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Abstract

We use Hidden Markov Models to motivate a quantitative composi-
tional semantics for noninterference-based security with iteration, includ-
ing a refinement- or “implements” relation that compares two programs
with respect to their information leakage; and we propose a program al-
gebra for source-level reasoning about such programs, in particular as a
means of establishing that an “implementation” program leaks no more
than its “specification” program.

This joins two themes: we extend our earlier work, having iteration
but only qualitative [37], by making it quantitative; and we extend our
earlier quantitative work [27] by including iteration.

We advocate stepwise refinement and source-level program algebra —
both as conceptual reasoning tools and as targets for automated assis-
tance. A selection of algebraic laws is given to support this view in the
case of quantitative noninterference; and it is demonstrated on a simple
iterated password-guessing attack.

1 Introduction: extant theory and practices

Hidden Markov Models, or HMM ’s, extend Markov Processes by supposing that
the process state is not directly visible: only certain observations of it can
be made [22]. How HMM ’s motivate a quantitative noninterference-security
program semantics is our principal topic: the hidden state of the HMM has
“high security” and the observations that the HMM allows are “low security.”

Program algebra is the manipulation of program texts themselves, i.e. as
syntax and according to algebraic rules laid down beforehand, with the aim of
showing equivalence or ordering with respect to a so-called “refinement” relation
(§2) between one program and another. That requires a semantics, and proofs
of the elementary rules wrt. that semantics. Furthermore these rules must be
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preserved by context in order for true algebra to be possible: in programming
semantics, that last is called compositionality. This represents an “up front”
cost for reasoning about program behaviours. When that cost has been paid
however, just once, then the benefits accrue forever after — every time an
equality or refinement can be shown syntactically without “descending” into
the semantics.

The significance of iteration is that its proper treatment, via suprema of
chains, makes interesting demands on the semantic machinery already set-up
for straight-line, quantitative noninterference programs [2, 27].

Our first specific contribution extends an existing (but recent [27]) composi-
tional semantics for straight-line quantitative noninterference security, one with
a novel two-level “hyperdistribution” semantics, by showing how hypers (for
short) –previously introduced without detailed motivation– are in fact directly
suggested by the mathematical machinery of HMM ’s (§3). Our second con-
tribution adds iterating programs to that (§6), requiring thus a treatment of
nontermination and fixed-points: this would be straightforward were it not for
the fact that supremum-completeness, on which fixed-points’ existence usually
relies, does not appear to hold.

Our third contribution (§7) is to show how, in spite of the incompleteness, we
can via a more-specialised “termination order” retain discrete distributions for
the treatment of loops: that gives a simpler theory than (the more general) mea-
sures would require. Nevertheless, our further goal of extending compositional-
closure [27] to iteration does seem to require measures: at that point, there is
no escape (§12).

Our final contribution is a selection of algebraic laws (§9), and the treatment
of an example (§10) illustrating the style of reasoning we hope they will facilitate.

2 Program algebra and refinement

Algebra is powerful, and it is general; and it is especially useful in program
verification where algebra’s feature of compositionality allows the reuse that
simplifies verification tasks. Program algebra in particular provides equalities
or refinements (see below) that, although proved in isolation between program
fragments, can then be reused freely within arbitrary contexts, drastically sim-
plifying correct-by-construction and/or post-hoc verification arguments.

A refinement ordering between programs is weaker than equality: it defines
the relationship that must hold between specifications and their implementa-
tions in a given application domain [49, 33, 5]. In special applications, such
as noninterference security, the refinement relation is adjusted –usually made
more restrictive– to take further aspects into account: here it will be the pos-
sible release of high-level information. Thus secure refinement checks not only
(non)termination, but also compares programs to see which one releases more
information about hidden, high-security variables: it is more distinguishing than
standard program refinement.
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For example, take integer variables v, h and suppose that v is visible (low-
security) whereas h is hidden (high-security). Furthermore, assume an attacker
with “perfect recall,” i.e. one who remembers visible variables’ values even if
they are subsequently overwritten. (We explain this assumption in §4.2 and §12
below.) Then we would expect the refinement (v:= h÷2; v:= v÷2) v v:= h÷4
but, crucially, not the reverse. On the left, observing the first assignment to v
as well as the second (perfect recall) allows us to distinguish h=1 from h=3; but
on the right we cannot do that. The right-hand program is a refinement of the
left-hand one because it is more secure; with an appropriate security-refinement
algebra we would show this syntactically (§9.3).

3 Hidden Markov models and hyper-distributions

3.1 Basic structure of HMM ’s

A Hidden Markov Model comprises a set X of states, a set Y of observations,
and two stochastic matrices T ,E [22]: the transition probabilities T give for
any two states x{0,1}∈X the (conditional) probability T (x1|x0) that a transition
will end in final state x1 given that it began in initial state x0; and the emission
probabilities give for any state x0 and observation y1∈Y the probabilityE(y1|x0)
that y1 will be emitted, and thus observed, given the initial state x0. Typically
an HMM is analysed over a number of steps i = 0, 1, · · · from some initial
distribution X0 over X , so that a succession of states x1, x2, · · · and observations
y1, y2, · · · occurs, where each xi related to xi+1 by T and to yi+1 by E.

We assume finitely many states in the state space, and thus use discrete
distributions throughout. 1

We illustrate a single step in Fig. 1. With X0 the distribution of incoming
state x0, the distribution X1 of outgoing states x1 is the multiplication of X0 as
a row-vector by T as a matrix, that is Pr(X1=x1) :=

∑
x0

Pr(X0=x0)T (x1|x0).
Similarly the distribution Y1 of observations y1 is given by a (matrix) multi-
plication amounting to Pr(Y1=y1) :=

∑
x0

Pr(X0=x0)E(y1|x0). The “hidden”
essence of the model is that though we cannot see the incoming x0’s and the
outgoing x1’s directly, still the observation of y1 tells us something about each
if we do know the incoming state distribution X0 and the matrices T ,E.

3.2 A priori and a posteriori distributions
on the state-space X

The a priori distribution on the HMM ’s input is X0, and the a posteriori
distribution on the input can be calculated from T ,E, and X0 in the usual way,
via Bayes’ formula, once we have observed y1.

But we concentrate instead on the output. The a priori distribution of
outgoing x1 is X1 as calculated in §3.1 above. Its a posteriori distribution is

1The countably infinite supports mentioned in the introduction occur, eventually, in spite
of this finiteness assumption (§6.1).
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X0 X1

Y1

incoming-state distribution outgoing-state distribution

distribution on observations

E

T

By a priori we mean that the distributionX1 is determined statically, from information
“already” available and in particular is not derived from an actual execution.

Figure 1: A Hidden Markov model, a priori view

conditioned on the emitted y1 actually observed: it too is determined by the
usual Bayes formula

Pr(X1=x1|Y1=y1) :=

∑
x0

Pr(X0=x0)E(y1|x0)T (x1|x0)∑
x0

Pr(X0=x0)E(y1|x0)
, (1)

that is the (joint) probability that x1, y1 both occurred divided by the overall
(marginal) probability that y1 occurred. Thus before we observe any y1 we
believe the distribution of outgoing x1 to be X1, and after we observe y1 we
believe that distribution to be as (1). This view is illustrated in Fig. 2.

3.3 The attacker’s point of view:
an equivalent representation

Although the matrices T ,E determine the HMM completely, we suggest that
from the point of view of an attacker trying to determine the state of the HMM,
it would be more useful to consider a different (but equivalent) formulation: the
effect of one step from a known initial distribution X0 is a joint distribution over
observations in Y and their corresponding outgoing conditional distributions
over X : this structure thus comprises values ∆ of type D(Y×DX ), where we
write DX and similar for the type of discrete distributions over X , thus one-
summing functions of type X→[0, 1]. That is, each ∆ gives for a pair (y1, δ1) in
Y×DX the probability that an attacker will observe y1 and will conclude from
it that x1 has a posteriori distribution δ1.

We call such ∆-values hyperdistributions, or just hypers. Since ∆ is a joint
distribution (jointly over Y and DX ), we can speak of its left- and right-marginal

distributions: the left-marginal distribution
←
∆ is of type DY, and is in fact just

Y1 from above. That is, the distribution Y1 of emitted observations is recovered

as
←
∆.
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E

T
X0

incoming-state distribution

outgoing-state
conditional distributions

emitted-value distribution Y1

y1 y2 y3

δ1

δ2

δ3

corresponding to y1

corresponding to y2

corresponding to y3

The pair (yi,
 δi) occurs

so that X1 = ∑i  pi
 δi

X1

with probability pi
 = Y1.yi  

By a posteriori we mean that the conditional distributions δ{1,2,3} are deduced after
observation of the emitted values y{1,2,3}, and represent a revision of the a priori
knowledge of the outgoing state as represented in the X1 of Fig. 1.

Figure 2: A Hidden Markov Model, a posteriori view

The right-marginal distribution
→
∆ of the hyper is more interesting: it is of

type D2X and, although it averages to the outgoing state distribution X1 (in the
sense shown in Fig. 2), most of the popular (conditional) information-entropy
measurements are likely to decrease, becoming less than the entropy of X1 itself:
that decrease quantifyies the “leak” that the emissions of Y1 represent. For

example, the conditional Shannon Entropy of
→
∆, defined

∑
δ:DX

→
∆(δ)H(δ) over

the possible a posteriori distributions δ is no more than H(X1), the Shannon
Entropy of the a priori outgoing distribution X1 itself. 2

Thus the denotional-style semantic representation we extract from HMM -
theory is the hyperdistribution of type D(Y×DX ), a nesting of one distribution
within another. As we will see, this allows us to equip the semantic space with
a “refinement” partial order; but it is security refinement, so that for hypers
∆{0,1} one can speak of whether ∆0 is more- or less secure than ∆1 or, if not,
whether they are perhaps simply security-incomparable.

3.4 A probabilistic monad

A further benefit of conventional denotational techniques is our access to com-
putational monads [15, 32, 47], simplifying the presentation considerably.

From here on, we use a dot “.” for function application, rather than parenthe-
ses (·), writing thus f.x rather than f(x). For Curried functions we will usually
have f.x.y rather than e.g. either f(x, y) or f(x)(y). 3 As a result, given distri-

2For distribution X in DX such that Pr(X=xi) is pi, the Shannon Entropy H(X) of X is
given by −Σi pi ln pi. As remarked, a number of other security-based definitions of entropy
give the same inequality [24].

3An advantage of this is that it distinguishes function application from the many other uses
of parentheses, and produces self-contained expressions thus of less clutter. In this respect we
compare H.X = −ΣxX.x ln(X.x) with the conventional presentation of Shannon Entropy in
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bution X:DX the probability it assigns to x:X is simply X.x, that is Pr(X=x)
but written more compactly and taking advantage of the fact that X is just a
function (of type X→[0, 1]). The same economy accrues for random variables.

The monad structure for computations [32] supposes a triple (K,η,µ) where
K is an endofunctor in a given category, and η,µ are natural transformations
satisfying certain coherence conditions. An example of this is the Giry monad
[15], typically used for probabilistic computations; in its general form, its functor
takes an object (Ω,BΩ) comprising a set Ω and a sigma-algebra BΩ on it to the
set of probability measures on (Ω,BΩ), endowed with a suitable sigma-algebra
of its own, induced from the given BΩ.

Working here with discrete measures, our use of the monad will be modest
and we will use suggestive names for its components, based on its specialisation
to discrete distributions and functional programming. In particular,

functor D – Given set SS write DSS for the set of discrete distributions over
SS.

push-forward map – Given two sets X ,Y and a function f :X→Y write Df ,
the action of the functor on the function, as map.f :DX→DY. 4 In the
probability literature this is called the the push-forward, defined for any
X:DX and y:Y in the discrete case as

map.f.X.y := X.(f−1.y) = (
∑
x:X | f.x=y · X.x ) .

multiplication avg – The multiplication (natural) transformation µ:D2X→DX
averages the distributions in its argument distribution-of-distributions, to
give a distribution again. We write that as avg for “average” and in the
discrete case for X:D2X it is defined for any x:X as

avg.X.x := (
∑
X:DX ·X.X×X.x ) .

Kleisli composition via lifting For two functions f :X→DY and g:Y→DZ,
the lift of g, written g∗, is defined to be the functional composition
avg ◦ map.g of type DY→DZ so that the Kleisli composition g after f
is expressed g∗◦f in the usual way.

Similar definitions and notations apply for the monad D associated with the
partial distributions that sum to no more than one [21, 47].

The immediate benefit from this monadic structure is the sequential compo-
sition of two HMM ’s, written say H1;H2, so that the final a posteriori distribu-
tion takes the observations from the first as well as the second HMM observables
into account. If we take the type of H{1,2} to be Y×DX → D(Y×DX ), then
we want our definition of H1;H2 to have similar type, thus giving it the same
features as a single HMM provided that the observations from both of its com-
ponents are considered: the general case is illustrated in Fig. 3.

Footnote 2 with its indices i and temporary names pi.
4This is consistent with the definition of map in functional programming.
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E

T

state distribution

The actual (historical) values of Y are 
not important; but their accumulation 
induces ever-finer conditioning: it 
effectively implements Perfect Recall.

X

Y

emitted-value distributions

Initial distribution over X. Final distribution over X.

Figure 3: A Hidden Markov Model: iteration accumulates leakage

For our single compositionH1;H2, the outgoing result ofH1 is an a posteriori
hyper which is then presented “en bloc” as input to H2. Via the type construc-
tor, that intermediate hyper is a partitioning of some flattened distribution of
type Y×DX according to the observables emitted by H1; 5 each partition of
that flattened distribution –itself of type Y×DX– is separately input to H2, but
after the final output is produced the partitioning is “reassembled” in the over-
all the final a posteriori distribution, thus neatly taking both the observations
from H{1,2} into account. Crucially this partitioning and reassembling is done
according to the original weightings, which is what allows us to use the monad:

Y×DX H1−→ D(Y×DX )
map.H2−→ D2(Y×DX )

avg−→ D(Y×DX ) .

Here the original input type Y×DX is transformed as we suggest by H1 to
D(Y×DX ), which then in its partitioned form is passed to H2 and, via the
map/avg construction, that partition is reassembled after the action of H2 on its
components. That supplies our definition forH1;H2, thus also of type Y×DX →
D(Y×DX ). Note we do not need Y2 to “combine” the observations of the two
separate HMM ’s, an important advantage of this presentation: in §4.2(2,4) this
is explained further.

5We call it a distribution simply to avoid a proliferation of names. In fact it is isomorphi-
cally a distribution of type D(Y×X ) whose left marginal is a point distribution.
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4 Quantitative noninterference security
for programs

4.1 Noninterference via hidden- and visible variables;
atomicity

Take a simple programming model comprising a finite set H of hidden states,
ranged over by (high-security) program variable(s) h, and a finite set V of visible
states, ranged over by (low-security) program variable(s) v. The state space
overall is thus the product V×H, and our program texts refer to variables v, h.6

Observers of the program’s execution can see v, but they cannot see h. At-
tackers of the program try to learn about h’s final values, or at least their
distribution, by observing v’s values as execution of the program proceeds.

We begin with assignment statements as a basis: a simultaneous assignment
is written v, h:=V,H, allowing both expressions V,H to refer to the initial values
of v, h without worrying about which one is updated first: the two expressions
V,H may contain variables of either kind, or both. We base the assignment on
a probabilistic-choice syntax x:∈X that means “choose the new value of x ac-
cording to the distribution X,” where X itself is a distribution-valued expression
that possibly depends on the initial value of x as well as other variables.

