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We study the asymptotic behaviour of (a) information leakage and (b) adversary’s error

probability in information hiding systems modelled as noisy channels. Specifically, we

assume the attacker can make a single guess after observing n independent executions of the

system, throughout which the secret information is kept fixed. We show that the asymptotic

behaviour of quantities (a) and (b) can be determined in a simple way from the channel

matrix. Moreover, simple and tight bounds on them as functions of n show that the

convergence is exponential. We also discuss feasible methods to evaluate the rate of

convergence. Our results cover both the Bayesian case, where an a priori probability

distribution on the secrets is assumed known to the attacker, and the maximum-likelihood

case, where the attacker does not know such distribution. In the Bayesian case, we identify

the distributions that maximize leakage. We consider both the min-entropy setting studied

by Smith and the additive form recently proposed by Braun et al. and show the two forms

do agree asymptotically. Next, we extend these results to a more sophisticated eavesdropping

scenario, where the attacker can perform a (noisy) observation at each state of the

computation and the systems are modelled as hidden Markov models.

1. Introduction

In recent years there has been much interest in formal models to reason about quantitative

information leakage in computing systems (Clark et al. 2001; Köpf and Basin 2007;

Chatzikokolakis et al. 2008a; Backes and Köpf 2008; Boreale 2009; Smith 2009; Standaert

et al. 2009). A general situation is that of a program, protocol or device carrying out

computations that depend probabilistically on a secret piece of information, such as a

password, the identity of a user or a private key. We collectively designate these as

information hiding systems, following a terminology established in Chatzikokolakis et al.
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(2008a). During the computation, some observable information related to the secret may

be disclosed. This might happen either by design, e.g. if the output of the system is

directly related to the secret (think of a password checker denying access), or for reasons

depending on the implementation. In the latter case, the observable information may take

the form of physical quantities, such as the execution time or the power consumption

of the device (think of timing and power attacks on smart cards (Kocher 1996; Kocher

et al. 1999)). The observable information released by the system can be exploited by an

eavesdropper to reconstruct the secret, or at least to limit the search space. This is all the

more true when the eavesdropper is given the ability of observing several executions of

the system, thus allowing her/him to mount some kind of statistical attack.

A simple but somehow crucial remark due to Chatzikokolakis et al. (2008a) is that, for

the purpose of quantifying the amount of secret information that is leaked, it is useful to

view an information hiding system as a channel in the sense of information theory: the

inputs represent the secret information, the outputs represent the observable information

and the two sets are related by a conditional probability matrix. This remark suggests a

natural formalization of leakage in terms of Shannon entropy based metrics, like mutual

information and capacity. In fact, by a result due to Massey (1994), these quantities are

strongly related to the resistance of the system against brute-force attacks. Specifically,

Shannon entropy is related to the average number of questions of the form ‘is the secret

equal to x?’ an attacker has to ask an oracle in order to identify the secret with certainty.

In a recent paper, Smith (2009) objects that, even if the number of such questions is very

high, the attacker might still have a significant chance of correct guess in just one or very

few attempts. Smith demonstrates that min-entropy quantities, based on error probability

(a.k.a. Bayes risk ), are more adequate to express leakage in this one-try scenario. Whatever

the considered attack scenario, brute-force or one-try, the analytic computation of leakage

for specific distributions on the inputs can be difficult. Henceforth, a major challenge is

being able to give simple and tight bounds on leakage in general, or exact expressions

for some important cases. For instance, Köpf and Smith (2010) give a simple formula for

the min-entropy capacity of a system, which corresponds to the worst-case leakage after

a single observation under one-try attacks.

In the present paper, we tackle these issues in a scenario of one-try attacks and system re-

execution. More precisely, we assume the attacker makes his guess after observing several,

say n, independent executions of the system, throughout which the secret information is

kept fixed. In real-world situations, re-execution may happen either forced by the attacker

(think of an adversary querying several times a smart card), or by design (think of routing

paths established repeatedly between a sender and a receiver in anonymity protocols like

Crowds (Reiter and Rubin 1998)). Since the computation is probabilistic, in general the

larger the number n of observed executions, the more information will be gained by the

attacker. Therefore, it is important to assess the resistance of a system in this scenario.

Our goal is to describe the asymptotic behaviour of the adversary’s error probability

and of information leakage as n goes to ∞. We show that the asymptotic values of

these quantities can be determined in a simple way from the channel matrix. Moreover,

we provide simple and tight bounds on error probability and on leakage as functions

of n, showing that the convergence is exponential. We also discuss feasible methods for
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evaluating the rate of convergence. Our results cover both the Bayesian case (map rule),

where a priori probability distribution on the secrets is assumed known to the attacker,

and the maximum-likelihood case (ml rule), where the attacker does not know such

distribution. In the Bayesian case, we identify the distributions that maximize leakage.

We consider both the min-entropy leakage studied by Smith (2009) and the additive form

recently proposed by Braun et al. (2009), and show the two forms do agree asymptotically.

We next consider a more sophisticated scenario, where computations of the system

may take several steps to terminate, or even not terminate at all. In any case, to each

state of the computation there corresponds one (in general, noisy) observation on the

part of the attacker. Hence, to each computation there corresponds a sequential trace of

observations. The attacker may collect multiple such traces, corresponding to multiple

independent executions of the system. Like in the simpler scenario, the secret is kept fixed

throughout these executions. This set up is well suited to describe situations where the

attacker collects information from different sources at different times, like in a coalition of

different local eavesdroppers. An instance of this situation in the context of an anonymous

routing application will be examined. We formalize this scenario in terms of discrete-time

hidden Markov models (Rabiner 1989) and then show that the results established for the

simpler scenario carry over to the new one.

Throughout the paper, we illustrate our results with a few examples: the Crowds

anonymity protocol, S-boxes in block ciphers and onion routing protocols (Reed et al.

1998) in a network with a fixed topology.

1.1. Related work

The last few years have seen a flourishing of research on quantitative models of

information leakage. In the context of language-based security, Clark et al. (2001) first

motivated the use of mutual information to quantify information leakage in a setting of

imperative programs. Boreale (2009) extended this study to the setting of process calculi,

and introduced a notion of rate of leakage. In both cases, the considered systems do not

exhibit probabilistic behaviour. Closely related to ours is the work by Chatzikokolakis,

Palamidessi and their collaborators. Chatzikokolakis et al. (2008a) examine information

leakage mainly from the point of view of Shannon entropy and capacity, but also

contains results on asymptotic error probability, showing that, independently from the

input distribution, the ml rule approximates the rule. Chatzikokolakis et al. (2008b) study

error probability mainly relative to one observation (n = 1), but also offer a lower bound

in the case of repeated observations (Chatzikokolakis et al. 2008b, Proposition 7.4). This

lower bound is generalized by our results. Compositional methods based on process

algebras are discussed in Braun et al. (2008) there, the average ml error probability is

characterized in terms of maximum a posteriori (map) error probability under a uniform

distribution of inputs. Braun et al. (2009) introduce the notion of additive leakage and

compares it to the min-entropy based leakage considered by Smith (2009), but again in

the case of a single observation.

A model of ‘unknown-message’ attacks is considered by Backes and Köpf (2008).

This model is basically equivalent to the information hiding systems considered in
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Chatzikokolakis et al. (2008a,b) and Braun et al. (2009), and in the present paper.

Backes and Köpf too consider a scenario of repeated independent observations, but from

the point of view of Shannon entropy, rather than of error probability. They rely on

the information-theoretic method of types to determine the asymptotic behaviour of the

considered quantities, as we do in the present paper. An application of their setting to

the modular exponentiation algorithm is the subject of Köpf and Dürmuth (2009), where

the effect of bucketing on security of rsa is examined (see Section 5). This study has

recently been extended to the case of one-try attacks by Köpf and Smith (2010). They

also offer a general lower bound on the attacker’s probability of error after n independent

observations; we compare this result with ours in Section 4. Earlier, Köpf and Basin had

considered a scenario of adaptive chosen-message attacks (Köpf and Basin 2007). They

offer an algorithm to compute conditional Shannon entropy in this setting, but not a

study of its asymptotic behaviour, which seems very difficult to characterize.

The hmm model we consider is similar in spirit to the fully probabilistic automata

considered by Andrés et al. (2010). Their purpose is different, though, as they aim

at feasible methods for computing the channel matrix associated with the automaton,

whereas we focus on the asymptotic behaviour of leakage and error probability.

In the context of side-channel cryptanalysis, Standaert et al. propose a framework to

reason on side-channel correlation attacks (Standaert et al. 2009). Both the Shannon

entropy based metric and a security metric are considered. This model does not directly

compare to ours, since, as we will discuss in Section 5, correlation attacks are inherently

known message – that is, they presuppose the explicit or implicit knowledge of the

plaintext on the part of the attacker.

