg for some continuous function g : Z → N . A topological space is
admissibly representable if it has an admissible representation.

The notion of admissibility was introduced in [KW85] for representations of countably based
spaces (in a different but equivalent formulation) and was extensively studied by many au-
thors. In [BH02] a close relation of admissible representations of countably based spaces to
open continuous representations was established. In [Sch02, Sch03] the notion was extended to
non-countably based spaces and a nice characterization of the admissibly represented spaces was
achieved. Namely, the admissibly represented sequential topological spaces coincide with the
QCB0-spaces, i.e., T0-spaces which are topological quotients of countably based spaces.

The category QCB0 of QCB0-spaces as objects and continuous functions as morphisms is known
to be cartesian closed (cf. [ELS04, Sch03]). The exponential Y X to QCB0-spaces X,Y has
the set of continuous functions from X to Y as the underlying set, and its topology is the
sequentialization of the compact-open topology on Y X . By the sequentialization of a topology
τ we mean the family of all sequentially open sets pertaining to this topology. (Remember that
sequentially open sets are defined to be the complements of the sets that are closed under forming
limits of converging sequences.) The sequentialization of τ is finer than or equal to τ . The
topology of the QCB0-product to X and Y , which we denote by X × Y , is the sequentialization
of the classical Tychonoff topology on the cartesian product of the underlying sets of X and Y .
So products and exponentials in QCB0 are formed in the same way as in its supercategory Seq

of sequential topological spaces.

From [Br13] it follows that admissible total representations are closely related to quasi-Polish
spaces. The following assertion is contained among the results in [Br13].

Proposition 2.13 For any CB0-space X the following statements are equivalent:

(1) X is quasi-Polish.

(2) X has an open continuous total representation.

(3) X has an admissible total representation.

7



(4) X has an admissible representation whose domain is a Polish space.

We will also cite the following facts from [Sch02, Sch03].

Proposition 2.14 Let δ and γ be admissible representations of QCB0-spaces X and Y , respec-
tively. Then f : X → Y is continuous iff fδ = γg for some partial continuous function g on
N .

Note that if u :⊆ N 2 → N is continuous and p ∈ N then up = λx.u(p, x) is a partial continuous
function on N .

Proposition 2.15 There is a partial continuous function u : ⊆ N 2 → N such that dom(u) ∈
Π0

2(N
2) and for any partial continuous function g on N there is some p ∈ N such that up is an

extension of g.

The function u in Proposition 2.15 can be chosen as the application operator of the Second Kleene
Algebra. We use it to describe the construction of admissible representations for function spaces
formed in QCB0 (cf. [Sch03, Wei00]).

Proposition 2.16 Let δ and γ be admissible representations for QCB0-spaces X and Y , respec-
tively. Then admissible representations [δ × γ] for the QCB0-product X × Y and [δ → γ] for the
QCB0-exponential Y

X can be defined by:

[δ × γ](〈p, q〉) = (x, y) iff δ(p) = x ∧ γ(q) = y and [δ → γ](p) = f iff fδ = γup.

for p, q ∈ N , x ∈ X, y ∈ Y , and f : X → Y .

De Brecht and Yamamoto showed the following property of subsets of admissibly represented
countably-based spaces.

Proposition 2.17 [BY09, Corollary 3]. Let δ be an admissible representation of a countably-
based T0-space X, let A ⊆ X and let 1 ≤ α < ω1. Then A ∈ Σ0

α(X) iff δ−1(A) ∈ Σ0
α(dom(δ)).

3 Main Technical Facts

In this section we prove a couple of facts that serve as main technical tools in the sequel, but
some of these facts might be also of independent interest.

The first result generalizes the well-known fact that Pω is an injective space (see Proposition
2.2), because the continuous functions coincide with the Σ0

1-measurable functions.

Theorem 3.1 Let Y be a topological space, let X be a subspace of Y , and let Γ ∈ {Σ0
α,Σ

1
n,Π

1
n |

1 ≤ α < ω1, 1 ≤ n < ω}. Then any Γ-measurable function f : X → Pω can be extended to a
Γ-measurable function g : Y → Pω.

Proof. For any n < ω, the set ↑{n} = {A ⊆ ω | n ∈ A} is open in Pω, hence f−1(↑{n}) ∈ Γ(X),
hence f−1(↑{n}) = X ∩ An for some An ∈ Γ(Y ) by Proposition 2.8. Define the function
g : Y → Pω by g(y) = {n | y ∈ An}. Then for any y ∈ Y we have

y ∈ An ⇔ n ∈ g(y) ⇔ g(y) ∈ ↑{n} ⇔ y ∈ g−1(↑{n}),
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hence g−1(↑{n}) = An ∈ Γ(Y ). Since {↑{n} | n ∈ ω} is a subbasis in Pω and Γ(Y ) is closed
under finite intersection and countable union by Proposition 2.7, g is Γ-measurable. If y ∈ X
then we have

n ∈ f(y) ⇔ f(y) ∈ ↑{n} ⇔ y ∈ f−1(↑{n}) ⇔ y ∈ An ⇔ n ∈ g(y),

hence g(y) = f(y). ✷

The second result is a remote relative of Lavrentyev’s Theorem (cf. Proposition 2.11).

Theorem 3.2 Let A,B ⊆ Pω be subspaces of Pω, α, β < ω1, and let f : A → B be a Σ0
1+α-

measurable bijection such that its inverse g = f−1 is Σ0
1+β-measurable. Then there exist A∗ ∈

Π0
1+α+µ+1(Pω), B

∗ ∈ Π0
1+β+µ+1(Pω) (where µ = max{α, β}) and a Σ0

1+α-measurable bijection

f∗ : A∗ → B∗ such that g∗ = f∗−1 is Σ0
1+β-measurable, A ⊆ A∗, B ⊆ B∗, f∗|A = f and

g∗|B = g.

Proof. By Theorem 3.1, there are a Σ0
1+α-measurable extension f1 : Pω → Pω of f and a

Σ0
1+β-measurable extension g1 : Pω → Pω of g. Consider the set

S = {(x, y) ∈ Pω × Pω | f1(x) = y ∧ x = g1(y)}.

Clearly, S = S1 ∩ S2 where S1 = {(x, y) | f1(x) = y} and S2 = {(x, y) | x = g1(y)}. Since
EQPω ∈ Π0

2(Pω × Pω) by Proposition 2.9 and S1 is the preimage of EQPω under the Σ0
1+α-

measurable function (x, y) 7→ (f1(x), y), S1 ∈ Π0
1+α+1(Pω ×Pω) by Proposition 2.10. Similarly,

S2 ∈ Π0
1+β+1(Pω × Pω) and therefore S ∈ Π0

1+µ+1(Pω × Pω) by Propositions 2.6 and 2.7.