To keep track of variables in the generic semantic definitions, we write the
distribution-valued expressions as explicit functions applied to them, so arriving
at v, h:∈ E.v.h, T.v.h as our basic simultaneous probabilistic assignment to the
two variables; actual program texts of course simply use expressions over v, h in
which such functions might occur. Thus E.v.h is a distribution, depending on
the initial values of v, h, according to which v’s new value is chosen. Similarly
T.v.h is the distribution for the choice of h’s new value. The statement is atomic
in the sense that only its results are accessible, not how they were computed.

Ordinary, non-probabilistic assignments can be written v, h:=E.v.h, T.v.h
in which E, T now give values rather than distributions; they are clearly the
special case of the above for point distributions, and so do not need a separate
treatment.

4.2 Connecting HMM ’s and the programming model;
perfect recall

The connection is made by identifying V with Y, and H with X . The visible
v corresponds to the emitted observations y, thus to a sort of “output buffer”;
and the hidden h corresponds to the state x, passed from one program fragment
through sequential composition to the next one.

6For simplicity we are assuming that multiple hidden- or visible variables are collected
separately within vectors h or v, i.e. that v, h are the only variables present; but we won’t
clutter the presentation with the “overhooks” for that. The program texts can refer of course
to individual elements of the vectors, which references are interpreted as projections etc. in
the usual way.
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A slight generalisation is that the probabilistic choices can be influenced by
the immediately previous emitted value (by y from the previous step, whose
value is the initial value of v for this step), whereas in an HMM this is typically
not done. This is only a notational convenience, since clearly the HMM ’s state
spaces can be elaborated to allow the same freedom; but such conveniences are
a part of adapting the HMM framework to programming practice.

Further elaborating the adaptation, we make the following remarks:

1. A typical sequential program will execute many individual atomic steps
successively. The outgoing state from one step will be both its final value
of h, fed-in automatically as the incoming state of the next step, and the
last emitted observable value, found in v.

2. Although the observations emitted from each step will successively over-
write earlier values in v, the conditioning observations of those earlier
outputs caused is not lost: it is preserved by the map/avg composition.
Thus the partitioning expressed by the growing support-set of the outer
D becomes finer on each step, so that deductions made by an attacker’s
having seen an earlier v are never forgotten. This is called Perfect Recall
[18].

3. The distribution E.v.h from which v’s final value is chosen corresponds to
the stochastic matrix E of the HMM. In effect, the h in E.v.h selects the
row of E that gives the distribution from which y, that is from which v
is chosen. Similarly, the distribution T.v.h from which h’s final value is
chosen corresponds to the stochastic matrix T . The programs’ access to
v is why we include (Y×) in the state.

4. The a priori view of the program is the extent to which we can determine
the distribution of the final values of h by knowing the incoming distribu-
tion of v, h and the program text. The a posteriori view reflects the extra
information about h finally that we have once we actually execute the
program and note the successive emissions in v that occur during that ex-
ecution. However the values of those emissions need not be remembered:
only the conditioning they induce is important. That is why we do not
need “sequence of Y” in our state, in spite of perfect recall: the recall is
expressed in the outer D.

5 Refinement increases entropy compositionally

Our advocacy of stepwise refinement [49] for development of quantitatively non-
interference secure programs suggests comparisons of specifications S with im-
plementations I. Say that S is “Shannon-refined” by I, writing S �se I, just
when for every incoming distribution of hidden values h the a posteriori condi-
tional Shannon Entropy produced by I, for h, is at least that produced by S (as
at 4. above). Stepwise refinement wrt Shannon Entropy requires transitivity of
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(�se) obviously; but it also would require that S �se I imply C(S) �se C(I) for
any context C — that is, it should be compositional. And it is not, in general.

Define analogously (�br) for comparing conditional Bayes Risk of outputs,
in the same way; it is not compositional either. 7

The refinement relation (v) introduced earlier [27], and extended here for
iteration, in fact is compositional; and furthermore, it implies both (�se) and
(�br). (Counter-examples for compositionality of (�se) and (�br) are given in
the in the extended version of that work.) We now explain refinement.

5.1 Comparing hyperdistributions

We begin for simplicity with an entirely hidden state X (i.e. without Y) thus
having hypers D2X . We ask whether, for (each) fixed observation y1, one HMM
“reveals more” than the other in a sense made precise as follows.

A hyper ∆S in D2X , produced say as the output of one HMM, is “refined
by” another hyper ∆I , produced by another HMM of the same type, if two

distributions δ
{1,2}
S :DX in the support of ∆S can be merged to form a single

distribution δI in what becomes ∆I . This merging increases a variety of (con-
ditional) entropies, including the two mentioned above. We say that one HMM
is entropy-refined by another when for corresponding inputs and corresponding
values of emitted observables their outgoing hypers are refinement-related.

For an example, we restrict to Booleans T,F, and write {{x@p, y@q. · · · , z@r}}
for the discrete distribution assigning probabilities p, q, · · · , r to values x, y, · · · , z:
it is partial or total depending on whether p+q+ · · ·+r equals 1. Suppose
the specification hyper ∆S contains two distributions δ1

S := {{T@ 1
3 ,F@ 2

3 }} and

δ2
S := {{T@ 1

2 ,F@ 1
2 }} with probabilities p1:= 1/4 and p2:= 1/3 respectively: thus

∆S is partial and can itself be written {{δ1
S

@ 1
4 , δ2

S
@ 1

3 , · · ·}}. We first calculate a
weighted merge as follows:

• Scale δ
{1,2}
S by their respective probabilities p{1,2} in ∆S to get partial

distributions {{T@ 1
12 ,F@ 1

6 }} and {{T@ 1
6 ,F@ 1

6 }}.

• Add those together pointwise to get {{T@ 1
4 ,F@ 1

3 }}.

• Normalise to get δI := {{T@ 3
7 ,F@ 4

7 }} with probability p:= 7/12 in ∆I .

Then we refine ∆S by removing the two distributions δ
{1,2}
S (total weight 7/12)

and replacing them by their weighted merge, the single δI (of the same weight),
to give ∆I . All the other points in the support of ∆S would carry over unchanged
into ∆I ; but of course this process can be repeated, since refinement is to be
transitive. We see at (2) below that general entropy refinements are achieved by
merges of more than two sources, having multiple targets and by “pre-splitting”
sources proportionally to allow them to participate in more than one merge: the
essential idea is as given here.

7The Bayes Risk is the largest guaranteed chance that one guess of h is incorrect.
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5.2 Preliminary defintion of entropy refinement

Distributions over our states in X , i.e. in DX , are called inner distributions
or just “inners.” Distributions over inners, i.e. in DDX = D2X , are hypers,
as we have seen. If we want to concentrate on the “outer” D of a hyper, we
refer to that as the outer distribution, or just “outer.” We will (briefly) need
distributions of hypers D3X , called super distributions or just “supers.”

Definition 5.1 Entropy refinement (preliminary definition) Let the state-
space be X , a finite set, and consider two hypers ∆{S,I}:D2X . We say that ∆S

is entropy refined by ∆I , written ∆S�∆I , iff there is a super ·∆:D3X such that

∆S = avg. ·∆ and map.avg. ·∆ = ∆I .
2

We return to our example, hyper ∆S now with three inners δ1
S := {{T@ 1

3 ,F@ 2
3 }}

and δ2
S := {{T@ 1

2 ,F@ 1
2 }} and δ3

S := {{T@1}} with probabilities p1:= 1/4 and p2:= 1/3
and p3:= 5/12 respectively, where the third inner is chosen to bring the (outer’s)
sum to 1, i.e. to make it total.

Now to reach the entropy refinement of ∆S given by hyper ∆I , we merge
the first two inners and simply carry the third through. The mediating super
·∆ contains the two hypers

• hyper ∆1:= {{δ1
S

@ 3
7 , δ2

S
@ 4

7 }} with probability 7/12 in ·∆, and

• hyper ∆2:= {{δ3
S

@1}} with probability 5/12 in ·∆,

so that ∆S = avg. ·∆, for example because

avg. ·∆.δ1
S = 3/7×7/12 = 1/4 = p1 = ∆S .δ

1
S .

From Def. 5.1 the hyper ∆I is therefore given by map.avg. ·∆, that is

• inner distribution avg.∆1 = avg.{{δ1
S

@ 3
7 , δ2

S
@ 4

7 }} = {{T@ 3
7 ,F@ 4

7 }}
with probability 7/12, and

• inner distribution avg.∆2 = avg.{{δ3
S

@1}} = δ3
S itself, carried through

with probability 5/12 as we expected.

A second example of entropy refinement is given at (2) below.
It can be shown [27] that refinement is indeed a partial order: reflexivity is

obvious, anti-symmetry follows from an entropy-based argument or alternatively
from “colour mixing” [45]. Its transitivity can be shown using matrices, or
by a monadic approach using general properties of map and avg and specific
properties of the probabilistic functor.
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6 Iteration, refinement chains
and incompleteness

Iteration and entropy refinement taken together impose new demands on our
semantic space, closure under limits: iterations are usually defined via least
fixedpoints whose existence is trivial if the program space forms a cpo under
the refinement ordering [46]. Since we have not yet introduced non-termination,
the space (D2X ,�) has no least element, and so it is not a cpo. But it is not a
dcpo either, as we show below: not all of its non-empty chains have a supremum.

As a result, the usual technique of defining iterations via refinement-least
fixedpoints will not obviously apply –even after extending the space and its
ordering to incorporate non-terminating behaviours– and we will have to do
something slightly different (§7.3).

6.1 An example of incompleteness

Define again X := {T,F}, and let δp be the inner {{T@p,F@1−p}}, alternatively
written T p⊕ F, for any 0≤p≤1. Form the sequence of hypers

∆1 := {{δ@ 1
2

0 , δ
@ 1

2
1 }}

∆2 := {{δ@ 1
4

0 , δ
@ 1

2

1/2, δ
@ 1

4
1 }}

∆3 := {{δ@ 1
8

0 , δ
@ 1

4

1/4, δ
@ 1

4

1/2, δ
@ 1

4

3/4, δ
@ 1

8
1 }} , · · · ,

(2)

in D2X whose pattern should be evident.
From Def. 5.1 we see that each of these hypers is an entropy refinement of

the preceding: for example to get from ∆2 to ∆3 we first “pre-split” ∆2 into
smaller pieces

{{δ@ 1
8

0 , δ
@ 1

8
0 , δ

@ 1
8

1/2, δ
@ 1

4

1/2, δ
@ 1

8

1/2, δ
@ 1

8
1 , δ

@ 1
8

1 }}
↓ ︸ ︷︷ ︸

merge
↓ ︸ ︷︷ ︸

merge
↓

and then merge the selected inners as explained above, that is

δ
@ 1

8
0 + δ

@ 1
8

1/2 = δ
@ 1

4

1/4 and δ
@ 1

8

1/2 + δ
@ 1

8
1 = δ

@ 1
4

3/4

to give ∆3 when we allow the un-merged distributions simply to carry through. 8

Now by symmetry any hyper ∆ that was a refinement-limit of the chain
(2) would have to be uniform (except for the endpoints) but with a countably
infinite support, since the supports of the chains’ elements grow without bound
— and uniform, infinite and discrete distributions do not exist. The actual limit
of that refinement chain is in fact the measure over the distributions δp given
by taking p uniformly from [0, 1], and that is outside our space D2X . Writing M
for “measure” (informally, i.e. without being specific about the sigma-algebra)
we find our limit in MDX rather than D2X .
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6.2 Dealing with the incompleteness: proper measures

Pursuing the MDX strategy suggested above would lead us through steps like
these:

1. Define a metric over DX , i.e. provide a distance function between (dis-
crete) distributions. For reasons we explain in §12 we would choose the
Kantorovich metric [13] which is advocated for this kind of application
anyway [47].

2. Generate the Borel algebra from the Kantorovich metric.

3. Define refinement between hypers that are proper measures, a generalisa-
tion of the “split/merge” of Def. 5.1 and explained in our previous work
[27] for the discrete case.

4. Observe that the resulting, more general semantic space DX → MDX
allows (still) a monadic treatment of sequential composition.

5. Define the program semantics §8 in that more sophisticated space.

But we do not do that here. Instead, in this report we limit our exten-
sions to just what will suffice for the quantitative security of iterative programs,
including making refinement-based comparisons between them, as part of our
general programme of expanding the scope of this approach to deal with re-
alistic situations. In fact, we will see that refinement chains generated by the
fixed-point definition of loops do have a refinement-sup in our space — that is,
“loop-approximant chains” are a strict subset of all possible refinement chains,
and do not in particular contain examples like (2) above.

Thus we can remain within the space of discrete hypers D2H, which al-
lows a drastic simplification (compared with MDH) of the presentation. How
this is done is the topic of the next section: we will be using partial dis-
crete distributions to represent nontermination, thus concentrating on a space
V×DH→ D(V×DH) for denotations of programs.

8Using our formal definition Def. 5.1 introduces a super ·∆ to mediate the entropy
refinement ∆2�∆3; it is given by

∆2


δ
@ 1

4
0

δ
@ 1

2
1/2

δ
@ 1

4
1

avg←−

normalise the columns
to give hypers of ·∆

δ
@ 1

8
0 δ

@ 1
8

0

δ
@ 1

8
1/2

δ
@ 1

4
1/2

δ
@ 1

8
1/2

δ
@ 1

8
1 δ

@ 1
8

1

↓ ↓ ↓ ↓ ↓ map.avg

δ
@ 1

8
0 δ

@ 1
4

1/4
δ
@ 1

4
1/2

δ
@ 1

4
3/4

δ
@ 1

8
1︸ ︷︷ ︸

∆3

The two merges of inners referred to in the main text occur in columns 2,4; the columns 1,3,5
are the inners that carry through unchanged from ∆2 to ∆3.
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7 Semantics for the HMM -interpretation
of secure iterating programs

7.1 Denotations of programs

Here we give a precise construction of a semantic space, and the interpretation of
a small programming language in it. The language includes probability, visible
vs. hidden variables, and iteration.

For noninterference we imagine a finite underlying state space of two parts,
named V and H where V is the “visible” part of the state and H is its “hidden”
part. Because the H part is hidden our underlying state space will not be simply
the Cartesian product of those two components, but rather the set SS:=V×DH
comprising the product of the visible part V (as is) and the distributions DH
over the hidden part.

For nontermination we consider program outputs to be of type DSS, that
is D(V×DH), the partial distributions over SS — this represents a slight gen-
eralisation of the type suggested above for programs in that the partiality (the
one-deficit) is used to describe the probability of the program’s failing to ter-
minate [21, 20, 39, 28]. As before, we call elements of DSS hypers, referring if
necessary to partial hypers when the distinction is important. Thus SS→DSS,
that is V×DH→ D(V×DH) is the type we propose for programs: from an ini-
tial state (v, δ) in SS a program determines a partial distribution SS, i.e. a
distribution whose supports have structure (v′, δ′), as its final output.

Recall from §3.4 that we write function application as f.x, with “.” as-
sociating to the left. Operators without their operands are written between
parentheses, as (�) for example. 9

7.2 The Entropy Refinement Order between programs

As usual our orders on programs will be the pointwise orders on their results.
Our first order is the Entropy Refinement set out at Def. 5.1, adapted to deal
with partial hypers and to take the V portion of the state into account.

