
ar
X

iv
:1

11
2.

34
56

v1
 [

cs
.L

O
]

 1
5

D
ec

 2
01

1

The Biequivalence

of Locally Cartesian Closed Categories

and Martin-Löf Type Theories

Pierre Clairambault and Peter Dybjer

University of Bath and Chalmers University of Technology

Abstract

Seely’s paper Locally cartesian closed categories and type theory con-
tains a well-known result in categorical type theory: that the category of
locally cartesian closed categories is equivalent to the category of Martin-
Löf type theories with Π,Σ, and extensional identity types. However,
Seely’s proof relies on the problematic assumption that substitution in
types can be interpreted by pullbacks. Here we prove a corrected version
of Seely’s theorem: that the Bénabou-Hofmann interpretation of Martin-
Löf type theory in locally cartesian closed categories yields a biequivalence
of 2-categories. To facilitate the technical development we employ cate-
gories with families as a substitute for syntactic Martin-Löf type theories.
As a second result we prove that if we remove Π-types the resulting cat-
egories with families are biequivalent to left exact categories.

(The present paper without the appendix appears in the Proceedings
of Typed Lambda Calculus and Applications, Novi Sad, Serbia, 1-3 June
2011.)

1 Introduction

It is “well-known” that locally cartesian closed categories (lcccs) are equivalent
to Martin-Löf’s intuitionistic type theory [9, 10]. But how known is it really?
Seely’s original proof [13] contains a flaw, and the papers by Curien [3] and
Hofmann [5] who address this flaw only show that Martin-Löf type theory can be
interpreted in locally cartesian closed categories, but not that this interpretation
is an equivalence of categories provided the type theory has Π,Σ, and extensional
identity types. Here we complete the work and fully rectify Seely’s result except
that we do not prove an equivalence of categories but a biequivalence of 2-
categories. In fact, a significant part of the endeavour has been to find an
appropriate formulation of the result, and in particular to find a suitable notion
analogous to Seely’s “interpretation of Martin-Löf theories”.

1

http://arxiv.org/abs/1112.3456v1

Categories with families and democracy. Seely turns a given Martin-Löf
theory into a category where the objects are closed types and the morphisms
from type A to type B are functions of type A → B. Such categories are the
objects of Seely’s “category of Martin-Löf theories”.

Instead of syntactic Martin-Löf theories we shall employ categories with fam-
ilies (cwfs) [4]. A cwf is a pair (C, T) where C is the category of contexts and
explicit substitutions, and T : Cop → Fam is a functor, where T (Γ) represents
the family of sets of terms indexed by types in context Γ and T (γ) performs
the substitution of γ in types and terms. Cwf is an appropriate substitute for
syntax for dependent types: its definition unfolds to a variable-free calculus of
explicit substitutions [4], which is like Martin-Löf’s [11, 14] except that vari-
ables are encoded by projections. One advantage of this approach compared to
Seely’s is that we get a natural definition of morphism of cwfs, which preserves
the structure of cwfs up to isomorphism. In contrast Seely’s notion of “inter-
pretation of Martin-Löf theories” is defined indirectly via the construction of
an lccc associated with a Martin-Löf theory, and basically amounts to a functor
preserving structure between the corresponding lcccs, rather than directly as
something which preserves all the “structure” of Martin-Löf theories.

To prove our biequivalences we require that our cwfs are democratic. This
means that each context is represented by a type. Our results require us to
build local cartesian closed structure in the category of contexts. To this end
we use available constructions on types and terms, and by democracy such
constructions can be moved back and forth between types and contexts. Since
Seely works with closed types only he has no need for democracy.

The coherence problem. Seely interprets type substitution in Martin-Löf
theories as pullbacks in lcccs. However, this is problematic, since type substi-
tution is already defined by induction on the structure of types, and thus fixed
by the interpretation of the other constructs of type theory. It is not clear that
the pullbacks can be chosen to coincide with this interpretation.

In the paper Substitution up to isomorphism [3] Curien describes the funda-
mental nature of this problem. He sets out

... to solve a difficulty arising from a mismatch between syntax
and semantics: in locally cartesian closed categories, substitution
is modelled by pullbacks (more generally pseudo-functors), that is,
only up to isomorphism, unless split fibrational hypotheses are im-
posed. ... but not all semantics do satisfy them, and in particular
not the general description of the interpretation in an arbitrary lo-
cally cartesian closed category. In the general case, we have to show
that the isomorphisms between types arising from substitution are
coherent in a sense familiar to category theorists.

To solve the problem Curien introduces a calculus with explicit substitutions for
Martin-Löf type theory, with special terms witnessing applications of the type
equality rule. In this calculus type equality can be interpreted as isomorphism

2

in lcccs. The remaining coherence problem is to show that Curien’s calculus
is equivalent to the usual formulation of Martin-Löf type theory, and Curien
proves this result by cut-elimination.

Somewhat later, Hofmann [5] gave an alternative solution based on a tech-
nique which had been used by Bénabou [1] for constructing a split fibration from
an arbitrary fibration. In this way Hofmann constructed a model of Martin-Löf
type theory with Π-types, Σ-types, and (extensional) identity types from a lo-
cally cartesian closed category. Hofmann used categories with attributes (cwa)
in the sense of Cartmell [2] as his notion of model. In fact, cwas and cwfs are
closely related: the notion of cwf arises by reformulating the axioms of cwas
to make the connection with the usual syntax of dependent type theory more
transparent. Both cwas and cwfs are split notions of model of Martin-Löf type
theory, hence the relevance of Bénabou’s construction.

However, Seely wanted to prove an equivalence of categories. Hofmann con-
jectured [5]:

We have now constructed a cwa over C which can be shown to
be equivalent to C in some suitable 2-categorical sense.

Here we spell out and prove this result, and thus fully rectify Seely’s theorem.
It should be apparent from what follows that this is not a trivial exercise. In
our setting the result is a biequivalence analogous to Bénabou’s (much sim-
pler) result: that the 2-category of fibrations (with non-strict morphisms) is
biequivalent to the 2-category of split fibrations (with non-strict morphisms).

While carrying out the proof we noticed that if we remove Π-types the
resulting 2-category of cwfs is biequivalent to the 2-category of left exact (or
finitely complete) categories. We present this result in parallel with the main
result.

Plan of the paper. An equivalence of categories consists of a pair of functors
which are inverses up to natural isomorphism. Biequivalence is the appropriate
notion of equivalence for bicategories [8]. Instead of functors we have pseud-
ofunctors which only preserve identity and composition up to isomorphism.
Instead of natural isomorphisms we have pseudonatural transformations which
are inverses up to invertible modification.

A 2-category is a strict bicategory, and the remainder of the paper consists
of constructing two biequivalences of 2-categories. In Section 2 we introduce
cwfs and show how to turn a cwf into an indexed category. In Section 3 we
define the 2-categories CwFIextΣ

dem of democratic cwfs which support extensional

identity types and Σ-types and CwFIextΣΠ
dem which also support Π-types. We

also define the notions of pseudo cwf-morphism and pseudo cwf-transformation.
In Section 4 we define the 2-categories FL of left exact categories and LCC of
locally cartesian closed categories. We show that there are forgetful 2-functors
U : CwFIextΣ

dem → FL and U : CwFIextΣΠ
dem → LCC. In section 5 we construct

the pseudofunctors H : FL → CwFIextΣ
dem and H : LCC → CwFIextΣΠ

dem based on

3

the Bénabou-Hofmann construction. In section 6 we prove that H and U give
rise to the biequivalences of FL and CwFIextΣ

dem and of LCC and CwFIextΣΠ
dem .

An appendix containing the full proof of the biequivalences can be found at
http://www.cse.chalmers.se/~peterd/papers/categorytypetheory.html/.

Acknowledgement. We are grateful to the anonymous reviewers for several
useful remarks which have helped us improve the paper. We would also like
to acknowledge the support of the (UK) EPSRC grant RC-CM1025 for the
first author and of the (Swedish) Vetenskapsr̊adet grant “Types for Proofs and
Programs” for the second author.

2 Categories with Families

2.1 Definition

Definition 1. Let Fam be the category of families of sets defined as follows. An
object is a pair (A,B) where A is a set and B(x) is a family of sets indexed by
x ∈ A. A morphism with source (A,B) and target (A′, B′) is a pair consisting
of a function f : A → A′ and a family of functions g(x) : B(x) → B′(f(x))
indexed by x ∈ A.

Note that Fam is equivalent to the arrow category Set→.

Definition 2. A category with families (cwf) consists of the following data:

• A base category C. Its objects represent contexts and its morphisms rep-
resent substitutions. The identity map is denoted by id : Γ → Γ and the
composition of maps γ : ∆ → Γ and δ : Ξ → ∆ : Ξ → Γ is denoted by γ ◦ δ
or more briefly by γδ : Ξ → Γ.

• A functor T : Cop → Fam. T (Γ) is a pair, where the first component
represents the set Type(Γ) of types in context Γ, and the second compo-
nent represents the type-indexed family (Γ ⊢ A)A∈Type(Γ) of sets of terms
in context Γ. We write a : Γ ⊢ A for a term a ∈ Γ ⊢ A. Moreover, if γ
is a morphism in C, then T (γ) is a pair consisting of the type substitu-
tion function A 7→ A[γ] and the type-indexed family of term substitution
functions a 7→ a[γ].

• A terminal object [] of C which represents the empty context and a
terminal map 〈〉 : ∆ → [] which represents the empty substitution.

• A context comprehension which to an object Γ in C and a type A ∈
Type(Γ) associates an object Γ ·A of C, a morphism pA : Γ ·A → Γ of
C and a term q ∈ Γ·A ⊢ A[p] such the following universal property holds:
for each object ∆ in C, morphism γ : ∆ → Γ, and term a ∈ ∆ ⊢ A[γ],
there is a unique morphism θ = 〈γ, a〉 : ∆ → Γ ·A, such that pA ◦ θ = γ
and q[θ] = a. (We remark that a related notion of comprehension for
hyperdoctrines was introduced by Lawvere [7].)

4

http://www.cse.chalmers.se/~peterd/papers/categorytypetheory.html/

The definition of cwf can be presented as a system of axioms and infer-
ence rules for a variable-free generalized algebraic formulation of the most basic
rules of dependent type theory [4]. The correspondence with standard syntax
is explained by Hofmann [6] and the equivalence is proved in detail by Mimram
[12]. The easiest way to understand this correspondence might be as a trans-
lation between the standard lambda calculus based syntax of dependent type
theory and the language of cwf-combinators. In one direction the key idea is
to translate a variable (de Bruijn number) to a projection of the form q[pn].
In the converse direction, recall that the cwf-combinators yield a calculus of
explicit substitutions whereas substitution is a meta-operation in usual lambda
calculus. When we translate cwf-combinators to lambda terms, we execute the
explicit substitutions, using the equations for substitution in types and terms
as rewrite rules. The equivalence proof is similar to the proof of the equivalence
of cartesian closed categories and the simply typed lambda calculus.

We shall now define what it means that a cwf supports extra structure
corresponding to the rules for the various type formers of Martin-Löf type theory.

Definition 3. A cwf supports (extensional) identity types provided the follow-
ing conditions hold:

Form. If A ∈ Type(Γ) and a, a′ : Γ ⊢ A, there is IA(a, a
′) ∈ Type(Γ);

Intro. If a : Γ ⊢ A, there is rA,a : Γ ⊢ IA(a, a);

Elim. If c : Γ ⊢ IA(a, a
′) then a = a′ and c = rA,a.

Moreover, we have stability under substitution: if δ : ∆ → Γ then

IA(a, a
′)[δ] = IA[δ](a[δ], a

′[δ])

rA,a[δ] = rA[δ],a[δ]

Definition 4. A cwf supports Σ-types iff the following conditions hold:

Form. If A ∈ Type(Γ) and B ∈ Type(Γ·A), there is Σ(A,B) ∈ Type(Γ),

Intro. If a : Γ ⊢ A and b : Γ ⊢ B[〈id, a〉], there is pair(a, b) : Γ ⊢ Σ(A,B),

Elim. If a : Γ ⊢ Σ(A,B), there are π1(a) : Γ ⊢ A and π2(a) : Γ ⊢ B[〈id, π1(a)〉]
such that

π1(pair(a, b)) = a

π2(pair(a, b)) = b

pair(π1(c), π2(c)) = c

Moreover, we have stability under substitution:

Σ(A,B)[δ] = Σ(A[δ], B[〈δ ◦ p, q〉])

pair(a, b)[δ] = pair(a[δ], b[δ])

π1(c)[δ] = π1(c[δ])

π2(c)[δ] = π2(c[δ])

5

Note that in a cwf which supports extensional identity types and Σ-types
surjective pairing, pair(π1(c), π2(c)) = c, follows from the other conditions [10].

Definition 5. A cwf supports Π-types iff the following conditions hold:

Form. If A ∈ Type(Γ) and B ∈ Type(Γ·A), there is Π(A,B) ∈ Type(Γ).

Intro. If b : Γ·A ⊢ B, there is λ(b) : Γ ⊢ Π(A,B).

Elim. If c : Γ ⊢ Π(A,B) and a : Γ ⊢ A then there is a term ap(c, a) : Γ ⊢
B[〈id, a〉] such that

ap(λ(b), a) = b[〈id, a〉] : Γ ⊢ B[〈id, a〉]

c = λ(ap(c[p], q)) : Γ ⊢ Π(A,B)

Moreover, we have stability under substitution:

Π(A,B)[γ] = Π(A[γ], B[〈γ ◦ p, q〉])

λ(b)[γ] = λ(b[〈γ ◦ p, q〉])

ap(c, a)[γ] = ap(c[γ], a[γ])

Definition 6. A cwf (C, T) is democratic iff for each object Γ of C there is
Γ ∈ Type([]) and an isomorphism Γ ∼=γΓ []·Γ. Each substitution δ : ∆ → Γ can
then be represented by the term δ = q[γΓδγ

−1
∆] : []·∆ ⊢ Γ[p].

Democracy does not correspond to a rule of Martin-Löf type theory. How-
ever, a cwf generated inductively by the standard rules of Martin-Löf type theory
with a one element type N1 and Σ-types is democratic, since we can associate N1

to the empty context and the closed type Σx1 : A1. · · · .Σxn : An to a context
x1 : A1, . . . , xn : An by induction on n.

