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REALIZABILITY INTERPRETATION OF PA BY ITERATED

LIMITING PCA

YOHJI AKAMA

Abstract. For any partial combinatory algebra (pca for short) A, the class of
A-representable partial functions from N to A quotiented by the filter of cofi-
nite sets of N, is a pca such that the representable partial functions are exactly
the limiting partial functions of A-representable partial functions (Akama,
“Limiting partial combinatory algebras” Theoret. Comput. Sci. Vol. 311
2004). The n-times iteration of this construction results in a pca that rep-
resents any n-iterated limiting partial recursive functions, and the inductive
limit of the pcas over all n is a pca that represents any arithmetical, partial
function. Kleene’s realizability interpretation over the former pca interprets
the logical principles of double negation elimination for Σ0

n
-formulas, and that

over the latter pca interprets Peano’s arithmetic (PA for short). A hierarchy
of logical systems between Heyting’s arithmetic and PA is used to discuss the
prenex normal form theorem, the relativized independence-of-premise schemes,
and “PA is an unbounded extension of HA.”

1. Introduction

1.1. Hierarchical of semi-classical arithmetical principles. Following Sec-
tion 1.3.2 of Troelstra (1973), by Heyting’s arithmetic HA, we mean an intuitionistic
predicate calculus IQC with equality such that (1) the language of HA is a first-
order language LHA , with logical connectives ∀, ∃,→,∧,∨,¬; numeral variables
l,m, n, . . .; a constant symbol 0 (zero), a unary function symbol S (successor), con-
stant function symbols for all primitive recursive functions, and a binary predicate
symbol = (equality between numbers). Bounded quantifications ∀n < t. A and
∃n < t. A are abbreviations of ∀n(f(n, t) = 1 → A) and ∃n(f(n, t) = 1∧A), where
f(n, t) is a primitive recursive function such that f(n, t) = 1 if and only if n < t; and
(2) besides the axioms for the equality, the axioms of HA are the defining equality
of the primitive recursive functions and so-called Peano’s axiom ∀n(¬S(n) = 0),
∀n∀m(S(n) = S(m) → n = m), and an axiom scheme called the induction scheme:

B[0] ∧ ∀n(B[n] → B[S(n)]) → ∀nB[n] (B is any formula.)

By Peano’s arithmetic PA, we mean the formal system obtained from HA by adjoin-
ing one of classical axiom scheme, such as the law of excluded middle A∨¬A (A is
any LHA-formula), and/or the principle of double negation elimination ¬¬A → A (A
is any LHA-formula). Kleene (1945) interpreted every theorem of HA by a recursive
function/operation.

Kleene introduced arithmetical hierarchy of integer sets, over the class of re-
cursive sets. The complexity of an integer set X in the arithmetical hierarchy is
measured by the number of alternation of the quantifiers of the relation that defines
the set X . The arithmetical hierarchy has a close relation to oracle computation,
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such as the complete sets and the jump hierarchy (see Odifreddi (1989) for exam-
ple).

According to Section 0.30 of Hájek and Pudlák (1998), a Σ0
k-formula and a Π0

k-
formula are the following formulas preceded by k alternating quantifiers, respec-
tively for k ≥ 0:

• A Σ0
k-formula is of the form ∃n1∀n2 · · ·Qnk−1Qnk. P [n1, . . . , nk].

• A Π0
k-formula is of the form ∀m1∃m2 · · ·Qmk−1Qmk. P [m1, . . . ,mk].

Here P [n1, . . . , nk] is an LHA-formula with all the quantifiers being bounded, but
may contain free variables other than its indicated variables. The LHA-formula
P [m1, . . . ,mk] is understood similarly.

A formula in prenex normal form (pnf for short) is, by definition, a series of
quantifiers followed by a quantifier-free formula. A formula

∃n1∀m1∃n2∀m2 · · · .P [n1,m1, n2,m2, . . .]

in pnf is true in classical logic, if and only if the formula represents a game between
the quantifiers ∃ and ∀ where the player ∃ has a winning strategy. Every formula
is equivalent to a formula in pnf in classical logic, but it is not the case in HA.
It may be interesting to think of an extension of HA from viewpoint of games
which the formulas represent. We ask ourselves, “For which set Γ of LHA-formulas,
which extension T of HA admits the prenex normal form theorem for Γ?” We will
syntactically study the question.

For the study, we use an arithmetical hierarchy of semi-classical principles, intro-
duced in Akama et al. (2004). In the hierarchy, the law of excluded middle and the
principle of double negation elimination are relativized by various formula classes
Γ = Σ0

k,Π
0
k, . . . (k ≥ 0). The hierarchy has following axiom schemes:

(Γ-LEM) A ∨ ¬A (A is any Γ-formula).

(Γ-DNE) ¬¬A → A (A is any Γ-formula).

Any set X ⊆ N in Kleene’s arithmetical hierarchy is identical to N \ (N \ X).
However, not every formula A is equivalent in HA to ¬¬A. So we defined the dual
A⊥ of A in a way similar to so-called involutive negation of classical logic. We show
that HA ⊢ (A⊥)⊥ ↔ A for any formula A in pnf, and consider an axiom scheme

(Γ-LEM′) A ∨ A⊥ (A is any Γ-formula).

The axiom scheme Σ0
k-LEM turns out to be equivalent in HA to Σ0

k-LEM′. Moti-
vated by ∆0

k-sets of Kleene’s arithmetical hierarchy, the hierarchy of semi-classical
principles has the following axiom scheme

∆0
k-LEM (A ↔ B) → (A ∨ ¬A) (A ∈ Π0

k, B ∈ Σ0
k).

According to Akama et al. (2004), it is weaker than the variant

fp∆0
k-LEM (A ↔ B) → (B ∨ A⊥) (A ∈ Π0

k, B ∈ Σ0
k).

Among these axiom schemes appearing in the arithmetical hierarchy of semi-
classical principles, we answer, “Which axiom scheme is stronger than which axiom
scheme?”
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Figure 1. The left is the arithmetical hierarchy of semi-classical
principles. The one-way arrows means implication which is not
reversible. The non-reversibility, the the axiom schemes principle
Σ0

k-LLPO, BΣ0
k+1-DNE and (Π0

k ∨ Π0
k)-DNE are not discussed

in this paper, but in Akama et al. (2004). The right diagram con-
sisting of pcas and homomorphisms is a colimit diagram, in the
category of pcas and homomorphisms between them. The vertical
arrows are canonical injections (see Section 3 for detail)

Theorem 1.1. For any k ≥ 0,

Σ0
k-LEM proves Π0

k-LEM in HA .(1)

Σ0
k+1-DNE proves Σ0

k-LEM in HA .(2)

Σ0
k-LEM intuitionistically proves Σ0

k-DNE .(3)

Π0
k+1-LEM intuitionistically proves Σ0

k-LEM .(4)

fp∆0
k-LEM is equivalent in HA to Σ0

k-DNE .(5)

Σ0
k-DNE proves ∆0

k-LEM in HA .(6)

Let T be a consistent extension of HA. For a formula A of T , let a formula A′

be obtained from A by moving a quantifier of A over a subformula D of A. If the
subformula D is decidable in T (i.e. T proves D ∨ ¬D), then the formulas A and
A′ are equivalent in T . Based on this observation, by Theorem 1.1, we prove the
following:

Theorem 1.2 (Prenex Normal Form Theorem). For every LHA-formula A having

at most k quantifiers, we can find an LHA-formula Â in pnf which has k quantifiers
and is equivalent in HA+Σ0

k-LEM to A.

Actually, for k, we can take an “essential” number of alternation of nested quan-
tifiers. See Subsection 2.2 for detail.
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1.2. Iterated Limiting PCA and Realizability Interpretations. Akama (2004)
introduced a limit operation lim(•) for partial combinatory algebras (pcas for
short) such that from any pca A, the limit operation lim(•) builds hierarchies
{limαA}α=0,1,...,ω of pcas satisfying Figure 1 (right). The limit operation corre-
sponds to the jump operation of the arithmetical hierarchies, as in Shoenfield’s
limit lemma (see Odifreddi (1989) for instance). The introduction of the limit
operation aimed to represent approximation algorithms needed in proof anima-
tion (Hayashi et al., 2002). Hayashi proposed proof animation in order to make
interactive formal proof development easier.

In this paper, we provide a realizability interpretation of PA by a pca limωA for
every pca A.

Theorem 1.3 (Iterated Limiting Realizability Interpretation). For any pca A
and for any nonnegative integer k, the system HA + Σ0

k+1-DNE is sound by the

realizability interpretation for the pca limk(A). PA is sound by the realizability
interpretation for the pca limω(A).

Let us call realizability interpretation by a pca limαA an iterated limiting re-
alizability interpretation (α = 0, 1, 2, . . . , ω). The feature of our realizability inter-
pretation of PA are:

• if non-constructive objects are allowed to exist by the double negation elim-
ination axioms, the realization of the non-constructive objects requires the
jump of mathematical intuition. The jump is achieved by the limit.

• Our realizability interpretation of PA is simpler than those by Berardi et al.
(1998) and Avigad (2000). They embedded classical logic to intuitionistic
logic by the Gödel-Gentzen’s negative translation (see Section 81 of Kleene
(1952) for example) or the Friedman-Dragalin translation, and then carried
out the recursive realizability interpretation. However, they needed a spe-
cial observation in interpreting the translation results of logical principles.
Berardi (2005) developed a theory for “classical logic as limit.”

1.3. Two Consequences of Our Prenex Normal Form Theorem and Our
Iterated Limiting Realizability Interpretation of PA. We derive a result for
independence-of-premise schemes (see Section 1.11.6 of Troelstra (1973)), and that
for n-consistent extension of HA.