Definition 7.1 Entropy refinement (generalising Def. 5.1) Let the state-
space be SS = V×DH, with V,H both finite, and define Q:SS→D(V×H) with
Q.(v, δ).(v′, h′) equal to δ.h′ if v=v′, otherwise zero. 10

9The latter (known as sections in functional programming) allows us easily to write ex-
pressions relating operators themselves, such as the succinct (<) ⊆ (≤) stating that less-than
is a subset of less-than-or-equals as a relation. Thus the former “dot” convention distinguishes
function application from sections as well.

As a further example (though not needed in this report), as part of the definition of the
Giry monad one defines evaluation functions EB that, given a measure µ as argument, return
µ applied to the measurable set B as the result. With sections and the “dot” convention one
writes directly (.B) for this function: the well established syntactical rules for sections then
ensure that EB(µ) = (.B).µ = µ.B automatically. A separate introduction, definition and
explanation of the EB notation is not necessary.

10More succinctly, this is defining the product distribution Q.(v, δ):= {{v}}×δ.

14



For two hypers ∆{S,I}:DSS, we say that ∆S is entropy refined by ∆I , writ-
ing ∆S�∆I , just when map.Q.∆S � map.Q.∆I according to our preliminary
definition Def. 5.1 of entropy refinement, but taking our V×H, here, all at once
as just X there and generalising map, avg to partial distributions in the obvious
way. 2

Like the preliminary definition, (�) defines a partial order on hyper-distributions.
Note that a consequence of this definition is that entropy refinement does not
change the distribution of the visible variables: that is if ∆S�∆I , then in fact
←
∆S=

←
∆I where we recall that

←
∆ is the left-marginal distribution of the product

distribution ∆:D(V×DH). Similarly, the a priori distribution of h associated
with each value of v is left unchanged.

We now address the incompleteness issue raised in §6.1.

7.3 The Termination Refinement Order between programs

We follow an approach that allows us to distinguish between chains produced
by iteration and those produced by refinement more generally [41, 42]: we use
a stronger order for which our space is complete.

For a partial hyper ∆:DSS, the probability that it terminates is just its total
weight, written

∑
∆; equivalently, the amount by which it fails to sum to 1 is

its probability of nontermination. We define a partial order that allows increase
of termination only, as follows:

Definition 7.2 Termination Refinement For ∆{S,I} in DSS, we say that ∆S

is termination-refined by ∆I , written ∆S≤∆I , just when for all s = (v, δ) in
SS we have ∆S .s ≤ ∆I .s. This is simply the pointwise extension of (≤) on the
real-valued probabilities. 2

Our space is trivially closed under sup-chains in this termination order, since
the probabilities themselves are bounded above (by 1). We will in due course
show that the fixed-point definition of iteration generates termination chains,
and so the completeness here will give us just the well definedness we need.
That is, we will rely on

Lemma 7.1 Termination completeness Let ∆0≤∆1≤ · · · be a (≤)-chain of
hypers in DSS. Then the chain has a (≤)-least upper bound

∨
i ∆i in DSS.

Proof: Completeness of [0, 1]. 2

Note that everywhere-terminating programs are maximal in this cpo.

7.4 Secure refinement between programs

The primary order of interest on our space, secure refinement, allows both en-
tropy refinement and termination refinement:
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Definition 7.3 Secure Refinement Given (partial) hypers ∆{S,I} in DSS,
we define Secure Refinement as the composition of the two other orders: first
termination refinement, and then entropy refinement. We have ∆Sv∆I just
when there is an intermediate hyper ∆ such that ∆S≤∆ and ∆�∆I . 2

Observe trivially that (≤) is a strengthening of (v), by reflexivity of (�). Like
termination and entropy refinement, secure refinement it is a partial order on
hyper-distributions. Reflexivity holds trivially from that of (≤) and (�). The
transitivity of (v) follows from transitivity of the two other orders, plus the fact
that (v) ⊇ (�)◦(≤). For antisymmetry we reason that if A v C and C v A
then there must exist a B and D such that A ≤ A+B � C and C ≤ C+D � A.
From reflexivity of (≤) and transitivity of (v) we then have that both A+B v A
and C+D v C, and thus both C and D must be zero since (v) cannot decrease
the overall weight of a hyper-distribution. From this we have that A�C and
C�A, hence A=C by antisymmetry of (�).

The definition of program refinement is the pointwise extension of the above,
that is

Definition 7.4 Secure Program Refinement Let S, I be programs’ meanings
of type SS → DSS. We say that SvI just when for all initial states s:SS we
have S.s v I.s according to Def. 7.3. 2

7.5 Least fixed points in SS→DSS:
getting around incompleteness

The normal approach to fixed-point semantics for loops would be to show that
a loop defines a (v)-continuous functional L over the program space SS→DSS,
and then to take the (v)-supremum of the chain q v L.q v L2.q · · · where q
is the least program, the one producing the output hyper of zero weight for all
inputs.

Here instead we show that a loop defines a (≤)-continuous functional L,
and then take the (≤)-supremum of the chain q ≤ L.q ≤ L2. q · · · . Its well
definedness follows from Lem. 7.1; its relevance is justified by the following
lemma.

Lemma 7.2 Equivalence of fixed points Let partial orders (≤) and (v) be
defined over some space X , and let L be an endofunction on X . Suppose further
that (≤) ⊆ (v), that is that (≤) implies (v).

If a (≤)-least (resp. greatest) fixed point of L exists, then also a (v)-least
(resp. greatest) fixed point of L exists, and in fact they are equal.
Proof: Let x be the (≤)-least fixed-point of L. Then for any (other) fixed-
point x′ of L we have x≤x′ and so –by assumption– also xvx′. Thus x is a
(v)-lower-bound for all fixed points; but it is a fixed point itself. Therefore it is
the (v)-least fixed point as well. (The same argument holds for greatest.) 2

In the next section we will introduce our language to express and reason
about secure programming, extending our previous work with iteration. We
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use Def. 7.2 for the semantics for loops, relying on Lem. 7.2 to ensure that
it is also well-defined as a least fixed point in the security order; we do, of
course, need to show that the assumption of (≤)-continuity is satisfied by the
semantic definitions we give. In the conclusion we shall return to the question
of (v)-limits more generally, i.e. those which are not restricted to (≤)-limits.

8 Programming language

Having tied-down the details of our semantic space, we can now give our pro-
grams’ denotations via structural induction; however there are two potential
sources of complexity in what we present. The first, conceptual, is the two-
level structure that we motivated in the sections above, the partial distributions
that themselves are taken over other conditional, or sometimes even a posteriori
distributions.

The second is notational: standard constructions like conditionals and push-
forward are now generated by program fragments that, as a rule, are expres-
sions over free variables (i.e. the variables of the program) rather than (pure)
mathematical functions themselves. This leads to uncomfortable expositions
like “Pr(D|E) where distribution D(x) is given by · · ·x · · · and predicate E(x)
holds just when · · ·x · · · ”. Although these are easy to understand (being well es-
tablished notations), they are hard to manipulate algebraically in specific cases
where D,E are determined by some computer program.

We now introduce specialised notation to streamline our semantic definitions.

8.1 Distribution comprehensions

Recall that the support dδe of distribution δ:DX is those elements x:X with
δ.x 6=0; naturally for δ:DX we have dδe⊆X . The weight of δ is written

∑
δ,

defined δ.X so that full distributions have weight 1. Distributions can be scaled
and summed according to the usual pointwise extension of multiplication and
addition to real-valued functions, provided the outcomes are again distributions.

Given a non-empty finite set X we write bXc for the uniform distribution
over X , that is the uniform distribution δ:DX such that dδe=X .

8.1.1 Enumerated distributions and expected values

These are notations for enumerated distributions, i.e. those in which the support
is explicitly listed (cf. set enumerations that list a set’s elements):

– empty The empty, or zero subdistribution has empty support and assigns
probability zero to all elements: we write it {{}}.

– multiple We write {{x@p, y@q, · · · , z@r}} for the distribution assigning proba-
bilities p, q, · · · , r to elements x, y, · · · , z respectively, with p+q+ · · ·+r ≤
1. Provided p, q, · · · , r > 0, the support is therefore the set {x, y, · · · , z}.
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– point The distribution concentrated on a single element x is written {{x}},
i.e. abbreviating {{x@1}} whose support is {x}.

– uniform When explicit probabilities are omitted they are implicitly uniform:
thus {{x, y, z}} is {{x@ 1

3 , y@ 1
3 , z@ 1

3 }}.

– binary, and distributed uniform For a two-element distribution we write
xp⊕y for {{x@p, y@1−p}}, and in the uniform case we can write x⊕y⊕ · · · ⊕z
for {{x, y, · · · , z}}.

For expected values of random variables that are written as expressions, we have

– expected value We write (� d: δ · E) for the expected value
∑
d: dδe(δ.d×E)

of expression E, interpreted as a random variable in d, over distribution
δ.

If E is Boolean, then it is taken to be 1 if E holds and 0 otherwise, so
that the expected value is then just the combined probability in δ of all
elements d satisfying E. If necessary for clarity we will write [E] to indicate
E’s conversion from Boolean to 0, 1; when possible, however, we omit it
(to reduce proliferation of brackets).

8.1.2 Distribution comprehensions, conditioning
and a posteriori values

As for set comprehensions, with distribution comprehensions we describe a dis-
tribution by giving a rule for forming it, i.e. its supporting elements and the
probabilities they have. Here are the common cases:

– map, push-forward When f in §3.4 is given as an expression E of type Y,
with free variable x say, then for the push-forward distribution map.f.δ
we write the comprehension {{x: δ · E}} where for y:Y we define

{{x: δ · E}}.y := (�x: δ · E=y) .

Recall from above that the Boolean value E=y is to be converted implicitly
to 0, 1 in this case.

– conditional distribution Given a distribution δ:DX and a Boolean expres-
sion R in free variable x, we write {{x: δ | R}} for the distribution obtained
by conditioning δ on the set (the event) that R represents as a predicate
in x. Thus for x′:X we have

{{x: δ | R}}.x′ := δ.x′×[R′] / (�x: δ · [R]) , (3)

where R′ is R with x replaced by x′ and here, for clarity, with [·] we make
the conversions to 0, 1 explicit.

– a posteriori values Finally, for Bayesian belief revision suppose δ is an a
priori distribution over some X and let expression R (not Boolean) in free
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variable x in D be the probability of a certain observable result if that
x is chosen. Then {{x: δ | R}} is the a posteriori distribution (revising δ)
when that result actually occurs. The definition is as for (3) immediately
above, but using just R rather than [R].

Note that R can be scaled without affecting the value of this expression,
so wlog it can be made one-summing as x varies: this makes it easier to
interpret as a probabilistic outcome that triggers Bayesian belief revision.

– general distribution comprehension We can combine all the above pos-
sibilities by writing {{x: δ | R · E}}, for distribution δ, real expression R
(in x) and expression E (also in x) to mean

(�x: δ · R×{{E}}) / (�x: δ · R) (4)

where, first, an expected value is formed in the numerator by scaling
and adding point-distribution {{E}} as a real-valued function: this gives
another (sub-)distribution. The scalar denominator then conditions on R.

A missing E is implicitly x itself. If R is omitted, then (R×) is removed
from the numerator, and the denominator is removed altogether. (When
δ is a full distribution, this happens automatically by assuming a missing
R to be 1, or equivalently Boolean true.)

As a concrete example we recall the puzzle

In families with two children of equally and independently distributed
gender, if one child is a boy what is the chance that the other is too?

Encoding boy,girl as Booleans T,F we write {{x, y:T⊕F | x∨y · x∧y}} for the
distribution of the pushed-forward function both boys (x∧y) over the iid gender
joint-distribution of the two children (x, y:T⊕F) conditioned on the event at
least one boy (x∨y). It works out as

{{x, y:T⊕F | x∨y · x∧y}}
= (�x, y:T⊕F · [x∨y]×{{x∧y}}) / (�x, y:T⊕F · [x∨y])
= (1×{{T}}/4 + 1×{{F}}/4 + 1×{{F}}/4 + 0×{{F}}/4) / (3/4)

= {{T@ 1
4 ,F@ 1

2 }} / (3/4)
= T 1/3⊕ F ,

that is (as we know) that the a posteriori probability of “both boys” is 1/3.
This is the kind of calculation that specific programs’ semantics generate.

8.2 Program semantics for the HMM core: revelations

We recall from §3.1 that an HMM is determined by two stochastic kernels (ma-
trices) T ,E. In programming terms the T represents a probabilistic assignment
to our hidden variable h; we deal with that at Choose prob. hidden in §8.3 below.

The E on the other hand releases information (about h) in what we call
a “revelation” — observables our attacker can see [29]. It has two forms, the
second a generalisation of the first.
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In the two definitions below, and further, we write E.v.h as an expression in
which program variables v, h might occur free. The same convention applies to
D,G, p for distributions, (Boolean) guards and probabilities resp.

Program type Program text P Semantics [[P ]].(v, δ)

Reveal value reveal E.v.h {{h: δ · (v, {{h′: δ | E.v.h′=E.v.h}})}}
Expression E.v.h takes its value in some type X representing observations
an attacker can make. The command reveals a value x depending on v, h.
Neither v nor h is changed by this; but the outgoing distribution of the
hidden h is conditioned on the basis of the x revealed. Note that x is not
stored; but because of perfect recall an attacker can remember it.

Reveal choice reveal D.v.h {{h: δ;x:D.v.h · (v, {{h: δ | D.v.h.x}})}}
Expression D.v.h is now more generally of type DX , so that for x:X we have
D.v.h.x as a probability. The command calculates that distribution, and
then chooses some value x according to those probablities; that value x is
then revealed. As before, variables v, h are not changed; but the distribution
of h is conditioned on the fact that x was revealed.
Reveal value is the special case reveal {{E.v.h}} of Reveal choice.

8.3 Semantics of syntactically atomic commands

Syntactically atomic commands are regarded as semantically atomic in the sense
that the only information they leak is what the final value of the visible v allows
to be deduced about the final value of h with knowledge of the program text.
Thus for example v:= h leaks everything about h, since v’s final value is evidently
the same as h’s; yet v:= 0×h reveals nothing, even though at some point in an
internal register the value of h might have been accessible. In this sense the
syntactic atoms are the atoms of observation also: within them neither perfect
recall nor implicit flow make sense.

We determine the semantics of these atomic commands systematically. Using
“classical,” i.e. without-noninterference probabilistic sequential semantics [25,
etc.] gives a straightforward meaning to atomic commands’ actions on a state
space SS as functions of type SS→DSS taking an initial distribution to a (sub-
)distribution of final states. If we abstract from noninterference properties by
considering v to be hidden (as well as h), and set SS:=V×H then we have a
ready-made classical semantics for the syntactic atoms we are dealing with here.

The initial “state” will be a pair (v, δ) in V×DH. We therefore reuse “Q”
from Def. 7.1 to express this as the joint distribution {{v}}×δ of type D(V×H),
that is DSS. To apply a command with semantics of type SS→DSS to that,
we use lifting (§3.4) so that the result of this classical interpretation is again
of type D(V×H), and we convert this back to the noninterference output-type
D(V×DH) by analogy with “revealing v” according to the semantics above —
since knowledge of v’s final value is all that escapes an atomic command. Fol-
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lowing Reveal value from above, we define

rv.∆ := {{(v, h): ∆ · (v, {{(v′, h′): ∆) | v=v′}})}} .11 (5)

The result of the procedure above –convert incoming V×DH to D(V×H),
then apply lifted classical semantics; then apply rv to the result– is summarised
below. Observe that neither program abort, nor assertions are necessarily useful
for writing specific programs, but our focus is on reasoning about programs, in
particular algebraically, and for that these commands play a prominent role.