2.2 The Indexed Category of Types in Context

We shall now define the indexed category associated with a cwf. This will play
a crucial role and in particular introduce the notion of isomorphism of types.

Proposition 1 (The Context-Indexed Category of Types). If (C, T) is a cwf,
then we can define a functor T : Cop → Cat as follows:

• The objects of T (Γ) are types in Type(Γ). If A,B ∈ Type(Γ), then a
morphism in T (Γ)(A,B) is a morphism δ : Γ ·A → Γ ·B in C such that
pδ = p.

• If γ : ∆ → Γ in C, then T (γ) : Type(Γ) → Type(∆) maps an object
A ∈ Type(Γ) to A[γ] and a morphism δ : Γ·A→ Γ·B to 〈p, q[δ〈γ ◦p, q〉]〉 :
∆·A[γ] → ∆·B[γ].

We write A ∼=θ B if θ : A → B is an isomorphism in T (Γ). If a : Γ ⊢ A, we
write {θ}(a) = q[θ〈id, a〉] : Γ ⊢ B for the coercion of a to type B and a =θ b if
a = {θ}(b). Moreover, we get an alternative formulation of democracy.

6

Proposition 2. (C, T) is democratic iff the functor from T ([]) to C, which
maps a closed type A to the context []·A, is an equivalence of categories.

Seely’s category ML of Martin-Löf theories [13] is essentially the category
of categories T ([]) of closed types.

Fibres, slices and lcccs. Seely’s interpretation of type theory in lcccs relies
on the idea that a type A ∈ Type(Γ) can be interpreted as its display map,
that is, a morphism with codomain Γ. For instance, the type list(n) of lists of
length n : nat would be mapped to the function l : list → nat which to each
list associates its length. Hence, types and terms in context Γ are interpreted
in the slice category C/Γ, since terms are interpreted as global sections. Syn-
tactic types are connected with types-as-display-maps by the following result,
an analogue of which was one of the cornerstones of Seely’s paper.

Proposition 3. If (C, T) is democratic and supports extensional identity and
Σ-types, then T (Γ) and C/Γ are equivalent categories for all Γ.

Proof. To each object (type) A in T (Γ) we associate the object pA in C/Γ. A
morphism from A to B in T (Γ) is by definition a morphism from pA to pB in
C/Γ.

Conversely, to each object (morphism) δ : ∆ → Γ of C/Γ we associate a
type in Type(Γ). This is the inverse image x : Γ ⊢ Inv(δ)(x) which is defined
type-theoretically by

Inv(δ)(x) = Σy : ∆.IΓ(x, δ(y))

written in ordinary notation. In cwf combinator notation it becomes

Inv(δ) = Σ(∆[〈〉], IΓ[〈〉](q[γΓp], δ[〈〈〉, q〉]) ∈ Type(Γ)

These associations yield an equivalence of categories since pInv(δ) and δ are
isomorphic in C/Γ.

It is easy to see that T (Γ) has binary products if the cwf supports Σ-types
and exponentials if it supports Π-types. Simply define A×B = Σ(A,B[p]) and
BA = Π(A,B[p]). Hence by Proposition 9 it follows that C/Γ has products and
C has finite limits in any democratic cwf which supports extensional identity
types and Σ-types. If it supports Π-types too, then C/Γ is cartesian closed and
C is locally cartesian closed.

3 The 2-Category of Categories with Families

3.1 Pseudo Cwf-Morphisms

A notion of strict cwf-morphism between cwfs (C, T) and (C′, T ′) was defined by

Dybjer [4]. It is a pair (F, σ), where F : C → C′ is a functor and σ : T
•
→ T ′F is

7

a natural transformation of family-valued functors, such that terminal objects
and context comprehension are preserved on the nose. Here we need a weak
version where the terminal object, context comprehension, and substitution of
types and terms of a cwf are only preserved up to isomorphism. The pseudo-
natural transformations needed to prove our biequivalences will be families of
cwf-morphisms which do not preserve cwf-structure on the nose.

The definition of pseudo cwf-morphism will be analogous to that of strict
cwf-morphism, but cwf-structure will only be preserved up to coherent isomor-
phism.

Definition 7. A pseudo cwf-morphism from (C, T) to (C′, T ′) is a pair
(F, σ) where:

• F : C → C′ is a functor,

• For each context Γ in C, σΓ is a Fam-morphism from TΓ to T ′FΓ. We
will write σΓ(A) : Type′(FΓ) for the type component and σAΓ (a) : FΓ ⊢
σΓ(A) for the term component of this morphism.

The following preservation properties must be satisfied:

• Substitution is preserved: For each context δ : ∆ → Γ in C and A ∈
Type(Γ), there is an isomorphism of types θA,δ : σΓ(A)[Fδ] → σ∆(A[δ])

such that substitution on terms is also preserved, that is, σ
A[γ]
∆ (a[γ]) =θA,γ

σAΓ (a)[Fγ].

• The terminal object is preserved: F [] is terminal.

• Context comprehension is preserved: F (Γ·A) with the projections F (pA)

and {θ−1
A,p}(σ

A[p]
Γ·A (qA)) is a context comprehension of FΓ and σΓ(A). Note

that the universal property on context comprehensions provides a unique
isomorphism ρΓ,A : F (Γ·A) → FΓ·σΓ(A) which preserves projections.

These data must satisfy naturality and coherence laws which amount to the fact
that if we extend σΓ to a functor σΓ : T (Γ) → T

′F (Γ), then σ is a pseudo
natural transformation from T to T

′F . This functor is defined by σΓ(A) =
σΓ(A) on an object A and σΓ(f) = ρΓ,BF (f)ρ

−1
Γ,A on a morphism f : A→ B.

A consequence of this definition is that all cwf structure is preserved.

Proposition 4. Let (F, σ) be a pseudo cwf-morphism from (C, T) to (C′, T ′).

(1) Then substitution extension is preserved: for all δ : ∆ → Γ in C and

a : ∆ ⊢ A[δ], we have F (〈δ, a〉) = ρ−1
Γ,A〈Fδ, {θ

−1
A,δ}(σ

A[δ]
∆ (a))〉.

(2) Redundancy terms/sections: for all a ∈ Γ ⊢ A, σAΓ (a) = q[ρΓ,AF (〈id, a〉)].

8

If (F, σ) : (C0, T0) → (C1, T1) and (G, τ) : (C1, T1) → (C2, T2) are two
pseudo cwf-morphisms, we define their composition (G, τ)(F, σ) as (GF, τσ)
where:

(τσ)Γ(A) = τFΓ(σΓ(A))

(τσ)AΓ (a) = τ
σΓ(A)
FΓ (σAΓ (a))

The families θGF and ρGF are obtained from θF , θG and ρF and ρG in the obvi-
ous way. The fact that these data satisfy the necessary coherence and naturality
conditions basically amounts to the stability of pseudonatural transformation
under composition. There is of course an identity pseudo cwf-morphism whose
components are all identities, which is obviously neutral for composition. So,
there is a category of cwfs and pseudo cwf-morphisms.

Since the isomorphism (Γ·A)·B ∼= Γ·Σ(A,B) holds in an arbitrary cwf which
supports Σ-types, it follows that pseudo cwf-morphisms automatically preserve
Σ-types, since they preserve context comprehension. However, if cwfs support
other structure, we need to define what it means that cwf-morphisms preserve
this extra structure up to isomorphism.

Definition 8. Let (F, σ) be a pseudo cwf-morphism between cwfs (C, T) and
(C′, T ′) which support identity types, Π-types, and democracy, respectively.

• (F, σ) preserves identity types provided σΓ(IA(a, a
′)) ∼= IσΓ(A)(σ

A
Γ (a), σ

A
Γ (a));

• (F, σ) preserves Π-types provided σΓ(Π(A,B)) ∼= Π(σΓ(A), σΓ·A(B)[ρ−1
Γ,A]);

• (F, σ) preserves democracy provided σ[](Γ) ∼=dΓ FΓ[〈〉], and the following
diagram commutes:

FΓ
FγΓ //

γFγ ��

F ([]·Γ)
ρ
[],Γ��

[]·FΓ oo 〈〈〉,q〉
F []·FΓ[〈〉] oo

dΓ
F []·σ[](Γ)

These preservation properties are all stable under composition and thus yield
several different 2-categories of structure-preserving pseudo cwf-morphisms.

3.2 Pseudo Cwf-Transformations

Definition 9 (Pseudo cwf-transformation). Let (F, σ) and (G, τ) be two cwf-
morphisms from (C, T) to (C′, T ′). A pseudo cwf-transformation from (F, σ)

to (G, τ) is a pair (φ, ψ) where φ : F
•
→ G is a natural transformation, and

for each Γ in C and A ∈ Type(Γ), a morphism ψΓ,A : σΓ(A) → τΓ(A)[φΓ] in
T

′(FΓ), natural in A and such that the following diagram commutes:

σΓ(A)[Fδ]
T

′(Fδ)(ψΓ,A) //

θA,δ

��

τΓ(A)[φΓF (δ)]

T
′(φ∆)(θ′A,δ)

��
σ∆(A[δ])

ψ∆,A[δ]

// τ∆(A[δ])[φ∆]

9

where θ and θ′ are the isomorphisms witnessing preservation of substitution in
types in the definition of pseudo cwf-morphism.

Pseudo cwf-transformations can be composed both vertically (denoted by
(φ′, ψ′)(φ, ψ)) and horizontally (denoted by (φ′, ψ′) ⋆ (φ, ψ)), and these compo-
sitions are associative and satisfy the interchange law. Note that just as coher-
ence and naturality laws for pseudo cwf-morphisms ensure that they give rise
to pseudonatural transformations (hence morphisms of indexed categories) σ to
τ , this definition exactly amounts to the fact that pseudo cwf-transformations
between (F, σ) and (F, τ) correspond to modifications from σ to τ .

3.3 2-Categories of Cwfs with Extra Structure

Definition 10. Let CwFIextΣ
dem be the 2-category of small democratic categories

with families which support extensional identity types and Σ-types. The 1-cells
are cwf-morphisms preserving democracy and extensional identity types (and
Σ-types automatically) and the 2-cells are pseudo cwf-transformations.

Moreover, let CwFIextΣΠ
dem be the sub-2-category of CwFIextΣ

dem where also Π-
types are supported and preserved.

4 Forgetting Types and Terms

Definition 11. Let FL be the 2-category of small categories with finite limits
(left exact categories). The 1-cells are functors preserving finite limits (up to
isomorphism) and the 2-cells are natural transformations.

Let LCC be the 2-category of small locally cartesian closed categories. The 1-
cells are functors preserving local cartesian closed structure (up to isomorphism),
and the 2-cells are natural transformations.

FL is a sub(2-)category of the 2-category of categories: we do not provide
a choice of finite limits. Similarly, LCC is a sub(2-)category of FL. The first
component of our biequivalences will be forgetful 2-functors.

Proposition 5. The forgetful 2-functors

U : CwFIextΣ
dem → FL

U : CwFIextΣΠ
dem → LCC

defined as follows on 0-, 1-, and 2-cells

U(C, T) = C

U(F, σ) = F

U(φ, ψ) = φ

are well-defined.

10

Proof. By definition U is a 2-functor from CwF to Cat, it remains to prove
that it sends a cwf in CwFIextΣ

dem to FL and a cwf in CwFIextΣΠ
dem to LCC, along

with the corresponding properties for 1-cells and 2-cells.
For 0-cells we already proved as corollaries of Proposition 3 that if (C, T)

supports Σ-types, identity types and democracy, then C has finite limits; and if
(C, T) also supports Π-types, then C is an lccc.

For 1-cells we need to prove that if (F, σ) preserves identity types and
democracy, then F preserves finite limits; and if (F, σ) also preserves Π-types
then F preserves local exponentiation. Since finite limits and local exponen-
tiation in C and C′ can be defined by the inverse image construction, these
two statements boil down to the fact that if (F, σ) preserves identity types and
democracy then inverse images are preserved. Indeed we have an isomorphism
F (Γ·Inv(δ)) ∼= FΓ·Inv(Fδ). This can be proved by long but mostly direct calcu-
lations involving all components and coherence laws of pseudo cwf-morphisms.

There is nothing to prove for 2-cells.

5 Rebuilding Types and Terms

Now, we turn to the reverse construction. We use the Bénabou-Hofmann con-
struction to build a cwf from any finitely complete category, then generalize this
operation to functors and natural transformations, and show that this gives rise
to a pseudofunctor.

Proposition 6. There are pseudofunctors

H : FL → CwFIextΣ
dem

H : LCC → CwFIextΣΠ
dem

defined by

HC = (C, TC)

HF = (F, σF)

Hφ = (φ, ψφ)

on 0-cells, 1-cells, and 2-cells, respectively, and where TC, σF , and ψφ are defined
in the following three subsections.

Proof. The remainder of this Section contains the proof. We will in turn show
the action on 0-cells, 1-cells, 2-cells, and then prove pseudofunctoriality of H .

5.1 Action on 0-Cells

As explained before, it is usual (going back to Cartmell [2]) to represent a type-
in-context A ∈ Type(Γ) in a category as a display map [15], that is, as an object

11

pA in C/Γ. A term Γ ⊢ A is then represented as a section of the display map
for A, that is, a morphism a such that pA ◦ a = idΓ. Substitution in types is
then represented by pullback. This is essentially the technique used by Seely for
interpreting Martin-Löf type theory in lcccs. However, as we already mentioned,
it leads to a coherence problem.

To solve this problem Hofmann [5] used a construction due to Bénabou [1],
which from any fibration builds an equivalent split fibration. Hofmann used
it to build a category with attributes (cwa) [2] from a locally cartesian closed
category. He then showed that this cwa supports Π,Σ, and extensional identity
types. This technique essentially amounts to associating to a type A, not only
a display map, but a whole family of display maps, one for each substitution
instance A[δ]. In other words, we choose a pullback square for every possible
substitution and this choice is split, hence solving the coherence problem. As
we shall explain below this family takes the form of a functor, and we refer to
it as a functorial family.

Here we reformulate Hofmann’s construction using cwfs. See Dybjer [4] for
the correspondence between cwfs and cwas.

Lemma 1. Let C be a category with terminal object. Then we can build a
democratic cwf (C, TC) which supports Σ-types. If C has finite limits, then
(C, TC) also supports extensional identity types. If C is locally cartesian closed,
then (C, TC) also supports Π-types.