Now let A∗ = {x ∈ Pω | (x, f1(x)) ∈ S} and B∗ = {y ∈ Pω | (g1(y), y) ∈ S}. Since the
function x 7→ (x, f1(x)) is Σ0

1+α-measurable and A∗ is the preimage of S under this function,
A∗ ∈ Π0

1+α+µ+1(Pω) by Proposition 2.10. Similarly, B∗ ∈ Π0
1+β+µ+1(Pω). Then the sets A∗, B∗

and the functions f∗ = f1|A∗ , g∗ = g1|B∗ have the desired properties. ✷

The next fact is a special case of the previous theorem.

Corollary 3.3 If we take in the previous theorem α = 0 and β = 1 then we obtain A∗ ∈ Π0
3(Pω)

and B∗ ∈ Π0
4(Pω).

Let us introduce one of the main notions of this paper.

Definition 3.4 Let Γ be a family of pointclasses. A topological space X is called a Γ-space if
X is homeomorphic to a subspace A ⊆ Pω with A ∈ Γ(Pω). The class of all Γ-spaces is denoted
CB0(Γ).

The third result of this section extends Corollary 24 in [Br13] (which is obtained when Γ = Π0
2).

Proposition 3.5 Let Γ ∈ {Π0
2,Σ

0
α,Π

0
α,Σ

1
n,Π

1
n | 3 ≤ α < ω1, 1 ≤ n < ω} and f :⊆ X → Y

be a partial continuous function from a topological space X to a Γ-space Y . Then there is a
continuous extension g :⊆ X → Y of f with dom(g) ∈ Γ(X).

Proof. Without loss of generality we assume Y ∈ Γ(Pω), so in particular f :⊆ X → Pω. By
Proposition 2.3, there is a total continuous extension h : X → Pω of f . Since Y ∈ Γ(Pω),
h−1(Y ) ∈ Γ(X). Since dom(f) ⊆ h−1(Y ), we can take the restriction of h to h−1(Y ) as the
desired function g. ✷
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The fourth result of this section is the following extension of Lavrentyev’s Theorem (see Propo-
sition 2.11). For Γ = Π0

2 the result gives the extension of Lavrentyev’s Theorem to quasi-Polish
spaces (cf. [Br13]), and Lavrentyev’s Theorem is obtained if we restrict the last fact to Polish
spaces.

Theorem 3.6 Let Γ ∈ {Π0
2,Σ

0
α,Π

0
α,Σ

1
n,Π

1
n | 3 ≤ α < ω1, 1 ≤ n < ω}, X,Y be Γ-spaces,

A ⊆ X, B ⊆ Y , and let f be a homeomorphism of A onto B. Then there exist A∗ ∈ Γ(X),
B∗ ∈ Γ(Y ) and a homeomorphism f∗ of A∗ onto B∗ such that A ⊆ A∗, B ⊆ B∗, and f∗|A = f .

Proof. Let g = f−1. By Proposition 3.5 there exist A1 ∈ Γ(X), B1 ∈ Γ(Y ) and continuous
functions f1 : A1 → Y , g1 : B1 → X such that A ⊆ A1, B ⊆ B1, f1|A = f and g1|B = g. Let

S = {(x, y) ∈ A1 ×B1 | f1(x) = y ∧ x = g1(y)}.

Then graph(f) ⊆ S and S ∈ Γ(X × Y ), because A1 × B1 ∈ Γ(X × Y ), EQX ∈ Π0
2(X × X)

and EQY ∈ Π0
2(Y × Y ) by Proposition 2.9, (x, y) 7→ (f1(x), y)) is a continuous function from

A1 ×B1 to Y × Y and (x, y) 7→ (x, g1(y)) is a continuous function from A1 ×B1 to X ×X.

Let now

A∗ = {x ∈ A1 | ∃y((x, y) ∈ A1 ×B1)}, B
∗ = {y ∈ B1 | ∃x((x, y) ∈ A1 ×B1)},

f∗ = f1|A and g∗ = g1|B. Then A ⊆ A∗, B ⊆ B∗, f∗|A = f , g∗|B = g and g∗ = f∗−1 (hence f∗

is a homeomorphism of A∗ onto B∗). Since

A∗ = {x ∈ A1 | (x, f1(x)) ∈ A1 ×B1} and B∗ = {y ∈ B1 | (g1(y), y) ∈ A1 ×B1},

A∗ ∈ Γ(A1) and B
∗ ∈ Γ(B1). By Proposition 2.8 we have A∗ ∈ Γ(X) and B∗ ∈ Γ(Y ). ✷

Finally, we give a natural version of the previous theorem related to retracts, although this
version is not used in the sequel.

Proposition 3.7 Let Γ,X, Y,A,B be as in the previous theorem and let r : A → B and s :
B → A be continuous functions such that rs = idB (hence, B is a retract of A). Then there
exist A∗ ∈ Γ(X), B∗ ∈ Γ(Y ) and continuous functions r∗ : A∗ → B∗, s∗ : B∗ → A∗ such that
A ⊆ A∗, B ⊆ B∗, r∗|A = r, s∗|B = s and r∗s∗ = idB∗ (hence, B∗ is a retract of A∗).

Proof. By Proposition 3.5 there exist A1 ∈ Γ(X), B1 ∈ Γ(Y ) and continuous functions r1 :
A1 → Y , s1 : B1 → X such that A ⊆ A1, B ⊆ B1, r1|A = r and s1|B = s. Let

S = {(x, y) ∈ A1 ×B1 | r1(x) = y = r1s1(y)}

and
A∗ = {x ∈ A1 | (x, r1(x)) ∈ S}, B∗ = {y ∈ B1 | (s1(y), y) ∈ S},

r∗ = r1|A∗ and s∗ = s1|B∗ . Similarly to the previous proof one checks that these objects have
the desired properties. ✷

4 Hierarchies of CB0-Spaces

Here we introduce and study natural hierarchies of CB0-spaces (see Definition 3.4) as well as the
Borel hierarchy and the Luzin hierarchy on Pω discussed in Subsection 2.4.
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Definition 4.1 (1) By the Borel hierarchy of CB0-spaces we mean the sequence of classes
{CB0(Σ

0
α)}α<ω1

. By levels of this hierarchy we mean the classes CB0(Σ
0
α) as well as the

classes CB0(Π
0
α) and CB0(∆

0
α).

(2) By the Luzin hierarchy of CB0-spaces we mean the sequence of classes {CB0(Σ
1
n)}n<ω. By

levels of this hierarchy we mean the classes CB0(Σ
1
n) as well as the classes CB0(Π

1
n) and

CB0(∆
1
n).

Note that the Borel hierarchy of spaces includes some natural classes of spaces identified ear-
lier. E.g., by Proposition 2.12 CB0(Π

0
2) coincides with the class of quasi-Polish spaces and, by

Corollary 33 in [Br13], CB0(Π
0
3) coincides with the class of CB0-spaces that admit a compatible

bicomplete quasi-metric in the sense of [JK98].