Program type12 Program text P Semantics [[P ]].(v, δ)

Least element abort {{}}
This is the program that simply fails to terminate: for every input it pro-
duces the empty subdistribution as output. In our refinement order, as a
specification it allows all possible implementations (i.e. that abort v S for
all S) — essentially playing the role of “0” in arithmetic.

Identity skip {{(v, δ)}}
The “do nothing” command simply converts its input to a point-hyper on
output, i.e. reproduces its input with probability one.

Assertion {p.v.h} {{(v, {{h: δ | p.v.h}}) @(�h′: δ · p.v.h′)}}
An assertion gives directly in p.v.h the a probability of the command’s
termination. With probability 1−p the assertion behaves as abort.
When with probability p it does terminate, however, it conditions the hidden
value’s distribution δ on the fact it did so: that is δ is revised to reflect that
the abort did not occur. The visible variable v is unaffected in this case.

Assign to visible v:=E.v.h {{ h: δ · (E.v.h, {{h′: δ | E.v.h′=E.v.h}}) }}
The command’s effect is to assign the rhs-value to v but also to condition
the hidden distribution on the fact that h can produce the value observed
to have been put into v.

Assign to hidden h:=E.v.h {{ (v, {{h: δ · E.v.h}}) }}
The command does not change v, but maps the hidden incoming distribution
of h through E.v considered as a function of (incoming) h to produce the
resulting distribution on (outgoing) h.

Choose prob. visible v:∈D.v.h
{{ v′: (�h: δ · D.v.h) · (v′, {{h′: δ | D.v.h′.v′}}) }}

Expression D.v.h is a distribution on V, and the choice of v’s new value is
made according to it. It generalises Assign to visible, since the latter can
be written v:∈{{E.v.h}}.

Choose prob. hidden h:∈D.v.h {{ (v, (�h: δ · D.v.h)) }}
11We justify (5) informally by noting that it’s what results from replacing hidden h in the

rhs of Reveal value by the hidden pair (v, h) and considering the expression E.v.h to be simply
v.
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Expression D.v.h is now a distribution on H, and the choice of h’s new value
is made according to it. It generalises Assign to hidden, since the latter can
be written h:∈{{E.v.h}}.

As a syntactic convenience, when we are using the more general “choose”
form of either command but the rhs’s distribution is written out using (⊕)
rather than as a {{}}-style comprehension, we use the conventional assignment
symbol (:= ) so that e.g. we can write v:=T⊕F for flipping a fair Boolean coin.

As an example of the algebraic utility of Assertion, we note that distin-
guished commands abort and skip are special cases of assertions, so that
skip = {T} and abort = {F}. Further, the semantics of Reveal choice can
be given more compactly –assuming D.v.h has type DX– as

[[reveal D.v.h]].(v, δ) = (
∑
x:X · [[{D.v.h.x}]].(v, δ) ) . (6)

That formulation makes it easy to reason about revelations in terms of more
primitive commands. We also have that assignments to visible variables that
may depend on h may be represented more simply in terms of those that do
not:

[[v:∈D.v.h]].(v, δ) = (
∑
v′:V · [[{D.v.h.v′}; v:= v′]] ) . (7)

As we will see in the next section, assertions also play an important role in the
specification of probabilistic choice and conditionals.

8.4 Semantics of compound commands: implicit flow

Compound commands are in fact the simplest to define, since they are treated
almost as they would be for classical semantics. The only adjustment is to insert
conditioning assertions on program branch-points to enforce implicit flow, that
is that information escapes by observation of the outcome of conditionals.

Program type Program text P Semantics [[P ]].(v, δ)

Composition P1;P2 [[P2]]∗.([[P1]].(v, δ))
Sequential composition is interpreted as Kleisli composition (§3.4).

General prob. choice PL p.v.h⊕ PR
[[{p.v.h};PL]].(v, δ) + [[{1−p.v.h};PR]].(v, δ)

Expression p.v.h is evaluated to a probability of the command’s taking its
left branch; otherwise it takes the right. The attacker can observe which
branch was taken: this is reflected in the conditioning assertions at the
beginning of each branch.

Conditional choice if G.v.h then PT else PF fi

12The most general form of atomic assignment is the Simultaneous choice mentioned earlier,
whose semantics can be deduced as for the others from its classical behaviour. Since it is
seldom needed, however, we omit its definition for brevity.
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[[{G.v.h};PT ]].(v, δ) + [[{¬G.v.h};PF ]].(v, δ)
This is a specialisation of the previous General probabilistic choice to the
case where the probability is always either 1 (go left) or 0 (go right). Again
the conditioning assertions guard each branch.

Iteration while p.v.h do P od the (≤)-least fixed point of L,

applied to (v, δ), where L is the unique endofunction on the space SS→DSS
of programs’ meanings such that for any program L we have [[P ;L p.v.h⊕
skip]] = L.[[L]].

As for Conditional choice, the loop guard is a probability determined by
the program variables v, h, with as a special case Booleans T,F interpreted
as 1 (enter the loop) or 0 (terminate the loop).

For iteration we are taking the usual least-fixed-point approach except, for
the reasons explained above, we use a special termination order (≤) for the
chain of iterates. For this we need the (usual) technical results of continuity of
our program contexts.

Lemma 8.1 Continuity of program contexts Any context C(·), constructed in
the programming language above, satisfies C(

∨
i Pi) =

∨
i C(Pi) for non-empty

(≤)-chains
∨
i Pi.

Proof: Because the termination order is so simple (unlike the entropy order),
being essentially pointwise less-than-or-equals, this result follows easily from
linearity of the Kleisli-composition (essentially lifting) used in the definition of
sequential composition. 2

Importantly, each our compound operators are monotonic with respect to
their arguments and the secure refinement order (v), meaning that we may
reason compositionally about the correctness of programs.

Theorem 8.1 Monotonicity of compound commands Each of the commands
listed above are monotonic with respect to their program arguments and the
refinement order. 2

8.5 Local- and multiple variables; hidden correlations

To this point we have had just two variables, visible v and hidden h, and have
been assuming for simplicity that they are all the variables in the program. In
practice however each of V,H will each comprise many variables, represented
in the usual Cartesian way. Thus if we have variables a:A, b:B, c: C, d:D with
the first two a, b visible and the last two c, d hidden, then V is A×B and H is
C×D so that the state-space is A×B×D(C×D). Assignments and projections
are handled as normal.
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Thus we allow local variables, both visible and hidden, which extend the
state as described above: within the scope of a visible local-variable declaration
‖[ vis x:X · · · ]‖, the Vlocal used is X×Vglobal. Hidden variables are similar.13

Note however that because for simplicity we have been assuming that v, h
are in fact all the variables in the program, i.e. that they stand for vectors
of variables implicitly, our semantics above establishes the equality of the two
fragments v:= h; v, h:= 0, 0 and v, h:= 0, 0, reflecting our deliberate concentra-
tion on h’s final value [36, 37] in order to extend conventional refinement [33, 5]
that does the same. In this case h’s initial value’s being revealed on the left
has no bearing on our knowledge or ignorance of its final value and so does not
introduce a difference in meaning between the two fragments shown.

If however there are other hidden variables, not mentioned but still in scope
as might happen within a local block or within the context of extra declarations,
then our semantics must be slightly more general, in particular recognising that
the v or h appearing on the left of an assignment is just one component of a
vector of visible resp. hidden variables.

Technically this is handled by extending our hidden distribution to type
DH2, which tracks correlations with initial values. For simplicity we do not
do that here, since in fact any program in which hiddens are not assigned-to
(as in our examples and case studies) can be treated with the simpler DH-style
semantics.

9 Algebra of HMM-style programs

The programming language introduced in §8, interpreted over the hyper-based
semantics, admits a program algebra allowing the proof of general refinements
between programs. In this section we present some of the foundational laws of
this program algebra, which are then illustrated in §9.8 and §10, via an example
based on password guessing.

9.1 General principles and scoping laws;
referential transparency

As for classical programs, it is possible to replace expressions by other expres-
sions of equal value in context so that, for example, referential transparency
gives

v:=E.v.h; {T} = v:=E.v.h; {v=E.v.h} .

It is also possible to move program fragments in and out of local scopes provided
variable bindings are respected. Since empty scopes are equivalent to skip, i.e.

skip = ‖[ vis v′:V ]‖ = ‖[ hid h′:H ]‖ , (8)

13Implicitly local variables are assumed to be initialised by a uniform choice over their finite
state space. In our examples however, we always initialize local variables explicitly, to avoid
confusion.
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it is possible to introduce fresh variables of any constant type. We may also
introduce assignments to scope-terminated variables as long as they do not
reveal information about the hidden state:

‖[ vis v′:V; · · · ]‖ = ‖[ vis v′:V; · · · ; v′:∈D.v.v′ ]‖ , (9)

‖[ hid h′:H; · · · ]‖ = ‖[ hid h′:H; · · · ; h′:∈D.v.h.h′ ]‖ . (10)

As an example of the interaction of local scopes and visibility we have

[[ reveal D.v.h ]]
= (

∑
v′:X · [[{D.v.h.v′}]] ) “represent revelation using assertions (6)”

= (
∑
v′:X · [[ ‖[ vis v′:X ; {D.v.h.v′}; v′:= v′ ]‖ ]] ) “introduce fresh variable

terminated by a secure assignment”

= [[ ‖[ vis v′:X ; v′:∈D.v.h ]‖ ]] , “shift scope and represent
visible assignment using assertions (7)”

i.e. that a revelation is effectively an assignment to a temporary visible variable:
because of perfect recall, the revealed value is not forgotten; but because the
temporary variable is declared within a block, it is effectively erased.

9.2 Assertions

We present here some basic properties of assertions that will be used to justify
algebraic laws for more complex statements such as revelations and probabilistic
choices. First, we have that assertions satisfy the following equivalence,

{p1.v.h}; {p2.v.h} = {p1.v.h× p2.v.h} = {p2.v.h}; {p1.v.h}(11)

and are thus commutative under sequential composition. Constant assertions
also commute over arbitrary programs, so that

{p};S = S; {p} . (12)

Since assertions referring to h may condition the hidden state, from the definition
of secure refinement (Def. 7.3) we have

(
∑
n · [[{pn.v.h}]] ) v [[{

∑
n · pn.v.h }]] , (13)

for (
∑
n · pn.v.h ) ≤ 1. Using this we can calculate that skip p.v.h⊕ skip v

skip since from implicit flow the lhs reveals p.v.h but the rhs reveals nothing.
On the other hand, additions of assertions that refer only to the visible state

reveal nothing, and thus (13) can be strengthened to equality, giving

(
∑
n · [[{pn.v}]] ) = [[{

∑
n · pn.v }]] , (14)

whence skip p.v⊕ skip = skip.
Using this algebra of assertions for Booleans G{1,2}.v.h we have

{G1.v.h}; {G2.v.h} = {G1.v.h ∧G2.v.h}, (15)
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and so the Boolean assertions are idempotent, that is {G.v.h}; {G.v.h} = {G.v.h},
and complements under composition so that {G.v.h}; {¬G.v.h} = abort. When
all Boolean Gn.v.h are disjoint we also have

(
∑
n: [1..N ] · {Gn.v.h} ) v {

∨
n: [1..N ] · Gn.v.h } , (16)

(
∑
n: [1..N ] · {Gn.v} ) = {

∨
n: [1..N ] · Gn.v } . (17)

9.3 Basic laws for revelations

A single reveal releases information but changes no variable. Using refinement
we can with reveal D1 v reveal D2 express that revealing D2 leaks no more
information than revealing D1 would have. The refinement between programs
means this statement applies for any incoming distribution.

We write reveal (E1, E2) for the release of two pieces of information, one
defined by expression E1 and the other defined by expression E2. For example
reveal (hmod 2, hmod 3) releases information about both h’s divisibility by 2
and 3: this is more informative than releasing just one, giving the refinement

reveal (h mod 2, h mod 3) v reveal h mod 2 . (18)

As we shall see, this and a number of other laws can be derived from a single
general refinement rule which effectively states that any released information
can be concealed somewhat by distributing it stochastically.

Lemma 9.1 Basic reveal refinement Let D.v.h be a distribution over some
X and F be a stochastic matrix (which can depend on v) giving for each element
of X a distribution over some other type Y. Then we have

reveal D.v.h v reveal D.v.h⊗ F.v ,

where (⊗) is defined by (D.v.h⊗ F.v).y := (
∑
x:X · D.v.h.x× F.v.x.y ). 14

Proof: We reason as follows:

[[reveal D.v.h]]
= (

∑
x:X · [[{D.v.h.x}]] ) “define revelation using assertions (6)”

= (
∑
x:X · [[{D.v.h.x}; {( ∑ y:Y · F.v.x.y )}]] ) “distribution F.v is full;

{1} = skip is unit of composition (33)”

= (
∑
x, y:X ,Y · [[{D.v.h.x}; {F.v.x.y}]] ) “(14); Kleisli composition

distributes over addition”

= (
∑
x, y:X ,Y · [[{D.v.h.x× F.v.x.y}]] ) “(11)”

v (
∑
y:Y · [[{( ∑x:X · D.v.h.x× F.v.x.y )}]] ) “(13)”

= [[ reveal D.v.h⊗ F.v ]] . “define revelation using assertions (6)”

14If D.v.h and F.v are expressed as matrices then (⊗) is matrix multiplication.
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2

As an example of Lem. 9.1 we suppose h is Boolean, and that we have a
revelation behaving as follows. If h is T then T is emitted with probability 1/4
and F with probability 3/4; if h is F then F is emitted unconditionally. We write
this reveal D.h (omitting the .v in this simple case) via the D-matrix

T F ← emitted value

h=T
(

1/4 3/4
0 1

)
h=F

(19)

Now we can condition on the emitted value, so defining a partition on any
incoming state: for example if the incoming state s is (v, {{T@ 1

2 ,F@ 1
2 }}) then

[[ reveal D.h ]].s = {{(v, {{T}})@ 1
8 , (v, {{T@ 3

7 ,F@ 4
7 }})@ 7

8 }} expressing the fact that
T is emitted only if h is T thus completely revealing h in this case; however this
happens only 1/8 of the time; the remaining 7/8 of the time h is only partly
revealed, with the a posteriori distribution’s being merely F-skewed.

