REALIZABILITY INTERPRETATION OF PA BY ITERATED LIMITING PCA

YOHJI AKAMA

Abstract

For any partial combinatory algebra (pCA for short) \mathcal{A}, the class of \mathcal{A}-representable partial functions from \mathbb{N} to \mathcal{A} quotiented by the filter of cofinite sets of \mathbb{N}, is a PCA such that the representable partial functions are exactly the limiting partial functions of \mathcal{A}-representable partial functions (Akama, "Limiting partial combinatory algebras" Theoret. Comput. Sci. Vol. 311 2004). The n-times iteration of this construction results in a PCA that represents any n-iterated limiting partial recursive functions, and the inductive limit of the PCAS over all n is a PCA that represents any arithmetical, partial function. Kleene's realizability interpretation over the former PCA interprets the logical principles of double negation elimination for Σ_{n}^{0}-formulas, and that over the latter PCA interprets Peano's arithmetic (PA for short). A hierarchy of logical systems between Heyting's arithmetic and PA is used to discuss the prenex normal form theorem, the relativized independence-of-premise schemes, and "PA is an unbounded extension of HA."

1. Introduction

1.1. Hierarchical of semi-classical arithmetical principles. Following Section 1.3.2 of Troelstra (1973), by Heyting's arithmetic HA, we mean an intuitionistic predicate calculus IQC with equality such that (1) the language of HA is a firstorder language L_{HA}, with logical connectives $\forall, \exists, \rightarrow, \wedge, \vee, \neg$; numeral variables l, m, n, \ldots; a constant symbol 0 (zero), a unary function symbol S (successor), constant function symbols for all primitive recursive functions, and a binary predicate symbol $=$ (equality between numbers). Bounded quantifications $\forall n<t . A$ and $\exists n<t$. A are abbreviations of $\forall n(f(n, t)=1 \rightarrow A)$ and $\exists n(f(n, t)=1 \wedge A)$, where $f(n, t)$ is a primitive recursive function such that $f(n, t)=1$ if and only if $n<t$; and (2) besides the axioms for the equality, the axioms of HA are the defining equality of the primitive recursive functions and so-called Peano's axiom $\forall n(\neg S(n)=0)$, $\forall n \forall m(S(n)=S(m) \rightarrow n=m)$, and an axiom scheme called the induction scheme:

$$
B[0] \wedge \forall n(B[n] \rightarrow B[S(n)]) \rightarrow \forall n B[n] \quad(B \text { is any formula. })
$$

By Peano's arithmetic PA, we mean the formal system obtained from HA by adjoining one of classical axiom scheme, such as the law of excluded middle $A \vee \neg A(A$ is any L_{HA}-formula), and/or the principle of double negation elimination $\neg \neg A \rightarrow A(A$ is any L_{HA}-formula). Kleene (1945) interpreted every theorem of HA by a recursive function/operation.

Kleene introduced arithmetical hierarchy of integer sets, over the class of recursive sets. The complexity of an integer set X in the arithmetical hierarchy is measured by the number of alternation of the quantifiers of the relation that defines the set X. The arithmetical hierarchy has a close relation to oracle computation,
such as the complete sets and the jump hierarchy (see Odifreddi (1989) for example).

According to Section 0.30 of Hájek and Pudlák (1998), a Σ_{k}^{0}-formula and a Π_{k}^{0} formula are the following formulas preceded by k alternating quantifiers, respectively for $k \geq 0$:

- A Σ_{k}^{0}-formula is of the form $\exists n_{1} \forall n_{2} \cdots Q n_{k-1} \bar{Q} n_{k} . P\left[n_{1}, \ldots, n_{k}\right]$.
- A Π_{k}^{0}-formula is of the form $\forall m_{1} \exists m_{2} \cdots \bar{Q} m_{k-1} Q m_{k} . P\left[m_{1}, \ldots, m_{k}\right]$.

Here $P\left[n_{1}, \ldots, n_{k}\right]$ is an L_{HA}-formula with all the quantifiers being bounded, but may contain free variables other than its indicated variables. The L_{HA}-formula $P\left[m_{1}, \ldots, m_{k}\right]$ is understood similarly.

A formula in prenex normal form (PNF for short) is, by definition, a series of quantifiers followed by a quantifier-free formula. A formula

$$
\exists n_{1} \forall m_{1} \exists n_{2} \forall m_{2} \cdots . P\left[n_{1}, m_{1}, n_{2}, m_{2}, \ldots\right]
$$

in PNF is true in classical logic, if and only if the formula represents a game between the quantifiers \exists and \forall where the player \exists has a winning strategy. Every formula is equivalent to a formula in PNF in classical logic, but it is not the case in HA. It may be interesting to think of an extension of HA from viewpoint of games which the formulas represent. We ask ourselves, "For which set Γ of L_{HA}-formulas, which extension T of HA admits the prenex normal form theorem for Γ ?" We will syntactically study the question.

For the study, we use an arithmetical hierarchy of semi-classical principles, introduced in Akama et al. (2004). In the hierarchy, the law of excluded middle and the principle of double negation elimination are relativized by various formula classes $\Gamma=\Sigma_{k}^{0}, \Pi_{k}^{0}, \ldots(k \geq 0)$. The hierarchy has following axiom schemes:

$(\Gamma$-LEM $)$	$A \vee \neg A$	$(A$ is any Γ-formula $)$.
$(\Gamma$-DNE $)$	$\neg \neg A \rightarrow A$	$(A$ is any Γ-formula $)$.

Any set $X \subseteq \mathbb{N}$ in Kleene's arithmetical hierarchy is identical to $\mathbb{N} \backslash(\mathbb{N} \backslash X)$. However, not every formula A is equivalent in HA to $\neg \neg A$. So we defined the dual A^{\perp} of A in a way similar to so-called involutive negation of classical logic. We show that HA $\vdash\left(A^{\perp}\right)^{\perp} \leftrightarrow A$ for any formula A in PNF, and consider an axiom scheme

$$
\left(\Gamma \text {-LEM }{ }^{\prime}\right) \quad A \vee A^{\perp} \quad(A \text { is any } \Gamma \text {-formula }) .
$$

The axiom scheme Σ_{k}^{0}-LEM turns out to be equivalent in HA to Σ_{k}^{0} - $\mathbf{L E M}^{\prime}$. Motivated by Δ_{k}^{0}-sets of Kleene's arithmetical hierarchy, the hierarchy of semi-classical principles has the following axiom scheme

$$
\Delta_{k}^{0} \text {-LEM } \quad(A \leftrightarrow B) \rightarrow(A \vee \neg A) \quad\left(A \in \Pi_{k}^{0}, B \in \Sigma_{k}^{0}\right)
$$

According to Akama et al. (2004), it is weaker than the variant

$$
\mathrm{fp} \Delta_{k}^{0} \text {-LEM } \quad(A \leftrightarrow B) \rightarrow\left(B \vee A^{\perp}\right) \quad\left(A \in \Pi_{k}^{0}, B \in \Sigma_{k}^{0}\right)
$$

Among these axiom schemes appearing in the arithmetical hierarchy of semiclassical principles, we answer, "Which axiom scheme is stronger than which axiom scheme?"

Figure 1. The left is the arithmetical hierarchy of semi-classical principles. The one-way arrows means implication which is not reversible. The non-reversibility, the the axiom schemes principle Σ_{k}^{0}-LLPO,$B \Sigma_{k+1}^{0}$-DNE and $\left(\Pi_{k}^{0} \vee \Pi_{k}^{0}\right)$-DNE are not discussed in this paper, but in Akama et al. (2004). The right diagram consisting of PCAS and homomorphisms is a colimit diagram, in the category of PCAs and homomorphisms between them. The vertical arrows are canonical injections (see Section 3 for detail)

Theorem 1.1. For any $k \geq 0$,

$$
\begin{align*}
& \Sigma_{k}^{0} \text {-LEM proves } \Pi_{k}^{0} \text {-LEM in HA . } \tag{1}\\
& \Sigma_{k+1}^{0}-\mathbf{D N E} \text { proves } \Sigma_{k}^{0} \text {-LEM in HA . } \tag{2}\\
& \Sigma_{k}^{0} \text {-LEM intuitionistically proves } \Sigma_{k}^{0} \text {-DNE . } \tag{3}\\
& \Pi_{k+1}^{0} \text {-LEM intuitionistically proves } \Sigma_{k}^{0} \text {-LEM . } \tag{4}\\
& \mathrm{fp} \Delta_{k}^{0} \text {-LEM is equivalent in HA to } \Sigma_{k}^{0} \text {-DNE . } \tag{5}\\
& \Sigma_{k}^{0} \text {-DNE proves } \Delta_{k}^{0} \text {-LEM in HA . } \tag{6}
\end{align*}
$$

Let T be a consistent extension of HA. For a formula A of T, let a formula A^{\prime} be obtained from A by moving a quantifier of A over a subformula D of A. If the subformula D is decidable in T (i.e. T proves $D \vee \neg D$), then the formulas A and A^{\prime} are equivalent in T. Based on this observation, by Theorem 1.1, we prove the following:

Theorem 1.2 (Prenex Normal Form Theorem). For every L_{HA}-formula A having at most k quantifiers, we can find an L_{HA}-formula \hat{A} in PNF which has k quantifiers and is equivalent in $\mathrm{HA}+\Sigma_{k}^{0}$-LEM to A.

Actually, for k, we can take an "essential" number of alternation of nested quantifiers. See Subsection 2.2 for detail.
1.2. Iterated Limiting PCA and Realizability Interpretations. Akama (2004) introduced a limit operation $\lim (\bullet)$ for partial combinatory algebras (PCAs for short) such that from any PCA \mathcal{A}, the limit operation $\lim (\bullet)$ builds hierarchies $\left\{\lim ^{\alpha} \mathcal{A}\right\}_{\alpha=0,1, \ldots, \omega}$ of PCAS satisfying Figure 1 (right). The limit operation corresponds to the jump operation of the arithmetical hierarchies, as in Shoenfield's limit lemma (see Odifreddi (1989) for instance). The introduction of the limit operation aimed to represent approximation algorithms needed in proof animation (Hayashi et al., 2002). Hayashi proposed proof animation in order to make interactive formal proof development easier.

In this paper, we provide a realizability interpretation of PA by a PCA $\lim ^{\omega} \mathcal{A}$ for every PCA \mathcal{A}.

Theorem 1.3 (Iterated Limiting Realizability Interpretation). For any PCA \mathcal{A} and for any nonnegative integer k, the system $\mathrm{HA}+\Sigma_{k+1}^{0}-\mathbf{D N E}$ is sound by the realizability interpretation for the $\mathrm{PCA} \lim ^{k}(\mathcal{A})$. PA is sound by the realizability interpretation for the PCA $\lim ^{\omega}(\mathcal{A})$.

Let us call realizability interpretation by a PCA $\lim ^{\alpha} \mathcal{A}$ an iterated limiting realizability interpretation $(\alpha=0,1,2, \ldots, \omega)$. The feature of our realizability interpretation of PA are:

- if non-constructive objects are allowed to exist by the double negation elimination axioms, the realization of the non-constructive objects requires the jump of mathematical intuition. The jump is achieved by the limit.
- Our realizability interpretation of PA is simpler than those by Berardi et al. (1998) and Avigad (2000). They embedded classical logic to intuitionistic logic by the Gödel-Gentzen's negative translation (see Section 81 of Kleene (1952) for example) or the Friedman-Dragalin translation, and then carried out the recursive realizability interpretation. However, they needed a special observation in interpreting the translation results of logical principles. Berardi (2005) developed a theory for "classical logic as limit."
1.3. Two Consequences of Our Prenex Normal Form Theorem and Our Iterated Limiting Realizability Interpretation of PA. We derive a result for independence-of-premise schemes (see Section 1.11.6 of Troelstra (1973)), and that for n-consistent extension of HA.

Definition 1.4 (Independence-of-premise scheme). Let Γ be a set of L_{HA}-formulas. $(\Gamma-\boldsymbol{I P})$ is an axiom scheme

$$
(A \rightarrow \exists m \cdot B) \rightarrow \exists m \cdot(A \rightarrow B)
$$

where m does not occur free in A, A is any in Γ, and B is any L_{HA}-formula.
Let an F_{n}-formula be any L_{HA}-formulas having at most n quantifiers.
Theorem 1.5 (Non-derivability between $F_{k+1}-$ IP and Σ_{k+1}^{0}-DNE). HA $+\Sigma_{k+1}^{0}$-DNE + F_{k+1}-IP does not admit a realizability interpretation by the PCA $\lim ^{k}(\mathbb{N})$, where \mathbb{N} is the PCA of all natural numbers such that the partial application operation $\{n\}(m)$ is the application of the unary partial recursive function of Gödel number n applied to m. Hence Σ_{k+1}^{0}-DNE $\vdash_{\mathrm{HA}} F_{k+1}$-IP and $F_{k+1}-\mathbf{I P} \vdash_{\mathrm{HA}} \Sigma_{k+1}^{0}$-DNE.

No reasonable subsystem T of HA seems to admit prenex normal form theorem, because for all k, T does not prove F_{k}-IP.

The next consequence of our prenex normal form theorem (Theorem 1.2) and our iterated limiting realizability interpretation (Theorem 1.3) of PA is about "PA is unbounded extension of HA."

Before Akama et al. (2004), strict infinite hierarchies of formal arithmetics HA \subsetneq $T_{1} \subsetneq T_{2} \subsetneq \cdots \subsetneq \mathrm{PA}$ was provided in a proof of a theorem" "any set Γ of $L_{\mathrm{HA}^{-}}$ sentences with bounded quantifier-complexity does not axiomatize PA over HA." The proof was sketched in Section 3.2.32 of Troelstra (1973), and was based on C. Smoryński's idea given in his unpublished note "Peano's arithmetic is unbounded extension of Heyting's arithmetic." Troelstra (1973) used a realizability interpretation (Kleene (1945)) but the realizers are Gödel numbers of partial functions recursive in a complete Π_{k}^{0}-set of the Kleene's arithmetical hierarchies.

We say an arithmetic T is n-consistent, provided every Σ_{n}^{0}-sentence provable in T is true in the standard model ω. Note that HA is n-consistent for each positive integer n.

Theorem 1.6 (PA as bounded extension of HA). Let $n \geq 2$ be a natural number, and Γ be a set of L_{HA}-sentences containing at most n quantifiers. If $\mathrm{HA}+\Gamma$ is n-consistent, then $\mathrm{HA}+\Gamma$ does not prove the axiom scheme $\Sigma_{n+1}^{0}-\mathbf{L E M}$.

