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Recently, in order to mix algebraic and logic styles of specification in a uniform

framework, the notion of a logic labelled transition system (Logic LTS or LLTS for

short) has been introduced and explored. A variety of constructors over LLTS, including

usual process-algebraic operators, logic connectives (conjunction and disjunction) and

standard temporal operators (always and unless), have been given. However, no

attempt has made so far to develop general theory concerning (nested) recursive

operations over LLTS and a few fundamental problems are still open. This paper intends

to study this issue in pure process-algebraic style. A few fundamental properties,

including precongruence and the uniqueness of consistent solutions of equations, will be

established.

1. Introduction

Algebra and logic are two dominant approaches for the specification, verification and sys-

tematic development of reactive and concurrent systems. They take different standpoints

for looking at specifications and verifications, and offer complementary advantages.

Logical approaches devote themselves to specifying and verifying abstract properties

of systems. In such frameworks, the most common reasonable property of concurrent

systems, such as safety, liveness, etc., can be formulated in terms of logic formulas without

resorting to operational details and verification is a deductive or model-checking activity.

However, due to their global perspective and abstract nature, logical approaches often

give little support for modular designing and compositional reasoning.

Algebraic approaches put attention to behavioral aspects of systems, which have tended

to use formalisms in algebraic style. These formalisms are referred to as process algebra or

process calculus. In such a paradigm, a specification and its implementation usually are

formulated by terms (expressions) of a formal language built from a number of operators,
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and the underlying semantics is often assigned operationally. The verification amounts to

comparing terms, which is often referred to as implementation verification or equivalence

checking. Algebraic approaches often support compositional construction and reasoning,

which bring us advantages in developing systems, such as, supporting modular design and

verification, avoiding verifying the whole system from scratch when its parts are modified,

allowing reusability of proofs and so on (Andersen et al. 1994). Thus such approaches

offer significant support for rigorous systematic development of reactive and concurrent

systems. However, since algebraic approaches specify a system by means of prescribing

in detail how the system should behave, it is often difficult for them to describe abstract

properties of systems, which is a major disadvantage of such approaches.

In order to take advantage of these two approaches when designing systems, so-called

heterogeneous specifications have been proposed, which uniformly integrate these two

specification styles. Amongst, based on Büchi automata and labelled transition system

(LTS) augmented with a predicate, Cleaveland and Lüttgen provide a semantic frame-

work for heterogenous system design (Cleaveland and Lüttgen 2000, 2002). In this frame-

work, not only usual operational operators but also logic connectives are considered, and

must-testing preorder presented in (Nicola and Hennessy 1983) is adopted to capture

refinement relation. Unfortunately, this setting does not support compositional reason-

ing since must-testing preorder is not a precongruence in this situation. Moreover, the

logic connective conjunction in this framework lacks the desired property that r is an

implementation of a given specification p ∧ q if and only if r implements both p and q.

Recently, Lüttgen and Vogler have introduced the notion of a Logic LTS (LLTS), which

combines operational and logic styles of specification in one unified framework (Lüttgen

and Vogler 2007, 2010, 2011). In addition to usual operational constructors, e.g., CSP-

style parallel composition, hiding and so on, logic connectives (conjunction and disjunc-

tion) and standard modal operators (always and unless) are also integrated into this

framework. Moreover, the drawbacks in (Cleaveland and Lüttgen 2000, 2002) mentioned

above have been remedied by adopting ready-tree semantics (Lüttgen and Vogler 2007).

In order to support compositional reasoning in the presence of the parallel constructor,

a variant of the usual notion of ready simulation is employed to capture the refinement

relation, which has been shown to be the largest precongruence satisfying some desired

properties (Lüttgen and Vogler 2010).

Along the direction suggested by Lüttgen and Vogler in (Lüttgen and Vogler 2010), a

process calculus called CLL is presented in (Zhang et al. 2011), which reconstructs their

setting in pure process-algebraic style. Moreover, a sound and ground-complete proof

system for CLL is provided. In effect, it gives an axiomatization of ready simulation in

the presence of logic operators. However, CLL is lack of capability of describing infinite

behaviour, that is important for representing reactive systems.

It is well known that recursive operations are fundamental mechanisms for repre-

senting objects with infinite behavior in terms of finite expressions (see, for instance

(Bergstra et al. 2001)). We extend CLL with recursive operations and propose a pro-

cess calculus named CLLR. Since LLTS involves consideration of inconsistencies, it is far

from straightforward to re-establish existent results concerning recursive operations in

this framework. A solid effort is required, especially for handling inconsistencies. This
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paper intends to explore recursive operations over LLTS in pure process-algebraic style.

A behavioral theory of CLLR will be established, especially, we prove that the behav-

ioral relation (i.e., ready simulation mentioned above) is precongruent w.r.t all operators

in CLLR. Moreover, the uniqueness of solution of equations will be obtained, provided

conditions that, given an equation X = tX , X is strongly guarded and does not occur in

the scope of any conjunction in tX .

The remainder of this paper is organized as follows. The next section recalls some

related notions. Section 3 introduces SOS rules of CLLR. In section 4, the existence and

uniqueness of stable transition model for CLLR is demonstrated, and a few of basic prop-

erties of the LTS associated with CLLR are given. More further properties are considered

in Section 5. In section 6, we shall show that the variant of ready simulation presented

by Lüttgen and Vogler is precongruent in the presence of (nested) recursive operations.

In section 7, a theorem on the uniqueness of solution of equations is obtained. Finally, a

brief conclusion and discussion are given in Section 8.

2. Preliminaries

2.1. Logic LTS and ready simulation

This subsection will set up notations and briefly recall the notions of Logic LTS and

ready simulation presented by Lüttgen and Vogler. For motivation behind these notions

we refer the reader to (Lüttgen and Vogler 2007, 2010, 2011).

Let Act be the set of visible actions ranged over by letters a, b, etc., and let Actτ
denote Act∪{τ} ranged over by α and β, where τ represents invisible actions. A labelled

transition system (LTS) with a predicate is a quadruple (P,Actτ ,−→, F ), where P is a

set of processes (states), −→⊆ P ×Actτ × P is the transition relation and F ⊆ P .

As usual, we write p
α

−→ q if (p, α, q) ∈−→. q is an α-derivative of p if p
α

−→ q. We

write p
α

−→ (or, p 6
α

−→) if ∃q ∈ P.p
α

−→ q (∄q ∈ P.p
α

−→ q respectively). Given a process

p, the ready set {α ∈ Actτ |p
α

−→} of p is denoted by I(p). A state p is stable if it cannot

engage in any τ -transition, i.e., p 6
τ

−→. The list below contains some useful decorated

transition relations:

p
α

−→F q iff p
α

−→ q and p, q /∈ F .

p
ǫ

=⇒ q iff p(
τ

−→)∗q, where (
τ

−→)∗ is the transitive reflexive closure of
τ

−→.

p
α

=⇒ q iff ∃r, s ∈ P.p
ǫ

=⇒ r
α

−→ s
ǫ

=⇒ q.

p
γ

=⇒ |q iff p
γ

=⇒ q 6
τ

−→ with γ ∈ Actτ ∪ {ǫ}.

p
ǫ

=⇒F q iff there exists a sequence of τ−labelled transitions from p to q such that

all states along this sequence, including p and q, are not in F . The decorated transition

p
α

=⇒F q may be defined similarly.

p
ǫ

=⇒F |q (or, p
α

=⇒F |q) iff p
ǫ

=⇒F q (p
α

=⇒F q respectively) and q is stable.

Remark 2.1. Notice that some notations above are slightly different from ones adopted

by Lüttgen and Vogler. In (Lüttgen and Vogler 2010, 2011) the notation p
ǫ

=⇒|q (or,

p
α

=⇒|q) has the same meaning as p
ǫ

=⇒F |q (p
α

=⇒F |q respectively) in this paper, while

p
ǫ

=⇒ |q in this paper does not involve any requirement on consistency.
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Definition 2.1 (Lüttgen and Vogler 2010). An LTS (P,Actτ ,−→, F ) is an LLTS if,

for each p ∈ P ,

(LTS1) p ∈ F if ∃α ∈ I(p)∀q ∈ P (p
α

−→ q implies q ∈ F );

(LTS2) p ∈ F if ∄q ∈ P.p
ǫ

=⇒F |q.

Here the predicate F is used to denote the set of all inconsistent states. In the sequel,

we shall use the phrase “inconsistency predicate” to refer to F . The condition (LTS1)

formalizes the backward propagation of inconsistencies, and (LTS2) captures the intuition

that divergence (i.e., infinite sequences of τ -transitions) should be viewed as catastrophic.

Compared with usual LTSs, it is one distinguishing feature of LLTS that it involves

consideration of inconsistencies. Roughly speaking, the motivation behind such consider-

ation lies in dealing with inconsistencies caused by conjunctive composition. For example,

consider a simple composition a.0 ∧ b.0, it cannot be interpreted as deadlock 0 because

a run of a process cannot begin with both actions a and b, that is a.0 and b.0 specify

processes with different ready sets. It is proper to tag it as an inconsistent specification.

Moreover, inconsistencies could propagate backward. a.b.0∧a.c.0 specifies the absence of

any alternative a-transition leading to a consistent state. It should also be tagged as an

inconsistent one. For more intuitive ideas and motivation about inconsistency, the reader

may refer to (Lüttgen and Vogler 2007, 2010).

Definition 2.2 (Lüttgen and Vogler 2010). An LTS (P,Actτ ,−→, F ) is τ -pure if,

for each p ∈ P , p
τ

−→ implies ∄a ∈ Act. p
a

−→.

Hence, for any state p in a τ -pure LTS, either I(p) = {τ} or I(p) ⊆ Act and intuitively,

it represents either an external or internal (disjunctive) choice between its outgoing tran-

sitions. Following (Lüttgen and Vogler 2010), this paper will focus on τ -pure LLTSs.

In (Lüttgen and Vogler 2010, 2011), the notion of ready simulation below is adopted

to capture the refinement relation, which is a variant of the usual notion of weak ready

simulation. Such kind of ready simulation cares only stable consistent states.

Definition 2.3 (Ready simulation on LLTS). Let (P,Actτ ,−→, F ) be a LLTS. A

relation R ⊆ P ×P is a stable ready simulation relation, if for any (p, q) ∈ R and a ∈ Act

(RS1) both p and q are stable;

(RS2) p /∈ F implies q /∈ F ;

(RS3) p
a

=⇒F |p′ implies ∃q′.q
a

=⇒F |q′ and (p′, q′) ∈ R;

(RS4) p /∈ F implies I(p) = I(q).

We say that p is stable ready simulated by q, in symbols p ⊏
∼RS

q, if there exists a stable

ready simulation relation R with (p, q) ∈ R. Further, p is ready simulated by q, written

p ⊑RS q, if ∀p′(p
ǫ

=⇒F |p′ implies ∃q′(q
ǫ

=⇒F |q′ and p′ ⊏
∼RS

q′)). The kernels of ⊏
∼RS

and ⊑RS are denoted by ≈RS and =RS respectively. It is easy to see that ⊏
∼RS

is a

stable ready simulation relation and both ⊏
∼RS

and ⊑RS are pre-order (i.e., reflexive and

transitive).
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2.2. Transition system specification

Structural Operational Semantics (SOS) is proposed by G. Plotkin in (Plotkin 1981),

which adopts a syntax oriented view on operational semantics, and gives operational se-

mantics in logical style. Transition System Specifications (TSSs), as presented by Groote

and Vaandrager in (Groote 1992), are formalizations of SOS. This subsection recalls ba-

sic concepts related to TSS. For further information on this issue we refer the reader to

(Aceto 2001; Bol and Groote 1996; Groote 1992).

Let VAR be an infinite set of variables and Σ a signature. The set of Σ-terms over VAR,

denoted by T (Σ, VAR), is the least set such that (I) VAR ⊆ T (Σ, VAR) and (II) if f ∈ Σ

and t1, . . . , tn ∈ T (Σ, VAR), then f(t1, . . . , tn) ∈ T (Σ, VAR), where n is the arity of f .

T (Σ, ∅) is abbreviated by T (Σ), elements in T (Σ) are called closed or ground terms.

A substitution σ is a mapping from VAR to T (Σ, VAR). As usual, a substitution σ may

be lifted to a mapping T (Σ, VAR) → T (Σ, VAR) by σ(f(t1, ..., tn)) , f(σ(t1), . . . , σ(tn))

for any n-arity f ∈ Σ and t1, . . . , tn ∈ T (Σ, VAR). A substitution is closed if it maps all

variables to ground terms.

A TSS is a quadruple P = (Σ,A,P,R), where Σ is a signature, A is a set of labels, P is

a set of predicate symbols and R is a set of rules. Positive literals are all expressions of the

form t
a

−→ t′ or tP , while negative literals are all expressions of the form t 6
a

−→ or t¬P ,

where t, t′ ∈ T (Σ, VAR), a ∈ A and P ∈ P. A literal is a positive or negative literal, and

ϕ, ψ, χ are used to range over literals. A literal is ground or closed if all terms occurring

in it are ground. A rule r ∈ R has the form like H
C , where H , the premises of the rule r,

denoted prem(r), is a set of literals, and C, the conclusion of the rule r, denoted conc(r),

is a positive literal. Furthermore, we write pprem(r) for the set of positive premises of r

and nprem(r) for the set of negative premises of r. A rule r is positive if nprem(r) = ∅.

A TSS is positive if it has only positive rules. Given a substitution σ and a rule r ∈ R,
σ(r) is the rule obtained from r by replacing each variable in r by its σ-image, that is,

σ(r) , {σ(ϕ)|ϕ∈prem(r)}
σ(conc(r)) . Moreover, if σ is closed then σ(r) is a ground instance of r.

Definition 2.4 (Proof in positive TSS). Let P = (Σ,A,P,R) be a positive TSS. A

proof of a closed positive literal ψ from P is a well-founded, upwardly branching tree,

whose nodes are labelled with closed positive literals, such that

— the root is labelled with ψ,

— if χ is the label of a node q and {χi : i ∈ I} is the set of labels of the nodes directly

above q, then there is a rule {ϕi : i ∈ I}/ϕ in R and a closed substitution σ such that

χ = σ(ϕ) and χi = σ(ϕi) for each i ∈ I.

If a proof of ψ from P exists, then ψ is provable from P , in symbols P ⊢ ψ.

A natural and simple method of describing the operational nature of closed terms is

in terms of LTSs. Given a TSS, an important problem is how to associate LTS with

any given closed terms. For positive TSS, the answer is straightforward. However, this

problem is far from trivial for TSS containing negative premises. The notions of stable

model and stratification of TSS play an important role in dealing with this issue. The

remainder of this subsection intends to recall these notions briefly.

Given a TSS P = (Σ,A,P,R), a transition model M is a subset of Tr(Σ,A) ∪
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Pred(Σ,P), where Tr(Σ,A) = T (Σ) × A × T (Σ) and Pred(Σ,P) = T (Σ) × P, elements

(t, a, t′) and (t, P ) in M are written as t
a

−→ t′ and tP respectively. A positive closed

literal ψ holds in M or ψ is valid in M , in symbols M |= ψ, if ψ ∈M . A negative closed

literal t 6
a

−→ (or, t¬P ) holds in M , in symbols M |= t 6
a

−→ (M |= t¬P respectively), if

there is no t′ such that t
a

−→ t′ ∈ M(tP /∈ M respectively). For a set of closed literals

Ψ, we write M |= Ψ iff M |= ψ for each ψ ∈ Ψ. M is a model of P if, for each r ∈ R
and σ : VAR −→ T (Σ), we have M |= conc(σ(r)) whenever M |= prem(σ(r)). M is

supported by P if, for each ψ ∈ M , there exists r ∈ R and σ : VAR −→ T (Σ) such that

M |= prem(σ(r)) and conc(σ(r)) = ψ. M is a supported model of P if M is supported

by P and M is a model of P .

Definition 2.5 (Aceto 2001; Bol and Groote 1996). Let P = (Σ,A,P,R) be a TSS

and α an ordinal number. A function S : Tr(Σ,A) ∪ Pred(Σ,P) −→ α is a stratification

of P if, for every rule r ∈ R and every substitution σ : VAR −→ T (Σ), the following

conditions hold.

(1) S(ψ) ≤ S(conc(σ(r))) for each ψ ∈ pprem(σ(r)),

(2) S(tP ) < S(conc(σ(r))) for each t¬P ∈ nprem(σ(r)), and

(3) S(t
a

−→ t′) < S(conc(σ(r))) for each t′ ∈ T (Σ) and t 6
a

−→∈ nprem(σ(r)).

A TSS is stratified iff there exists a stratification function for it.

Definition 2.6 (Bol and Groote 1996; Gelfond and Lifchitz 1988). Let P = (Σ,A,P,R)
be a TSS and M a transition model. M is a stable transition model for P if

M =MStrip(P,M),

where Strip(P ,M) is the TSS (Σ,A,P, Strip(R,M)) with

Strip(R,M) ,

{
pprem(r)

conc(r)
| r ∈ Rground andM |= nprem(r)

}
,

where Rground denotes the set of all ground instances of rules in R, and MStrip(P,M) is

the least transition model of the positive TSS Strip(P ,M).

As is well known, stable models are supported models and each stratified TSS P has

a unique stable model (Bol and Groote 1996); moreover, such stable model does not

depend on particular stratification function (Groote 1993).

3. Syntax and SOS rules of CLLR

The calculus CLLR is obtained from CLL by enriching it with recursive operations.

Following (Baeten and Bravetti 2008), this paper adopts the notation 〈X |E〉 to denote

recursive operations, which encompasses both the CCS operator recX.t and standard

way of expressing recursion in ACP. Formally, the terms in CLLR are defined by BNF:

t ::= 0 | ⊥ | (α.t) | (t�t) | (t ∧ t) | (t ∨ t) | (t ‖A t) | X | 〈X |E〉

where X ∈ VAR, α ∈ Actτ , A ⊆ Act and recursive specification E = E(V ) is a nonempty

finite set of equations E = {X = t|X ∈ V }. As usual, 0 encodes deadlock. The prefix

α.t has a single capability, expressed by α; the process t cannot proceed until α has been
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exercised. � is an external choice operator. ‖A is a CSP-style parallel operator, t1 ‖A t2
represents a process that behaves as t1 in parallel with t2 under the synchronization

set A. ⊥ represents an inconsistent process with empty behavior. ∨ and ∧ are logical

operators, which are intended for describing logical combinations of processes.

In the sequel, we often denote 〈X |{X = tX}〉 briefly by 〈X |X = tX〉. Given a term

〈X |E〉 and variable Y , the phrase “Y occurs in 〈X |E〉” means that Y occurs in tZ for

some Z = tZ ∈ E. Moreover, the scope of a recursive operation 〈X |E〉 exactly consists

of all tZ with Z = tZ ∈ E. An occurrence of a variable X in a given t is free if it does

not occur in the scope of any recursive operation 〈Y |E〉 with E = E(V ) and X ∈ V . A

variable X in term t is a free variable if all occurrences of X in t are free, otherwise X

is a recursive variable in t.

Convention 3.1. Throughout this paper, as usual, we make the assumption that recur-

sive variables are distinct from each other. That is, for any two recursive specifications

E(V1) and E
′(V2) we have V1 ∩V2 = ∅. Moreover, we will tacitly restrict our attention to

terms where no recursive variable has free occurrences. For example we will not consider

terms such as X�〈X |X = a.X〉 because this term could be replaced by the clear term

X�〈Y |Y = a.Y 〉 with the same meaning.

On account of the above convention, given a term t, the set FV (t) of all free variables

of t may be defined recursively as:

— FV (X) = {X}; FV (0) = FV (⊥) = ∅; FV (α.t) = FV (t);

— FV (t1 ⊙ t2) = FV (t1) ∪ FV (t2) with ⊙ ∈ {∨,∧,�, ‖A};

— FV (〈Y |E〉) =
⋃

Z=tZ∈E FV (tZ)− V where E = E(V ).

As usual, a term t is closed if FV (t) = ∅. The set of all closed terms of CLLR is denoted

T (ΣCLLR
). In the following, a term is a process iff it is closed. Unless noted otherwise we

use p, q, r to represent processes. We shall always use t1 ≡ t2 to mean that expressions

t1 and t2 are syntactically identical. In particular, 〈Y |E〉 ≡ 〈Y ′|E′〉 means that Y ≡ Y ′

and for any Z and tZ , Z = tZ ∈ E iff Z = tZ ∈ E′.