Hypothesis testing is at the basis of the analysis considered in the present paper. The

classical, binary case is covered in Cover and Thomas (2006, Chapter 11). Baignéres

and Vaudenay (2008) refine these results and characterize the optimal asymptotic rate of

convergence in a number of variations of the basic setting, including the case where one

of the two hypotheses is ‘composite’ – that is, consisting of several sub-hypotheses chosen

according to an a priori probability distribution. They apply these results to study the

advantage an attacker may have in distinguishing the output of a given cipher from a

random output.

1.2. Structure of the paper

The rest of the paper is organized as follows. Section 2 establishes some notations and

terminology. Section 3 introduces the model and the quantities that are the object of our

study. Section 4 discusses the main results about error probability and leakage. Section 5

illustrates these results with a few examples. Section 6 presents the extension to hidden

Markov models.

2. Notations and preliminary notions

Let A be a finite nonempty set. A probability distribution on A is a function p : A→ [0, 1]

such that Σa∈Ap(a) = 1. For any A ⊆ A we let p(A) denote Σa∈Ap(a). Given n � 0, we
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let pn : An → [0, 1] be the nth extension of p, defined as pn((a1, . . . , an))
�
= Πn

i=1p(ai); this

is in turn a probability distribution on An. For n = 0, we set p0(ε) = 1, where ε denotes

here the empty tuple. Given two distributions p and q on A, the Kullback–Leibler (KL)

divergence of p and q is defined as (all the log’s are taken with base 2)

D(p||q) �=
∑
a∈A

p(a) · log
p(a)

q(a)

with the proviso that 0 · log 0
q(a)

= 0 and that p(a) · log p(a)
0

= +∞ if p(a) > 0. It can

be shown that D(p||q) � 0, with equality if and only if p = q (Gibbs inequality). KL

divergence can be thought of as a sort of distance between p and q, although strictly

speaking it is not – it is not symmetric, nor satisfies the triangle inequality.

Pr(·) will generally denote a probability measure. Given a random variable X taking

values in A, we write X ∼ p if X is distributed according to p, that is for each a ∈ A,

Pr(X = a) = p(a).

3. Probability of error, leakage and indistinguishability

Definition 1. An information hiding system is a quadruple H = (S ,O, p(·), p(·|·)), composed

by a finite set of states S = {s1, . . . , sm} representing the secret information, a finite set

of observables O = {o1, . . . , ol}, an a priori probability distribution on S , p(·), and a

conditional probability matrix, p(·|·) ∈ [0, 1]S×O , where each row sums up to 1.

The entry of row s and column o of this matrix will be written as p(o|s), and represents

the probability of observing o given that s is the (secret) input of the system. For each

s, the row of the matrix corresponding to s is identified with the probability distribution

o 	→ p(o|s) on O, denoted by ps. The probability distribution p on S and the conditional

probability matrix p(o|s) together induce a probability distribution q on S ×O defined as

q(s, o)
�
= p(s) · p(o|s), hence a pair of random variables (S, O) ∼ q, with S taking values

in S and O taking values in O. Note that S ∼ p and, for each s and o s.t. p(s) > 0,

Pr(O = o|S = s) = p(o|s).
Let us now discuss the attack scenario. Given any n � 0, we assume the adversary is a

passive eavesdropper that gets to know the observations corresponding to n independent

executions of the system, on = (o1, . . . , on) ∈ On, throughout which the secret state s is kept

fixed. Formally, the adversary knows a random vector of observations On = (O1, . . . , On)

such that, for each i = 1, . . . , n, Oi is distributed like O and the individual Oi are

conditionally independent given S , that is, the following equality holds true for each

on ∈ On and s ∈ S s.t. p(s) > 0

Pr
(
On = (o1, . . . , on) | S = s

)
= Πn

i=1p(oi|s). (1)

We will often abbreviate the right-hand side of the above equation as p(on|s). For any

n, the attacker strategy is modelled by a function g : On → S , called guessing function:

this represents the single guess the attacker is allowed to make about the secret state s,

after observing on.
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Another, equivalent way of formalizing the above scenario is to say that, for any given

ihs H, one can consider its nth extension H(n) =
(
S ,On, p(·), pn(·|·)

)
, where the channel

matrix has columns corresponding to tuples on ∈ On, and pn(on|s) is defined by the

right-hand side of (1) (cf. Köpf and Smith (2010)).

Definition 2 (error probability). Let g : On → S be a guessing function. The probability

of error after n observations (relative to g) is given by

P (g)
e (n)

�
= 1− Psucc(n), where P (g)

succ(n)
�
= Pr(g(On) = S).

It is well known (see e.g. Cover and Thomas (2006)) that the optimal strategy for the

adversary, that is the one that minimizes the error probability, is the maprule, defined

below.

Definition 3 (maximum a posteriori rule, map). A function g : On → S satisfies the

mapcriterion if for each on and s

g(on) = s implies p(on|s)p(s) � p(on|s′)p(s′) for each s′.

In the above definition, for n = 0 one has on = ε, and it is convenient to stipulate

that p(ε|s) = 1: that is, with no observations at all, g selects some s maximizing the prior

distribution. With this choice, P (g)
e (0) denotes 1 − maxs p(s). It worthwhile to note that,

once n and p(·) are fixed, the map guessing function is not in general unique. It is readily

checked, though, that Pe(n) does not depend on the specific map function g that is chosen.

Hence, throughout the paper we assume w.l.o.g. a fixed guessing function g for each given

n and probability distribution p(·). We shall omit the superscript (g), except where this

might cause confusion.

Another widely used criterion is ml, which given on selects a state s maximizing the

likelihood p(on|s) among all the states. ml coincides with map if the uniform distribution

on the states is assumed. ml is practically important because it requires no knowledge of

the prior distribution, which is often unknown in security applications. Our main results

will also apply to the ml rule (see Remark 2 in the next section).

We now come to information leakage: this is a measure of the information leaked

by the system, obtained by comparing the prior and the posterior (to the observations)

success probabilities. Indeed, two flavours of this concept naturally arise, depending on

how the comparison between the two probabilities is expressed. If one uses subtraction,

one gets the additive form of Braun et al. (2009), while if one uses the ratio between

them, one gets a multiplicative form. In the latter case, one could equivalently consider

the difference of the log’s, obtaining the min-entropy based definition considered by Smith

(2009)†.

† Smith (2009) defines the leakage as log
Vpost

Vpr
, where, using our notation, Vpr

�
= maxs p(s) is the prior vulnerability

and Vpost
�
= Σon Pr(On = on) ·maxs Pr(S = s|On = on) is the posterior vulnerability (after n observations; Smith

only defines the case n = 1). To see that Vpost = Psucc(n), just note that Psucc(n) = Σon Pr(On = on) ·Pr(g(on) =

S |On = on) = Σon Pr(On = on) ·maxs Pr(S = s|On = on), where the last equality follows because g is map.
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Definition 4 (additive and multiplicative leakage (Braun et al. 2009; Smith 2009)). The

additive and multiplicative leakage after n observations are defined respectively as

L+(n)
�
= Psucc(n)−max

s
p(s) and L×(n)

�
=

Psucc(n)

maxs p(s)
.

In an information hiding system, it may happen that two secret states induce the same

distribution on the observables. An important example is that of a degenerate channel

matrix modelling a deterministic function f : S → O, with |O| < |S|, where p(o|s) = 1 if

and only if f(s) = o. A crucial role in determining the security parameters of the system

will be played by an indistinguishability equivalence relation over states, which is defined

in the following. Recall that, for each s ∈ S , we let ps denote the probability distribution

p(·|s) on O.

Definition 5 (indistinguishability). Given s, s′ ∈ S , we let s ≡ s′ iff ps = ps′ .

Concretely, two states are indistinguishable iff the corresponding rows in the conditional

probability matrix are the same. This intuitively says that there is no way for the adversary

to tell them apart, no matter how many observations he performs. We stress that this

definition does not depend on the prior distribution on states, nor on the number

n of observations. Note that, in the case when the channel matrix actually defines a

deterministic function f, the equivalence classes of ≡ are precisely the counter-images of

f in S , that is, the sets f−1(o) for o ∈ O.

4. Bounds and asymptotic behaviour

We introduce some notation that will be used throughout the section. Let S/ ≡ be

{C1, . . . , CK}, the set of equivalence classes of ≡. For each i = 1, . . . , K , let

s∗i
�
= argmaxs∈Ci

p(s) and p∗i
�
= p(s∗i ). (2)

We assume w.l.o.g. that p∗i > 0 for each i = 1, . . . , K (otherwise all the states in class Ci

can be just discarded from the system).

4.1. Main results

We shall prove the following bounds and asymptotic behaviour for Pe(n).

Theorem 1. Pe(n) converges exponentially fast to 1−ΣK
i=1p

∗
i . More precisely, there is ε > 0

s.t.