The background and a possible research direction of the theorem is given in Section 4. The rest of the paper is organized as follows. In Section 2 the hierarchies of logical systems between HA and PA are introduced to discuss the prenex normal form theorem (Theorem [1.2). In Section 3, we introduce iterated autonomous limiting PCAs, In Section 4, by using the such PCAs, we introduce and study the iterated limiting realizability interpretation of arithmetics between HA and PA. In Subsection 4.1, we verify Theorem 1.5 and Theorem 1.6 .

2. Hierarchy of Semi-classical Principles

When we move quantifiers of a formula A outside the scope of propositional connectives, we ask ourselves when the resulting formula A^{\prime} is equivalent in HA to the formula A.

Lemma 2.1. If a variable n does not occur in a formula A, then intuitionistic predicate logic IQC proves: (1) $A \vee \forall n B \rightarrow \forall n(A \vee B)$; (2) $\exists n(A \circ B) \leftrightarrow A \circ \exists n B$ for $\circ=\vee, \wedge$; and (3) $\forall n(A \wedge B) \leftrightarrow A \wedge \forall n B$.

As usual, the symbol \vdash denotes the derivability.
Fact 2.2. Suppose T is a formal system of arithmetic extending IQC. We say a formula D of T is decidable in T, if $T \vdash D \vee \neg D$.
(1) If formulas D and D^{\prime} are decidable in T, so are $\neg D$ and $D \circ D^{\prime}$ for $\circ=$ $\wedge, \vee, \rightarrow$
(2) If a formula D is decidable in HA, then bounded universal quantifications $\forall n<t . D$ and $\exists n<t$. D are decidable in HA.
(3) Every Σ_{0}^{0}-formulas is decidable in HA .

Fact 2.3. None of the following two formulas (17) and (8) are provable in IQC but both of two formulas $(D \vee \neg D) \rightarrow$ (7) and $\left(D^{\prime} \vee \neg D^{\prime}\right) \rightarrow$ (8) are.

$$
\begin{align*}
& (D \rightarrow B) \leftrightarrow(\neg D \vee B) . \tag{7}\\
& \forall n\left(D^{\prime} \vee B\right) \rightarrow D^{\prime} \vee \forall n B \quad\left(n \text { does not occur free in } D^{\prime}\right) \tag{8}
\end{align*}
$$

IQC with the scheme (8) added is complete for the class of Kripke models of constant domains, and HA plus the schema is just PA, as explained in Section 1.11.3 of Troelstra (1973).
2.1. Proof of Theorem 1.1. For a formula A, we define a formula A^{\perp} classically equivalent to $\neg A$, as follows:
Definition 2.4. For any formula A, we define the dual A^{\perp} as follows:

- When A is prime, A^{\perp} is the negation $\neg A$.
- When A is a negated formula $\neg B$, then A^{\perp} is B.
- When A is $B \vee C$, then A^{\perp} is $B^{\perp} \wedge C^{\perp}$.
- When A is $B \wedge C$, then A^{\perp} is $B^{\perp} \vee C^{\perp}$.
- When A is $B \rightarrow C$, then A^{\perp} is $B \wedge C^{\perp}$.
- When A is $\forall n$. B, then A^{\perp} is $\exists n . B^{\perp}$.
- When A is $\exists n$. B, then A^{\perp} is $\forall n$. B^{\perp}.

The dual operation is more manageable than the propositional connective \neg.
Fact 2.5. (1) $\mathrm{HA} \vdash P^{\perp} \leftrightarrow \neg P \quad$ (P is a Σ_{0}^{0}-formula.)
(2) $\mathrm{HA} \vdash\left(A^{\perp}\right)^{\perp} \leftrightarrow A \quad\left(A\right.$ is a Σ_{k}^{0}-formula or a Π_{k}^{0}-formula. $)$

Proof. (11) By induction on P. (21) First consider the case the formula A is a Σ_{k}^{0} formula. Then A is written as $\exists n_{1} \forall n_{2} \exists n_{3} \cdots Q n_{k} . P$ for some Σ_{0}^{0}-formula P. Then $\left(A^{\perp}\right)^{\perp}$ is $\exists n_{1} \forall n_{2} \exists n_{3} \cdots Q n_{k} .\left(P^{\perp}\right)^{\perp}$. The Assertion (11) implies $\vdash_{\text {HA }}\left(P^{\perp}\right)^{\perp} \leftrightarrow$ $\neg \neg P$. But Fact 2.2 (3), implies the decidability of P. So $\vdash_{\text {HA }} \neg \neg P \leftrightarrow P$. Hence $\vdash_{\mathrm{HA}}\left(P^{\perp}\right)^{\perp} \leftrightarrow P$. Therefore $\vdash_{\mathrm{HA}}\left(A^{\perp}\right)^{\perp} \leftrightarrow A$. When A is a Π_{k}^{0}-formula, the proof is similar.

The axiom scheme $\Sigma_{k}^{0}-\mathbf{L E M}^{\prime}$ is the axiom scheme consisting of the following form:

$$
\begin{align*}
& \exists n_{1} \forall n_{2} \cdots Q n_{k-1} \bar{Q} n_{k} P\left[n_{1}, \ldots, n_{k}\right] \\
\vee & \forall m_{1} \exists m_{2} \cdots \bar{Q} m_{k-1} Q m_{k}\left(P\left[m_{1}, \ldots, m_{k}\right]\right)^{\perp} . \tag{9}
\end{align*}
$$

Here $P\left[n_{1}, \ldots, n_{k}\right]$ and $P\left[m_{1}, \ldots, m_{k}\right]$ are Σ_{0}^{0}-formulas possibly containing free variables other than indicated variables, and the quantifier Q is \forall for odd k and is \exists otherwise. \bar{Q} is \exists if Q is \forall, and is \forall otherwise.

$$
\begin{equation*}
\Sigma_{k}^{0}-\mathbf{L E M}^{\prime} \vdash_{\mathrm{HA}} \Pi_{k}^{0}-\mathbf{L E M}^{\prime} \text { and } \Pi_{k}^{0}-\mathbf{L E M}^{\prime} \vdash_{\mathrm{HA}} \Sigma_{k}^{0}-\mathbf{L E M}^{\prime} \tag{10}
\end{equation*}
$$

follows from Fact 2.5 (2), because the dual of a Σ_{k}^{0}-formula (Π_{k}^{0}-formula, resp.) is a Π_{k}^{0}-formula (Σ_{k}^{0}-formula, resp).
Fact 2.6. For any formula A, IQC proves (1) $\neg\left(A \wedge A^{\perp}\right)$ and (2) $\left(A \vee A^{\perp}\right) \rightarrow$ $\left(A^{\perp} \leftrightarrow \neg A\right)$.

Proof. (1) The proof is by induction on the structure of A. When A is prime or negated, the assertion is trivial. When A is $B \vee C$, let us assume $B \vee C$ and the dual A^{\perp}, that is, $B^{\perp} \wedge C^{\perp}$. The first conjunct contradicts by the induction hypothesis in case of B, and the second by the induction hypothesis in case of C. So, $\neg\left(A \wedge A^{\perp}\right)$. When A is a conjunction, the assertion is similarly verified. When A is $B \rightarrow C$, let us assume $B \rightarrow C$ and the dual, that is $B \wedge C^{\perp}$. From the first conjunct B and $B \rightarrow C$, we infer C, which contradicts by the induction hypothesis against the second conjunct C^{\perp}. When A is $\forall n$. $B[n]$, let us assume $\forall n . B[n]$ and the dual $\exists n .(B[n])^{\perp}$. For a fresh variable m, assume $(B[m])^{\perp}$. But we can
infer $B[m]$ from A. This contradicts against the induction hypothesis. When A is existentially quantified, the assertion is similarly verified. (2) The Assertion (1) implies $\left(A \vee A^{\perp}\right) \rightarrow\left(A^{\perp} \rightarrow \neg A\right)$, while $\left(A \vee A^{\perp}\right) \rightarrow\left(\neg A \rightarrow A^{\perp}\right)$ is immediate.

The two axiom schemes Σ_{k}^{0} - $\mathbf{L E M}^{\prime}$ and Σ_{k}^{0} - $\mathbf{L E M}$ are equivalent over HA , as we prove below:

Lemma 2.7. For any $k \geq 0$, (1) Σ_{k}^{0}-LEM $^{\prime} \vdash_{\text {IQC }} \Sigma_{k}^{0}-\mathbf{L E M}$, and (2) Σ_{k}^{0}-LEM \vdash_{HA} Σ_{k}^{0} - LEM $^{\prime}$.

Proof. The first assertion follows from Fact 2.6 (2) in IQC. The second assertion is proved by induction on k. The assertion holds for $k=0$, because $\vdash_{\mathrm{HA}} \Sigma_{0}^{0}$ - $\mathbf{L E M}^{\prime}$ follows from Fact 2.2 (3) and Fact 2.5 (1). Let $k>0$. Consider a Σ_{k}^{0}-formula $\exists n . B$ with B being any Π_{k-1}^{0}-formula. By the induction hypothesis, we have $\Sigma_{k}^{0}-\mathbf{L E M} \vdash_{\mathrm{HA}} \Sigma_{k-1}^{0}-\mathbf{L E M}^{\prime}$. Because $\Sigma_{k-1}^{0}-\mathbf{L E M}^{\prime}$ and $\Pi_{k-1}^{0}-\mathbf{L E M}^{\prime}$ are equivalent over HA by (10), we have Σ_{k}^{0}-LEM $\vdash_{\text {HA }} B^{\perp} \vee B$. By this and Fact 2.6 (2), we have Σ_{k}^{0}-LEM $\vdash_{\mathrm{HA}} B^{\perp} \leftrightarrow \neg B$. So Σ_{k}^{0}-LEM $\vdash_{\mathrm{IQC}} \exists n . B \vee \forall n$. $\neg B$ implies Σ_{k}^{0}-LEM \vdash_{HA} $\exists n . B \vee \forall n . B^{\perp}$. Therefore Σ_{k}^{0}-LEM $\vdash_{\text {нА }} \Sigma_{k}^{0}$ - $\mathbf{L E M}^{\prime}$.

We prepare the proof of Theorem 1.1 (2) below. An instance (9) of $\Sigma_{k}^{0}-\mathbf{L E M}^{\prime}$ is equivalent in PA to the following Σ_{k+1}^{0}-formula:

$$
\begin{align*}
\exists n_{1}\left(\forall m_{1} \forall n_{2}\right)\left(\exists m_{2} \exists n_{3}\right) \cdots & \left(Q m_{k-2} Q n_{k-1}\right)\left(\bar{Q} m_{k-1} \bar{Q} n_{k}\right) Q m_{k} \\
& \left(P\left[n_{1}, \ldots, n_{k}\right] \vee \neg P\left[m_{1}, \ldots, m_{k}\right]\right) . \tag{11}
\end{align*}
$$

Here $P\left[n_{1}, \ldots, n_{k}\right]$ and $\neg P\left[m_{1}, \ldots, m_{k}\right]$ are Σ_{0}^{0}-formulas possibly containing free variables other than indicated variables.

We apply Σ_{k+1}^{0}-DNE to the Gödel-Gentzen translation (Section 81 of Kleene (1952)) result of (11).

Lemma 2.8. Let $k \geq 1$. The Σ_{k+1}^{0}-formula (11) is provable in $\mathrm{HA}+\Sigma_{k+1}^{0}$-DNE.
Proof. It is easy to see that the Σ_{k+1}^{0}-formula (11) is equivalent in a classical logic to an instance of $\Sigma_{k}^{0}-\mathbf{L E M}^{\prime}$. So, HA proves the Gödel-Gentzen translation of (11), which is obtained from (11)
(1) by replacing each $(\exists l)$ with $(\neg \forall l \neg)$; and
(2) by replacing the disjunction $P\left[n_{1}, \ldots, n_{k}\right] \vee \neg P\left[m_{1}, \ldots, m_{k}\right]$ with a formula $\neg\left(\neg P\left[n_{1}, \ldots, n_{k}\right] \wedge \neg \neg P\left[m_{1}, \ldots, m_{k}\right]\right)$.
However,
(1) for each formula A, IQC $\vdash \neg \forall l \neg A \leftrightarrow \neg \neg \exists l$. A; and
(2) $\mathrm{HA} \vdash P\left[n_{1}, \ldots, n_{k}\right] \vee \neg P\left[m_{1}, \ldots, m_{k}\right] \leftrightarrow \neg\left(\neg P\left[n_{1}, \ldots, n_{k}\right] \wedge \neg \neg P\left[m_{1}, \ldots, m_{k}\right]\right)$, by Fact 2.2 (3).
So, HA proves a formula obtained from (11) by only inserting $\neg \neg$ just before each existential quantifier. The resulting formula is

$$
\neg \neg \exists n_{1}\left(\forall m_{1} \forall n_{2}\right)\left(\neg \neg \exists m_{2} \neg \neg \exists n_{3}\right) \cdots\left(P\left[n_{1}, \ldots, n_{k}\right] \vee \neg P\left[m_{1}, \ldots, m_{k}\right]\right), \quad\left(f_{0}\right)
$$

and ends with
$\left(o_{0}\right): \quad \forall n_{k-1} \neg \neg \exists m_{k-1} \neg \neg \exists n_{k} \forall m_{k}(P[\vec{n}] \vee \neg P[\vec{m}])$ for odd k; and
$\left(e_{0}\right): \quad \forall n_{k-1} \neg \neg \exists m_{k}(P[\vec{n}] \vee \neg P[\vec{m}])$ for even k.