Definition 3.1. For any recursive specification E(V ) and term t, we define 〈t|E〉 to be

t{〈X |E〉/X : X ∈ V }, that is, 〈t|E〉 is obtained from t by simultaneously replacing all

free occurrences of each X(∈ V ) by 〈X |E〉.

For example, consider t ≡ X�a.〈Y |Y = X �Y 〉 and E({X}) = {X = tX} then

〈t|E〉 ≡ 〈X |X = tX〉�a.〈Y |Y = 〈X |X = tX〉�Y 〉. In particular, for any recursive

specification E(V ) and t ≡ X , 〈t|E〉 ≡ 〈X |E〉 whenever X ∈ V and 〈t|E〉 ≡ X if X /∈ V .

As usual, an occurrence of X in t is strongly (or, weakly) guarded if such occurrence is

within some subexpression a.t1 with a ∈ Act (τ.t1 or t1∨ t2 respectively). A variable X is

strongly (or, weakly) guarded in t if each occurrence ofX is strongly (weakly respectively)

guarded. Notice that, since the first move of r∨ s is a τ -labelled transition (see Table 1),

which is independent of r and s, any occurrence of X in r ∨ s is treated as being weakly

guarded. A recursive specification E(V ) is guarded if for each X ∈ V and Z = tZ ∈ E,

each occurrence of X in tZ is (weakly or strongly) guarded.

Convention 3.2. It is well known that unguarded processes cause many problems in



Yan Zhang, Zhaohui Zhu and Jinjin Zhang 8

(Ra1)
−

α.x1

α
−→ x1

(Ra2)
x1

a
−→ y1, x2 6

τ
−→

x1�x2

a
−→ y1

(Ra3)
x1 6

τ
−→, x2

a
−→ y2

x1�x2

a
−→ y2

(Ra4)
x1

τ
−→ y1

x1�x2

τ
−→ y1�x2

(Ra5)
x2

τ
−→ y2

x1�x2

τ
−→ x1�y2

(Ra6)
x1

a
−→ y1, x2

a
−→ y2

x1 ∧ x2

a
−→ y1 ∧ y2

(Ra7)
x1

τ
−→ y1

x1 ∧ x2

τ
−→ y1 ∧ x2

(Ra8)
x2

τ
−→ y2

x1 ∧ x2

τ
−→ x1 ∧ y2

(Ra9)
−

x1 ∨ x2

τ
−→ x1

(Ra10)
−

x1 ∨ x2

τ
−→ x2

(Ra11)
x1

τ
−→ y1

x1 ‖A x2

τ
−→ y1 ‖A x2

(Ra12)
x2

τ
−→ y2

x1 ‖A x2

τ
−→ x1 ‖A y2

(Ra13)
x1

a
−→ y1, x2 6

τ
−→

x1 ‖A x2

a
−→ y1 ‖A x2

(a /∈ A) (Ra14)
x1 6

τ
−→, x2

a
−→ y2

x1 ‖A x2

a
−→ x1 ‖A y2

(a /∈ A)

(Ra15)
x1

a
−→ y1, x2

a
−→ y2

x1 ‖A x2

a
−→ y1 ‖A y2

(a ∈ A) (Ra16)
〈tX |E〉

α
−→ y

〈X|E〉
α

−→ y
(X = tX ∈ E)

Table 1. Operational rules

many aspects of the theory (Milner 1983) and unguarded recursion is incompatible with

negative rules (Bloom 1994). As usual, this paper will focus on guarded recursive specifi-

cations. That is, we assume that all recursive specifications considered in the remainder

of this paper are guarded.

We now provide SOS rules to specify the behavior of processes (i.e., closed terms)

formally. All SOS rules are divided into two parts: operational and predicate rules.

Operational rules Rai(1 ≤ i ≤ 16) are listed in Table 1, where a ∈ Act, α ∈ Actτ and

A ⊆ Act. Negative premises in Rules Ra2, Ra3, Ra13 and Ra14 give τ -transition prece-

dence over transitions labelled with visible actions, which guarantees that the transition

model of CLLR is τ -pure. Rules Ra9 and Ra10 illustrate that the operational aspect of

t1 ∨ t2 is same as internal choice in usual process calculus. Rule Ra6 reflects that con-

junction operator is a synchronous product for visible transitions. The operational rules

of the other operators are as usual.

Predicate rules in Table 2 specify the inconsistency predicate F . 0 and ⊥ represent

different processes. Rule Rp1 says that ⊥ is inconsistent. Thus ⊥ cannot be implemented.

While 0 is consistent, which is an implementable process. Rule Rp3 reflects that if both

two disjunctive parts are inconsistent then so is the disjunction. Rules Rp4 − Rp9 de-

scribe the system design strategy that if one part is inconsistent, then so is the whole

composition. Rules Rp10 and Rp11 reveal that a stable conjunction is inconsistent if its

conjuncts have distinct ready sets.
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(Rp1)
−

⊥F
(Rp2)

x1F

α.x1F

(Rp3)
x1F, x2F

x1 ∨ x2F
(Rp4)

x1F

x1�x2F

(Rp5)
x2F

x1�x2F
(Rp6)

x1F

x1 ‖A x2F

(Rp7)
x2F

x1 ‖A x2F
(Rp8)

x1F

x1 ∧ x2F

(Rp9)
x2F

x1 ∧ x2F
(Rp10)

x1

a
−→ y1, x2 6

a
−→, x1 ∧ x2 6

τ
−→

x1 ∧ x2F

(Rp11)
x1 6

a
−→, x2

a
−→ y2, x1 ∧ x2 6

τ
−→

x1 ∧ x2F
(Rp12)

x1 ∧ x2

α
−→ z, {yF : x1 ∧ x2

α
−→ y}

x1 ∧ x2F

(Rp13)
{yF : x1 ∧ x2

ǫ
=⇒ |y}

x1 ∧ x2F
(Rp14)

〈tX |E〉F

〈X|E〉F
(X = tX ∈ E)

(Rp15)
{yF : 〈X|E〉

ǫ
=⇒ |y}

〈X|E〉F

Table 2. Predicate rules

Rules Rp13 and Rp15 are used to capture (LTS2) in Def. 2.1, which are the abbreviation

of the rules with the format

{yF : ∃y0, y1, . . . , yn(z ≡ y0
τ

−→ y1
τ

−→ · · ·
τ

−→ yn ≡ y and y 6
τ

−→)}

zF

with z ≡ x1∧x2 or 〈X |E〉. Intuitively, these two rules say that if all stable τ -descendants

of z are inconsistent, then z itself is inconsistent. Notice that, especially for readers who

are familiar with notations used in (Lüttgen and Vogler 2010), the transition relation
ǫ

=⇒ | occurring in these two rules does not involve any requirement on consistency (see

Remark 2.1 and notations above it).

Since the behavior of any process in CLL is finite, each process can reach a stable state,

and Rules Rp1−Rp12 suffice to capture the inconsistency predicate F . In particular, these

rules guarantee that the LTS associated with CLL satisfies (LTS1) and (LTS2) in Def. 2.1

(Zhang et al. 2011). However, for CLLR, Rules Rp1 − Rp12 are insufficient even if the

usual rule for recursive operations (i.e. Rp14) is added. For instance, consider processes

q ≡ 〈X |X = τ.X〉 and p ≡ 〈X |X = X ∨ 0〉 ∧ a.0, it is not difficult to see that neither

qF nor pF can be inferred by using only Rules Rp1 − Rp12 and Rp14, however, both p

and q should be inconsistent due to (LTS2). Fortunately, an inference of pF (or, qF ) is

at hand by admitting Rule Rp13 (Rp15 respectively).

Summarizing, the TSS for CLLR is PCLLR
= (ΣCLLR

, Actτ ,PCLLR
,RCLLR

), where

— ΣCLLR
= {�,∧,∨, 0,⊥} ∪ {α.() : α ∈ Actτ} ∪ {‖A: A ⊆ Act} ∪ {〈X |E〉 : E =

E(V ) is a guarded recursive specification with X ∈ V },

— PCLLR
= {F}, and
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— RCLLR
= {Ra1, . . . , Ra16} ∪ {Rp1, . . . , Rp15}.

4. Stable transition model of PCLLR

This section will consider the well-definedness of the TSS PCLLR
(i.e., the existence and

uniqueness of the stable model of PCLLR
) and provide a few basic properties of the LTS

associated with PCLLR
.

As we know, it is not trivial that a TSS with rules with negative premises and recursion

has a unique stable model. In order to demonstrate that PCLLR
has one, it is sufficient

to give a stratification function of PCLLR
. To this end, a few preliminary notations are

introduced. Given a term t, the degree of t, denoted by |t|, is inductively defined as:

— |0| = |⊥| = |〈X |E〉| , 1;

— |t1 ⊙ t2| , |t1|+ |t2|+ 1 for each ⊙ ∈ {∧,�,∨, ‖A};

— |α.t| , |t|+ 1 with α ∈ Actτ .

The function G : T (ΣCLLR
) −→ N is defined by:

— G(〈X |E〉) , 1;

— G(0) = G(⊥) = G(α.t) = G(t1 ∨ t2) , 0 with α ∈ Actτ ;

— G(t1 ⊙ t2) , G(t1) +G(t2) for each ⊙ ∈ {∧,�, ‖A}.

Clearly, given a term t, G(t) is the number of unguarded recursive operations occurring

in t. Further, the function SPCLLR
from Tr(ΣCLLR

, Actτ ) ∪ Pred(ΣCLLR
,PCLLR

) to

ω × 2 + 1 is given below, where ω is the initial limit ordinal,

— SPCLLR
(t

α
−→ t′) , G(t)× ω + |t|;

— SPCLLR
(tF ) , ω × 2.

Since each recursive specification is assumed to be guarded (see, Convention 3.2), it

is not difficult to check that this function SPCLLR
is a stratification of PCLLR

. Moreover,

since each stratified TSS has a unique stable model (Bol and Groote 1996), PCLLR
has

a unique stable transition model. From now on, we use MCLLR
to denote such stable

model.

Definition 4.1. The LTS associated with CLLR, in symbols LTS(CLLR), is the quadru-

ple (T (ΣCLLR
), Actτ ,−→CLLR

, FCLLR
), where

— p
α

−→CLLR
p′ iff p

α
−→ p′ ∈MCLLR

;

— p ∈ FCLLR
iff pF ∈MCLLR

.

Therefore, p
α

−→CLLR
p′ (or, p ∈ FCLLR

) if and only if Strip(PCLLR
,MCLLR

) ⊢ p
α

−→

p′ (pF respectively) for any processes p, p′ and α ∈ Actτ . This allows us to proceed

by induction on the depth of inferences when demonstrating propositions concerning

−→CLLR
and FCLLR

.

Convention 4.1. For the sake of convenience, in the remainder of this paper, we shall

omit the subscript in labelled transition relations
α

−→CLLR
, that is, we shall use

α
−→ to

denote transition relation in LTS(CLLR). Thus, the notation
α

−→ has double utility:

predicate symbols in the TSS PCLLR
and labelled transition relations on processes in

LTS(CLLR). However, it usually does not lead to confusion in a given context. Similarly,



On Recursive Operations Over LLTS 11

the notation FCLLR
will be abbreviated by F . Hence the symbol F is overloaded, predicate

symbol in the TSS PCLLR
and the set of all inconsistent processes within LTS(CLLR),

in each case the context of use will allow us to make the distinction.

In the following, we intend to provide a number of simple properties of LTS(CLLR).

In particular, we will show that LTS(CLLR) is a τ -pure LLTS.

Lemma 4.1. Let p and q be any two processes.

(1) p ∨ q ∈ F iff p, q ∈ F .

(2) α.p ∈ F iff p ∈ F for each α ∈ Actτ .

(3) p⊙ q ∈ F iff either p ∈ F or q ∈ F with ⊙ ∈ {�, ‖A}.

(4) Either p ∈ F or q ∈ F implies p ∧ q ∈ F .

(5) 0 /∈ F and ⊥ ∈ F .

(6) 〈X |X = τ.X〉 ∈ F .

(7) If ∀q(p
ǫ

=⇒ |q implies q ∈ F ) then p ∈ F .

(8) 〈X |E〉 ∈ F iff 〈tX |E〉 ∈ F for each X with X = tX ∈ E.

Proof. Items (1) - (6) are straightforward. For item (7), it proceeds by induction on

p, in particular, for the case where p is of the format p1 ∧ p2 (or 〈X |E〉), the conclusion

immediately follows due to Rule Rp13 (Rp15 respectively).

For item (8), the implication from right to left is straightforward. The argument of the

converse implication splits into two cases based on the last rule applied in the proof tree

of Strip(PCLLR
,MCLLR

) ⊢ 〈X |E〉F . If Rule Rp14 is the last rule then the proof is trivial.

For the other case where Rule Rp15 is used, it is also straightforward by applying item

(7) in this lemma and the fact that 〈X |E〉
τ

−→ r iff 〈tX |E〉
τ

−→ r for any r.

The notion of τ -purity is a technical constraint for LLTSs (Lüttgen and Vogler 2007,

2010). The result below shows that LTS(CLLR) is indeed τ -pure.

Theorem 4.1. LTS(CLLR) is τ -pure.

Proof. Suppose p
τ

−→. Hence p
τ

−→ q for some q. Then the lemma would be established

by proving that p 6
a

−→ for any a ∈ Act. It is straightforward by induction on the depth

of the proof tree of Strip(PCLLR
,MCLLR

) ⊢ p
τ

−→ q.

In order to prove that LTS(CLLR) is a LLTS, the result below is needed. Its converse

is an instance of (LTS1) with α = τ , and hence also holds by Theorem 4.2.

Lemma 4.2. For any process p with τ ∈ I(p), if p ∈ F then ∀q(p
τ

−→ q implies q ∈ F ).

Proof. Suppose p
τ

−→ q. We may prove q ∈ F by induction on the depth of the proof

tree T of Strip(PCLLR
,MCLLR

) ⊢ p
τ

−→ q. It proceeds by distinguishing different cases

based on the form of p. Here we handle only three cases as examples.

Case 1 p ≡ p1�p2.

W.l.o.g, assume the last rule applied in T is
p1

τ
−→p′

1

p1�p2
τ

−→p′
1�p2

. Hence q ≡ p′1�p2. Since

p ∈ F , by Lemma 4.1(3), p1 ∈ F or p2 ∈ F . If p2 ∈ F then it immediately follows from
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Lemma 4.1(3) that q ≡ p′1�p2 ∈ F . If p1 ∈ F then p′1 ∈ F by induction hypothesis (IH,

for short). Hence p′1�p2 ∈ F , as desired.

Case 2 p ≡ 〈X |E〉.

The last rule applied in T is 〈tX |E〉
τ

−→q

〈X|E〉
τ

−→q
withX = tX ∈ E. Since p ∈ F , by Lemma 4.1(8),

we have 〈tX |E〉 ∈ F . Then q ∈ F by applying IH.

Case 3 p ≡ p1 ∧ p2.

W.l.o.g, assume the last rule applied in T is
p1

τ
−→p′

1

p1∧p2
τ

−→p′
1∧p2

. Hence q ≡ p′1 ∧ p2. In the

following, we intend to show q ∈ F by distinguishing four cases based on the last rule

applied in the inference of Strip(PCLLR
,MCLLR

) ⊢ p1 ∧ p2F .

Case 3.1 p1F
p1∧p2F

or p2F
p1∧2F

.

Similar to Case 1, omitted.

Case 3.2 p1
a

−→r,p2 6
a

−→,p1∧p2 6
τ

−→
p1∧p2F

or p1 6
a

−→,p2
a

−→r,p1∧p2 6
τ

−→
p1∧p2F

.

This case is impossible because of τ ∈ I(p1 ∧ p2).

Case 3.3 p1∧p2
α

−→r,{r′F :p1∧p2
α

−→r′}
p1∧p2F

.

Since LTS(CLLR) is τ -pure and p1∧p2
τ

−→, we have α = τ . Hence q ∈ F immediately.

Case 3.4 {rF :p1∧p2
ǫ

=⇒|r}
p1∧p2F

.

Assume q ≡ p′1∧p2
ǫ

=⇒ |r′. Thus r′ ∈ F due to p
τ

−→ p′1∧p2
ǫ

=⇒ |r′. Hence p′1∧p2 ∈ F

by applying Rule Rp13.

Now we are ready to show that LTS(CLLR) is a LLTS.

Theorem 4.2. LTS(CLLR) is a LLTS.

Proof. (LTS1) Suppose α ∈ I(p) and ∀r(p
α

−→ r implies r ∈ F ). Then p
α

−→ q for

some q. To complete the proof, we intend to show p ∈ F . It proceeds by induction on the

depth of the proof tree T of Strip(PCLLR
,MCLLR

) ⊢ p
α

−→ q. We distinguish different

cases based on the form of p. In particular, the proof for the case p ≡ p1∧p2 is immediate

by Rule Rp12. In the following, we give the proof for the case p ≡ p1 ‖A p2, the other

cases are left to the reader. The argument splits into two cases depending on α.

Case 1 α = τ .

W.l.o.g, assume the last rule applied in T is
p1

τ
−→p′

1

p1‖Ap2
τ

−→p′
1‖Ap2

. Thus q ≡ p′1 ‖A p2.

If p2 ∈ F then p1 ‖A p2 ∈ F follows from Lemma 4.1(3) at once. For the other

case p2 /∈ F , it is not difficult to see that each τ -derivative of p1 is inconsistent, that

is ∀p′′1(p1
τ

−→ p′′1 implies p′′1 ∈ F ). Hence p1 ∈ F by IH. Therefore it follows from

Lemma 4.1(3) that p1 ‖A p2 ∈ F , as desired.

Case 2 α ∈ Act.
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In this situation, the last rule applied in T has one of the following three formats:

(1)
p1

α
−→p′

1,p2 6
τ

−→

p1‖Ap2
α

−→p′
1‖Ap2

(α /∈ A); (2)
p2

α
−→p′

2,p1 6
τ

−→

p1‖Ap2
α

−→p1‖Ap′
2

(α /∈ A); (3)
p1

α
−→p′

1,p2
α

−→p′
2

p1‖Ap2
α

−→p′
1‖Ap′

2

(α ∈ A).

We consider only (3), the other two may be handled in a similar manner as the case

α = τ . Since ∀r(p1 ‖A p2
α

−→ r implies r ∈ F ), by Lemma 4.1(3), it is easy to see

that either ∀r(p1
α

−→ r implies r ∈ F ) or ∀r(p2
α

−→ r implies r ∈ F ). Furthermore, due

to α ∈ I(p1) and α ∈ I(p2), by IH, we have p1 ∈ F or p2 ∈ F , which implies p1 ‖A p2 ∈ F .

(LTS2) It suffices to show that, for each p, if p /∈ F then p
ǫ

=⇒F |q for some q. Suppose

p /∈ F . By Lemma 4.1(7), there exists q such that p
ǫ

=⇒ |q and q /∈ F . Then it immediately

follows from Lemma 4.2 that p
ǫ

=⇒F |q, as desired.

Remark 4.1. It is worth pointing out that Lemma 4.2 does not always hold for LLTS.

In fact, the property “p ∈ F implies q ∈ F for each τ-derivative q of p” is logically

independent of Def. 2.1. It is SOS rules adopted in this paper that bring such additional

property. Hence this paper restricts itself to specific LLTSs, which makes reasoning about

inconsistency a bit easier than in the general LLTS setting.

A simple observation on proof trees for Strip(PCLLR
,MCLLR

) ⊢ p∧ qF is given below,

which will be used in establishing a fundamental property of conjunctive compositions.

Lemma 4.3. For any finite sequence p0∧q0
τ

−→, ..,
τ

−→ pi∧qi
τ

−→, ..,
τ

−→ |pn∧qn(n ≥ 0),

if pi ∧ qi ∈ F and pi, qi /∈ F for each i ≤ n, then the inference of p0 ∧ q0F essentially

depends on pn ∧ qnF , that is, each proof tree for Strip(PCLLR
,MCLLR

) ⊢ p0 ∧ q0F has a

subtree with root pn ∧ qnF , in particular, such subtree is proper if n ≥ 1.