1−
∑K

i=1 p
∗
i � Pe(n) � 1− (

∑K
i=1 p

∗
i ) · r(n)

where r(n) = 1 − (n + 1)|O| · 2−nε. Here, the lower bound holds true for any n, while the

upper bound holds true for any n � n0
�
= ε−1 ·maxi,j log(

p∗i
p∗j

). Moreover, ε only depends

on the rows ps∗i (i = 1, . . . , K) of the conditional probability matrix p(·|·).
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Note that in the practically important case of the uniform distribution on states, we

have n0 = 0, that is the upper bound as well holds true for any n. The theorem has a

simple interpretation in terms of the attacker’s strategy: after infinitely many observations,

he can determine the indistinguishability class of the secret, say Ci, and then guess the

most likely state in that class, s∗i .

In order to discuss this result, we recall some terminology and a couple of prelim-

inary results from the information-theoretic method of types (Cover and Thomas 2006,

Chapter11). Given n > 0, a sequence on ∈ On and a symbol o ∈ O, let us denote by n(o|on)
the number of occurrences of o inside on. The type (or empirical distribution) of on is

the probability distribution ton on O defined as: ton (o)
�
= n(o|on)

n
. Let q any probability

distribution on O. A neighbourhood of q is a subset of n-sequences of On whose empirical

distribution is close to q. Formally, for each n � 1 and ε > 0

U(n)
q (ε)

�
= {on ∈ On |D(ton ||q) � ε}.

The essence of the method of types is that (i) there is only a polynomial number of types

in n and that (ii) the probability under q of the set of n-sequences of a given type decreases

exponentially with n, at a rate determined by the KL divergence between q and that type.

These considerations are made precise and exploited in the proof of the following lemma,

which can be found in Cover and Thomas (2006, Chapter 11). The lemma basically says

that the probability that a sequence falls in a neighbourhood of q of radius ε approaches

1 exponentially fast with n.

Lemma 1. Let q be a probability distribution on O. Then qn(U(n)
q (ε)) � 1− (n+1)|O| ·2−nε.

We shall also rely upon the well-known fact that the map test can be expressed in

terms of KL divergence. Basically, the distribution that is most likely to have generated

a given sequence is the one that is closest to the type of the sequence in the sense of

KL divergence. In the statement, α and β represent the prior probabilities of the states

corresponding to the two distributions. The proof follows from easy manipulations of

log’s and summations (see Cover and Thomas (2006, Chapter 11)).

Lemma 2. Let p and q be two distributions on O, α, β > 0 and on ∈ On. Then pn(on)α >

qn(on)β is equivalent to D(ton ||p) < D(ton ||q) + 1
n
log α

β
.

Let us now come back to the proof of the main result. For any s ∈ S , we let

A(n)
s
�
= g−1(s) ⊆ On be the acceptance region for state s. We note that it is not restrictive

to assume that g maps each on in one of the K representative elements s∗1, . . . , s
∗
K that

maximize the prior: indeed, if this were not the case, it would be immediate to build out

of g a new map function that fulfills this requirement. Thus, from now on we will assume

w.l.o.g. that A(n)
s = � for s 
= s∗1, . . . , s

∗
K . For the sake of notation, from now on we will

denote U(n)
ps∗

i

as U
(n)
i and A

(n)
s∗i

as A
(n)
i , for i = 1, . . . , K . The sets U

(n)
i and A

(n)
i are related by

the following lemma.

Lemma 3. There is ε > 0, not depending on the prior probability on states, such that for

each n � n0 as defined in Theorem 1 and for each i = 1, . . . , K , it holds that U(n)
i (ε) ⊆ A

(n)
i .
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Proof. We choose ε > 0 s.t. for any i 
= j, U(n)
i (2ε)∩U(n)

j (2ε) = �: the existence of such

an ε is guaranteed by Cover and Thomas (2006, Lemma 11.6.1) and only depends on

ps∗1 , . . . , ps
∗
K

(see also Proposition 1 later in this section for an estimation of the permissible

ε’s). Fix i ∈ {1, . . . , K} and on ∈ U
(n)
i (ε), we will show that, for n large enough, on ∈ A

(n)
i .

By the conditions on ε, we have that for any j 
= i:

D(ton ||ps∗i ) � ε and D(ton ||ps∗j ) > 2ε.

After some algebra, one gets that, for any n � n0

D(ton ||ps∗i ) < D(ton ||ps∗j ) +
1

n
log

p∗i
p∗j

. (3)

Now, by Lemma 2, inequality (3) is equivalent to

p(on|s∗i )p(s∗i ) = pns∗i
(on)p∗i > pns∗j

(on)p∗j = p(on|s∗j )p(s∗j ). (4)

Since this inequality holds true for each j 
= i, by definition of map rule we deduce that g

maps on to s∗i , that is on ∈ A
(n)
i .

We now come to the proof of the main theorem above.

Proof. (of Theorem 1). We focus equivalently on the probability of success, Psucc(n).

Under the assumptions on g explained above, we compute as follows:

Psucc(n) =
∑

s∈S Pr(g(On) = S |S = s)p(s) =
∑

s∈S pns (A
(n)
s )p(s)

=
∑K

i=1 p
n
s∗i
(A(n)

i )︸ ︷︷ ︸
�1

p∗i �
∑K

i=1 p
∗
i

which implies the lower bound in the statement. Choose now ε as given by Lemma 3. Let

n � n0. Note that for n = 0 the upper bound holds trivially, as Pe(0) = 1 −maxs p(s), so

assume n � 1. For each i = 1, . . . , K we have

pns∗i
(A(n)

i ) � pns∗i
(U(n)

i (ε)) � 1− (n + 1)|O| · 2−nε

where the first inequality comes from Lemma 3 and second one from Lemma 1. In the

end, from Psucc(n) =
∑K

i=1 p
n
s∗i
(A(n)

i )p∗i , we obtain that for n � n0

Psucc(n) �

(
K∑
i=1

p∗i

)
· (1− (n + 1)|O| · 2−nε)

which implies the upper bound in the statement.

Remark 1. In the expression for r(n), the term (n + 1)|O| is a rather crude upper bound

on the number Tn of types of n-sequences. It is possible to replace this term with the

expression (
n + |O| − 1

|O| − 1

)
which is less easy to manipulate analytically, but gives the exact number of types, Tn,

hence a more accurate upper bound on Pe(n).
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The following results show that, asymptotically, the security of the systems is tightly

connected to the number of its indistinguishability classes – and in the case of uniform

prior distribution only depends on this number

Corollary 1. If the a priori distribution on S is uniform, then Pe(n) converges exponentially

fast to 1− K
|S| .

Remark 2 (on the ml rule). Braun et al. (2008) show that the probability of error under

the ml rule, averaged on all distributions, coincides with the probability of error under

the map rule and the uniform distribution. From Corollary 1, we therefore deduce that

the average ml error converges exponentially fast to the value 1− K
|S| as n→ ∞.

We discuss now some consequences of the above results on information leakage. Recall

that for i = 1, . . . , K , we call s∗i a representative of the indistinguishability class Ci that

maximizes the prior distribution p(s) in the class Ci, and let p∗i = p(s∗i ). Assume w.l.o.g.

that p∗1 = maxs p(s). In what follows, we denote by pmax the distribution on S defined by:

pmax(s) = 1
K

if s ∈ {s∗1, . . . , s∗K} and pmax(s) = 0 otherwise.

Corollary 2.

1 L+(n) converges exponentially fast to ΣK
i=2p

∗
i . This value is maximized by the prior

distribution pmax, which yields the limit value 1− 1
K

.

2 L×(n) converges exponentially fast to
ΣK
i=1p

∗
i

p∗1
. This value is maximized when the prior

distribution is either uniform or pmax, both of which yield the limit value K .

Proof.

1 The value of the limit follows directly from the definition of L+(n) and Theorem 1.

Concerning the second part, for any fixed p(·), it is easily checked that ΣK
i=2p

∗
i � 1− 1

K

(this is done by separately considering the cases maxs p(s) � 1
K

and maxs p(s) <
1
K

).

But the value 1− 1
K

is obtained asymptotically with the distribution pmax.

2 Again, the value of the limit follows directly from the definition of L×(n) and

Theorem 1. Concerning the second part, for any fixed p(·), of course we have

ΣK
i=1

p∗i
p∗1

� ΣK
i=11 = K . But the value K is obtained asymptotically when the prior is

either uniform or the distribution pmax.

Remark 3. A consequence of Corollary 2(2) is that, in the case of uniform distribution

on states, the multiplicative leakage as n goes to infinity coincides with the number of

equivalence classes K . If one considers deterministic systems, that is systems where the

channel matrix defines a function f : S → O, the leakage does not depend on the number

of observations: L×(n) = K for n � 1. Moreover K equals the number distinct counter-

images of f, that is the number of elements in the range of f; in particular K � |O|. This

way we re-obtain a result of Smith (2009) for deterministic systems.