In each case, the rightmost $\neg \neg$ is just before a $\Sigma_{1+(k \bmod 2)}^{0}$-formula. So, if we can use $\Sigma_{1+(k \bmod 2)}^{0}-\mathbf{D N E}$, then the rightmost $\neg \neg$ ('s) in the subformulas $\left(o_{0}, e_{0}\right)$ can be safely eliminated from the formula $\left(f_{0}\right)$. But $\Sigma_{1+(k \bmod 2)}^{0}$ - $\mathbf{D N E}$ follows from Σ_{k+1}^{0}-DNE. Thus Σ_{k+1}^{0}-DNE proves in HA the formula $\left(f_{0}\right)$ with the rightmost $\neg \neg$ ('s) eliminated from the end-part $\left(o_{0}, e_{0}\right)$. The resulting formula $\left(f_{1}\right)$ ends with
$\left(o_{1}\right): \quad \neg \neg \exists m_{k-3} \neg \neg \exists n_{k-2}\left(\forall m_{k-2} \forall n_{k-1}\right)\left(\exists m_{k-1} \exists n_{k}\right) \forall m_{k}(P[\vec{n}] \vee \neg P[\vec{m}])$ for odd k; and
$\left(e_{1}\right): \quad \neg \neg \exists m_{k-2} \neg \neg \exists n_{k-2}\left(\forall m_{k-1} \forall n_{k}\right)\left(\exists m_{k}\right)(P[\vec{n}] \vee \neg P[\vec{m}])$ for even k.
In each case, the rightmost $\neg \neg$ is just before a $\Sigma_{3+(k \bmod 2)}^{0}$-formula. So, if we can use $\Sigma_{3+(k \bmod 2)}^{0}-\mathbf{D N E}$, then the rightmost $\neg \neg$'s in $\left(o_{1}, e_{1}\right)$ can be safely eliminated from $\left(f_{1}\right)$. But $\Sigma_{3+(k \bmod 2)}^{0}$ - DNE follows from $\Sigma_{k+1}^{0}-\mathbf{D N E}$. Thus Σ_{k+1}^{0}-DNE proves in HA the formula $\left(f_{1}\right)$ with the rightmost $\neg \neg$'s eliminated from the endpart $\left(o_{1}, e_{1}\right)$.

By iterating this argument, we can safely eliminate all $\neg \neg$'s from $\left(f_{0}\right)$. This establishes that Σ_{k+1}^{0} - DNE proves in HA the Σ_{k+1}^{0}-formula (11). This completes the proof of Lemma 2.8.

We will present the proof of Theorem 1.1.
Assertion (11) " Σ_{k}^{0}-LEM $\vdash_{\text {нА }} \Pi_{k}^{0}$-LEM" is verified as follows: By Lemma 2.7 we see that for every Σ_{0}^{0}-formula $P[\vec{n}]$, a disjunction of $\exists n_{1} \forall n_{2} \cdots Q n_{k} \neg P[\vec{n}]$ and $\forall n_{1} \exists n_{2} \cdots \bar{Q} n_{k} P[\vec{n}]$ is deducible in HA from Σ_{k}^{0}-LEM. When the first disjunct holds, then it contradicts against the dual of the first disjunct by Fact 2.6 (1), and thus we have the negation $\neg \forall n_{1} \exists n_{2} \cdots \bar{Q} n_{k} P[\vec{n}]$ of the dual. In the other case, then we have the second disjunct $\forall n_{1} \exists n_{2} \cdots \bar{Q} n_{k} P[\vec{n}]$. In both cases, we have $\forall n_{1} \exists n_{2} \cdots \bar{Q} n_{k} P[\vec{n}] \vee \neg \forall n_{1} \exists n_{2} \cdots \bar{Q} n_{k} P[\vec{n}]$, which is an instance of Π_{k}^{0}-LEM.

Assertion (21) " Σ_{k+1}^{0}-DNE $\vdash_{\text {HA }} \Sigma_{k}^{0}$-LEM" of Theorem 1.1 will be proved by induction on k. The case $k=0$ follows from Fact 2.2 (3). Next consider the case $k>0$.

Claim 2.9. Suppose that $j \leq k$ is a positive odd number and that a variable m_{j} does not occur free in a Π_{k-j}^{0}-formula $\forall n_{j+1} \exists n_{j+2} \cdots Q n_{k} . P\left[n_{1}, \cdots, n_{k}\right]$. Then $\mathrm{HA}+\Sigma_{k+1}^{0}$-DNE proves the following equivalence formula:

$$
\begin{aligned}
& \forall m_{j}\left(\forall n_{j+1} \exists n_{j+2} \cdots Q n_{k} . P\left[n_{1}, \cdots, n_{k}\right] \vee \quad \exists m_{j+1} \forall m_{j+2} \cdots \bar{Q} m_{k} \cdot \neg P\left[m_{1}, \ldots, m_{k}\right]\right) \\
& \leftrightarrow \quad\left(\forall n_{j+1} \exists n_{j+2} \cdots Q n_{k} \cdot P\left[n_{1}, \cdots, n_{k}\right] \vee \forall m_{j} \exists m_{j+1} \forall m_{j+2} \cdots \bar{Q} m_{k} \cdot \neg P\left[m_{1}, \ldots, m_{k}\right]\right) .
\end{aligned}
$$

Proof. In the left-hand side of the equivalence formula, we can easily see the first disjunct $\forall n_{j+1} \exists n_{j+2} \cdots Q n_{k} . P\left[n_{1}, \ldots, n_{k}\right]$ is a Π_{k-j}^{0}-formula. The system HA $+\Sigma_{k+1}^{0}-$ DNE proves Σ_{k-j+1}^{0}-DNE which proves Σ_{k-j}^{0}-LEM by the induction hypothesis on Assertion (2) of Theorem [1.1. Hence the system HA $+\Sigma_{k+1}^{0}$-DNE proves Π_{k-j}^{0}-LEM by Assertion (11) of Theorem 1.1. Thus the Π_{k-j}^{0}-disjunct $\forall n_{j+1} \exists n_{j+2} \cdots Q n_{k} . P\left[n_{1}, \ldots, n_{k}\right]$ of the left-hand side is decidable in HA $+\Sigma_{k+1}^{0}$ - DNE, where the variable m_{j} does not occur free. Because of Lemma 2.1 and Fact 2.3 the left-hand side and the right-hand side of the equivalence formula is indeed equivalent in the system $\mathrm{HA}+\Sigma_{k+1}^{0}-\mathrm{DNE}$.

Next, we will consider when the universal quantifier can be safely moved over Σ_{k-i+1}^{0}-disjunct where $i \geq 1$.

Claim 2.10. Suppose that $i \leq k$ is a positive even number and that a variable n_{i} does not occur free in a Σ_{k-i+1}^{0}-disjunct $\exists m_{i} \forall m_{i+1} \cdots \bar{Q} m_{k} . \neg P\left[m_{1}, \ldots, m_{k}\right]$ does not contain a free variable n_{i}. Then $\mathrm{HA}+\Sigma_{k+1}^{0}$-DNE proves the following equivalence formula

$$
\begin{aligned}
& \forall n_{i}\left(\exists n_{i+1} \forall n_{i+2} \cdots Q n_{k} . P\left[n_{1}, \ldots, n_{k}\right] \vee \exists m_{i} \forall m_{i+1} \cdots \bar{Q} m_{k} \cdot \neg P\left[m_{1}, \ldots, m_{k}\right]\right) \\
\leftrightarrow \quad & \left(\forall n_{i} \exists n_{i+1} \forall n_{i+2} \cdots Q n_{k} \cdot P\left[n_{1}, \ldots, n_{k}\right] \vee \exists m_{i} \forall m_{i+1} \cdots \bar{Q} m_{k} \cdot \neg P\left[m_{1}, \ldots, m_{k}\right]\right) .
\end{aligned}
$$

Proof. In the left-hand side of the equivalence formula, we see that the second disjunct $\exists m_{i} \forall m_{i+1} \cdots \bar{Q} m_{k} . \neg P\left[m_{1}, \ldots, m_{k}\right]$ is a Σ_{k-i+1}^{0}-formula. It is decidable in HA $+\Sigma_{k+1}^{0}$-DNE, because Σ_{k+1}^{0}-DNE proves Σ_{k-i+2}^{0} - DNE which proves $\Sigma_{k-i+1}^{0}-\mathbf{L E M}$ by the induction hypothesis of Assertion (2) of Theorem 1.1 The decidable Σ_{k-i+1}^{0}-disjunct $\exists m_{i} \forall m_{i+1} \cdots \bar{Q} m_{k} . \neg P\left[m_{1}, \ldots, m_{k}\right]$ does not contain a free variable n_{i}. So move the universal quantifier $\forall n_{i}$ over the decidable $\Sigma_{k-i+1^{-}}^{0}$ disjunct. The resulting formula is the right-hand side of the equivalence formula. It is equivalent in $\mathrm{HA}+\Sigma_{k+1}^{0}-\mathrm{DNE}$ to the left-hand side of the equivalence formula, by Lemma 2.1 and Fact 2.3 .

We continue the proof of Assertion (2) " Σ_{k+1}^{0}-DNE $\vdash_{\text {HA }} \Sigma_{k}^{0}$-LEM" of Theorem 1.1. To an instance (9) of $\Sigma_{k}^{0}-\mathbf{L E M}^{\prime}$, apply Lemma 2.1, Fact 2.3, Claim 2.9 with $j=1$, and Claim 2.10 with $i=2$. Next apply Lemma 2.1, Fact 2.3, Claim 2.9 with $j=3$, and Claim 2.10 with $i=4$. Then repeatedly apply them with $(i, j)=(5,6),(7,8), \ldots . \ldots$, in this order. Then a formula (9) is equivalent in $\mathrm{HA}+\Sigma_{k+1}^{0}$-DNE to the Σ_{k+1}^{0}-formula (11). But the formula (11) is provable in HA $+\Sigma_{k+1}^{0}-$ DNE by Lemma 2.8. Hence every instance (9) of $\Sigma_{k}^{0}-\mathbf{L E M}^{\prime}$ is provable in the system $\mathrm{HA}+\Sigma_{k+1}^{0}-\mathbf{D N E}$. Thus the system $\mathrm{HA}+\Sigma_{k+1}^{0}-\mathbf{D N E}$ proves $\Sigma_{k}^{0}-\mathbf{L E M}^{\prime}$ and thus Σ_{k}^{0}-LEM by Lemma 2.7. This completes the proof of Assertion (2).

To prove Assertion (3) " Σ_{k}^{0}-LEM $\vdash_{\text {IQC }} \Sigma_{k}^{0}$-DNE," let us assume $\neg \neg A$ with A being a Σ_{k}^{0}-formula. By Σ_{k}^{0}-LEM, we have $A \vee \neg A$. In case of $\neg A$, by the assumption $\neg \neg A$, we have contradiction, from which A follows. Hence we concludes $\neg \neg A \rightarrow A$.

To prove Assertion (4) " $\Pi_{k+1}^{0}-\mathbf{L E M} \vdash_{\text {IQC }} \Sigma_{k}^{0}$-LEM,", note that any Σ_{k}^{0}-formula B is equivalent in IQC to a Π_{k+1}^{0}-formula $\forall n$. B where the variable n is fresh. Because HA $+\Pi_{k+1}^{0}$-LEM proves $\forall n$. $B \vee \neg \forall n$. B, so does $B \vee \neg B$, an instance of Σ_{k}^{0}-LEM.

We will prove Assertion (5) " Σ_{k}^{0}-DNE is equivalent in HA to fp Δ_{k}^{0}-LEM" of Theorem 1.1. First we will prove " Σ_{k}^{0}-DNE $\vdash_{\text {HA }} \mathrm{fp} \Delta_{k}^{0}$-LEM." Let us assume Σ_{k}^{0}-DNE. Let $P\left[n_{1}, \ldots, n_{k}\right]$ and $R\left[m_{1}, \ldots, m_{k}\right]$ be Σ_{0}^{0}-formulas possibly containing free variables other than indicated variables. Also assume the following equivalence formula between a Σ_{k}^{0}-formula and a Π_{k}^{0}-formula:

$$
\begin{equation*}
\exists n_{1} \forall n_{2} \cdots Q n_{k-1} \bar{Q} n_{k} \cdot P\left[n_{1}, \ldots, n_{k}\right] \quad \leftrightarrow \quad \forall m_{1} \exists m_{2} \cdots \bar{Q} m_{k-1} Q m_{k} \cdot R\left[m_{1}, \ldots, m_{k}\right] \tag{12}
\end{equation*}
$$

We will derive the following disjunction of two Σ_{k}^{0}-formulas:
$\exists n_{1} \forall n_{2} \cdots Q n_{k-1} \bar{Q} n_{k} . P\left[n_{1}, \ldots, n_{k}\right] \vee \exists m_{1} \forall m_{2} \cdots Q m_{k-1} \bar{Q} m_{k} .\left(R\left[m_{1}, \ldots, m_{k}\right]\right)^{\perp}$.
Claim 2.11. The disjunction (13) is equivalent in $\mathrm{HA}+\Sigma_{k}^{0}$-DNE to a Σ_{k}^{0}-formula:

$$
\begin{equation*}
\exists n_{1} \exists m_{1} \forall n_{2} \forall m_{2} \cdots \bar{Q} n_{k} \bar{Q} m_{k}\left(P\left[n_{1}, \ldots, n_{k}\right] \vee \neg R\left[m_{1}, \ldots, m_{k}\right]\right) . \tag{14}
\end{equation*}
$$

Proof. The claim is proved by Lemma 2.1] in a similar argument as the Assertion (2) of Theorem 1.1 is. Since the Σ_{k}^{0}-formula (14) is obtained from the disjunction (13) by moving the quantifiers $\exists n_{2 i-1}, \exists m_{2 i-1}, \forall n_{2 i}, \forall m_{2 i}(i=1,2, \ldots)$ out of the scope of the disjunction, the equivalence between (13) and (14) in $\mathrm{HA}+\Sigma_{k}^{0}$-DNE is established by showing that the movement of the quantifiers are safe. The existential quantifiers $\exists n_{2 i-1}, \exists m_{2 i-1}$ are safely moved by Lemma 2.1. Each quantifier $\forall n_{2 i}$ is moved over a $\Pi_{k-2 i+1}^{0}$-disjunct $\forall m_{2 i} \exists m_{2 i+1} \cdots \bar{Q} m_{k} \neg R$, and each quantifier $\forall m_{2 i}$ over a $\Sigma_{k-2 i}^{0}$-disjunct $\exists n_{2 i+1} \forall n_{2 i+2} \cdots \bar{Q} m_{k} P$. Here the $\Pi_{k-2 i+1}^{0}$-disjunct and the $\Sigma_{k-2 i}^{0} i$ disjunct are both decidable by Theorem [1.1] So each $\forall n_{2 i}$ and $\forall m_{2 i}$ are safely moved. This completes the verification of the claim.

To complete the verification of Assertion (55) " Σ_{k}^{0} - DNE $\vdash_{\text {HA }} \mathrm{fp} \Delta_{k}^{0}$-LEM," it is sufficient to show that the Σ_{k}^{0}-formula (14) from the equivalence formula (12), by using Σ_{k}^{0}-DNE.