Proof. We prove the statement by induction on n. For the inductive basis n = 0, it

holds trivially due to p0 ∧ q0 ≡ pn ∧ qn. For the inductive step, assume that p0 ∧ q0
τ

−→

p1 ∧ q1(
τ

−→)k|pk+1 ∧ qk+1. Let T be any proof tree for Strip(PCLLR
,MCLLR

) ⊢ p0 ∧ q0F .

Since p0, q0 /∈ F and p0 ∧ q0
τ

−→, the last rule applied in T is

either
p0 ∧ q0

α
−→ r′, {rF : p0 ∧ q0

α
−→ r}

p0 ∧ q0F
or

{rF : p0 ∧ q0
ǫ

=⇒ |r}

p0 ∧ q0F
.

For the first alternative, since LTS(CLLR) is τ -pure, we have α = τ . Then it follows

from p0 ∧ q0
τ

−→ p1 ∧ q1 that, in the proof tree T , one of nodes directly above the root

is labelled with p1 ∧ q1F . Thus, by IH, T has a proper subtree with root pk+1 ∧ qk+1F .

For the second alternative, since p0 ∧ q0
ǫ

=⇒ |pk+1 ∧ qk+1, one of nodes directly above

the root of T is labelled with pk+1 ∧ qk+1F , as desired.

The next three results has been obtained for CLL in pure process-algebraic style in

(Zhang et al. 2011), where the proof essentially depends on the fact that, for any process

p within CLL and α ∈ Actτ , p is of more complex structure than its α-derivatives.

Unfortunately, such property does not always hold for CLLR. For instance, consider the

process 〈X |X = a.X ‖∅ a.b.X〉. Here we give another proof along lines presented in

(Zhu et al. 2013).

Lemma 4.4. If p1 ⊏
∼RS

p2, p1 ⊏
∼RS

p3 and p1 /∈ F then p2 ∧ p3 /∈ F .
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Proof. Let Ω = {q ∧ r : p ⊏
∼RS

q, p ⊏
∼RS

r and p /∈ F}. Clearly, it suffices to prove that

F ∩Ω = ∅. Conversely, suppose that F ∩Ω 6= ∅. In the following, we intend to prove that,

for each t ∈ Ω, any proof tree of tF is not well-founded. Then a contradiction arises at

this point due to Def. 2.4. Thus, to complete the proof, it suffices to show the claim below.

Claim For any s ∈ Ω, each proof tree of sF has a proper subtree with root s′F for some

s′ ∈ Ω.

Suppose q ∧ r ∈ Ω. Then p ⊏
∼RS

q, p ⊏
∼RS

r and p /∈ F for some p. Thus it follows that

q /∈ F, r /∈ F and I(p) = I(q) = I(r). (4.4.1)

Let T be any proof tree of Strip(PCLLR
,MCLLR

) ⊢ q ∧ rF . By (4.4.1), the last rule

applied in T is of the form

either
{sF : q ∧ r

ǫ
=⇒ |s}

q ∧ rF
or
q ∧ r

α
−→ s′, {sF : q ∧ r

α
−→ s}

q ∧ rF
.

Since both q and r are stable, so is q ∧ r. Then, for the first alternative, the label of the

node directly above the root of T is q ∧ rF itself, as desired.

Next we consider the second alternative. In this case, τ 6= α ∈ I(q ∧ r) and

∀s(q ∧ r
α

−→ s implies s ∈ F ). (4.4.2)

Hence α ∈ I(q) ∩ I(r). Then α ∈ I(p) due to (4.4.1). Further, since p /∈ F , by Theo-

rem 4.2, we get

p
α

−→F p′
ǫ

=⇒F |p′′ for some p′ and p′′. (4.4.3)

Then it immediately follows from p ⊏
∼RS

q and p ⊏
∼RS

r that

q
α

−→F q′
ǫ

=⇒F |q′′ and p′′ ⊏
∼RS

q′′ for some q′, q′′, and (4.4.4)

r
α

−→F r′
ǫ

=⇒F |r′′ and p′′ ⊏
∼RS

r′′ for some r′, r′′. (4.4.5)

So, q ∧ r
α

−→ q′ ∧ r′. Then q′ ∧ r′ ∈ F by (4.4.2). Moreover, we obtain q′ ≡ q0
τ

−→F

, . . . ,
τ

−→F |qn ≡ q′′ for some qi(0 ≤ i ≤ n), and r′ ≡ r0
τ

−→F , . . . ,
τ

−→F |rm ≡ r′′ for

some rj(0 ≤ j ≤ m). Then

q′ ∧ r′ ≡ q0 ∧ r0
τ

−→, ..,
τ

−→ qn ∧ r0
τ

−→ qn ∧ r1, ..,
τ

−→ |qn ∧ rm ≡ q′′ ∧ r′′. (4.4.6)

By Lemma 4.2, it follows from q′ ∧ r′ ∈ F that

qi ∧ rj ∈ F for each qi ∧ rj occurring in (4.4.6). (4.4.7)

It follows from (4.4.3), (4.4.4) and (4.4.5) that qn ∧ rm ≡ q′′ ∧ r′′ ∈ Ω. Moreover, since

one of nodes directly above the root of T is labelled with q′ ∧ r′F , by (4.4.6), (4.4.7) and

Lemma 4.3, it follows from qi /∈ F (0 ≤ i ≤ n) and rj /∈ F (0 ≤ j ≤ m) that T has a

proper subtree with root qn ∧ rmF .

Lemma 4.5. If p ⊏
∼RS

q and p ⊏
∼RS

r then p ⊏
∼RS

q ∧ r.
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Proof. Set

R = {(p1, p2 ∧ p3) : p1 ⊏
∼RS

p2 and p1 ⊏
∼RS

p3}.

It suffices to show that R is a stable ready simulation relation, which is almost immediate

by using Lemma 4.4 to handle (RS2) and (RS3).

We conclude this section with recalling a result obtained in (Lüttgen and Vogler 2010)

and (Zhang et al. 2011) in different style, which reveals that ⊑RS is precongruent w.r.t

the operators �, ‖A, ∨ and ∧. Formally,

Theorem 4.3.

(1) For each ⊙ ∈ {�, ‖A,∧}, if p ⊏
∼RS

q and s ⊏
∼RS

r then p⊙ s ⊏
∼RS

q ⊙ r.

(2) For each ⊙ ∈ {�, ‖A,∨,∧}, if p ⊑RS q and s ⊑RS r then p⊙ s ⊑RS q ⊙ r.

Proof. The item (2) follows from item (1). For item (1), the proofs are not much

different from ones given in (Zhang et al. 2011). In particular, Lemma 4.5 is applied in

the proof for the case ⊙ = ∧.

5. Basic properties of unfolding, context and transitions

This section will provide a number of useful results that will be used in the following

sections. Subsection 5.1 will recall the notion of unfolding and give some elementary prop-

erties of it. In subsection 5.2, we will be concerned with capturing one-step transitions in

terms of contexts and substitutions. A treatment of a more general case involving multi

τ -transitions will be considered in subsection 5.3.

5.1. Unfolding

The notion of unfolding plays an important role when dealing with recursive operators.

This subsection will give a few results concerning it. We begin with recalling the notion

of unfolding.

Definition 5.1. Let X be a free variable in a given term t. An occurrence of X in t is

unfolded, if this occurrence does not occur in the scope of any recursive operation 〈Y |E〉.

Moreover, X is unfolded if all occurrences of X in t are unfolded.

Definition 5.2 (Baeten and Bravetti 2008). A series of binary relations ⇛k over

terms with k < ω is defined inductively as:

— t⇛0 s if t ≡ s;

— t ⇛1 s if t has a subterm 〈Y |E〉 with Y = tY ∈ E which is not in the scope of any

recursive operation, and s is obtained from t by replacing this subterm by 〈tY |E〉;

— t⇛k+1 s if t⇛k t
′ and t′ ⇛1 s for some term t′.

Moreover, ⇛,
⋃

0≤k<ω

⇛k. For any t and s, s is a multi-step unfolding of t if t⇛ s.
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For instance, consider t ≡ (〈X |X = a.X�b.〈Y |Y = c.Y 〉〉�d.0)�Z, we have

t⇛1 ((a.〈X |X = a.X�b.〈Y |Y = c.Y 〉〉�b.〈Y |Y = c.Y 〉)�d.0)�Z,

but it does not hold that t ⇛1 (〈X |X = a.X�b.c.〈Y |Y = c.Y 〉〉�d.0)�Z because the

subterm 〈Y |Y = c.Y 〉 is in the scope of the recursive operation 〈X |X = a.X�b.〈Y |Y =

c.Y 〉〉. The simple result below provides an equivalent formulation of the binary relation

⇛1.

Lemma 5.1. For any term t1 and t2, t1 ⇛1 t2 iff there exists a term s and variable X

such that

(1⇛) X is a unfolded variable in s,

(2⇛) X occurs in s exactly once, and

(3⇛) t1 ≡ s{〈Y |E〉/X} and t2 ≡ s{〈tY |E〉/X} for some Y,E with Y = tY ∈ E.

Proof. Immediately follows from Def. 5.2.

A few trivial but useful properties concerning ⇛n are listed in the next lemma.

Lemma 5.2. For any term t, s and X ∈ FV (t), if t⇛n s then

(1) if X is unfolded in t then so it is in s and the number of occurrences of X in s is

equal to that in t;

(2) the number of unguarded occurrences of X in s is not more than that in t;

(3) if X is (strongly) guarded in t then so it is in s;

(4) FV (s) ⊆ FV (t);

(5) if X occurs in the scope of conjunction in s (that is, there exists a subterm t1 ∧ t2 of

s such that X occurs in either t1 or t2) then so does it in t.

Proof. By Lemma 5.1 and Convention 3.2, it is straightforward by induction on n.

Notice that the clause (2) in the above lemma does not always hold for guarded oc-

currences. For example, consider t ≡ 〈X |X = a.X ∧ b.Y 〉, we have t ⇛1 a.〈X |X =

a.X ∧ b.Y 〉 ∧ b.Y , and Y guardedly occurs in the latter twice but occurs in t only once.

Clearly, the clause (2) strongly depends on Convention 3.2. Moreover, the clause (4) can-

not be strengthened to “FV (s) = FV (t)”. Consider t ≡ 〈X1|{X1 = a.0, X2 = b.X1�Y }〉

and t⇛1 a.0, then we have FV (t) = {Y } and FV (a.0) = ∅.

Given a variable X and term t, the folding number of X in t, in symbols FN(t,X),

is defined as the sum of depths of nested recursive operations surrounding all unguarded

occurrences of X in t. Formally:

Definition 5.3 (Folding number). Given a term t andX ∈ FV (t), the folding number

of X in t, denoted by FN(t,X), is defined recursively below, where UFV (t) is the set of
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all free variables which have unguarded occurrence in t.

−− FN(0, X) = FN(⊥, X) = FN(Y,X) = FN(t1 ∨ t2, X) = FN(α.t,X) , 0;

−− FN(t1 ⊙ t2, X) , FN(t1, X) + FN(t2, X) with ⊙ ∈ {�, ‖A,∧};

−− FN(〈Y |E〉, X) ,





1 +
∑

Z=tZ∈E

FN(tZ , X), if X ∈ UFV (〈Y |E〉);

0, otherwise.

For instance, consider t ≡ 〈X |X = a.X ∨ Y1〉�〈Z|Z = c.Z�Y2〉, then FN(t, Y1) = 0 and

FN(t, Y2) = 1.

Lemma 5.3. For any term t, there exits a term s such that t ⇛ s and each unguarded

occurrence of any free variable in s is unfolded.

Proof. It proceeds by induction on n =
∑

X∈UFV (t)

FN(t,X). For the induction base

n = 0, it is easy to see that for each X ∈ FV (t), any unguarded occurrence of X in t

must be unfolded. Thus t itself meets our requirement because of t⇛ t. For the inductive

step n = k+1, due to n = k+1 > 0, t is of the format either t1 ⊙ t2 with ⊙ ∈ {∧, ‖A �}

or 〈Y |E〉 . In the following, we shall proceed by induction on the structure of t. In case

t ≡ t1 ⊙ t2 with ⊙ ∈ {∧, ‖A,�}, it is straightforward by applying IH on t1 and t2. Next

we consider the case t ≡ 〈Y |E〉 with Y = tY ∈ E.

Clearly, UFV (〈Y |E〉) 6= ∅ because of n > 0. Since 〈Y |E〉 ⇛1 〈tY |E〉, by Lemma 5.2(2)(4),

we have

UFV (〈tY |E〉) ⊆ UFV (〈Y |E〉).

Moreover, by Convention 3.2 and the definition of 〈tY |E〉, it is not difficult to get

FN(〈Y |E〉, X) > FN(〈tY |E〉, X) for each X ∈ UFV (〈tY |E〉). Hence
∑

X∈UFV (〈tY |E〉)

FN(〈tY |E〉, X) <
∑

X∈UFV (〈Y |E〉)

FN(〈Y |E〉, X).

Then, by IH on n, there exists s such that 〈tY |E〉 ⇛ s and each unguarded occurrence

of any free variable is unfolded in s. Moreover, 〈Y |E〉 ⇛ s due to 〈Y |E〉 ⇛1 〈tY |E〉.

5.2. Contexts and transitions

Due to Rules Rp12, Rp13 and Rp15, in order to obtain further properties of the incon-

sistency predicate F , we often need to capture the connection between the formats of

p and q for a given transition p
α

−→ q. Clearly, if p involves recursive operations, q is

not always a subterm of p and its format often depends on some unfolding of p. This

subsection intends to explore this issue.

Definition 5.4 (Context). A context CX̃ is a term whose free variables are among

a n-tuple distinct variables X̃ = (X1, ..., Xn) (n ≥ 0). Given a n-tuple processes p̃ =

(p1, . . . , pn), the term CX̃{p1/X1, ..., pn/Xn} (CX̃{p̃/X̃}, for short) is obtained from CX̃

by replacing Xi by pi for each i < n simultaneously. In particular, we use CX̃{p/X̃} to
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denote the result of replacing all variables in X̃ by p. A context CX̃ is said to be stable

if CX̃{0/X̃} 6
τ

−→.

In the remainder of this paper, whenever the expression CX̃{p̃/X̃} occurs, we always

assume that |p̃| = |X̃| and CX̃{p̃/X̃} is subject to Convention 3.1 (recursive variables

occurring in p̃ may be renamed if it is necessary), where |X̃| is the length of the tuple X̃.

Definition 5.5 (Active). An occurrence of a free variable X in term t is active if such

occurrence is unguarded and unfolded. A free variable X in term t is active if all its

occurrences are active. A free variable X in term t is 1-active if X occurs in t exactly

once and such occurrence is active.

For example, X is 1-active in 〈Y |Y = a.Y 〉�X . Moreover, it is evident that, for any

context CX̃ , if there exists an active occurrence of some variable within CX̃ , then CX̃

is not of the form α.BX̃ , BX̃ ∨ DX̃ and 〈Y |E〉. This fact is used in demonstrating the

next two lemmas, which give some properties of 1-active place-holder. Before presenting

them, for simplicity of notation, we introduce the notation below.

Notation Given n-tuple processes p̃ = (p1, . . . , pn) and p′, we use p̃ [p′/pi] to denote

(p1, . . . , pi−1, p
′, pi+1, . . . , pn).

Lemma 5.4. For any CX̃ with 1-active variableXi0 and p̃ with pi0
τ

−→ p′, CX̃{p̃/X̃}
τ

−→

CX̃{p̃ [p′/pi0 ]/X̃}.

Proof. Proceed by induction on the structure of CX̃ .

This result does not always hold for visible transitions. For instance, consider CX ≡

X�τ.r and p ≡ a.q, although p
a

−→ q andX is 1-active in CX , it is false that CX{p/X}
a

−→.

Lemma 5.5. For any p and CX with 1-active variable X , if p ∈ F then CX{p/X} ∈ F .

Proof. By a straightforward induction on CX .

In order to prove that ⊑RS still is precongruent in the presence of recursive operations,

it is necessary to formally describe the contribution of CX̃ and p̃ for a given transition

CX̃{p̃/X̃}
α

−→ r. In the following, we shall provide a few of results concerning this. We

begin with considering τ -labelled transitions. Before giving the next lemma formally, we

illustrate the intuition behind it by means of an example. Consider CX ≡ (a.0 ∨X)�X ,

BX ≡ 〈Y |Y = X�b.Y 〉�X , p ≡ c.0 ∨ e.0 and q ≡ d.0, then we have two τ -labelled

transitions

CX{q/X}
τ

−→ a.0�d.0

and

BX{p/X}
τ

−→ (e.0�b.〈Y |Y = (c.0 ∨ e.0)�b.Y 〉)�(c.0 ∨ e.0).

It is not difficult to see that these two τ -labelled transitions depend on the capability

of context CX and substitution p respectively. For the former, no matter what q is, the

corresponding τ -transition still exists for CX{q/X}. Moreover, the target has the same

pattern. Set C′
X ≡ a.0�X . Clearly, CX{q/X}

τ
−→ C′

X{q/X} for any q. The latter is
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much more trick. Intuitively, one instance of p first exposes itself and then performs a

τ -transition. Since there are multi instances of p and some of them are nested by re-

cursive operations, we should identify the real performer of the τ -transition and this

identification is very helpful when we deal with multi τ -transitions. As long as p can per-

form τ -transition, so can BX{p/X}. Similarly, the target also has a pattern. Set B′
X,Z ≡

(Z�b.〈Y |Y = X�b.Y 〉)�X . It is easy to see that BX{p/X}
τ

−→ B′
X,Z{p/X, p

′/Z} for

any p
τ

−→ p′. We summarize this observation formally as follows, where two clauses

capture τ -transitions exited by contexts and substitutions respectively; moreover, some

simple properties on contexts are also listed in (C-τ -3) which will be used in the sequel.

Lemma 5.6. For any CX̃ and p̃, if CX̃{p̃/X̃}
τ

−→ r then one of conclusions below holds.

(1) There exists C′
X̃

such that

(C-τ-1) r ≡ C′
X̃
{p̃/X̃};

(C-τ-2) for any processes q̃, CX̃{q̃/X̃}
τ

−→ C′
X̃
{q̃/X̃};

(C-τ-3) for each X ∈ X̃,

(C-τ-3-i) if X is active in CX̃ then so it is in C′
X̃

and the number of occurrences

of X in C′
X̃

is equal to that in CX̃ ;

(C-τ-3-ii) if X is unfolded in CX̃ then so it is in C′
X̃

and the number of occurrences

of X in C′
X̃

is not more than that in CX̃ ;

(C-τ-3-iii) if X is strongly guarded in CX̃ then so it is in C′
X̃
;

(C-τ-3-iv) if X does not occur in the scope of any conjunction in CX̃ then neither

does it in C′
X̃
.

(2) There exist C′
X̃
, C′′

X̃,Z
with Z /∈ X̃ and i ≤ |X̃| such that

(P-τ-1) CX̃ ⇛ C′
X̃
, in particular, if Xi is active in CX̃ then C′

X̃
≡ CX̃ ;

(P-τ-2) pi
τ

−→ p′ and r ≡ C′′
X̃,Z

{p̃/X̃, p′/Z} for some p′;

(P-τ-3) C′′
X̃,Z

{Xi/Z} ≡ C′
X̃

and Z is 1-active in C′′
X̃,Z

;

(P-τ-4) for any processes q̃ with qi
τ

−→ q′, CX̃{q̃/X̃}
τ

−→ C′′
X̃,Z

{q̃/X̃, q′/Z}.

Proof. It proceeds by induction on the depth of the inference of Strip(PCLLR
,MCLLR

) ⊢

CX̃{p̃/X̃}
τ

−→ r. We distinguish six cases based on the form of CX̃ as follows.

Case 1 CX̃ is closed.

Set C′
X̃

, r. Then (C-τ -1,2,3) hold trivially.

Case 2 CX̃ ≡ X with X ∈ X̃ .

Put C′
X̃

, X and C′′
X̃,Z

, Z with Z /∈ X̃. Then it is easy to check that (P-τ -1) –

(P-τ -4) hold.

Case 3 CX̃ ≡ α.BX̃ .

Thus α = τ and r ≡ BX̃{p̃/X̃}. Then it is not difficult to see that (C-τ -1,2,3) hold by

taking C′
X̃

, BX̃ .
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Case 4 CX̃ ≡ BX̃ ∨DX̃ .