Obviously, for any families of pointclasses Γ,∆ we have: if Γ ⊆ ∆ (i.e. Γ(X) ⊆ ∆(X) for each
space X) then CB0(Γ) ⊆ CB0(∆). Therefore, we have the natural inclusions for levels of the
introduced hierarchies, in particular CB0(∆

0
α) ⊆ CB0(Σ

0
α)∩CB0(Π

0
α) and CB0(Σ

0
α)∪CB0(Π

0
α) ⊆

CB0(∆
0
β) for all α < β < ω1. Below we establish some basic properties of the Borel and the

Luzin hierarchy of spaces, but first we show that most of levels of the introduced hierarchies of
spaces are closed under retracts (for Π0

2 the result is already known from [Br13]).

Proposition 4.2 Let Γ ∈ {Π0
2,Σ

0
α,Π

0
α,Σ

1
n,Π

1
n | 3 ≤ α < ω1, 1 ≤ n < ω}. Then any retract of

a Γ-space is a Γ-space.

Proof. Let Y be a retract of a Γ-space X via a section-retraction pair (s, r) of continuous
functions; we have to show that Y is a Γ-space. We may assume without loss of generality
that X ∈ Γ(Pω). Since s(Y ) = {x ∈ X | sr(x) = x}, s(Y ) is the preimage of EQX under the
continuous function x 7→ (sr(x), x). Since EQX ∈ Π0

2(X×X) by Proposition 2.9, s(Y ) ∈ Π0
2(X)

and thus s(Y ) ∈ Γ(X) by Proposition 2.6. Proposition 2.8 yields s(Y ) ∈ Γ(Pω). Since Y is
homeomorphic to s(Y ), Y is a Γ-space. ✷

Now we establish an interesting property of the introduced hierarchies of spaces which implies
the non-collapse property.

Proposition 4.3 For any countable ordinal α ≥ 2, CB0(Σ
0
α) ∩ CB0(Π

0
α) = CB0(∆

0
α). For any

positive integer n, CB0(Σ
1
n) ∩ CB0(Π

1
n) = CB0(∆

1
n).

This proposition is based on the following lemma.

Lemma 4.4 Let Γ ∈ {Π0
2,Σ

0
α,Π

0
α,Σ

1
n,Π

1
n | 3 ≤ α < ω1, 1 ≤ n < ω} and let X be a subspace

of Pω. Then X ∈ CB0(Γ) iff X ∈ Γ(Pω).

Proof. If the underlying set of X is in Γ(Pω), then X is a Γ-space by Definition 3.4. Conversely,
let X be a Γ-space. Then there is some B ∈ Γ(Pω) such that B (endowed with the subspace
topology inherited from Pω) is homeomorphic to X. Let h : X → B be a homeomorphism. We
apply Theorem 3.6 to extend h to a homeomorphism h∗ : X∗ → B∗, where X∗ and B∗ are sets in
Γ(Pω) with X ⊆ X∗ and B ⊆ B∗. By Proposition 2.8 we have B ∈ Γ(B∗). Hence X ∈ Γ(X∗),
because X = (h∗)−1(B). Proposition 2.8 yields X ∈ Γ(Pω). ✷

Now we are ready to give the proof of Proposition 4.3.

Proof. The inclusions from right to left are obvious. It remains to check CB0(Γ) ∩ CB0(Γc) ⊆
CB0(Γ ∩ Γc) for each Γ ∈ {Π0

α,Π
1
n | 2 ≤ α < ω1, 1 ≤ n < ω}. Let Z ∈ CB0(Γ) ∩ CB0(Γc).

11



Then Z is homeomorphic to some subspaces A,B of Pω with A ∈ Γ(Pω) and B ∈ Γc(Pω).
Hence B is a Γ-space by being homeomorphic to A. Lemma 4.4 yields B ∈ Γ(Pω). Therefore
B ∈ (Γ ∩ Γc)(Pω) and hence Z ∈ CB0(Γ ∩ Γc). ✷

Corollary 4.5 The Borel hierarchy and the Luzin hierarchy of CB0-spaces do not collapse.
More precisely CB0(Σ

0
α) 6⊆ CB0(Π

0
α) for each countable ordinal α ≥ 2, and CB0(Σ

1
n) 6⊆ CB0(Π

1
n)

for each positive integer n.

Proof. Proofs for both hierarchies are similar, so consider only the Borel hierarchy. According
to [Se05a], there is a set A in Σ0

α(Pω) \ Π0
α(Pω). The space A (with the topology induced

from Pω) is obviously a Σ0
α-space. If it were a Π0

α-space, then by Lemma 4.4 we would have
A ∈ Π0

α(Pω), a contradiction. ✷

5 Hierarchies of QCB0-Spaces

As shown in [Sch03], any QCB0-space has an admissible representation. Here we introduce and
study natural hierarchies of QCB0-spaces induced by this fact. For any representation δ of a
space X, let EQ(δ) := {(p, q) ∈ N 2 | p, q ∈ dom(δ) ∧ δ(p) = δ(q)}.

Definition 5.1 (1) Let Γ be a family of pointclasses. A topological space X is called Γ-
representable if X has an admissible representation δ with EQ(δ) ∈ Γ(N ×N ). The class
of all Γ-representable spaces is denoted QCB0(Γ).

(2) By the Borel hierarchy of QCB0-spaces we mean the sequence {QCB0(Σ
0
α)}α<ω1

. By levels
of this hierarchy we mean the classes QCB0(Σ

0
α) as well as the classes QCB0(Π

0
α) and

QCB0(∆
0
α).

(3) By the Luzin hierarchy of QCB0-spaces we mean the sequence {QCB0(Σ
1
n)}n<ω. By levels

of this hierarchy we mean the classes QCB0(Σ
1
n) as well as the classes QCB0(Π

1
n) and

QCB0(∆
1
n).

The next assertion establishes an equivalent simpler definition of most levels for the case of
CB0-spaces.

Proposition 5.2 (1) Let Γ ∈ {Π0
2,Σ

0
α,Π

0
α,Σ

1
n,Π

1
n | 3 ≤ α < ω1, 1 ≤ n < ω} and let X be

a CB0-space. Then X is Γ-representable iff X has an admissible representation δ with
dom(δ) ∈ Γ(N ).

(2) Let Γ ∈ {Π0
1,Σ

0
α,Π

0
α,Σ

1
n,Π

1
n | 2 ≤ α < ω1, 1 ≤ n < ω} and let X be a Hausdorff space.

Then X is Γ-representable iff X has an admissible representation δ with dom(δ) ∈ Γ(N ).

Proof. The only-if-part of the first statement holds for any topological spaceX and any family of
pointclasses Γ. Indeed, let δ be an admissible representation of X with EQ(δ) ∈ Γ(N×N ). Since
dom(δ) is the preimage of EQ(δ) under the continuous function x 7→ (x, x), dom(δ) ∈ Γ(N ).