In view of Σ_{k}^{0}-DNE, we have only to derive the double negation of the Σ_{k}^{0} formula (14). So assume the negation of the Σ_{k}^{0}-formula (14), that is,

$$
\neg \exists n_{1} \exists m_{1} \forall n_{2} \forall m_{2} \cdots \bar{Q} n_{k} \bar{Q} m_{k}\left(P\left[n_{1}, \ldots, n_{k}\right] \vee\left(R\left[m_{1}, \ldots, m_{k}\right]\right)^{\perp}\right) .
$$

It is equivalent in $\mathrm{HA}+\Sigma_{k}^{0}$-DNE to the dual

$$
\begin{equation*}
\forall n_{1} \forall m_{1} \exists n_{2} \exists m_{2} \cdots Q n_{k} Q m_{k}\left(\left(P\left[n_{1}, \ldots, n_{k}\right]\right)^{\perp} \wedge R\left[m_{1}, \ldots, m_{k}\right]\right), \tag{15}
\end{equation*}
$$

because $\neg \exists n_{1} \exists m_{1}$ is $\forall n_{1} \forall m_{1} \neg$, and because Σ_{k-1}^{0}-LEM is available in HA $+\Sigma_{k}^{0}$-LEM. By Lemma 2.1 (2) and (3), the Π_{k}^{0}-formula (15) implies a conjunction of two Π_{k}^{0} formulas.

$$
\left(\forall n_{1} \exists n_{2} \cdots Q n_{k} . \neg P\left[n_{1}, \ldots, n_{k}\right]\right) \wedge \quad\left(\forall m_{1} \exists m_{2} \cdots Q m_{k} . R\left[m_{1}, \ldots, m_{k}\right] .\right)
$$

By using assumption (12), the second Π_{k}^{0}-conjunct implies the dual of the first Π_{k}^{0}-conjunct. So the contradiction follows from Fact (2.6 (1). This establishes Σ_{k}^{0}-DNE $\vdash_{\text {HA }} \mathrm{fp} \Delta_{k}^{0}$-LEM.

Next, we prove the converse $\mathrm{fp} \Delta_{k}^{0}$-LEM $\vdash_{\text {HA }} \Sigma_{k}^{0}$-DNE. The axiom scheme $\mathrm{fp} \Delta_{k}^{0}$-LEM has an instance (12) \rightarrow (13) with the Σ_{0}^{0}-formula $P\left[n_{1}, \cdots, n_{k}\right]$ being replaced by a false Σ_{0}^{0}-formula $S(0)=0$. Hence HA $+\mathrm{fp} \Delta_{k}^{0}$-LEM proves an implication formula $\neg \forall m_{1} \exists m_{2} \cdots \bar{Q} m_{k} . R \rightarrow \exists m_{1} \forall m_{2} \cdots Q m_{k} . \neg R$. So, we can derive Σ_{k}^{0}-DNE by using Modus Tolence if we can prove an implication formula

$$
\begin{equation*}
\neg \neg \exists m_{1} \forall m_{2} \cdots Q m_{k} . \neg R \rightarrow \neg \forall m_{1} \exists m_{2} \cdots \bar{Q} m_{k} . R . \tag{16}
\end{equation*}
$$

To prove the formula (16), we use a Gentzen-type sequent calculus G3 (see Section 81 of Kleene (1952)) for IQC. By the left- and the right-introduction rules of \neg, the $G 3$-sequent (16) is inferred from a $G 3$-sequent

$$
\exists m_{1} \forall m_{2} \cdots Q m_{k} \cdot \neg R, \forall m_{1} \exists m_{2} \cdots \bar{Q} m_{k} . R \rightarrow
$$

It does not contain the variable m_{1} free, so it is inferred by the left-introduction rule of \exists from a sequent

$$
\forall m_{2} \cdots Q m_{k} \cdot \neg R, \forall m_{1} \exists m_{2} \cdots \bar{Q} m_{k} . R \rightarrow
$$

It is inferred by the left-introduction rule of \forall from a $G 3$-sequent

$$
\forall m_{2} \exists m_{3} \cdots Q m_{k} . \neg R, \exists m_{2} \forall m_{3} \cdots \bar{Q} m_{k} . R \rightarrow
$$

By repeating this argument, the $G 3$-sequent (16) is inferred from a $G 3$-sequent $\neg R, R \rightarrow$, which is inferred from an axiom sequent $R \rightarrow R$ of $G 3$. This establishes $\mathrm{fp} \Delta_{k}^{0}$-LEM $\vdash_{\mathrm{HA}} \Sigma_{k}^{0}$-DNE, and thus Assertion (5) of Theorem 1.1

Assertion (6) " Σ_{k}^{0}-DNE $\vdash_{\mathrm{HA}} \Delta_{k}^{0}$-LEM" of Theorem 1.1 is proved as follows: By Assertion (5) of Theorem 1.1, we have Σ_{k}^{0}-DNE $\vdash_{\mathrm{HA}}(A \leftrightarrow B) \rightarrow\left(B \vee A^{\perp}\right)$ for any Π_{k}^{0}-formula A and any Σ_{k}^{0}-formula B. By Fact 2.6 (2), we have Σ_{k}^{0}-DNE $\vdash_{\text {HA }}$ $(A \leftrightarrow B) \rightarrow(B \vee \neg A)$. Thus Σ_{k}^{0}-DNE $\vdash_{\text {HA }} \Delta_{k}^{0}$-LEM. This completes the proof of Theorem 1.1.

Remark 2.12. In HA, the axiom scheme Δ_{k}^{0}-LEM is strictly weaker than the axiom scheme Σ_{k}^{0}-DNE for every positive integer k, according to Akama et al. (2004). Hence there is a Π_{k}^{0}-formula A such that $\forall_{\mathrm{HA}} A^{\perp} \leftrightarrow \neg A$. Otherwise, by Theorem 1.1 (5), axiom schemes Δ_{k}^{0}-LEM, $\mathrm{fp} \Delta_{k}^{0}$-LEM and Σ_{k}^{0}-DNE are equivalent over HA.

The axiom scheme Σ_{k}^{0}-DNE has the following equivalent axiom schemes.
Fact 2.13. For $k \geq 0, \Sigma_{k}^{0}$-DNE is equivalent in IQC to Π_{k+1}^{0}-DNE.
Proof. Let an L_{HA}-formula $\forall n$. A be a Π_{k+1}^{0}-formula with A being a Σ_{k}^{0}-formula. We can show $\vdash_{\mathrm{IQC}} \neg \neg \forall n$. $A \rightarrow \neg \neg A$. We have Σ_{k}^{0}-DNE $\vdash_{\mathrm{IQC}} \neg \neg A \rightarrow A$. By Modus Tolence, we have Σ_{k}^{0}-DNE $\vdash_{\mathrm{IQC}} \neg \neg \forall n$. $A \rightarrow A$, and thus Σ_{k}^{0}-DNE $\vdash_{\mathrm{IQC}} \neg \neg \forall n$. $A \rightarrow$ $\forall n$. A. Hence Σ_{k}^{0} - DNE $\vdash_{\mathrm{IQC}} \Pi_{k+1}^{0}$ - DNE. To prove the converse Π_{k+1}^{0} - DNE \vdash_{IQC} $\Sigma_{k}^{0}-\mathbf{D N E}$, let A be any Σ_{k}^{0}-formula. For any fresh variable l, the formula A is equivalent in IQC to a Π_{k+1}^{0}-formula $\forall l$. A. So an instance $\neg \neg \forall l . A \rightarrow \forall l$. A of the axiom scheme Π_{k+1}^{0}-DNE proves in IQC an instance $\neg \neg A \rightarrow A$ of Σ_{k}^{0}-DNE.
2.2. Prenex Normal Form Theorem. We will introduce three sets of $L_{\mathrm{HA}^{-}}$ formulas such that the three correspond to $\Sigma_{k^{-}}^{0}, \Pi_{k^{-}}^{0}$, and Δ_{k}^{0}-formulas of HA, respectively.

Definition $2.14\left(E_{k}, U_{k}, P_{k}\right)$. For the language L_{HA}, we define $E_{k^{-}}, U_{k^{-}}$, and $P_{k^{-}}$ formulas.
(1) Given an occurrence of a quantifier. If it is in a Σ_{0}^{0}-formula, then we do not assign the sign to it. Otherwise,
(a) The sign of an occurrence \exists in a formula A is the sign of the subformula $\exists n . B$ starting with such \exists.
(b) The sign of an occurrence \forall in a formula A is the opposite of the sign of the subformula $\forall n$. B starting with such \forall.
(2) The degree of a formula is the maximum number of nested quantifiers with alternating signs. Formulas of degree 0 are exactly Σ_{0}^{0}-formulas. Clearly the degree is less than or equal to the number of occurrences of the quantifiers.
(3) By $a(n) U_{k}-\left(E_{k}-\right)$ formula, we mean a formula of degree k such that all the outermost quantifiers are negative (positive). A P_{k+1}-formula is a propositional combination of U_{k} - and E_{k}-formulas.

The Heyting arithmetic HA has the function symbols and the defining equations for a primitive recursive pairing $p: \mathbb{N}^{2} \rightarrow \mathbb{N}$ and primitive recursive, projection functions $p_{0}: \mathbb{N} \rightarrow \mathbb{N}$ and $p_{1}: \mathbb{N} \rightarrow \mathbb{N}$ such that $p_{0}(p(l, m))=l, p_{1}(p(l, m))=m$, and $p\left(p_{0}(n), p_{1}(n)\right)=n$. It is fairy easy to verify the following fact:
Fact 2.15. An $L_{\text {HA }}$-formula $\cdots(\cdots Q l Q m \cdots)(\cdots l \cdots m \cdots) \cdots$ is equivalent in HA to an L_{HA}-formula $\cdots(\cdots Q n \cdots)\left(\cdots\left(p_{0} n\right) \cdots\left(p_{1} n\right) \cdots\right) \cdots$ for all $Q \in\{\forall, \exists\}$.

Theorem 2.16. For any $U_{k}^{0}-\left(E_{k}^{0}-\right)$ formula A, we can find a $\Pi_{k}^{0}-\left(\Sigma_{k}^{0}-\right.$, resp. $)$ formula \hat{A} which is equivalent in $\mathrm{HA}+\Sigma_{k}^{0}$-LEM to A.

Proof. The proof is by induction on the structure of A. When $k=0$, we can take A as \hat{A} because A is a Σ_{0}^{0}-formula. Assume $k>0$. Then A is not a prime formula. The rest of the proof proceeds by cases according to the form of the formula A.

Case 1. A is $B_{1} \circ B_{2}$ with $\circ=\vee, \wedge, \rightarrow$
Subcase $1.1 \circ=\vee, \wedge$. Then B_{1} and B_{2} are both $U_{k}^{0}-\left(E_{k}^{0}-\right)$ formulas. We can use the induction hypotheses to find two $\Pi_{k}^{0}-\left(\Sigma_{k}^{0}\right)$ formulas \hat{B}_{1} and \hat{B}_{2} which are equivalent in $\mathrm{HA}+\Sigma_{k}^{0}$-LEM to B_{1} and B_{2} respectively.

When A is a U_{k}^{0}-formula, then the Π_{k}^{0}-formulas \hat{B}_{1} and \hat{B}_{2} are $\forall l . M_{1} l$ and $\forall m . M_{2} m$ for some Σ_{k-1}^{0}-formulas $M_{1} l$ and $M_{2} m$. Here $M_{1} l$ and $\hat{B}_{2} m$ are both decidable in $\mathrm{HA}+\Sigma_{k}^{0}$-LEM because the system $\mathrm{HA}+\Sigma_{k}^{0}$-LEM proves Σ_{k-1}^{0}-LEM and Π_{k}^{0}-LEM by Theorem 1.1. So by Lemma 2.1 and Fact 2.3 imply

$$
\mathrm{HA}+\Sigma_{k}^{0}-\mathbf{L E M} \vdash A \leftrightarrow \hat{B}_{1} \circ \hat{B}_{2} \leftrightarrow \forall l\left(M_{1} l \circ \forall m M_{2} m\right) \leftrightarrow \forall l \forall m\left(M_{1} l \circ M_{2} m\right) .
$$

Here $M_{1} l \circ M_{2} m$ is an E_{k-1}-formula. By Σ_{k}^{0}-LEM $\vdash_{\text {HA }} \Sigma_{k-1}^{0}$-LEM, we can use the induction hypothesis to find a Σ_{k-1}^{0}-formula $\hat{D} l m$ which is equivalent in $\mathrm{HA}+$ Σ_{k}^{0}-LEM to the E_{k-1}-formula $M_{1} l \circ M_{2} m$. So, in HA $+\Sigma_{k}^{0}$-LEM, the U_{k}^{0}-formula A is equivalent to $\forall l \forall m$. $\hat{D} l m$ which is equivalent in $\mathrm{HA}+\Sigma_{k}^{0}$-LEM to a Π_{k}^{0}-formula.

When A is an E_{k}^{0}-formula, the proof proceeds as in the case A is a U_{k}^{0}-formula.
Subcase $1.2 \circ=\rightarrow$. Then B_{1} is an $E_{k}^{0}-\left(U_{k}^{0}-\right)$ formula, while B_{2} is an $U_{k^{-}}^{0}\left(E_{k}^{0}-\right.$)formula. We can use the induction hypotheses to find a $\Sigma_{k}^{0}-\left(\Pi_{k}^{0}-\right)$ formula \hat{B}_{1} and a $\Pi_{k}^{0}-\left(\Sigma_{k^{-}}^{0}\right)$ formula \hat{B}_{2} such that HA $+\Sigma_{k}^{0}$-LEM $\vdash\left(B_{1} \leftrightarrow \hat{B}_{1}\right) \wedge\left(B_{2} \leftrightarrow \hat{B}_{2}\right)$. By Lemma 2.7 and Fact 2.6 (2), HA $+\Sigma_{k}^{0}$-LEM $\vdash \neg \hat{B}_{1} \rightarrow\left(\hat{B}_{1}\right)^{\perp}$. On the other hand, we can show IQC $\vdash\left(\hat{B}_{1}\right)^{\perp} \rightarrow \neg \hat{B}_{1}$ by using the sequent calculus $G 3$ for IQC. Hence $\mathrm{HA}+\Sigma_{k}^{0}$-LEM $\vdash\left(\hat{B}_{1}\right)^{\perp} \leftrightarrow \neg \hat{B}_{1}$. In HA $+\Sigma_{k}^{0}$-LEM, the Σ_{k}^{0}-($\left.\Pi_{k}^{0}-\right)$ formula \hat{B}_{1} is decidable, and thus $\left(\hat{B}_{1} \rightarrow \hat{B}_{2}\right) \stackrel{\text { Fact }}{\leftrightarrows} \leftrightarrows \hat{B}_{1} \vee \hat{B}_{2} \leftrightarrow\left(\hat{B}_{1}\right)^{\perp} \vee \hat{B}_{2}$. The two disjuncts $\left(\hat{B}_{1}\right)^{\perp}$ and \hat{B}_{2} are both $\Pi_{k}^{0}-\left(\Sigma_{k^{-}}^{0}\right)$ formulas decidable in HA $+\Sigma_{k}^{0}$-DNE. Moreover, each subformula of $\left(\hat{B}_{1}\right)^{\perp}$ and \hat{B}_{2} is so. Hence by Lemma 2.1. Fact 2.3 and Fact 2.15 the formula $\left(\hat{B}_{1}\right)^{\perp} \vee \hat{B}_{2}$ is equivalent in $\mathrm{HA}+\Sigma_{k}^{0}$-LEM to a Π_{k}^{0}-($\left.\Sigma_{k}^{0}-\right)$ formula.