Proof. We only show the definition of types and terms in TC(Γ). This construc-
tion is essentially the same as Hofmann’s [5].

A type in TypeC(Γ) is a functorial family, that is, a functor
−→
A : C/Γ → C→

such that cod ◦
−→
A = dom and if Ω

δα
��✻✻
α // ∆

δ
��✞✞

Γ

is a morphism in C/Γ, then
−→
A (α) is

a pullback square:
−→
A(δ,α) //

−→
A(δα)

��
−→
A(δ)
��

Ω
α

// ∆

Following Hofmann, we denote the upper arrow of the square by
−→
A (δ, α).

A term a : Γ ⊢
−→
A is a section of

−→
A (idΓ), that is, a morphism a : Γ →

Γ ·
−→
A such that

−→
A (idΓ)a = idΓ, where we have defined context extension by

Γ·
−→
A = dom(

−→
A (idΓ)). Interpreting types as functorial families makes it easy to

define substitution in types. Substitution in terms is obtained by exploiting the
universal property of pullback squares, yielding a functor TC : Cop → Fam.

Note that (C, TC) is a democratic cwf since to any context Γ we can associate

a functorial family “〈〉 : C/[] → C→, where 〈〉 : Γ → [] is the terminal projection.

The isomorphism γΓ : Γ → []·“〈〉 is just idΓ.

12

5.2 Action on 1-Cells

Suppose that C and C′ have finite limits and that F : C → C′ preserves them.
As described in the previous section, C and C′ give rise to cwfs (C, TC) and
(C′, TC′). In order to extend F to a pseudo cwf-morphism, we need to define, for
each object Γ in C, a Fam-morphism (σF)Γ : TC(Γ) → TC′F (Γ). Unfortunately,
unless F is full, it does not seem possible to embed faithfully a functorial family
−→
A : C/Γ → C→ into a functorial family over FΓ in C′. However, there is such an
embedding for display maps (just apply F) from which we will freely regenerate
a functorial family from the obtained display map.

The “hat” construction. As remarked by Hofmann, any morphism f : ∆ →
Γ in a category C with a (not necessarily split) choice of finite limits generates

a functorial family f̂ : C/Γ → C→. If δ : ∆ → Γ then f̂(δ) = δ∗(f), where δ∗(f)
is obtained by taking the pullback of f along δ (δ∗ is known as the pullback
functor):

δ∗(f)
��

//

f
��

∆
δ

// Γ

Note that we can always choose pullbacks such that f̂(idΓ) = id∗Γ(f) = f .

If Ω

δα
��❄

❄
α // ∆

δ
��⑦⑦

Γ

is a morphism in C/Γ, we define f̂(α) as the left square in the

following diagram:

f̂(δ,α) //

f̂(δα)
��

f̂(δ)
��

//

f
��

∆′
α

// ∆
δ

// Γ

This is a pullback, since both the outer square and the right square are pullbacks.

Translation of types. The hat construction can be used to extend F to
types:

σF (
−→
A) =

Ÿ�
F (

−→
A (id))

Note that F (Γ·
−→
A) = F (dom(

−→
A (id))) = dom(F (

−→
A (id))) = dom(σΓ(

−→
A)(id)) =

FΓ·σΓ(
−→
A), so context comprehension is preserved on the nose. However, substi-

tution on types is not preserved on the nose. Hence we have to define a coherent
family of isomorphisms θ−→

A,δ
.

Completion of cwf-morphisms. Fortunately, whenever F preserves finite
limits there is a canonical way to generate all the remaining data.

13

Lemma 2 (Generation of isomorphisms). Let (C, T) and (C′, T ′) be two cwfs,
F : C → C′ a functor preserving finite limits, σΓ : Type(Γ) → Type′(FΓ) a
family of functions, and ρΓ,A : F (Γ·A) → FΓ·σΓ(A) a family of isomorphisms
such that pρΓ,A = Fp. Then there exists an unique choice of functions σAΓ on
terms and of isomorphisms θA,δ such that (F, σ) is a pseudo cwf-morphism.

Proof. By item (2) of Proposition 4, the unique way to extend σ to terms is to
set σAΓ (a) = q[ρΓ,AF (〈id, a〉)]. To generate θ, we use the two squares below:

F∆·σΓ(A)[Fδ]
〈(Fδ)pq〉 //

p

��

FΓ·σΓ(A)

p

��
F∆

Fδ
// FΓ

F∆·σ∆(A[δ])
ρΓ,AF (〈δp,q〉)ρ−1

∆,A[δ] //

p

��

FΓ·σΓ(A)

p

��
F∆

Fδ
// FΓ

The first square is a substitution pullback. The second is a pullback because F
preserves finite limits and ρΓ,A and ρ∆,A[δ] are isomorphisms. The isomorphism
θA,δ is defined as the unique mediating morphism from the first to the second.
It follows from the universal property of pullbacks that the family θ satisfies
the necessary naturality and coherence conditions. There is no other choice for
θA,δ, because if (F, σ) is a pseudo cwf-morphism with families of isomorphisms
θ and ρ, then ρΓ,AF (〈δp, q〉)ρ

−1
∆,A[δ]θA,δ = 〈(Fδ)p, q〉. Hence if F preserves finite

limits, θA,δ must coincide with the mediating morphism.

Preservation of additional structure. As a pseudo cwf-morphism, (F, σF)
automatically preserves Σ-types. Since the democratic structure of (C, TC) and
(C′, TC′) is trivial it is clear that it is preserved by (F, σF). To prove that it also
preserves type constructors, we use the following proposition.

Proposition 7. Let (F, σ) be a pseudo cwf-morphism between (C, T) and (C′, T ′)
supporting Σ-types and democracy. Then:

• If (C, T) and (C′, T ′) both support identity types, then (F, σ) preserves
identity types provided F preserves finite limits.

• If (C, T) and (C′, T ′) both support Π-types, then (F, σ) preserves Π-types
provided F preserves local exponentiation.

Proof. For the first part it remains to prove that if F preserves finite limits, then
(F, σ) preserves identity types. Since a, a′ ∈ Γ ⊢ A, pIA(a,a′) : Γ ·IA(a, a

′) → Γ
is an equalizer of 〈id, a〉 and 〈id, a′〉 and F preserves equalizers, it follows that
F (pIA(a,a′)) is an equalizer of 〈id, σAΓ (a)〉 and 〈id, σAΓ (a

′)〉, and by uniqueness of
equalizers it is isomorphic to IσΓ(A)(σ

A
Γ (a), σ

A
Γ (a

′)).
The proof of preservation of Π-types exploits in a similar way the uniqueness

(up to iso) of “Π-objects” of A ∈ Type(Γ) and B ∈ Type(Γ·A).

14

5.3 Action on 2-Cells

Similarly to the case of 1-cells, under some conditions a natural transformation
φ : F

•
→ G where (F, σ) and (G, τ) are pseudo cwf-morphisms can be completed

to a pseudo cwf-transformation (φ, ψφ), as stated below.

Lemma 3 (Completion of pseudo cwf-transformations). Suppose (F, σ) and
(G, τ) are pseudo cwf-morphisms from (C, T) to (C′, T) such that F and G

preserve finite limits and φ : F
•
→ G is a natural transformation, then there

exists a family of morphisms (ψφ)Γ,A : σΓ(A) → τΓ(A)[φΓ] such that (φ, ψφ) is
a pseudo cwf-transformation from (F, σ) to (G, τ).

Proof. We set ψΓ,A = 〈p, q[ρ′Γ,AφΓ·Aρ
−1
Γ,A]〉 : FΓ·σΓA→ FΓ·τΓ(A)[φΓ]. To check

the coherence law, we apply the universal property of a well-chosen pullback
square (exploiting the fact that G preserves finite limits).

This completion operation on 2-cells commutes with units and both notions
of composition, as will be crucial to prove pseudofunctoriality of H :

Lemma 4. If φ : F
•
→ G and φ′ : G

•
→ H, then

(φ′, ψφ′)(φ, ψφ) = (φ′φ, ψφ′φ)

(φ, ψφ) ⋆ 1 = (φ ⋆ 1, ψφ⋆1)

1 ⋆ (φ, ψφ) = (1 ⋆ φ, ψ1⋆φ)

(φ′, ψφ′) ⋆ (φ, ψφ) = (φ′ ⋆ φ, ψφ′⋆φ)

whenever these expressions typecheck.

Proof. Direct calculations.

5.4 Pseudofunctoriality of H

Note that H is not a functor, because for any F : C → D with finite limits

and functorial family
−→
A over Γ (in C), σΓ(

−→
A) forgets all information on

−→
A

except its display map
−→
A (id), and later extends F (

−→
A (id)) to an independent

functorial family. However if F : C → D and G : D → E preserve finite
limits, the two pseudo cwf-morphisms (G, σG) ◦ (F, σF) = (GF, σGσF) and
(GF, σGF) are related by the pseudo cwf-transformation (1GF , ψ1GF

), which
is obviously an isomorphism. The coherence laws only involve vertical and
horizontal compositions of units and pseudo cwf-transformations obtained by
completion, hence they are easy consequences of Lemma 4.

6 The Biequivalences

Theorem 1. We have the following biequivalences of 2-categories.

FL
H //

CwFIextΣ
dem

U
oo LCC

H //
CwFIextΣΠ

dem
U

oo

15

Proof. Since UH = Id (the identity 2-functor) it suffices to construct pseudo-
natural transformations of pseudofunctors:

Id
η // HU
ǫ

oo

which are inverse up to invertible modifications. Since HU(C, T) = (C, TC),
these pseudonatural transformations are families of equivalences of cwfs:

(C, T)
η(C,T) // (C, TC)
ǫ(C,T)

oo

which satisfy the required conditions for pseudonatural transformations.

Construction of η(C,T). Using Lemma 2, we just need to define a base func-
tor, which will be IdC, and a family σηΓ which translates types (in the sense of T)
to functorial families. This is easy, since types in the cwf (C, T) come equipped
with a chosen behaviour under substitution. Given A ∈ Type(Γ), we define:

σηΓ(A)(δ) = pA[δ]

σηΓ(A)(δ, γ) = 〈γp, q〉

For each pseudo cwf-morphism (F, σ), the pseudonaturality square relates two
pseudo cwf-morphisms whose base functor is F . Hence, the necessary invert-
ible pseudo cwf-transformation is obtained using Lemma 3 from the identity
natural transformation on F . The coherence conditions are straightforward
consequences of Lemma 4.

Construction of ǫ(C,T). As for η, the base functor for ǫ(C,T) is IdC. Using
Lemma 2 again we need, for each context Γ, a function σǫΓ which given a func-

torial family
−→
A over Γ will build a syntactic type σǫΓ(

−→
A) ∈ Type(Γ). In other

terms, we need to find a syntactic representative of an arbitrary display map,
that is, an arbitrary morphism in C. We use the inverse image:

σǫΓ(
−→
A) = Inv(

−→
A (id)) ∈ Type(Γ)

The family ǫ is pseudonatural for the same reason as η above.

Invertible modifications. For each cwf (C, T), we need to define invert-
ible pseudo cwf-transformations m(C,T) : (ǫη)(C,T) → id(C,T) and m′

(C,T) :

(ηǫ)(C,T) → id(C,T). As pseudo cwf-transformations between pseudo cwf-morphisms
with the same base functor, their first component will be the identity natural
transformation, and the second will be generated by Lemma 3. The coherence
law for modifications is a consequence of Lemma 4.

16

References

[1] Jean Bénabou. Fibred categories and the foundation of naive category
theory. Journal of Symbolic Logic, 50:10–37, 1985.

[2] John Cartmell. Generalized algebraic theories and contextual categories.
Annals of Pure and Applied Logic, 32:209–243, 1986.

[3] Pierre-Louis Curien. Substitution up to isomorphism. Fundamenta Infor-
maticae, 19(1,2):51–86, 1993.

[4] Peter Dybjer. Internal type theory. In TYPES ’95, Types for Proofs and
Programs, number 1158 in Lecture Notes in Computer Science, pages 120–
134. Springer, 1996.

[5] Martin Hofmann. On the interpretation of type theory in locally cartesian
closed categories. In Leszek Pacholski and Jerzy Tiuryn, editors, CSL,
volume 933 of Lecture Notes in Computer Science. Springer, 1994.

[6] Martin Hofmann. Syntax and semantics of dependent types. In Andrew
Pitts and Peter Dybjer, editors, Semantics and Logics of Computation.
Cambridge University Press, 1996.

[7] F. William Lawvere. Equality in hyperdoctrines and comprehension schema
as an adjoint functor. In A. Heller, editor, Applications of Categorical
Algebra, Proceedings of Symposia in Pure Mathematics. AMS, 1970.

[8] Tom Leinster. Basic bicategories. arXiv:math/9810017v1, 1999.

[9] Per Martin-Löf. Constructive mathematics and computer programming.
In Logic, Methodology and Philosophy of Science, VI, 1979, pages 153–175.
North-Holland, 1982.

[10] Per Martin-Löf. Intuitionistic Type Theory. Bibliopolis, 1984.

[11] Per Martin-Löf. Substitution calculus. Notes from a lecture given in
Göteborg, November 1992.

[12] Samuel Mimram. Decidability of equality in categories with families. Re-
port, Magistère d’Informatique et Modelisation, École Normale Superieure
de Lyon, http://www.pps.jussieu.fr/~smimram/, 2004.

[13] Robert Seely. Locally cartesian closed categories and type theory. Math.
Proc. Cambridge Philos. Soc., 95(1):33–48, 1984.

[14] Alvaro Tasistro. Formulation of Martin-Löf’s theory of types with ex-
plicit substitutions. Technical report, Department of Computer Sciences,
Chalmers University of Technology and University of Göteborg, 1993. Li-
centiate Thesis.

[15] Paul Taylor. Practical Foundations of Mathematics. Cambridge University
Press, 1999.

17

http://arxiv.org/abs/math/9810017
http://www.pps.jussieu.fr/~smimram/

A Proofs of Section 2

Lemma 5 (Composition of coercions). If (C, T) is a cwf, Γ a context in C and
θ1 : A→ B and θ2 : B → C are isomorphisms in T (Γ), then for all a : Γ ⊢ A,

{θ2}({θ1}(a)) = {θ2θ1}(a)

Proof. Direct calculation, using the definition of coercions and manipulation of
cwf combinators.