Conversely, let δ be an admissible representation of X with dom(δ) ∈ Γ(N ). By Proposition 2.9,
EQX ∈ Π0

2(X ×X), so EQ(δ) is a Π0
2-set in dom(δ) × dom(δ) by the continuity of δ. The set

dom(δ)× dom(δ) is a Γ-subset of N ×N by being the intersection of the sets {(x, y) ∈ N ×N |
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x ∈ dom(δ)} ∈ Γ(N ×N ) and {(x, y) ∈ N ×N | y ∈ dom(δ)} ∈ Γ(N ×N ). By Propositions 2.6
and 2.8 we obtain EQ(δ) ∈ Γ(N ×N ).

The second statement follows similarly by taking into account that EQX is closed in X ×X by
Proposition 2.9, if X is a Hausdorff space. ✷

The main advantage of the hierarchies of this section over the hierarchies from the previous
section is that they include many natural non-countably based spaces, in particular the spaces
of Kleene-Kreisel continuous functionals, as we will see later.

Obviously, for any families of pointclasses Γ,∆ we have: Γ ⊆ ∆ implies QCB0(Γ) ⊆ QCB0(∆),
hence we have the natural inclusions for levels of the introduced hierarchies, in particular
QCB0(∆

0
α) ⊆ QCB0(Σ

0
α)∩QCB0(Π

0
α) and QCB0(Σ

0
α)∪QCB0(Π

0
α) ⊆ QCB0(∆

0
β) for all α < β <

ω1. We will show that these hierarchies do not collapse, but first we establish the closure of the
levels under retracts.

Proposition 5.3 Let Γ ∈ {Σ0
α,Π

0
α,Σ

1
n,Π

1
n | 1 ≤ α < ω1, 1 ≤ n < ω}. Then any retract of a

Γ-representable space is a Γ-representable space.

Proof. Let Y be a retract of a Γ-representable space X via a section-retraction pair (s, r) of
continuous functions; we have to show that Y is a Γ-representable space. Let δ be an admissible
representation forX with EQ(δ) ∈ Γ(N×N ). Then rδ is clearly an admissible representation for
Y , so it suffices to show that EQ(rδ) ∈ Γ(N×N ). Since s is an injection, EQ(rδ) is the preimage
of EQ(δ) under the continuous function (x, y) 7→ (sr(x), sr(y)). Therefore, EQ(rδ) ∈ Γ(N ×N ).
✷

The following observation is well-known.

Lemma 5.4 Let r : D → Y be a continuous function from a subspace D of N to a zero-
dimensional CB0-space Y . Then r (viewed as a partial function from N to Y ) is an admissible
representation for Y iff there is a continuous function s : Y → D satisfying rs = idY .

Proof. Let Y be a retract of D via a section-retraction pair (s, r) of continuous functions.
Then r :⊆ N → Y is admissible, because any continuous function ν : Z → Y defined on a
zero-dimensional CB0-space Z is reducible to r via sν.

Conversely, assume that r ⊆ : N → Y is an admissible representation of Y . Then the identity
function idY is reducible to r via some continuous function s : Y → D. Then idY = rs, hence
Y is a retract of D via the continuous section s and the continuous retraction r. ✷

Finally, we establish the non-collapse property of the introduced hierarchies of spaces.

Theorem 5.5 The Borel hierarchy and the Luzin hierarchy of QCB0-spaces do not collapse.
More precisely, QCB0(Σ

0
α) 6⊆ QCB0(Π

0
α) for each countable ordinal α ≥ 2, and QCB0(Σ

1
n) 6⊆

QCB0(Π
1
n) for each positive integer n.

Proof. Proofs for both hierarchies are similar, so consider only the Borel hierarchy. As is
well-known [Ke95], there is a set Y in Σ0

α(N ) \Π0
α(N ). Consider Y as a subspace of N . Since

idY is an admissible representation for Y , Y ∈ QCB0(Σ
0
α). Suppose for a contradiction that

Y ∈ QCB0(Π
0
α), so there is an admissible representation δ : D → Y for Y with D ∈ Π0

α(N ). By
Lemma 5.4 there is a continuous function s : Y → D satisfying δs = idY . Since D is Hausdorff,
S = s(Y ) is a closed subset of D, hence S ∈ Π0

α(D) by Proposition 2.7. By Proposition 2.8 we
obtain S ∈ Π0

α(N ).
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Since N is a Π0
2-space, hence a Γ-space, we can use Theorem 3.6 (applied to X ′ = Y ′ = N ) to

extend the homeomorphism s : Y → S to a homeomorphism s∗ between larger sets Y ∗, S∗ ∈
Π0

2(N ). By Proposition 2.6 we have Y ∗, S∗ ∈ Π0
α(N ). Since S ∈ Π0

α(S
∗) by Proposition 2.8,

Y = s∗−1(S) ∈ Π0
α(Y

∗). Therefore Y ∈ Π0
α(N ) by Proposition 2.8, a contradiction. ✷

Remark 5.6 The spaces Y witnessing the non-collapse property above are rather artificial. In
Theorem 7.7 we will find very natural spaces witnessing the non-collapse of the Luzin hierarchy
of QCB0-spaces.

6 Relating the Hierarchies

In this section we establish close relationships of the hierarchies of CB0-spaces with the corre-
sponding hierarchies of QCB0-spaces. The next result implies that any level of a hierarchy of
QCB0-spaces extends the corresponding level in the corresponding hierarchy of CB0-spaces.

Proposition 6.1 Let Γ ∈ {Π0
2,Σ

0
α,Π

0
α,Σ

1
n,Π

1
n | 3 ≤ α < ω1, 1 ≤ n < ω}. Then CB0(Γ) ⊆

QCB0(Γ).

Proof. It suffices to show that any space X ∈ Γ(Pω) is a Γ-representable space. Let ρ : N → Pω
be the total admissible representation of Pω defined by ρ(x) = {n | ∃i(x(i) = n + 1)} (see
e.g. [Wei00, Br13] for details). Then the restriction of ρ to ρ−1(X) ∈ Γ(N ) is an admissible
representation of X. Since X is a CB0-space, X is a Γ-representable space by Proposition 5.2.
✷

In particular, we have CB0(Γ) ⊆ QCB0(Γ) ∩ CB0 for each level Γ of the Borel hierarchy or the
Luzin hierarchy. The main question of this section is: for which levels Γ we have the equality
CB0(Γ) = QCB0(Γ) ∩ CB0? Proposition 2.12 implies that the equality holds for Γ = Π0

2.

The next result implies that the equality holds for all zero-dimensional CB0-spaces.

Proposition 6.2 Let Γ ∈ {Π0
2,Σ

0
α,Π

0
α,Σ

1
n,Π

1
n | 3 ≤ α < ω1, 1 ≤ n < ω} and X be a zero-

dimensional space in QCB0(Γ) ∩ CB0. Then X ∈ CB0(Γ).