In Braun et al. (2009) additive leakage is contrasted with multiplicative leakage in the

case of a single observation (n = 1). It turns out that, when comparing two systems,

the two forms of leakage are in agreement, in the sense that they individuate the same
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maximum-leaking system w.r.t. a fixed prior distribution on inputs. However, Braun

et al. (2009) also show that the two forms disagree as to the distribution on inputs that

maximizes leakage w.r.t. a fixed system. This is shown to be the uniform distribution in the

case of multiplicative leakage, and a function that uniformly distributes the probability

on the set of ‘corner points’ in the case of additive leakage (see Braun et al. (2009) for

details). Here, we have shown that, despite this difference, additive and multiplicative

leakage do agree asymptotically at least on one maximizing distribution, pmax.

Remark 4. In Köpf and Smith (2010), they observed that, in the case of uniform

distribution on S , multiplicative leakage is upper bounded by the number of types

of n-sequences of O:

L×(n) � Tn. (5)

It is interesting to compare this upper bound, which depends on n, with our upper bound,

the value K given by Corollary 2(2). It is clear that, since as n → ∞ one has Tn → ∞ as

well, (5) ceases to be useful for large values of n. Recalling that Tn � (n+ 1)|O| and using

some algebra, one sees that (5) is sharper than our upper bound K at least as long as

n � K
1
|O| − 1.

So, it appears that the upper bound (5) is useful only when the number of rows of the

matrix is very large compared to the number of observables.

4.2. Rate of convergence

The exponent ε in the statement of Theorem 1 determines how fast the error probability

approaches its limit value. This is of course an important parameter to consider when

assessing the security of a system: a large value of the limit leakage may not imply an

actual security threat, if this ε is very small.

Let us call achievable any ε > 0 for which the upper bound in Theorem 1 holds true for

any n � n0. The following result gives sufficient and practical conditions for achievability.

Let us stress that the achievable rates given by this proposition do not depend on the

prior distribution, but only on the relation ≡, and specifically on the minimum norm-1

distance between equivalence classes: the larger this distance, the higher the achievable

rates. This result is essentially a re-elaboration on Cover and Thomas (2006, Lemma

11.6.1).

Proposition 1. Let δ
�
= minsi 
≡sj ||psi − psj ||1. Then any rate ε satisfying 0 < ε < δ2

16 ln 2
is

achievable.

Proof. Using the notation introduced immediately above Lemma 3, we show that, for

any ε satisfying the hypotheses in the present lemma, one has U
(n)
i (2ε) ∩ U

(n)
j (2ε) = �

for i 
= j, which guarantees that ε can be used in the proof of Lemma 3, hence in the

statement of Theorem 1. According to Cover and Thomas (2006, Lemma 11.6.1), for any

two distributions p and q on the same set O, it holds true that D(p||q) � 1
2 ln 2
||p − q||21.

Take any on ∈ U
(n)
i (2ε). Assume by contradiction that on ∈ U

(n)
j (2ε) for any j 
= i. Then
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we would get

δ � ||ps∗i − ps∗j ||1 � ||ps∗i − ton ||1 + ||ton − ps∗j ||1

�
√

2 ln 2D(ton ||ps∗i ) +
√

2 ln 2D(ton ||ps∗j )

� 2
√

4ε ln 2

< δ

where: the first inequality above exploits the triangle inequality for || · ||1, the second one

exploits the inequality D(p||q) � 1
2 ln 2
||p− q||21 mentioned above, the third one follows by

definition of the balls U
(n)
j (2ε) and U

(n)
i (2ε), and the last one follows from the hypothesis

on ε and some algebra.

In the practically important case where the p∗i ’s are all equal, the above proposition can

be strengthened as follows.

Proposition 2. Suppose p∗1 = p∗2 = · · · = p∗K . Let δ be like in Proposition 1. Then any rate

ε satisfying 0 < ε < δ2

8 ln 2
is achievable.

Proof. In the proof of Lemma 3, the condition (4) is equivalent to (3). Under the

hypothesis the p∗i ’s are all equal, the term 1
n
log

p∗j
p∗i

vanishes, so (3) reduces to D(ton ||ps∗i ) <
D(ton ||ps∗j ). For this to be the case, it is sufficient that U

(n)
i (ε) ∩ U

(n)
j (ε) = �. Proceeding

like in the proof of Proposition 1, we can show that the conditions on ε imposed in the

present proposition are sufficient to guarantee this disjointness.

The above results prompt the following question. Suppose one somehow ignores the

rows of p(·|·) that are close together with each other, and only consider rows that are

far from each other: is it then possible to achieve a higher rate of convergence ε? The

answer is expected to be yes, although ignoring some rows might lead to a possibly higher

asymptotic error probability. In other word, it should be possible to trade off accuracy in

guessing with rate of convergence. This is the content of the next proposition.

Proposition 3. Let � 
= S0 ⊆ {s∗1, . . . , s∗K}. Then there is ε > 0 only depending on the rows

ps, s ∈ S0, of p(·|·), such that for each n � n0
�
= ε−1 maxs∗i ,s∗j∈S0

log(
p∗i
p∗j

), it holds true that

Pe(n) � 1−
( ∑

s∗j∈S0

p∗j

)
· r(n) with r(n) = 1− (n + 1)|O| · 2−nε.

Proof. For any n, let A(n)
s (s ∈ S) be the acceptance regions determined by any map

guessing function. Choose any s∗ ∈ S0. Define the new acceptance regions B(n)
s as follows:

B(n)
s
�
= � if s /∈ S0; B(n)

s
�
= A(n)

s if s ∈ S0 \ {s∗}; B
(n)
s∗
�
= A

(n)
s∗ ∪ ∪s/∈S0

A(n)
s . For each n, the

regions B(n)
s determine a new guessing function, say g′, which will in general not be map.

Now, repeating the computation in the proof of Theorem 1 with the regions B(n)
s instead

of A(n)
s , one finds

P (g′)
e (n) � 1−

( ∑
s∗j∈S0

p∗j

)
· (1− (n + 1)|O| · 2−nε).
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The wanted result follows from the optimality of the map rule, which implies Pe(n) �
P (g′)
e (n).

These concepts are demonstrated in the following example.

Example 1. Consider the small imperative procedure p() described below. There, h and l

are two-bits integer global variables, while rnd() is a procedure returning a random real

value in the interval [0, 1]. Boolean values true and false are identified with integers 1

and 0, respectively.

proc p();

{

l=rnd();

if not(h mod 2) then l=(l >= .5) else l=1+(l >= (.5 + (h div 2)*10^-5) );

return l

}

Now we consider the case that h is a sensitive variable, whose initial value is initially

chosen in the range 0. . . 3, and then never modified. We assume that p() can be invoked

several times. One is interested in analysing the asymptotic information leakage relative

to h caused by p(). We can model the procedure p() as an information hiding system, as

follows.

Let S = {0, 1, 2, 3} be the set of possible values of h, and O = {0, 1, 2} the set of possible

values returned by p(). The prior probability distribution on S is non-uniform and given

by: p(0) = p(1) = 1
2
−10−9 and p(2) = p(3) = 10−9. The behaviour of p() can be described

by the conditional probability matrix displayed below.

0 1 2

0 1
2

1
2

0

1 0 1
2

1
2

2 1
2

1
2

0

3 0 1
2

+ 10−5 1
2
− 10−5

Note that 0 ≡ 2. Applying Theorem 1, we find that, for n sufficiently large, 1 − E �
Pe(n) � 1−E · r(n), where E = 1−10−9 and r(n) = 1− (n+1)3 ·2−nε. Applying Proposition

1, we find that any rate ε < 3.6067×10−11 is achievable. Thus the convergence to the value

1− E = 10−9 is very slow. One wonders if there is some value 1− E ′ that is only slightly

higher than 1− E, but that can be reached much faster. This is indeed the case. Observe

that rows 1 and 3 are very close with each other in norm-1 distance: ||p1−p3||1 = 2×10−5.

We can discard row 3, which has a very small probability, and then apply Proposition 3

with S0 = {0, 1} to get

Pe(n) � 1− E ′ · r′(n)
where, E ′ = 1

2
− 10−9 + 1

2
− 10−9 = 1− 2× 10−9 and r′(n) = 1− (n+ 1)3 · 2−nε′ . The rate ε′

can be computed by applying Proposition 2, as p(0) = p(1). By doing so, we get that any
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ε′ < 0.18034 is achievable. This implies that the value 1−E ′ is approached much faster as

n grows. For instance, already after n = 350 invocations we get that (1−E ′)/Pe(n) > 0.99.