{θ2}({θ1}(a)) = q[θ2〈id, q[θ1〈id, a〉]〉]

= q[θ2〈pθ1〈id, a〉, q[θ2〈id, a〉]〉]

= q[θ2〈p, q〉θ1〈id, a〉]

= q[θ2θ1〈id, a〉]

= {θ2θ1}(a)

Lemma 6. Let (C, T) be a democratic cwf with Σ-types and identity types, then
for each δ : ∆ → Γ there is an isomorphism αδ in C/Γ:

Γ·Inv(δ)

αδ

++
mm

α
−1
δ

p
$$❏❏

❏❏
❏❏

❏❏
❏

∆

δ~~⑥⑥
⑥⑥
⑥⑥
⑥

Γ

Proof. Recall that Inv(δ) = Σ(∆[〈〉], IΓ[〈〉](q[γΓp], δ[〈〈〉, q〉]) ∈ Type(Γ). We de-

fine:

αδ = γ−1
∆ 〈〈〉, π1(q)〉

α−1
δ = 〈δ, pair(q[γ∆], rΓ[〈〉])〉

A straightforward calculation proves that this typechecks, and that αδα
−1
δ =

id∆. For the other equality, we have α
−1
δ αδ = 〈δγ−1

∆ 〈〈〉, π1(q)〉, pair(π1(q), rΓ[〈〉])〉.

But by property of extensional identity types q[γΓp] and δ[〈〈〉, π1(q)〉] are equal
terms in context Γ ·Inv(δ), so γ−1

Γ 〈〈〉, q[γΓp]〉 = p and γ−1
Γ 〈〈〉, δ[〈〈〉, π1(q)〉]〉 =

δγ−1
∆ 〈〈〉, π1(q)〉 are equal substitutions. Likewise, rΓ[〈〉] = π2(q) by uniqueness

of identity proofs, therefore α−1
δ αδ = idΓ·Inv(δ).

Proposition 8. Let (C, T) be a democratic cwf with Σ-types and identity types,
then for all context Γ the categories T (Γ) and C/Γ are equivalent.

Proof. For each context Γ, the functor FΓ : T(Γ) → C/Γ defined by FΓ(A) = pA
on objects and FΓ(f) = f on morphisms in clearly full and faithful, but it is
also essentially surjective. Indeed, for any object δ : ∆ → Γ in C/Γ, we have
by Lemma 6 an isomorphic FΓ(Inv(δ)) = pInv(δ), hence FΓ is an equivalence of
categories.

18

B Proofs of Section 3

B.1 Properties of pseudo cwf-morphisms

Let us first mention that in the definition of a pseudo cwf-morphism (F, σ) from
(C, T) to (C′, T ′), the fact that σ is a pseudonatural transformation from T to
T

′ amounts to the satisfaction of the following coherence and naturality laws.

• Identity. For all A ∈ Type(Γ), we have θA,id = idFΓ·σΓ(A),

• Coherence. For all δ : Ξ → ∆ and γ : ∆ → Γ, the following diagram
commutes.

FΞ·σΓ(A)[F (γδ)]

T
′(Fδ)(θA,γ)))❙❙❙

❙❙❙
❙❙❙

❙❙❙
❙❙❙

θA,γδ // FΞ·σΞ(A[γδ])

FΞ·σ∆(A[γ])[F (δ)]

θA[γ],δ

55❧❧❧❧❧❧❧❧❧❧❧❧❧❧

• Naturality. For all δ : ∆ → Γ in C, A,B ∈ Type(Γ) and f : A → B in
T (Γ), the following diagram commutes in T

′(F∆).

σΓ(A)[Fδ]
θA,δ //

T
′(Fδ)(σΓ(f))

��

σ∆(A[δ])

σ∆(T (δ)(f))

��
σΓ(B)[Fδ]

θB,δ // σ∆(B[δ])

This can be checked by simply unfolding the definition of a pseudonatural trans-
formation.

Proposition 9. Any pseudo cwf-morphism (F, σ) from (C, T) to (C′, T ′) pre-
serves substitution extension, in the following sense: For all δ : ∆ → Γ in C

and a : ∆ ⊢ A[δ], we have

F (〈δ, a〉) = ρ−1
Γ,A〈Fδ, {θ

−1
A,δ}(σ

A[δ]
∆ (a))〉

Proof. First note that for each context Γ in C and type A ∈ Type(Γ), the
isomorphism ρΓ,A is defined as the unique morphism preserving projections
between the two context comprehensions of FΓ and σΓA, in other terms ρΓ,A =

〈F (pA), {θ
−1
A,p}(σ

A[p]
Γ·A (qA))〉, which implies that the projections are preserved in

the following sense.

F (pA) = pσΓAρΓ,A

σ
A[p]
Γ·A (qA) = {θA,p}(qσΓA[ρΓ,A])

19

We now use it to prove the announced property. Clearly, the required equality
boils down to the following two equations.

pρΓ,AF (〈δ, a〉) = Fδ

q[ρΓ,AF (〈δ, a〉)] = {θ−1
A,δ}(σ

A[δ]
∆ (a))

The proof of the first equality is completely straightforward:

pρΓ,AF (〈δ, a〉) = F (p)F (〈δ, a〉)

= Fδ

However, the proof of the second is far more subtle and relies on many properties
of pseudo cwf-morphisms and cwf combinators:

q[ρΓ,AF (〈δ, a〉)] =1 {θ−1
A,p}(σ

A[p]
Γ·A (q))[F (〈δ, a〉)]

=2 q[θ−1
A,p〈id, σ

A[p]
Γ·A (q)〉][F (〈δ, a〉)]

= q[θ−1
A,p〈F (〈δ, a〉), σ

A[p]
Γ·A (q)[F (〈δ, a〉)]〉]

=3 q[θ−1
A,p〈F (〈δ, a〉), {θ

−1
A[p],〈δ,a〉}(σ

A[δ]
∆ (q[〈δ, a〉]))〉]

= q[θ−1
A,p〈F (〈δ, a〉), {θ

−1
A[p],〈δ,a〉}(σ

A[δ]
∆ (a))〉]

= q[〈p, q[θ−1
A,p〈F (〈δ, a〉)p, q〉]〉〈id, {θ

−1
A[p],〈δ,a〉}(σ

A[δ]
∆ (a))〉]

=4 q[T ′(F (〈δ, a〉))(θ−1
A,p)〈id, {θ

−1
A[p],〈δ,a〉}(σ

A[δ]
∆ (a))〉]

=2 {T ′(F (〈δ, a〉))(θ−1
A,p)}({θ

−1
A[p],〈δ,a〉}(σ

A[δ]
∆ (a)))

=5 {θ−1
A,δ}(σ

A[δ]
∆ (a))

Equality (1) is by preservation of q, equalities (2) by definition of coercions,
equality (3) by preservation of substitution on terms, equality (4) by definition
of T ′, equality (5) by the coherence requirement on θ and Lemma 5. All the
other steps are by simple manipulations on cwf combinators.

Lemma 7. If (F, σ) is a pseudo cwf-morphism from (C, T) to (C′, T ′), then its
action on terms and sections is redundant: for all a ∈ Γ ⊢ A,

σAΓ (a) = q[ρΓ,AF (〈id, a〉)]

Proof. This is a direct consequence of preservation of substitution extension, as
follows:

F (〈id, a〉) = ρ−1
Γ,A〈id, {θ

−1
A,id}σ

A
Γ (a)〉

but θA,id = id by coherence of θ, hence the result is proved.

20

Lemma 8. If (F, σ) is a pseudo cwf-morphism from (C, T) to (C′, T ′) and
θ : A → B is a morphism in T (Γ), then the coercion {θ} commutes with σ in
the following way, for each a ∈ Γ ⊢ A:

σBΓ ({θ}(a)) = {σΓ(θ)}(σ
A
Γ (a))

Proof. Direct calculation.

σBΓ ({θ}(a)) =1 q[ρΓ,BF (〈id, {θ}(a)〉)]

=2 q[ρΓ,BF (〈id, q[θ〈id, a〉]〉)]

=3 q[ρΓ,BF (θ〈id, a〉)]

=4 q[σΓ(θ)ρΓ,AF (〈id, a〉)]

=2 {σΓ(θ)}(q[ρΓ,AF (〈id, a〉)])

=1 {σΓ(θ)}(σ
A
Γ (a))

Where (1) is by Lemma 7, (2) by definition of coercions, (3) by basic manipu-
lation of cwf combinators and (4) by definition of σ.

B.2 Composition of pseudo cwf-morphisms

Proposition 10. Pseudo cwf-morphisms are stable under composition.

Proof. Let us first give a bit more details about how pseudo cwf-morphisms are
composed. If (F, σ) : (C0, T0) → (C1, T1) and (G, τ) : (C1, T1) → (C2, T2) are
two pseudo cwf-morphisms, we define their composition (G, τ)(F, σ) as (GF, τσ)
where:

(τσ)Γ(A) = τFΓ(σΓ(A))

(τσ)AΓ (a) = τ
σΓ(A)
FΓ (σAΓ (a))

If the other components of (F, σ) are denoted by θF , ρF and those of (G, τ) by
θG, ρG, we define:

θA,δ = τF∆(θ
F
A,δ)θ

G
σΓ(A),Fδ

All the components of (G, τ)(F, σ) are now defined, but we still have a number
of conditions to prove.

• Preservation of substitution on terms. Direct calculation, if a : Γ ⊢ A and

21

δ : ∆ → Γ in C0.

(τσ)
A[δ]
∆ (a[δ]) =1 τ

σ∆(A[δ])
F∆ (σ

A[δ]
∆ (a[δ]))

=2 τ
σ∆(A[δ])
F∆ ({θFA,δ}(σ

A
Γ (a)[Fδ]))

=3 q[ρGF∆,σ∆(A[δ])G(〈id, {θ
F
A,δ}(σ

A
Γ (a)[Fδ])〉)]

=4 q[ρGF∆,σ∆(A[δ])G(〈id, q[θ
F
A,δ〈id, σ

A
Γ (a)[Fδ]〉]〉)

=5 q[ρGF∆,σ∆(A[δ])G(θ
F
A,δ〈id, σ

A
Γ (a)[Fδ]〉)]

=6 q[τF∆(θ
F
A,δ)ρ

G
F∆,σΓ(A)[Fδ]G(〈id, σ

A
Γ (a)[Fδ]〉)]

=7 q[τF∆(θ
F
A,δ)〈id, q[ρ

G
F∆,σΓ(A)[Fδ]G(〈id, σ

A
Γ (a)[Fδ]〉)]〉]

=4 {τF∆(θ
F
A,δ)}(q[ρ

G
F∆,σΓ(A)[Fδ]G(〈id, σ

A
Γ (a)[Fδ]〉)])

=3 {τF∆(θ
F
A,δ)}(τ

σΓ(A)[Fδ]
F∆ (σAΓ (a)[Fδ]))

=2 {τF∆(θ
F
A,δ)}({θ

G
σΓ(A),Fδ}(τ

σΓ(A)
FΓ (σAΓ (a))[GFδ]))

=8 {θA,δ}(τ
σΓ(A)
FΓ (σAΓ (a))[GFδ])

=1 {θA,δ}((τσ)
A
Γ (a)[GFδ])

Equalities annotated by (1) come from the definition of τσ, (2) is preser-
vation of substitution for σ or τ , (3) is Lemma 7, (4) is by definition of
coercions, (5) uses pθFA,δ = p and basic manipulations with cwf combi-
nators, (6) is by definition of τ , (7) uses preservation of p by (G, τ) and
basic manipulations with cwf combinators, and (8) is by definition of θ.

• Preservation of the terminal object. Trivial from the preservation of the
terminal object by F and G.

• Preservation of context comprehension. Using preservation of context
comprehension from (F, σ) and (G, τ) we define:

GF (Γ·A)
G(ρFΓ,A)

// G(FΓ·σΓA)
ρGFΓ,σΓA // GFΓ·(τσ)Γ(A)

As a composition of isomorphisms it is an isomorphism so GF (Γ·A) is also
a context comprehension of GFΓ and (τσ)Γ(A). We must still check that
the corresponding projections are those required by the definition. It is
obvious for the first projection:

pρGFΓ,σΓA
G(ρFΓ,A) = G(p)G(ρFΓ,A)

= GFp

22

But more intricate for the second.

q[ρGFΓ,σΓA
G(ρFΓ,A)] =1 {(θGσΓA,p)

−1}(τ
σΓ(A)[p]
FΓ·σΓA

(q))[G(ρFΓ,A)]

=2 {(θGσΓA,p)
−1}({(θG

σΓ(A)[p],ρF
Γ,A

)−1}(τ
σΓ(A)[Fp]
F (Γ·A) (q[ρFΓ,A])))

=3 {(θGσΓA,Fp)
−1}(τ

σΓ(A)[Fp]
F (Γ·A) (q[ρFΓ,A]))

=4 {(θGσΓA,Fp)
−1}(τ

σΓ(A)[Fp]
F (Γ·A) ({(θFA,p)

−1}(σ
A[p]
Γ·A (q))))

=5 {(θGσΓA,Fp)
−1}({τF (Γ·A)((θ

F
A,p)

−1)}(τ
σΓ·A(A[p])
F (Γ·A) (σ

A[p]
Γ·A (q))))

=6 {θ−1
A,[p]}((τσ)

A[p]
Γ·A (q))

Where (1) is preservation of the second projection by ρG, (2) is preserva-
tion of substitution on terms, (3) is coherence for θG, (4) is preservation
of the second projection by ρF , (5) is Lemma 8 and (6) is by definition of
θ and τσ.

Finally note that, as can be checked by unfolding the definitions, we have for
all context Γ in C

(τσ)Γ = τFΓ ◦ σΓ

Hence the necessary coherence and naturality conditions amounts to the stabil-
ity of pseudonatural transformations under composition.

Lemma 9. Any pseudo cwf-morphism (F, σ) from (C, T) to (C′, T ′) where both
cwfs support Σ-types automatically preserves them, in the sense that

σΓ(Σ(A,B)) ∼= Σ(σΓ(A), σΓ·A(B)[ρ−1
Γ,A])

Proof. We exploit the fact that in any cwf (C, T) with Σ-types we have Γ ·
Σ(A,B) ∼= Γ·A·B (obvious). Therefore:

FΓ·σΓ(Σ(A,B)) ∼= F (Γ·Σ(A,B))
∼= F (Γ·A·B)
∼= F (Γ·A)·σΓ·A(B)
∼= FΓ·σΓ(A)·σΓ·A(B)[ρ−1

Γ,A]

∼= FΓ·Σ(σΓ(A), σΓ·A(B)[ρ−1
Γ,A])

It is easy to see that the resulting morphism is a type isomorphism.