Proof. Let r : D → X be an admissible representation of X with D ∈ Γ(N ). By Lemma 5.4
there is a continuous function s : X → D satisfying rs = idX . Then s(X) = {z ∈ D | sr(z) =
z} ∈ Π0

2(D) by Proposition 2.9, hence s(X) ∈ Γ(N ) by Proposition 2.8. Since N is a Π0
2-

space, there is a homeomorphism f of N onto a subspace Y of Pω with Y ∈ Π0
2(Pω). As fs

is a homeomorphism of X onto fs(X), we have fs(X) ∈ Γ(Y ). Propositions 2.6 and 2.8 yield
fs(X) ∈ Γ(Pω). Therefore X ∈ CB0(Γ). ✷

By the next theorem the equality CB0(Γ) = QCB0(Γ) ∩ CB0 holds for almost all levels. For
finite levels, this was pointed out to us by Matthew de Brecht. We thank him for giving the
permission to use his proof of Theorem 6.3(2). Note that his proof may be used to obtain also
a proof of Theorem 6.3(1) which is slightly different from ours.

Theorem 6.3 (1) For any level Γ ∈ {Σ0
α,Π

0
α,Σ

1
n,Π

1
n | ω ≤ α < ω1, 1 ≤ n < ω}, we have

QCB0(Γ) ∩ CB0 = CB0(Γ) .
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(2) For all natural numbers m ≥ 2 and n ≥ 3, we have

QCB0(Π
0
m) ∩ CB0 = CB0(Π

0
m) and QCB0(Σ

0
n) ∩ CB0 = CB0(Σ

0
n) .

Proof.

(1) Let Γ ∈ {Σ0
α,Π

0
α,Σ

1
n,Π

1
n | ω ≤ α < ω1, 1 ≤ n < ω}. We have already seen CB0(Γ) ⊆

QCB0(Γ) ∩ CB0.

Let X ∈ QCB0(Γ)∩CB0. Then there is an admissible representation δ : D → X of X with
D ∈ Γ(N ). By Proposition 2.1 we may assume w.l.o.g. X to be a subspace of Pω. We
have to show X ∈ CB0(Γ).

Let χ : Pω → C be the bijection between Pω and the Cantor space C = 2ω that sends any
A ⊆ ω to its characteristic function χA. Obviously, χ is Σ0

2-measurable while its inverse
χ−1 is continuous (i.e. Σ0

1-measurable). Let σ = χ|X be the restriction of χ to X ⊆ Pω.
By Proposition 2.8, σ is a Σ0

2-measurable bijection between X and σ(X) ⊆ C such that
σ−1 is Σ0

1-measurable.

Since σ−1 is continuous as a function from the zero-dimensional CB0-space σ(X) to X
and δ is admissible, there is a continuous function g : σ(X) → N with σ−1 = δg. Then
idX = σ−1σ = δgσ, hence the function h = gσ satisfies h(X) = {y ∈ D | hδ(y) = y}. Thus,
h is a Σ0

2-measurable bijection between X and H = h(X), whereas its inverse h−1 = δ|h(X)

is Σ0
1-measurable (i.e. continuous).

By Proposition 6.2 we may w.l.o.g. assume that D is a subspace of Pω and D ∈ Γ(Pω).
Since H is the preimage of EQD ∈ Π0

2(D × D) under the Σ0
2-measurable function y 7→

(hδ(y), y), we have H ∈ Π0
3(D) by Proposition 2.10 and hence H ∈ Γ(D) by Proposi-

tion 2.6. Proposition 2.8 yields H ∈ Γ(Pω).

By Theorem 3.2 and Corollary 3.3, there exist H∗ ∈ Π0
3(Pω), X

∗ ∈ Π0
4(Pω), a continuous

bijection δ∗ : H∗ → X∗ and a Σ0
2-measurable bijection h∗ : X∗ → H∗ such that δ∗ is

the inverse of h∗, δ∗ is an extension of h−1 and h∗ is an extension of h. Since H ∈
Γ(H∗) by Proposition 2.8 and X = h∗−1(H), Proposition 2.10 yields us X ∈ Γ(X∗). By
Propositions 2.6 and 2.8, we obtain X ∈ Γ(Pω), hence X ∈ CB0(Γ). This completes the
proof.

(2) Let δ be an admissible representation of a subspace X of Pω such that dom(δ) ∈ Γ(N ),
where Γ ∈ {Π0

m,Σ
0
n |m ≥ 2, n ≥ 3}. Let ρ be the total admissible representation of Pω

defined in the proof of Proposition 6.1. By Proposition 2.17 it is enough to show that
ρ−1(X) is in Γ(N ). Since the corestriction of ρ to X is continuous, there is a continuous
function h : ρ−1(X) → N satisfying ρ(p) = δh(p) for all p ∈ ρ−1(X). As Pω is an
injective space and N is a Polish space, δ and h can be extended to continuous functions
δ∗ : N → Pω and h∗ : G→ N , where G is a Π0

2-subset of N , see Propositions 2.3 and 2.4.
By Proposition 2.9, A := {p ∈ G | ρ(p) = δ∗h∗(p)} is a Π0

2-subset of G and thus of N . It is
easy to verify that ρ−1(X) is the intersection of A with (h∗)−1(dom(δ)). By Proposition 2.7
and 2.8 this implies that ρ−1(X) is Γ-subset of N . Proposition 2.17 yields that X is a
Γ-subset of Pω, i.e., X ∈ CB0(Γ).

✷
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7 The Luzin Hierarchy and Continuous Functionals

In this section we establish close relations of the Luzin hierarchy to the continuous functionals
of finite types.

We start by relating the exponentiation operation on admissibly represented spaces (see Propo-
sition 2.16) to the Luzin hierarchy.

Theorem 7.1 Let k ∈ ω, X ∈ QCB0(Π
1
k) and Y ∈ QCB0(Σ

1
k). Then Y X ∈ QCB0(Π

1
k+1).

Proof. Let δ and γ be admissible representations of X and Y respectively such that EQ(δ) ∈
Π1

k(N
2) and EQ(γ) ∈ Σ1

k(N
2). By Proposition 2.16 it suffices to show that EQ([δ → γ]) ∈

Π1
k+1(N

2).

From the definition of [δ → γ] we obtain

(p, q) ∈ EQ([δ → γ]) ⇐⇒

{
for all (x, y) ∈ EQ(δ)(
up(x), up(y)

)
,
(
uq(x), uq(y)

)
,
(
up(x), uq(x)

)
∈ EQ(γ).

So we have
EQ([δ → γ]) =

{
(p, q) ∈ N 2

∣∣∀(x, y) ∈ N 2.(p, q, x, y) ∈M
}
,

where

M :=
{
(p, q, x, y) ∈ N 4

∣∣∣ (x, y) /∈ EQ(δ) or there is some (a, b, c, d) ∈ N 4 such that

(p, x, a), (p, y, b), (q, x, c), (q, y, d) ∈ graph(u) and (a, b), (c, d), (a, c) ∈ EQ(γ)
}
.