Definition 1.4 (Independence-of-premise scheme). Let Γ be a set of LHA-formulas.
(Γ-IP) is an axiom scheme

(A → ∃m.B) → ∃m. (A → B)

where m does not occur free in A, A is any in Γ, and B is any LHA-formula.

Let an Fn-formula be any LHA-formulas having at most n quantifiers.

Theorem 1.5 (Non-derivability between Fk+1-IP and Σ0
k+1-DNE). HA+Σ0

k+1-DNE+

Fk+1-IP does not admit a realizability interpretation by the pca limk(N), where N

is the pca of all natural numbers such that the partial application operation {n}(m)
is the application of the unary partial recursive function of Gödel number n applied
to m. Hence Σ0

k+1-DNE 6⊢HA Fk+1-IP and Fk+1-IP 6⊢HA Σ0
k+1-DNE.

No reasonable subsystem T of HA seems to admit prenex normal form theorem,
because for all k, T does not prove Fk-IP.
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The next consequence of our prenex normal form theorem (Theorem 1.2) and
our iterated limiting realizability interpretation (Theorem 1.3) of PA is about “PA
is unbounded extension of HA.”

Before Akama et al. (2004), strict infinite hierarchies of formal arithmetics HA (

T1 ( T2 ( · · · ( PA was provided in a proof of a theorem “any set Γ of LHA-
sentences with bounded quantifier-complexity does not axiomatize PA over HA.”
The proof was sketched in Section 3.2.32 of Troelstra (1973), and was based on
C. Smoryński’s idea given in his unpublished note “Peano’s arithmetic is unbounded
extension of Heyting’s arithmetic.” Troelstra (1973) used a realizability interpre-
tation (Kleene (1945)) but the realizers are Gödel numbers of partial functions
recursive in a complete Π0

k-set of the Kleene’s arithmetical hierarchies.
We say an arithmetic T is n-consistent, provided every Σ0

n-sentence provable in
T is true in the standard model ω. Note that HA is n-consistent for each positive
integer n.

Theorem 1.6 (PA as bounded extension of HA). Let n ≥ 2 be a natural number,
and Γ be a set of LHA-sentences containing at most n quantifiers. If HA + Γ is
n-consistent, then HA+ Γ does not prove the axiom scheme Σ0

n+1-LEM.

The background and a possible research direction of the theorem is given in
Section 4. The rest of the paper is organized as follows. In Section 2, the hierarchies
of logical systems between HA and PA are introduced to discuss the prenex normal
form theorem (Theorem 1.2). In Section 3, we introduce iterated autonomous
limiting pcas, In Section 4, by using the such pcas, we introduce and study the
iterated limiting realizability interpretation of arithmetics between HA and PA. In
Subsection 4.1, we verify Theorem 1.5 and Theorem 1.6.

2. Hierarchy of Semi-classical Principles

When we move quantifiers of a formula A outside the scope of propositional
connectives, we ask ourselves when the resulting formula A′ is equivalent in HA to
the formula A.

Lemma 2.1. If a variable n does not occur in a formula A, then intuitionistic
predicate logic IQC proves: (1) A ∨ ∀nB → ∀n(A ∨B); (2) ∃n(A ◦ B) ↔ A ◦ ∃nB
for ◦ = ∨,∧; and (3) ∀n(A ∧B) ↔ A ∧ ∀nB.

As usual, the symbol ⊢ denotes the derivability.

Fact 2.2. Suppose T is a formal system of arithmetic extending IQC. We say a
formula D of T is decidable in T , if T ⊢ D ∨ ¬D.

(1) If formulas D and D′ are decidable in T , so are ¬D and D ◦ D′ for ◦ =
∧,∨,→.

(2) If a formula D is decidable in HA, then bounded universal quantifications
∀n < t. D and ∃n < t. D are decidable in HA.

(3) Every Σ0
0-formulas is decidable in HA.

Fact 2.3. None of the following two formulas (7) and (8) are provable in IQC but
both of two formulas (D ∨ ¬D) → (7) and (D′ ∨ ¬D′) → (8) are.

(D → B) ↔ (¬D ∨B).(7)

∀n(D′ ∨B) → D′ ∨ ∀nB (n does not occur free in D′).(8)
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IQC with the scheme (8) added is complete for the class of Kripke models of
constant domains, and HA plus the schema is just PA, as explained in Section 1.11.3
of Troelstra (1973).

2.1. Proof of Theorem 1.1. For a formula A, we define a formula A⊥ classically
equivalent to ¬A, as follows:

Definition 2.4. For any formula A, we define the dual A⊥ as follows:

• When A is prime, A⊥ is the negation ¬A.
• When A is a negated formula ¬B, then A⊥ is B.
• When A is B ∨ C, then A⊥ is B⊥ ∧C⊥.
• When A is B ∧ C, then A⊥ is B⊥ ∨C⊥.
• When A is B → C, then A⊥ is B ∧ C⊥.
• When A is ∀n.B, then A⊥ is ∃n.B⊥.
• When A is ∃n.B, then A⊥ is ∀n.B⊥.

The dual operation is more manageable than the propositional connective ¬.

Fact 2.5. (1) HA ⊢ P⊥ ↔ ¬P (P is a Σ0
0-formula.)

(2) HA ⊢ (A⊥)⊥ ↔ A (A is a Σ0
k-formula or a Π0

k-formula.)

Proof. (1) By induction on P . (2) First consider the case the formula A is a Σ0
k-

formula. Then A is written as ∃n1∀n2∃n3 · · ·Qnk. P for some Σ0
0-formula P . Then

(A⊥)⊥ is ∃n1∀n2∃n3 · · ·Qnk. (P
⊥)⊥. The Assertion (1) implies ⊢HA (P⊥)⊥ ↔

¬¬P . But Fact 2.2 (3), implies the decidability of P . So ⊢HA ¬¬P ↔ P . Hence
⊢HA (P⊥)⊥ ↔ P . Therefore ⊢HA (A⊥)⊥ ↔ A. When A is a Π0

k-formula, the proof
is similar. �

The axiom scheme Σ0
k-LEM′ is the axiom scheme consisting of the following

form:

∃n1∀n2 · · ·Qnk−1QnkP [n1, . . . , nk]

∨ ∀m1∃m2 · · ·Qmk−1Qmk (P [m1, . . . ,mk])
⊥
.(9)

Here P [n1, . . . , nk] and P [m1, . . . ,mk] are Σ
0
0-formulas possibly containing free vari-

ables other than indicated variables, and the quantifier Q is ∀ for odd k and is ∃
otherwise. Q is ∃ if Q is ∀, and is ∀ otherwise.

Σ0
k-LEM′ ⊢HA Π0

k-LEM′ and Π0
k-LEM′ ⊢HA Σ0

k-LEM′(10)

follows from Fact 2.5 (2), because the dual of a Σ0
k-formula (Π0

k-formula, resp.) is
a Π0

k-formula (Σ0
k-formula, resp).

Fact 2.6. For any formula A, IQC proves (1) ¬(A ∧ A⊥) and (2) (A ∨ A⊥) →
(A⊥ ↔ ¬A).

Proof. (1) The proof is by induction on the structure of A. When A is prime
or negated, the assertion is trivial. When A is B ∨ C, let us assume B ∨ C and
the dual A⊥, that is, B⊥ ∧ C⊥. The first conjunct contradicts by the induction
hypothesis in case of B, and the second by the induction hypothesis in case of C.
So, ¬(A ∧A⊥). When A is a conjunction, the assertion is similarly verified. When
A is B → C, let us assume B → C and the dual, that is B ∧ C⊥. From the first
conjunct B and B → C, we infer C, which contradicts by the induction hypothesis
against the second conjunct C⊥. When A is ∀n.B[n], let us assume ∀n. B[n]
and the dual ∃n. (B[n])⊥. For a fresh variable m, assume (B[m])⊥. But we can
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infer B[m] from A. This contradicts against the induction hypothesis. When A
is existentially quantified, the assertion is similarly verified. (2) The Assertion (1)
implies (A ∨A⊥) → (A⊥ → ¬A), while (A ∨A⊥) → (¬A → A⊥) is immediate. �

The two axiom schemes Σ0
k-LEM′ and Σ0

k-LEM are equivalent over HA, as we
prove below:

Lemma 2.7. For any k ≥ 0, (1) Σ0
k-LEM′ ⊢IQC Σ0

k-LEM, and (2) Σ0
k-LEM ⊢HA

Σ0
k-LEM′.

Proof. The first assertion follows from Fact 2.6 (2) in IQC. The second assertion is
proved by induction on k. The assertion holds for k = 0, because ⊢HA Σ0

0-LEM′

follows from Fact 2.2 (3) and Fact 2.5 (1). Let k > 0. Consider a Σ0
k-formula

∃n.B with B being any Π0
k−1-formula. By the induction hypothesis, we have

Σ0
k-LEM ⊢HA Σ0

k−1-LEM′. Because Σ0
k−1-LEM′ and Π0

k−1-LEM′ are equivalent

over HA by (10), we have Σ0
k-LEM ⊢HA B⊥ ∨B. By this and Fact 2.6 (2), we have

Σ0
k-LEM ⊢HA B⊥ ↔ ¬B. So Σ0

k-LEM ⊢IQC ∃n.B ∨ ∀n.¬B implies Σ0
k-LEM ⊢HA

∃n.B ∨ ∀n.B⊥. Therefore Σ0
k-LEM ⊢HA Σ0

k-LEM′. �

We prepare the proof of Theorem 1.1 (2) below. An instance (9) of Σ0
k-LEM′ is

equivalent in PA to the following Σ0
k+1-formula:

∃n1(∀m1∀n2)(∃m2∃n3) · · · (Qmk−2Qnk−1)(Qmk−1Qnk)Qmk

(P [n1, . . . , nk] ∨ ¬P [m1, . . . ,mk]) .(11)

Here P [n1, . . . , nk] and ¬P [m1, . . . ,mk] are Σ0
0-formulas possibly containing free

variables other than indicated variables.
We apply Σ0

k+1-DNE to the Gödel-Gentzen translation (Section 81 of Kleene
(1952)) result of (11).