Lemma 10. Preservation of democracy, identity types and Π-types are all stable
under composition.

Proof. This is trivial for identity types and Π-types (just apply the hypothe-
sis on both pseudo cwf-morphism). For democracy, we must check that the

23

isomorphism dGFΓ : GF []·(τσ)[](Γ) → GF []·GFΓ[〈〉] defined by:

dGFΓ = GF []·τF [](σ[](Γ))

(ρG
F [],σ[]Γ

)−1

// F (F []·σ[]Γ)
G(dFΓ)

// G(F []·FΓ[〈〉])
G(〈〈〉,q〉) // G([]·FΓ)

ρG
[],FΓ // G[]·τ[]FΓ
dGFΓ // G[]·GFΓ[〈〉]

The coherence law can then be checked by a simple diagram chasing.

B.3 Properties and composition of pseudo cwf-transformations

Let us just remark that if (F, σ) and (G, τ) are pseudo cwf-morphisms from

(C, T) to (D, T ′), pairs (φ,m) where φ : F
•
→ G is a natural transformation

and m : (T ′ ⋆ φ) ◦ σ
••
→ τ is a modification (where T

′ ⋆ φ denotes the vertical
composition of the natural transformations id

T
′ and φ) exactly correspond to

pseudo cwf-transformations from (F, σ) to (G, τ) (as can be checked by unfolding
the definition of a modification).

It is folklore that there is a 2-category Ind of indexed categories over ar-
bitrary bases, which objects are pairs (C,T) (where C is a category and T :
Cop → Cat is a pseudofunctor), 1-cells are pairs (F,σ) : (C,T) → (D,T ′)
(where F : C → D is a functor and σ : T → T

′F is a pseudonatural trans-
formation) and 2-cells are pairs (φ,m) : (F,σ) → (G, τ) : (C,T) → (D,T ′)

(where φ : F
•
→ G is a natural transformation and m : (T ′ ⋆ φ) ◦ σ

••
→ τ is a

modification).
Here we rely on Ind to define vertical and horizontal composition of pseudo

cwf-transformations, so we get various 2-categories of cwfs supporting structure,
structure-preserving pseudo cwf-morphisms and pseudo cwf-transformations be-
tween them, which can all be seen as sub-2-categories of Ind. In particular, we
will be interested in the 2-category CwFIextΣ

dem of cwfs supporting democracy,
Σ-types and identity types, pseudo cwf-morphisms preserving democracy and
identity types and pseudo cwf-transformations. We will also be interested in the
2-categoryCwFIextΣΠ

dem where Π-types are additionally supported and preserved.

C Proofs of Section 4

For this section, the main thing to prove is that the inverse image is preserved
(up to isomorphism) by structure-preserving pseudo cwf-morphisms: This relies
mostly on long and intricate calculations involving all the components of pseudo
cwf-morphisms. Let us first prove a few preliminary lemmas.

Lemma 11 (Propagation of isomorphisms). Isomorphisms propagate through
types in several different ways. Suppose that you have A,A′ ∈ Type(Γ), B,B′ ∈
Type(Γ·A), then

(1) If B ∼= B′, then Σ(A,B) ∼= Σ(A,B′)

24

(2) If A ∼=θ A
′, then Σ(A,B) ∼= Σ(A′, B[θ−1])

(3) If A ∼=θ A
′ and a, a′ ∈ Γ ⊢ A, then IA(a, a

′) ∼= IA′({θ}(a), {θ}(a′))

Proof. (1) is obvious, since Γ·Σ(A,B) is isomorphic to Γ·A·B. For (2), we give
the following two isomorphisms:

〈p, pair(q[θ〈p, π1(q)〉], π2(q))〉 : Γ·Σ(A,B) → Γ·Σ(A′, B[θ−1])

〈p, pair(q[θ−1〈p, π1(q)〉], π2(q))〉 : Γ·Σ(A′, B[θ−1]) → Γ·Σ(A,B)

A simple calculation shows that they typecheck and that they are inverse of
one another. It is obvious that they are isomorphisms of types. (3) is also
obvious since by extensionality, 〈p, r〉 typechecks in both directions and is its
own inverse.

Lemma 12 (Preservation of inverse image). Let (C, T) and (D, T ′) be cwfs
supporting democracy, Σ-types and identity types and let (F, σ) be a pseudo cwf-
morphism preserving them. Moreover, suppose that δ : ∆ → Γ is a morphism
in C, then there is an isomorphism in D:

F (Γ·Inv(δ)) ∼= FΓ·Inv(Fδ)

Proof. Exploiting Lemma 11 and preservation of substitution on types and
terms, a careful (but rather straightforward) calculation allows to derive the
following type isomorphism:

σΓ(Inv(δ)) ∼= Σ(F∆[〈〉], I
FΓ[〈〉](C(σ

Γ[〈〉]

Γ·∆[〈〉]
(δ[〈〈〉, q〉])), C(σ

Γ[〈〉]

Γ·∆[〈〉]
(q[γΓp]))))

where C(−) is an invertible context given by:

C(M) = {T ′(ι〈〉)(dΓ)θ
−1

Γ,〈〉
}(M)[ρΓ,∆[〈〉]θ∆,〈〉T

′(ι〈〉)(d−1
∆)]

Here, ι denotes the inverse of the terminal morphism 〈〉 : F [] → [] whose exis-
tence is asserted by the definition of a pseudo cwf-morphism. Hence, the goal
of the remaining part of this proof will be to show the following equalities:

σ
Γ[〈〉]

Γ·∆[〈〉]
(δ[〈〈〉, q〉]) = C−1(Fδ[〈〈〉, q〉]) (1)

σ
Γ[〈〉]

Γ·∆[〈〉]
(q[γΓp]) = C−1(q[γFΓp]) (2)

Let us focus on (1). Using preservation of substitution on terms, coherence
of θ and the basic computation laws in cwfs, we derive:

25

σ
Γ[〈〉]

Γ·∆[〈〉]
(δ[〈〈〉, q〉]) = σ

Γ[p][〈〈〉,q〉]

Γ·∆[〈〉]
(δ[〈〈〉, q〉])

= {θΓ[p],〈〈〉,q〉}(σ
Γ[p]

[]·∆
(δ)[F (〈〈〉, q〉)])

= {θΓ,〈〉}({T
′(〈〈〉, q〉)(θ−1

Γ,p
)}(σ

Γ[p]

[]·∆
(δ)[F (〈〈〉, q〉)]))

= {θΓ,〈〉}({θ
−1

Γ,p
}(σ

Γ[p]

[]·∆
(δ))[F (〈〈〉, q〉)])

Let us now focus on σ
Γ[p]

[]·∆
(δ), to see how terms created from substitution

using democracy are transformed by the action of the cwf-morphism. Here,
we are only going to use the coherence of θ, preservation of q and the basic
computation laws in cwfs.

σ
Γ[p]

[]·∆
(δ) = σ

Γ[p]

[]·∆
(q[γΓδγ

−1
∆])

= σ
Γ[p][γΓδγ

−1
∆

]

[]·∆
(q[γΓδγ

−1
∆])

= {θΓ[p],γΓδγ−1
∆

}(σ
Γ[p]

[]·Γ
(q)[F (γΓδγ

−1
∆)])

= {θΓ[p],γΓδγ−1
∆

}({θΓ,p}(q[ρ[],Γ])[F (γΓδγ
−1
∆)])

= {θΓ,p}({T
′(F (γΓδγ

−1
∆))(θ−1

Γ,p
)}({θΓ,p}(q[ρ[],Γ])[F (γΓδγ

−1
∆)]))

= {θΓ,p}(q[ρ[],ΓF (γΓδγ
−1
∆)])

Using preservation of democracy and the terminal object, we can now con-
clude:

σ
Γ[〈〉]

Γ·∆[〈〉]
(δ[〈〈〉, q〉]) = {θΓ,〈〉}(q[ρ[],ΓF (γΓδγ

−1
∆ 〈〈〉, q〉)])

= {θΓ,〈〉}(q[d
−1
r 〈ιp, q〉γFΓFδγ

−1
F∆〈〈〉, q〉T

′(ι〈〉)(d∆)θ
−1

∆,〈〉
ρΓ,∆[〈〉]])

= {θΓ,〈〉T
′(ι〈〉)(d−1

Γ)}(Fδ[〈〈〉, q〉])[T ′(ι〈〉)(d∆)θ
−1

∆,〈〉
ρΓ,∆[〈〉]]

= C−1(Fδ[〈〈〉, q〉])

We get the required expression. The case of Equation (2) is similar but less
intricate, so we skip the details.

Lemma 13 (Propagation of isomorphisms under Π). Suppose that we have
A,A′ ∈ Type(Γ) and B,B′ ∈ Type(Γ·A), then

1. If B ∼=θ B
′, then Π(A,B) ∼= Π(A,B′)

2. If A ∼=θ A
′, then Π(A,B) ∼= Π(A′, B[θ−1])

26

Proof. (1). Using θ and the combinators of Π-types, it is straightforward to
build an morphism:

〈p, λ({T (〈pp, q〉)(θ)}(ap(q[p], q)))〉 : Γ·Π(A,B) → Γ·Π(A,B′)

Its inverse is the corresponding expression with θ−1 in place of θ. (2). Likewise,
the following expression provides the required isomorphism:

λ(ap(q[pp], {T (pp)(θ−1)}(q))) : Γ·Π(A,B) → Γ·Π(A′, B[θ−1])

Proposition 11. Let (F, σ) be a pseudo cwf-morphism between (C, T) and
(C′, T ′) supporting Σ-types and democracy. Then:

• If (C, T) and (C′, T ′) both support identity types and (F, σ) preserves them,
then F preserves finite limits.

• If (C, T) and (C′, T ′) both support Π-types and (F, σ) preserves them, then
F preserves local exponentiation.

Proof. Since finite limits and local exponentiation can be defined using σ-types,
Π-types and the inverse image type, their preservation by F directly boils down
to the Lemmas 11, 12 and 13.

D Proofs of Section 5

D.1 Action on 0-cells

This section is the exact analogue for cwfs of Hofmann’s work [5] with cwas. To
make this paper self-contained we will give the full details of the construction.
However, we will skip some of the proofs whenever they are not significantly
different from the case of cwas, for which we refer to [5].

D.1.1 Base cwf structure.

We will start by proving that given any category C with a terminal object, we
can equip C with cwf structure. This means that we have to define a functor
TC : C → Fam (in other terms types, terms, and substitution on both of them),
and a context comprehension operation.

Types. A type over Γ is a functorial family, i.e. a functor
−→
A : C/Γ → C→

such that:

(i) cod ◦
−→
A = dom

27

(ii) If Ω

δα
��❄

❄
α // ∆

δ
��⑦⑦

Γ

is a morphism in C/Γ,
−→
A (α) is a pullback square, with the

naming convention below:

dom(
−→
A (δ ◦ α))

−→
A(δ,α) //

−→
A (δα)

��

dom(
−→
A (δ))

−→
A(δ)

��
Ω

α
// ∆

Let Type(Γ) denote the set of functorial families over Γ.

Remark. The functoriality of
−→
A means that the assignment of

−→
A (δ, α) satis-

fies the following equations:

•
−→
A (δ, id∆) = id

dom(
−→
A(δ))

•
−→
A (δ, αβ) =

−→
A (δ, α)

−→
A (δα, β)

Terms. Let Γ ∈ C, and
−→
A ∈ Type(Γ). We define Γ ·

−→
A = dom(

−→
A (idΓ)).

(This will later give us context comprehension.) Then, a term a : Γ ⊢
−→
A is a

morphism a : Γ → Γ·
−→
A such that

−→
A (idΓ)a = idΓ.

Substitution in types. Let γ : ∆ → Γ in C and
−→
A ∈ Type(Γ). We define

−→
A [γ] ∈ Type(∆) as follows.

−→
A [γ](δ) =

−→
A (γδ)

−→
A [γ](δ, α) =

−→
A (γδ, α)

where δ : Ω → ∆ and α : Ξ → Ω. We check that
−→
A [γ] satisfies the two

conditions for types:

(i) cod ◦
−→
A [γ] = dom.

cod ◦
−→
A [γ](δ) = cod ◦

−→
A (γδ)

= dom(γδ)

= dom(δ)

28

(ii) The image of the morphism Ξ

δα
 ❅❅
α // Ω

δ
~~⑥⑥

∆

in C/∆ is

−→
A [γ](δ) =

dom(
−→
A (γδα))

−→
A (γδ,α) //

−→
A(γδα)

��

dom(
−→
A (γδ))

−→
A (γδ)

��
Ξ

α
// Ω

This is a pullback square by property (ii) of
−→
A .

Substitution in terms. Let δ : ∆ → Γ, and a : Γ ⊢
−→
A , i.e. a : Γ → Γ ·

−→
A

such that
−→
A (idΓ) ◦ a = idΓ. Then a[δ] is defined as the unique mediating arrow

in the following diagram:

∆

a◦δ

&&

id∆

��

a[δ]

""
∆ ◦

−→
A [δ]

−→
A (idΓ,δ) //

−→
A [δ](id∆)

��

Γ·
−→
A

−→
A (idΓ)

��
∆

δ
// Γ

It is a term of type
−→
A [δ] by commutativity of the left triangle.

Functoriality. Since substitution in types is defined by composition, the cwf-
laws for it follow immediately. It is also immediate that a[idΓ] = a since the
defining pullback must be the identity in C→. It remains to show that if we
have δ1 : ∆′ → ∆ and δ2 : ∆ → Γ, then a[δ2 ◦ δ1] = a[δ2][δ1]. Consider the

29

following diagram for pullback composition:

∆′

id∆′

''

a◦δ2◦δ1

&&

a[δ2][δ1]
❍❍

❍❍
❍❍

❍❍
❍

##❍
❍❍

❍❍
❍❍

∆′ ·
−→
A [δ2 ◦ δ1]

−→
A [δ2◦δ1](id∆′)

��

−→
A [δ2](id∆,δ1) // ∆·

−→
A [δ2]

−→
A [δ2](id∆)

��

−→
A (idΓ,δ2) // Γ·

−→
A

−→
A (idΓ)

��
∆′

δ1

// ∆
δ2

// Γ

The external pullback square is obtained by substitution of δ2◦δ1. By definition
of substitution in terms, a[δ2◦δ1] is the unique mediating arrow. But the external
square is equal (not only up to isomorphism) to the composition of the smaller

squares, because of the functoriality conditions for
−→
A , more precisely the fact

that
−→
A (s, α ◦ β) =

−→
A (s, α) ◦

−→
A (s ◦ α, β). This implies that a[δ2][δ1] also makes

the two triangles commute. Hence a[δ2][δ1] = a[δ2 ◦ δ2] by uniqueness of the
mediating arrow.