Since the universal function u :⊆ N 2 → N is continuous and has a Π0
2-set as domain, graph(u)

is a Π0
2(N

3)-set. This implies thatM is a Σ1
n(N

4)-set by Propositions 2.6 and 2.7. We conclude
that EQ([δ → γ]) is a Π1

n+1(N
2)-set. ✷

The next result (which is known from [Kr59] for the particular case Y = N〈k〉) is the key
technical fact of this section.

Theorem 7.2 Let Y be a QCB0-space and let f : Y → N be a continuous function with rng(f) 6=
N . Then there exists a continuous function g : N × ωY → N with rng(g) = N \ rng(f).

We remark that by N × ωY we mean the product formed in the category of QCB0-spaces
(see Subsection 2.6), the topology of which is finer than (or equal to) the Tychonoff topology.
However, the function g constructed in the proof is even continuous w.r.t. the Tychonoff topology.

Proof. We abbreviate M = N \ rng(f). The set NEQ =
{
(x, y) ∈ N × Y

∣∣ f(y) 6= x
}
is the

countable union of the clopen sets

{x ∈ N |x(j) = a} × f−1{z ∈ N | z(j) = b} ,

where (j, a, b) varies over all triples of natural numbers with a 6= b. Let {Di}i denote a sequence
consisting of these clopen sets. So we have NEQ =

⋃
i∈ωDi and x ∈ M ⇐⇒ ∀y ∈ Y.∃i ∈

ω.(x, y) ∈ Di.

Motivated by the above equivalence, we call a continuous function H : Y → ω a witness for an
element x ∈ M , if (x, y) ∈ DH(y) holds for all y ∈ Y . The idea of the proof is to construct the
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required function g : N × ωY → N in such a way that g maps (x,H) to x, if H is a witness for
x. Otherwise g assigns to (x,H) some element of a countable dense subset of M .

To construct an appropriate dense subset of M , we choose for every finite sequence w in the
set W := {x<k |x ∈ M, k ∈ ω} some α(w) ∈ M such that α(w) has w as an initial segment.
Clearly, {α(w) |w ∈W} is dense in M .

By being a QCB0-space, Y has a countable dense subset {βj | j ∈ ω} (see Proposition 3.3.1
in [Sch03]). We construct a sequence {Ck}k of subsets of the QCB0-spaceN×ωY by C0 := N×ωY

and
Ck :=

{
(x,H) ∈ N × ωY

∣∣ x<k ∈W and (x, βj) ∈ DH(βj) for all j ≤ k
}

for all k > 0. The set Ck is clopen in the Tychonoff topology on N × ωY and thus in the
QCB0-topology, because Ck is the union of the clopen sets

(
(w · N )× ωY

)
∩

k⋂

j=0

(
{x ∈ N | (x, βj) ∈ Daj} × {H ∈ ωY |βj ∈ H−1{aj}}

)
,

where w ranges over the finite sequence of length k in W and a0, . . . , ak vary over the natural
numbers. Note that {H ∈ ωY |βj ∈ H−1{aj}} is clopen even in the compact-open topology on
ωY and therefore in the QCB0-topology on ωY , which is finer than the former.

Next we define a function ℓ : N × ωY → ω ∪ {∞} by

ℓ(x,H) :=

{
∞ if (x,H) ∈

⋂
k∈ω Ck

max{k ∈ ω | (x,H) ∈ Ck} otherwise

We use {Ck}k and ℓ to define our function g : N × ωY → N by

g(x,H) :=

{
x if (x,H) ∈

⋂
k∈ω Ck

α(x<ℓ(x,H)) otherwise

Note that ∞ 6= i ≤ ℓ(x,H) implies x<i ∈W and g(x,H)<i = x<i.

First we show the continuity of g. Let O be an open set of the Baire space and let (x,H) ∈
g−1(O). Then there is some m ∈ ω such that g(x,H)<m · N ⊆ O.

Case 1: Assume ℓ(x,H) = ∞. Then (x,H) ∈
⋂

k∈ω Ck. We define a set U by

U := (x<m · N × ωY ) ∩
m⋂

i=0

Ci

Then U is open and all (x′,H ′) ∈ U satisfy ℓ(x′,H ′) ≥ m and g(x′,H ′)<m = g(x,H)<m = x<m.
Hence (x,H) ∈ U ⊆ g−1(O).

Case 2: Assume ℓ(x,H) <∞. Let k := ℓ(x,H) and define a set U by

U := (x<k · N × ωY ) ∩
k⋂

i=0

Ci \ Ck+1

Then U is open, (x,H) ∈ U and all (x′,H ′) ∈ U satisfy even g(x′,H ′) = g(x,H) = α(x<k) ∈ U .

We conclude that in both cases g is continuous in the point (x,H). Therefore g is continuous,
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even with respect to the Tychonoff product on the set N × ωY , which is coarser than the
QCB0-topology.

Now we show M ⊆ rng(g). Let x ∈M . We define a function Hx : Y → ω by

Hx(y) := min{k ∈ ω | (x, y) ∈ Dk} .

Note that Hx is total, because we have f(y) 6= x and therefore (x, y) ∈
⋃

k∈ωDk for every y ∈ Y .
Furthermore, H is continuous in every point y ∈ Y , because the set

U :=
{
b ∈ Y

∣∣ (x, b) ∈ DHx(y) \
Hx(y)−1⋃

i=0
Di

}

satisfies y ∈ U ⊆ H−1
x {Hx(y)} and is open by being the preimage of the open set DHx(y) \⋃Hx(y)−1

i=0 Di under the continuous map b 7→ (x, b). Therefore Hx is an element of the function
space ωY . Since (x,Hx) ∈

⋂
k∈ω Ck, we have g(x,Hx) = x.

It remains to show rng(g) ⊆M . So let x ∈ rng(g). The only interesting case is x /∈ {α(w) |w ∈
W}. Then there is some continuous function H : Y → ω such that g(x,H) = x and thus
(x,H) ∈

⋂
k∈ω Ck. Suppose for a contradiction that there is some y ∈ Y such that (x, y) /∈ DH(y).

Then the set
V := {b ∈ Y | (x, b) /∈ DH(y)} ∩H

−1{H(y)}

is non-empty and open in Y , because DH(y) is closed and H is continuous. So there exists some
k ∈ ω with βk ∈ V . The element βk satisfies (x, βk) /∈ DH(y) and H(βk) = H(y). But since
(x,H) ∈ Ck, we have (x, βk) ∈ DH(βk), a contradiction.
We conclude (x, y) ∈ DH(y) and thus f(y) 6= x for every y ∈ Y . Therefore x /∈ rng(f) and
x ∈M .