Now suppose that the process is overlaid by another process F (again omit-
ting .v) which obscures the information emitted by reveal D.h by changing the
values stochastically:

T F ← new emitted value

emission from D.h was T
(

1 0
1/2 1/2

)
emission from D.h was F

(20)

Overall, the value actually emitted by the combination is determined by the
product of the matrices in (19) and (20), that is(

1/4 3/4
0 1

)
×
(

1 0
1/2 1/2

)
=

(
5/8 3/8
1/2 1/2

)
which for the chosen incoming distribution gives that [[ reveal D.h⊗ F ]].s is

{{(v, {{T@ 5
9 ,F@ 4

9 }})@ 9
16 , (v, {{T@ 3

7 ,F@ 4
7 }})@ 7

16 }}, leaking less than [[ reveal D.h ]].s.
Now Lem. 9.1 justifies (18) with F as the projection function onto the first

component. Other rules can be derived similarly:

Lemma 9.2 Simple reveal rules

reveal k = skip (21)

reveal D.v.h v skip (22)

reveal h v reveal D.v.h (23)

reveal G.v.h = reveal ¬G.v.h (24)

reveal (E1.v.h, E2.v.h) v reveal E1.v.h (25)

reveal (E.v.h, E.v.h) = reveal E.v.h (26)

Proof: The first is a consequence of the equivalent definition of revelations in
terms of assertions and the rest are consequences of it and Lem. 9.1. For example

27



(22) follows by defining F.v to be constant; and (23) follows by defining F.v in
Lem. 9.1 to be D.v.h; (24) follows by defining F.v to swap the values T and F.
Finally (25,26) follow by defining F.v to be the projection function. 2

With the apparatus so far, the example in §2 could be sketched 15

v:= h÷2; v:= v÷2
= ‖[ vis v′; v′:= h÷2; v:= v′÷2 ]‖ “classical reasoning with visibles and scopes”

= ‖[ vis v′; v′:= h÷2; v:= (h÷2)÷2 ]‖ “referential transparency §9.1”

= ‖[ vis v′; v′:= h÷2 ]‖; v:= h÷4 “shrink scope; arithmetic”

= reveal h÷2; v:= h÷4 “revelation equivalence §9.1”

v v:= h÷4 . “(22), that reveal h÷2 v skip”

9.4 Reveals in sequence

When two or more HMM ’s are executed sequentially, where the outputs from
one are “fed into” another, an observer is able to preserve information from
earlier executions to add to information learned by observing later executions.
The basic rule expressing the total amount of information leaked is set out next.

Lemma 9.3 Sequential reveals Let D1.v.h and D2.v.h be distributions over
some X and Y respectively. Then we have

reveal D1.v.h; reveal D2.v.h = reveal (D1×D2).v.h ,

where (D1×D2).v.h is the joint distribution over ordered pairs of X ×Y, defined
as usual so that (D1×D2).v.h.(x, y) is D1.v.h.x×D2.v.h.y.
Proof: This follows directly from the definition of reveal D.v.h and sequential
composition:

[[ reveal D1.v.h; reveal D2.v.h ]]

= (
∑
x, y:X ,Y · [[{D1.v.h.x}; {D2.v.h.y}]] ) “revelations as summations (6)

composition distributes addition”

= (
∑
x, y:X ,Y · [[{D1.v.h.x×D2.v.h.y}]] ) “(11)”

= [[ reveal (D1×D2).v.h ]] . “represent assertion summation as revelation (6)”

2

This rule says that we can simplify two successive reveals into a single reveal
where the external values are gathered together and the residual probabilities
aggregated as expected, so that overall the result is as though a single HMM
had been executed, albeit with a modified stochastic matrix. Using this basic
rule we can prove the following:

15With only a selection of laws, sometimes we must omit details in the calculations.
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Lemma 9.4 Simple sequential rules

reveal D1.v.h; reveal D2.v.h = reveal D2.v.h; reveal D1.v.h(27)

reveal E1.v.h; reveal E2.v.h = reveal (E1.v.h, E2.v.h) (28)

reveal h; reveal D.v.h = reveal h (29)

Proof: Using Lem. 9.3, equation (27) follows from the underlying commuta-
tivity, and (28) follows from the fact that reveal E.v.h equals reveal {{E.v.h}}.
For (29) we have from (22) and (33) that reveal h; reveal D.v.h v reveal h.
For refinement in the other direction we reason

reveal h
= reveal (h, h) “(26)”

= reveal h; reveal h “(28)”

v reveal h; reveal D.v.h . “(22)”

2

The rules in Lem. 9.4 formalise our intuition about successive reveals. For
example (27) says that that information can be revealed in any order, that
revealing two different expressions in succession is the same as revealing a pair
containing both expressions (28), and that once h has been revealed entirely
then there is nothing more to reveal (29).

The following lemma lists further properties explaining how assertions and
revelations interact via sequential composition.

Lemma 9.5 Assertions and revelations in sequence

{p.v.h}; reveal D.v.h = reveal D.v.h; {p.v.h} (30)

{G.v.h} = {G.v.h}; reveal G.v.h (31)

Proof: The first equivalence is shown using a similar proof to that of Lem. 9.3.
For (31) we show

[[{G.v.h}]]
= [[{G.v.h}]] + [[{F}]] “abort is zero of program addition”

= [[{G.v.h}; {G.v.h}]] + [[{G.v.h}; {¬G.v.h}]] “separate Boolean assertions (15)”

= [[{G.v.h}; reveal G.v.h]] . “composition over addition; (6)”

2

The first (30) states that revelations and assertions commute, while the second
(31) says that after asserting predicate G.v.h, no more information can be leaked
by revealing the value of G.v.h.
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9.5 Reveals in choice

In a probabilistic choice between two reveal statements, an observer may witness
both which revelation was executed as well as the outcome of that statement.
We can combine such a choice into a single reveal statement.

Lemma 9.6 Choices between reveals Let DL.v.h and DR.v.h be distributions
over X and p.v.h be a probability; let

X2:= Lft X + Rgt X

be the discriminated union of two copies of X , with injection functions therefore
of type Lft,Rgt:X→X2. We have that

reveal DL.v.h

p.v.h⊕ reveal DR.v.h
=

reveal map.Lft.(DL.v.h)

p.v.h⊕ map.Rgt.(DR.v.h) ,

where the injection-functions’ “tagging” of the two distributions has effectively
given them disjoint supports.
Proof: LetD′L.v.h, D

′
R.v.h be respectively map.Lft.(DL.v.h),map.Rgt.(DR.v.h).

We have then

[[ reveal DL.v.h p.v.h⊕ reveal DR.v.h ]]
= [[ reveal D′L.v.h p.v.h⊕ reveal D′R.v.h ]] “Lem. 9.1”

= [[ {p.v.h}; reveal D′L.v.h ]]
+ [[ {1−p.v.h}; reveal D′R.v.h ]]

“probabilistic choice”

=
∑
x:X
[[{p.v.h}; {D′L.v.h.(Lft.x)}]]

+ [[{1−p.v.h}; {D′R.v.h.(Rgt.x)}]]

“revelations are additions of assertions (6);
additive distributivity

of Kleisli composition”

= (
∑
x2:X2 · [[{(D′L.v.h p.v.h⊕D′R.v.h).x2}]] ) “(11); and D′L.v.h.(Rgt.x),

D′R.v.h.(Lft.x) both zero”

= [[ reveal D′L.v.h p.v.h⊕D′R.v.h ]] . “addition of assertions as revelation (6)”

2

From this lemma we may derive the following laws concerning revelations
and probabilistic choice.

Lemma 9.7 Simple choice rules For probability p.v.h and distributionsD1.v.h
and D2.v.h we have that

(reveal DL.v.h p.v.h⊕ reveal DR.v.h) v reveal (DL.v.h p.v.h⊕DR.v.h) .

However if the support of DL.v.h and DR.v.h are disjoint, then the refinement
relation is an equality.
Proof: This follows from Lems. 9.6,9.1. 2

30



From (21) and Lem. 9.7 we have, for example, that

skip p.v.h⊕ skip = (reveal T p.v.h⊕ reveal F) = reveal (T p.v.h⊕ F) ,

thus illustrating the information leakage due to implicit flow.

9.6 Composition, probabilistic choice and conditionals

As well as being monotonic in both their program arguments (Thm. 8.1), se-
quential composition and probabilistic choice –of which conditional choice is a
special case– satisfy the following basic laws corresponding to classical proba-
bilistic equalities [28].

Lemma 9.8 Basic composition and choice laws For all programs S, T and
R and probabilities p.v.h we have the following properites hold.

S; (T ;R) = (S;T );R (32)

skip;S = S; skip = S (33)

abort;S = S; abort = abort (34)

(S p.v.h⊕ T ) = (T 1−p.v.h⊕ S) (35)

(S p.v.h⊕ T );R = (S;R p.v.h⊕ T ;R) (36)

(S 1⊕ T ) = S (37)

Additionally, for anyR satisfying bothR; {p.v.h} = {p.v.h};R andR; {1−p.v.h} =
{1−p.v.h};R we have that R distributes from the left into a choice with proba-
bility p.v.h:

R; (S p.v.h⊕ T ) = (R;S p.v.h⊕R;T ) . (38)

2

Since both assertions (11) and reveals (30) commute over assertions, equation
(38) gives us that they distribute to the right over arbitrary probabilistic (and
conditional) choices. Additionally, commutativity of constant assertions over
all statements (12) means that all programs distribute over choices in which
the probability is constant. We can also derive, for example, the following
properties:

S p.v.h⊕ S v S (39)

S p.v⊕ S = S (40)

if G then S else T = reveal G; if G then S else T (41)

The first two follow from left distributivity (33,36,21) and Lem. 9.7. The last
follows from (38,31).
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9.7 Rules for general iteration

Recall that we write while p.v.h do S od for a general iteration of S, with
probability p.v.h of exiting the loop on each iteration. From Thm. 8.1 we have
that such loops are monotonic on their program argument. Additionally, from
its least-fixed-point semantics least fixed point we have

Lemma 9.9 Fixed point rule If (S;W ) p.v.h⊕ skip = W then we have the
refinement (while p.v.h do S od) v W .
Proof: From the Tarski fixed-point theorem [46] wrt the order (≤), and that
the loop is a least fixed point, we have immediately

(S;W ) p.v.h⊕ skip ≤ W implies (while p.v.h do S od) ≤ W . (42)

The result then follows immediately from the two inclusions (=) ⊆ (≤) ⊆ (v).
2

In a specification task, however, the goal is typically to implement a speci-
fication by an iteration, i.e. to establish a refinement in the opposite direction.
For terminating iterations we have this rule:

Corollary 9.1 Termination iteration If while p.v.h do S od terminates with
probability one, and (S;W ) p.v.h⊕ skip = W , then while p.v.h do S od = W .
Proof: We adapt the proof of Lem. 9.9, noting that if the loop terminates it
is (≤)-maximal and hence the rhs (≤) in (42) must in fact be an equality. 2

Termination is usually shown by exhibiting a probabilistic variant over the
state [19, 34, 28]; a straightforward simple case is when the loop’s exit probability
is bounded away from zero, in particular while k do · · · for any constant k < 1.

9.8 Small example: one guess at a password

We have a hidden password p chosen from three possibilities P:= {p1, p2, p2}.
This fragment describes an attacker’s single guess, uniformly chosen:

‖[ vis g; g:∈{{p1, p2, p3}}; reveal g=p ]‖ .

Local visible value g is chosen from the uniform distribution {{p1, p2, p3}}, and
then it is used as a guess. Note that if the guess is correct, then T is revealed
which –in itself– does not reveal the password’s value: that latter is then learned
by deduction, from the program’s code and the fact that g is visible. If g had
been hidden, we would know only that the guess had succeeded, but still not
the value of p.

We now show how algebra can be used to convert “operational” descriptions
like the above into less obvious but more calculationally convenient forms, in
this case a single reveal statement; and in §10 we will see how useful this
equivalence turns out to be. For now, we reason
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‖[ vis g; g:∈{{p1, p2, p3}}; reveal g=p ]‖

= ‖[ vis g;
g:= p1 ⊕ g:= p2 ⊕ g:= p3;
reveal g=p

]‖

“split visible choice using (7);
note choices (⊕) are uniform

by convention, i.e. (1/3⊕)
in this case”

= ‖[ vis g;
g:= p1; reveal g=p;

⊕ g:= p2; reveal g=p;
⊕ g:= p3; reveal g=p

]‖

“left distributivity (36)”

= ‖[ vis g;
g:= p1; reveal p1=p;

⊕ g:= p2; reveal p2=p;
⊕ g:= p3; reveal p3=p

]‖

“replace expressions by those of equal value (§9.1);
e.g. in the first branch g:= p1 establishes

that p1=g, so that g can be
replaced by p1 in the reveal”

= ‖[ vis g; g:= p1 ]‖; reveal p1=p
⊕ ‖[ vis g; g:= p2 ]‖; reveal p2=p
⊕ ‖[ vis g; g:= p3 ]‖; reveal p3=p

“shift scope (§9.1), since g is
no longer free in the reveal’s”

= reveal p1=p ⊕ reveal p2=p ⊕ reveal p3=p “(9), (8) and (33)”

= reveal (p1, p1=p) ⊕ reveal (p2, p2=p) ⊕ reveal (p3, p3=p) “Lem. 9.1”

= reveal (p1, p1=p) ⊕ (p2, p2=p) ⊕ (p3, p3=p) , “Lem. 9.7”

giving a single reveal whose expression-part we manipulate further, at (46)
below. Note that it is the appeal to (7) that relies on g’s being visible: if it were
not, then the implicit flow introduced by the first step would represent a leak,
invalidating the equality.

10 Extended example: iterative reasoning

We now demonstrate our treatment of iteration, reusing the simple password-
guessing attack within a loop.

10.1 A password attack: specification

We assume a set of passwords P and a hidden variable p:P containing the
(current) password; let PNP be the set of all size-N subsets of P. A typical
attack would be to choose one of those sets of potential passwords, and then to
try them all in a “bulk attack” as in the program fragment

‖[ vis G; G:∈ bPNPc; reveal {p}∩G ]‖ . (43)
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(We omit the typing G:PP, to reduce clutter.) The statement G:∈ bPNPc makes
a uniform choice of size-N subset of P, assigning it to G. We are assuming that
N is strictly less than the size P of P.

The reveal {p}∩G reveals either {p}, if the attack succeeds, or the empty
set ∅ if it does not. That is, the outcome of fragment (43) above is either to say
“the hidden password is p” (a successful attack, revealing {p}) or “the hidden
password is not in G” (an unsuccessful attack, revealing ∅) since, in the latter
case we do know the visible attack-set G even though the attack failed. As a
specification, it abstracts from precisely how the passwords are tried, in what
order, or whether possibly repeated: it says only thay they are tried.

Now suppose the incoming distribution of p is some π:DP; then the program
fragment above produces an output hyper Π:D2P comprising a distribution of
distributions over P. (Note that the output hyper contains no G component,
because G is local.) If we calculated this with our semantics (although we omit
the calculations here), we would find two kinds of inners in its support, namely

success A p-indexed family of point inner distributions {{p}} each itself with
outer probability N(π.p)/P , the probability π.p that p was the password,
but multiplied by the probability N/P that it was in the uniformly chosen
attack-set G of size N .

failure A G-indexed set of inner distributions of support-size P−N , each such
distribution derived by conditioning π on not being in the setG and having
outer probability (1−π.G)/CPN , the probability that this particular G was
chosen for the attack-set multiplied by the probability that the password
was not in it.

As a check, we note that the outer probabilities sum to one, as they should since
the specification program is terminating: we have∑

pN(π.p)/P +
∑
G(1−π.G)/CPN∑

pN(π.p)/P +
∑
G1/CPN −

∑
Gπ.G/C

P
N

= N/P + CPN/C
P
N −

∑
pC

P−1
N−1(π.p)/CPN

= 1 .

Finally, if for example we assume that the incoming distribution π is uni-
form over P, then the Bayes Risk before the attack is 1 − 1/P and, after
the attack, it has been reduced to the conditional Risk P×N(π.p)/P×0 +
CPN×((1−N/P )/CPN )×(1− 1/(P−N)), that is reduced to 1− (N+1)/P .