Lemma 2.8. Let k ≥ 1. The Σ0
k+1-formula (11) is provable in HA+Σ0

k+1-DNE.

Proof. It is easy to see that the Σ0
k+1-formula (11) is equivalent in a classical logic

to an instance of Σ0
k-LEM′. So, HA proves the Gödel-Gentzen translation of (11),

which is obtained from (11)

(1) by replacing each (∃l) with (¬∀l¬); and
(2) by replacing the disjunction P [n1, . . . , nk] ∨ ¬P [m1, . . . ,mk] with a formula

¬(¬P [n1, . . . , nk] ∧ ¬¬P [m1, . . . ,mk]).

However,

(1) for each formula A, IQC ⊢ ¬∀l¬A ↔ ¬¬∃l. A; and
(2) HA ⊢ P [n1, . . . , nk]∨¬P [m1, . . . ,mk] ↔ ¬(¬P [n1, . . . , nk]∧¬¬P [m1, . . . ,mk]),

by Fact 2.2 (3).

So, HA proves a formula obtained from (11) by only inserting ¬¬ just before each
existential quantifier. The resulting formula is

¬¬∃n1(∀m1∀n2)(¬¬∃m2¬¬∃n3) · · · (P [n1, . . . , nk] ∨ ¬P [m1, . . . ,mk] ) , (f0)

and ends with

(o0): ∀nk−1¬¬∃mk−1¬¬∃nk∀mk (P [~n] ∨ ¬P [~m]) for odd k; and
(e0): ∀nk−1¬¬∃mk (P [~n] ∨ ¬P [~m]) for even k.
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In each case, the rightmost ¬¬ is just before a Σ0
1+(k mod 2)-formula. So, if we can

use Σ0
1+(k mod 2)-DNE, then the rightmost ¬¬(’s) in the subformulas (o0, e0) can

be safely eliminated from the formula (f0). But Σ0
1+(k mod 2)-DNE follows from

Σ0
k+1-DNE. Thus Σ0

k+1-DNE proves in HA the formula (f0) with the rightmost
¬¬(’s) eliminated from the end-part (o0, e0). The resulting formula (f1) ends with

(o1): ¬¬∃mk−3¬¬∃nk−2(∀mk−2∀nk−1)(∃mk−1∃nk)∀mk (P [~n] ∨ ¬P [~m]) for
odd k; and

(e1): ¬¬∃mk−2¬¬∃nk−2(∀mk−1∀nk)(∃mk) (P [~n] ∨ ¬P [~m]) for even k.

In each case, the rightmost ¬¬ is just before a Σ0
3+(k mod 2)-formula. So, if we can

use Σ0
3+(k mod 2)-DNE, then the rightmost ¬¬’s in (o1, e1) can be safely eliminated

from (f1). But Σ0
3+(k mod 2)-DNE follows from Σ0

k+1-DNE. Thus Σ0
k+1-DNE

proves in HA the formula (f1) with the rightmost ¬¬’s eliminated from the end-
part (o1, e1).

By iterating this argument, we can safely eliminate all ¬¬’s from (f0). This
establishes that Σ0

k+1-DNE proves in HA the Σ0
k+1-formula (11). This completes

the proof of Lemma 2.8. �

We will present the proof of Theorem 1.1.

Assertion (1) “Σ0
k-LEM ⊢HA Π0

k-LEM” is verified as follows: By Lemma 2.7,
we see that for every Σ0

0-formula P [~n], a disjunction of ∃n1∀n2 · · ·Qnk¬P [~n] and
∀n1∃n2 · · ·QnkP [~n] is deducible in HA from Σ0

k-LEM. When the first disjunct
holds, then it contradicts against the dual of the first disjunct by Fact 2.6 (1),
and thus we have the negation ¬∀n1∃n2 · · ·QnkP [~n] of the dual. In the other
case, then we have the second disjunct ∀n1∃n2 · · ·QnkP [~n]. In both cases, we have
∀n1∃n2 · · ·QnkP [~n] ∨ ¬∀n1∃n2 · · ·QnkP [~n], which is an instance of Π0

k-LEM.

Assertion (2) “Σ0
k+1-DNE ⊢HA Σ0

k-LEM” of Theorem 1.1 will be proved by
induction on k. The case k = 0 follows from Fact 2.2 (3). Next consider the case
k > 0.

Claim 2.9. Suppose that j ≤ k is a positive odd number and that a variable mj

does not occur free in a Π0
k−j-formula ∀nj+1∃nj+2 · · ·Qnk. P [n1, · · · , nk]. Then

HA+Σ0
k+1-DNE proves the following equivalence formula:

∀mj

(

∀nj+1∃nj+2 · · ·Qnk. P [n1, · · · , nk] ∨ ∃mj+1∀mj+2 · · ·Qmk. ¬P [m1, . . . ,mk]
)

↔
(

∀nj+1∃nj+2 · · ·Qnk.P [n1, · · · , nk] ∨ ∀mj∃mj+1∀mj+2 · · ·Qmk.¬P [m1, . . . ,mk]
)

.

Proof. In the left-hand side of the equivalence formula, we can easily see the
first disjunct ∀nj+1∃nj+2 · · ·Qnk. P [n1, . . . , nk] is a Π0

k−j -formula. The system

HA+Σ0
k+1-DNE proves Σ0

k−j+1-DNE which proves Σ0
k−j -LEM by the induction

hypothesis on Assertion (2) of Theorem 1.1. Hence the system HA + Σ0
k+1-DNE

proves Π0
k−j-LEM by Assertion (1) of Theorem 1.1. Thus the Π0

k−j -disjunct

∀nj+1∃nj+2 · · ·Qnk. P [n1, . . . , nk] of the left-hand side is decidable in HA+Σ0
k+1-DNE,

where the variable mj does not occur free. Because of Lemma 2.1 and Fact 2.3,
the left-hand side and the right-hand side of the equivalence formula is indeed
equivalent in the system HA+Σ0

k+1-DNE. �
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Next, we will consider when the universal quantifier can be safely moved over
Σ0

k−i+1-disjunct where i ≥ 1.

Claim 2.10. Suppose that i ≤ k is a positive even number and that a variable
ni does not occur free in a Σ0

k−i+1-disjunct ∃mi∀mi+1 · · ·Qmk. ¬P [m1, . . . ,mk]

does not contain a free variable ni. Then HA + Σ0
k+1-DNE proves the following

equivalence formula

∀ni

(

∃ni+1∀ni+2 · · ·Qnk. P [n1, . . . , nk] ∨ ∃mi∀mi+1 · · ·Qmk. ¬P [m1, . . . ,mk]
)

↔
(

∀ni ∃ni+1∀ni+2 · · ·Qnk. P [n1, . . . , nk] ∨ ∃mi∀mi+1 · · ·Qmk. ¬P [m1, . . . ,mk]
)

.

Proof. In the left-hand side of the equivalence formula, we see that the second
disjunct ∃mi∀mi+1 · · ·Qmk. ¬P [m1, . . . ,mk] is a Σ0

k−i+1-formula. It is decid-

able in HA + Σ0
k+1-DNE, because Σ0

k+1-DNE proves Σ0
k−i+2-DNE which proves

Σ0
k−i+1-LEM by the induction hypothesis of Assertion (2) of Theorem 1.1. The

decidable Σ0
k−i+1-disjunct ∃mi∀mi+1 · · ·Qmk. ¬P [m1, . . . ,mk] does not contain a

free variable ni. So move the universal quantifier ∀ni over the decidable Σ0
k−i+1-

disjunct. The resulting formula is the right-hand side of the equivalence formula. It
is equivalent in HA+ Σ0

k+1-DNE to the left-hand side of the equivalence formula,
by Lemma 2.1 and Fact 2.3. �

We continue the proof of Assertion (2) “Σ0
k+1-DNE ⊢HA Σ0

k-LEM” of Theo-

rem 1.1. To an instance (9) of Σ0
k-LEM′, apply Lemma 2.1, Fact 2.3, Claim 2.9

with j = 1, and Claim 2.10 with i = 2. Next apply Lemma 2.1, Fact 2.3, Claim 2.9
with j = 3, and Claim 2.10 with i = 4. Then repeatedly apply them with
(i, j) = (5, 6), (7, 8), . . .. . . ., in this order. Then a formula (9) is equivalent in
HA + Σ0

k+1-DNE to the Σ0
k+1-formula (11). But the formula (11) is provable in

HA+Σ0
k+1-DNE by Lemma 2.8. Hence every instance (9) of Σ0

k-LEM′ is provable

in the system HA+Σ0
k+1-DNE. Thus the system HA+Σ0

k+1-DNE proves Σ0
k-LEM′

and thus Σ0
k-LEM by Lemma 2.7. This completes the proof of Assertion (2).

To prove Assertion (3) “Σ0
k-LEM ⊢IQC Σ0

k-DNE,” let us assume ¬¬A with A
being a Σ0

k-formula. By Σ0
k-LEM, we haveA∨¬A. In case of ¬A, by the assumption

¬¬A, we have contradiction, from which A follows. Hence we concludes ¬¬A → A.