Case 2. A is $\forall n . B[n](\exists n . B[n])$.
Assume $B[n]$ is a $U_{k}^{0}-\left(E_{k}^{0}-\right)$ formula. Then we can find by the induction hypothesis a $\Pi_{k}^{0}-\left(\Sigma_{k}^{0}-\right)$ formula $\hat{B}[n]$ which is equivalent in $\mathrm{HA}+\Sigma_{k}^{0}$-LEM to $B[n]$. So, in HA +
Σ_{k}^{0}-LEM, the formula A is equivalent to $\forall n . \hat{B}[n](\exists n . \hat{B}[n])$, which is equivalent to some $\Pi_{k}^{0}-\left(\Sigma_{k}^{0}\right)$-formula by Fact 2.15

Otherwise, $B[n]$ is an $E_{k-1}^{0}-\left(U_{k-1}^{0}\right)$ formula. By the induction hypothesis, we can find a $\Sigma_{k-1^{-}}^{0}\left(\Pi_{k-1^{-}}^{0}\right)$ formula $\hat{B}[n]$ which is equivalent in HA $+\Sigma_{k-1}^{0}$-LEM to $B[n]$. So, in HA $+\Sigma_{k}^{0}$-LEM, the formula A is equivalent to $\forall n . \hat{B}[n](\exists n . \hat{B}[n])$.

Case 3. A is $\neg B$. The same argument as Subcase 1.2.
Here we will prove a slightly stronger version of Theorem 1.2
Corollary 2.17. For any P_{k+1}^{0}-formula A, we can find $a \Pi_{k+1}^{0}$-formula \hat{B} and a Σ_{k+1}^{0}-formula \hat{C} such that $\mathrm{HA}+\Sigma_{k}^{0}$-LEM $\vdash A \leftrightarrow \hat{B} \leftrightarrow \hat{C}$. Here the number of occurrences of quantifiers in \hat{B} and that of \hat{C} are less than or equal to that of A.

Proof. By Theorem 2.16 the P_{k+1}^{0}-formula A is equivalent in HA $+\Sigma_{k}^{0}$-LEM to a propositional combination A° of Π_{k}^{0}-formulas and Σ_{k}^{0}-formulas. In the formula A°, move (0) all the outermost quantifiers of positive sign, out of all the propositional connectives, (1) all the outermost quantifiers of negative sign, out of all the propositional connectives, (2) all the outermost quantifiers of positive sign, out of all the propositional connectives, (3) all the outermost quantifiers of negative sign, out of all the propositional connectives, The resulting formula C is a block of quantifiers followed by a Σ_{0}^{0}-formula where the block has at most $k+1$ alternations of quantifiers (e.g. If A is a P_{2}^{0}-formula $\forall x P x \wedge\left(\exists y P^{\prime} y \rightarrow \exists z P^{\prime \prime} z\right)$ with $P, P^{\prime}, P^{\prime \prime}$ being Σ_{0}^{0}-formulas, then A° is $\exists z \forall x y\left(P x \wedge\left(P^{\prime} y \rightarrow P^{\prime \prime} z\right)\right)$ which has 2 alternations of quantifiers). All the Π_{k}^{0} - and all the Σ_{k}^{0}-formulas are (HA $+\Sigma_{k}^{0}$-LEM)-decidable. So, by Lemma 2.1 and Fact 2.3, the formula C is equivalent in HA $+\Sigma_{k}^{0}$-LEM to the P_{k+1}^{0}-formula A. By Fact 2.15, the resulting formula is equivalent in HA $+\Sigma_{k}^{0}$ - $\mathbf{L E M}$ to a Σ_{k+1}^{0}-formula \hat{C}. In a similar way, the P_{k+1}^{0}-formula A is equivalent in HA $+\Sigma_{k}^{0}$-LEM to a Π_{k+1}^{0}-formula \hat{B}.

3. Iterated Autonomous Limiting PCAs

We recall autonomous limiting PCAs (Akama, 2004). The construction was based on the Fréchet filter on \mathbb{N}, and is similar to but easier than the constructions of recursive ultrapower (Hirschfeld, 1975) and then semi-ring made from recursive functions modulo co-r-maximal sets (Lerman, 1970).

We say a partial numeric function $\varphi\left(n_{1}, \ldots, n_{k}\right)$ is guessed by a partial numeric function $\xi\left(t, n_{1}, \ldots, n_{k}\right)$ as t goes to infinity, provided that $\forall n_{1}, \ldots, n_{k} \exists t_{0} \forall t>$ $t_{0} . \varphi\left(n_{1}, \ldots, n_{k}\right) \simeq \xi\left(t, n_{1}, \ldots, n_{k}\right)$. Here, the relation \simeq means "if one side is defined, then the other side is defined with the same value." In this case, we write $\varphi\left(n_{1}, \ldots, n_{k}\right) \simeq \lim _{t} \xi\left(t, n_{1}, \ldots, n_{k}\right)$. On the other hand, the symbol ' $=$ ' means both sides are defined with the same value. For every class \mathcal{F} of partial numeric functions, $\lim (\mathcal{F})$ denotes the set of partial numeric functions guessed by a partial numeric function in \mathcal{F}.

A partial combinatory algebra (PCA for short) is a partial algebra \mathcal{A} equipped with two distinct constants \mathbf{k}, \mathbf{s} and a partial binary operation "application" $(-) \cdot(\bullet)$ subject to $(\mathbf{k} \cdot a) \cdot b=a,((\mathbf{s} \cdot a) \cdot b) \cdot z \simeq(a \cdot c) \cdot(b \cdot c)$, and $(\mathbf{s} \cdot a) \cdot b$ is defined. We introduce the standard convention of associating the application to the left and writing $a b$ instead of $a \cdot b$, omitting parentheses whenever no confusion occurs. If $a \cdot b$ is defined then both of a and b are defined.

The 0 -th Church numeral of \mathcal{A} is an element $\mathbf{k}(\mathbf{s} \mathbf{k} \mathbf{k})$ of \mathcal{A}. The $(n+1)$-th Church numeral of \mathcal{A} is an element $\mathbf{s}(\mathbf{s}(\mathbf{k} \mathbf{s}) \mathbf{k}) \bar{n}^{\mathcal{A}}$ of \mathcal{A}. By definition, for each natural number n, an element $\bar{n}^{\mathcal{A}}$ of \mathcal{A} represents n, and an element a of \mathcal{A} represents itself. We say a partial function φ from $M_{1} \times M_{2} \times \cdots \times M_{k}$ to M_{0} is represented by an element a of \mathcal{A}, whenever $\varphi\left(x_{1}, \ldots, x_{k}\right)=x_{0}$ if and only if for all representatives $a_{i} \in \mathcal{A}$ of $x_{i}(1 \leq i \leq k), a a_{1} \cdots a_{k-1} a_{k}$ is defined and is a representative of x_{0}. The set of \mathcal{A}-representable partial functions from M to M^{\prime} is denoted by $M \rightharpoonup_{\mathcal{A}} M^{\prime}$. Each partial recursive function is representable in any PCA.

Let \sim be the partial equivalence relation on \mathcal{A} such that $a \sim b$ if and only if $a \bar{t}^{\mathcal{A}}=b \bar{t}^{\mathcal{A}}$ for all but finitely many natural numbers t. A quotient structure $\left(\mathbb{N} \rightharpoonup_{\mathcal{A}} \mathcal{A}\right) / \sim$ will be a PCA by the argument-wise application operation modulo \sim. More precisely, let $[a]_{\sim}$ be $\{b \in \mathcal{A} \mid b \sim a\}$. Then the set $\left\{[a]_{\sim} \mid a \in \mathcal{A}\right.$ and $\left.a \sim a\right\}$, $\boldsymbol{k}:=[\mathbf{k} \mathbf{k}]_{\sim}, \boldsymbol{s}:=[\mathbf{k} \mathbf{s}]_{\sim}$ and the following operation $[a]_{\sim} *[b]_{\sim} \simeq[\mathbf{s} a b]_{\sim}$ defines a PCA. We denote it by $\lim (\mathcal{A})$.

By a homomorphism from a PCA \mathcal{A} to a PCA \mathcal{B}, we mean a function from \mathcal{A} to \mathcal{B} such that $f(\mathbf{k})=\mathbf{k}, f(\mathbf{s})=\mathbf{s}$, and $f(a) f(b) \simeq f(a b)$ for all $a, b \in \mathcal{A}$. A homomorphism fits in with a "strict, total homomorphism between PCAs" (see p. 23 of Hofstra and Cockett (2010)). A canonical injection of a PCA \mathcal{A} is, by definition, an injective homomorphism $\iota_{\mathcal{A}}: \mathcal{A} \rightarrow \lim (\mathcal{A}) ; x \mapsto[\mathbf{k} x]_{\sim}$.

Fact 3.1. $\iota_{\mathcal{A}}$ is indeed an injective homomorphism for every PCA \mathcal{A}.
Proof. We can see that $\iota_{\mathcal{A}}$ is indeed a function from \mathcal{A} to $\lim (\mathcal{A})$. In other words, $\iota_{\mathcal{A}}$ is "total" in a sense of Hofstra and Cockett (2010). It is proved as follows: For every $x \in \mathcal{A}$, we have $\mathbf{k} x \bar{t}=\mathbf{k} x \bar{t}$ for every $t \in \mathbb{N}$. This implies $\mathbf{k} x \sim \mathbf{k} x$, from which $\iota_{\mathcal{A}}(x)=[\mathbf{k} x]_{\sim}$ is in $\lim (\mathcal{A})$. The function $\iota_{\mathcal{A}}$ is injective, because $\iota_{\mathcal{A}}(x)=\iota_{\mathcal{A}}(y)$ implies $\mathbf{k} x \bar{t}^{\mathcal{A}}=\mathbf{k} y \bar{t}^{\mathcal{A}}$ for all but finitely many natural numbers t, from which $x=\mathbf{k} x \bar{t}^{\mathcal{A}}=\mathbf{k} y \bar{t}^{\mathcal{A}}=y$ holds for some natural number t.

It holds that (i) the injection ι_{A} maps the intrinsic constants \mathbf{k}, \mathbf{s} of the PCA \mathcal{A} to $\boldsymbol{k}, \boldsymbol{s}$ of the $\mathrm{PCA} \lim (\mathcal{A})$, and (ii) $\iota_{\mathcal{A}}(a) \iota_{\mathcal{A}}(b) \simeq \iota_{\mathcal{A}}(a b)$. In other words, the injection $\iota_{\mathcal{A}}$ is "strict" in a sense of Hofstra and Cockett (2010). The Assertion (i) is clear by the definition. As for the Assertion (ii), we can prove that if $\iota_{\mathcal{A}}(a b)$ is defined then $\iota_{\mathcal{A}}(a) \iota_{\mathcal{A}}(b)$ is defined with the same value. The proof is as follows: By the premise, $a b$ is defined. Because $\mathbf{k}(a b) \bar{t}=(a b)=\mathbf{s}(\mathbf{k} a)(\mathbf{k} b) \bar{t}$ for all $t \in \mathbb{N}$, we have

$$
\begin{equation*}
\iota_{\mathcal{A}}(a) \iota_{\mathcal{A}}(b) \simeq[\mathbf{s}(\mathbf{k} a)(\mathbf{k} b)]_{\sim} \simeq[\mathbf{k}(a b)]_{\sim} \simeq \iota_{\mathcal{A}}(a b) . \tag{17}
\end{equation*}
$$

We can prove that if $\iota_{\mathcal{A}}(a) \iota_{\mathcal{A}}(b)$ is defined then $\iota_{\mathcal{A}}(a b)$ is defined with the same value. The proof is as follows: By the premise, $[\mathbf{s}(\mathbf{k} a)(\mathbf{k} b)]_{\sim}$ is defined. So $\mathbf{s}(\mathbf{k} a)(\mathbf{k} b) \sim \mathbf{s}(\mathbf{k} a)(\mathbf{k} b)$. Hence for all but finitely many natural numbers t, $\mathbf{s}(\mathbf{k} a)(\mathbf{k} b) \bar{t} \simeq a b$ is defined. Thus $(a b)$ is defined. By (17), the Assertion (ii) follows.

Because $\iota_{\mathcal{A}}$ is a homomorphism, we have $\bar{n}^{\lim (\mathcal{A})}=\iota_{\mathcal{A}}\left(\bar{n}^{\mathcal{A}}\right)$. Hence the limit is the congruence class of the guessing function, as follows:

$$
\begin{equation*}
\lim _{t}(\xi \bar{t})=\bar{n} \text { in } \mathcal{A} \Longleftrightarrow[\xi]_{\sim}=\bar{n} \text { in } \lim (\mathcal{A}) . \quad(\xi \in \mathcal{A}) \tag{18}
\end{equation*}
$$

The direct limit of $\mathcal{A} \xrightarrow{\iota_{\mathcal{A}}} \lim (\mathcal{A}) \xrightarrow{\iota_{\lim (\mathcal{A})}} \lim ^{2}(\mathcal{A}) \cdots$ is indeed a PCA, and will be denoted by $\lim ^{\omega}(\mathcal{A})$. The application operator of a PCA and "limit procedure"
commute;

$$
\left(\lim _{t} a \bar{t}\right) *\left(\lim _{t} b \bar{t}\right)=[a]_{\sim} *[b]_{\sim}=[\mathbf{s} a b]_{\sim}=\lim _{t} \mathbf{s} a b \bar{t}=\lim _{t}(a \bar{t})(b \bar{t}) .
$$

The set of partial numeric functions represented by a PCA \mathcal{A} is denoted by $\operatorname{RpFn}(\mathcal{A})$. By the bounded maximization of a function $f(x, \vec{n})$, we mean a function $\max _{x<l} f(x, \vec{n})$. The following fact is well-known.
Fact 3.2. For every PCA \mathcal{B}, the set of functions represented by elements of \mathcal{B} is closed under the composition, the bounded maximization and under μ-recursion.