Obviously, r ≡ BX̃{p̃/X̃} or r ≡ DX̃{p̃/X̃}. W.l.o.g, assume that r ≡ BX̃{p̃/X̃}. We

set C′
X̃

, BX̃ . Then it is straightforward that (C-τ -1,2) and (C-τ -3-ii,iii,iv) hold. More-

over, since CX̃ ≡ BX̃ ∨ DX̃ , for each X ∈ X̃, each occurrence of X is weakly guarded.

Hence (C-τ -3-i) holds trivially.

Case 5 CX̃ ≡ BX̃ ⊙DX̃ with ⊙ ∈ {�,∧, ‖A}.

We consider the case ⊙ = �, others may be handled similarly and omitted. W.l.o.g,

assume the last rule applied in the inference is

BX̃{p̃/X̃}
τ

−→ r′

BX̃{p̃/X̃}�DX̃{p̃/X̃}
τ

−→ r′�DX̃{p̃/X̃}
.

Then r ≡ r′�DX̃{p̃/X̃}. For the τ -labelled transition BX̃{p̃/X̃}
τ

−→ r′, by IH, either

the clause (1) or (2) holds.

For the former case, there exists B′
X̃

that satisfies (C-τ -1,2,3). Put C′
X̃

, B′
X̃
�DX̃ . It

immediately follows that C′
X̃

satisfies (C-τ -1,2,3).

Next we consider the latter case. In this situation, there exist B′
X̃
, B′′

X̃,Z
with Z /∈ X̃

and i0 ≤ |X̃ | that satisfy (P-τ -1) – (P-τ -4). Set

C′
X̃

, B′
X̃
�DX̃ and C′′

X̃,Z
, B′′

X̃,Z
�DX̃ .

We shall show that, for the τ -labelled transition CX̃{p̃/X̃}
τ

−→ r, C′
X̃
, C′′

X̃,Z
and i0

realize (P-τ -1) – (P-τ -4).

(P-τ-1) It follows from BX̃ ⇛ B′
X̃

that CX̃ ≡ BX̃�DX̃ ⇛ B′
X̃
�DX̃ ≡ C′

X̃
. If Xi0 is

active in CX̃ then so it is in BX̃ , and hence C′
X̃

≡ CX̃ due to B′
X̃

≡ BX̃ .

(P-τ-2) Since B′
X̃

satisfies (P-τ -2), pi0
τ

−→ p′ and r′ ≡ B′′
X̃,Z

{p̃/X̃, p′/Z} for some p′.

Due to Z /∈ X̃, we have r ≡ B′′
X̃,Z

{p̃/X̃, p′/Z}�DX̃{p̃/X̃} ≡ C′′
X̃,Z

{p̃/X̃, p′/Z}.

(P-τ-3) It follows from B′′
X̃,Z

{Xi0/Z} ≡ B′
X̃

and Z /∈ X̃ that C′′
X̃,Z

{Xi0/Z} ≡

B′′
X̃,Z

{Xi0/Z}�DX̃ ≡ C′
X̃
. Moreover, since Z is 1-active in B′′

X̃,Z
, so it is in C′′

X̃,Z
.

(P-τ-4) Let q̃ be any tuple with |q̃| = |p̃| and qi0
τ

−→ q′. It follows from BX̃{q̃/X̃}
τ

−→

B′′
X̃,Z

{q̃/X̃, q′/Z} and Z /∈ X̃ that CX̃{q̃/X̃}
τ

−→ C′′
X̃,Z

{q̃/X̃, q′/Z}.

Case 6 CX̃ ≡ 〈Y |E〉.

Clearly, the last rule applied in the inference is

〈tY |E〉{p̃/X̃}
τ

−→ r

〈Y |E〉{p̃/X̃}
τ

−→ r
with Y = tY ∈ E.

For the τ -labelled transition 〈tY |E〉{p̃/X̃}
τ

−→ r, by IH, either the clause (1) or (2)

holds.

For the first alternative, there exists C′
X̃

satisfying (C-τ -1,2,3). Then it is not difficult

to check that, for the transition 〈Y |E〉{p̃/X̃}
τ

−→ r, C′
X̃

also realizes the conditions (C-



On Recursive Operations Over LLTS 21

τ -1,2,3). Here 〈Y |E〉{p̃/X̃} ⇛1 〈tY |E〉{p̃/X̃} and Lemma 5.2(3)(5) are used to assert

(C-τ -3-iii,iv) to be true.

For the second alternative, there exist C′
X̃
, C′′

X̃,Z
with Z /∈ X̃ and i0 ≤ |X̃| that

satisfy (P-τ -1,2,3,4). Clearly, C′
X̃
, C′′

X̃,Z
and i0 also realize (P-τ -1,2,3,4) for the transition

〈Y |E〉{p̃/X̃}
τ

−→ r. In particular, 〈Y |E〉 ⇛ C′
X̃

follows from 〈Y |E〉 ⇛1 〈tY |E〉 ⇛ C′
X̃
.

As an immediate consequence of Lemma 5.6, we have

Lemma 5.7. For any context CX̃ , CX̃ is stable iff CX̃{p̃/X̃} 6
τ

−→ for some p̃.

Proof. Straightforward by Lemma 5.6.

In the following, we intend to provide an analogue of Lemma 5.6 for transitions labelled

with visible actions. To explain intuition behind the next result clearly, it is best to work

with an example. Consider CX1,X2
≡ ((X1∧〈Y |Y = a.Y 〉)�a.b.0) ‖{b} (X1∧X2), p1 ≡ a.0

and p2 ≡ a.c.0, we have three a-labelled transitions

CX1,X2
{p1/X1, p2/X2}

a
−→ (0 ∧ 〈Y |Y = a.Y 〉) ‖{b} (a.0 ∧ a.c.0),

CX1,X2
{p1/X1, p2/X2}

a
−→ b.0 ‖{b} (a.0 ∧ a.c.0),

and

CX1,X2
{p1/X1, p2/X2}

a
−→ ((a.0 ∧ 〈Y |Y = a.Y 〉)�a.b.0) ‖{b} (0 ∧ c.0).

These visible transitions starting from CX1,X2
{p1/X1, p2/X2} are activated by three

distinct events. Clearly, both the context CX1,X2
and the substitution p1 contribute to

the first transition, while two latter transitions depend merely on the capability of CX1,X2

and p̃1,2 respectively. These three situations may be described uniformly in the lemma

below. Here some additional properties on contexts are also listed in (CP-a-4), which will

be useful in the sequel.

Lemma 5.8. For any a ∈ Act, CX̃ and p̃, if CX̃{p̃/X̃}
a

−→ r then there exist C′
X̃
, C′

X̃,Ỹ

and C′′
X̃,Ỹ

with X̃ ∩ Ỹ = ∅ satisfying the conditions:

(CP-a-1) CX̃ ⇛ C′
X̃
;

(CP-a-2) for each Y ∈ Ỹ , Y is 1-active in C′
X̃,Ỹ

and C′′
X̃,Ỹ

;

(CP-a-3) there exist iY ≤ |X̃ | for each Y ∈ Ỹ such that

(CP-a-3-i) C′
X̃,Ỹ

{X̃iY /Ỹ } ≡ C′
X̃
;

(CP-a-3-ii) there exist p′Y such that piY
a

−→ p′Y for each Y ∈ Ỹ and r ≡ C′′
X̃,Ỹ

{p̃/X̃, p̃′Y /Ỹ };

(CP-a-3-iii) for any q̃ with |q̃| = |X̃| and q̃′ such that |q̃′| = |Ỹ | and qiY
a

−→ q′Y for

each Y ∈ Ỹ , if CX̃{q̃/X̃} is stable then CX̃{q̃/X̃}
a

−→ C′′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ };

(CP-a-4) for each X ∈ X̃ ,

(CP-a-4-i) the number of occurrences of X in C′′
X̃,Ỹ

is not more than that in C′
X̃,Ỹ

;

(CP-a-4-ii) if X is active in C′
X̃,Ỹ

then so it is in C′′
X̃,Ỹ

;

(CP-a-4-iii) if X does not occur in the scope of any conjunction in CX̃ then neither

does it in C′′
X̃,Ỹ

.
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Proof. It proceeds by induction on the depth of the inference of Strip(PCLLR
,MCLLR

) ⊢

CX̃{p̃/X̃}
a

−→ r. Due to CX̃{p̃/X̃} 6
τ

−→, it is impossible that CX̃ ≡ BX̃ ∨DX̃ . Thus we

can distinguish seven cases depending on the form of CX̃ .

Case 1 CX̃ is closed.

Set C′
X̃

≡ C′
X̃,Ỹ

, CX̃ and C′′
X̃,Ỹ

, r with Ỹ = ∅. Clearly, these contexts realize

conditions (CP-a-i) (1 ≤ i ≤ 4) trivially.

Case 2 CX̃ ≡ Xi0 with i0 ≤ |X̃|.

Put C′
X̃

, Xi0 and C′
X̃,Ỹ

≡ C′′
X̃,Ỹ

, Y with Y /∈ X̃. Then (CP-a-i) (1 ≤ i ≤ 4) follow

immediately, in particular, for (CP-a-3), we take iY , i0.

Case 3 CX̃ ≡ α.BX̃ .

Then α = a and r ≡ BX̃{p̃/X̃}. Put C′
X̃

≡ C′
X̃,Ỹ

, α.BX̃ and C′′
X̃,Ỹ

, BX̃ with

Ỹ = ∅. Obviously, these contexts are what we seek.

Case 4 CX̃ ≡ BX̃�DX̃ .

W.l.o.g, suppose that the last rule applied in the inference is

BX̃{p̃/X̃}
a

−→ r, DX̃{p̃/X̃} 6
τ

−→

BX̃{p̃/X̃}�DX̃{p̃/X̃}
a

−→ r
.

By IH, for the a-labelled transition BX̃{p̃/X̃}
a

−→ r, there exist B′
X̃
, B′

X̃,Ỹ
and B′′

X̃,Ỹ

with X̃ ∩ Ỹ = ∅ that satisfy (CP-a-1) – (CP-a-4). Set

C′
X̃

, B′
X̃
�DX̃ , C

′
X̃,Ỹ

, B′
X̃,Ỹ

�DX̃ and C′′
X̃,Ỹ

, B′′
X̃,Ỹ

.

Then it is not difficult to check that, for the a-labelled transition CX̃{p̃/X̃}
a

−→ r, these

contexts above realizes (CP-a-1) – (CP-a-4), as desired.

Case 5 CX̃ ≡ BX̃ ∧DX̃ .

In this situation, the last rule applied in the inference is

BX̃{p̃/X̃}
a

−→ r1, DX̃{p̃/X̃}
a

−→ r2

BX̃{p̃/X̃} ∧DX̃{p̃/X̃}
a

−→ r1 ∧ r2

and r ≡ r1 ∧ r2. Then by IH, there exist B′
X̃
, B′

X̃,Ỹ
and B′′

X̃,Ỹ
with X̃ ∩ Ỹ = ∅ and, D′

X̃
,

D′
X̃,Z̃

and D′′
X̃,Z̃

with X̃ ∩ Z̃ = ∅ that realize (CP-a-1,2,3,4) for two a-labelled transi-

tions involving in premises respectively. W.l.o.g, we may assume Ỹ ∩ Z̃ = ∅. Then it is

straightforward to verify that, for the a-labelled transition CX̃{p̃/X̃}
a

−→ r, the contexts

C′
X̃

, B′
X̃

∧ D′
X̃
, C′

X̃,Ṽ
, B′

X̃,Ỹ
∧ D′

X̃,Z̃
and C′′

X̃,Ṽ
, B′′

X̃,Ỹ
∧ D′′

X̃,Z̃
with Ṽ = Ỹ ∪ Z̃

realize (CP-a-1) – (CP-a-4), as desired.

Case 6 CX̃ ≡ BX̃ ‖A DX̃ .
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Then the last rule applied in the proof tree is one of the following:

(6.1)
B

X̃
{p̃/X̃}

a
−→r1,DX̃

{p̃/X̃}
a

−→r2

B
X̃
{p̃/X̃}‖AD

X̃
{p̃/X̃}

a
−→r1‖Ar2

with a ∈ A;

(6.2)
B

X̃
{p̃/X̃}

a
−→r′, D

X̃
{p̃/X̃}6

τ
−→

B
X̃
{p̃/X̃}‖AD

X̃
{p̃/X̃}

a
−→r′‖AD

X̃
{p̃/X̃}

with a /∈ A;

(6.3)
D

X̃
{p̃/X̃}

a
−→r′, B

X̃
{p̃/X̃}6

τ
−→

B
X̃
{p̃/X̃}‖AD

X̃
{p̃/X̃}

a
−→B

X̃
{p̃/X̃}‖Ar′

with a /∈ A.

Among them, the argument for (6.1) is similar to one for Case 5. We shall consider the

case (6.2), and (6.3) may be handled similarly. In this situation, r ≡ r′ ‖A DX̃{p̃/X̃}.

Moreover, for the a-labelled transition BX̃{p̃/X̃}
a

−→ r′, by IH, there exist B′
X̃
, B′

X̃,Ỹ

and B′′
X̃,Ỹ

with X̃ ∩ Ỹ = ∅ that satisfy (CP-a-1) – (CP-a-4). Put

C′
X̃

, B′
X̃

‖A DX̃ , C
′
X̃,Ỹ

, B′
X̃,Ỹ

‖A DX̃ and C′′
X̃,Ỹ

, B′′
X̃,Ỹ

‖A DX̃ .

Next we want to show that these contexts realize (CP-a-1) – (CP-a-4).

(CP-a-1) It is obvious because of BX̃ ⇛ B′
X̃
.

(CP-a-2) For each Y ∈ Ỹ , since Y is 1-active in B′′
X̃,Ỹ

and B′
X̃,Ỹ

, so it is in C′′
X̃,Ỹ

and

C′
X̃,Ỹ

because of X̃ ∩ Ỹ = ∅.

(CP-a-3) By IH, there exist iY ≤ |X̃|(Y ∈ Ỹ ) which realize subclauses (i)(ii)(iii) in

(CP-a-3). In the following, we will verify that these iY also work well for the induction

step. Clearly, it follows from B′
X̃,Ỹ

{X̃iY /Ỹ } ≡ B′
X̃

and X̃ ∩ Ỹ = ∅ that C′
X̃,Ỹ

{X̃iY /Ỹ } ≡

C′
X̃
. Hence these iY satisfy the subclause (CP-a-3-i) for the induction step. Moreover,

due to r′ ≡ B′′
X̃,Ỹ

{p̃/X̃, p̃′Y /Ỹ } for some p′Y (Y ∈ Ỹ ) with piY
a

−→ p′Y for each Y ∈ Ỹ

and X̃ ∩ Ỹ = ∅, we have r ≡ r′ ‖A DX̃{p̃/X̃} ≡ C′′
X̃,Ỹ

{p̃/X̃, p̃′Y /Ỹ }, that is, they

realize (CP-a-3-ii) for the induction step. Finally, to verify that these iY also meet the

challenge of (CP-a-3-iii), we assume that q̃ and q̃′ be any tuple such that |q̃| = |X̃|,

qiY
a

−→ q′Y for each Y ∈ Ỹ and CX̃{q̃/X̃} is stable. So, BX̃{q̃/X̃} and DX̃{q̃/X̃} are

stable. Further, since B′′
X̃,Ỹ

satisfies (CP-a-3-iii) and a /∈ A, it is easy to obtain that

CX̃{q̃/X̃}
a

−→ C′′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ }.

(CP-a-4) All subclauses immediately follow from IH and constructions of C′
X̃
, C′

X̃,Ỹ

and C′′
X̃,Ỹ

.

Case 7 CX̃ ≡ 〈Y |E〉.

Clearly, the last rule applied in the inference is

〈tY |E〉{p̃/X̃}
a

−→ r

〈Y |E〉{p̃/X̃}
a

−→ r
with Y = tY ∈ E.

For the transition 〈tY |E〉{p̃/X̃}
a

−→ r, by IH, there exist C′
X̃
, C′

X̃,Ỹ
and C′′

X̃,Ỹ
with

X̃ ∩ Ỹ = ∅ that satisfy (CP-a-1) – (CP-a-4). It is trivial to check that these contexts are

what we need.

Clearly, whenever all free variables occurring in CX̃ are guarded, any action labelled

transition starting from CX̃{p̃/X̃} must be performed by CX̃ itself.
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Lemma 5.9. Let CX̃ be a context such thatX is guarded for eachX ∈ X̃ . If CX̃{p̃/X̃}
α

−→

r then there exists BX̃ such that r ≡ BX̃{p̃/X̃} and CX̃{q̃/X̃}
α

−→ BX̃{q̃/X̃} for any q̃.

Proof. Firstly, we handle the case α = τ . For the transition CX̃{p̃/X̃}
τ

−→ r, either

the clause (1) or (2) in Lemma 5.6 holds. It is a simple matter to see that the clause

(1) implies what we desire. The task is now to show that the clause (2) does not hold

for such transition. On the contrary, assume that the clause (2) holds. Then there exist

C′
X̃
, C′′

X̃,Z
and i0 ≤ |X̃| satisfying (P-τ -1,2,3,4). For each X ∈ X̃, since it is guarded in

CX̃ , by Lemma 5.2(3) and (P-τ -1), so it is in C′
X̃
. Hence a contradiction arises due to

(P-τ -3), as desired.

Next we treat the other case α ∈ Act. By Lemma 5.8, for the transition CX̃{p̃/X̃}
α

−→

r, there exist C′
X̃
, C′

X̃,Ỹ
and C′′

X̃,Ỹ
realizing (CP-a-1) – (CP-a-4). Clearly, if Ỹ = ∅ then

C′′
X̃,Ỹ

is exactly one that we need. Thus, to complete the proof, it suffices to show that

Ỹ is indeed empty. Since X is guarded in CX̃ for each X ∈ X̃ and CX̃ ⇛ C′
X̃

(i.e., (CP-

a-1)), by Lemma 5.2(3), all occurrences of free variables in C′
X̃

are guarded. Moreover,

since C′
X̃,Ỹ

satisfies (CP-a-2) and (CP-a-3-i), we get Ỹ = ∅, as desired.

Lemma 5.10. For any Y,E with Y = tY ∈ E and context CX with at most one

occurrence of the unfolded variable X , we have

(1) if CX{〈Y |E〉/X}
α

−→ q then there exists BX such that

(1.1) q ≡ BX{〈Y |E〉/X},

(1.2) CX{〈tY |E〉/X}
α

−→ BX{〈tY |E〉/X}, and

(1.3) X occurs in BX at most once; moreover, such occurrence is unfolded;

(2) if CX{〈tY |E〉/X}
α

−→ q then there exists BX such that

(2.1) q ≡ BX{〈tY |E〉/X},

(2.2) CX{〈Y |E〉/X}
α

−→ BX{〈Y |E〉/X}, and

(2.3) X occurs in BX at most once; moreover, such occurrence is unfolded.

Proof. We prove only item (1), and the same reasoning applies to item (2). For (1),

the argument is splitted into two parts based on α.

Case 1 α = τ .

Assume CX{〈Y |E〉/X}
τ

−→ q. Then, for such transition, by Lemma 5.6, either there

exists C′
X that satisfies (C-τ -1,2,3) or there exist C′

X , C′′
X,Z with Z 6= X that satisfy

(P-τ -1,2,3,4).

For the first alternative, it follows from C′
X satisfies (C-τ -1,2) that q ≡ C′

X{〈Y |E〉/X}

and CX{〈tY |E〉/X}
τ

−→ C′
X{〈tY |E〉/X}. Moreover, due to (C-τ -3-ii), there is at most

one occurrence of the unfolded variableX in C′
X . Consequently, the context C′

X is exactly

one that we seek.

For the second alternative, by (P-τ -2), there exists q′ such that

〈Y |E〉
τ

−→ q′ and q ≡ C′′
X,Z{〈Y |E〉/X, q′/Z}.
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Hence 〈tY |E〉
τ

−→ q′. Then it follows from (P-τ -4) that

CX{〈tY |E〉/X}
τ

−→ C′′
X,Z{〈tY |E〉/X, q′/Z}.