To prove Assertion (4) “Π0
k+1-LEM ⊢IQC Σ0

k-LEM,”, note that any Σ0
k-formula

B is equivalent in IQC to a Π0
k+1-formula ∀n.B where the variable n is fresh.

Because HA+Π0
k+1-LEM proves ∀n.B ∨ ¬∀n.B, so does B ∨ ¬B, an instance of

Σ0
k-LEM.

We will prove Assertion (5) “Σ0
k-DNE is equivalent in HA to fp∆0

k-LEM” of
Theorem 1.1. First we will prove “Σ0

k-DNE ⊢HA fp∆0
k-LEM.” Let us assume

Σ0
k-DNE. Let P [n1, . . . , nk] and R[m1, . . . ,mk] be Σ

0
0-formulas possibly containing

free variables other than indicated variables. Also assume the following equivalence
formula between a Σ0

k-formula and a Π0
k-formula:

∃n1∀n2 · · ·Qnk−1Qnk. P [n1, . . . , nk] ↔ ∀m1∃m2 · · ·Qmk−1Qmk. R[m1, . . . ,mk],

(12)
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We will derive the following disjunction of two Σ0
k-formulas:

∃n1∀n2 · · ·Qnk−1Qnk. P [n1, . . . , nk] ∨ ∃m1∀m2 · · ·Qmk−1Qmk. (R[m1, . . . ,mk])
⊥
.

(13)

Claim 2.11. The disjunction (13) is equivalent in HA+Σ0
k-DNE to a Σ0

k-formula:

∃n1∃m1∀n2∀m2 · · ·QnkQmk(P [n1, . . . , nk] ∨ ¬R[m1, . . . ,mk]).(14)

Proof. The claim is proved by Lemma 2.1, in a similar argument as the Assertion (2)
of Theorem 1.1 is. Since the Σ0

k-formula (14) is obtained from the disjunction (13)
by moving the quantifiers ∃n2i−1, ∃m2i−1, ∀n2i, ∀m2i (i = 1, 2, . . .) out of the scope
of the disjunction, the equivalence between (13) and (14) in HA + Σ0

k-DNE is es-
tablished by showing that the movement of the quantifiers are safe. The existential
quantifiers ∃n2i−1, ∃m2i−1 are safely moved by Lemma 2.1. Each quantifier ∀n2i is
moved over a Π0

k−2i+1-disjunct ∀m2i∃m2i+1 · · ·Qmk¬R, and each quantifier ∀m2i

over a Σ0
k−2i-disjunct ∃n2i+1∀n2i+2 · · ·QmkP . Here the Π0

k−2i+1-disjunct and the

Σ0
k−2i-disjunct are both decidable by Theorem 1.1. So each ∀n2i and ∀m2i are

safely moved. This completes the verification of the claim. �

To complete the verification of Assertion (5) “Σ0
k-DNE ⊢HA fp∆0

k-LEM,” it is
sufficient to show that the Σ0

k-formula (14) from the equivalence formula (12), by
using Σ0

k-DNE.
In view of Σ0

k-DNE, we have only to derive the double negation of the Σ0
k-

formula (14). So assume the negation of the Σ0
k-formula (14), that is,

¬∃n1∃m1∀n2∀m2 · · ·QnkQmk(P [n1, . . . , nk] ∨
(

R[m1, . . . ,mk])
⊥
)

.

It is equivalent in HA+Σ0
k-DNE to the dual

∀n1∀m1∃n2∃m2 · · ·QnkQmk

(

(P [n1, . . . , nk])
⊥ ∧ R[m1, . . . ,mk]

)

,(15)

because ¬∃n1∃m1 is ∀n1∀m1¬, and because Σ0
k−1-LEM is available in HA+Σ0

k-LEM.

By Lemma 2.1 (2) and (3), the Π0
k-formula (15) implies a conjunction of two Π0

k-
formulas.

(∀n1∃n2 · · ·Qnk. ¬P [n1, . . . , nk]) ∧ (∀m1∃m2 · · ·Qmk. R[m1, . . . ,mk].)

By using assumption (12), the second Π0
k-conjunct implies the dual of the first

Π0
k-conjunct. So the contradiction follows from Fact 2.6 (1). This establishes

Σ0
k-DNE ⊢HA fp∆0

k-LEM.

Next, we prove the converse fp∆0
k-LEM ⊢HA Σ0

k-DNE. The axiom scheme
fp∆0

k-LEM has an instance (12) → (13) with the Σ0
0-formula P [n1, · · · , nk] being

replaced by a false Σ0
0-formula S(0) = 0. Hence HA+ fp∆0

k-LEM proves an impli-

cation formula ¬∀m1∃m2 · · ·Qmk. R → ∃m1∀m2 · · ·Qmk.¬R. So, we can derive
Σ0

k-DNE by using Modus Tolence if we can prove an implication formula

¬¬∃m1∀m2 · · ·Qmk.¬R → ¬∀m1∃m2 · · ·Qmk. R.(16)

To prove the formula (16), we use aGentzen-type sequent calculus G3 (see Section 81
of Kleene (1952)) for IQC. By the left- and the right-introduction rules of ¬, the
G3-sequent (16) is inferred from a G3-sequent

∃m1∀m2 · · ·Qmk.¬R, ∀m1∃m2 · · ·Qmk. R → .



REALIZABILITY INTERPRETATION OF PA BY ITERATED LIMITING PCA 11

It does not contain the variable m1 free, so it is inferred by the left-introduction
rule of ∃ from a sequent

∀m2 · · ·Qmk.¬R, ∀m1∃m2 · · ·Qmk. R → .

It is inferred by the left-introduction rule of ∀ from a G3-sequent

∀m2∃m3 · · ·Qmk.¬R, ∃m2∀m3 · · ·Qmk. R → .

By repeating this argument, the G3-sequent (16) is inferred from a G3-sequent
¬R,R →, which is inferred from an axiom sequent R → R of G3. This establishes
fp∆0

k-LEM ⊢HA Σ0
k-DNE, and thus Assertion (5) of Theorem 1.1.

Assertion (6) “Σ0
k-DNE ⊢HA ∆0

k-LEM” of Theorem 1.1 is proved as follows: By
Assertion (5) of Theorem 1.1, we have Σ0

k-DNE ⊢HA (A ↔ B) → (B ∨ A⊥) for
any Π0

k-formula A and any Σ0
k-formula B. By Fact 2.6 (2), we have Σ0

k-DNE ⊢HA

(A ↔ B) → (B ∨ ¬A). Thus Σ0
k-DNE ⊢HA ∆0

k-LEM. This completes the proof of
Theorem 1.1.

Remark 2.12. In HA, the axiom scheme ∆0
k-LEM is strictly weaker than the

axiom scheme Σ0
k-DNE for every positive integer k, according to Akama et al.

(2004). Hence there is a Π0
k-formula A such that 6⊢HA A⊥ ↔ ¬A. Otherwise, by

Theorem 1.1 (5), axiom schemes ∆0
k-LEM, fp∆0

k-LEM and Σ0
k-DNE are equiva-

lent over HA.

The axiom scheme Σ0
k-DNE has the following equivalent axiom schemes.

Fact 2.13. For k ≥ 0, Σ0
k-DNE is equivalent in IQC to Π0

k+1-DNE.

Proof. Let an LHA-formula ∀n.A be a Π0
k+1-formula with A being a Σ0

k-formula.

We can show ⊢IQC ¬¬∀n.A → ¬¬A. We have Σ0
k-DNE ⊢IQC ¬¬A → A. By Modus

Tolence, we have Σ0
k-DNE ⊢IQC ¬¬∀n.A → A, and thus Σ0

k-DNE ⊢IQC ¬¬∀n.A →
∀n.A. Hence Σ0

k-DNE ⊢IQC Π0
k+1-DNE. To prove the converse Π0

k+1-DNE ⊢IQC

Σ0
k-DNE, let A be any Σ0

k-formula. For any fresh variable l, the formula A is
equivalent in IQC to a Π0

k+1-formula ∀l. A. So an instance ¬¬∀l. A → ∀l. A of the

axiom scheme Π0
k+1-DNE proves in IQC an instance ¬¬A → A of Σ0

k-DNE. �

2.2. Prenex Normal Form Theorem. We will introduce three sets of LHA-
formulas such that the three correspond to Σ0

k-, Π0
k-, and ∆0

k-formulas of HA,
respectively.

Definition 2.14 (Ek, Uk, Pk). For the language LHA, we define Ek-, Uk-, and Pk-
formulas.

(1) Given an occurrence of a quantifier. If it is in a Σ0
0-formula, then we do

not assign the sign to it. Otherwise,
(a) The sign of an occurrence ∃ in a formula A is the sign of the subformula

∃n.B starting with such ∃.
(b) The sign of an occurrence ∀ in a formula A is the opposite of the sign

of the subformula ∀n.B starting with such ∀.
(2) The degree of a formula is the maximum number of nested quantifiers with

alternating signs. Formulas of degree 0 are exactly Σ0
0-formulas. Clearly the

degree is less than or equal to the number of occurrences of the quantifiers.
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(3) By a(n) Uk-(Ek-)formula, we mean a formula of degree k such that all the
outermost quantifiers are negative (positive). A Pk+1-formula is a proposi-
tional combination of Uk- and Ek-formulas.