10.2 A password attack: implementation

We suppose a simple-minded actual attacker who chooses single passwords uni-
formly at random, possibly with repetition and, after each attack, has some
fixed probability c of giving up. This would be described by the fragment

while c do
‖[ vis g; g:∈P; reveal g=p ]‖

od .
(44)
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A complete analysis of (44) is combinatorially complex, having an output
hyper comprising inner distributions over subsets of P of all possible sizes and
–as such– would be difficult to reason about within a larger system. More prac-
tical would be to determine, once and for all, whether (44) is an implementation
of (43), that is is at least as secure as (43) and then ever after to use the simpler
(43) in larger analyses. Since (44) is parametrised by c, we might in fact ask

What is the largest value of probability c for which (43) v (44)?

10.3 Example refinement analysis: the simplest case

To illustrate the approach, we address the above question in the very simple
case where P={p1, p2, p3} is of size 3, and our specification describes a “bulk
attack” of size N=1. 16 Thus we are asking for the largest c that achieves the
refinement

‖[ vis g; g:∈P; reveal g=p ]‖ v while c do
‖[ vis g; g:∈P; reveal g=p ]‖

od .

(45)

We do this in two stages: the first is to hypothesise a parametrised straight-line
equivalent for the loop, then synthesising a condition on the parameters that
makes it satisfy the fixed-point equation of Cor. 9.1.

As in Lem. 9.6, we introduce a discriminated union P? := is P+ isn’t P+nix
which, used in reveal commands, will allow us to reveal what p is, what it is
not, and –for algebraic convenience– to reveal nothing at all.

In our simple case here of P having just three elements, therefore P? has
seven. Further exploiting P’s size of three, for any p in P we write p+ for one of
the values p is not, and p− for the other. With this approach we can express lhs
(45) without its local block and the guess variable g: for that, we return to our
example calculation of §9.8 giving reveal (p1, p1=p) ⊕ (p2, p2=p) ⊕ (p3, p3=p).
We can recode this directly using Lem. 9.1: it becomes just

reveal {{is p, isn’t p+, isn’t p−}} . (46)

We return to the synthesis of the loop’s straight-line equivalent, supposing
it has the form

reveal {{is p@x, isn’t p+
@ y

2 , isn’t p−
@ y

2 , nix@z}} (47)

for some probabilities x+y+z = 1 that we have to determine. This reveals what
p is with probability x, what p is not with probability y/2+y/2 = y; and with
probability z it reveals nothing at all.

16In this simple case a bulk attack of size N=2 is uninteresting, because it would reveal
everything: either what the password is (if p∈G) or two values that it is not (if p/∈G). In the
latter case we would deduce p’s value anyway, by elimination.
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Our synthesising equality is then given by Cor. 9.1, because the loop with
its constant c terminates; that is we require

reveal {{is p@x, isn’t p+
@ y

2 , isn’t p−
@ y

2 , nix@z}}
}
← (47)

= reveal {{is p, isn’t p+, isn’t p−}}; ←− loop body

reveal {{is p@x, isn’t p+
@ y

2 , isn’t p−
@ y

2 , nix@z}}
}
← (47)

c⊕ skip , ←− loop exit

whose right-hand side we can simplify with the revelation laws from §9, in
particular Lems. 9.1,9.3&9.7. That gives

reveal {{ is p @ c(x+ 2y/3 + z/3) ,
isn’t p+ @ c(y/6 + z/3) ,
isn’t p− @ c(y/6 + z/3) ,
nix @ 1−c }} ,

and that should be equal to the left-hand side, the original (47). Since z = 1−c
trivially, we concentrate p+ case to obtain y/2 = c(y/6 + 2(1−c)/3) , so that
y = 2c(1−c)/(3−c), whence x = c−y = c(1+c)/(3−c). 17

10.4 Establishing the c-optimal refinement:
the second stage

We now want to find the largest value of c that allows

‖[ vis g; g:∈P; reveal g=p ]‖
v reveal {{is p@x, isn’t p+

@ y
2 , isn’t p−

@ y
2 , nix@z}}

where x, y, z have the c-determined values calculated above: we recall the remark
above at (46) about formulating our specification as a simple revelation, without
needing a local variable g. That gives the equivalent goal

reveal {{is p@ 1
3 , isn’t p+

@ 1
3 , isn’t p−

@ 1
3 }}

v reveal {{is p@x, isn’t p+
@ y

2 , isn’t p−
@ y

2 , nix@z}}

17Working through this and extracting the arithmetic results in the following table:

↓ effective joint revelation

is p, is p with prob. x/3 equivalent to revealing just is p
is p, isn’t p+ with prob. y/6 equivalent to revealing just is p
is p, isn’t p− with prob. y/6 equivalent to revealing just is p
is p, nix with prob. z/3 equivalent to revealing just is p
isn’t p+, is p with prob. x/3 equivalent to revealing just is p
isn’t p+, isn’t p+ with prob. y/6 equivalent to revealing just isn’t p+
isn’t p+, isn’t p− with prob. y/6 equivalent to revealing just is p
isn’t p+, nix with prob. z/3 equivalent to revealing just isn’t p+
isn’t p−, is p with prob. x/3 equivalent to revealing just is p
isn’t p−, isn’t p+ with prob. y/6 equivalent to revealing just is p
isn’t p−, isn’t p− with prob. y/6 equivalent to revealing just isn’t p−
isn’t p−, nix with prob. z/3 equivalent to revealing just isn’t p− .

36



For this we refer to Lem. 9.1, whose D is effectively the lhs above: written
as a matrix, it would be

is p1 isn’t p1 is p2 isn’t p2 is p3 isn’t p3 nix
p1 1/3 0 0 1/3 0 1/3 0
p2 0 1/3 1/3 0 0 1/3 0
p3 0 1/3 0 1/3 1/3 0 0 .

(48)

We need a 7×7 stochastic matrix F , that is a function P?→ DP? which, when
multiplied after D, gives the rhs above, that is

is p1 isn’t p1 is p2 isn’t p2 is p3 isn’t p3 nix
p1 x 0 0 y/2 0 y/2 z
p2 0 y/2 x 0 0 y/2 z
p3 0 y/2 0 y/2 x 0 z .

The columns of the latter must be interpolations of columns of the former,
thus the first rhs column [x, 0, 0] cannot contain non-zero contributions from
any other than the first lhs column [1/3, 0, 0]. 18 Hence x≤1/3 and, since we are
trying to maximise c we maximise x also by setting x:= 1/3. 19 Similar reasoning
then establishes that the second rhs column [0, y/2, y/2] must be obtained by
taking proportion 3y/2 of the second lhs column; and then the last rhs column
is made by combining proportions 1− 3y/2 of each of columns 1,3,5 on the lhs.

Since x=1/3 entails c(1+c)/(3−c)=1/3, that is c ≈ 0.53, we have estab-
lished our desired (45) with c taking that value (or less), independently of the
distribution with which the hidden p might have been chosen.

11 Related work

11.1 HMM ’s, algebra and noninterference

Hidden Markov Models [22] have a long history and many practical applications;
their conceptual connection to noninterference suggests that their algorithmic
methods might be of use here. That is, extant HMM techniques could be used
for efficient numerical calculation of whether some T S ,ES , a specification, was
secure enough for our purposes: once that was done, the refinement relation
established via program-algebra could ensure that an implementation T I ,EI

was at least as secure as that without requiring a second numerical calculation.
The advantage of this is that the first calculation, over a smaller and more
abstract system, is likely to be much simpler than the second would have been.

There are techniques based on the manipulation of “graphical models” to
represent Bayesian networks in alternate equivalent ways: these are similar in

The probabilities in the text come from adding the final column in groups.
18We write transposed columns horizontally as rows between brackets [·] instead of paren-

theses.
19The function x:= c(1+c)/(3−c) is monotonic for 0≤c≤1.
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spirit to our algebraic manipulations [7], although there the motivation is usually
to find more efficient algorithms.

The application of HMM ’s to noninterference security is recent: originally,
noninterference was qualitative [16]. Probabilistic noninterference [44, 11] is a
generalisation of that idea to provide weaker statements concerning an attacker’s
ability to guess high security state by observing the behaviour and pattern of
observables. Variations of the idea have been studied extensively for concurrent
systems [43, 48] and taking computational issues into account [6].

The definition of our space D(V×DH) and its refinement order draws inspi-
ration from constructions and techniques already present in the literature. The
monad is Giry/Kanotorovich [15, 47], and the refinement order is related to the
theory of inhomogeneous Markov Chains [12].

11.2 Compositionality, information theory
and assorted entropies

A compelling approach to quantitative security is to use information-theoretic
measures to compare the (e.g. Shannon) entropy of the hidden variables’ a priori
distribution (e.g. their incoming values) and their a posteriori distribution once
the program has executed [10, 11, 3]; recently this has been applied to iterating
programs as well [26, 40]. But compositionality is crucial: given that one pro-
gram is more secure than another according to some entropy-based criterion,
how do we know that inequality is preserved in a larger context?

We have shown earlier [27] refinement has two key properties for composi-
tional entropy-based reasoning: it is preserved by contexts; and it implies non-
decrease for an assortment of entropies, including Shannon Entropy, Guessing
Entropy, Bayes Risk and Marginal Guesswork. Perhaps it applies to others [9].

Thus our work here is part of a larger program to unite earlier work in quan-
titative information flow (or escape) [3, 24] in channels, as models of computa-
tion, with a denotational presentation of program semantics based on HMM’s
including a compositional refinement relation that compares these quantitative
measures between programs, specifically between specifications and their pur-
ported implementations. By considering iterations, we are extending our own
earlier work [27] in a way that relates to others’ work on quantitative information
flow from iterations [26, 40] much as in the way described above.

Compositionality “within” a program addresses the question of whether se-
curity established for a component is preserved when embedded in a larger
context [8]. Compositionality “between” programs, as we do here, addresses
the question of whether two programs’ relative security is preserved when they
are both placed in the same context: this latter is less common.

A representative example of others’ doing so is recent work by Yasuoka and
Terauchi [51] in which computational hardness is analysed. They consider deter-
ministic sequential straight-line programs. i.e. without probabilistic or demonic
choice and without loops, but that nevertheless operate in a quantitative con-
text (i.e. having input distributions rather than simply input values). Since the
programs have no probabilistic choices, those authors are able to reduce the
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(analogue of) the secure-refinement relation to the qualitative noninterference
comparison of the programs. This is a special case of our general conjecture
concerning the promotion of qualitative results to quantitative results provided
demonic choice is replaced by uniform choice [27, Sec.8.1]: if there is no demonic
choice, there is nothing to replace and so the program is unchanged.

These authors look for a relation guaranteeing the correct entropy ordering
(for all incoming distributions) wrt a selection of entropies, as we do, and they
address the computational hardness of validating that relationship in particular
cases. We address with compositional closure the additional question of how
weak such a relation can be [27].

12 Summary, conclusions, prospects

Earlier we built the core of a programming algebra for probability and noninter-
ference: here we have extended it to include iteration and nontermination; and
we solved the technical problem of incompleteness, that arose in the process,
by introducing a simpler “termination” order that allowed us to remain with
discrete distributions. Further, we have shown how the semantics is related
to HMM ’s, an existing consensus of how such application domain should be
handled and analysed.

The formalist rigour of program semantics, however, can make unusual de-
mands on traditional mathematical presentations: a programming language is
interpreted inductively in a structured space equipped with operators corre-
sponding to the constructors of that language. In particular, sequential pro-
grams with any kind of nondeterminism (whether demonic, probabilistic or
some other) are often interpreted as functions of type SS→KSS where SS is
the state space and K is some type constructor (or functor) expressing the non-
determinism. Thus our first contribution in detail was to (re-)interpret HMM ’s
in this style (in §3), where SS was V×DH and K became D (in §3.4). We made
some small programming-motivated extensions to the HMM model, in partic-
ular adding visible variables to the state so that the most recent observation
is carried forward into the next operation. The second extension was allowing
iterations and hence, potentially, computations that might not terminate (thus
D rather than D).

In constructing the semantic operations we built-in perfect recall and implicit
flow, which are security assumptions about the power of the attacker. This can
be controversial: in general one can choose to impose these or not. We did
impose them because we have argued extensively elsewhere [36, 37] that a com-
positional definition of program refinement is not possible otherwise. 20 Perfect
recall in particular, however, does seem a good fit for HMM ’s independently
of the the refinement argument, since the knowledge gained from observations,
once emitted from the output-side of an HMM, cannot be expunged from the
attacker’s repertoire by any kind of overwriting subsequently.

20We did not have space to repeat those arguments here.
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Our second contribution was to work-around (v)-incompleteness by using
an alternative, more specialised order (≤), showing that a program algebra
including iteration is feasible (§9); and our third contribution was to argue by
example that the resulting source-level reasoning is promising (§10).

There are two immediate prospects for further work. One that in practice
we would like to answer questions like the one posed in §10.2 for general guesses
of size N and large password spaces P, and many other similar. For this we
would need tool support both for the semantics (i.e. given a program, determine
its meaning) and for establishing refinement (i.e. whether this meaning refined
by that one) in a probabilistic setting [23, 30].

The other prospect is to complete our semantic space to proper measures,
in fact to follow the approach outlined in §6.2. Beyond compositionality of (v)
we want its compositional closure, already achieved for straight-line programs,
guaranteeing that the refinement relation is not unnecessarily strong; but that
argument required (analytical) closure/compactness of a set of finite, discrete
probability distributions in a metric space [27]; and to do that here, with the
extra feature of iterations that generate chains of approximants, seems to make
the move to measures inevitable.

Finally, our longer-term aim is to add demonic choice to the model for e.g.
demonic scheduling that takes into account what the adversary can, and cannot
see [3]. We have done this for qualitative systems [36, 37] and we have earlier
combined demonic- and probabilistic choice without hiding [20, 39, 28]. The
technique of convex closure, useful for that, generates uncountably many inter-
polated distributions: it is a second reason we are likely to need measures, and
so we hope to exploit the structures developed for this paper at that later point.
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These appendices contain preliminary, background material intended to sup-
port further extension of the main results, above, in a separate, subsequent pub-
lication; they were written after the main report and are not strictly part of it.

A The Kantorovich metric
and its related probability monad

We begin by recalling the notation and structures we have been using for the
discrete case. Let D be a finite set, of size some N ; then DD is the set of
discrete distributions over it. 21 The Manhattan metric between two of those
distributions δ{1,2} is then given bym.δ1.δ2:=

∑
d|δ1.d−δ2.d| for d:D. Scaled by

1/N , the metric becomes 1-bounded; in any case, the usual Euclidean topology
is induced, on RN effectively, and the space is compact.

Now more generally, given a metric space its Borel algebra is the smallest
sigma-algebra containing the open sets; and the combination of such a space
and the Borel algebra is a measurable space. The space (DD,m) of discrete
distributions, above, is such a metric space; and we can therefore define measure
spaces (DD,B(DD,m), µ) over DD, where B has constructed the required Borel
algebra: these µ are distributions of distributions over D, what we have been
calling hypers. 22 The special case of discrete hypers could be said to be the set
D2D.

Because (DD,m) is compact and its metric 1-bounded (once scaled), the
Kantorovich metric construction can be used to “lift” the underlying metric m
to a new metric on the measures µ themselves, i.e. giving a distance between
any µ{1,2} [13] — and that lifted metric is again 1-bounded and makes the
space of measures compact. This gives a new 1-bounded and compact metric
space of measures over distributions over D, which we write MDD: it depends
implicitly on the underlying metric m on DD. And because 1-boundedness and
compactness is re-established, the process can be repeated, going on to form
e.g. M2DD etc.