Then, we can prove $\operatorname{RpFn}\left(\lim ^{\alpha}(\mathcal{A})\right)=\cup_{n<\max (1+\alpha, \omega)} \lim ^{n}(\operatorname{RpFn}(\mathcal{A}))$. Shoenfield's limit lemma (see Odifreddi (1989) for instance) implies that the PCA $\lim ^{\alpha}(\mathcal{A})$ represents all $\emptyset^{(\max (\alpha, \omega))}$-recursive functions. So, the PCA $\lim ^{\omega}(\mathcal{A})$ can represent any arithmetical function.

4. Iterated Limiting Realizability Interpretation of Semi-classical EONs

It is well-known that a form of Markov Principle over the language L_{HA},

$$
\Sigma_{1}^{0} \text {-DNE } \quad \neg \neg \exists n \forall m<t . f(n, m, l)=0 \rightarrow \exists n \forall m<t . f(n, m, l)=0
$$

is realized by an ordinary program $r(t, l)=\mu n \cdot \max _{m<t} f(n, m, l)=0$ via recursive realizability interpretation of Kleene (1945). Here the program $r(t, l)$ is representable by a $\operatorname{PCA} \mathcal{A}$. A stronger principle of classical logic

$$
\Sigma_{2}^{0} \text {-DNE } \quad \neg \neg \exists n \forall m \cdot f(n, m, l)=0 \rightarrow \exists n \forall m \cdot f(n, m, l)=0,
$$

the "limit" with respect to t of a Σ_{1}^{0}-DNE, turns out to be realized by a limiting computation $\lim _{t} r(t, l)$ which is representable by a $\operatorname{limiting}$ PCA $\lim \mathcal{A}$. This simple approach can be extended to an iterated limiting realizability interpretation of Σ_{α}^{0}-DNE for $\alpha \leq \omega$, by $\lim ^{\alpha} \mathcal{A}$.

For the convenience, we embed $\mathrm{HA}+\Sigma_{1+\alpha}^{0}-$ DNE in a corresponding extension of a constructive logic EON. It is EON plus a form of $\Sigma_{1+\alpha}^{0}$-DNE. The iterated limiting realizability interpretation is introduced by using an α-iterated autonomous limiting PCAs $\lim ^{\alpha}(\mathcal{A})$.

Here EON is a constructive logic of partial terms (see p. 98 of Beeson (1985)), and the language includes Curry's combinatory constants, and a partial application operator symbol. The language of EON is $\left\{(-) \cdot(\bullet), \mathbf{s}, \mathbf{k}, \mathbf{d}, 0, \mathbf{s}_{\mathbf{N}}, \mathbf{p}_{\mathbf{N}}, \mathbf{p}, \mathbf{p}_{\mathbf{0}}, \mathbf{p}_{\mathbf{1}} ;=\right.$ $, N, \downarrow\}$. Here the constant symbols $\mathbf{p}, \mathbf{p}_{\mathbf{0}}, \mathbf{p}_{\mathbf{1}}$ are intended to be the pairing function, the first projection, and the second projection, respectively. The predicate symbol $=$ means "the both hand sides are defined and equal." The 1-place predicate symbols N and \downarrow mean "is a natural number" and "is defined," respectively. As before, we write $a_{0} a_{1} a_{2} \cdots a_{n-1} a_{n}$ for $\left(\cdots\left(\left(a_{0} \cdot a_{1}\right) \cdot a_{2}\right) \cdots a_{n-1}\right) \cdot a_{n}$, whenever no confusion occurs.

In writing formulas of EON, variables n, m, l, i and j will be implicitly restricted to the predicate N, i.e. they are "natural number variables." So, $\forall n . A n$ is the abbreviation for $\forall x$. $(N x \rightarrow A x)$ and $\exists m$. Bm for $\exists y$. $(N y \wedge B y)$. We review the logical axioms of EON from p. 98 of Beeson (1985). The logical axioms and rules of EON are as follows: EON has the usual propositional axioms and rules. The quantifier axioms and rules are as follows: From $B \rightarrow A$ infer $B \rightarrow \forall x A$ (x not free in $B)$. From $A \rightarrow B$ infer $\exists x A \rightarrow B$ (x not free in B). $\forall x A[x] \wedge t \downarrow \rightarrow A[t]$. $A[t] \wedge t \downarrow \rightarrow \exists x A[x] . x=x . x=y \rightarrow y=x . t=s \rightarrow t \downarrow \wedge s \downarrow . R\left(t_{1}, \ldots, t_{n}\right) \rightarrow t_{1} \downarrow$
$\wedge \cdots \wedge t_{n} \downarrow$. (R is any atomic formula). $c \downarrow$ (every constant symbol c). $x \downarrow$ (every variable x). Let us abbreviate $t \simeq s$ for $(t \downarrow \vee s \downarrow \rightarrow t=s)$. EON has a logical axiom $t \simeq s \rightarrow A[t] \rightarrow A[s]$.

The non-logical axioms of EON consists of

$$
\begin{aligned}
& \mathbf{k} x y=x, \quad \mathbf{s} x y z \simeq x z(y z), \quad \mathbf{s} x y \downarrow, \quad \mathbf{k} \neq \mathbf{s} \\
& \mathbf{p} x y \downarrow, \quad \mathbf{p}_{\mathbf{0}}(\mathbf{p} x y)=x, \quad \mathbf{p}_{\mathbf{1}}(\mathbf{p} x y)=y \\
& N(0), \quad \forall x\left(N x \rightarrow\left[N\left(\mathbf{s}_{\mathbf{N}} x\right) \wedge \mathbf{p}_{\mathbf{N}}\left(\mathbf{s}_{\mathbf{N}} x\right)=x \wedge \mathbf{s}_{\mathbf{N}} x \neq 0\right]\right), \\
& \forall x\left(N x \wedge x \neq 0 \rightarrow N\left(\mathbf{p}_{\mathbf{N}} x\right) \wedge \mathbf{s}_{\mathbf{N}}\left(\mathbf{p}_{\mathbf{N}} x\right)=x\right) \\
& N x \wedge N y \wedge x=y \rightarrow \mathbf{d} x y u v=u \\
& N x \wedge N y \wedge x \neq y \rightarrow \mathbf{d} x y u v=v \\
& A(0) \wedge \forall x\left(N x \wedge A(x) \rightarrow A\left(\mathbf{s}_{\mathbf{N}} x\right)\right) \rightarrow \forall x(N x \rightarrow A(x))
\end{aligned}
$$

We will interpret EON in a PCA, as we interpret classical logic in a model theory. The interpretations of the constant symbols \mathbf{s}, \mathbf{k} are the corresponding constants of the PCA \mathcal{A}. The interpretations of the constant symbols $0, \mathbf{p}_{\mathbf{N}}, \mathbf{s}_{\mathbf{N}}, \mathbf{d}$ in \mathcal{A} are defined in a similar way that they are represented in Curry's combinatory logic by Church numerals. The interpretation of the pairing \mathbf{p} and projections $\mathbf{p}_{\mathbf{0}}, \mathbf{p}_{\mathbf{1}}$ are as in Curry's combinatory logic. For detail, see Hindley and Seldin (1986). The application operator symbol $(-) \cdot(\bullet)$ of EON is interpreted as the application of the PCA \mathcal{A}. The unary predicate symbols N and \downarrow are interpreted as the set of Church numerals of \mathcal{A} and \mathcal{A} itself, respectively. The binary predicate symbol $=$ is interpreted as just the identity relation on \mathcal{A}. Given an assignment $\rho:\{\mathrm{EON}$-variables $\} \rightarrow \mathcal{A}$. The interpretation of an EON-term t in \mathcal{A} and ρ is defined as an element of \mathcal{A} as usual. The interpretation of an EON-formula A in the PCA \mathcal{A} and ρ is defined as usual as one of the truth-value T, \perp. We say an EON-formula A is true in a PCA \mathcal{A} and an assignment $\rho:\{$ EON-variables $\} \rightarrow \mathcal{A}$, if the interpretation of A in \mathcal{A} and ρ is \top. In this case we write $\mathcal{A}, \rho \models A$. If $\mathcal{A}, \rho \models A$ for every ρ, then we write $\mathcal{A} \models A$.

Definition 4.1. Let T be a formal system extending EON. The realizability interpretation of T is just an association to each formula A of T another formula $\exists e . e \mathbf{r} A$ of T with a variable e being fresh. It is read"some e realizes A." For an EON-term t and an EON-formula A, we define an EON-formula $t \mathbf{r} A$ as follows:

- $t \mathbf{r} P$ is $t \downarrow \wedge P$ for each atomic formula P.
- $t \mathbf{r} \neg A$ is $t \downarrow \wedge \forall x(\neg x \mathbf{r} A)$.
- $t \mathbf{r} A \rightarrow B$ is $t \downarrow \wedge \forall x(x \mathbf{r} A \rightarrow t x \downarrow \wedge t x \mathbf{r} B)$.
- $t \mathbf{r} \forall x$. A is $\forall x(t x \downarrow \wedge t x \mathbf{r} A)$.
- $t \mathbf{r} \exists x . A[x]$ is $\mathbf{p}_{\mathbf{1}} t \mathbf{r} A\left[\mathbf{p}_{0} t\right]$.
- $t \mathbf{r} A \wedge B$ is $\mathbf{p}_{\mathbf{0}} t \mathbf{r} A \wedge \mathbf{p}_{\mathbf{1}} t \mathbf{r} B$.
- $t \mathbf{r} A \vee B$ is $N\left(\mathbf{p}_{\mathbf{0}} t\right) \wedge\left(\mathbf{p}_{\mathbf{0}} t=0 \rightarrow \mathbf{p}_{\mathbf{1}} t \mathbf{r} A\right) \wedge\left(\neg \mathbf{p}_{\mathbf{0}} t=0 \rightarrow \mathbf{p}_{\mathbf{1}} t \mathbf{r} B\right)$.

Definition 4.2. A formal arithmetic T extending EON is said to be sound by the realizability interpretation for a PCA \mathcal{A}, provided that for every sentence B provable in T, a sentence $\exists e .(e \mathbf{r} B)$ is true in \mathcal{A}.
(Realizability) interpretations and model theory of a (constructive) arithmetic T are often formalized within the system T plus reasonable axioms. For example, Troelstra (1973), Avigad (2000) and so on formalized realizability interpretations of constructive logics, while Smoryński (1978), Hájek and Pudlák (1998) and so on did
non-standard models of various arithmetic. However, as we defined in Definition4.2, we will carry out our realizability interpretation within a naive set theory. This readily leads to the second assertion of the following Lemma.
Lemma 4.3. Suppose B is an EON-formula in PNF with all the variables relativized by the predicate N.
(1) For any EON-term t, we have EON $\vdash t \mathbf{r} B \rightarrow B$.
(2) If B is an EON-sentence and \mathcal{A} is a PCA, then $\mathcal{A} \models \neg \neg \exists x$. x r B implies $\mathcal{A} \models B$.

Proof. (1) The proof is by induction on the structure of B. When B is prime, it is trivial. When B is $\forall x(N x \rightarrow A x)$, then $t \mathbf{r} B$ is $\forall x(t \cdot x \downarrow \wedge \forall y(N x \rightarrow$ $t \cdot x \cdot y \downarrow \wedge t \cdot x \cdot y \mathbf{r} A x)$) where the variables x and y are fresh. So the induction hypothesis implies $t \mathbf{r} B \rightarrow \forall x(t \cdot x \downarrow \wedge \forall y(N x \rightarrow t \cdot x \cdot y \downarrow \wedge A x))$. Because y is fresh, $t \mathbf{r} B \rightarrow \forall x(N x \rightarrow A x)$. When B is $\exists x(N x \wedge A x)$, then $t \mathbf{r} B$ is $\mathbf{p}_{\mathbf{0}}\left(\mathbf{p}_{\mathbf{1}} t\right) \downarrow \wedge N\left(\mathbf{p}_{\mathbf{0}} t\right) \wedge \mathbf{p}_{\mathbf{1}}\left(\mathbf{p}_{\mathbf{1}} t\right) \mathbf{r} A\left(\mathbf{p}_{0} t\right)$. So the induction hypothesis implies $t \mathbf{r} B \rightarrow \mathbf{p}_{\mathbf{0}}\left(\mathbf{p}_{\mathbf{1}} t\right) \downarrow \wedge N\left(\mathbf{p}_{\mathbf{0}} t\right) \wedge A\left(\mathbf{p}_{\mathbf{0}} t\right)$. Hence, $t \mathbf{r} B \rightarrow N\left(\mathbf{p}_{\mathbf{0}} t\right) \wedge A\left(\mathbf{p}_{\mathbf{0}} t\right)$. Thus $t \mathbf{r} B \rightarrow \exists x(N x \wedge A x)$.
(2) By Definition 4.1, the system EON proves a sentence $\exists x . x$ r $\neg \neg B \rightarrow$ $\neg \neg \exists x . x \mathbf{r} B$. By the premise and the soundness of EON for any PCA, $\neg \neg \exists x . x \mathbf{r} B$ is true in the PCA \mathcal{A}, and thus $\exists x . x \mathbf{r} B$ is so. By the soundness of EON in any PCA and the Assertion (11) of this Lemma, the sentence B is true in the PCA.

We will make the argument of the first paragraph of this section rigorous. It is instructive to consider the following Lemma.
Lemma 4.4. For each closed EON-term t and for each PCA \mathcal{A}, whenever $\mathcal{A} \models$ $\forall m_{1} \forall m_{2} . N\left(t m_{1} m_{2}\right)$ holds, it holds

$$
\lim (\mathcal{A}) \models \exists x .\left[x \mathbf{r}\left(\neg \neg \exists m_{1} \forall m_{2} . t m_{1} m_{2}=0 \rightarrow \exists m_{1} \forall m_{2} \cdot t m_{1} m_{2}=0\right)\right]
$$

Proof. Let an EON-formula $q \mathbf{r} \neg \neg \exists m_{1} \forall m_{2}$.t $m_{1} m_{2}=0$ be true in $\lim (\mathcal{A})$. By Lemma 4.3 (2), for some natural number n_{1}, the EON-sentence $\forall m_{2} \cdot t \overline{n_{1}} m_{2}=0$ is true in $\lim (\mathcal{A})$.