The Heyting arithmetic HA has the function symbols and the defining equations
for a primitive recursive pairing p : N2 → N and primitive recursive, projection
functions p0 : N → N and p1 : N → N such that p0(p(l,m)) = l, p1(p(l,m)) = m,
and p(p0(n), p1(n)) = n. It is fairy easy to verify the following fact:

Fact 2.15. An LHA-formula · · · (· · ·QlQm · · · )(· · · l · · ·m · · · ) · · · is equivalent in
HA to an LHA-formula · · · (· · ·Qn · · · )(· · · (p0n) · · · (p1n) · · · ) · · · for all Q ∈ {∀, ∃}.

Theorem 2.16. For any U0
k -(E

0
k-)formula A, we can find a Π0

k-(Σ
0
k-, resp.)formula

Â which is equivalent in HA+Σ0
k-LEM to A.

Proof. The proof is by induction on the structure of A. When k = 0, we can take
A as Â because A is a Σ0

0-formula. Assume k > 0. Then A is not a prime formula.
The rest of the proof proceeds by cases according to the form of the formula A.

Case 1. A is B1 ◦B2 with ◦ = ∨,∧,→

Subcase 1.1 ◦ = ∨,∧. Then B1 and B2 are both U0
k -(E

0
k-)formulas. We can

use the induction hypotheses to find two Π0
k-(Σ

0
k-)formulas B̂1 and B̂2 which are

equivalent in HA+Σ0
k-LEM to B1 and B2 respectively.

When A is a U0
k -formula, then the Π0

k-formulas B̂1 and B̂2 are ∀l.M1l and

∀m.M2m for some Σ0
k−1-formulas M1l and M2m. Here M1l and B̂2m are both

decidable in HA+Σ0
k-LEM because the system HA+Σ0

k-LEM proves Σ0
k−1-LEM

and Π0
k-LEM by Theorem 1.1. So by Lemma 2.1 and Fact 2.3 imply

HA+Σ0
k-LEM ⊢ A ↔ B̂1 ◦ B̂2 ↔ ∀l(M1l ◦ ∀mM2m) ↔ ∀l∀m(M1l ◦M2m).

Here M1l ◦ M2m is an Ek−1-formula. By Σ0
k-LEM ⊢HA Σ0

k−1-LEM, we can use

the induction hypothesis to find a Σ0
k−1-formula D̂lm which is equivalent in HA+

Σ0
k-LEM to the Ek−1-formula M1l◦M2m. So, in HA+Σ0

k-LEM, the U0
k -formula A

is equivalent to ∀l∀m. D̂lm which is equivalent in HA+Σ0
k-LEM to a Π0

k-formula.
When A is an E0

k-formula, the proof proceeds as in the case A is a U0
k -formula.

Subcase 1.2 ◦ =→. Then B1 is an E0
k-(U

0
k -)formula, while B2 is an U0

k -(E
0
k-

)formula. We can use the induction hypotheses to find a Σ0
k-(Π

0
k-)formula B̂1 and

a Π0
k-(Σ

0
k-)formula B̂2 such that HA + Σ0

k-LEM ⊢ (B1 ↔ B̂1) ∧ (B2 ↔ B̂2). By

Lemma 2.7 and Fact 2.6 (2), HA+Σ0
k-LEM ⊢ ¬B̂1 → (B̂1)

⊥. On the other hand,

we can show IQC ⊢ (B̂1)
⊥ → ¬B̂1 by using the sequent calculus G3 for IQC. Hence

HA + Σ0
k-LEM ⊢ (B̂1)

⊥ ↔ ¬B̂1. In HA + Σ0
k-LEM, the Σ0

k-(Π
0
k-)formula B̂1 is

decidable, and thus (B̂1 → B̂2)
Fact 2.3

↔ ¬B̂1∨ B̂2 ↔ (B̂1)
⊥∨ B̂2. The two disjuncts

(B̂1)
⊥ and B̂2 are both Π0

k-(Σ
0
k-)formulas decidable in HA+ Σ0

k-DNE. Moreover,

each subformula of (B̂1)
⊥ and B̂2 is so. Hence by Lemma 2.1, Fact 2.3 and Fact 2.15,

the formula (B̂1)
⊥ ∨ B̂2 is equivalent in HA+Σ0

k-LEM to a Π0
k-(Σ

0
k-)formula.

Case 2. A is ∀n.B[n] (∃n.B[n]).
Assume B[n] is a U0

k -(E
0
k-)formula. Then we can find by the induction hypothesis

a Π0
k-(Σ

0
k-)formula B̂[n] which is equivalent in HA+Σ0

k-LEM to B[n]. So, in HA+
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Σ0
k-LEM, the formula A is equivalent to ∀n. B̂[n] (∃n. B̂[n]), which is equivalent

to some Π0
k-(Σ

0
k)-formula by Fact 2.15.

Otherwise, B[n] is an E0
k−1-(U

0
k−1-)formula. By the induction hypothesis, we

can find a Σ0
k−1-(Π

0
k−1-)formula B̂[n] which is equivalent in HA + Σ0

k−1-LEM to

B[n]. So, in HA+ Σ0
k-LEM, the formula A is equivalent to ∀n. B̂[n] (∃n. B̂[n]).

Case 3. A is ¬B. The same argument as Subcase 1.2. �

Here we will prove a slightly stronger version of Theorem 1.2.

Corollary 2.17. For any P 0
k+1-formula A, we can find a Π0

k+1-formula B̂ and a

Σ0
k+1-formula Ĉ such that HA + Σ0

k-LEM ⊢ A ↔ B̂ ↔ Ĉ. Here the number of

occurrences of quantifiers in B̂ and that of Ĉ are less than or equal to that of A.

Proof. By Theorem 2.16, the P 0
k+1-formula A is equivalent in HA + Σ0

k-LEM to

a propositional combination A◦ of Π0
k-formulas and Σ0

k-formulas. In the formula
A◦, move (0) all the outermost quantifiers of positive sign, out of all the proposi-
tional connectives, (1) all the outermost quantifiers of negative sign, out of all the
propositional connectives, (2) all the outermost quantifiers of positive sign, out of
all the propositional connectives, (3) all the outermost quantifiers of negative sign,
out of all the propositional connectives, . . .. The resulting formula C is a block of
quantifiers followed by a Σ0

0-formula where the block has at most k+1 alternations
of quantifiers (e.g. If A is a P 0

2 -formula ∀xPx ∧ (∃yP ′y → ∃zP ′′z) with P, P ′, P ′′

being Σ0
0-formulas, then A◦ is ∃z∀xy(Px ∧ (P ′y → P ′′z)) which has 2 alternations

of quantifiers). All the Π0
k- and all the Σ0

k-formulas are (HA+Σ0
k-LEM)-decidable.

So, by Lemma 2.1 and Fact 2.3, the formula C is equivalent in HA+Σ0
k-LEM to the

P 0
k+1-formula A. By Fact 2.15, the resulting formula is equivalent in HA+Σ0

k-LEM

to a Σ0
k+1-formula Ĉ. In a similar way, the P 0

k+1-formula A is equivalent in

HA+Σ0
k-LEM to a Π0

k+1-formula B̂. �

3. Iterated Autonomous Limiting PCAs

We recall autonomous limiting pcas (Akama, 2004). The construction was based
on the Fréchet filter on N, and is similar to but easier than the constructions of
recursive ultrapower (Hirschfeld, 1975) and then semi-ring made from recursive
functions modulo co-r-maximal sets (Lerman, 1970).

We say a partial numeric function ϕ(n1, . . . , nk) is guessed by a partial numeric
function ξ(t, n1, . . . , nk) as t goes to infinity, provided that ∀n1, . . . , nk∃t0∀t >
t0. ϕ(n1, . . . , nk) ≃ ξ(t, n1, . . . , nk). Here, the relation ≃ means “if one side is
defined, then the other side is defined with the same value.” In this case, we write
ϕ(n1, . . . , nk) ≃ limt ξ(t, n1, . . . , nk). On the other hand, the symbol ‘=’ means
both sides are defined with the same value. For every class F of partial numeric
functions, lim(F) denotes the set of partial numeric functions guessed by a partial
numeric function in F .

A partial combinatory algebra (pca for short) is a partial algebra A equipped
with two distinct constants k, s and a partial binary operation “application” (−)·(•)
subject to (k · a) · b = a, ((s · a) · b) · z ≃ (a · c) · (b · c), and (s · a) · b is defined.
We introduce the standard convention of associating the application to the left and
writing ab instead of a · b, omitting parentheses whenever no confusion occurs. If
a · b is defined then both of a and b are defined.
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The 0-th Church numeral of A is an element k (s k k) of A. The (n + 1)-th
Church numeral of A is an element s (s (k s) k) nA of A. By definition, for
each natural number n, an element nA of A represents n, and an element a of A
represents itself. We say a partial function ϕ from M1 ×M2 × · · · ×Mk to M0 is
represented by an element a of A, whenever ϕ(x1, . . . , xk) = x0 if and only if for
all representatives ai ∈ A of xi (1 ≤ i ≤ k), a a1 · · · ak−1 ak is defined and is a
representative of x0. The set of A-representable partial functions from M to M ′ is
denoted by M⇀A M ′. Each partial recursive function is representable in any pca.

Let ∼ be the partial equivalence relation on A such that a ∼ b if and only if

a t
A

= b t
A

for all but finitely many natural numbers t. A quotient structure
(N⇀A A)/ ∼ will be a pca by the argument-wise application operation modulo ∼.
More precisely, let [a]∼ be {b ∈ A | b ∼ a}. Then the set {[a]∼ | a ∈ A and a ∼ a},
k := [k k]∼, s := [k s]∼ and the following operation [a]∼ ∗ [b]∼ ≃ [s a b]∼ defines a
pca. We denote it by lim(A).