In fact if D is itself given the discrete metric d.d1.d2:= 1, then the Kan-
torovich construction gives (up to scaling) the Manhattan metric on DD that
we have already chosen, and so for MDD we could just as well write M2D; but
as a mnemonic aid we continue to use D where it applies.

21We use bold D for the underlying set, rather than e.g. a calligraphic X as in the main
report, for notational reasons explained below.

22Note that δ{1,2} were measures, actually discrete distributions over D, whereas µ is a
measure over DD.
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A.1 Notation and conventions for measures
and the Kantorovich functor

In the presentation further below we will be using many (at least six) different
but related measurable spaces, based on metric spaces as above, with each one
introducing at least seven derived variables: the space itself; the underlying set;
the metric; the induced Borel-algebra; the measurable sets in that algebra; a
measure (or measures) defined on the algebra; and finally a variable ranging
over the underlying set itself. To achieve some (local) naming consistency, we
follow these conventions systematically:

• The underlying set will be named in bold upper-case Roman, thus A, and
its elements will be lower-case Roman so that for example a∈A.

• The associated metric will be in bold lower-case Roman, thus a ∈ A2→R.

• The metric space as a whole will be in underlined upper-case Roman, thus
A = (A,a).

• The Borel-algebra induced by the metric a on A will be the in correspond-
ing Roman calligraphic, thus A⊆PA.

• The measurable sets in A will be in upper-case Roman, so that a∈A∈A.

• Thus the measurable space derived from (A,a) will be (A,A).

• Measures over (A,A) will be in lower-case Greek, so that α.A∈R and then
(A,A, α) is the measurable space written in full. Abusing the types, we
sometimes write A for the set of those measures, thus by α∈A meaning
that (A,A, α) is a measurable space.

• The Kantorovich construction taking metric space A to the metric space of
measures over it will be written MA. By a similar abuse we write β∈MA
to mean that β is one of those measures.

• Given a function f :A→B we write Mf for the corresponding function
between (the measures in) MA and MB with the usual definition
Mf.α.B:=α.(f−1.B).

We will base our calculations below on van Breugel’s presentation of the Kan-
torovich monad, whose relevant results we now summarise (but in the notation
we have established above); the page references are to van Breugel’s publication
[47]. In fact we will be using subprobability measures to take nontermination
into account [47, Sec.5.3], and will assume that throughout the following.

Lemma A.1 Facts concerning Kantorovich subprobability-measure monads and
metrics
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p13 The unit and multiplication of the monad on M are defined as for the
Giry monad, with an argument necessary that the Giry-style definition of
multiplication is meaningful for Kantorovich [50]. The unit η is the “make
a point measure” function pnt and the multiplication µ is the “average”
function avg.

p13 If metric space X is compact, then MX is compact as well.

p13 If metric space X is complete, then MX is complete as well if we restrict
ourselves to tight measures.

p13 If a function f is nonexpansive, then so is Mf .

p13 Both the unit η and the multiplication µ of the M-monad are nonex-
pansive.

p14 〈M,η,µ〉 is a monad on the category of 1-bounded compact metric
spaces with nonexpansive functions between them.

2

B Antisymmetry of refinement

B.1 Refinement of measures

We begin by revisiting our definition of refinement, placing it in the measure
context.

Definition B.1 Entropy refinement of measure-hypers Refinement is a rela-
tion on measures ∆ in MDX, i.e. hypers, that –informally– merges elements of
DX together based on the weights assigned to them by ∆. 23

More precisely we have the following:

1. Start with a finite set X with the discrete metric (such as our program
state-space).

2. From (1) construct DX=MX with the Kantorovich/Manhattan metric.
These are our discrete distributions.

3. From (2) construct MDX = M2X with the Kantorovich metric. These
are our hypers.

4. From (3) construct M2DX = M3X with the Kantorovich metric. These
are our supers.

5. From (4) construct M3DX = M4X with the Kantorovich metric, which
is where the “mega” lives that is used in the conjecture supporting tran-
sitivity.

23We retain the use of upper-case Greek letters for hypers, in spite of the conventions above,
for consistency with the main paper.
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6. For two hypers ∆{S,I} say that ∆S is entropy refined by ∆I , written
∆S�∆I , just when there is some super ·∆ such that

∆S = µ. ·∆ ∧ (Bµ). ·∆ = ∆I . (49)

2

B.2 Notation for integration over measures

Because the coming calculations are intricate in places, we use a slightly non-
standard notation for integration over measures in order to make the manipula-
tion of bound variables etc. absolutely explicit.24 Fix a measure space (A,A, α),
with A the underlying space and A a sigma-algebra on it, and α a measure. We
consider the expression “exp da” simply to be an alternative notation for the
lambda expression (λa · exp), i.e. with da binding free occurrences of a within
exp to make a function over A. (Note this convention accords perfectly with the
notation for Riemann integration, in particular that the “da” binds occurrences

of a in the body.) Then
∫ A
α

exp da means

Consider the expression exp to be a function of its free variable a,
and integrate that function over the measure α, but restricted to the
measurable set A in A.

When f say actually is some function over A (rather than an expression con-

taining a), then we write just
∫ A
α
f with no indication “d·” of bound variable,

and it is of course equivalent to
∫ A
α
f.a da where exp is now the function appli-

cation f.a. Finally, when there is no restricting set A we can leave it off. Thus
the simplest “normally notated” integration

∫
fdµ we would write instead as∫

µ
f . 25

24This is not done lightly: variant notation always imposes a barrier between writer and
reader. As justification in this case, we quote “Sometimes the integral of a function h with re-
spect to a measure µ, usually written as

∫
hdµ or

∫
h(x)dµ(x), will be written as

∫
h(x)µ(dx).

This can make clearer what the variable of integration is. . . [14, p347].” In the last case, what
seems to be meant is that

∫
h(x)µ(dx, y) would be an integration of function h of x over a

measure µ on that x with µ depending on some y — which we would write in our notation as∫
µ(y) h(x)dx.

As an example of how this can get out of hand, consider the expressions∫
X1

µx1d(π1)∗(µ)(x1)

and
∫
X1

(∫
X2

f(x1, x2)µ(dx2|x1)
)
µ(π−1

1 (dx1)) ,

taken from the product-space section of Wiki entry on the Disintegration Theorem [1,
.../Disintegration theorem]. It’s reminiscent of “Von Neumann’s onion”

(ψ((((a)))))2 = φ((((a)))) ,

so called because “it has to be peeled before it can be digested” [17, The legend of John von
Neumann].

25This avoids all the contortions one reads like dµ(x) and µ(dx) as ad-hoc variations on the
“normal” use, varying from text to text depending on the complexity of their calculations.
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B.3 Convex functions and Jensen’s inequality

We will use a convex function y on DD, i.e. one with the property that for
0≤p≤1 and δ{1,2}:DD we have y.(δ1 p⊕ δ2) ≥ y.δ1 p⊕ y.δ2. It is strictly convex
if the inequality is strict whenever δ1 6=δ2 and p6=0, 1. We define strictly con-
vex y.δ:=

∑
d(δ.x)2, motivated by the “colour” construction for inhomogeneous

Markov chains [45].
From Jensen’s inequality [31, Thm.2] we have for convex y and hyper ∆ that∫

∆
y ≥ y.(avg.∆). Defining Y.∆:=

∫
∆
y, we write this Y.∆ ≥ y.(µ.∆).

B.4 Entropy refinement does not increase Y

We consider for ∆{S,I} in MDD the entropy refinement ∆S�∆I , beginning with
the first of the two criteria from Def. 5.1 that there be a super ·∆ in M2DD
with ∆S = avg. ·∆. We calculate

Y.∆S

=
∫

∆S
y

=
∫
avg. ·∆ y

=
∫
·∆ (
∫

∆
y) d∆ “[15, Thm.1(d)]”

=
∫
·∆ Y.∆ d∆

=
∫
·∆ Y .

From the second criterion of refinement, that map.avg. ·∆ = ∆I , we calculate

Y.∆I

= Y.(map.avg. ·∆)
=

∫
map.avg. ·∆ y

=
∫
·∆ y ◦ avg “[15, Thm.1(a)]”

=
∫
·∆ y.(avg.∆) d∆

≤
∫
·∆ Y.∆ d∆ “y is convex”

=
∫
·∆ Y .

Putting the two calculations together gives us Y.∆S ≥ Y.∆I immediately.

B.5 Conditions for strict decrease of Y

The step
∫
·∆ y.(avg.∆) d∆ ≤

∫
·∆ Y.∆ d∆ depends only on the underlying in-

equality that y.(avg.∆) ≤ Y.∆ for all ∆, and so we will have equality there just
when the set of ∆’s such that y.(avg.∆) = Y.∆ has measure one in ·∆. But
∆ satisfies that equality precisely when it is of the form pnt.δ, that is {{δ}} for
some δ in DX , i.e. is a point-hyper centred on that δ [31, Thm.5]. Thus we have
equality iff the set P := {{δ:DX · pnt.δ}} of point hypers in MDX has measure
one in the super ·∆. 26

26P is closed because it contains its limit points in the Kantorovich metric, hence is mea-
surable.
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But if ·∆.P=1 then avg. ·∆ = map.avg. ·∆, 27 whence ∆S=∆I . That gives
us that ∆S�∆I implies Y.∆S>Y.∆I unless ∆S=∆I , whence antisymmetry of
entropy refinement follows trivially.

B.6 Antisymmetry of secure refinement

This now follows easily from the above because ∆Sv∆Iv∆S implies∑
∆S≤

∑
∆I≤

∑
∆S , whence

∑
∆S=

∑
∆I and so ∆S�∆I�∆S , thus finally

∆S=∆I from §B.5.

C Transitivity of secure refinement

We prove transitivity of refinement for three domains of increasing sophistica-
tion, taking advantage of the similarities between them to make the structure of
the proof clearer. Although direct matrix-based proofs are possible in the dis-
crete case, our aim is to use monadic-style arguments that are easily generalised
to measures.

C.1 A useful conjecture

If we had the following property in our monad, transitivity of entropy refinement
would be straightforward:

Conjecture C.1 Suppose we have a hyper ∆ in D2X and two supers ·∆{1,2}
in D3X with the property that map.avg. ·∆1=∆ and ∆=avg. ·∆2. Then there is a
“mega” ∇ in D4X such that ·∆1=avg.∇ and map2.avg.∇= ·∆2. 2

Fig. 4 further below gives a diagram of this relationship (but in more math-
ematical notation). With Conj. C.1 the proof of transitivity of (�) would be

Lemma C.1 Refinement is transitive If ∆1�∆2 and ∆2�∆3 for hypers ∆{1,2,3}
in D2X , then ∆1�∆3.

27If ·∆.P=1 then ·∆=map.pnt.∆ for some ∆, whence

avg. ·∆ = avg.(map.pnt.∆) = (avg ◦map.pnt).∆ = ∆
= map.(avg ◦ pnt).∆ = map.avg.(map.pnt.∆) = map.avg. ·∆ .

Alternatively, for measurable set Q⊆P of hypers we calculate directly

·∆.Q
= ·∆.{∆:P · (pnt ◦ avg).∆ ∈ Q} “Q⊆P ; pnt◦avg is identity on P”

= ·∆.{∆:MX · (pnt ◦ avg).∆ ∈ Q} “ ·∆.P=1”

= map.(pnt ◦ avg). ·∆.Q ,

whence because ·∆.P=1 we can ignore the assumption Q⊆P to conclude
that ·∆ = map.(pnt◦avg). ·∆, i.e. that ·∆ = map.pnt.∆I . Then ∆S = avg. ·∆ = ∆I .
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Proof: From Def. 5.1 and Conj. C.1 we have ·∆{1,2} in D3X and ∇ in D4X
with

∆1 = avg. ·∆1 ∧ map.avg. ·∆1 = ∆2

∆2 = avg. ·∆2 ∧ map.avg. ·∆2 = ∆3

·∆1 = avg.∇ ∧ map2.avg.∇ = ·∆2 .

Monad laws then give ∆1 = avg.(map.avg.∇) and map.avg.(map.avg.∇) = ∆3,
so that ∆1�∆3 is established with witness map.avg.∇. 2

That leaves of course the proof of Conj. C.1, so there is still some work to
do: we explore the conjecture in three stages.

C.2 Proof of Conj. C.1 for a qualitative model

Here we attempt the proof of our conjecture in the qualitative model of non-
interference and refinement [35, 36, 38], i.e. for sets instead of distributions.
(Refinement is already known to be transitive for that model; we are redoing it
in a different way in order to bolster our intuition for its generalisation.)

For succinctness, we will from here on use more conventional monad-notation:
the functor (map) is M and the multiply transformation (avg) is µ.

The first move it to make the conjecture slightly more general, hence in fact
simpler: we assume we have Mf.X = B = µ.Y for some B,X, Y and f all of the
right types. We will find Z such that µ.Z=X and M2f.Z=Y . Using a general
f , instead of µ as in Conj. C.1 specifically, means we can think one level lower
than before: we now have that B,X are just sets, and Y –and Z (effectively
the ∇ of Conj. C.1, as we will see)– are simply sets of sets.

With this setup, the construction of Z is very straightforward: it’s the set
of sets {y:Y · {x:X | f.x∈y}}. We calculate first

µ.Z
= {z:Z;x′: z · x′}
= {z: {y:Y · {x:X | f.x∈y}};x′: z · x′} “defn Z”

= {y:Y ;x′: {x:X | f.x∈y} · x′}
= {y:Y ;x:X | f.x∈y · x}
= {x:X | ( ∃y:Y | f.x∈y )}
= X . “Mf.X = µ.Y ”

The other calculation is

M2f.Z
= {y:Y · {x:X | f.x∈y · f.x}} “defn Z”

= {y:Y · {x:X; b | b=f.x ∧ b∈y · b}} “one-point rule”

= {y:Y · {b: y | ( ∃x:X | b=f.x )}}
= {y:Y · y} “Mf.X = µ.Y ”

= Y .

That indeed proves Conj. C.1 for the qualitative model if we instantiate f to µ.
Based on it, we now turn to the discrete quantitative model, as in this report.

51



C.3 Proof of Conj. C.1 for a quantitative model

Again we generalise, so that Mf.X = B = µ.Y with B,X distributions and
Y,Z hypers.

This time the construction of Z:= {{y:Y · {{x:X | y.(f.x)/B.(f.x)}}}}, where
we are able to exploit the (deliberate) similarity of the notations in §8.1 with
the ordinary, established comprehension- and enumeration notation of set theory
that we used in §C.2 just above. We calculate first

µ.Z
= {{z:Z;x′: z · x′}}
= {{z: {{y:Y · {{x:X | y.(f.x)/B.(f.x)}}}};x′: z · x′}} “defn Z”

= {{y:Y ;x′: {{x:X | y.(f.x)/B.(f.x)}} · x′}}
= {{y:Y ;x′: (�x:X · y.(f.x)/B.(f.x)× {{x}}) · x′}} “see below”

= (� y:Y ;x:X · y.(f.x)/B.(f.x)× {{x}})
= (�x:X · {{x}} × (� y:Y · y.(f.x))/B.(f.x))
= (�x:X · {{x}} ×B.(f.x)/B.(f.x)) “B = µ.Y ”

= (�x:X · {{x}})
= X .