In addition, due to (P-τ -1), by Lemma 5.2(1), there is at most one occurrence of the

unfolded variable X in C′
X . Moreover, since C′

X and C′′
X,Z satisfy (P-τ -3), we obtain

X /∈ FV (C′′
X,Z ). Hence q ≡ C′′

X,Z{〈Y |E〉/X, q′/Z} ≡ C′′
X,Z{〈tY |E〉/X, q′/Z}. Then it is

easy to see that BX , q is what we need.

Case 2 α ∈ Act.

Let CX{〈Y |E〉/X}
α

−→ q. Then, by Lemma 5.8, there exist C′
X , C′

X,Z̃
and C′′

X,Z̃
with

X /∈ Z̃ that satisfy (CP-a-1) – (CP-a-4). Since CX{〈Y |E〉/X} is stable, by item (2), so

is CX{〈tY |E〉/X}.

If Z̃ = ∅, it follows trivially by (CP-a-3-iii) that CX{〈tY |E〉/X}
α

−→ C′′
X,Z̃

{〈tY |E〉/X};

moreover, by (CP-a-1), (CP-a-3-i), (CP-a-4-i) and Lemma 5.2(1), there is at most one

occurrence of the unfolded variable X in C′′
X,Z̃

. Therefore, C′′
X,Z̃

is exactly the context

that we need.

We next deal with the other case Z̃ 6= ∅. Since C′
X satisfies (CP-a-1), by Lemma 5.2(1),

there is at most one occurrence of the unfolded variable X in C′
X . Then it follows from

(CP-a-2), (CP-a-3-i) and (CP-a-4-i) that |Z̃| = 1 and X /∈ FV (C′′
X,Z̃

). So, due to (CP-

a-3-ii), there exists q′ such that

〈Y |E〉
α

−→ q′ and q ≡ C′′
X,Z̃

{〈Y |E〉/X, q′/Z̃}.

Hence 〈tY |E〉
α

−→ q′. Then CX{〈tY |E〉/X}
α

−→ C′′
X,Z̃

{〈tY |E〉/X, q′/Z̃} by (CP-a-3-iii)

and CX{〈tY |E〉/X} 6
τ

−→. Thus q ≡ C′′
X,Z̃

{〈tY |E〉/X, q′/Z̃} because of X /∈ FV (C′′
X,Z̃

).

Then it is easy to check that BX , q is exactly what we seek.

5.3. Multi-τ transitions and more on unfolding

Based on the result obtained in the preceding subsections, we shall give a few further

properties of unfolding. We first want to indicate some simple properties.

Lemma 5.11. The relation ⇛ satisfies the forward and backward conditions, that is,

for any α ∈ Actτ and p, q such that p⇛ q, we have

(1) if p
α

−→ p′ then q
α

−→ q′ and p′ ⇛ q′ for some q′;

(2) if q
α

−→ q′ then p
α

−→ p′ and p′ ⇛ q′ for some p′.

Proof. (1) Assume p ⇛ q and p
α

−→ p′. Clearly, p ⇛n q for some n. It proceeds by

induction on n. For the induction base n = 0, it holds trivially. For the induction step

n = k + 1, we have p ⇛k r ⇛1 q for some r. By IH, r
α

−→ r′ and p′ ⇛ r′ for some r′.

Moreover, for r ⇛1 q, by Lemma 5.1, 5.10(1) and ??(1), there exists q′ such that q
α

−→ q′

and r′ ⇛ q′. Obviously, we also have p′ ⇛ q′.



Yan Zhang, Zhaohui Zhu and Jinjin Zhang 26

(2) Similar to item (1), but applying Lemmas 5.10(2) and ??(2) instead of Lemmas 5.10(1)

and ??(1).

A similar result also holds w.r.t
ǫ

=⇒ |, that is

Lemma 5.12. For any p, q such that p⇛ q, we have

(1) if p
ǫ

=⇒ |p′ then q
ǫ

=⇒ |q′ and p′ ⇛ q′ for some q′;

(2) if q
ǫ

=⇒ |q′ then p
ǫ

=⇒ |q′ and p′ ⇛ q′ for some p′.

Proof. By applying Lemma 5.11 finitely often.

In fact, for any p, q such that p⇛ q, it is to be expected that p =RS q. To verify it, we

need to prove that p ∈ F if and only if q ∈ F . The next lemma will serve as a stepping

stone in proving this.

Convention 5.1. The arguments in the remainder of this paper often proceed by dis-

tinguishing some cases based on the last rule applied in an inference. For such argument,

since rules about operations ∧, ∨, ‖A and � are symmetric w.r.t their two operands (for

instance, Rules Rp11 and Rp12, Ra4 and Ra5, and so on), we shall consider only one of

two symmetric rules and omit another one.

Lemma 5.13. For any Y,E with Y = tY ∈ E and context CX with at most one

occurrence of the unfolded variable X , CX{〈Y |E〉/X} ∈ F iff CX{〈tY |E〉/X} ∈ F .

Proof. We give proof only for the implication from left to right, the converse impli-

cation may be proved similarly and omitted. Assume CX{〈Y |E〉/X} ∈ F . It proceeds

by induction on the depth of the inference Strip(PCLLR
,MCLLR

) ⊢ CX{〈Y |E〉/X}F ,

which is a routine case analysis on the form of CX . We give the proof only for the case

CX ≡ BX ∧ DX , the other cases are left to the reader. In this situation, the last rule

applied in the inference is one of the following.

Case 1 BX{〈Y |E〉/X}F
BX{〈Y |E〉/X}∧DX{〈Y |E〉/X}F .

By IH, we get BX{〈tY |E〉/X} ∈ F . Hence CX{〈tY |E〉/X} ∈ F .

Case 2 BX{〈Y |E〉/X}
a

−→r,DX{〈Y |E〉/X}6
a

−→,CX{〈Y |E〉/X}6
τ

−→
BX{〈Y |E〉/X}∧DX{〈Y |E〉/X}F .

By Lemma 5.10 and ??, we haveBX{〈tY |E〉/X}
a

−→,DX{〈tY |E〉/X} 6
a

−→ and CX{〈tY |E〉/X} 6
τ

−→.

So, CX{〈tY |E〉/X} ∈ F .

Case 3 CX{〈Y |E〉/X}
α

−→s,{rF :CX{〈Y |E〉/X}
α

−→r}
CX{〈Y |E〉/X}F .

Then CX{〈tY |E〉/X}
α

−→ by Lemma 5.10(1) and ??(1). Assume CX{〈tY |E〉/X}
α

−→

q. Thus it follows from Lemma 5.10(2) and ??(2) that there exists C′
X with at most one

occurrence of the unfolded variable X such that

CX{〈Y |E〉/X}
α

−→ C′
X{〈Y |E〉/X} and q ≡ C′

X{〈tY |E〉/X}.

Then, by IH, q ≡ C′
X{〈tY |E〉/X} ∈ F . Hence CX{〈tY |E〉/X} ∈ F by Theorem 4.2.
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Case 4 {rF :CX{〈Y |E〉/X}
ǫ

=⇒|r}
CX{〈Y |E〉/X}F .

Assume CX{〈tY |E〉/X}
ǫ

=⇒ |t. Repeated application of Lemma 5.10(2) enables us

to get CX{〈Y |E〉/X}
ǫ

=⇒ |r, r ≡ C′
X{〈Y |E〉/X} and t ≡ C′

X{〈tY |E〉/X} for some

r and context C′
X with at most one occurrence of the unfolded free variable X . Since

r ≡ C′
X{〈Y |E〉/X} ∈ F , we have t ∈ F by IH. Then CX{〈tY |E〉/X} ∈ F by Theorem 4.2.

Next we can show that the relation ⇛ preserves and respects the inconsistency.

Lemma 5.14. For any p, q, if p⇛ q, then p ∈ F iff q ∈ F .

Proof. Suppose p ⇛ q. Hence p ⇛n q for some n. Then, using Lemma 5.1 and 5.13,

the proof is straightforward by induction on n.

We now have the assertion below of the equivalence of p and q modulo =RS whenever

p⇛ q.

Lemma 5.15. If p1 ⇛ p2 then p1 =RS p2, in particular, p1 ≈RS p2 whenever p1 6
τ

−→.

Proof. We only prove p1 ⊏
∼RS

p2 whenever p1 6
τ

−→, other proofs are straightforward

and omitted. Set

R = {(p, q) : p⇛ q and p 6
τ

−→}.

It suffices to prove that R is a stable ready simulation relation. Suppose (p, q) ∈ R. Then,

by Lemma 5.11 and 5.14, it is evident that such pair satisfies (RS1), (RS2) and (RS4).

For (RS3), suppose p
a

=⇒F |p′. Then p
a

−→F p′′
ǫ

=⇒F |p′ for some p′′. By Lemma 5.11

and 5.14, there exists q′′ such that q
a

−→F q′′ and p′′ ⇛ q′′. Further, by Lemma 4.2, 5.12

and 5.14, p′ ⇛ q′ and q′′
ǫ

=⇒F |q′ for some q′. Moreover, (p′, q′) ∈ R, as desired.

In the following, we shall generalize Lemma 5.6 to the situation involving a sequence

of τ -labelled transitions. Given a process CX̃{p̃/X̃}, by Lemma 5.6, any τ -transition

starting from CX̃{p̃/X̃} may be caused by CX̃ itself or some pi. Thus, for a sequence of

τ -transitions, these two situations may occur alternately. Based on Lemma 5.6, we can

capture this as follows.

Lemma 5.16. For any CX̃ and p̃, if CX̃{p̃/X̃}
ǫ

=⇒ r then there exist C′
X̃,Ỹ

and iY ≤

|X̃ |, p′Y (Y ∈ Ỹ ) such that

(MS-τ-1) X̃ ∩ Ỹ = ∅ and Y is 1-active in C′
X̃,Ỹ

for each Y ∈ Ỹ ;

(MS-τ-2) piY
τ

=⇒ p′Y for each Y ∈ Ỹ and r ≡ C′
X̃,Ỹ

{p̃/X̃, p̃′Y /Ỹ };

(MS-τ-3) for any q̃ and q̃′Y with |q̃| = |X̃ | and Y ∈ Ỹ ,

(MS-τ-3-i) if qiY
ǫ

=⇒ q′Y for each Y ∈ Ỹ then CX̃{q̃/X̃}
ǫ

=⇒⇛ C′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ };

(MS-τ-3-ii) if qiY
τ

=⇒ q′Y for each Y ∈ Ỹ then CX̃{q̃/X̃}
ǫ

=⇒ C′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ };

(MS-τ-4) if CX̃ is stable then so is C′
X̃,Ỹ

and CX̃{q̃/X̃} ⇛ C′
X̃,Ỹ

{q̃/X̃, q̃iY /Ỹ } for any

q̃;
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(MS-τ-5) for each X ∈ X̃ , if X is strongly guarded in CX̃ then so it is in C′
X̃,Ỹ

and

X 6≡ XiY for each Y ∈ Ỹ ;

(MS-τ-6) for each X ∈ X̃ (or, Y ∈ Ỹ ), if X (XiY respectively) does not occur in the

scope of any conjunction in CX̃ then neither does X (Y respectively) in C′
X̃,Ỹ

;

(MS-τ-7) if r is stable then so are C′
X̃,Ỹ

and p′Y for each Y ∈ Ỹ .

Proof. Suppose CX̃{p̃/X̃}(
τ

−→)nr(n ≥ 0). We proceed by induction on n. For the

inductive base n = 0, the conclusion holds trivially by taking C′
X̃,Ỹ

, CX̃ with Ỹ = ∅.

For the inductive step, assume CX̃{p̃/X̃}(
τ

−→)ks
τ

−→ r for some s. For the transition

CX̃{p̃/X̃}(
τ

−→)ks, by IH, there exist C′
X̃,Ỹ

and iY ≤ |X̃ |, p′Y (Y ∈ Ỹ ) that realize (MS-

τ -l) (1 ≤ l ≤ 7). In particular, we have s ≡ C′
X̃,Ỹ

{p̃/X̃, p̃′Y /Ỹ } due to (MS-τ -2). Then,

for the transition s
τ

−→ r, either the clause (1) or (2) in Lemma 5.6 holds. The argument

splits into two cases.

Case 1 For the transition s
τ

−→ r, the clause (1) in Lemma 5.6 holds.

That is, for the transition C′
X̃,Ỹ

{p̃/X̃, p̃′Y /Ỹ } ≡ s
τ

−→ r, there exists C′′
X̃,Ỹ

satisfying

(C-τ -1,2,3) in Lemma 5.6. We shall check that C′′
X̃,Ỹ

, ĩY and p̃′Y realize (MS-τ -1) - (MS-

τ -7) w.r.t CX̃{p̃/X̃}(
τ

−→)k+1r.

Since C′
X̃,Ỹ

satisfies (MS-τ -1,5,6), it follows that C′′
X̃,Ỹ

and ĩY realize (MS-τ -1), (MS-

τ -5) and (MS-τ -6) due to (C-τ -3-i), (C-τ -3-iii) and (C-τ -3-iv) respectively. Moreover, as

C′′
X̃,Ỹ

satisfies (C-τ -1) it follows immediately that (MS-τ -2) holds. Since C′′
X̃,Ỹ

satisfies

(C-τ -2), by Lemma 5.7, C′
X̃,Ỹ

is not stable. Then neither is CX̃ because C′
X̃,Ỹ

satisfies

(MS-τ -4). Thus, C′′
X̃,Ỹ

satisfies (MS-τ -4) trivially.

Next we verify (MS-τ -3). Let q̃ be any processes with |q̃| = |X̃| and qiY
ǫ

=⇒ q′Y for

each Y ∈ Ỹ .

(MS-τ-3-i) Since C′
X̃,Ỹ

satisfies (MS-τ -3-i), we have

CX̃{q̃/X̃}
ǫ

=⇒ t⇛ C′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ } for some t.

Moreover, we have C′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ }
τ

−→ C′′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ } due to (C-τ -2). Then it

follows from Lemma 5.11 that

t
τ

−→ t′ ⇛ C′′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ } for some t′.

Therefore, CX̃{q̃/X̃}
ǫ

=⇒ t
τ

−→ t′ ⇛ C′′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ }, as desired.

(MS-τ-3-ii) It is straightforward as C′
X̃,Ỹ

satisfies (MS-τ -3-ii) and C′′
X̃,Ỹ

satisfies (C-

τ -2).

(MS-τ-7) Suppose r ≡ C′′
X̃,Ỹ

{p̃/X̃, p̃′Y /Ỹ } 6
τ

−→. Then, since C′′
X̃,Ỹ

satisfies (MS-τ -1),

by Lemmas 5.4 and 5.7, it is easy to see that both C′′
X̃,Ỹ

and p̃′Y are stable.

Case 2 For the transition s
τ

−→ r, the clause (2) in Lemma 5.6 holds.
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Then there exist i0 ≤ |X̃ | + |Ỹ |, C′′
X̃,Ỹ

(≡ C′′
X1,...,X|X̃|

,Y
|X̃|+1

,...,Y
|X̃|+|Ỹ |

) and C′′′
X̃,Ỹ ,Z

(≡

C′′′
X1,...,X|X̃|

,Y
|X̃|+1

,...,Y
|X̃|+|Ỹ |

,Z) with Z /∈ X̃ ∪ Ỹ satisfying (P-τ -1) - (P-τ -4). In particular,

by (P-τ -3),

C′′
X̃,Ỹ

≡





C′′′
X̃,Ỹ ,Z

{Xi0/Z}, if 1 ≤ i0 ≤ |X̃|;

C′′′
X̃,Ỹ ,Z

{Yi0/Z}, if |X̃|+ 1 ≤ i0 ≤ |X̃ |+ |Ỹ |.

In case |X̃|+ 1 ≤ i0 ≤ |X̃ |+ |Ỹ |, by (P-τ -2), there exists p′ such that

p′Yi0

τ
−→ p′ and r ≡ C′′′

X̃,Ỹ ,Z
{p̃/X̃, p̃′Y /Ỹ , p

′/Z}.

Moreover, since Yi0 is 1-active in C′
X̃,Ỹ

, by (P-τ -1), we have C′
X̃,Ỹ

≡ C′′
X̃,Ỹ

. Further, since

Z is 1-active in C′′′
X̃,Ỹ ,Z

and C′′
X̃,Ỹ

≡ C′′′
X̃,Ỹ ,Z

{Yi0/Z}, it is easy to see that Yi0 does not

occur in C′′′
X̃,Ỹ ,Z

. Hence

r ≡ C′′
X̃,Ỹ

{p̃/X̃, p̃′Y [p
′/p′Yi0

]/Ỹ } ≡ C′
X̃,Ỹ

{p̃/X̃, p̃′Y [p
′/p′Yi0

]/Ỹ }.

Then it is not difficult to check that C′
X̃,Ỹ

, p̃′Y [p′/p′Yi0
] and ĩY realize (MS-τ -l)(1 ≤ l ≤ 7)

w.r.t the transition CX̃{p̃/X̃}(
τ

−→)k+1r, as desired.

In case 1 ≤ i0 ≤ |X̃ |, by (P-τ -2), there exists p′′ such that pi0
τ

−→ p′′ and r ≡

C′′′
X̃,Ỹ ,Z

{p̃/X̃, p̃′Y /Ỹ , p
′′/Z}. Set

iZ , i0 and p′Z , p′′.

In the following, we intend to verify that C′′′
X̃,Ỹ ,Z

, iU (U ∈ Ỹ ∪ {Z}) and |Ỹ | + 1-tuple

p̃′U with U ∈ Ỹ ∪ {Z} realize (MS-τ -1) - (MS-τ -7) w.r.t CX̃{p̃/X̃}(
τ

−→)k+1r.

(MS-τ-1) By (P-τ -1), we have C′
X̃,Ỹ

⇛ C′′
X̃,Ỹ

. Moreover, since C′
X̃,Ỹ

satisfy (MS-τ -1),

by Lemma 5.2(1), Y is 1-active in C′′
X̃,Ỹ

for each Y ∈ Ỹ . Further, by (P-τ -3), each Y ∈ Ỹ

and Z are 1-active in C′′′
X̃,Ỹ ,Z

.

(MS-τ-2) It is straightforward.

(MS-τ-3) Let q̃ be any processes with |q̃| = |X̃ |.

(MS-τ-3-i) Suppose qiU
ǫ

=⇒ q′U for each U ∈ Ỹ ∪{Z}. Since C′
X̃,Ỹ

satisfies (MS-τ -3-i),

we have

CX̃{q̃/X̃}
ǫ

=⇒ t⇛ C′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ } for some t.

It follows from qiZ
ǫ

=⇒ q′Z that qiZ (
τ

−→)mq′Z for some m ≥ 0. We shall distinguish two

cases based on m.

In case m = 0, we get qiZ ≡ q′Z . Since C
′′′
X̃,Ỹ ,Z

satisfies (P-τ -1) and (P-τ -3), we have

C′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ } ⇛ C′′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ } ≡ C′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃′Y /Ỹ , q
′
Z/Z}.

Therefore CX̃{q̃/X̃}
ǫ

=⇒ t ⇛ C′′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ } ≡ C′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃′Y /Ỹ , q
′
Z/Z}, as de-

sired.
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In case m > 0, i.e., qiZ
τ

−→ q′′
ǫ

=⇒ q′Z for some q′′, by (P-τ -4), we obtain

C′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ }
τ

−→ C′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃′Y /Ỹ , q
′′/Z}.

Moreover, since Z is 1-active, by Lemma 5.4, we get

C′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃′Y /Ỹ , q
′′/Z}

ǫ
=⇒ C′′′

X̃,Ỹ ,Z
{q̃/X̃, q̃′Y /Ỹ , q

′
Z/Z}.

Then, by Lemma 5.12, it follows from t ⇛ C′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ } that there exist t′ such

that

t
ǫ

=⇒ t′ ⇛ C′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃′Y /Ỹ , q
′
Z/Z}.

Consequently, CX̃{q̃/X̃}
ǫ

=⇒ t
ǫ

=⇒ t′ ⇛ C′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃′Y /Ỹ , q
′
Z/Z}.

(MS-τ-3-ii) Suppose qiU
τ

=⇒ q′U for each U ∈ Ỹ ∪ {Z}. Since C′
X̃,Ỹ

satisfies (MS-τ -3-

ii), we have

CX̃{q̃/X̃}
ǫ

=⇒ C′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ }.