By a homomorphism from a pca A to a pca B, we mean a function from A
to B such that f(k) = k, f(s) = s, and f(a) f(b) ≃ f(a b) for all a, b ∈ A.
A homomorphism fits in with a “strict, total homomorphism between pcas” (see
p. 23 of Hofstra and Cockett (2010)). A canonical injection of a pca A is, by
definition, an injective homomorphism ιA : A → lim(A) ; x 7→ [k x]∼.

Fact 3.1. ιA is indeed an injective homomorphism for every pca A.

Proof. We can see that ιA is indeed a function from A to lim(A). In other words,
ιA is “total” in a sense of Hofstra and Cockett (2010). It is proved as follows: For
every x ∈ A, we have k x t = k x t for every t ∈ N. This implies k x ∼ k x,
from which ιA(x) = [k x]∼ is in lim(A). The function ιA is injective, because

ιA(x) = ιA(y) implies k x t
A
= k y t

A
for all but finitely many natural numbers t,

from which x = k x t
A
= k y t

A
= y holds for some natural number t.

It holds that (i) the injection ιA maps the intrinsic constants k, s of the pca

A to k, s of the pca lim(A), and (ii) ιA(a) ιA(b) ≃ ιA(a b). In other words, the
injection ιA is “strict” in a sense of Hofstra and Cockett (2010). The Assertion (i)
is clear by the definition. As for the Assertion (ii), we can prove that if ιA(a b) is
defined then ιA(a) ιA(b) is defined with the same value. The proof is as follows:
By the premise, a b is defined. Because k (a b) t = (a b) = s (k a) (k b) t for all
t ∈ N, we have

ιA(a) ιA(b) ≃ [s (k a) (k b)]∼ ≃ [k (a b)]∼ ≃ ιA(a b).(17)

We can prove that if ιA(a) ιA(b) is defined then ιA(ab) is defined with the same
value. The proof is as follows: By the premise, [s (k a) (k b)]∼ is defined. So
s (k a) (k b) ∼ s (k a) (k b). Hence for all but finitely many natural numbers t,
s (k a) (k b) t ≃ a b is defined. Thus (a b) is defined. By (17), the Assertion (ii)
follows. �

Because ιA is a homomorphism, we have nlim(A) = ιA(n
A). Hence the limit is

the congruence class of the guessing function, as follows:

lim
t

(

ξ t
)

= n in A ⇐⇒ [ξ]∼ = n in lim(A). (ξ ∈ A)(18)

The direct limit of A
ιA→ lim(A)

ιlim(A)
→ lim2(A) · · · is indeed a pca, and will be

denoted by limω(A). The application operator of a pca and “limit procedure”
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commute;

(lim
t

a t) ∗ (lim
t

b t) = [a]∼ ∗ [b]∼ = [s a b]∼ = lim
t

s a b t = lim
t
(a t) (b t).

The set of partial numeric functions represented by a pca A is denoted by
RpFn(A). By the bounded maximization of a function f(x, ~n), we mean a function
maxx<l f(x, ~n). The following fact is well-known.

Fact 3.2. For every pca B, the set of functions represented by elements of B is
closed under the composition, the bounded maximization and under µ-recursion.

Then, we can prove RpFn(limα(A)) = ∪n<max(1+α,ω) lim
n(RpFn(A)). Shoen-

field’s limit lemma (see Odifreddi (1989) for instance) implies that the pca limα(A)
represents all ∅(max(α,ω))-recursive functions. So, the pca limω(A) can represent any
arithmetical function.

4. Iterated Limiting Realizability Interpretation of Semi-classical

EONs

It is well-known that a form of Markov Principle over the language LHA,

Σ0
1-DNE ¬¬∃n∀m < t.f(n,m, l) = 0 → ∃n∀m < t.f(n,m, l) = 0

is realized by an ordinary program r(t, l) = µn.maxm<t f(n,m, l) = 0 via re-
cursive realizability interpretation of Kleene (1945). Here the program r(t, l) is
representable by a pca A. A stronger principle of classical logic

Σ0
2-DNE ¬¬∃n∀m. f(n,m, l) = 0 → ∃n∀m. f(n,m, l) = 0,

the “limit” with respect to t of a Σ0
1-DNE, turns out to be realized by a limiting

computation limt r(t, l) which is representable by a limiting pca limA. This sim-
ple approach can be extended to an iterated limiting realizability interpretation of
Σ0

α-DNE for α ≤ ω, by limαA.
For the convenience, we embed HA + Σ0

1+α-DNE in a corresponding extension

of a constructive logic EON. It is EON plus a form of Σ0
1+α-DNE. The iterated

limiting realizability interpretation is introduced by using an α-iterated autonomous
limiting pcas limα(A).

Here EON is a constructive logic of partial terms (see p. 98 of Beeson (1985)),
and the language includes Curry’s combinatory constants, and a partial application
operator symbol. The language of EON is {(−) · (•), s,k,d, 0, sN,pN,p,p0,p1; =
, N, ↓}. Here the constant symbols p,p0,p1 are intended to be the pairing function,
the first projection, and the second projection, respectively. The predicate symbol
= means “the both hand sides are defined and equal.” The 1-place predicate
symbols N and ↓ mean “is a natural number” and “is defined,” respectively. As
before, we write a0 a1 a2 · · · an−1 an for (· · · ((a0 · a1) · a2) · · · ·an−1) · an, whenever
no confusion occurs.

In writing formulas of EON, variables n,m, l, i and j will be implicitly restricted
to the predicate N , i.e. they are “natural number variables.” So, ∀n.An is the
abbreviation for ∀x. (Nx → Ax) and ∃m.Bm for ∃y. (Ny ∧ By). We review the
logical axioms of EON from p. 98 of Beeson (1985). The logical axioms and rules
of EON are as follows: EON has the usual propositional axioms and rules. The
quantifier axioms and rules are as follows: From B → A infer B → ∀xA (x not
free in B). From A → B infer ∃xA → B (x not free in B). ∀xA[x] ∧ t ↓→ A[t].
A[t] ∧ t ↓→ ∃xA[x]. x = x. x = y → y = x. t = s → t ↓ ∧s ↓. R(t1, . . . , tn) → t1 ↓
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∧ · · · ∧ tn ↓. (R is any atomic formula). c ↓ (every constant symbol c). x ↓ (every
variable x). Let us abbreviate t ≃ s for (t ↓ ∨ s ↓ → t = s). EON has a logical
axiom t ≃ s → A[t] → A[s].

The non-logical axioms of EON consists of

kxy = x, sxyz ≃ xz(yz), sxy ↓, k 6= s,

pxy ↓, p0(pxy) = x, p1(pxy) = y,

N(0), ∀x (Nx → [N(sNx) ∧ pN(sNx) = x ∧ sNx 6= 0]) ,

∀x (Nx ∧ x 6= 0 → N(pNx) ∧ sN(pNx) = x) ,

Nx ∧ Ny ∧ x = y → dxyuv = u,

Nx ∧ Ny ∧ x 6= y → dxyuv = v,

A(0) ∧ ∀x (Nx ∧ A(x) → A(sNx)) → ∀x(Nx → A(x)).

We will interpret EON in a pca, as we interpret classical logic in a model theory.
The interpretations of the constant symbols s,k are the corresponding constants
of the pca A. The interpretations of the constant symbols 0, pN, sN, d in A
are defined in a similar way that they are represented in Curry’s combinatory
logic by Church numerals. The interpretation of the pairing p and projections
p0,p1 are as in Curry’s combinatory logic. For detail, see Hindley and Seldin
(1986). The application operator symbol (−) · (•) of EON is interpreted as the
application of the pca A. The unary predicate symbols N and ↓ are interpreted
as the set of Church numerals of A and A itself, respectively. The binary predicate
symbol = is interpreted as just the identity relation on A. Given an assignment
ρ : {EON-variables} → A. The interpretation of an EON-term t in A and ρ is
defined as an element of A as usual. The interpretation of an EON-formula A in
the pca A and ρ is defined as usual as one of the truth-value ⊤,⊥. We say an
EON-formula A is true in a pca A and an assignment ρ : {EON-variables} → A, if
the interpretation of A in A and ρ is ⊤. In this case we write A, ρ |= A. If A, ρ |= A
for every ρ, then we write A |= A.

Definition 4.1. Let T be a formal system extending EON. The realizability in-
terpretation of T is just an association to each formula A of T another formula
∃e. e r A of T with a variable e being fresh. It is read “some e realizes A.” For an
EON-term t and an EON-formula A, we define an EON-formula t r A as follows:

• t r P is t ↓ ∧ P for each atomic formula P .
• t r ¬A is t ↓ ∧ ∀x(¬x r A).
• t r A → B is t ↓ ∧ ∀x(x r A → tx ↓ ∧ tx r B).
• t r ∀x.A is ∀x(tx ↓ ∧ tx r A).
• t r ∃x.A[x] is p1t r A[p0t].
• t r A ∧B is p0t r A ∧ p1t r B.
• t r A ∨B is N(p0t) ∧ (p0t = 0 → p1t r A) ∧ (¬p0t = 0 → p1t r B).

Definition 4.2. A formal arithmetic T extending EON is said to be sound by the
realizability interpretation for a pca A, provided that for every sentence B provable
in T , a sentence ∃e. (e r B) is true in A.

(Realizability) interpretations and model theory of a (constructive) arithmetic
T are often formalized within the system T plus reasonable axioms. For example,
Troelstra (1973), Avigad (2000) and so on formalized realizability interpretations of
constructive logics, while Smoryński (1978), Hájek and Pudlák (1998) and so on did
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non-standard models of various arithmetic. However, as we defined in Definition 4.2,
we will carry out our realizability interpretation within a naive set theory. This
readily leads to the second assertion of the following Lemma.