We can see that \mathcal{A} has an element ξ representing the following unary numeric function:

$$
\operatorname{minimal}(l):=\mu m_{1} \cdot\left(\left(\max _{m_{2}<l} t m_{1} m_{2}\right)=0\right)
$$

Note that minimal $(l) \leq \operatorname{minimal}\left(l^{\prime}\right) \leq n_{1}$ if $l \leq l^{\prime}$. So, some natural number m_{1} satisfies $\lim _{l} \operatorname{minimal}(l)=m_{1}$. That is, for all natural numbers l but finitely many, we have minimal $(l)=m_{1}$. So, for all natural numbers l but finitely many, the formula $\xi \bar{l}=\overline{m_{1}}$ is true in \mathcal{A}.

By the definition of $\lim (\mathcal{A})$, we have

$$
[\xi]_{\sim}=\overline{m_{1}}
$$

in $\lim (\mathcal{A})$. By the definition of ξ, for all natural numbers l but finitely many, an EON-sentence $\left(\max _{m_{2}<l} t \overline{m_{1}} \overline{m_{2}}\right)=0$ is true in $\lim (\mathcal{A})$. Therefore, for all natural numbers m_{2}, an EON-sentence $t \overline{m_{1}} \overline{m_{2}}=0$ is true in $\lim (\mathcal{A})$. Hence, $\forall m_{2} . t \overline{m_{1}} m_{2}=0$ is true in $\lim (\mathcal{A})$.

So, as a realizer x of $\neg \neg \exists m_{1} \forall m_{2} . t m_{1} m_{2}=0 \rightarrow \exists m_{1} \forall m_{2} . t m_{1} m_{2}=0$, take $\mathbf{k}\left(\mathbf{p}(\mathbf{p} 0(\mathbf{k}(\mathbf{k} 0)))[\xi]_{\sim}\right) \in \lim (\mathcal{A})$.

Definition 4.5. For each PCA \mathcal{A} and each nonnegative integer k, $\left(\Sigma_{k}^{0}-\mathbf{D N E}^{\prime}\right)$ is a rule

$$
\frac{t \text { is a closed term of EON } \quad \forall \vec{n} \forall m_{1} \ldots \forall m_{k} . N\left(t \vec{n} m_{1} \cdots m_{k}\right)}{\forall \vec{n}\binom{\neg \neg \exists m_{1} \forall m_{2} \exists m_{3} \cdots Q_{k} m_{k} . t \vec{n} m_{1} m_{2} \ldots m_{k}=0}{\rightarrow \exists m_{1} \forall m_{2} \exists m_{3} \cdots Q_{k} m_{k} . t \vec{n} m_{1} m_{2} \ldots m_{k}=0}}
$$

Here Q_{k} is \exists for odd k and \forall for even k.
Theorem 4.6. For each nonnegative integer k and each PCA \mathcal{A}, if the system EON $+\left(\Sigma_{k+1}^{0}-\mathbf{D N E}{ }^{\prime}\right)$ proves an EON-sentence A, then a sentence \exists e e $\mathbf{r} A$ is true in the PCA $\lim ^{k}(\mathcal{A})$.

Proof. The verification is by induction on the length of the proof π of A. The axioms and rules other than (Σ_{k}^{0} - $\mathbf{D N E} \mathbf{E}^{\prime}$) is manipulated as in the proof of Theorem 1.6 of Beeson (1985).

We will consider the case ($\Sigma_{k}^{0}-\mathbf{D N E} \mathbf{N}^{\prime}$). By the induction hypothesis on the proof π, an EON-sentence $\exists e$. e $\mathbf{r} \forall \vec{n} \forall m_{1} \ldots \forall m_{k} . N\left(t \vec{n} m_{1} \cdots m_{k}\right)$ is true in the PCA $\lim ^{k}(\mathcal{A})$. We will derive that an EON-sentence

$$
\begin{array}{r}
\exists e . e \mathbf{r} \forall \vec{n}\left(\neg \neg \exists m_{1} \forall m_{2} \cdots Q_{k} m_{k} \cdot t \overline{\vec{n}} m_{1} m_{2} \ldots m_{k}=0\right. \\
\left.\rightarrow \exists m_{1} \forall m_{2} \cdots Q_{k} m_{k} . t \overline{\vec{n}} m_{1} m_{2} \ldots m_{k}=0\right)
\end{array}
$$

is true in $\lim ^{k}(\mathcal{A})$. Let x be an element of $\lim ^{k}(\mathcal{A})$ and \vec{n} be nonnegative integers. Suppose

$$
\lim ^{k}(\mathcal{A}) \models x \mathbf{r} \neg \neg \exists m_{1} \forall m_{2} \cdots Q_{k} m_{k} . t \overline{\vec{n}} m_{1} m_{2} \ldots m_{k}=0
$$

By Lemma 4.3 (2), we have

$$
\lim ^{k}(\mathcal{A}) \models Q_{1} m_{1} Q_{2} m_{2} Q_{3} m_{3} \cdots Q_{k} m_{k} . t \overline{\vec{n}} m_{1} \cdots m_{k}=0
$$

For every closed EON-term t^{\prime}, the valuation of t^{\prime} in $\lim ^{k}(\mathcal{A})$ is obtained from the valuation of t^{\prime} in \mathcal{A} by the canonical injection $\iota_{\lim ^{k-1}(\mathcal{A})} \circ \cdots \circ \iota_{\mathcal{A}}$. Hence

$$
\begin{equation*}
\mathcal{A} \models Q_{1} m_{1} Q_{2} m_{2} Q_{3} m_{3} \cdots Q_{k} m_{k} \cdot t \overline{\vec{n}} m_{1} \cdots m_{k}=0 \tag{19}
\end{equation*}
$$

where $Q_{i}=\exists(i:$ odd $) ; \quad \forall(i:$ even $)$.
Definition 4.7. For each PCA \mathcal{A} and each $j=0, \ldots, k-2$, define a total function $g_{j}\left(\vec{n}, \nu_{1}, \ldots, \nu_{k-j}\right): \overrightarrow{\mathbb{N}} \times \mathbb{N}^{k-j} \rightarrow\{0,1\}$ such that
$g_{j}\left(\vec{n}, \nu_{1}, \ldots, \nu_{k-j}\right)=0 \Longleftrightarrow \mathcal{A} \models\left\{\begin{array}{r}\left(Q_{k-j+1} m_{k-j+1}\right)\left(Q_{k-j+2} m_{k-j+2}\right) \cdots\left(Q_{k} m_{k}\right) . \\ t \overline{\vec{n}} \overline{\nu_{1}} \cdots \overline{\nu_{k-j}} m_{k-j+1} \cdots m_{k}=0 .\end{array}\right.$
Claim 4.8. For each $j=0, \ldots, k-2$, the total function g_{j} is represented by some element of a PCA $\lim ^{j} \mathcal{A}$.

Proof. We can define g_{j} as a j-nested limiting function, as follows:

$$
\begin{aligned}
g_{0}\left(\vec{n}, \nu_{1}, \ldots, \nu_{k}\right) & :=\min (1, l) \text { such that } \mathcal{A} \models t \overline{\vec{n}} \overline{\nu_{1}} \ldots \overline{\nu_{k}}=\bar{l} . \\
g_{j}\left(\vec{n}, \nu_{1}, \ldots, \nu_{k-j}\right) & := \begin{cases}\lim _{l} \max _{\nu_{k-j+1}<l} g_{j-1}\left(\vec{n}, \nu_{1}, \ldots, \nu_{k-j+1}\right), & (k-j \text { is odd }) \\
\lim _{l} \min _{\nu_{k-j+1}<l} g_{j-1}\left(\vec{n}, \nu_{1}, \ldots, \nu_{k-j+1}\right), & (k-j \text { is even }) .\end{cases}
\end{aligned}
$$

The claim is derived from (19) by induction on j, because g_{j} is the limit of a bounded monotone function which is either max...<l or min...<l. Each g_{j} is represented by some element of a PCA $\lim ^{j} \mathcal{A}$, because of (18). This completes the proof of Claim 4.8

We continue the proof of Theorem 4.6. For an EON-formula

$$
\begin{equation*}
\exists m_{1} \forall m_{2} \exists m_{3} \cdots Q_{k} m_{k} \cdot t \overline{\vec{n}} m_{1} \cdots m_{k}=0 \tag{20}
\end{equation*}
$$

appearing in (19), consider the "game" represented by (20) between the proponent \exists and the opponent \forall. From any moves $\nu_{2}, \nu_{4}, \ldots, \nu_{2 p-2}(p=1,2, \ldots,\lfloor(k+2) / 2\rfloor)$ taken by the opponent \forall, the minimum move $m_{2 p-1}\left(\vec{n}, \nu_{2}, \nu_{4}, \ldots, \nu_{2 p-2}\right)$ by the proponent \exists is given by the following limiting function
Definition 4.9. For $p=1,2, \ldots,\lfloor(k+2) / 2\rfloor$, let

$$
m_{2 p-1}\left(\vec{n}, \nu_{2}, \nu_{4}, \ldots, \nu_{2 p-2}\right):=\lim _{l} \operatorname{minimal}_{2 p-1}\left(l, \vec{n}, \nu_{2}, \nu_{4}, \ldots, \nu_{2 p-2}\right) .
$$

Here the guessing function $\operatorname{minimal}_{1}(l, \vec{n})=\mu m_{1}\left(\max _{\nu_{2}<l} g_{k-2}\left(\vec{n}, m_{1}, \nu_{2}\right)\right)$ is obtained from g_{k-2} by the bounded maximization $\max _{\nu_{2}<l}$ and the μ-recursion. For $p>1$, define the function minimal ${ }_{2 p-1}$ by the composition, the bounded maximization $\max _{\nu_{2 p}<l}$ and the μ-recursion $\mu m_{2 p-1}$.
$\operatorname{minimal}{ }_{2 p-1}\left(l, \vec{n}, \nu_{2}, \nu_{4}, \ldots, \nu_{2 p-2}\right)$

$$
\begin{aligned}
:=\mu m_{2 p-1} \cdot\left(\max _{\nu_{2 p}<l} g_{k-2 p}(\vec{n},\right. & m_{1}(\vec{n}), \nu_{2}, m_{3}\left(\vec{n}, \nu_{2}\right), \nu_{4}, m_{5}\left(\vec{n}, \nu_{2}, \nu_{4}\right), \ldots \\
& \left.\left.m_{2 p-3}\left(\vec{n}, \nu_{2}, \ldots, \nu_{2 p-4}\right), \nu_{2 p-2}, m_{2 p-1}, \nu_{2 p}\right)=0\right) .
\end{aligned}
$$

For the function $m_{2 p-1}$ defined above, we have the following:
Claim 4.10. Assume $p=1,2,3, \ldots,\lfloor(k+2) / 2\rfloor$. Then the following assertions hold:
(1) $m_{2 p-1}\left(\vec{n}, \nu_{2}, \nu_{4}, \ldots, \nu_{2 p-2}\right)$ is indeed a total function of $\vec{n}, \nu_{2}, \nu_{4}, \ldots, \nu_{2 p-2}$. For the game the EON-formula (20) represents, consider the following alternating sequence σ of the proponent \exists 's moves and the opponent \forall 's moves of the game:
$\left(m_{1}(\vec{n}), \nu_{2}, m_{3}\left(\vec{n}, \nu_{2}\right), \nu_{4}, m_{5}\left(\vec{n}, \nu_{2}, \nu_{4}\right), \ldots, m_{2 p-3}\left(\vec{n}, \nu_{2}, \ldots, \nu_{2 p-4}\right), \nu_{2 p-2}\right) \in \mathbb{N}^{2 p-2}$
Suppose that $n_{2 p-1} \in \mathbb{N}$ is a proponent's move that immediately follows the sequence σ. Then $n_{2 p-1} \geq m_{2 p-1}\left(\vec{n}, \nu_{2}, \nu_{4}, \ldots, \nu_{2 p-2}\right)$.
(2) The limiting function $m_{2 p-1}$ is represented by an element of a PCA $\lim ^{k}(\mathcal{A})$.

Proof. (1) The proof is by induction on p. The case where $p=1$ is essentially due to the proof of Lemma 4.4. Let $p>1$. Assume (i) the opponent's $2 p$-th move $\nu_{2 p}$ is bounded from above by l, (ii) the parameter \vec{n} of the game is supplied, and (iii) the opponent's moves $\nu_{2}, \nu_{4}, \ldots, \nu_{2 p-2}$ so far are supplied. By the induction hypotheses, the functions $m_{1}, m_{3}, \ldots, m_{2 p-3}$ are total. By this, Definition 4.7 and Definition 4.9, we see that minimal ${ }_{2 p-1}\left(l, \vec{n}, \nu_{2}, \nu_{4}, \ldots, \nu_{2 p-2}\right)$ is the minimum $(2 p-1)$-th move of proponent \exists under the assumption (i). The guessing function minimal ${ }_{2 p-1}$ is increasing with respect to the first argument l, because l is the bound of the maximization in the definition of minimal ${ }_{2 p 1}-$. But there is $n_{2 p-1} \in \mathbb{N}$ such that for every l, we have minimal ${ }_{2 p-1}\left(l, \vec{n}, \nu_{2}, \nu_{4}, \ldots, \nu_{2 p-2}\right) \leq n_{2 p-1}$, because of (19) and Claim 4.7. Therefore the limit $m_{2 p-1}\left(\vec{n}, \nu_{2}, \nu_{4}, \ldots, \nu_{2 p-2}\right)$ of
$\operatorname{minimal}_{2 p-1}\left(l, \vec{n}, \nu_{2}, \nu_{4}, \ldots, \nu_{2 p-2}\right)$ with respect to l is indeed a total function, and actually the limit from below. Therefore it is minimum among the possible winning moves. This completes the proof of Assertion (1).
(22) The proof is by induction on p. Consider the case where $p=1$. Then $m_{1}(\vec{n})=$ $\left.\lim _{l} \operatorname{minimal}_{1}(l, \vec{n})=\lim _{l} \mu m_{1}\left(\max _{\nu_{2}<l} g_{k-2}\left(\vec{n}, m_{1}, \nu_{2}\right)\right)=0\right)$. By Claim 4.8, the total function g_{k-2} is represented by some element of $\lim ^{k-2}(\mathcal{A})$. By Fact 3.2, the function $\left.\mu m_{1}\left(\max _{\nu_{2}<l} g_{k-2}\left(\vec{n}, m_{1}, \nu_{2}\right)\right)=0\right)$ is represented by some element of $\lim ^{k-2}(\mathcal{A})$. By (18), the function $m_{1}(\vec{n})$ is represented by some element of $\lim ^{k-1}(\mathcal{A})$. Fact 3.1 implies the function $m_{1}(\vec{n})$ is represented by some element of $\lim ^{k}(\mathcal{A})$.