Moreover, qiZ
τ

−→ q′′
ǫ

=⇒ q′Z for some q′′ because of qiZ
τ

=⇒ q′Z . Hence by (P-τ -4)

C′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ }
τ

−→ C′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃′Y /Ỹ , q
′′/Z}.

Further, since Z is 1-active, it follows from Lemma 5.4 that

C′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃′Y /Ỹ , q
′′/Z}

ǫ
=⇒ C′′′

X̃,Ỹ ,Z
{q̃/X̃, q̃′Y /Ỹ , q

′
Z/Z}.

Consequently, CX̃{q̃/X̃}
ǫ

=⇒ C′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃′Y /Ỹ , q
′
Z/Z}, as desired.

(MS-τ-4) Assume CX̃ is stable. By (MS-τ -4), C′
X̃,Ỹ

is stable and for any q̃, CX̃{q̃/X̃} ⇛

C′
X̃,Ỹ

{q̃/X̃, q̃iY /Ỹ }. Moreover, by Lemma 5.11, it follows from C′
X̃,Ỹ

⇛ C′′
X̃,Ỹ

(i.e., (P-

τ -1)) and C′′′
X̃,Ỹ ,Z

{XiZ/Z} ≡ C′′
X̃,Ỹ

(i.e., (P-τ -3)) that C′′′
X̃,Ỹ ,Z

is stable and

C′
X̃,Ỹ

{q̃/X̃, q̃iY /Ỹ } ⇛ C′′′
X̃,Ỹ ,Z

{q̃/X̃, q̃iY /Ỹ , qiZ/Z}.

(MS-τ-5,6) By Lemma 5.2(3)(5), they immediately follow from the fact that C′
X̃,Ỹ

satisfies (MS-τ -5,6) and C′′′
X̃,Ỹ ,Z

satisfies (P-τ -1,3).

(MS-τ-7) Immediately follows from (MS-τ -1), (MS-τ -2) and Lemmas 5.4 and 5.7.

Lemma 5.17. For any p̃ and stable context CX̃ , if, for each i ≤ |X̃ |, pi
ǫ

=⇒ |p′i then

CX̃{p̃/X̃}
ǫ

=⇒ |q for some q.

Proof. By Lemma 5.3 and 5.2(4), CX̃ ⇛ C′
X̃

for some C′
X̃

such that each unguarded

occurrence of any free variable in C′
X̃

is unfolded. Moreover, since CX̃ is stable, so is C′
X̃

by CX̃{0/X̃} ⇛ C′
X̃
{0/X̃} and Lemma 5.11.

Let C′
X̃,Ỹ

be the context obtained from C′
X̃

by replacing simultaneously all unguarded

and unfolded occurrences of free variables in X̃ by distinct and fresh variables Ỹ . Here

distinct occurrences are replaced by distinct variables. Clearly, we have

(1) for each Y ∈ Ỹ , there exists exactly one iY ≤ |X̃| such that C′
X̃

≡ C′
X̃,Ỹ

{X̃iY /Ỹ },
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(2) all variables in Ỹ are 1-active in C′
X̃,Ỹ

, and

(3) C′
X̃,Ỹ

is stable.

Then CX̃{p̃/X̃} ⇛ C′
X̃
{p̃/X̃} ≡ C′

X̃,Ỹ
{p̃/X̃, p̃iY /Ỹ }, and by Lemma 5.4, we obtain

C′
X̃,Ỹ

{p̃/X̃, p̃iY /Ỹ }
ǫ

=⇒ C′
X̃,Ỹ

{p̃/X̃, p̃′iY /Ỹ }. Further, since C′
X̃,Ỹ

and p̃′iY are stable and

Ỹ contains all unguarded occurrences of variables in C′
X̃,Ỹ

, we get C′
X̃,Ỹ

{p̃/X̃, p̃′iY /Ỹ } 6
τ

−→

by Lemma 5.6. Hence, by Lemma 5.12, CX̃{p̃/X̃}
ǫ

=⇒ |q ⇛ C′
X̃,Ỹ

{p̃/X̃, p̃′iY /Ỹ } for some

q.

Given a process CX̃{p̃/X̃} and its stable τ -descendant r (i.e., CX̃{p̃/X̃}
ǫ

=⇒ |r), in

general there exist more than one evolution paths from CX̃{p̃/X̃} to r. Since each τ -

labelled transition in CLLR activated by a single process, a natural conjecture arises at

this point that there exist some “canonical” evolution paths from CX̃{p̃/X̃} to r in which

the context CX̃ first evolves itself into a stable context then pi evolves. A weak version of

this conjecture will be verified in Lemma 5.19. To this end, a preliminary result is given:

Lemma 5.18. Let t1, t2 be two terms and X̃ a tuple of variables such that any recursive

variable occurring in ti(with i = 1, 2) is not in X̃, and let ãX .0 be a tuple of processes

with fresh visible action aX for each X ∈ X̃. Then

(1) if t1{ãX .0/X̃} ≡ t2{ãX .0/X̃} then t1 ≡ t2;

(2) if t1{ãX .0/X̃} ⇛1 t2{ãX .0/X̃} then t1{r̃/X̃} ⇛1 t2{r̃/X̃} for any r̃.

Proof. (1) If FV (t1)∩ X̃ = ∅ then t1{ãX .0/X̃} ≡ t1 ≡ t2{ãX .0/X̃}. Further, since aX
is fresh for each X ∈ X̃, we have FV (t2) ∩ X̃ = ∅. Hence t1 ≡ t2. In the following, we

consider the other case FV (t1) ∩ X̃ 6= ∅. We proceed by induction on t1.

Case 1 t1 ≡ Xi.

Then t1{ãX .0/X̃} ≡ aXi
.0 ≡ t2{ãX .0/X̃}. Hence t2 ≡ Xi due to the freshness of aXi

.

Case 2 t1 ≡ α.s.

So t1{ãX .0/X̃} ≡ α.s{ãX .0/X̃} ≡ t2{ãX .0/X̃}. Since α 6= aX for each X ∈ X̃, there

exists s′ such that t2 ≡ α.s′ and s{ãX .0/X̃} ≡ s′{ãX .0/X̃}. By IH, we have s ≡ s′.

Hence t1 ≡ t2.

Case 3 t1 ≡ s1 ⊙ s2 with ⊙ ∈ {∨,�, ‖A,∧}.

Then t1{ãX .0/X̃} ≡ s1{ãX .0/X̃} ⊙ s2{ãX .0/X̃} ≡ t2{ãX .0/X̃}. Since ãX .0 do not

contain ⊙, there exist s′1, s
′
2 such that t2 ≡ s′1 ⊙ s′2, s1{ãX .0/X̃} ≡ s′1{ãX .0/X̃} and

s2{ãX .0/X̃} ≡ s′2{ãX .0/X̃}. Hence s1 ≡ s′1 and s2 ≡ s′2 by applying IH.

Case 4 t1 ≡ 〈Y |E〉 for some E(V ) with Y ∈ V .

Then t1{ãX .0/X̃} ≡ 〈Y |E{ãX .0/X̃}〉 ≡ t2{ãX .0/X̃}. So, t2 ≡ 〈Y |E′〉 for some E′(V )

such that for each Z ∈ V , tZ{ãX .0/X̃} ≡ t′Z{ãX .0/X̃} where Z = tZ ∈ E and

Z = t′Z ∈ E′. By IH, tZ ≡ t′Z for each Z ∈ V . Thus t1 ≡ 〈Y |E〉 ≡ 〈Y |E′〉 ≡ t2.
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(2) In case FV (t1) ∩ X̃ = ∅, since one-step unfolding does not introduce fresh actions,

we have FV (t2) ∩ X̃ = ∅. Thus, t1 ≡ t1{ãX .0/X̃} ⇛1 t2{ãX .0/X̃} ≡ t2, and hence t1 ≡

t1{r̃/X̃} ⇛1 t2{r̃/X̃} ≡ t2 for any r̃. Next we consider the other case FV (t1) ∩ X̃ 6= ∅.

It proceeds by induction on t1. This is a routine case analysis on the format of t1, we

handle only the case t1 ≡ 〈Y |E〉.

In this case, t1{ãX .0/X̃} ≡ 〈Y |E〉{ãX .0/X̃}. By Def. 5.2, the unique result of one-

step unfolding of 〈Y |E〉{ãX .0/X̃} is 〈tY |E〉{ãX .0/X̃} where Y = tY ∈ E. Thus, we

get 〈tY |E〉{ãX .0/X̃} ≡ t2{ãX .0/X̃}. By item (1), we have 〈tY |E〉 ≡ t2, and hence

t1{r̃/X̃} ⇛1 〈tY |E〉{r̃/X̃} ≡ t2{r̃/X̃} for any r̃.

Having disposed of this preliminary step, we can now verify a weak version of the

conjecture mentioned above, which is sufficient for the aim of this paper. At present, we

do not know whether this result still holds if the requirement (1) in the next lemma is

strengthened to CX̃{p̃/X̃}
ǫ

=⇒ DX̃{p̃/X̃}
ǫ

=⇒ |r.

Lemma 5.19. For any CX̃ and p̃, if CX̃{p̃/X̃}
ǫ

=⇒ |r then there exists a stable context

DX̃ such that

(1) CX̃{p̃/X̃}
ǫ

=⇒ DX̃{p̃/X̃}
ǫ

=⇒ |r′ ⇛ r for some r′, and

(2) CX̃{q̃/X̃}
ǫ

=⇒ DX̃{q̃/X̃} for any q̃ with |q̃| = |X̃ |.

Proof. Suppose CX̃{p̃/X̃}(
τ

−→)n|r. It proceeds by induction on n. For the inductive

base n = 0, it follows from CX̃{p̃/X̃} ≡ r 6
τ

−→ that CX̃ is stable by Lemma 5.7. Then

it is straightforward to verify that CX̃ itself is exactly what we seek. For the inductive

step, assume CX̃{p̃/X̃}
τ

−→ t(
τ

−→)k|r for some t. Then, for the τ -labelled transition

CX̃{p̃/X̃}
τ

−→ t, either the clause (1) or (2) in Lemma 5.6 holds. The first alternative is

easy to handle and is thus omitted. Next we consider the second alternative.

In this situation, there exist C′
X̃
, C′′

X̃,Z
with Z /∈ X̃ and i0 ≤ |X̃| that satisfy (P-τ -1)

– (P-τ -4). By (P-τ -2), we have

t ≡ C′′
X̃,Z

{p̃/X̃, p′/Z} for some p′ with pi0
τ

−→ p′.

Then, for C′′
X̃,Z

{p̃/X̃, p′/Z}(
τ

−→)k|r, by IH, there exists a stable context D′
X̃,Z

such that

C′′
X̃,Z

{p̃/X̃, p′/Z}
ǫ

=⇒ D′
X̃,Z

{p̃/X̃, p′/Z}
ǫ

=⇒ |r′ ⇛ r for some r′ (5.19.1)

and for any q′ and q̃, we have

C′′
X̃,Z

{q̃/X̃, q′/Z}
ǫ

=⇒ D′
X̃,Z

{q̃/X̃, q′/Z}. (5.19.2)

In particular, we have C′′
X̃,Z

{ãX .0/X̃, aZ .0/Z}
ǫ

=⇒ D′
X̃,Z

{ãX .0/X̃, aZ .0/Z} where dis-

tinct visible actions ãX and aZ are fresh. For this transition, applying Lemma 5.6 finitely

often (notice that, in this procedure, since ãX .0 and aZ .0 are stable, the clause (2) in

Lemma 5.6 is always false), then by clause (1) in Lemma 5.6, we get the sequence

C′′
X̃,Z

{ãX .0/X̃, aZ .0/Z} ≡ C0
X̃,Z

{ãX .0/X̃, aZ .0/Z}
τ

−→ C1
X̃,Z

{ãX .0/X̃, aZ .0/Z}
τ

−→

· · ·
τ

−→ Cn
X̃,Z

{ãX .0/X̃, aZ .0/Z} ≡ D′
X̃,Z

{ãX .0/X̃, aZ .0/Z}.
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Here n ≥ 0 and Ci
X̃,Z

satisfies (C-τ -1,2,3) for each 1 ≤ i ≤ n. Moreover, since Z is 1-

active in C′′
X̃,Z

, by (C-τ -3-i), so is Z in Cn
X̃,Z

. We also have Cn
X̃,Z

≡ D′
X̃,Z

by Lemma 5.18.

Hence we conclude that

Z is 1-active in D′
X̃,Z

. (5.19.3)

Since C′
X̃

and C′′
X̃,Z

satisfy (P-τ -1) and (P-τ -3), for any s̃, we get

CX̃{s̃/X̃} ⇛ C′
X̃
{s̃/X̃} ≡ C′′

X̃,Z
{s̃/X̃, si0/Z}. (5.19.4)

In order to complete the proof, it suffices to find a stable contextDX̃ satisfying conditions

(1) and (2). In the following, we shall use ãX .0 again to obtain such context.

Since ãX .0 and D′
X̃,Z

are stable, by (5.19.2), we get

C′′
X̃,Z

{ãX .0/X̃, aXi0
.0/Z}

ǫ
=⇒ |D′

X̃,Z
{ãX .0/X̃, aXi0

.0/Z}.

Moreover, by (5.19.4), we have C′
X̃
{ãX .0/X̃} ≡ C′′

X̃,Z
{ãX .0/X̃, aXi0

.0/Z}. Thus, it fol-

lows that

C′
X̃
{ãX .0/X̃}

ǫ
=⇒ |D′

X̃,Z
{ãX .0/X̃, aXi0

.0/Z}.

Then, since ãX .0 are stable, by Lemma 5.16, there exists a stable context BX̃ such that

BX̃{ãX .0/X̃} ≡ D′
X̃,Z

{ãX .0/X̃, aXi0
.0/Z} (5.19.5)

and

C′
X̃
{s̃/X̃}

ǫ
=⇒ BX̃{s̃/X̃} for any s̃. (5.19.6)

In addition, by (5.19.4) and Lemma 5.12, we have CX̃{ãX .0/X̃} ⇛ C′
X̃
{ãX .0/X̃} and

CX̃{ãX .0/X̃}
ǫ

=⇒ |t′ ⇛ D′
X̃,Z

{ãX .0/X̃, aXi0
.0/Z} for some t′. Further, since ãX .0 are

stable, by Lemma 5.16, there exists a stable context DX̃ such that

t′ ≡ DX̃{ãX .0/X̃} ⇛ D′
X̃,Z

{ãX .0/X̃, aXi0
.0/Z} (5.19.7)

and

CX̃{s̃/X̃}
ǫ

=⇒ DX̃{s̃/X̃} for any s̃. (5.19.8)

Notice that, (5.19.8) follows from (MS-τ -3-ii) with Ỹ = ∅. In the following, we intend to

prove that DX̃ is what we seek. It immediately follows from (5.19.8) that DX̃ meets the

requirement (2). We are left with the task of verifying that DX̃ satisfies the condition (1).

So far, for any s̃, we have the diagram below, where the first line follows from (5.19.4),

CX̃{s̃/X̃} ⇛ C′
X̃
{s̃/X̃} ≡ C′′

X̃,Z
{s̃/X̃, si0/Z}

⇓ǫ by (5.19.8) ⇓ǫ by (5.19.6) ⇓ǫ by (5.19.2)

DX̃{s̃/X̃} ⇛ BX̃{s̃/X̃} ≡ D′
X̃,Z

{s̃/X̃, si0/Z}

Here the last line in the above follows from (5.19.7) and (5.19.5) using Lemma 5.18.
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Further, by Lemma 5.4 and pi0
τ

−→ p′, it follows from (5.19.1) and (5.19.3) that

BX̃{p̃/X̃} ≡ D′
X̃,Z

{p̃/X̃, pi0/Z}
τ

−→ D′
X̃,Z

{p̃/X̃, p′/Z}
ǫ

=⇒ |r′ ⇛ r.

Finally, since DX̃{p̃/X̃} ⇛ BX̃{p̃/X̃}, by Lemma 5.12, we get DX̃{p̃/X̃}
ǫ

=⇒ |r′′ ⇛

r′ ⇛ r for some r′′, which, together with CX̃{p̃/X̃}
ǫ

=⇒ DX̃{p̃/X̃}, implies that the

stable context DX̃ also meets the requirement (1), as desired.

The result below asserts that there exist another “canonical”evolution paths from

CX̃{p̃/X̃} to a given stable τ -descendant r. For these paths, an unstable pi evolves first

provided that such pi is located in an active position.

Lemma 5.20. For any CX̃ and p̃, if CX̃{p̃/X̃}
ǫ

=⇒ |q and Xi is 1-active in CX̃ for some

i ≤ |X̃|, then there exists p′ such that pi
ǫ

=⇒ |p′ and CX̃{p̃/X̃}
ǫ

=⇒ CX̃{p̃ [p′/pi]/X̃}
ǫ

=⇒

|q.

Proof. Suppose CX̃{p̃/X̃}(
τ

−→)n|q for some n ≥ 0. We shall prove it by induction on n.

For the inductive base n = 0, we have pi 6
τ

−→ by Lemma 5.4, and hence it holds trivially

by taking p′ ≡ pi. For the inductive step n = k + 1, suppose CX̃{p̃/X̃}
τ

−→ r(
τ

−→)k|q

for some r. For the transition CX̃{p̃/X̃}
τ

−→ r, either the clause (1) or (2) in Lemma 5.6

holds.

For the first alternative, there exists a context C′
X̃

such that

(1.1) Xi is 1-active in C′
X̃

(by (C-τ -3-i)),

(1.2) r ≡ C′
X̃
{p̃/X̃}, and

(1.3) CX̃{s̃/X̃}
τ

−→ C′
X̃
{s̃/X̃} for any s̃.

By (1.1), we can apply IH for the transition r ≡ C′
X̃
{p̃/X̃}(

τ
−→)k|q, and hence there

exists p′ such that pi
ǫ

=⇒ |p′ and C′
X̃
{p̃/X̃}

ǫ
=⇒ C′

X̃
{p̃ [p′/pi]/X̃}

ǫ
=⇒ |q. Moreover,

since Xi is 1-active in CX̃ and pi
ǫ

=⇒ |p′, we have CX̃{p̃/X̃}
ǫ

=⇒ CX̃{p̃ [p′/pi]/X̃} by

Lemma 5.4. We also have CX̃{p̃ [p′/pi]/X̃}
τ

−→ C′
X̃
{p̃ [p′/pi]/X̃} by (1.3). Therefore,

CX̃{p̃/X̃}
ǫ

=⇒ CX̃{p̃ [p′/pi]/X̃}
τ

−→ C′
X̃
{p̃ [p′/pi]/X̃}

ǫ
=⇒ |q, as desired.

For the second alternative, there exist C′
X̃
, C′′

X̃,Z
and i0 ≤ |X̃| such that

(2.1) Z is 1-active in C′′
X̃,Z

,

(2.2) r ≡ C′′
X̃,Z

{p̃/X̃, p′i0/Z} for some p′i0 with pi0
τ

−→ p′i0 , and

(2.3) CX̃{s̃/X̃}
τ

−→ C′′
X̃,Z

{s̃/X̃, s′/Z} for any s̃ and s′ with si0
τ

−→ s′.

In case i0 = i, we have CX̃ ≡ C′
X̃

by (P-τ -1), and hence r ≡ CX̃{p̃ [p′i0/pi]/X̃} by

(2.2) and (P-τ -3). For the transition r ≡ CX̃{p̃ [p′i0/pi]/X̃}(
τ

−→)k|q, by IH, there exists

p′′ such that p′i0
ǫ

=⇒ |p′′ and CX̃{p̃ [p′i0/pi]/X̃}
ǫ

=⇒ CX̃{p̃ [p′′/pi]/X̃}
ǫ

=⇒ |q. Hence

pi0
τ

−→ p′i0
ǫ

=⇒ |p′′ and CX̃{p̃/X̃}
τ

−→ CX̃{p̃ [p′i0/pi]/X̃}
ǫ

=⇒ CX̃{p̃ [p′′/pi]/X̃}
ǫ

=⇒ |q.

Next we consider the other case i0 6= i. Then for the transition r ≡ C′′
X̃,Z

{p̃/X̃, p′i0/Z}(
τ

−→

)k|q, by IH, there exists p′ such that pi
ǫ

=⇒ |p′ and

C′′
X̃,Z

{p̃/X̃, p′i0/Z}
ǫ

=⇒ C′′
X̃,Z

{p̃ [p′/pi]/X̃, p
′
i0/Z}

ǫ
=⇒ |q.