Lemma 4.3. Suppose B is an EON-formula in pnf with all the variables relativized
by the predicate N .

(1) For any EON-term t, we have EON ⊢ t r B → B.
(2) If B is an EON-sentence and A is a pca, then A |= ¬¬∃x. x r B implies

A |= B.

Proof. (1) The proof is by induction on the structure of B. When B is prime,
it is trivial. When B is ∀x(Nx → Ax), then t r B is ∀x(t · x ↓ ∧ ∀y(Nx →
t · x · y ↓ ∧ t · x · y r Ax)) where the variables x and y are fresh. So the induction
hypothesis implies t r B → ∀x(t · x ↓ ∧ ∀y(Nx → t · x · y ↓ ∧ Ax)). Because
y is fresh, t r B → ∀x(Nx → Ax). When B is ∃x(Nx ∧ Ax), then t r B is
p0(p1t) ↓ ∧ N(p0t) ∧ p1(p1t) r A(p0t). So the induction hypothesis implies
t r B → p0(p1t) ↓ ∧ N(p0t) ∧ A(p0t). Hence, t r B → N(p0t) ∧ A(p0t). Thus
t r B → ∃x(Nx ∧ Ax).

(2) By Definition 4.1, the system EON proves a sentence ∃x. x r ¬¬B →
¬¬∃x.x r B. By the premise and the soundness of EON for any pca, ¬¬∃x.x r B
is true in the pca A, and thus ∃x.x r B is so. By the soundness of EON in any
pca and the Assertion (1) of this Lemma, the sentence B is true in the pca. �

We will make the argument of the first paragraph of this section rigorous. It is
instructive to consider the following Lemma.

Lemma 4.4. For each closed EON-term t and for each pca A, whenever A |=
∀m1∀m2. N(t m1 m2) holds, it holds

lim(A) |= ∃x.
[

x r (¬¬∃m1∀m2. t m1 m2 = 0 → ∃m1∀m2. t m1 m2 = 0)
]

.

Proof. Let an EON-formula q r ¬¬∃m1∀m2. t m1 m2 = 0 be true in lim(A). By
Lemma 4.3 (2), for some natural number n1, the EON-sentence ∀m2. t n1 m2 = 0
is true in lim(A).

We can see that A has an element ξ representing the following unary numeric
function:

minimal(l) := µm1.
(

(max
m2<l

t m1 m2) = 0
)

.

Note that minimal(l) ≤ minimal(l′) ≤ n1 if l ≤ l′. So, some natural number
m1 satisfies liml minimal(l) = m1. That is, for all natural numbers l but finitely
many, we have minimal(l) = m1. So, for all natural numbers l but finitely many,
the formula ξ l = m1 is true in A.

By the definition of lim(A), we have

[ξ]∼ = m1

in lim(A). By the definition of ξ, for all natural numbers l but finitely many,
an EON-sentence (maxm2<l t m1 m2) = 0 is true in lim(A). Therefore, for all
natural numbers m2, an EON-sentence t m1 m2 = 0 is true in lim(A). Hence,
∀m2. t m1 m2 = 0 is true in lim(A).

So, as a realizer x of ¬¬∃m1∀m2. t m1 m2 = 0 → ∃m1∀m2. t m1 m2 = 0, take

k
(

p
(

p 0 (k(k 0))
)

[ξ]∼

)

∈ lim(A). �
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Definition 4.5. For each pca A and each nonnegative integer k, (Σ0
k-DNE′) is

a rule

t is a closed term of EON ∀~n∀m1 . . . ∀mk. N(t ~n m1 · · · mk)

∀~n

(

¬¬∃m1∀m2∃m3 · · ·Qkmk. t ~n m1 m2 . . .mk = 0
→ ∃m1∀m2∃m3 · · ·Qkmk. t ~n m1 m2 . . .mk = 0

)

Here Qk is ∃ for odd k and ∀ for even k.

Theorem 4.6. For each nonnegative integer k and each pca A, if the system EON

+ (Σ0
k+1-DNE′) proves an EON-sentence A, then a sentence ∃e. e r A is true in

the pca limk(A).

Proof. The verification is by induction on the length of the proof π of A. The
axioms and rules other than (Σ0

k-DNE′) is manipulated as in the proof of Theorem
1.6 of Beeson (1985).

We will consider the case (Σ0
k-DNE′). By the induction hypothesis on the proof

π, an EON-sentence ∃e. e r ∀~n∀m1 . . . ∀mk. N(t ~n m1 · · · mk) is true in the pca

limk(A). We will derive that an EON-sentence

∃e. e r ∀~n(¬¬∃m1∀m2 · · ·Qkmk. t ~n m1 m2 . . .mk = 0

→ ∃m1∀m2 · · ·Qkmk. t ~n m1 m2 . . .mk = 0)

is true in limk(A). Let x be an element of limk(A) and ~n be nonnegative integers.
Suppose

limk(A) |= x r ¬¬∃m1∀m2 · · ·Qkmk. t ~n m1 m2 . . .mk = 0.

By Lemma 4.3 (2), we have

limk(A) |= Q1m1Q2m2Q3m3 · · ·Qkmk. t ~n m1 · · ·mk = 0.

For every closed EON-term t′, the valuation of t′ in limk(A) is obtained from the
valuation of t′ in A by the canonical injection ιlimk−1(A) ◦ · · · ◦ ιA. Hence

A |= Q1m1Q2m2Q3m3 · · ·Qkmk. t ~n m1 · · ·mk = 0(19)

where Qi = ∃ (i : odd); ∀ (i : even).

Definition 4.7. For each pca A and each j = 0, . . . , k− 2, define a total function

gj(~n, ν1, . . . , νk−j) : ~N× Nk−j → {0, 1} such that

gj(~n, ν1, . . . , νk−j) = 0 ⇐⇒ A |=

{

(Qk−j+1mk−j+1) (Qk−j+2mk−j+2) · · · (Qkmk).

t ~n ν1 · · · νk−j mk−j+1 · · ·mk = 0.

Claim 4.8. For each j = 0, . . . , k− 2, the total function gj is represented by some

element of a pca limjA.

Proof. We can define gj as a j-nested limiting function, as follows:

g0(~n, ν1, . . . , νk) := min(1, l) such that A |= t ~n ν1 · · · νk = l.

gj(~n, ν1, . . . , νk−j) :=







lim
l

max
νk−j+1<l

gj−1(~n, ν1, . . . , νk−j+1), (k − j is odd);

lim
l

min
νk−j+1<l

gj−1(~n, ν1, . . . , νk−j+1), (k − j is even).
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The claim is derived from (19) by induction on j, because gj is the limit of a
bounded monotone function which is either max...<l or min..<l. Each gj is repre-

sented by some element of a pca limjA, because of (18). This completes the proof
of Claim 4.8. �

We continue the proof of Theorem 4.6. For an EON-formula

∃m1∀m2∃m3 · · ·Qkmk. t ~n m1 · · ·mk = 0(20)

appearing in (19), consider the “game” represented by (20) between the proponent
∃ and the opponent ∀. From any moves ν2, ν4, . . . , ν2p−2 (p = 1, 2, . . . , ⌊(k+2)/2⌋)
taken by the opponent ∀, the minimum move m2p−1(~n, ν2, ν4, . . . , ν2p−2) by the
proponent ∃ is given by the following limiting function

Definition 4.9. For p = 1, 2, . . . , ⌊(k + 2)/2⌋, let

m2p−1(~n, ν2, ν4, . . . , ν2p−2) := lim
l

minimal2p−1(l, ~n, ν2, ν4, . . . , ν2p−2).

Here the guessing function minimal1(l, ~n) = µm1(maxν2<l gk−2(~n,m1, ν2)) is ob-
tained from gk−2 by the bounded maximization maxν2<l and the µ-recursion. For
p > 1, define the function minimal2p−1 by the composition, the bounded maximiza-
tion maxν2p<l and the µ-recursion µm2p−1.

minimal2p−1(l, ~n, ν2, ν4, . . . , ν2p−2)

:= µm2p−1.
(

max
ν2p<l

gk−2p

(

~n, m1(~n), ν2, m3(~n, ν2), ν4, m5(~n, ν2, ν4), . . . ,

m2p−3(~n, ν2, . . . , ν2p−4), ν2p−2, m2p−1, ν2p
)

= 0
)

.

For the function m2p−1 defined above, we have the following:

Claim 4.10. Assume p = 1, 2, 3, . . . , ⌊(k + 2)/2⌋. Then the following assertions
hold:

(1) m2p−1(~n, ν2, ν4, . . . , ν2p−2) is indeed a total function of ~n, ν2, ν4, . . . , ν2p−2.
For the game the EON-formula (20) represents, consider the following

alternating sequence σ of the proponent ∃’s moves and the opponent ∀’s
moves of the game:

(m1(~n), ν2, m3(~n, ν2), ν4, m5(~n, ν2, ν4), . . . ,m2p−3(~n, ν2, . . . , ν2p−4), ν2p−2) ∈ N2p−2

Suppose that n2p−1 ∈ N is a proponent’s move that immediately follows the
sequence σ. Then n2p−1 ≥ m2p−1(~n, ν2, ν4, . . . , ν2p−2).

(2) The limiting function m2p−1 is represented by an element of a pca limk(A).