Remark 5. Example 1 illustrates another feature of leakage measures. The asymptotic

value of the leakage, in both the additive and multiplicative forms, depends on the number

of distinct rows, K , in the matrix. One might argue that this makes leakage not a very

robust measure: small variations in the matrix entries may induce dramatic variations

on K . For instance, adding the vector (0,−10−5,+10−5) to the last row of the matrix

in Example 1 makes the value of K decrease from 3 to 2, if one considers a uniform

prior probability on the inputs. In other words, the (asymptotic) leakage, as a function

defined on matrices of fixed dimensions, is not continuous. This lack of continuity might

be problematic whenever the probabilities of the matrix are measured experimentally, or

if they are represented as floating-point numbers, because the resulting imprecision might

affect K .

In practice, if the level of noise perturbing the computed matrix is not too high,

this problem could be alleviated by appropriately ‘clustering’ the rows of the matrix.

For instance, it might be known that the norm-1 distance between every row of the

‘ideal’ matrix p(·|·) and the corresponding row of the perturbed matrix p̂(·|·) is at most

some η that is assumed small with respect to the (unknown) δ, say η < δ/2, where

δ = mins 
≡s′ ||ps − ps′ ||1. Then the number of distinct rows K of p(·|·) can be easily

recovered as the maximum number of rows in p̂(·|·) whose pairwise distance is > 2η.†

Remark 6 (on optimal achievable rates). Proposition 1 does not give indications as to the

best achievable rate. Now, the case |S| = 2, in which the attacker has to decide between

s1 and s2, corresponds to classical Bayesian hypothesis testing. In this case, provided the

distributions ps1 and ps2 have both full support (are everywhere positive on O), it is well

known that the optimal rate of convergence ε is given by the Chernoff information between

ps1 and ps2 (see Cover and Thomas (2006, Chapter 11) for details). It is possible to extend

this result to the general case of multiple hypothesis testing, hence to our setting, again

with the proviso that all the distributions psi have full support: in this case, the rate of

convergence will be given by the least Chernoff information between any two distinct

distributions (Leang and Johnson 1997). In the general case, a more refined analysis can

be found in Boreale et al. (2011b). In practice, we have found that most of the times

Propositions 1 and 2 provide good approximations of the optimal achievable rates.

5. Examples

5.1. Protocol re-execution in Crowds

The Crowds protocol (Reiter and Rubin 1998) is designed for protecting the identity

of the senders of messages in a network where some of the nodes may be corrupted,

† Moreover, a set of such rows can be easily identified and used to compute also a δ̂ which is within ±2η of δ.

The resulting estimate of the rate according to Proposition 1 is in turn quite close to the estimate one would

obtain from the ideal p(·|·).
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d1 d2 · · · d20

s1 0.468 0.028 · · · 0.028

s2 0.028 0.468 · · · 0.028

...
...

s20 0.028 0.028 · · · 0.468

Fig. 1. The conditional probability matrix of Crowds for 20 honest nodes, 5 corrupted nodes and

pf = 0.7.

that is, under the control of an attacker. Omitting a few details, the functioning of

the protocol can be described quite simply: the sender first forwards the message to a

node of the network chosen at random; at any time, any node holding the message

can decide whether to (a) forward in turn the message to another node chosen at

random, or (b) submit it to the final destination. The choice between (a) and (b) is made

randomly, with alternative (a) being assigned probability pf (forwarding probability)

and alternative (b) probability 1 − pf . The rationale here is that, even if a corrupted

node C receives the message from a node N (in the Crowds terminology, C detects

N), C , hence the attacker, cannot decide whether N is the original sender or just a

forwarder. In fact, given that N is detected, the probability of N being the true sender is

only slightly higher than that of any other node being the true sender. So the attacker

is left with a good deal of uncertainty as to the sender’s identity. Reiter and Rubin

have showed that, depending on pf , on the fraction of corrupted nodes in the network

and on a few other conditions, Crowds offers very good guarantees of anonymity (see

Reiter and Rubin (1998)).

Chatzikokolakis et al. have recently analysed Crowds from the point of view of

information hiding systems and one-try attacks (Chatzikokolakis et al. 2008a,b). In

their modelling, S = {s1, . . . , sm} is the set of possible senders (honest nodes), while

O = {d1, . . . , dm} is the set of observables. Here each di has the meaning that node si has

been detected by some corrupted node. The conditional probability matrix is given by

p(dj |si)
�
= Pr(sj is detected | si is the true sender and some honest node has been detected)

(see Reiter and Rubin (1998) for details of the actual computation of these quantities).

An example of such a system with m = 20 users, borrowed from Chatzikokolakis et al.

(2008b), is given in Figure 1.

The interesting case for us is that of re-execution, in which the protocol is executed

several times, either forced by the attacker himself (e.g. if corrupted nodes suppress

messages) or by some external factor, and the sender is kept fixed through the various

executions. This implies the attacker collects a sequence of observations on = (o1, . . . , on) ∈
On, for some n. The repeated executions are assumed to be independent, hence we

are precisely in the setting considered in this paper. This case is also considered in
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Chatzikokolakis et al. (2008b), which gives lower bounds for the error probability holding

for any n. Our results in Section 4 generalize those in Chatzikokolakis et al. (2008b) by

providing both lower and upper bounds converging exponentially fast to the asymptotic

error probability. As an example, for the system in the table above, we have Pe(n) → 0,

independently of the prior distribution on the senders. An achievable convergence rate,

estimated with the method of Proposition 1, is ε ≈ 0.13965. This implies that already

after observing n = 1000 re-executions the probability of error is, using the refined bound

given in Remark 1, < 0.01.

It is worth to stress that protocol re-execution is normally prevented in Crowds for the

very reason that it decreases anonymity, although it may be necessary in some cases. See

the discussion on static versus dynamic paths in Reiter and Rubin (1998).

5.2. Hamming weight attacks against S-boxes

Timing (Kocher 1996) and power analysis (Kocher et al. 1999) are two flavours of the

side-channel correlation attacks against cryptographic devices (Brier et al. 2004; Standaert

et al. 2009). These attacks presuppose, explicitly or implicitly, that attacker knows the

inputs (messages) processed by the target device†. Basically, the attack is carried out by

simulating the device’s computations under the different candidate keys, each time using

as inputs the same messages processed by the device. This way, the attacker obtains

different samplings of the leakage from the side channel, one for each candidate key. He

will then choose the key that generates the sampling that is most correlated with the one

obtained from the device.

Here, we wonder to what extent knowledge of the messages is necessary to extract signi-

ficant amount of information from the side channel. Differently from correlation attacks,

we will therefore assume that input messages have a nonzero, moderate redundancy, but

not that they are known to the attacker. We analyse the case of des S-boxes. Similar

analysis could be conducted against different types of symmetric keys devices. Our analysis

applies to any round, in fact, to any context where an adversary may get to observe the

Hamming weight of the S-box output. A des S-box can be described as a function that

takes as an input a pair of a message and a key and yields as an output a block of

ciphertext, SB : K ×M→ C, where: K = {0, 1}6 is the set of keys, M = {0, 1}6 is the set

of messages and C = {0, 1}4 is the set of ciphertexts. The internal details of the device are

unimportant for the purpose of this illustration. We assume a uniform prior distribution

on K and some known prior distribution on M, say pM . Similarly to Kelsey et al. (2000),

we assume the attacker can create a side channel delivering him the Hamming weight of

the target S-box’ output. To the S-box thus described there corresponds an information

hiding system where: S = K, O = {0, 1, 2, 3, 4} is the set of observables, i.e. the Hamming

† In some circumstances, this knowledge is granted by the application. For example, in an attack against the

final round of any Feistel cipher, the left half of the output is also the input of the target round function (see

Kelsey et al. (2000)).
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weights, and p(o|k) is defined as

p(o|k) �=
∑

m∈M:W (SB(m,k))=o

pM(m)

where W (·) is the Hamming weight function.

We report here on our results about the first of the eight S-boxes of des. Analysis of

other S-boxes leads to similar conclusions. The distribution of the plaintext, pM , plays

a crucial role here: the lower the redundancy, the less information is expected to be

extracted from the side channel. For example, if pM is the uniform distribution (0%

redundancy), then it is easy to see that all the rows of the matrix p(o|k) are the same,

hence Pe(n) = 1 − 1/64 for each n: the adversary cannot do any better than random

guessing. For our analysis, we have chosen a plaintext with a redundancy of about 27%

(H(pM) = 4.39 bits), obtained by sampling ascii text from some web pages. In the resulting

matrix, p(o|k), all the rows are different, which implies that Pe(n)→ 0. Concerning the rate

of convergence, the method of norm-1 difference (Proposition 1) yields ε ≈ 4.0822× 10−4.

This means that with n � 1.7 × 105 observations the error probability is < 0.045 (here

and in what follows, we use the refined bound given in Remark 1). Discarding the keys

corresponding to the seven shortest norm-1 distances, one would get ε ≈ 1.2179 × 10−3.

Applying Proposition 3, one gets an error probability � 0.11 already with n = 6 × 104

observations.