Next consider the case where $p>1$. By Claim 4.8, a (partial) function $g_{k-2 p}$ is indeed a total function represented by some element of the PCA $\lim ^{k-2 p}(\mathcal{A})$. By applying the bounded maximization and then μ-recursion to $g_{k-2 p}$, define a (partial) function of $l, \vec{n}, x_{1}, \nu_{2}, x_{3}, \nu_{4}, \ldots, x_{2 p-3}, \nu_{2 p-2}$, as follows

$$
\begin{equation*}
\mu m_{2 p-1}\left(\max _{\nu_{2 p}<l} g_{k-2 p}\left(\vec{n}, x_{1}, \nu_{2}, x_{3}, \nu_{4}, \ldots, x_{2 p-3}, \nu_{2 p-2}, m_{2 p-1}, \nu_{2 p}\right)=0\right) \tag{21}
\end{equation*}
$$

Then the (partial) function is also represented by some element of the PCA $\lim ^{k-2 p}(\mathcal{A})$, because of Fact 3.2, Let a (partial) function F of $\vec{n}, x_{1}, \nu_{2}, x_{3}, \nu_{4}, \ldots, x_{2 p-3}, \nu_{2 p-2}$ be guessed by a (partial) function (21) with respect to the variable l. Then F is represented by some element of a PCA $\lim ^{k-2 p+1}(\mathcal{A})$ by (18). By Fact 3.1, the function F is represented by some element of a PCA $\lim ^{k}(\mathcal{A})$.

By the induction hypothesis on p, all of $(p-1)$ total functions $m_{1}(\vec{n}), m_{3}\left(\vec{n}, \nu_{2}\right)$, $m_{5}\left(\vec{n}, \nu_{2}, \nu_{4}\right), \ldots, m_{p-1}\left(\vec{n}, \nu_{2}, \nu_{4}, \ldots, \nu_{2 p-4}\right)$ are represented by some elements of the PCA $\lim ^{k}(\mathcal{A})$. By composing the $(p-1)$ total functions at the arguments $x_{1}, x_{3}, \ldots, x_{2 p-3}$ of the (partial) function $F\left(\vec{n}, x_{1}, \nu_{2}, x_{3}, \nu_{4}, \ldots, x_{2 p-3}, \nu_{2 p-2}\right)$, we obtain the total function $m_{2 p-1}\left(\vec{n}, \nu_{2}, \nu_{4}, \ldots, \nu_{2 p-2}\right)$, according to Definition 4.9 Thus the total function $m_{2 p-1}$ is represented by some element of the PCA $\lim ^{k}(\mathcal{A})$ by Fact 3.2 ,

The EON-formula (20) has a realizer $q \in \lim ^{k}(\mathcal{A})$. Here q consists of the following elements of $\lim ^{k}(\mathcal{A})$: the numerals $\overline{\vec{n}}^{\mathcal{A}}$, and the representatives of the total functions m_{1}, m_{3}, \ldots, in view of Claim 4.10. This completes the proof of Theorem4.6.

From Theorem 4.6. Theorem 1.3 follows, by embedding HA $+\Sigma_{k}^{0}$-DNE in a corresponding EON $+\left(\Sigma_{k+1}^{0}-\mathbf{D N E}^{\prime}\right)$ where \mathcal{A} is a PCA.
4.1. Proofs of Theorem $\mathbf{1 . 5}$ and Theorem 1.6, We prove the non-derivability between the axiom schemes $F_{k+1}-\mathbf{I P}$ and Σ_{k+1}^{0}-DNE (Theorem 1.5) by using iterated limiting realizability interpretation (Theorem 1.3). Let $A n m$ be a Π_{k}^{0}-formula with all the variables indicated. The axiom scheme $\Sigma_{k+1}^{0}-$ DNE proves a sentence

$$
\forall n(\neg \neg \exists m . A n m \rightarrow \exists m . A n m)
$$

By this and $F_{k+1}-\mathbf{I P}$, we derive a sentence $\forall n \exists m$. ($\neg \neg \exists m$. $A n m \rightarrow A n m$). If the system $\mathrm{HA}+\Sigma_{k+1}^{0}-\mathbf{D N E}+F_{k+1}$-IP is realizable by the PCA $\lim ^{k}(\mathbb{N})$, then there exists $e \in \mathbb{N}$ such that for all $n \in \mathbb{N}$ the following conditions hold:
(1) $f(n):=\lim _{t_{1}} \cdots \lim _{t_{k}}\{e\}\left(t_{1}, \ldots, t_{k}, n\right)$ is convergent (In this case, f is $\left.\emptyset^{(k)}\right)_{-}$ recursive and thus has a Π_{k+1}^{0}-graph); and
(2) If $A n m$ holds for some $m \in \mathbb{N}$, then $A n f(n)$ holds.

Because A is a Π_{k}^{0}-formula and f has a Π_{k+1}^{0}-graph, $A n f(n)$ is a Π_{k+1}^{0}-relation for n. Note that $\exists m$. $A n m$ iff $A n f(n)$. Because A is an arbitrary Π_{k}^{0}-formula, we can choose A such that $\exists m . A(\bullet, m)$ is a complete Σ_{k+1}^{0}-relation. This contradicts against that $\operatorname{Anf}(n)$ is a Π_{k+1}^{0}-relation. This completes the proof of Theorem 1.5 .

Every arithmetical relation R satisfies the uniformization property (Odifreddi, 1989). That is, if for all natural numbers n there exists a natural number m such that $R(n, m)$, then there exists an arithmetical function f_{R} such that for all n $R(n, f(n))$. In Section 3, we provide a PCA $\lim ^{\omega}(\mathbb{N})$ which represents all such f_{R} 's. In fact, the representative induces a realizer of $\forall n \exists m . R(n, m)$.

By our prenex normal form theorem (Theorem 1.2) and our iterated limiting realizability interpretations (Theorem (1.3), we will slightly refine Smoryński's result mentioned in Section 1 to Theorem 1.6 .

Proof of Theorem 1.6, Assume otherwise. By Theorem 1.2 for every sentence $A \in \Gamma$ there is a sentence \hat{A} in PNF such that \hat{A} contains at most n quantifiers and $\mathrm{HA}+\Gamma$ proves $A \leftrightarrow \hat{A}$.

Since HA $+\Gamma$ is n-consistent, the sentence \hat{A} in PNF is true in the standard model ω.

First consider the case \hat{A} is a Π_{n}^{0}-sentence. Then \hat{A} can be written as

$$
\forall x_{1} \exists x_{2} \forall x_{3} \cdots Q_{n} x_{n} . R x_{1} x_{2} x_{3} \cdots x_{n}
$$

for some Σ_{0}^{0}-formula R.
Here $\forall x_{3} \exists x_{4} \cdots Q_{n} x_{n} . R x y x_{3} \cdots x_{n}$ defines a $\emptyset^{(n-2)}$-recursive binary relation on ω. By the relativization of the uniformization property for recursive relations (Odifreddi, 1989), there exists some $\emptyset^{(n-2)}$-recursive function

$$
f_{2}(x):=\mu y . \forall x_{3} \cdots Q_{n} x_{n} . R x y x_{3} \cdots x_{n}
$$

such that for each natural number x_{1} a formula $\forall x_{3} \exists x_{4} \cdots Q_{n} x_{n} . R x_{1} f_{2}\left(x_{1}\right) x_{3} \cdots x_{n}$ is true on ω.

In this way, there are $\emptyset^{(n-2)}$-functions $f_{2}\left(x_{1}\right), f_{4}\left(x_{1}, x_{3}\right), \ldots$ such that

$$
\forall x_{1} \forall x_{3} \forall x_{5} \cdots . R x_{1} f_{2}\left(x_{1}\right) x_{3} f_{4}\left(x_{1}, x_{3}\right) x_{5} \cdots
$$

holds on ω.
If \hat{A} is not a Π_{n}^{0}-sentence, then \hat{A} is written as $\exists x_{1} \forall x_{2} \exists x_{3} \cdots Q_{n} x_{n} . R x_{1} x_{2} x_{3} \cdots x_{n}$. Then there are natural number n_{1} and $\emptyset^{(n-3)}$-recursive functions $f_{3}\left(x_{2}\right), f_{5}\left(x_{2}, x_{4}\right), \ldots$ such that a formula $\forall x_{2} \forall x_{4} \forall x_{6} \cdots R n_{1} x_{2} f_{3}\left(x_{2}\right) x_{4} f_{5}\left(x_{2}, x_{4}\right) \cdots$ holds on ω.

Because a PCA $\lim ^{n}(\mathbb{N})$ can represent all the $\emptyset^{(n)}$-functions f_{i} 's, we can find a realizer of \hat{A} in the PCA $\lim ^{n}(\mathbb{N})$.

The PCA $\lim ^{n}(\mathbb{N})$ realizes $\Sigma_{n}^{0}-\mathbf{L E M}$, and thus the formula $A \in \Gamma$ by Theorem 1.2 Because the PCA $\lim ^{n}(\mathbb{N})$ does not realize Σ_{n+1}^{0}-LEM, we conclude $\mathrm{HA}+\Gamma \nvdash$ $\Sigma_{n+1}^{0}-\mathbf{L E M}$. This completes the proof of Theorem 1.6,

Our use of the complete set $\emptyset^{(n)}$ contrasts against Kleene's use of extended Church's thesis on defining effectively true (general recursively true) prenex normal form (see Section 79 of Kleene (1952)).

Smoryński (1982) considered other versions $H A$ and $P A$ of Heyting's arithmetic and Peano's arithmetic, where $H A$ and $P A$ are formalized by the language

$$
\{0,1,2,3, \ldots ; Z(,), S(,), A(,,), M(,,),=\}
$$

and then proved "Let Γ be a set of sentences of bounded quantifier-complexity, and suppose $H A+\Gamma \vdash P A$. Then $H A+\Gamma$ is inconsistent." For the proof, assuming otherwise, Smoryński constructed a model of $P A$ by applying Orey's compactness theorem to $H A+\Gamma$. For Orey's compactness theorem, see Chapter 4 of Smoryński (1978), Orev (1961), Háiek and Pudlák (1998) and Theorem. III 2.39 (i) \Longleftrightarrow (ii) of Háiek and Pudlák (1998). Then he constructed a Kripke model (see Section 5.2.3 of Troelstra (1973)) for $H A$ to derive the contradiction. See Smoryński (1982) for a proof formalized within a formal system $P A+1-\operatorname{Con}(P A)$.

However, the referee wrote
"As far as I can see Smoryński leaves open whether there can be a consistent, classically unsound, finite extension of HA that implies full sentential excluded third. I definitely do believe there isn't. It is unknown whether the analogous result holds for all classically invalid constructive propositional schemes."
The author cannot help but suppose that the language of the HA referee meant consists of the function symbols for all the primitive recursive functions and the identity predicate. It may be important to construct Kripke models of such HA by employing model theory of arithmetic. The author thinks the referee's last sentence suggests a possible research direction.

As in the proof of Theorem 4.6, we hope that the wording "game," "strategy," "move," and so on are useful to explain realizability interpretation neatly, and that various realizability interpretations of logical principles over HA are related to circumstances where one or the other player of a various game have a winning strategy, and the consequences of the existence of such strategies.

Acknowledgement

The author acknowledges Susumu Hayashi, Pieter Hofstra, Stefano Berardi, an anonymous referee and Craig Smoryński. The anonymous referee informed the author of Smoryński's work and Smoryński let the author know his course notes.

References

Akama, Y. (2004). Limiting partial combinatory algebras. Theoret. Comput. Sci., 311(1-3):199-220.
Akama, Y., Berardi, S., Hayashi, S., and Kohlenbach, U. (2004). An arithmetical hierarchy of the laws of excluded middle and related principles. In Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, pages 192-201.
Avigad, J. (2000). Realizability interpretation for classical arithmetic. In Buss, Hájek, and Pudlák, editors, Logic Colloquium '98, number 13 in Lecture Notes in Logic, pages 57-90. AK Peters.
Beeson, M. J. (1985). Foundations of constructive mathematics, volume 6 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin. Metamathematical studies.
Berardi, S. (2005). Classical logic as limit completion. Math. Structures Comput. Sci., 15(1):167-200.
Berardi, S., Bezem, M., and Coquand, T. (1998). On the computational content of the axiom of choice. J. Symbolic Logic, 63(2):600-622.
Hájek, P. and Pudlák, P. (1998). Metamathematics of first-order arithmetic. Perspectives in Mathematical Logic. Springer-Verlag, Berlin. Second printing.

Hayashi, S., Sumitomo, R., and Shii, K. (2002). Towards animation of proofs testing proofs by examples -. Theoret. Comput. Sci., 272(1-2):177-195.
Hindley, J. and Seldin, J. (1986). Introduction to Combinators and Lambda-calculus. Cambridge University Press.
Hirschfeld, J. (1975). Models of arithmetic and recursive functions. Israel J. Math., 20(2):111-126.
Hofstra, P. and Cockett, R. (2010). Unitary theories, Unitary categories. Electronic Notes in Theoretical Computer Science, 265:11-33.
Kleene, S. C. (1945). On the interpretation of intuitionistic number theory. J. Symbolic Logic, 10:109-124.
Kleene, S. C. (1952). Introduction to metamathematics. D. Van Nostrand Co., Inc., New York, N. Y.
Lerman, M. (1970). Recursive functions modulo CO-r-maximal sets. Trans. Amer. Math. Soc., 148:429-444.
Odifreddi, P. (1989). Classical recursion theory, volume 125 of Studies in Logic and the Foundations of Mathematics. North-Holland Publishing Co., Amsterdam. The theory of functions and sets of natural numbers, With a foreword by G. E. Sacks.
Orey, S. (1961). Relative interpretations. Z. Math. Logik Grundlagen Math., 7:146153.

Smoryński, C. (1978). Nonstandard models of arithmetic. Course notes, fall 1978, Utrecht University. Logic group preprint series.
Smoryński, C. (1982). Nonstandard models and constructivity. In The L. E. J. Brouwer Centenary Symposium (Noordwijkerhout, 1981), volume 110 of Stud. Logic Found. Math., pages 459-464. North-Holland, Amsterdam.
Troelstra, A. S., editor (1973). Metamathematical investigation of intuitionistic arithmetic and analysis. Springer-Verlag, Berlin. Lecture Notes in Mathematics, Vol. 344.

Mathematical Institute, Tohoku University, Aoba, Sendai, JAPAN, 980-8578.