So g satisfies the required properties. ✷

Using the cartesian closedness of QCB0, we define a sequence of spaces {N〈k〉}k<ω by induction
on k as follows: N〈0〉 := ω and N〈k+1〉 := ωN〈k〉, where ω denotes the space of natural numbers
endowed with the discrete topology. Obviously N〈1〉 is equal to the Baire space N . The space
N〈k〉 is referred to as the sequential space of (Kleene-Kreisel) continuous functionals of type k.
For any k ≥ 2, the sequential topology on N〈k〉 is strictly finer than the corresponding compact-
open topology [Hy79]. Furthermore it is neither zero-dimensional nor regular [Sch09]. Any of
these spaces has a natural admissible representation. From Theorem 7.1 we obtain:

Corollary 7.3 For any integer k ≥ 1, N〈k〉 ∈ QCB0(Π
1
k−1).

Proof. Obviously, N〈0〉,N〈1〉 ∈ QCB0(Π
0
0) ⊆ QCB0(∆

1
1). By Theorem 7.1, N〈2〉 ∈ QCB0(Π

1
1).

Assuming by induction that N〈k〉 ∈ QCB0(Π
1
k−1) for a given k ≥ 2, we obtain N〈k + 1〉 ∈

QCB0(Π
1
k) by Theorem 7.1. ✷

We remark that Lemma 2.34 in [No80] implies that N〈k〉 has an admissible representation such
that its domain is even in the effective version Π1

k−1 of Π
1
k−1(N ). This follows from the fact that

the function which maps “associates” for N〈k〉 to the encoded functionals forms an admissible
representation.

Note that the continuous functionals (also known under the somewhat misleading name “count-
able functionals”) were first defined in [Kl959, Kr59] independently by S. Kleene and G. Kreisel.
Their definitions look different from each other, as well as from the definition above, although all
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three definitions are known to be equivalent. Another equivalent definition in terms of domains
was given in [Er74]. Additional information may be found in [No80, No99].

The following observation follows from the cartesian closedness of QCB0.

Lemma 7.4 For k ≥ 1, the QCB0-spaces N〈k − 1〉 and N × N〈k〉 are continuous retracts of
N〈k〉.

Proof. As QCB0 is a cartesian closed category, for all QCB0-spaces X,Y,Z such that X is
a continuous retract of Y the function space ZX is a continuous retract of ZY and the QCB0-
productX×Z is a continuous retract of Y ×Z. Clearly, ω is a continuous retract ofN = N〈1〉. So
the first statement follows by induction on k. A further induction establishes N as a continuous
retract of N〈k〉 for k ≥ 1. Hence N ×N〈k〉 is a continuous retract of N〈k〉×N〈k〉. The cartesian
closedness of QCB0 allows us to calculate

N〈k〉 = ωN〈k−1〉 ∼= (ω × ω)N〈k−1〉 ∼= ωN〈k−1〉 × ωN〈k−1〉 = N〈k〉 × N〈k〉,

hence N〈k〉 and N〈k〉×N〈k〉 are isomorphic in QCB0 and thus homeomorphic. We conclude that
N × N〈k〉 is a continuous retract of N〈k〉. ✷

From Theorem 7.2 and Lemma 7.4 we can easily infer the following nice result.

Proposition 7.5 For any positive integer k and for any non-empty set M ∈ Σ1
k(N ) there is a

continuous function f : N〈k〉 → N with rng(f) =M .

Proof. We proceed by induction on k ≥ 1. For k = 1 the claim is well-known (cf. Section 14
in [Ke95]).
Let M ∈ Σ1

k+1(N ). Then there is some set A ∈ Π1
k(N ) such that

M =
{
x ∈ N

∣∣ ∃p ∈ N .〈p, x〉 ∈ A
}
,

where 〈·, ·〉 denotes a canonical homeomorphism from N 2 to N . We set B := N \ A, hence
B ∈ Σ1

k(N ). Since M ∈ {∅,N} if A ∈ {∅,N}, we can assume ∅ 6= A,B 6= N . The induction hy-
pothesis yields us a continuous function fB : N〈k〉 → N such that rng(fB) = B. By Theorem 7.2
there exists a continuous function g : N × N〈k + 1〉 → N such that rng(g) = A. By Lemma 7.4
there is a continuous retraction r : N〈k+ 1〉 → N ×N〈k+1〉. Since r is surjective, A is also the

range of gr. Using the unique continuous function π
(2)
2 : N → N satisfying π

(2)
2 〈p, x〉 = x, we

define f : N〈k + 1〉 → N by f(z) := π
(2)
2 (gr(z)). Then f is continuous and satisfies

x ∈M ⇐⇒ ∃p ∈ N . 〈p, x〉 ∈ A ⇐⇒ ∃φ ∈ N〈k + 1〉.∃p ∈ N . gr(φ) = 〈p, x〉

⇐⇒ ∃φ ∈ N〈k + 1〉. f(φ) = x .

Hence M is the range of f . ✷

The last result can be even improved to the following characterization of levels of the Luzin
hierarchy in terms of the Kleene-Kreisel continuous functionals.

Theorem 7.6 Let k be a positive integer and B a non-empty subset of N . Then B ∈ Σ1
k(N )

iff there is a continuous function f : N〈k〉 → N with rng(f) = B.
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Proof. The only-if-part is given by Proposition 7.5. For the if-part let f : N〈k〉 → N be a
continuous function. According to Corollary 7.3, N〈k〉 has an admissible representation δ such
that its domain dom(δ) is a Π1

k−1-set. We define a partial function g : N → N by g(p) := fδ(p).
Then g is continuous. So it can be extended to a continuous function g∗ : X → N such that X
is a Π0

2-subset of N (cf. Proposition 2.15 or 3.5). The graph of g∗ is a closed set in X ×N and
therefore a Π0

2-set in N×N . By Propositions 2.6 and 2.7, the set A := graph(g∗)∩(dom(δ)×N )
is a Π1

k−1-subset of N ×N . Moreover, we have

M = {y ∈ N | ∃x ∈ N . (x, y) ∈ A} = prN (A) .

Therefore M ∈ Σ1
k(N ). ✷

A similar characterization for the effective version of Σ1
k(N ) can be found in [No80, Theorem

5.22].

Finally, we relate continuous functionals to the Luzin hierarchy of QCB0-spaces (for a similar
relationship see [No81]). The next result provides the exact estimation of the spaces of continuous
functionals of finite types in the Luzin hierarchy of QCB0-spaces. On the other hand, the result
provides “natural” witnesses for the non-collapse property of this hierarchy.

Theorem 7.7 For any positive integer k, N〈k + 1〉 ∈ QCB0(Π
1
k) \QCB0(Σ

1
k).

Proof. We know N〈k+1〉 ∈ QCB0(Π
1
k) from Corollary 7.3. It remains to show that N〈k+1〉 6∈

QCB0(Σ
1
k). We prove the stronger assertion that N〈k + 1〉 has no continuous representation δ

with dom(δ) ∈ Σ1
k(N ).