In a more realistic scenario, the attacker could not directly measure the Hamming

weight of the target S-box, but rather the global weight of the eight S-boxes composing

the round function of des. This scenario can be modelled as a noisy version of the previous

one. The Hamming weight of the target S-box, O, is now disturbed by the noise N, the sum

of the Hamming weights of the remaining seven S-boxes, say W2, . . . ,W8. Assuming that

the variables Wi are independent from each other and from O and identically distributed

– this is not strictly true, but seems a reasonable approximation – the central limit theorem

would tell us that their sum N = Σ8
i=2Wi has approximately a normal distribution. Here,

for simplicity we model N as a discrete random variable having binomial distribution

B(n, p) with n = 28 and p = 1
2
. What is observed by the attacker now is O′

�
= O + N.

Hence the new set of observables is O′ = {0, . . . , 32}. Explicitly, for each i ∈ O′ and k ∈ K,

the entries of the new conditional probability matrix p′(·|·) are given by

p′(i|k) �= Pr(O + N = i |K = k) =

min{i,4}∑
j=0

p(j|k) ·
(

28

i− j

)
· 2−28.

Proposition 1 applied to the matrix p′(·|·) yields a rate of ε ≈ 1.9275 × 10−6. Theorem 1

gives Pe(n) < 0.0007 for n � 4.2× 108. As expected, the convergence rate is lower than in

the noiseless case. However, the effort needed to break the system is certainly in the reach

of a well determined attacker.

Our simple analysis confirms that unprotected implementations of des S-boxes are quite

vulnerable to attacks based on Hamming weights. Software simulations have reinforced

this conclusion, showing that, in practice, a good success probability for the adversary is
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achieved with a relatively small n. For instance, in the noiseless case, already with n = 103,

we have obtained an experimental success rate of 99%.

6. Sequential observations and hidden Markov models

The attack model discussed in the preceding sections presupposes that the computation

involving the secret information takes place in a single step. Or, more accurately, that

the intermediate states of the computation are not accessible to the attacker. Here,

we consider a more refined scenario, where computations may take several steps to

terminate, or even not terminate at all. In any case, to each state of the computation there

corresponds one observation on the part of the attacker. Hence, to each computation

there corresponds a sequential trace of observations. The attacker may collect multiple

such traces, corresponding to multiple independent executions of the system. Throughout

these executions, the secret information is kept fixed. This set up is well suited to describe

situations where the attacker collects information from different sources at different times,

like in a coalition of different local eavesdroppers. An instance of this situation in the

context of anonymous routing applications will be examined later on.

Discrete-time hidden Markov models (Rabiner 1989) provide a convenient setting to

formally model such systems, which we may designate as sequential information hiding

systems.

6.1. Definitions

Let S and O be finite sets of states and observations, respectively. A (discrete time,

homogeneous) hidden Markov model (hmm) with states in S and observations in O is a

pair of random processes 〈 (Si)i�1 , (Oi)i�1 〉, such that, for each t � 1

— St and Ot are random variables taking values in S and O, respectively; and

— the following equalities hold true (whenever the involved conditional probabilities are
defined):

Pr(St+1 = st+1|St = st, Ot = ot, . . . , S1 = s1, O1 = o1) = Pr(St+1 = st+1|St = st) (6)

Pr(Ot = ot|St = st, St−1 = st−1, Ot−1 = ot−1, . . . , S1 = s1, O1 = o1) = Pr(Ot = ot|St = st). (7)

Moreover, the value of the above probabilities does not depend on the index t, but
only on st, st+1 and ot.

Equation (6) says that the state at time t + 1 only depends on the state at time t, that

is (Si)i�1 forms a Markov chain. Equation (7) says that the observation at time t only

depends on the state at time t. A consequence of this equation is that the state at time

t + 1 is independent from the observation at time t, given the state at time t, that is

Pr(Ot = ot, St+1 = st+1|St = st) = Pr(Ot = ot|St = st) · Pr(St+1 = st+1|St = st). (8)

Graphically, a hmm can be represented by a diagram like the one below, where the

nodes are random variables and the presence of a pair of arrows X ← Y → Z or

X → Y → Z signifies conditional independence of X and Z given Y .
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Assume now S = {s1, . . . , sm} and O = {o1, . . . , ol}. A finite-state hmm on S and O is

completely specified by, hence can be identified with, a triple (π, F, G) such that:

— π ∈ R1×m is a row-vector representing the a priori distribution on S , that is π(i) =

p(S1 = si) for each 1 � i � m;

— F ∈ Rm×m is a matrix such that F(i, j) is the probability of transition from si to sj , for

1 � i, j � m;

— G ∈ Rm×l is a matrix such that G(i, j) is the probability of observing oj at state si, for

1 � i � m and 1 � j � l.

In our scenario, a Bayesian attacker targets the first state of the computation, that is

the value of S1. We are interested in analysing the attacker’s probability of error after

observing n traces of length t, corresponding to n conditionally independent executions of

the system up to and including time t, as both n and t go to +∞. This we define in the

following. Let σ range over the set of observation traces, that is O∗. For any σ = o1 · · · ot
(t � 0) and s ∈ S , define†

p(σ | s) �= Pr(O1 = o1, O2 = o2, . . . , Ot = ot | S1 = s)

with the proviso that p(ε | s) �= 1 . We note that for any fixed t � 0 and s ∈ S , p(σ|s)
defines a probability distribution as σ ranges over Ot, the set of traces of length t, or

t-traces. In other words, for any fixed t, we have an information hiding system in the sense

of Section 3, with S as a set of states, Ot as a set of observables, a conditional probability

matrix p(σ|s) (s ∈ S , σ ∈ Ot) and π as an a priori distribution on states. Call H(t) this

system. We have the following error probabilities of interest (t � 0):

P (t)
e (n)

�
= probability of error after n observations (of t-traces) in H(t) (9)

P (t)
e

�
= lim

n→∞
P (t)
e (n) (10)

Pe
�
= lim

t→∞
P (t)
e . (11)

We will show in the next subsection that the above two limits exist and are easy to

compute. Correspondingly, we have the information leakage quantities of interest (here

Psucc = 1− Pe):

L
(t)
+ (n)

�
= P (t)

succ(n)−max
s

π(s) L
(t)
+
�
= P (t)

succ −max
s

π(s) L+
�
= Psucc −max

s
π(s).

Multiplicative leakages are defined similarly.

† Or, more formally, p(σ | s) �= Pr(Oh = o1, Oh+1 = o2, . . . , Oh+t−1 = ot | Sh = s), for any index h s.t. Pr(Sh = s) >

0. Note that this definition does not depend on the chosen index h, given that the chain is homogeneous.

Also, we are assuming w.l.o.g. here that for each s there is an index h s.t. Pr(Sh = s) > 0.
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6.2. Results

That the limit (10) exists is an immediate consequence of Theorem 1 applied to H(t).

Indeed, let us denote by ≡(t) the indistinguishability relation on states for H(t), that is,

explicitly

s ≡(t) s′ iff for each σ ∈ Ot : p(σ|s) = p(σ|s′).

Let C
(t)
1 , . . . , C

(t)
Kt

be the equivalence classes of ≡(t) and let p
∗(t)
i

�
= max

s∈C(t)
i
π(s). Then we

have by Theorem 1 that

P (t)
e = 1−

Kt∑
i=1

p
∗(t)
i . (12)

Note that, for any fixed t, Corollary 2 carries over to H(t). We now consider the case

t→∞. We introduce the following fundamental relation.

Definition 6 (indistinguishability for hmm). The indistinguishability relation on a hmm is

defined as

≡ �
=

⋂
t�0

≡(t) .

Equivalently, s ≡ s′ iff for every σ ∈ O∗, p(σ|s) = p(σ|s′).

It is immediate to check that ≡ is an equivalence relation on S . Let C1, . . . , CK be its

equivalence classes and let p∗i
�
= maxs∈Ci

π(s), for i = 1, . . . , K .

Proposition 4. The limit (11) is given by Pe = 1−
∑K

i=1 p
∗
i .

Proof. First, we note that {≡(t)}t�0 forms a monotonically non-increasing chain of

relations: ≡(0)⊇≡(1)⊇≡(2) · · · . To prove this fact, note that, for each t, σ ∈ Ot and s ∈ S ,

p(σ|s) = Σo∈Op(σ · o|s). Therefore, s ≡(t+1) s′ implies s ≡(t) s′.

The above fact implies that the sequence {P (t)
e }t�0 is monotonically non-increasing:

indeed, the finer the equivalence classes of ≡(t), the greater the value of the sum in (12).

Therefore, the limit (11) exists. In order to determine the value of this limit, we reason as

follows. Since S is finite and the chain of sets {≡(t)}t�0 is monotonically non-increasing,

there must exist t0 such that

≡(t0) = ≡(t0+1) = · · · = ≡ .