Putting all this together, we now have built a functor TC : Cop → Fam. We
still have to define context comprehension.

Context comprehension. Let Γ ∈ C, and
−→
A ∈ Type(Γ). As mentioned

above, we define:

Γ·
−→
A = dom(

−→
A (idΓ))

The first projection is p−→
A

=
−→
A (idΓ) : Γ·

−→
A → Γ. The second projection q−→

A
is

defined as the unique mediating arrow of the following pullback diagram:

Γ·
−→
A

id
Γ·
−→
A

((

id
Γ·
−→
A

%%

q−→
A

''
Γ·

−→
A ·

−→
A [p−→

A
]

−→
A(idΓ,p−→

A
)

//

−→
A [p−→

A
](id

Γ·
−→
A
)

��

Γ·
−→
A

−→
A(idΓ)

��
Γ·

−→
A p−→

A

// Γ

Suppose now we have δ : ∆ → Γ and a : ∆ ⊢
−→
A [δ]. By definition of terms we

have in fact a : ∆ → ∆·
−→
A [δ]. We define:

〈δ, a〉 =
−→
A (idΓ, δ) ◦ a : ∆ → Γ·

−→
A

30

We must prove that these definitions satisfy the cwf-laws for context compre-
hension.

p−→
A
◦ 〈δ, a〉 = p−→

A
◦
−→
A (idΓ, δ) ◦ a def.of 〈δ, a〉

=
−→
A (idΓ) ◦

−→
A (idΓ, δ) ◦ a def. of p−→

A

= δ ◦
−→
A [δ](id∆) ◦ a comm. of pullback square

= δ a is a term

Proving the equation q−→
A
[〈δ, a〉] = a is a bit more involved. Let us first prove

the following lemma, stating (intuitively) that the action of q−→
A

is to duplicate
the last element of the context.

Lemma 14. Let
−→
A ∈ Type(Γ), δ : ∆ → Γ, and a : ∆ ⊢

−→
A [δ]. Then q−→

A
◦〈δ, a〉 =

〈〈δ, a〉, a〉.

Proof. Consider the following pullback diagram:

∆

〈δ,a〉

''

〈δ,a〉

��

(1)

(2)

〈〈δ,a〉,a〉

&&

q−→
A
◦〈δ,a〉

��
Γ·

−→
A ·

−→
A [p−→

A
]

−→
A(idΓ,p−→

A
)

//

−→
A [p−→

A
](id

Γ·
−→
A
)

��

Γ·
−→
A

−→
A(idΓ)

��
Γ·

−→
A p−→

A

// Γ

It is clear that q−→
A
◦ 〈δ, a〉 makes (1) and (2) commute, by definition of q−→

A
. It

is also easy to see that 〈〈δ, a〉, a〉 makes (2) commute, because
−→
A [p−→

A
](id

Γ·
−→
A
) =

p−→
A [p−→

A
]
and by the property of the first projection. We prove now that 〈〈δ, a〉, a〉

also makes (1) commute:

−→
A (idΓ, p−→A) ◦ 〈〈δ, a〉, a〉 =

−→
A (idΓ, p−→A) ◦

−→
A [p−→

A
](id

Γ·
−→
A
, 〈δ, a〉) ◦ a def. of 〈〈δ, a〉, a〉

=
−→
A (idΓ, p−→A) ◦

−→
A (p−→

A
, 〈δ, a〉) ◦ a def. of

−→
A [p−→

A
]

=
−→
A (idΓ, p−→A ◦ 〈δ, a〉) ◦ a funct. or

−→
A (s, δ)

=
−→
A (idΓ, δ) ◦ a property of p−→

A

= 〈δ, a〉 def. of 〈δ, a〉

This concludes the proof.

From this lemma we deduce that q−→
A
[〈δ, a〉] = a in the following way. Con-

31

sider the pullback diagram:

∆

q−→
A
◦〈δ,a〉

))

id∆

��

q−→
A
[〈δ,a〉]

''

a

∆·

−→
A [δ]

−→
A [p−→

A
](id

Γ·
−→
A
,〈δ,a〉)

//

p−→
A[δ]

��

Γ·
−→
A ·

−→
A [p−→

A
]

−→
A [p−→

A
](id

Γ·
−→
A
)

��
∆

〈δ,a〉
// Γ·

−→
A

This diagram is an instance of the pullback used for the definition of substitu-
tion in terms. Hence, both triangles commute for q−→

A
[〈δ, a〉]. The left triangle

commutes for a since a is term of type
−→
A [δ]. The right triangle commutes be-

cause of the lemma above, since by definition
−→
A [p−→

A
](id

Γ·
−→
A
, 〈δ, a〉) = 〈〈δ, a〉, a〉.

Thus, by uniqueness of the mediating arrow q−→
A
[〈δ, a〉] = a. This concludes the

cwf construction, hence the proof of the following proposition.

Proposition 12. Let C be a category with terminal object, then we can extend
C to a cwf (C, TC).

D.1.2 Democracy.

The cwf (C, TC) is democratic: the idea is that each context Γ is represented by
any functorial family having its terminal projection 〈〉 : Γ → I as display map.

We can easily build such a functorial family by Γ = “〈〉 ∈ Type(I). We have then

I ·Γ = dom(“〈〉(id)) = Γ, thus the isomorphism between them is trivial.

Proposition 13. If C is a category with a terminal object, then the cwf (C, TC)
is democratic.

D.1.3 Σ-types.

For the sake of completeness we recall the definitions, but we refer the reader
to [5] for some of the proofs, in particular when the distinction between cwas
and cwfs does not change anything.

Formation. Let A ∈ Type(Γ) and B ∈ Type(Γ ·A). At each s : ∆ → Γ, the
image of Σ(A,B) is given by the composition of the images of A and B. More
formally, we define:

Σ(A,B)(s) = A(s) ◦B(A(id, s))

Σ(A,B)(s, α) = B(A(id, s), A(s, α))

32

The construction of the corresponding pullback square can be illustrated by the
following diagram. Intuitively, the chosen pullbacks for Σ(A,B) are directly
obtained by composition the chosen pullbacks for A and for B.

B(A(id,s),A(s,α)) //

��

B(id,A(id,s)) //

B(A(id,s))

��

Γ·A·B

B(id)

��A(s,α) //

A(sα)

��

A(id,s) //

A(s)

��

Γ·A

A(id)

��
α

// B
s

// Γ

It is easy to check that this defines a functor Σ(A,B) : C/Γ → C→ and that
the necessary equations are satisfied so that we get a type Σ(A,B) ∈ Type(Γ).

Introduction. If a : Γ ⊢ A and b : Γ ⊢ B[〈id, a〉], then a : Γ → Γ ·A is a
section of A(idΓ) and b : Γ → Γ·B[〈id, a〉] is a section of B[〈id, a〉](idΓ) = B(a)
as illustrated by following diagram:

Γ·B[〈id, a〉]
B(id,a) //

B(a)

��

Γ·A·B

B(id)

��
Γ

b

JJ

a
// Γ·A

We define pair(a, b) = B(id, a) ◦ b. It follows that pair(a, b) is a section of
Σ(A,B)(idΓ) = pA ◦ pB.

Elimination. Let c : Γ ⊢ Σ(A,B). Thus c is a section of pA ◦pB : Γ·A·B → Γ.
We define the first projection π1(c) = pB ◦ c which is clearly a section of pA.
The second projection π2(c) is given by the universal property of the following
pullback:

Γ

idΓ

��

c

''

π2(c)

##
Γ·B[〈id, a〉]

B(id,a) //

B(a)

��

Γ·A·B

B(id)

��
Γ

a
// Γ·A

It is immediate from the diagram that it is a section of pB[〈id,a〉].

33

Equations. The equality rules for Σ-types are proved just as in [5].
This concludes the proof of the following proposition.

Proposition 14. If C is a category with a terminal object, then (C, T) supports
Σ-types.

D.1.4 Extensional identity types.

To improve readability, we will now sometimes omit the subscripts of the pro-
jections, when they can be recovered from the context. To build identity types,
we require that the base category has finite limits.

Formation rule. Let Γ ∈ C, A ∈ Type(Γ), and a, a′ : Γ ⊢ A. If s : ∆ →
Γ, we define IA(a, a

′)(s) as the equalizer of a[s] and a′[s] (seen as morphisms

∆ → ∆·A[s]). If ∆′

s′
 ❆❆

❆
δ // ∆

s��⑧
⑧

Γ

is a morphism in C/Γ, we define IA(a, a
′)(δ) as

the upper square in the following diagram:

dom(IA(a, a
′)(sδ))

γ //

IA(a,a′)(sδ)

��

dom(IA(a, a
′)(s))

IA(a,a′)(s)

��
∆′ δ //

a[sδ]

��

a′[sδ]

��

∆

a[s]

��

a′[s]

��
∆′ ·A[sδ]

〈δp,q〉
// ∆·A[s]

where γ is yet to be defined. For this purpose, and to prove that the obtained
square is a pullback, we need the following:

Lemma 15. In the diagram above, if f : dom(f) → ∆′, then f equalizes a[sδ]
and a′[sδ] iff δf equalizes a[s] and a′[s].

Proof. First note that by construction of this cwf, we have the surprising equal-
ity a = 〈idΓ, a〉 for any term a : Γ ⊢ A. Indeed, 〈idΓ, a〉 = A(idΓ, idΓ) ◦ a = a.
Thus, we have that

〈δp, q〉 ◦ a[sδ] = 〈δp, q〉 ◦ 〈id, a[sδ]〉

= 〈δ, a[sδ]〉

= 〈id∆, a[s]〉 ◦ δ

= a[s] ◦ δ

34

For the same reason, we have 〈δp, q〉 ◦ a′[sδ] = a′[s] ◦ δ. Suppose now that f
equalizes a[sδ] and a′[sδ]. Then:

a[s] ◦ δ ◦ f = 〈δp, q〉 ◦ a[sδ] ◦ f

= 〈δp, q〉 ◦ a′[sδ] ◦ f

= a′[s] ◦ δ ◦ f

Thus as claimed, δf equalizes a[s] and a′[s]. The same equational reasoning
gives the converse implication.

We use this lemma as follows. We know that IA(a, a
′)(sδ) equalizes a[sδ]

and a′[sδ], thus δ ◦ IA(a, a
′)(sδ) equalizes a[s] and a′[s]. Thus by the equalizer

property, δ ◦ IA(a, a
′)(sδ) factors in a unique way through IA(a, a

′)(s), and we
define γ to be the unique morphism. Since we already know that the square
commutes, it only remains to prove that it is a pullback square.

Let h1 : X → ∆′ and h2 : X → dom(IA(a, a
′)(s)) be two morphisms which

make the outer square commute. Necessarily, IA(a, a
′)(s) ◦ h2 equalizes a[s]

and a′[s]. Since the outer square commutes, δh1 equalizes them as well. By
Lemma 15, h1 equalizes a[sδ] and a′[sδ]. Thus it factors uniquely through
IA(a, a

′)(sδ). Let h be the mediating arrow. It makes the left triangle commute
by the factorisation property and the right triangle commute because γh defines
another unique factorisation of δh1 through IA(a, a

′)(s).
We must check that this construction is functorial. Both conditions (for ids

and δ1 ◦ δ2) follow immediately by uniqueness of the factorisation through the
equalizer. Thus we have shown that IA(a, a

′) ∈ Type(Γ).

Reflexivity. For each a ∈ Γ ⊢ A, we define the term rA,a : Γ ⊢ IA(a, a) as
follows:

Γ

idΓ

$$

rA,a

''
dom(IA(a, a)(idΓ))

��
Γ

a

��
a

		
Γ·A

Stability under substitution. First we prove

IA(a, a
′)[δ] = IA[δ](a[δ], a

′[δ])

It suffices to note that for any s, the arrows IA(a, a
′)[δ](s) and IA[δ](a[δ], a

′[δ])(s)
both equalize a[sδ] and a′[sδ]. The image of arrows is determined uniquely by
the factorisation under this equalizer, hence must also be unchanged.

35

Then we prove
rA,a[δ] = rA[δ],a[δ]

This is because rA,a[δ] is a correct factorisation of id∆ through IA(a, a
′)[δ] =

IA[δ](a[δ], a
′[δ]) and rA[δ],a[δ] is defined as the unique such factorisation.

Extensionality. Here, the judgement Γ ⊢ a = a′ : A means that a and a′

are equal morphisms of C. Suppose we have a term c : Γ ⊢ IA(a, a
′). For the

first rule, note that IA(a, a
′)(idΓ) ◦ c = idΓ, because c is a term. But idΓ factors

through IA(a, a
′)(idΓ). Thus it equalizes a and a

′, and it follows that a = a′. For
the second rule, note that the first rule implies that a = a′. Thus idΓ equalizes
a and a′ and there is a unique factorisation of idΓ through IA(a, a

′)(idΓ). Since
c and rA,a are both such factorisations c = rA,a.

Proposition 15. Let C be a finitely complete category, then (C, TC) supports
identity types.

D.1.5 Π-types.