On Recursive Operations Over LLTS 35

In addition, since Xi is 1-active in CX̃ and pi
ǫ

=⇒ |p′, by Lemma 5.4, we obtain

CX̃{p̃/X̃}
ǫ

=⇒ CX̃{p̃ [p′/pi]/X̃}. Moreover,CX̃{p̃ [p′/pi]/X̃}
τ

−→ C′′
X̃,Z

{p̃ [p′/pi]/X̃, p′i0/Z}

by (2.3). Thus

CX̃{p̃/X̃}
ǫ

=⇒ CX̃{p̃ [p′/pi]/X̃}
τ

−→ C′′
X̃,Z

{p̃ [p′/pi]/X̃, p
′
i0/Z}

ǫ
=⇒ |q,

as desired.

6. Precongruence

This section intends to establish a fundamental property that ⊑RS is a precongruence,

that is, it is substitutive w.r.t all operations in CLLR. This constitutes one of two main

results of this paper. Its proof is far from trivial and requires a solid effort. As men-

tioned in Section 1, a distinguishing feature of LLTS is that it involves consideration of

inconsistencies. It is the inconsistency predicate F that make everything become quite

troublesome. A crucial part in carrying out the proof is that we need to prove that

CX{q/X} ∈ F implies CX{p/X} ∈ F whenever p ⊑RS q. Its argument will be divided

into two steps. First, we shall show that, for any stable process p, CX{τ.p/X} ∈ F iff

CX{p/X} ∈ F . Second, we intend to prove that CX{q/X} ∈ F implies CX{p/X} ∈ F

whenever p and q are uniform w.r.t stability and p ⊑RS q.

Definition 6.1 (Uniform w.r.t stability). Two tuples p̃ and q̃ with |q̃| = |p̃| are

uniform w.r.t stability, in symbols p̃ ⊲⊳ q̃, if they are component-wise uniform w.r.t

stability, that is, pi is stable iff qi is stable for each i ≤ |p̃|.

An elementary property of this notion is given:

Lemma 6.1. The uniformity w.r.t stability are preserved under substitutions. That is,

for any p̃, q̃ and CX̃ , if p̃ ⊲⊳ q̃ then CX̃{p̃/X̃} ⊲⊳ CX̃{q̃/X̃}.

Proof. Immediately follows from Lemma 5.6.

Notation For convenience, given tuples p̃ and q̃, for R ∈ {⊑RS ,⊏
∼RS

,
ǫ

=⇒ |,≡}, the

notation p̃Rq̃ means that |p̃| = |q̃| and piRqi for each i ≤ |p̃|.

Lemma 6.2. For any CX̃ , p̃ and q̃ with p̃ ⊑RS q̃, if CX̃{p̃/X̃} and CX̃{q̃/X̃} are stable

and CX̃{p̃/X̃} /∈ F , then CX̃{p̃/X̃}
a

−→ iff CX̃{q̃/X̃}
a

−→ for any a ∈ Act.

Proof. We give the proof only for the implication from right to left, the same argument

applies to the other implication. Assume CX̃{q̃/X̃}
a

−→ q′. Then there exist C′
X̃
, C′

X̃,Ỹ

and C′′
X̃,Ỹ

with X̃ ∩ Ỹ = ∅ that satisfy (CP-a-1) – (CP-a-4) in Lemma 5.8. Hence, due to

(CP-a-1) and (CP-a-3-i), there exist iY ≤ |X̃ |(Y ∈ Ỹ ) such that for any r̃ with |r̃| = |X̃|

CX̃{r̃/X̃} ⇛ C′
X̃
{r̃/X̃} ≡ C′

X̃,Ỹ
{r̃/X̃, r̃iY /Ỹ }. (6.2.1)

In particular, by Lemma 5.11, it follows from CX̃{p̃/X̃} 6
τ

−→ and CX̃{q̃/X̃} 6
τ

−→ that

both C′
X̃,Ỹ

{p̃/X̃, p̃iY /Ỹ } and C′
X̃,Ỹ

{q̃/X̃, q̃iY /Ỹ } are stable. Then, for each Y ∈ Ỹ , both

piY and qiY are stable by Lemma 5.4 and (CP-a-2). Moreover, by (6.2.1) with r̃ ≡ p̃ and
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Lemma 5.14 and 5.5, we have piY /∈ F for each Y ∈ Ỹ due to CX̃{p̃/X̃} /∈ F . Therefore,

for each Y ∈ Ỹ , it follows from p̃ ⊑RS q̃ that piY ⊏
∼RS

qiY , and I(piY ) = I(qiY ) because

of piY /∈ F . Hence CX̃{p̃/X̃}
a

−→ by (CP-a-3-iii).

In the following, we intend to show that, for any stable p, CX{p/X} and CX{τ.p/X}

are undifferentiated w.r.t consistency, which falls naturally into two parts: Lemmas 6.3

and 6.5.

Lemma 6.3. For any CX and stable p, CX{p/X} /∈ F implies CX{τ.p/X} /∈ F .

Proof. Let p be any stable process. Set

Ω , {BX{τ.p/X} : BX{p/X} /∈ F and BX is a context}.

Similar to Lemma 4.4, it suffices to prove that for any t ∈ Ω, each proof tree of tF has

a proper subtree with root sF for some s ∈ Ω. Suppose that CX{τ.p/X} ∈ Ω and T

is any proof tree of Strip(PCLLR
,MCLLR

) ⊢ CX{τ.p/X}F . Hence CX{p/X} /∈ F . We

distinguish six cases based on the form of CX .

Case 1 CX is closed or CX ≡ X .

In this situation, it is easy to see that CX{τ.p/X} /∈ F . Hence there is no proof tree

of CX{τ.p/X}F . Thus the conclusion holds trivially.

Case 2 CX ≡ α.BX .

Then the last rule applied in T is BX{τ.p/X}F
α.BX{τ.p/X}F . Since CX{p/X} /∈ F , we getBX{p/X} /∈

F . Hence BX{τ.p/X} ∈ Ω; moreover, the node directly above the root of T is labelled

with BX{τ.p/X}F , as desired.

Case 3 CX ≡ BX ∨DX .

Clearly, the last rule applied in T is BX{τ.p/X}F,DX{τ.p/X}F
BX{τ.p/X}∨DX{τ.p/X}F . Since CX{p/X} /∈ F , ei-

ther BX{p/X} /∈ F orDX{p/X} /∈ F . W.l.o.g, assumeBX{p/X} /∈ F . Then BX{τ.p/X} ∈

Ω. Moreover, it is obvious that T has a proper subtree with root BX{τ.p/X}F .

Case 4 CX ≡ BX ⊙DX with ⊙ ∈ {�, ‖A}.

W.l.o.g, assume the last rule applied in T is BX{τ.p/X}F
BX{τ.p/X}⊙DX{τ.p/X}F . It is evident that

BX{p/X} /∈ F due to CX{p/X} /∈ F . Hence BX{τ.p/X} ∈ Ω, as desired.

Case 5 CX ≡ 〈Y |E〉.

Then the last rule applied in T is

either
〈tY |E〉{τ.p/X}F

〈Y |E〉{τ.p/X}F
with Y = tY ∈ E or

{rF : 〈Y |E〉{τ.p/X}
ǫ

=⇒ |r}

〈Y |E〉{τ.p/X}F
.

For the first alternative, since CX{p/X} ≡ 〈Y |E〉{p/X} /∈ F , by Lemma 4.1(8), we

get 〈tY |E〉{p/X} /∈ F . Hence 〈tY |E〉{τ.p/X} ∈ Ω.

For the second alternative, since CX{p/X} /∈ F , we get CX{p/X}
ǫ

=⇒F |q for some

q. Moreover, by Lemma 5.16, it follows from p 6
τ

−→ that there exists a stable context C′
X
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such that

q ≡ C′
X{p/X} and CX{τ.p/X}

ǫ
=⇒ C′

X{τ.p/X}. (6.3.1)

Further, by Lemma 5.17 and τ.p
τ

−→ |p, we get

C′
X{τ.p/X}

ǫ
=⇒ |s for some s. (6.3.2)

For the above transition, by Lemma 5.16 again, there exists C′′
X,Z̃

with X /∈ Z̃ such that

s ≡ C′′
X,Z̃

{τ.p/X, p/Z̃} and C′
X{p/X} ⇛ C′′

X,Z̃
{p/X, p/Z̃}.

Thus, by Lemma 5.14, we have C′′
X,Z̃

{p/X, p/Z̃} /∈ F because of q ≡ C′
X{p/X} /∈ F . Set

C′′′
X , C′′

X,Z̃
{p/Z̃}.

Then it follows from C′′′
X {p/X} ≡ C′′

X,Z̃
{p/X, p/Z̃} /∈ F that s ≡ C′′′

X {τ.p/X} ∈ Ω.

Moreover, T contains a proper subtree with root sF due to (6.3.1) and (6.3.2).

Case 6 CX ≡ BX ∧DX .

Clearly, the last rule applied in T has one of the following formats.

Case 6.1 BX{τ.p/X}F
BX{τ.p/X}∧DX{τ.p/X}F .

Similar to Case 4, omitted.

Case 6.2 BX{τ.p/X}
a

−→r,DX{τ.p/X}6
a

−→,BX{τ.p/X}∧DX{τ.p/X}6
τ

−→
BX{τ.p/X}∧DX{τ.p/X}F .

In this situation, BX{τ.p/X}, CX and BX are stable. Moreover, since p is stable, so

is BX{p/X}. Due to CX{p/X} /∈ F , we obtain BX{p/X} /∈ F . Then, by Lemma 6.2, it

follows from p =RS τ.p and BX{τ.p/X}
a

−→ that

BX{p/X}
a

−→ . (6.3.3)

Similarly, it follows from DX{τ.p/X} 6
a

−→ that

DX{p/X} 6
a

−→ . (6.3.4)

In addition, since BX ∧DX and p are stable, so is BX{p/X}∧DX{p/X}. So, by (6.3.3)

and (6.3.4), we get CX{p/X} ≡ BX{p/X} ∧ DX{p/X} ∈ F by Rule Rp10, which con-

tradicts that CX{τ.p/X} ∈ Ω. Hence this case is impossible.

Case 6.3 CX{τ.p/X}
α

−→s,{rF :CX{τ.p/X}
α

−→r}
CX{τ.p/X}F .

The argument splits into two cases based on α.

Case 6.3.1 α = τ .

We distinguish two cases depending on whether CX is stable.

Case 6.3.1.1 CX is not stable.

Since CX{p/X} /∈ F , we haveCX{p/X}
ǫ

=⇒F |p′ for some p′. Moreover, by Lemma 5.19,
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there exist p′′ and stable C∗
X such that

CX{p/X}
ǫ

=⇒ C∗
X{p/X}

ǫ
=⇒ |p′′ ⇛ p′

and

CX{t/X}
ǫ

=⇒ C∗
X{t/X} for any t.

Further, since CX is not stable and p 6
τ

−→, by Lemma 5.6, there exists C′
X such that

CX{p/X}
τ

−→ C′
X{p/X}

ǫ
=⇒ C∗

X{p/X} and CX{τ.p/X}
τ

−→ C′
X{τ.p/X}.

Since p′ /∈ F and p′′ ⇛ p′, by Lemma 5.14, we get p′′ /∈ F . Together with the transitions

C′
X{p/X}

ǫ
=⇒ C∗

X{p/X}
ǫ

=⇒ |p′′, by Lemma 4.2, this implies C′
X{p/X} /∈ F . Hence

C′
X{τ.p/X} ∈ Ω, and T has a proper subtree with root C′

X{τ.p/X}F .

Case 6.3.1.2 CX is stable.

Due to CX{τ.p/X}
τ

−→ s, either the clause (1) or (2) in Lemma 5.6 holds. Since CX

is stable, by (C-τ -2) in Lemma 5.6, it is easy to see that the clause (1) does not hold,

and hence the clause (2) holds, that is, there exists C′
X,Z with X 6= Z such that

CX{τ.p/X}
τ

−→ C′
X,Z{τ.p/X, p/Z} and CX{p/X}⇛ C′

X,Z{p/X, p/Z}.

Set

C′′
X , C′

X,Z{p/Z}.

Hence T has a proper subtree with root C′′
X{τ.p/X}F . Moreover, by Lemma 5.14, it fol-

lows from CX{p/X} /∈ F that C′
X,Z{p/X, p/Z} /∈ F . Thus C′′

X{τ.p/X} ≡ C′
X,Z{τ.p/X, p/Z} ∈

Ω, as desired.

Case 6.3.2 α ∈ Act.

Then it is not difficult to know that both CX and CX{p/X} are stable. Moreover, since

CX{τ.p/X}
α

−→, τ.p =RS p and CX{p/X} /∈ F , by Lemma 6.2, we get CX{p/X}
α

−→.

Further, by Theorem 4.2, it follows from CX{p/X} /∈ F that CX{p/X}
α

−→F q for some

q. For such α-labelled transition, by Lemma 5.8, there exist C′
X , C′

X,Z̃
and C′′

X,Z̃
with

X /∈ Z̃ that realize (CP-a-1) – (CP-a-4).

In order to complete the proof, we intend to prove that Z̃ = ∅. On the contrary,

suppose Z̃ 6= ∅. Then, by (CP-a-2) and (CP-a-3-i), there exists an active occurrence of

the variable X in C′
X . So, by Lemma 5.4, C′

X{τ.p/X}
τ

−→. Then, by Lemma 5.11, it

follows from CX{τ.p/X} ⇛ C′
X{τ.p/X} (i.e., (CP-a-1)) that CX{τ.p/X}

τ
−→, which

contradicts CX{τ.p/X}
α

−→.

Thus Z̃ = ∅, and hence q ≡ C′′
X,Z̃

{p/X} by (CP-a-3-ii). Since CX{τ.p/X} is stable,

by (CP-a-3-iii), we get CX{τ.p/X}
α

−→ C′′
X,Z̃

{τ.p/X}. Thus, T contains a proper sub-

tree with root C′′
X,Z̃

{τ.p/X}F ; moreover, C′′
X,Z̃

{τ.p/X} ∈ Ω due to C′′
X,Z̃

{p/X} ≡ q /∈ F .

Case 6.4 {rF :BX{τ.p/X}∧DX{τ.p/X}
ǫ

=⇒|r}
BX{τ.p/X}∧DX{τ.p/X}F .

Analogous to the second alternative in Case 5, omitted.
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In order to show the converse of the above result, the preliminary result below is given.

Here, for any finite set S of processes, by virtue of the commutative and associative laws

of external choice (Zhang et al. 2011), we may introduce the notation of a generalized

external choice (denoted by �
p∈S

p) by the standard method.

Lemma 6.4. Let t1, t2 be two terms and {X}∪ Z̃ a tuple of variables such that none of

recursive variable occurring in ti(with i = 1, 2) is in {X} ∪ Z̃. Suppose that Z is active

in t1, t2 for each Z ∈ Z̃ and

T ,





�
Z∈Z̃

α.aZ .0 if Z̃ 6= ∅

aX .0 otherwise

where aX and ãZ are distinct fresh visible actions and α ∈ Act. Then

(1) if t1{T/X, ãZ.0/Z̃} ≡ t2{T/X, ãZ.0/Z̃} then t1{p/X, q̃/Z̃} ≡ t2{p/X, q̃/Z̃} for any

p and q̃;

(2) if t1{T/X, ãZ.0/Z̃} ⇛1 t2{T/X, ãZ.0/Z̃} then t1{p/X, q̃/Z̃} ⇛1 t2{p/X, q̃/Z̃} for

any p and q̃.

Proof. (1) It proceeds by induction on t1. We distinguish three cases as follows.

Case 1 t1 is closed or t1 is of the format X or β.s or s1 ∨ s2 or 〈Y |E〉.

Since Z is active in t1 for each Z ∈ Z̃, we get Z̃ = ∅. Then it follows by Lemma 5.18.

Case 2 t1 ≡ s1 ⊙ s2 with ⊙ ∈ {‖A,∧}.

Then t1{T/X, ãZ.0/Z̃} ≡ s1{T/X, ãZ.0/Z̃} ⊙ s2{T/X, ãZ.0/Z̃} ≡ t2{T/X, ãZ.0/Z̃}.

Since neither ãZ .0 nor T contain ⊙, there exist s′1, s
′
2 such that s1{T/X, ãZ.0/Z̃} ≡

s′1{T/X, ãZ.0/Z̃}, s2{T/X, ãZ.0/Z̃} ≡ s′2{T/X, ãZ.0/Z̃} and t2 ≡ s′1 ⊙ s′2. Hence it im-

mediately follows that t1{p/X, q̃/Z̃} ≡ t2{p/X, q̃/Z̃} for any p and q̃ by IH.

Case 3 t1 ≡ s1�s2.

Then t1{T/X, ãZ.0/Z̃} ≡ s1{T/X, ãZ.0/Z̃}�s2{T/X, ãZ.0/Z̃} ≡ t2{T/X, ãZ.0/Z̃}.

Hence the topmost operator of t2{T/X, ãZ.0/Z̃} is an external choice �. Clearly, such

operator comes from either T or t2. For the former, we get t2 ≡ X . If |Z̃| ≤ 1 then

t2{T/X, ãZ.0/Z̃}(≡ T ) does not contain the operator � at all, a contradiction. Next we

treat the other case |Z̃| > 1. Clearly, aZ .0 is guarded in T for each Z ∈ Z̃. So FV (t1)∩Z̃ =

∅ and the numbers of visible actions of s1{T/X, ãZ.0/Z̃} and s2{T/X, ãZ.0/Z̃} are dif-

ferent from ones of two operands of the topmost external choice of T . Hence this case is

impossible and t2 ≡ s′1�s
′
2 for some s′1 and s′2. The rest of the proof is as in Case 2.

(2) If FV (t1) ∩ Z̃ = ∅, it follows by Lemma 5.18. Next we consider the other case

FV (t1)∩ Z̃ 6= ∅. It proceeds by induction on t1. Since Z is active in t1 for each Z ∈ Z̃, we

get either t1 ≡ Z or t1 ≡ s1 ⊙ s2 for some s1 and s2, where Z ∈ Z̃ and ⊙ ∈ {∧, ‖A,�}.

We give the proof only for the case t1 ≡ s1�s2, the proofs for the remaining cases are

straightforward and omitted.
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It follows from t1 ≡ s1�s2 that

t1{T/X, ãZ.0/Z̃} ≡ s1{T/X, ãZ.0/Z̃}�s2{T/X, ãZ.0/Z̃} ⇛1 t2{T/X, ãZ.0/Z̃}.

So the topmost operator of t2{T/X, ãZ.0/Z̃} is an external choice � which comes from

either T or t2. Similar to Case 3 in the proof for item (1), we can make the conclu-

sion that there exist s′1, s
′
2 such that t2 ≡ s′1�s

′
2. Moreover, it is easily seen that either

s1{T/X, ãZ.0/Z̃} or s2{T/X, ãZ.0/Z̃} triggers the unfolding from t1{T/X, ãZ.0/Z̃} to

t2{T/X, ãZ.0/Z̃}. W.l.o.g, we consider the first alternative. Then s1{T/X, ãZ.0/Z̃} ⇛1

s′1{T/X, ãZ.0/Z̃} and s2{T/X, ãZ.0/Z̃} ≡ s′2{T/X, ãZ.0/Z̃}. Hence, by IH and item

(1), for any p and q̃, we have s1{p/X, q̃/Z̃} ⇛1 s′1{p/X, q̃/Z̃} and s2{p/X, q̃/Z̃} ≡

s′2{p/X, q̃/Z̃}. Therefore, t1{p/X, q̃/Z̃} ≡ s1{p/X, q̃/Z̃}�s2{p/X, q̃/Z̃} ⇛1 t2{p/X, q̃/Z̃}.

The next lemma establishes the converse of Lemma 6.3.

Lemma 6.5. For any CX and stable process p, CX{τ.p/X} /∈ F implies CX{p/X} /∈ F .

Proof. Let p be any stable process. Set

Ω , {BX{p/X} : BX{τ.p/X} /∈ F and BX is a context}.