According to (12) then, from t0 onward the sequence {P (t)
e }t�0 stabilizes to the value

Pe = 1−
∑K

i=1 p
∗
i .

The actual computation of Pe, and of the corresponding information leakage quantities,

is therefore reduced to the computation of ≡. Below, we show that this computation can

indeed be performed quite efficiently. We do so by using some elementary linear algebra.

Let us introduce some additional notation. We define the transition matrices Mok ∈ Rm×m,
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for any ok ∈ O, as follows†:

Mok (i, j)
�
= Pr(St+1 = sj , Ot = ok|St = si)

= F(i, j) · G(i, k)

where the last equality is justified by equation (8). Note that a row of Mok does not

necessarily sum to 1. For any σ = o1 · · · ot, we let Mσ denote Mo1
× · · · ×Mot . Finally, we

let ei ∈ R1×m denote the row vector with 1 in the ith position and 0 elsewhere and let

e
�
= Σm

i=1ei denote the everywhere 1 vector. The following lemma provides an alternative

characterization of ≡; the lemma is easily proven by induction on the length of σ.

Lemma 4. For each σ and si ∈ S , p(σ | si) = eiMσe
T . Hence si ≡ sj iff for each σ ∈

O∗, eiMσe
T = ejMσe

T .

We say a row vector v is orthogonal to a set of column vectors U, written v⊥U, if vu = 0

for each u ∈ U. Also, for any set of vectors U, U⊥ denotes the orthogonal complement

of U given by U⊥ = {v | v⊥U}. It is easily seen that U⊥ is a sub-space of the space of

column vectors. Moreover, U ⊆ V implies V⊥ ⊆ U⊥. Of course, the above definitions

extend as expected when exchanging the roles of ‘row’ and ‘column’. We finally note that

if U is a vector space, then (·)⊥ is an involution, that is (U⊥)⊥ = U.

Theorem 2. Let B be a basis of the (finite-dimensional) sub-space of Rm×1 spanned by⋃
σ∈O∗{Mσe

T }. For si, sj ∈ S , si ≡ sj iff (ei − ej) ⊥ B.

Proof. The condition of Lemma 4 can be expressed as

for each σ ∈ O∗ : (ei − ej)Mσe
T = 0

iff

(ei − ej) ∈ ∩σ{Mσe
T }⊥ = (∪σ{Mσe

T })⊥
iff

(ei − ej) ⊥ B.

A basis B of span
( ⋃

σ{Mσe
T }

)
can be expressed as

B = {Mσe
T | σ ∈ F} (13)

for a suitable finite, prefix-closed F ⊆ O∗. More precisely, B can be computed by a

procedure that starts with the set B := {eT } and iteratively updates B by joining in the

vectors Mo·σe
T = Mo · (Mσe

T ), with Mσe
T ∈ B and o ∈ O, that are linearly independent

from the vectors already present in B, until no other vector can be joined in. This procedure

must terminate in a number of steps � m. The set of strings F can be computed alongside

with B.

We now briefly discuss the rate of convergence to Pe. We have already seen that

P (t0)
e = Pe. Therefore, there is no advantage, for an attacker wanting to determine ≡, in

considering traces of length greater than t0. The convergence rate for the attacker is hence

† Again, due to homogeneity, in the definition we can choose any index t such that Pr(St = si) > 0.
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determined by the matrix of the system H(t0). For this reason, it is of practical importance

to be able to compute t0. This is in fact quite an easy task, as stated by the following

proposition.

Proposition 5. Let B be a basis of the space spanned by ∪σ{Mσe
T } and F the corres-

ponding set of strings, as specified by (13). Assume B and F have been obtained by the

algorithm described above. Then t0 = max{|σ| : σ ∈ F}.

Proof. For any equivalence relation R over S , let the kernel of R be the subspace of

R1×m defined thus

ker(R)
�
= span({ei − ej | si R sj}).

Now, by a reasoning similar to that in the proof of Theorem 2, for any t we have

ker(≡(t)) = (span(∪σ∈OtMσe
T ))⊥ (14)

while, by definition of B and F

ker(≡) = (span(∪σ∈FMσe
T ))⊥. (15)

Let R, R′ be two equivalence relations of the form ≡ or ≡(t). The above equations

imply that siRsj iff ei − ej ∈ ker(R). Moreover, R ⊆ R′ iff ker(R) ⊆ ker(R′). Thus, the

equivalence relations of interest are completely characterized by their kernels. By Lemma

4, we deduce that for each t, ker(≡(t)) ⊇ ker(≡(t+1)). From this fact, and using the

fact that U ⊆ V implies V⊥ ⊆ U⊥, and that (U⊥)⊥ = U, we obtain that for each t,

span(∪σ∈OtMσe
T ) ⊆ span(∪σ∈Ot+1Mσe

T ), hence

ker(≡(t))⊥ = span(∪σ∈OtMσe
T ) = span(∪0�i�t ∪σ∈Oi Mσe

T ).

Take now t = max{|σ| : σ ∈ F} in the equation above: we obtain

ker(≡(t))⊥ = span(∪0�i�t ∪σ∈Oi Mσe
T ) ⊇ span(∪σ∈FMσe

T ) = ker(≡)⊥

hence ker(≡(t)) ⊆ ker(≡), which implies ker(≡(t)) = ker(≡), that is ≡(t) = ≡.

On the other hand, take any t < max{|σ| : σ ∈ F}. Assume by contradiction that

≡(t) = ≡, that is ker(≡(t)) = ker(≡). By (14) and (15), and using (U⊥)⊥ = U, we obtain

that span(∪σ∈OtMσe
T ) = span(∪σ∈FMσe

T ). This implies that there is a string of maximal

length in F , say σ0, s.t. Mσ0
eT can be obtained as a linear combination of vectors Mσe

T ,

for σ of length t < |σ0|. But, by construction of B and F , this cannot be the case.

The practical computation of the rate relative to Pe can be carried out applying

Proposition 1 to the system H(t0), which requires one has at hand the conditional

probability matrix of the system. The entries of this matrix are of the form p(σ|s) with

σ ∈ Ot0 . The computation of individual entries p(σ|s) can be performed quite efficiently,

running the so-called forward–backward algorithm on the underlying hmm (see Rabiner

(1989)). Unfortunately, the number of columns in the matrix, i.e. of traces of length t0, is

exponential in t0. Most likely, this makes the exact computation of the rate impractical

for significant systems (say, systems with thousands of states). Forms of approximations

are conceivable to tackle this problem, such as ‘lumping’ the matrix by aggregating sets
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of columns: this leads to tractable dimensions, but also to underestimating the rate. We

will not discuss this issue further.

Remark 7. Model checking of Markov chains is based on viewing properties to analyse as

sets of infinite sequences of states. One could adopt a similar perspective when analysing

hmm’s from the point of view of information leakage, and stipulate that an observable is

a set of infinite sequences P ⊆ Oω , taken from a cylinder-generated sigma-algebra (see

e.g. Baier and Katoen (2008)). However, this approach would not lead to substantially

different results. Indeed, the probability measures defined on the sigma-algebra entirely

depend on the probability assigned to cylinders, which is in turn determined by the

probability of the finite prefixes σ ∈ O∗ that define the cylinders. Therefore, even in this

seemingly richer setting of observations, one would end up having that ≡ coincides with

≡(t0).

7. An example: hiding routing information

We discuss a scenario where messages are routed from a sender to a receiver in a network

with a fixed topology, as can be found for instance in a structured peer-to-peer overlay.

Anonymity protocols such as onion routing (Reed et al. 1998) are designed to protect

the identity of the sender and/or of the receiver in the presence of corrupted nodes.

Initially, the routing path from the sender to the receiver is established randomly. In each

exchanged message, nested layers of encryptions ensure that any intermediate node on

the path node only gets to know the preceding and the next node in the path, but not the

identity of the original sender and of the final receiver.

We present and analyse a model of this protocol below. We should warn the reader

that, for the sake of presentation, we have chosen to analyse an over-simplified version

of the protocol. For example, we assume that, upon receiving a message, a corrupted

node can tell whether the message pertains to the target sender-receiver conversation, but

cannot identify the predecessor node in the path followed by the message. More powerful

forms of eavesdropping can be easily accommodated. Again, we are interested in the case

of re-execution, where, for some reason, the initiator is forced to establish new paths with

the responder several times. We will concentrate on the asymptotic error probability and

leakage, ignoring issues related to the rate of convergence.

We assume the topology of the network is specified by a nonempty graph G = (V , E).

For each node v ∈ V , we let N(v) denote the set of neighbours of v, that is the set

of nodes u for which an arc {v, u} in E exists; N(v) is always assumed nonempty. Let

C ⊆ V represent the subset of corrupted nodes. We let S �
= V × V be the set of states of

the system; in (v, r) ∈ S �
= V × V , v represents the node currently holding the message,

while r represent the final receiver. We let O �
= C ∪ {∗} be the set of observables; here

c ∈ C means that the message is presently held by the corrupted node c, while ∗ means

no observation other than the elapse of a discrete-time interval. What the attacker can

observe are therefore traces like σ in the picture in Figure 2.