Suppose for a contradiction that δ is a continuous representation of N〈k + 1〉 with dom(δ) ∈
Σ1

k(N ). Then there is a continuous function f : N〈k〉 → N with rng(f) = dom(δ) by Proposi-
tion 7.5. We define a function g : N〈k〉 → ω by

g(φ) := 1 + δ(f(φ))(φ) = 1 + eval
(
δ(f(φ)), φ

)
.

Then g is continuous, because f , δ and the evaluation function eval : N〈k + 1〉 × N〈k〉 → ω
mapping (ψ, φ) to ψ(φ) are continuous (note that N〈k + 1〉 ×N〈k〉 carries the sequential QCB0-
topology). So there is some p ∈ dom(δ) and some h ∈ N〈k〉 such that δ(p) = g and f(h) = p.
We obtain

g(h) = 1 + δ(f(h))(h) = 1 + g(h) ,

a contradiction.
We conclude N〈k + 1〉 /∈ QCB0(Σ

1
k). ✷

8 The category of projective QCB0-spaces

In this section we show that the Luzin hierarchy of QCB0-spaces gives rise to a nice cartesian
closed category. This is the full subcategory of the category QCB0 consisting of the

⋃
nQCB0(Σ

1
n)

as objects and all continuous function between them as morphisms. We denote this category by
QCB0(P) and call its objects projective qcb-spaces.

Theorem 8.1 The category QCB0(P) of projective qcb-spaces is cartesian closed.

20



Proof. We only have to check that QCB0(P) is closed under binary products and exponentiation
formed in the supercategory QCB0. For exponentiation this follows from Theorem 7.1. It is an
easy exercise to show that the product representation [δ × γ] constructed in Proposition 2.16
satisfies EQ([δ × γ]) ∈ Σ1

n(N
2), whenever EQ(δ) and EQ(γ) are Σ1

n-subsets of N
2. ✷

It turns out that QCB0(P) is in a sense the smallest cartesian closed subcategory of QCB0

containing ω.

Proposition 8.2 There is no full cartesian closed subcategory C of QCB0 such that C inherits
binary products from QCB0, contains the discrete space ω of natural numbers and is contained
itself in QCB0(Σ

1
n) for some 1 ≤ n < ω.

Proof. We show at first that any cartesian closed subcategory D of QCB0 that contains ω
and inherits binary products from QCB0 has the property that exponentials formed in D are
homeomorphic to the corresponding QCB0-exponentials.

Let E be an exponential formed in D to spaces X,Y ∈ D. Remember that this means that there
exists a continuous evaluation function eval : E ×X → Y such that for every space Z ∈ D and
every continuous function h : Z ×X → Y there is a unique continuous function ĥ : Z → E such
that

h(z, x) = eval
(
ĥ(z)(x)

)
for all z ∈ Z and x ∈ X.

For every continuous function f : X → Y it follows from the uniqueness condition (applied to
Z = ω and the continuous function (i, x) 7→ f(x)) that there exists a unique element t(f) ∈ E
satisfying f(x) = eval(t(f), x) for all x ∈ X. Conversely, since Y X is an exponential to X
and Y in the supercategory QCB0, there is a continuous function Ev : E → Y X satisfying
Ev(e)(x) = eval(e, x) for all e ∈ E and x ∈ X. Clearly, Ev(t(f)) = f for every f ∈ Y X . The
uniqueness condition implies t(Ev(e)) = e for every e ∈ E. Hence Ev is a continuous bijection
with t as its inverse.

To show that t is a continuous function from Y X to E, let {fi}i be a sequence that converges
in Y X to some function f∞ ∈ Y X . This can be reformulated by stating that the function
F : N∞×X → Y defined by F (i, x) := fi(x) for i ∈ ω∪{∞} and x ∈ X is continuous, where N∞

denotes the one-point compactification of the discrete natural number with ∞ as the infinity
point. (This is a well-known property of exponentials in the category of sequential topological
spaces and therefore in the category QCB0, see e.g. [ELS04, Sch03]).

Below we will show that N∞ is a continuous retract of the exponential EN formed in D to
X = Y = ω. So let (s, r) be a continuous section-retraction pair. We define G : EN ×X → ω
by G(p, x) := F (r(p), x). Clearly, G is continuous. Since E is an exponential in D, there is a
continuous function Ĝ : EN → E satisfying eval(Ĝ(p), x) = G(p, x) for all p ∈ EN and x ∈ X.
The uniqueness condition implies Ĝ(p) = t(fr(p)). As {i}i converges to ∞ in N∞, {Ĝ(s(i))}i

converges to Ĝ(s(∞)) in E. Clearly, we have Ĝ(s(i)) = t(fi) for all i ∈ ω ∪ {∞}. Therefore
{t(fi)}i converges to t(f∞) in E.

We conclude that t is sequentially continuous. Since Y X is a sequential topological space, t is
even continuous in the topological sense. This means that Y X is homeomorphic to E.

Now we show that N∞ is indeed a retract of EN . As in the general case, there is a continuous
bijection EvN : EN → N . Hence EN is Hausdorff, but not discrete by being an uncountable
space with a dense countable subset (see Proposition 3.3.1 in [Sch03]). So there exists an
injective sequence {zi}i converging in EN to some point z∞ ∈ EN \ {zi | i ∈ ω}. Since N is
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zero-dimensional and EvN is injective, there is a sequence {Ck}k of clopen sets in N satisfying

EvN (zk) ∈ Ck and {EvN (zi) | i ≤ ∞, i 6= k} ⊆ N \ Ck

for every k ∈ ω. We define functions s : N∞ → EN and r : EN → N∞ by

s(i) := zi and r(z) := min
{
∞, k ∈ ω

∣∣ z ∈ Ev−1
N (Ck)

}
.

Then both functions are continuous and satisfy rs = idN∞
. Hence N∞ is a continuous retract

of EN .

Finally, suppose that C were a cartesian closed subcategory of QCB0 with the desired properties.
By the above statement, C contains a space homeomorphic to N〈k〉 for all k ∈ ω. In partic-
ular, there is a space E ∈ C homeomorphic to N〈n + 1〉. Hence N〈n + 1〉 has an admissible
representation δ such that EQ(δ) ∈ Σ1

n(N
2). This contradicts Theorem 7.7. ✷

Remark 8.3 The assumption ω ∈ C in the last proposition is essential, because several cartesian
closed categories of ω-algebraic domains are known [Ju90], which are all QCB0(Π

0
2)-spaces by

being quasi-Polish.

9 Conclusion

Hopefully, the results of this paper show that the introduced hierarchies are natural and in-
teresting for CA and DST. The study of these hierarchies is of course in the very beginning
and many natural questions remain open. In particular, we would like to see more natural and
important witnesses for the non-collapse property of the hierarchies. A systematic development
of DST for the introduced classes of spaces (in particular, for the projective QCB0-spaces) seems
also a natural direction of future research.
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