Proof. (1) The proof is by induction on p. The case where p = 1 is essentially
due to the proof of Lemma 4.4. Let p > 1. Assume (i) the opponent’s 2p-th move
ν2p is bounded from above by l, (ii) the parameter ~n of the game is supplied, and
(iii) the opponent’s moves ν2, ν4, . . . , ν2p−2 so far are supplied. By the induction
hypotheses, the functions m1,m3, . . . ,m2p−3 are total. By this, Definition 4.7,
and Definition 4.9, we see that minimal2p−1(l, ~n, ν2, ν4, . . . , ν2p−2) is the minimum
(2p − 1)-th move of proponent ∃ under the assumption (i). The guessing func-
tion minimal2p−1 is increasing with respect to the first argument l, because l is the
bound of the maximization in the definition of minimal2p1−. But there is n2p−1 ∈ N

such that for every l, we have minimal2p−1(l, ~n, ν2, ν4, . . . , ν2p−2) ≤ n2p−1, be-
cause of (19) and Claim 4.7. Therefore the limit m2p−1(~n, ν2, ν4, . . . , ν2p−2) of
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minimal2p−1(l, ~n, ν2, ν4, . . . , ν2p−2) with respect to l is indeed a total function, and
actually the limit from below. Therefore it is minimum among the possible winning
moves. This completes the proof of Assertion (1).

(2) The proof is by induction on p. Consider the case where p = 1. Thenm1(~n) =
liml minimal1(l, ~n) = liml µm1(maxν2<l gk−2(~n,m1, ν2)) = 0). By Claim 4.8, the

total function gk−2 is represented by some element of limk−2(A). By Fact 3.2,
the function µm1(maxν2<l gk−2(~n,m1, ν2)) = 0) is represented by some element

of limk−2(A). By (18), the function m1(~n) is represented by some element of

limk−1(A). Fact 3.1 implies the function m1(~n) is represented by some element of

limk(A).
Next consider the case where p > 1. By Claim 4.8, a (partial) function gk−2p

is indeed a total function represented by some element of the pca limk−2p(A).
By applying the bounded maximization and then µ-recursion to gk−2p, define a
(partial) function of l, ~n, x1, ν2, x3, ν4, . . . , x2p−3, ν2p−2, as follows

µm2p−1

(

max
ν2p<l

gk−2p(~n, x1, ν2, x3, ν4, . . . , x2p−3, ν2p−2,m2p−1, ν2p) = 0

)

.(21)

Then the (partial) function is also represented by some element of the pca limk−2p(A),
because of Fact 3.2. Let a (partial) function F of ~n, x1, ν2, x3, ν4, . . . , x2p−3, ν2p−2

be guessed by a (partial) function (21) with respect to the variable l. Then F is

represented by some element of a pca limk−2p+1(A) by (18). By Fact 3.1, the

function F is represented by some element of a pca limk(A).
By the induction hypothesis on p, all of (p− 1) total functions m1(~n), m3(~n, ν2),

m5(~n, ν2, ν4), . . . ,mp−1(~n, ν2, ν4, . . . , ν2p−4) are represented by some elements of

the pca limk(A). By composing the (p − 1) total functions at the arguments
x1, x3, . . . , x2p−3 of the (partial) function F (~n, x1, ν2, x3, ν4, . . . , x2p−3, ν2p−2), we
obtain the total function m2p−1(~n, ν2, ν4, . . . , ν2p−2), according to Definition 4.9.

Thus the total function m2p−1 is represented by some element of the pca limk(A)
by Fact 3.2. �

The EON-formula (20) has a realizer q ∈ limk(A). Here q consists of the following

elements of limk(A) : the numerals ~n
A
, and the representatives of the total functions

m1,m3, . . ., in view of Claim 4.10. This completes the proof of Theorem 4.6. �

From Theorem 4.6, Theorem 1.3 follows, by embedding HA + Σ0
k-DNE in a

corresponding EON+ (Σ0
k+1-DNE′) where A is a pca.

4.1. Proofs of Theorem 1.5 and Theorem 1.6. We prove the non-derivability
between the axiom schemes Fk+1-IP and Σ0

k+1-DNE (Theorem 1.5) by using iter-

ated limiting realizability interpretation (Theorem 1.3). Let A n m be a Π0
k-formula

with all the variables indicated. The axiom scheme Σ0
k+1-DNE proves a sentence

∀n (¬¬∃m.A n m → ∃m.A n m) .

By this and Fk+1-IP, we derive a sentence ∀n∃m. (¬¬∃m.A n m → A n m). If the

system HA + Σ0
k+1-DNE + Fk+1-IP is realizable by the pca limk(N), then there

exists e ∈ N such that for all n ∈ N the following conditions hold:

(1) f(n) := limt1 · · · limtk{e}(t1, . . . , tk, n) is convergent (In this case, f is ∅(k)-
recursive and thus has a Π0

k+1-graph); and
(2) If A n m holds for some m ∈ N, then A n f(n) holds.
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Because A is a Π0
k-formula and f has a Π0

k+1-graph, A n f(n) is a Π0
k+1-relation

for n. Note that ∃m.A n m iff A n f(n). Because A is an arbitrary Π0
k-formula, we

can choose A such that ∃m.A(•,m) is a complete Σ0
k+1-relation. This contradicts

against that Anf(n) is a Π0
k+1-relation. This completes the proof of Theorem 1.5.

Every arithmetical relation R satisfies the uniformization property (Odifreddi,
1989). That is, if for all natural numbers n there exists a natural number m such
that R(n,m), then there exists an arithmetical function fR such that for all n
R(n, f(n)). In Section 3, we provide a pca limω(N) which represents all such fR’s.
In fact, the representative induces a realizer of ∀n∃m.R(n,m).

By our prenex normal form theorem (Theorem 1.2) and our iterated limiting
realizability interpretations (Theorem 1.3), we will slightly refine Smoryński’s result
mentioned in Section 1 to Theorem 1.6.

Proof of Theorem 1.6. Assume otherwise. By Theorem 1.2, for every sentence
A ∈ Γ there is a sentence Â in pnf such that Â contains at most n quantifiers and
HA+ Γ proves A ↔ Â.

Since HA+Γ is n-consistent, the sentence Â in pnf is true in the standard model
ω.

First consider the case Â is a Π0
n-sentence. Then Â can be written as

∀x1∃x2∀x3 · · ·Qnxn. Rx1x2x3 · · ·xn

for some Σ0
0-formula R.

Here ∀x3∃x4 · · ·Qnxn. Rxyx3 · · ·xn defines a ∅(n−2)-recursive binary relation
on ω. By the relativization of the uniformization property for recursive rela-
tions (Odifreddi, 1989), there exists some ∅(n−2)-recursive function

f2(x) := µy.∀x3 · · ·Qnxn. Rxyx3 · · ·xn

such that for each natural number x1 a formula ∀x3∃x4 · · ·Qnxn. Rx1f2(x1)x3 · · ·xn

is true on ω.
In this way, there are ∅(n−2)-functions f2(x1), f4(x1, x3), . . . such that

∀x1∀x3∀x5 · · · . R x1 f2(x1) x3 f4(x1, x3) x5 · · ·

holds on ω.
If Â is not a Π0

n-sentence, then Â is written as ∃x1∀x2∃x3 · · ·Qnxn. Rx1x2x3 · · ·xn.
Then there are natural number n1 and ∅(n−3)-recursive functions f3(x2), f5(x2, x4), . . .
such that a formula ∀x2∀x4∀x6 · · ·Rn1x2f3(x2)x4f5(x2, x4) · · · holds on ω.

Because a pca limn(N) can represent all the ∅(n)-functions fi’s, we can find a

realizer of Â in the pca limn(N).
The pca limn(N) realizes Σ0

n-LEM, and thus the formula A ∈ Γ by Theorem 1.2.
Because the pca limn(N) does not realize Σ0

n+1-LEM, we conclude HA + Γ 6⊢
Σ0

n+1-LEM. This completes the proof of Theorem 1.6.

Our use of the complete set ∅(n) contrasts against Kleene’s use of extended
Church’s thesis on defining effectively true (general recursively true) prenex normal
form (see Section 79 of Kleene (1952)).

Smoryński (1982) considered other versions HA and PA of Heyting’s arithmetic
and Peano’s arithmetic, where HA and PA are formalized by the language

{0, 1, 2, 3, . . . ; Z(, ), S(, ), A(, , ), M(, , ), =},
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and then proved “Let Γ be a set of sentences of bounded quantifier-complexity, and
suppose HA + Γ ⊢ PA. Then HA + Γ is inconsistent.” For the proof, assuming
otherwise, Smoryński constructed a model of PA by applying Orey’s compactness
theorem to HA+Γ. For Orey’s compactness theorem, see Chapter 4 of Smoryński
(1978), Orey (1961), Hájek and Pudlák (1998) and Theorem. III 2.39 (i) ⇐⇒ (ii) of
Hájek and Pudlák (1998). Then he constructed a Kripke model (see Section 5.2.3
of Troelstra (1973)) for HA to derive the contradiction. See Smoryński (1982) for
a proof formalized within a formal system PA + 1-Con(PA).

However, the referee wrote

“As far as I can see Smoryński leaves open whether there can be a
consistent, classically unsound, finite extension of HA that implies
full sentential excluded third. I definitely do believe there isn’t. It
is unknown whether the analogous result holds for all classically
invalid constructive propositional schemes.”

The author cannot help but suppose that the language of the HA referee meant
consists of the function symbols for all the primitive recursive functions and the
identity predicate. It may be important to construct Kripke models of such HA by
employing model theory of arithmetic. The author thinks the referee’s last sentence
suggests a possible research direction.

As in the proof of Theorem 4.6, we hope that the wording “game,” “strategy,”
“move,” and so on are useful to explain realizability interpretation neatly, and
that various realizability interpretations of logical principles over HA are related
to circumstances where one or the other player of a various game have a winning
strategy, and the consequences of the existence of such strategies.
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