If C is a lccc, then the cwf H(C) supports Π-types. Let
−→
A be a functorial family

over Γ and
−→
B over Γ·

−→
A . Then the value of the family Π(

−→
A,

−→
B) at substitution

δ : ∆ → Γ is defined by Π−→
A(δ)

(
−→
B (

−→
A (id, δ))), where Πf is the right adjoint of f∗

obtained by the lcc structure. If α : Ω → ∆ and δ : ∆ → Γ, we have to define

a morphism Π(
−→
A,

−→
B)(δ, α) yielding a pullback diagram. For this purpose, first

consider the following chain of isomorphisms in C/Ω:

Π−→
A (δα)

−→
B (

−→
A (id, δα)) = Π−→

A(δα)

−→
B (

−→
A (id, δ)

−→
A (δ, α))

∼= Π−→
A(δα)

(
−→
A (δ, α))∗(

−→
B (

−→
A (id, δ)))

∼= α∗(Π−→
A (δ)

−→
B (

−→
A (id, δ)))

The first isomorphism is by uniqueness of the pullback of
−→
B (id, δ) along

−→
A (δ, α),

while the second is by the Beck-Chevalley condition applied to the pullback

square of
−→
A (δ, α). Let us call φ this isomorphism. The action of α∗ also gives a

canonical morphism h : dom(α∗(Π−→
A (δ)

−→
B (

−→
A (id, δ)))) → dom(Π−→

A (δ)

−→
B (

−→
A (id, δ))),

thus we define:

Π(
−→
A,

−→
B)(δ, α) = hφ : dom(Π(

−→
A,

−→
B)(δ)) → dom(Π(

−→
A,

−→
B)(δα))

As needed this defines a pullback square since it is obtained as an isomorphism

and a pullback, hence the definition of the functorial family Π(
−→
A,

−→
B) is now

complete, since the equations come from the universal property of the pull-

back. The fact that Π(
−→
A,

−→
B)[δ] and Π(

−→
A [δ],

−→
B [〈δp, q〉]) coincide on objects (of

C/Γ) is a straightforward calculation, from which the fact that they coincide on
morphisms can be directly deduced.

36

The combinators λ and ap come from natural applications of the adjunction

(
−→
A (id))∗ ⊣ Π−→

A(id)
, and the computation rules follow from the properties of

adjunctions. Behaviour of the combinators λ and ap under substitution require
to rework the proof of the Beck-Chevalley conditions for lcccs. As in [5], we will
not give the details.

Proposition 16. Let C be a lccc, then (C, TC) supports Π-types.

D.2 Image of 1-cells

Lemma 16. Let (F, σ) : (C, T) → (D, T ′) be a pseudo cwf-morphism with
families of isomorphisms θ and ρ. Then for any δ : ∆ → Γ in C and type
A ∈ Type(Γ), we have:

F (〈δp, q〉) = ρ−1
Γ,A〈F (δ)p, q〉θ

−1
A,δρ∆,A[δ]

Proof. Direct calculation.

F (〈δp, q〉) = ρ−1
Γ,A〈F (δp), {θ

−1
A,δp}(σ

A[δp]
∆·A[δ](q))〉

= ρ−1
Γ,A〈F (δp), {θ

−1
A,δp}({θA[δ],p}(q[ρ∆,A[δ]]))〉

= ρ−1
Γ,A〈F (δp), {T

′(Fp)(θ−1
A,δ)}(q[ρ∆,A[δ]])〉

= ρ−1
Γ,A〈F (δp), q[T

′(Fp)(θ−1
A,δ)〈id, q[ρ∆,A[δ]]〉]〉

= ρ−1
Γ,A〈F (δp), q[〈p, q[θ

−1
A,δ〈(Fp)p, q〉]〉〈id, q[ρ∆,A[δ]]〉]〉

= ρ−1
Γ,A〈F (δp), q[θ

−1
A,δ〈Fp, q[ρ∆,A[δ]]〉]〉

= ρ−1
Γ,A〈F (δp), q[θ

−1
A,δρ∆,A[δ]]〉

= ρ−1
Γ,A〈F (δ)p, q〉θ

−1
A,δρ∆,A[δ]

Using preservation of substitution extension and q, then coherence of θ and
manipulation of cwf combinators.

From any functor F : C → D preserving finite limits, its extension to
(F, σF) : (C, TC) → (D, TD) relies heavily on the following lemma.

Lemma 17 (Generation of isomorphisms). Let (C, T) and (D, T ′) be two cwfs,
F : C → D a functor preserving finite limits, a family of functions σΓ :
Type(Γ) → Type′(FΓ) and a family of isomorphisms ρΓ,A : F (Γ·A) → FΓ·σΓ(A)
such that pρΓ,A = Fp. Then there exists an unique choice of functions σAΓ on
terms and of isomorphisms θA,δ such that (F, σ) is a weak cwf-morphism.

Proof. By Lemma 7, the unique way of extending σ to terms is by exploiting
the redundancy between terms and sections and set σAΓ (a) = q[ρΓ,AF (〈id, a〉)].

37

To generate θ, we exploit the two squares below:

F∆·σΓ(A)[Fδ]
〈(Fδ)pq〉 //

p

��

FΓ·σΓ(A)

p

��
F∆

Fδ
// FΓ

F∆·σ∆(A[δ])
ρΓ,AF (〈δp,q〉)ρ−1

∆,A[δ] //

p

��

FΓ·σΓ(A)

p

��
F∆

Fδ
// FΓ

The first square is a standard substitution pullback. The second is a pullback
because F preserves finite limits and ρΓ,A and ρ∆,A[δ] are isomorphisms. The
isomorphism θA,δ is then defined as the unique mediating morphism from the
first to the second. There is no other possible choice for θA,δ : indeed, in an
arbitrary pseudo cwf-morphism θA,δ necessarily already commutes with the pro-
jections of these pullback diagrams (easy consequence of Lemma 16), therefore
whenever (F, σ) is such that F preserves finite limits, θA,δ must coincide with
this mediating arrow above.

We must now check that θ, defined as above, satisfies the necessary coher-
ence and naturality conditions. Clearly, θ defined as above commutes with the
projections and satisfies θA,id = id. We must now check that θ, defined as
above, satisfies the necessary coherence and naturality conditions, which will be
a consequence of the universal property of the pullback above. For the coher-
ence condition, consider now that we have α : Ω → ∆ and δ : ∆ → Γ. The
morphism θA[δ],αT

′(Fα)(θA,δ) is an isomorphism between Ω·σΓ(A)[F (δα)] and
Ω ·σΩ(A[δα]), thus we just have to prove that it preserves the projections (of
the pullback corresponding to these expressions, as in the diagram above) to
conclude by uniqueness of such an isomorphism. The two equations to prove
are therefore the following.

pθA[δ],αT
′(Fα)(θA,δ) = p (3)

ρΓ,AF (〈δαp, q〉)ρ
−1
Ω,A[δα]θA[δ],αT

′(Fα)(θA,δ) = 〈(F (δα))p, q〉 (4)

Equation (3) is clear by property of θA[δ],α and construction of (Fα)∗θA,δ, while
equation (4) is a consequence of Lemma 16.

It remains to prove that θ satisfies the naturality condition. Let f : A→ B
be a morphism in T (Γ). We need to establish the following equality:

σ∆(T (δ)(f))θA,δ = θB,δT
′(Fδ)(σΓ(f))

It follows from the fact that both sides of this equation make the two triangles
commute in the following diagram, which is a pullback diagram because F

38

preserves finite limits.

F∆·σΓ(A)[Fδ] σΓ(f)〈(Fδ)p,q〉

**

p

))

++
F∆·σ∆(B[δ])

ρΓ,BF (〈δp,q〉)ρ−1
∆,B[δ] //

p

��

FΓ·σΓ(B)

p

��
F∆

Fδ
// FΓ

The proof that the two triangles commute only involves the definition of θA,δ
and θB,δ, along with manipulation of cwf combinators. This ends the proof that
(F, σ) is a weak cwf-morphism.

Proposition 17. If F : C → D preserves finite limits, then σF preserves
democracy.

Proof. The functor F preserves finite limits, thus it preserves in particular the
terminal object: let us denote by ι : [] → F [] the inverse to the terminal pro-
jection. Let us note now that since the two involved cwfs have been built with
Hofmann’s construction, their democratic structure is trivial; we have []·Γ = Γ
and γΓ = id. In particular, we have F ([] ·Γ) = F (Γ) = [] ·FΓ. Thus to get
preservation of the democratic structure, it is natural to choose:

dΓ = 〈ι, q〉ρ−1

[],Γ
: []·σ[](Γ) → []·FΓ[〈〉]

which makes the coherence condition essentially trivial.

Proposition 18. If (F, σ) : (C, T) → (D, T ′) such that (C, T) and (D, T ′)
supports identity types and F preserves finite limits, then σ preserves identity
types.

Proof. Let A ∈ Type(Γ), and a, a′ ∈ Γ ⊢ A, then Γ · IA(a, a
′) along with its

projection to Γ is an equalizer of 〈id, a〉 and 〈id, a′〉. Indeed if δ : ∆ → Γ
such that 〈id, a〉δ = 〈id, a′〉δ, it is straightforward to see that the morphism
h = 〈δ, rA[δ],a[δ]〉 typechecks and satisfies ph = δ. It is also the unique such
morphism because of the uniqueness of identity proofs. But F is left exact and
in particular preserves equalizers, hence the pair (F (Γ·IA(a, a

′)), F (p)) defines
an equalizer of F (〈id, a〉) = ρ−1

Γ,A〈id, σ
A
Γ (a)〉 and F (〈id, a′〉) = ρ−1

Γ,A〈id, σ
A
Γ (a

′)〉.

From this it is obvious that the pair (FΓ·σΓ(A), p) is an equalizer of 〈id, σAΓ (a)〉
and 〈id, σAΓ (a

′)〉. But for the same reason as in the beginning of the proof, the
pair (FΓ ·IσΓ(A)(σ

A
Γ (a), σ

A
Γ (a

′)), p) is already such an equalizer, therefore they
must be isomorphic and (F, σ) preserves identity types.

We will now address the corresponding proposition for preservation of Π-
types by (F, σ), provided F preserves lcc structure. The proof will make use of
thr following notion.

39

Definition 12. If (C, T) is a cwf (not necessarily supporting Π-types), Γ a
context in C and A ∈ Type(Γ) and B ∈ Type(Γ ·A), let us call a Π-object
of A and B any type Π(A,B) such that for all term c : Γ ·A ⊢ B there is
λ(c) : Γ ⊢ Π(A,B), for all c : Γ ⊢ Π(A,B) and a : Γ ⊢ A there is ap(c, a) :
Γ ⊢ B[〈id, a〉] satisfying the computation rules for Π-types (but no requirements
w.r.t. substitution). Then it is straightforward to check that just as exponentials
A ⇒ B of A and B are unique up to isomorphism, Π-objects of A and B are
unique up to type isomorphism.

This notion extends to categories by relating them to the cwf built with Hof-
mann’s construction: if C is any category with a terminal object, if g : A → B
and f : B → C are morphisms in C, we will call a Π-object of f and g any

morphism Π(f, g) : D → C such that◊�Π(f, g) is a Π-object of f̂ and ĝ in (C, TC).

Lemma 18. The two notions of Π-objects coincide: if (C, T) is a cwf, Γ a
context in C and A ∈ Type(Γ) and B ∈ Type(Γ·A), then a type C is a Π-object
of A and B if and only if pC is a Π-object of pA and pB .

Proof. Obvious by the correspondence between terms of type A and sections of
pA.

Lemma 19. If C is any category with a terminal object, if g : A → B and
f : B → C are morphisms in C, then there is only one Π-object of f and g up
to isomorphism in C/C.

Proof. The proof exactly mimics the proof of uniqueness of exponential objects.

Lemma 20. If C and C′ are lcccs and F : C → C′ is a functor preserving finite
limits, then if F preserves the lcc structure, then it preserves Π-objects.

Proof. Recall that if C is locally cartesian closed and if g : A→ B and f : B → C
are morphisms in C, then there is a morphism Πf (g) : − → Γ, obtained by the
following pullback in C/C:

Πf (g) //

��

(gf)f

gf

��
1

Λ(id) // ff

this extends to a functor Πf : C/B → C/C, which is right adjoint to the pullback
functor f∗. Exploiting this adjunction, it is straightforward to prove that Πf (f)
is a Π-object of f and g in C. By uniqueness, it is the Π-object of f and g, up
to isomorphism. But since F preserves lcc structure it preserves pullbacks and
local exponentiation, thus it maps (up to isomorphism) this pullback diagram

40

into the following pullback:

F (Πf (g)) //

��

(F (g)F (f))F (f)

F (g)F (f)

��
1

Λ(id) // F (f)F (f)

So F (Πf (g)) is as required a Π-object of F (f) and F (g).

Proposition 19. If (F, σ) : (C, T) → (C′, T ′) such that (C, T) and (C′, T ′)
supports Π-types and F preserves lccc structure, then σ preserves Π-types.

Proof. Let Γ be a context of C, A ∈ Type(Γ) and B ∈ Type(Γ ·A), obviously
Π(A,B) is a Π-object of A and B. Hence, pΠ(A,B) is a Π-object of pA and pB by
Lemma 18. But F preserves Π-objects by Lemma 20, so F (pΠ(A,B)) is a Π-object
of F (pA) and F (pB). But F (pA) is isomorphic to pσΓ(A) (the isomorphism
being ρΓ,A) and F (pB) is isomorphic to pσΓ·A(B)[ρΓ,A] (the isomorphism being

〈ρ−1
Γ,Ap, q〉ρ

−1
Γ·A,B), therefore F (pΠ(A,B)) is a Π-object of pσΓ(A) and pσΓ·A(B)[ρΓ,A],

hence it must be isomorphic to pΠ(σΓ(A),σΓ·A(B)[ρΓ,A]) by Lemma 19, so we have
the required isomorphism F (Γ·Π(A,B)) → FΓ·Π(σΓ(A), σΓ·A(B)[ρΓ,A]).

D.3 Image of 2-cells

Lemma 21 (Completion of pseudo cwf-transformations). Suppose (F, σ) and
(G, τ) are pseudo cwf-morphisms from (C, T) to (C′, T) such that F and G

preserve finite limits and φ : F
•
→ G is a natural transformation, then there

exists a family of morphisms (ψφ)Γ,A : σΓ(A) → τΓ(A)[φΓ] such that (φ, ψφ) is
a pseudo cwf-transformation from (F, σ) to (G, τ).

Proof. We set ψΓ,A = 〈p, q[ρ′Γ,AφΓ·Aρ
−1
Γ,A]〉 : FΓ·σΓA→ FΓ·τΓ(A)[φΓ]. To check

the coherence law, consider the following composition of pullback squares.