This calculation is not ideal: it tries to follow the calculation in §C.2, but it
needs some extra steps. For the “see below” we calculate

(�x:X · y.(f.x)/B.(f.x))
= (� b:B · y.b/B.b) “B = Mf.X”

= (
∑
b: dBe · y.b )

= 1 , “y is total”

so that the denominator of the conditional comprehension can be removed. We
use this same identity below for the second calculation, reasoning

M2f.Z
= {{y:Y · {{x:X | y.(f.x)/B.(f.x) · f.x}}}} “defn Z”

= {{y:Y · (�x:X · y.(f.x)/B.(f.x)× {{f.x}})}} “see above”

= {{y:Y · (� b:B · y.b/B.b× {{b}})}} “B = Mf.X”

= {{y:Y · y}}
= Y .

That proves Conj. C.1 for the discrete-distribution case, sufficient in fact for
this report. We now turn to proper measures.

C.4 Refinement for proper measures

C.4.1 Product measures and conditionals

We begin with three measurable spaces (A,A) and (B,B) with (G,G) being
their product. The Product Measure Theorem [4, p97] assumes a measure α and
a function f :A→MB, that is equivalently of type A→B→R, with the further
property that for any fixed B∈B the function f.(·).B is measurable on A so
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that integrations
∫
α

(f.a.B)da are meaningful. (There are also various assump-
tions about the measures’ being finite, which we satisfy because we’re using
probability measures, thus bounded by 1.)

Under those assumptions there is a unique product measure γ on G:=A×B
satisfying 28

γ(A×B) =

∫ A

α

f.a.B da for all measurable A,B in A,B, (50)

given by γ.G:=
∫
α
f.a.Ga da where Ga is the “section” {b:B | (a, b)∈G} of G

at a.
The function f is like a conditional probability for (the constructed) product

measure γ, giving for each (second-coordinate measurable set) B a probability
distribution conditioned on (first-coordinate point) a. 29

The Disintegration Theorem [1, .../Disintegration theorem] goes in the
other direction. (It’s a specialisation of techniques for Regular Conditional Prob-
abilities [4, §6.6], [14, Prop. 10.2.8].) Here –in essence– we begin with a γ as
above and try to find a suitable f that satisfies (50). To work, it requires that
(A,A) and (B,B) be Radon spaces.

The theorem says that for any measure γ on the product G = A×B there

is an f :A→MB depending on γ such that (50) holds with α:=
←
γ being the

marginal measure of γ on its first coordinate, that is given by α.A = γ(A×B).
Furthermore, this f is “almost uniquely determined” in the sense that any other
f ′ satisfying (50) agrees with f except possibly on a subset of A with α-measure
zero: we will write that as f ≈α f ′, meaningful only when f, f ′ are functions
on A.

For notational convenience, given some γ we’ll write
↼
γ for such an f (a

member of the equivalence class), being careful in that case to use only opera-

tions on
↼
γ for which the class is a congruence; similarly we write

⇀
γ for such a

function on B. Thus we have for any γ and α=
←
γ and β=

→
γ the existence of

↼
γ

and
⇀
γ such that for all measurable sets A,B in A,B we have

γ.(A×B) =

∫ A

α

↼
γ .a.B =

∫ B

β

⇀
γ .b.A . (51)

(We note that the integrations are indeed congruential operations.) In the
⇀
γ

case the order of arguments is b, A (rather than a,B), so that the point always
comes first and then the measurable set. 30

28Note that this product is not Cartesian: it’s a product of sigma-algebras, thus the smallest
sigma-algebra containing the Cartesian product.

29By analogy, in the discrete case we’d have α as a column vector on the left and, for each
row-index a the function f.a (that is f(a, ·)) would be a normalised row for that index. The
induced “denormalised” row α.a×f.a then gives the actual row for that index a, and all those
rows piled up together give the matrix for the product distribution γ.

30For discrete measures this is saying that if we have a joint-distribution matrix γ over

G = A×B then it can be presented as an a-indexed collection of normalised rows
↼
γ .a and

also as a b-indexed collection of normalised columns
⇀
γ .b, i.e. either way as we prefer.
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As an example of the above, we give two lemmas that we’ll need later. Recall
that (bold) µ is multiplication from the probabilistic monad (i.e. it is not some
measure µ): it “averages” a measure of measures to give a single measure again.

The first lemma would say in discrete terms that if you have a joint dis-
tribution matrix ε over E=D×B with marginals δ, β, and you “relabel” the
right-marginal β by naming its columns by the columns’ values themselves, giv-
ing a relabelled distribution ζ, then in fact ζ averages to δ. This actually is how
you can convert a hyper presented via an index-set (B) into a “real” hyper given
directly as a measure of measures, i.e. with no index-set having to be defined
separately.

Lemma C.2 Average of conditionals Let ε be a joint measure over E = D×B
with marginals δ=

←
ε and β=

→
ε . Note that

⇀
ε is of type B→MD so that M⇀

ε is
of type MB→M2D, and construct the measure ζ:=M⇀

ε .β in Z:=M2D.
Then we have δ=µ.ζ .

Proof: Calculate for any measurable D in D that

µ.ζ.D
=

∫
ζ
z.D dz “defn µ (and assuming evaluation function (.D) is measurable)”

=
∫
M

⇀
ε .β

z.D dz “defn ζ”

=
∫
β
(
⇀
ε .b).D db “chain rule for M⇀

ε ”

= ε.(D×B) “β=
→
ε , and (51) for

⇀
ε ”

=
←
ε.D “defn marginal”

= δ.D , “defn δ”

which suffices, since D was arbitrary. 2

The second lemma concerns “mapping” of a joint distribution’s conditionals.
It would say in discrete terms that if you have a joint distribution matrix γ over
G=A×B with marginals α, β, but in fact the left-marginal α is given as a
“pushforward measure” Mf.δ via f :D→A from some other δ, then you can
make a new joint distribution ε over D×B that relates δ, β directly, i.e. so that

δ=
←
ε and β=

→
ε and –moreover– the columns of ε, distributions themselves over

δ, map (push-forward) via f to the corresponding columns of the original γ.

Lemma C.3 Push-forward of conditionals Let γ be a joint measure over the

sigma-algebra G = A×B with marginals α=
←
γ and β=

→
γ , and let there be a

further measure δ over D and function f :D→A such that α=Mf.δ.
Then there is a joint measure ε over E=D×B with marginals δ, β such that

we have
⇀
γ ≈β Mf◦⇀ε . 31

Proof: Define
↼
ε :=

↼
γ ◦f , and observe trivially for the joint distribution ε in

M(E×B) induced via the Product Measure Theorem that indeed δ=
←
ε and

β=
→
ε .

31Recall that (≈β) means “equal except on a set of β-measure zero, and that (◦) is functional
composition.
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We now use the almost-unique property of
⇀
γ , calculating for arbitrary A:A

and B:B that∫ B
β

(Mf◦⇀ε ).b.Adb

=
∫ B
β

Mf.(
⇀
ε .b).Adb “composition”

=
∫ B
β

⇀
ε .b.(f−1.A) db “defn Mf”

= ε.((f−1.A)×B) “defn
⇀
ε ”

=
∫ f−1.A

δ

↼
ε .d.B dd “property of

↼
ε wrt ε”

=
∫ f−1.A

δ

↼
γ .(f.d).B dd “defn

↼
ε ”

=
∫ A
α

↼
γ .a.B da “chain rule, since α=Mf.δ”

= γ.(A×B) , “property of
↼
γ wrt γ”

which is the defining property up to ≈β of
⇀
γ . 2

C.4.2 Proof of Conj. C.1

With the above preparation, we can now prove Conj. C.1 for general measures.
We restate it using the notational conventions of this section:

Conjecture C.1′ Suppose we have a measure α and two other measures δ, β
with the properties that Mf.δ=α and α=µ.β, where f :D→A.

Then there is a measure ζ in M2D such that δ=µ.ζ and β=M2f.ζ. 2

Fig. 4 gives the relevant commuting diagram. Note however that the arrows
( 7→) are applied to the vertices — they are not functions between the vertices.
Here is the proof:

1. Because α=µ.β we can construct a joint γ over G=A×B with marginals
α, β such that

⇀
γ = 1, the identity function on B. This follows directly

from Lem. C.2, since M1=1. 32

2. Note at this point –just for keeping things straight– that since α=µ.β
in fact B=MA, that is elements b:B can be applied to measurable subsets
A:A of A.

3. Now, as in Lem. C.3, given our assumption α=Mf.δ, construct joint ε
over E=D×B with marginals δ, β and such that

⇀
γ ≈β Mf◦⇀ε .

4. And now, as in Lem. C.2, construct measure ζ:=M⇀
ε .β. (For the types

here, remember that β ∈ MB = M2A, and
⇀
ε :B→MD, and that’s why

ζ=M⇀
ε .β is of type M2D.)

5. Observe that we then have δ=µ.ζ directly from Lem. C.2.

32. . . or it can be calculated directly: define
⇀
γ .b.A:= b.A and then verify that indeed we

have
←
γ =µ.β.
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Conjecture C.1′ establishes the existence of the upper half, a ζ such that δ=µ.ζ and
M2f.ζ=β, given the lower half Mf.δ = α = µ.β.

Figure 4: Conjecture C.1′

6. Finally, calculate

M2f.ζ

= M2f.(M⇀
ε .β) “defn ζ”

= M(Mf◦⇀ε ).β “functor”

= M⇀
γ .β “(3.) above gives Mf◦⇀ε ≈β

⇀
γ ; see below”

= β . “(1.) above: M⇀
γ=M1=1”

For the see below we note that both Mf◦⇀ε and
⇀
γ are functions on B

(in fact of type B→B), and that in general if we have two functions
f{1,2}:P→F with f1 ≈π f2 for some π:MP , then Mf1.π=Mf2.π. 33

That establishes the transitivity of entropy refinement in the general case of
proper measures.

D Refinement chains have suprema

As we showed in §6.1, the discrete hypers are not closed under suprema of chains:
for the example we gave there, a measure was required. We show here that in

33Reason that for any F∈F we have

Mf1.π.F
= π.(f−1

1 .F )

= π.(f−1
2 .F ) “f1 ≈π f2”

= Mf2.π.F ,

hence Mf1.π = Mf2.π since F was arbitrary.
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fact measures are sufficient, in other words that sup-closure is achieved.

Definition D.1 Continuous relation Say that a relation R:X↔Y between
two complete metric spaces X,Y is continuous if for every pair of convergent
sequences {xi}i and {yi}i with xi(R)yi for all i we have also

limi xi (R) limi yi .

2

Lemma D.1 Continuous functions as continuous relations If f :X→Y is con-
tinuous, then both f and f−1 are continuous relations.
Proof: Immediate from Def. D.1. 2

Lemma D.2 Composition of continuous relations If R:X↔Y and S:Y↔Z
are continuous relations between metric spaces X,Y, Z with additionally Y com-
pact, then their composition R◦S ∈ X↔Z is continuous also.
Proof: With the assumptions of Def. D.1 wrt R◦S there is a sequence {yi}i
in Y such that xi(R)yi ∧ yi(S)zi for all i. From compactness of Y there is
then a convergent subsequence {ŷj}j with limit ŷ say; and by continuity of R,S
separately the corresponding subsequences {x̂j}j , {ẑj}j in X,Z with limits x̂, ẑ
satisfy x̂(R)ŷ ∧ ŷ(S)ẑ so that in fact x̂(R◦S)ẑ. 2

Lemma D.3 Entropy refinement is a partial order
Proof: Its reflexivity is immediate by taking ·∆ = (Mη).∆S in Def. B.1(6);
its antisymmetry was proved in §B; its transitivity was proved in §C. 2

Lemma D.4 Continuity of entropy refinement The entropy refinement rela-
tion (�) between hypers, as defined in Def. B.1(6) and thus in MDX↔MDX ,
is continuous in the sense of Def. D.1. 34

Proof: From Lem. A.1 we have that µ:M2DX→MDX is nonexpansive. Since
also µ:MDX→DX is nonexpansive we have that Mµ:M2DX→MDX is nonex-
pansive as well (same lemma).

Since the entropy-refinement relation is the composition of the inverted first
with the second, we have its continuity by Lem. D.1 and Lem. D.2 given that
M2DX is compact (and 1-bounded) because (ultimately) X is compact (and
1-bounded). 2

Lemma D.5 Continuity of termination refinement The termination refine-
ment relation (≤) between hypers as defined in Def. 7.2 is continuous in the
sense of Def. D.1.
Proof: Trivial. 2

Corollary D.1 Continuity of secure refinement The secure refinement rela-
tion (v) between hypers as defined in Def. 7.3 is continuous in the sense of
Def. D.1.
Proof: Immediate from Lemmas D.5, D.4 and D.2 since MDX is compact.
2

34For consistency with the main report we use X rather than X here.
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Lemma D.6 Refinement chains have suprema Let {∆i}i be an (v)-chain in
MDX ; then it has a (v)-supremum in MDX .
Proof: Since MDX is compact there is an infinite subsequence {∆̂j}j converg-
ing to ∆. For any ∆i in our original sequence consider the tail of the infinite
subsequence beginning beyond that point, that is {∆̂j}j≥j0 for j0 correspond-

ing to a point at i or beyond in the original sequence. Since we have ∆i v ∆̂j

for all j≥j0 we have by continuity of refinement Cor. D.1 arranged that also
∆i v limj≥j0 ∆̂j = ∆.

Now suppose that ∆i v ∆′ for all i. That means in particular that ∆̂j v ∆′

for all j and thus again by continuity that ∆ v ∆′.
Hence ∆ = ti∆i as required. 2

E Iteration is monotonic for secure refinement

It is trivial (and often assumed without comment) that iteration defined as a
least fixed-point with respect to some partial order (v) is monotonic with re-
spect to that same order in the iteration body: this is simply distribution of (v)
through (v)-suprema of chains. In our case however we use termination refine-
ment (≤) for the chains producing least fixed-points, for reasons we explained
in §6.2, yet we are interested in the monotonicity of secure refinement (v) wrt
their suprema.

We show that in fact the (≤)-chains can be treated as (v)-chains, so that
the above trivial argument then applies.

Lemma E.1 Termination-refinement chains converge Let {∆i}i be a (≤)-
chain in MDX . Then it converges in the Kantorovich metric.
Proof: Recall that we are using subprobability measures, and observe that for
any ∆≤∆′ the Kantorovich distance between ∆ and ∆′ cannot exceed

∑
∆′ −∑

∆, and that difference of weights converges to zero along any (≤)-chain. 2

Lemma E.2 Termination- and refinement-suprema (v)-agree on termination-
chains Let {∆i}i be a (≤)-chain in MDX . Then

⊔
i ∆i =

∨
i ∆i.

Proof: We prove
⊔
i ∆i v

∨
i ∆i v

⊔
i ∆i and appeal to antisymmetry.

We know already that both suprema exist, and it is trivial from (≤)⊆(v)
that

⊔
i ∆i v

∨
i ∆i. The other direction

∨
i ∆i v

⊔
i ∆i follows from continuity

of (v) and the convergence of {∆i}i as established in Lem. E.1. 2

Lemma E.3 Iteration is monotonic with respect to secure refinement Let

{∆{1,2}i }i be two (≤)-chains in MDX with (≤)-suprema ∆{1,2} respectively,
and suppose that ∆1

i v ∆2
i for each i. Then we have also ∆1 v ∆2.

Proof: This is now trivial, since Lem. E.2 established that {∆{1,2}i }i consid-
ered as (v)-chains have those same ∆{1,2} as their (v)-suprema. 2
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