We assume the sender and the receiver are chosen at random independently from each

other, and that the sender is always a honest node, as there is no point for the attacker in

https://doi.org/10.1017/S0960129513000613 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000613


Asymptotic information leakage under one-try attacks 315

s

r

c2

c1 c3

σ = ** ******c1 c2 c3

Fig. 2. (Colour online) A random route from s to r in a network with three corrupted nodes, and

the corresponding observation σ.

eavesdropping on corrupted nodes. This formally means that the first state of the Markov

chain is a random vector S1 = (S, R), where S and R are independent random variables

taking values uniformly in V \C and V , respectively. The transitions and the observations

of the hidden Markov model are defined by the following equations, where u, v, r ∈ V ,

c ∈ C and s ∈ V \ C . The first line defines the entries of matrix F , while the second line

defines the entries of G:

p
(
(u, r) | (v, r)

) �
=

{
1
|N(v)| if u ∈ N(v) and v 
= r

0 if u /∈ N(v) and v 
= r
p
(
(r, r) | (r, r)

) �
= 1

p
(
c | (c, r)

) �
= 1 p

(
∗ | (s, r)

) �
= 1.

The above equations define a hidden Markov model, say M. For any specific topology

G, it is easy to compute the corresponding probability Pe defined by (11), as indicated

by Proposition 4. Recall that Pe is the probability that, after observing n independent

executions of the system up to time t, for n, t → ∞, the attacker fails to correctly guess

the pair (s, r) of the true sender and receiver.

In fact, in order to assess the degree of anonymity provided by the system, it is more

convenient to have at hand the error probabilities for the sender and for the receiver

separately. To see how these probabilities are defined and computed, we examine in detail

the case of the sender; the receiver case is basically the same. Formally, for each σ ∈ Ot

and sender s ∈ V \ C , let

psend(σ|s)
�
= Pr(Ot = σ|S = s). (16)

Note that psend(σ|s) can be actually computed as an average Σr∈V p(σ|(s, r))pR(r). The

quantities p(σ|(s, r)) can be computed as described by Lemma 4. For any fixed t �
1, (16) defines a conditional probability matrix; using this matrix, we can form an

information hiding system where the states are the senders and the observables are t-

traces: (V \ C,Ot, pS (·), psend(·|·)
)
. Let us denote by P

(t)
e,send the corresponding asymptotic

error probability. The probability we are after is obtained by letting t go to ∞:

Pe,send
�
= lim

t→∞
P

(t)
e,send.
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Reasoning as we did for Proposition 4, one checks that Pe,send can be computed from

the limit indistinguishability relation as t → ∞, say ≡send. Explicitly, this relation can be

defined as s ≡send s′ iff for each σ ∈ O∗, psend(σ|s) = psend(σ|s′). The next lemma says

how ≡send can be computed starting from the hidden Markov model M defined above,

by a suitable aggregation of the rows of the basis matrix B. The proof consists of easy

manipulations of the transition matrices Mσ and is omitted. Recall that the states of M
are pairs (u, v), thus e(u,v) denotes the row vector in R1×|V |2 whose entry corresponding to

the element (u, v) is 1, while the others are 0. For each s, we let fs denote the row vector

Σ(s,v)∈S e(s,v).

Lemma 5. Let B a basis like in the hypotheses of Theorem 2 for the hidden Markov

model M defined above. For any two senders s and s′, s ≡send s
′ iff (fs − fs′ )⊥B.

We have applied this setting to a few instances of a grid network, like the one displayed

above, relative to different sizes d of the grid and different sets C of corrupted nodes.

Table 1 summarizes the outcomes of these experiments. The nodes in the grid are

numbered from 1 to d2, starting from the top left corner and proceeding row-wise from

left to right. To avoid end effects, we make the grid wrap up, i.e. the top and bottom

rows are connected together, as well as the rightmost and leftmost columns. The sets C

are chosen so as to give rise to configurations where no two corrupted nodes are directly

connected: we have checked experimentally that these are the most advantageous for the

attacker; otherwise, the relative distance of the corrupted nodes seems unimportant. Ksend

and Krec denote the number of classes of ≡send and of ≡rec, respectively. Moreover, from

Corollary 2(2) in Section 4, we know that the asymptotic multiplicative leakage coincides

with the number of classes in the case of uniform distribution. The probability Pe,send is

computed as 1− Ksend

|V |−|C| , while Pe,rec is computed as 1− Krec

|V | . Finally, additive leakages are

computed as indicated by Corollary 2(2).

Although a systematic study of anonymous routing protocols is outside the scope of

the present paper, some qualitative considerations can be drawn from these data. If one

keeps d fixed and lets |C| grow, the data are simple to interpret: the error probability goes

to 0 and the leakage gets larger. On the other hand, if one keeps |C| fixed and compares

configurations of different size d, the interpretation becomes less obvious. The leakage

tends to increase when moving from smaller to larger values of d, which is particularly

evident from the columns of multiplicative leakage. This increase occurs barely because,

as the number of nodes grows, the number of indistinguishability classes tends to grow as

well: all this means is that a large system tends to leak more information than a small one.

Concerning error probability, which is supposed to measure the ‘absolute’ resistance of a

system against passive eavesdropping, the data seem to partially contradict the intuition

that the more nodes in a network, the stronger the guarantee of anonymity. Indeed, it may

happen that the error probability decreases when moving from smaller to larger values

of d. Also, the receiver seems more vulnerable than the sender from the point of view of

anonymity.

At the moment we have no exact explanation to offer for these phenomena. Heuristically,

the first phenomenon (decrease of error probability) seems to be connected with the fact

that, as d grows, the number of indistinguishability classes may grow faster than the
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Table 1. Sender and receiver anonymity for several instances of a grid network.

d C
Ksend

= L×,send
Krec

= L×,rec
Pe,send Pe,rec L+,send L+,rec

3 {1} 2 4 0.75 0.56 0.12 0.33

3 {1, 5} 4 9 0.43 0 0.43 0.89

3 {2, 4, 6, 8} 5 9 0 0 0.8 0.89

4 {1} 4 9 0.73 0.44 0.2 0.5

4 {1, 6} 7 12 0.5 0.25 0.43 0.69

4 {2, 5, 7, 10} 12 16 0 0 0.92 0.94

5 {1} 5 15 0.79 0.4 0.17 0.56

5 {1, 7} 13 25 0.43 0 0.52 0.96

5 {2, 6, 8, 12} 21 25 0 0 0.95 0.96

6 {1} 10 10 0.71 0.72 0.26 0.25

6 {1, 8} 19 36 0.44 0 0.53 0.97

6 {2, 7, 9, 14} 32 36 0 0 0.97 0.97

number of nodes, because a great deal of new observables (traces) become available. The

second phenomenon (receiver’s vulnerability) is connected with the fact that, given enough

time, the message will reach its destination and, if this is a corrupted node, the adversary

will know that for sure. A more systematic study of anonymous routing protocols is called

for to quantitatively assess their security.

8. Conclusion and further work

We have characterized the asymptotic behaviour of error probability, and information

leakage in terms of indistinguishability in a scenario of one-try attacks after repeated

independent, noisy observations. We have first examined the case in which each execution

gives rise to a single observation, then extended our results to the case where each state

traversed during an execution induces one observation.

In the future, we would like to systematically characterize achievable rates of conver-

gence given an error probability threshold, thus generalizing Proposition 3. It would also

be natural to generalize the present one-try scenario to the case of k-tries attack, for

k � 2. Experiments and simulations with realistic anonymity protocols may be useful to

assess at a practical level the theoretical results of our study. For example, we believe that

hmm’s are relevant to security in peer-to-peer overlays. We would also like to clarify the

relationship of our model with the notion of probabilistic opacity (Bérard et al. 2010), and

with the huge amount of work existing on covert channels (see e.g. Mantel and Sudbrock

(2009) and references therein).

Another interesting research direction concerns the nature of the guarantees provided

by error probability related metrics. These quantities provide a synthetic way to express the

security of a system under a specific attack scenario. However, they are tightly connected

mainly with the number of indistinguishability classes, which may be inadequate in some

https://doi.org/10.1017/S0960129513000613 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129513000613


M. Boreale, F. Pampaloni and M. Paolini 318

cases. For instance, in an anonymity protocol characterized by a high error probability

(or small leakage), it might well be the case that an individual user belongs to a singleton

class, hence being totally exposed to eavesdropping. For this reason, one would like to

devise a framework where the analysis can be conducted both at a quantitative level (how

much is leaked) and at a qualitative one (what is leaked). Initial results in this direction

are reported in Boreale et al. (2011b).
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