F∆·τ∆(A[δ])[φ∆]
〈φ∆p,q〉 //

p

��

G∆·τ∆(A[δ])
ρ′Γ,AG(〈δp,q〉)(ρ′∆,A[δ])

−1

//

p

��

GΓ·τΓ(A)

p

��
F∆

φ∆

// G∆
Gδ

// GΓ

The two paths T ′(φ∆)(θ
′
A,δ)T

′(Fδ)(ψΓ,A) and ψ∆,A[δ]θA,δ of the coherence di-
agram behave in the same way with respect to this pullback. Here is the calcu-

41

lation for the first path of the coherence diagram:

ρ′Γ,AG(〈δp, q〉)(ρ
′
∆,A[δ])

−1〈φ∆p, q〉T
′(φ∆)(θ′A,δ)T

′(Fδ)(ψΓ,A)

= 〈(Gδ)p, q〉θ′A,δ
−1

〈φ∆p, q〉T ′(φ∆)(θ
′
A,δ)T

′(Fδ)(ψΓ,A)

= 〈(Gδ)p, q〉θ′A,δ
−1

〈φ∆p, q〉〈p, q[θ′A,δ〈φ∆p, q〉〉T ′(Fδ)(ψΓ,A)

= 〈(Gδ)p, q〉θ′A,δ
−1

〈φ∆p, q[θ
′
A,δ〈φ∆p, q〉〉T

′(Fδ)(ψΓ,A)

= 〈(Gδ)p, q〉θ′A,δ
−1

〈pθ′A,δ〈φ∆p, q〉, q[θ
′
A,δ〈φ∆p, q]〉〉T

′(Fδ)(ψΓ,A)

= 〈(Gδ)p, q〉〈φ∆p, q〉T ′(Fδ)(ψΓ,A)

= 〈(Gδ)p, q〉〈φ∆p, q〉〈p, q[ψΓ,A〈(Fδ)p, q〉]〉

= 〈(Gδ)φ∆p, q[ρ′Γ,AφΓ·Aρ
−1
Γ,A〈(Fδ)p, q〉]〉

= 〈φΓ(Fδ)p, q[ρ
′
Γ,AφΓ·Aρ

−1
Γ,A〈(Fδ)p, q〉]〉

= 〈φΓp, q[ρ
′
Γ,AφΓ·Aρ

−1
Γ,A]〉〈(Fδ)p, q〉

= ρ′Γ,AφΓ·Aρ
−1
Γ,A〈(Fδ)p, q〉

where we use Lemma 16, then only the definition of ψΓ,A, naturality of φ and
manipulation of cwf combinators. The calculation for the other path follows:

ρ′Γ,AG(〈δp, q〉)ρ
′
∆,A[δ]

−1
〈φ∆p, q〉ψ∆,A[δ]θA,δ

= ρ′Γ,AG(〈δp, q〉)ρ
′
∆,A[δ]

−1
〈φ∆p, q〉〈p, q[ρ

′
∆,A[δ]φ∆·A[δ]ρ

−1
∆,A[δ]]〉θA,δ

= ρ′Γ,AG(〈δp, q〉)ρ
′
∆,A[δ]

−1
〈φ∆p, q[ρ

′
∆,A[δ]φ∆·A[δ]ρ

−1
∆,A[δ]]〉θA,δ

= ρ′Γ,AG(〈δp, q〉)ρ
′
∆,A[δ]

−1
〈pρ′∆,A[δ]φ∆·A[δ]ρ

−1
∆,A[δ], q[ρ

′
∆,A[δ]φ∆·A[δ]ρ

−1
∆,A[δ]]〉θA,δ

= ρ′Γ,AG(〈δp, q〉)ρ
′
∆,A[δ]

−1
ρ′∆,A[δ]φ∆·A[δ]ρ

−1
∆,A[δ]θA,δ

= ρ′Γ,AG(〈δp, q〉)φ∆·A[δ]ρ
−1
∆,A[δ]θA,δ

= ρ′Γ,AφΓ·AF (〈δp, q〉)ρ
−1
∆,A[δ]θA,δ

= ρ′Γ,AφΓ·Aρ
−1
Γ,AρΓ,AF (〈δp, q〉)ρ

−1
∆,A[δ]θA,δ

= ρ′Γ,AφΓ·Aρ
−1
Γ,A〈(Fδ)p, q〉

We have used naturality of φ, preservation of the first projection by (F, σ) and
(G, τ) and manipulations on cwf combinators.

Lemma 22. Completion of pseudo cwf-transformations commutes with both
notions of composition, i.e. if φ : F

•
→ G and φ′ : G

•
→ H, then

(φ′, ψφ′)(φ, ψφ) = (φ′φ, ψφ′φ)

(φ, ψφ) ⋆ 1 = (φ ⋆ 1, ψφ⋆1)

1 ⋆ (φ, ψφ) = (1 ⋆ φ, ψ1⋆φ)

(φ′, ψφ′) ⋆ (φ, ψφ) = (φ′ ⋆ φ, ψφ′⋆φ)

whenever these expressions typecheck.

42

Proof. The first equality is just a straightforward verification, and the second
and third are trivial given the definition of ψ1. The fourth though, requires a
more involved calculation with arguments really similar to those used to prove
Lemma 21. We only detail the third case. Imagine we have the following
situation:

(C, T)

(F,σ)
--

(G,τ)

11 (C
′, T ′)

(F ′,σ′)
--

(G′,τ ′)

11 (C
′′, T ′′)

Let us call θ and ρ the components of (F, σ), θ′ and ρ′ the components of (F ′, σ′),
t and r the components of (G, τ) and t′ and r′ the components of (G′, τ ′). Let

us also consider natural transformations φ : F
•
→ G and φ′ : F ′ •

→ G′. Let us
recall that the vertical composition of pseudo cwf-transformations follow those
of 2-cells in the 2-category of indexed categories over arbitrary bases, which
means (φ, ψφ) ⋆ (φ

′, ψφ′) = (φ ⋆ φ′,m), where mΓ,A is obtained by:

σ′
FΓ(σΓA)

σ
′

FΓ((ψφ)Γ,A)
// σ′
FΓ(τΓA[φΓ])

θ′τΓA,φΓ

−1

// σ′
GΓ(τΓA)[F

′φΓ]
T

′′(F ′φΓ)((ψφ′)GΓ,τΓA)
// τ ′GΓ(τΓA)[φ

′
GΓF

′(φΓ)]

which the following calculation relates to (ψφ⋆φ′)Γ,A:

mΓ,A = T
′′(F ′φΓ)((ψφ′)GΓ,τΓA)θ

′
τΓA,φΓ

−1
σ

′

FΓ((ψφ)Γ,A)

= 〈p, q[(ψφ′)GΓ,τΓA〈(F
′φΓ)p, q〉]〉θ

′
τΓA,φΓ

−1
ρ′FΓ,τΓA[φΓ]

F ′((ψφ)Γ,A)ρ
′
FΓ,σΓA

−1

= 〈p, q[(ψφ′)GΓ,τΓA〈(F
′φΓ)p, q〉θ

′
τΓA,φΓ

−1
ρ′FΓ,τΓA[φΓ]

F ′((ψφ)Γ,A)ρ
′
FΓ,σΓA

−1
]〉

= 〈p, q[(ψφ′)GΓ,τΓAρ
′
GΓ,τΓAF

′(〈φΓp, q〉)ρ
′
FΓ,τΓA[φΓ]

−1
ρ′FΓ,τΓA[φΓ]

F ′((ψφ)Γ,A)ρ
′
FΓ,σΓA

−1
]〉

= 〈p, q[(ψφ′)GΓ,τΓAρ
′
GΓ,τΓAF

′(〈φΓp, q〉)F
′((ψφ)Γ,A)ρ

′
FΓ,σΓA

−1
]〉

= 〈p, q[〈p, q[r′GΓ,τΓAφ
′
GΓ·τΓAρ

′
GΓ,τΓA

−1
ρ′GΓ,τΓAF

′(〈φΓp, q〉)F
′((ψφ)Γ,A)ρ

′
FΓ,σΓA

−1
]〉]〉

= 〈p, q[r′GΓ,τΓAφ
′
GΓ·τΓAF

′(〈φΓp, q〉)F
′((ψφ)Γ,A)ρ

′
FΓ,σΓA

−1
]〉

= 〈p, q[r′GΓ,τΓAφ
′
GΓ·τΓAF

′(〈φΓp, q〉rΓ,AφΓ·Aρ
−1
Γ,A)ρ

′
FΓ,σΓA

−1
]〉

= 〈p, q[r′GΓ,τΓAφ
′
GΓ·τΓAF

′(rΓ,AφΓ·Aρ
−1
Γ,A)ρ

′
FΓ,σΓA

−1
]〉

= 〈p, q[r′GΓ,τΓAG
′(rΓ,A)φ

′
G(Γ·A)F

′(φΓ·A)F
′(ρ−1

Γ,A)ρ
′
FΓ,σΓA

−1
]〉

= 〈p, q[ρG
′G

Γ,A (φ ⋆ φ′)Γ·Aρ
F ′F
Γ,A

−1
]〉

= (ψφ⋆φ′)Γ,A

We have first unfolded the action of T ′′ and σ
′, then applied Lemma 16, un-

folded the definition of ψφ′ and ψφ, then used naturality of φ′ and φ. Of course
there are a lot of simplification steps, involving the preservation of the first
projection by all the present pseudo cwf-morphisms and manipulation of cwf
combinators.

Proposition 20. There are pseudofunctors H : FL → CwFIextΣ
dem and H :

43

LCC → CwFIextΣΠ
dem defined by:

HC = (C, TC)

HF = (F, σF)

Hφ = (φ, ψφ)

Proof. First, note that as proved in Lemma 22, H is functorial on 2-cells.
For each C we need an invertible 2-cell HC : Id(C,TC) → H(IdC), this will

be the identity 2-cell since we have in fact H(IdC) = (IdC, σIdC) = idC,TC
by

construction of σIdC .
For each two functors F : C → D and G : D → E we need an isomorphism

HF,G : HG ◦ HF → H(G ◦ F), natural in F and G. It is given by HF,G =
(1GF , ψ1GF

). The naturality condition amounts to the fact that the following
square commutes:

(G, σG)(F, σF)
(1GF ,ψ1GF

)
//

(φ,ψφ)⋆(φ
′,ψφ′)

��

(GF, σGF)

(φ′⋆φ,ψφ′⋆φ)

��
(G′, σG′)(F ′, σF ′)

(1GF ,ψ1GF
)
// (G′F ′, σG′F ′)

which is a direct consequence of Lemma 22. The coherence laws w.r.t. as-
sociativity of composition and identities also stems from Lemma 22. In fact,
Lemma 22 implies that to check the validity of any equation involving vertical
and horizontal compositions of pseudo cwf-transformations built with Lemma
21 and identity pseudo cwf-transformations, it suffices to check the equality of
the corresponding base natural transformation, ignoring the modifications.

E Proofs of Section 6

Definition 13 (The pseudo cwf-morphism η(C,T)). For each cwf (C, T), context
Γ of C and type A ∈ Type(Γ). Consider:

• The identity functor IdC : C → C,

• For each context Γ and type A ∈ Type(Γ), the functorial family σΓ(A)
defined by:

σΓ(A)(δ) = pA[δ]

σΓ(A)(δ, γ) = 〈γp, q〉

• The isomorphism ρΓ,A = idΓ·A.

Then by Lemma 17, it completes in an unique way to a pseudo cwf-morphism
η(C,T) : (C, T) → (C, TC) = HU((C, T)).

44

Lemma 23 (The pseudonatural transformation η). The family η(C,T) : (C, T) →
HU((C, T)) is pseudonatural in (C, T).

Proof. For each pseudo cwf-morphism (F, σ), the pseudonaturality square re-
lates two pseudo cwf-morphisms whose base functor is F . Hence, the necessary
invertible pseudo cwf-transformation is obtained using Lemma 21 from the iden-
tity natural transformation on F . The coherence conditions are straightforward
consequences of Lemma 22.

Definition 14 (The pseudo cwf-morphism ǫ(C,T)). For each cwf (C, T), context
Γ of C and type A ∈ Type(Γ). Consider:

• The identity functor IdC : C → C,

• For each context Γ and functorial family
−→
A : C/Γ → C→, the type τΓ(

−→
A)

defined by:

τΓ(
−→
A) = Inv(

−→
A (idΓ))

• The isomorphism ρΓ,A : dom(
−→
A) → Γ · Inv(

−→
A (idΓ)) is the isomorphism

between
−→
A (id) and p

(Inv
−→
A(idΓ))

in C/Γ.

Then by Lemma 17, it completes in an unique way to a pseudo cwf-morphism
ǫ(C,T) : HU(C, T) = (C, TC) → (C, T).

Lemma 24 (The pseudonatural transformation ǫ). The family ǫ(C,T) : HU(C, T) →
(C, T) is pseudonatural in (C, T).

Proof. Exactly the same reasoning as for η.

Theorem 2. We have the following biequivalences of 2-categories.

FL
H //

CwFIextΣ
dem

U
oo LCC

H //
CwFIextΣΠ

dem
U

oo

Proof. We need to define invertible modifications m : ηǫ → 1 and m′ : ǫη →
1. Taken at each cwf (C, T), m(C,T) and m′

(C,T) are both generated from the
identity natural transformation using Lemma 21. It is obvious by Lemma 22
that they satisfy the required coherence law.

45

	1 Introduction
	2 Categories with Families
	2.1 Definition
	2.2 The Indexed Category of Types in Context

	3 The 2-Category of Categories with Families
	3.1 Pseudo Cwf-Morphisms
	3.2 Pseudo Cwf-Transformations
	3.3 2-Categories of Cwfs with Extra Structure

	4 Forgetting Types and Terms
	5 Rebuilding Types and Terms
	5.1 Action on 0-Cells
	5.2 Action on 1-Cells
	5.3 Action on 2-Cells
	5.4 Pseudofunctoriality of H

	6 The Biequivalences
	A Proofs of Section 2
	B Proofs of Section 3
	B.1 Properties of pseudo cwf-morphisms
	B.2 Composition of pseudo cwf-morphisms
	B.3 Properties and composition of pseudo cwf-transformations

	C Proofs of Section 4
	D Proofs of Section 5
	D.1 Action on 0-cells
	D.1.1 Base cwf structure.
	D.1.2 Democracy.
	D.1.3 -types.
	D.1.4 Extensional identity types.
	D.1.5 -types.

	D.2 Image of 1-cells
	D.3 Image of 2-cells

	E Proofs of Section 6