Assume t ∈ Ω. Then t ≡ CX{p/X} for some CX such that CX{τ.p/X} /∈ F . Let T

be any proof tree of Strip(PCLLR
,MCLLR

) ⊢ CX{p/X}F . Similar to Lemma 6.3, it is

sufficient to prove that T has a proper subtree with root sF for some s ∈ Ω, which is

a routine case analysis based on the last rule applied in T . Here we treat only three

primary cases.

Case 1 {rF :CX{p/X}
ǫ

=⇒|r}
CX{p/X}F with CX ≡ 〈Y |E〉.

Since CX{τ.p/X} /∈ F , we get CX{τ.p/X}
ǫ

=⇒F |q for some q. By Lemma 5.16, for

this transition, there exists a stable context C′
X,Z̃

satisfying (MS-τ -1) – (MS-τ -7). In

particular, since p and q are stable, by (MS-τ -2,7), we have

q ≡ C′
X,Z̃

{τ.p/X, p/Z̃} /∈ F.

Moreover, since each Z(∈ Z̃) is 1-active in C′
X,Z̃

(i.e., (MS-τ -1)) and τ.p
τ

−→ p, by

Lemma 5.4, we get C′
X,Z̃

{τ.p/X, τ.p/Z̃}
ǫ

=⇒ C′
X,Z̃

{τ.p/X, p/Z̃} ≡ q /∈ F , which, by

Lemma 4.2, implies

C′
X,Z̃

{τ.p/X, τ.p/Z̃} /∈ F. (6.5.1)

Let aX be any fresh visible action. By (MS-τ -3-i), it follows from aX .0
ǫ

=⇒ |aX .0 that

there exists s such that

CX{aX .0/X}
ǫ

=⇒ s⇛ C′
X,Z̃

{aX .0/X, aX .0/Z̃}. (6.5.2)

Since aX .0 and C′
X,Z̃

are stable, so is C′
X,Z̃

{aX .0/X, aX .0/Z̃} by Lemma 5.6. Then, by

Lemma 5.11, s is stable. Thus, for the transition in (6.5.2), by Lemma 5.16, there exists
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a stable context C∗
X such that

s ≡ C∗
X{aX .0/X} and CX{r/X}

ǫ
=⇒ C∗

X{r/X} for any r. (6.5.3)

Then, by Lemma 5.18, it follows from s ≡ C∗
X{aX .0/X} ⇛ C′

X,Z̃
{aX .0/X, aX.0/Z̃} that

C∗
X{τ.p/X}⇛ C′

X,Z̃
{τ.p/X, τ.p/Z̃}.

Hence C∗
X{τ.p/X} /∈ F by (6.5.1) and Lemma 5.14, which implies C∗

X{p/X} ∈ Ω.

Moreover, since C∗
X and p are stable, so is C∗

X{p/X} by Lemma 5.6, which implies

CX{p/X}
ǫ

=⇒ |C∗
X{p/X} by (6.5.3). Therefore, T has a proper subtree with root

C∗
X{p/X}F .

Case 2 BX{p/X}
a

−→r,DX{p/X}6
a

−→,CX{p/X}6
τ

−→
CX{p/X}F with CX ≡ BX ∧DX .

Clearly, in this situation, both BX and DX are stable. Since CX{τ.p/X} /∈ F , we have

CX{τ.p/X}
ǫ

=⇒F |q for some q. So, there exist s and t such that q ≡ s ∧ t and

BX{τ.p/X}
ǫ

=⇒F |s and DX{τ.p/X}
ǫ

=⇒F |t.

Then, for these two transitions, by Lemma 5.16, there exist B′
X,Ỹ

and D′
X,Z̃

satisfying

(MS-τ -1) – (MS-τ -7) respectively. In particular, since p, BX and DX are stable, by (MS-

τ -2,4,7), we have

(1) s ≡ B′
X,Ỹ

{τ.p/X, p/Ỹ } and BX{p/X} ⇛ B′
X,Ỹ

{p/X, p/Ỹ };

(2) t ≡ D′
X,Z̃

{τ.p/X, p/Z̃} and DX{p/X} ⇛ D′
X,Z̃

{p/X, p/Z̃}.

Hence, by Lemma 5.11, it follows from BX{p/X}
a

−→ and DX{p/X} 6
a

−→ that

B′
X,Ỹ

{p/X, p/Ỹ }
a

−→ and D′
X,Z̃

{p/X, p/Z̃} 6
a

−→ .

Further, since B′
X,Ỹ

{p/X, p/Ỹ } and B′
X,Ỹ

{τ.p/X, p/Ỹ } are stable, by Lemma 6.2, it

follows from τ.p =RS p and s ≡ B′
X,Ỹ

{τ.p/X, p/Ỹ } /∈ F that B′
X,Ỹ

{τ.p/X, p/Ỹ }
a

−→.

Similarly, we also have D′
X,Z̃

{τ.p/X, p/Z̃} 6
a

−→. Hence q ≡ s ∧ t ∈ F by Rule Rp10, a

contradiction. Thus this case is impossible.

Case 3 CX{p/X}
α

−→r′,{rF :CX{p/X}
α

−→r}
CX{p/X}F with CX ≡ BX ∧DX .

Since CX{τ.p/X} /∈ F , we have

CX{τ.p/X}
ǫ

=⇒F |q for some q. (6.5.4)

Next we distinguish two cases based on α.

Case 3.1 α = τ .

By (6.5.4) and Lemma 5.19, there exist t and stable context C∗
X such that

CX{τ.p/X}
ǫ

=⇒ C∗
X{τ.p/X}

ǫ
=⇒ |t⇛ q /∈ F

and

CX{p/X}
ǫ

=⇒ C∗
X{p/X}.
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Moreover, since p 6
τ

−→ and τ ∈ I(CX{p/X}), by Lemma 5.6, there exists a context C′
X

such that

CX{p/X}
τ

−→ C′
X{p/X}

ǫ
=⇒ C∗

X{p/X}

and

CX{τ.p/X}
τ

−→ C′
X{τ.p/X}

ǫ
=⇒ C∗

X{τ.p/X}
ǫ

=⇒ |t.

Further, by Lemma 5.14, it follows from q /∈ F and t⇛ q that t /∈ F . Then, by Lemma 4.2

and the transition above, we have C′
X{τ.p/X} /∈ F . Hence C′

X{p/X} ∈ Ω and one of

nodes directly above the root of T is labelled with C′
X{p/X}F , as desired.

Case 3.2 α ∈ Act.

In this case, CX is stable by Lemma 5.7. By (6.5.4) and Lemma 5.16, there exists

a stable context C′
X,Ỹ

with X /∈ Ỹ that satisfies (MS-τ -1) – (MS-τ -7). Then q ≡

C′
X,Ỹ

{τ.p/X, p/Ỹ } due to p 6
τ

−→ and (MS-τ -2). Moreover, since CX is stable, by (MS-τ -4),

we have

CX{r/X} ⇛ C′
X,Ỹ

{r/X, r/Ỹ } for any r. (6.5.5)

Then, by CX{p/X}
α

−→ and Lemma 5.11, we get

C′
X,Ỹ

{p/X, p/Ỹ }
α

−→ . (6.5.6)

Further, by Lemma 6.2, we also have C′
X,Ỹ

{τ.p/X, p/Ỹ }
α

−→ because of τ.p =RS p and

q ≡ C′
X,Ỹ

{τ.p/X, p/Ỹ } /∈ F . Thus, by Theorem 4.2, we obtain

C′
X,Ỹ

{τ.p/X, p/Ỹ }
α

−→F t for some t.

For such α-labelled transition, by Lemma 5.8, there exist C′′
X,Ỹ

, C′′
X,Ỹ ,Z̃

and C′′′
X,Ỹ ,Z̃

with

({X} ∪ Ỹ ) ∩ Z̃ = ∅ that realize (CP-a-1) – (CP-a-4). In particular, due to τ.p 6
α

−→ and

(CP-a-3-ii), there exist p′Z(Z ∈ Z̃) such that

p
α

−→ p′Z for each Z ∈ Z̃ and t ≡ C′′′
X,Ỹ ,Z̃

{τ.p/X, p/Ỹ , p̃′Z/Z̃} /∈ F. (6.5.7)

Moreover, by (CP-a-3-iii), for any r, s and s′Z(Z ∈ Z̃) such that s
α

−→ s′Z for each Z ∈ Z̃,

we have

C′
X,Ỹ

{r/X, s/Ỹ }
α

−→ C′′′
X,Ỹ ,Z̃

{r/X, s/Ỹ , s̃′Z/Z̃} whenever C′
X,Ỹ

{r/X, s/Ỹ } is stable.

(6.5.8)

For each Z ∈ Z̃ ∪ {X}, we fix a fresh and distinct visible action aZ and set

T ,





�
Z∈Z̃

α.aZ .0, if Z̃ 6= ∅;

aX .0, otherwise.

Since T and C′
X,Ỹ

are stable, so is C′
X,Ỹ

{T/X, T/Ỹ } by Lemma 5.6. Then, by (6.5.8),

we have

C′
X,Ỹ

{T/X, T/Ỹ }
α

−→ C′′′
X,Ỹ ,Z̃

{T/X, T/Ỹ , ãZ .0/Z̃}.
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So, by Lemma 5.11, it follows from (6.5.5) that there exists t′ such that

CX{T/X}
α

−→ t′ and t′ ⇛ C′′′
X,Ỹ ,Z̃

{T/X, T/Ỹ , ãZ .0/Z̃}. (6.5.9)

Then, by Lemma 5.8, it is not difficult to see that there exists a context BX,Z̃ that

satisfies the conditions:

(a) t′ ≡ BX,Z̃{T/X, ãZ.0/Z̃};

(b) none of aZ with Z ∈ Z̃ occurs in BX,Z̃ ;

(c) for any s and s′Z(Z ∈ Z̃) such that s
α

−→ s′Z for each Z ∈ Z̃,

CX{s/X}
α

−→ BX,Z̃{s/X, s̃
′
Z/Z̃} whenever CX{s/X} is stable.

Now we obtain the diagram

by (6.5.5)

CX{p/X} ⇛ C′
X,Ỹ

{p/X, p/Ỹ }

↓ α by (c) ↓ α by (6.5.6) and (6.5.8)

by (6.5.9), (a) and Lemma 6.4

BX,Z̃{p/X, p̃
′
Z/Z̃} ⇛ C′′′

X,Ỹ ,Z̃
{p/X, p/Ỹ , p̃′Z/Z̃}

By Lemma 6.4, we also have

BX,Z̃{τ.p/X, p̃
′
Z/Z̃} ⇛ C′′′

X,Ỹ ,Z̃
{τ.p/X, τ.p/Ỹ , p̃′Z/Z̃}. (6.5.10)

For each Y ∈ Ỹ , since Y is 1-active in C′
X,Ỹ

, by Lemma 5.2(1)(2) and C′
X,Ỹ

⇛ C′′
X,Ỹ

(i.e.,

(CP-a-1)), so it is in C′′
X,Ỹ

. Moreover, by (CP-a-4-i,ii), for each Y ∈ Ỹ ∩FV (C′′′
X,Ỹ ,Z̃

), Y

is 1-active in C′′′
X,Ỹ ,Z̃

. Then, by Lemma 5.4, we have

C′′′
X,Ỹ ,Z̃

{τ.p/X, τ.p/Ỹ , p̃′Z/Z̃}
ǫ

=⇒ C′′′
X,Ỹ ,Z̃

{τ.p/X, p/Ỹ , p̃′Z/Z̃}

which, together with (6.5.7), implies C′′′
X,Ỹ ,Z̃

{τ.p/X, τ.p/Ỹ , p̃′Z/Z̃} /∈ F by Lemma 4.2.

Hence, by Lemma 5.14, it follows from (6.5.10) that BX,Z̃{τ.p/X, p̃
′
Z/Z̃} /∈ F . Thus,

BX,Z̃{p/X, p̃
′
Z/Z̃} ∈ Ω; moreover, T has a proper subtree with root BX,Z̃{p/X, p̃

′
Z/Z̃}F

due to (c) and (6.5.7).

Hitherto we have completed the first step mentioned at the beginning of this sec-

tion. Now we return to carry out the second step. Before proving Lemma 6.7, a result

concerning proof tree is given first.

Lemma 6.6. Let CX̃,Z̃ be any context such that for each Z ∈ Z̃, Z is active and occurs

at most once. If p̃, q̃, t̃, s̃ and r̃ are any processes such that

(a) p̃ ⊑RS q̃,

(b) p̃ ⊲⊳ q̃,

(c) r̃
ǫ

=⇒ |t̃,

(d) s̃ ⊏
∼RS

t̃, and
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(e) CX̃,Z̃{p̃/X̃, s̃/Z̃} /∈ F ,

then, for any proof tree T for Strip(PCLLR
,MCLLR

) ⊢ CX̃,Z̃{q̃/X̃, r̃/Z̃}F , there exist

C∗
X̃,Z̃,Ỹ

and p′′Y , q
′′
Y (Y ∈ Ỹ ) such that

(1) T has a subtree with root C∗
X̃,Z̃,Ỹ

{q̃/X̃, t̃/Z̃, q̃′′Y /Ỹ }F ,

(2) C∗
X̃,Z̃,Ỹ

{p̃/X̃, s̃/Z̃, p̃′′Y /Ỹ } /∈ F , and

(3) p̃′′Y ⊏
∼RS

q̃′′Y .

Proof. It proceeds by induction on the depth of T . We distinguish different cases de-

pending on the form of CX̃,Z̃ .

Case 1 CX̃,Z̃ is closed or CX̃,Z̃ ≡ Xi or CX̃,Z̃ ≡ Zj for some i ≤ |X̃ | and j ≤ |Z̃|.

It is straightforward to show that this lemma holds trivially for such case. As a exam-

ple, we consider the case CX̃,Z̃ ≡ Zj . Since CX̃,Z̃{p̃/X̃, s̃/Z̃} ≡ sj /∈ F and s̃ ⊏
∼RS

t̃, we

have tj /∈ F . Hence rj
ǫ

=⇒F |tj by Lemma 4.2. So CX̃,Z̃{q̃/X̃, r̃/Z̃} ≡ rj /∈ F . That is,

there is no proof tree of Strip(PCLLR
,MCLLR

) ⊢ CX̃,Z̃{q̃/X̃, r̃/Z̃}F . Thus the conclusion

holds trivially.

Case 2 CX̃,Z̃ is of the format α.BX̃,Z̃ or BX̃,Z̃ ∨DX̃,Z̃ or 〈Y |E〉.

For these three formats, since each Z(∈ Z̃) is active in CX̃,Z̃ , it is obvious that

Z̃ = ∅. Thus CX̃,Z̃{q̃/X̃, r̃/Z̃} ≡ CX̃,Z̃{q̃/X̃, t̃/Z̃}. So, T has the root labelled with

CX̃,Z̃{q̃/X̃, t̃/Z̃}F . Therefore, the conclusion holds by setting C∗
X̃,Z̃,Ỹ

, CX̃,Z̃ with

Ỹ = ∅.

Case 3 CX̃,Z̃ ≡ BX̃,Z̃ ⊙DX̃,Z̃ with ⊙ ∈ {�, ‖A}.

W.l.o.g, assume the last rule applied in T is

BX̃,Z̃{q̃/X̃, r̃/Z̃}F

BX̃,Z̃{q̃/X̃, r̃/Z̃} ⊙DX̃,Z̃{q̃/X̃, r̃/Z̃}F
.

Then T has a proper subtree T ′ with root BX̃,Z̃{q̃/X̃, r̃/Z̃}F . Since CX̃,Z̃{p̃/X̃, s̃/Z̃} /∈

F , we get BX̃,Z̃{p̃/X̃, s̃/Z̃} /∈ F . Then the conclusion immediately follows by applying

IH on T ′.

Case 4 CX̃,Z̃ ≡ BX̃,Z̃ ∧DX̃,Z̃ .

The argument splits into four cases based on the last rule applied in T .

Case 4.1
B

X̃,Z̃
{q̃/X̃,r̃/Z̃}F

B
X̃,Z̃

{q̃/X̃,r̃/Z̃}∧D
X̃,Z̃

{q̃/X̃,r̃/Z̃}F
.

Similar to Case 3, omitted.

Case 4.2
B

X̃,Z̃
{q̃/X̃,r̃/Z̃}

a
−→r′, D

X̃,Z̃
{q̃/X̃,r̃/Z̃}6

a
−→, C

X̃,Z̃
{q̃/X̃,r̃/Z̃}6

τ
−→

B
X̃,Z̃

{q̃/X̃,r̃/Z̃}∧D
X̃,Z̃

{q̃/X̃,r̃/Z̃}F
.



On Recursive Operations Over LLTS 45

For any Z(∈ Z̃) occurring in CX̃,Z̃ , since Z is active and CX̃,Z̃{q̃/X̃, r̃/Z̃} 6
τ

−→, by

Lemma 5.4, we have rZ 6
τ

−→, and hence rZ ≡ tZ because of (c). So, CX̃,Z̃{q̃/X̃, r̃/Z̃} ≡

CX̃,Z̃{q̃/X̃, t̃/Z̃}. Hence T has the root labelled with CX̃,Z̃{q̃/X̃, t̃/Z̃}F . Clearly, the

conclusion holds by setting C∗
X̃,Z̃,Ỹ

, CX̃,Z̃ with Ỹ = ∅.

Case 4.3
C

X̃,Z̃
{q̃/X̃,r̃/Z̃}

α
−→s′, {rF :C

X̃,Z̃
{q̃/X̃,r̃/Z̃}

α
−→r}

C
X̃,Z̃

{q̃/X̃,r̃/Z̃}F
.

If α ∈ Act, the argument is similar to one of Case 4.2 and omitted. In the following, we

handle the case α = τ . If rZ 6
τ

−→ for any Z(∈ Z̃) occurring in CX̃,Z̃ , then the conclusion

holds trivially by putting C∗
X̃,Z̃,Ỹ

, CX̃,Z̃ with Ỹ = ∅. Next we consider the other case

where rZ0

τ
−→ for some Z0(∈ Z̃) occurring in CX̃,Z̃ . Then rZ0

τ
−→ r′

ǫ
=⇒ |tZ0

for some

r′ by (c); moreover, Z0 is 1-active in CX̃,Z̃ . Thus, by Lemma 5.4, we get

CX̃,Z̃{q̃/X̃, r̃/Z̃}
τ

−→ CX̃,Z̃{q̃/X̃, r̃ [r
′/rZ0

]/Z̃}.

So, T has a proper subtree T ′ with root CX̃,Z̃{q̃/X̃, r̃ [r
′/rZ0

]/Z̃}F . Since r̃ [r′/rZ0
]

ǫ
=⇒ |t̃

and CX̃,Z̃{p̃/X̃, s̃/Z̃} /∈ F , by IH, T ′ has a subtree with root C∗
X̃,Z̃,Ỹ

{q̃/X̃, t̃/Z̃, q̃′′Y /Ỹ }F

for some C∗
X̃,Z̃,Ỹ

, p̃′′Y and q̃′′Y such that C∗
X̃,Z̃,Ỹ

{p̃/X̃, s̃/Z̃, p̃′′Y /Ỹ } /∈ F and p̃′′Y ⊏
∼RS

q̃′′Y .

Case 4.4
{rF :C

X̃,Z̃
{q̃/X̃,r̃/Z̃}

ǫ
=⇒|r}

C
X̃,Z̃

{q̃/X̃,r̃/Z̃}F
.

It follows from CX̃,Z̃{p̃/X̃, s̃/Z̃} /∈ F that

CX̃,Z̃{p̃/X̃, s̃/Z̃}
ǫ

=⇒F |p′ for some p′.

Then, by Lemma 5.16, for such transition, there exist a stable context C′
X̃,Z̃,Ỹ

and

iY , p
′′′
Y (Y ∈ Ỹ ) that realize (MS-τ -1) – (MS-τ -7). In particular, since each s(∈ s̃) is

stable, by (MS-τ -2,7), we have iY ≤ |X̃| for each Y ∈ Ỹ and

piY
τ

=⇒ |p′′′Y for each Y ∈ Ỹ and p′ ≡ C′
X̃,Z̃,Ỹ

{p̃/X̃, s̃/Z̃, p̃′′′Y /Ỹ } /∈ F.

Then, by Lemma 5.5, it follows from (MS-τ -1) that, for each Y ∈ Ỹ , p′′′Y /∈ F and hence

piY
τ

=⇒F |p′′′Y by Lemma 4.2. Further, since p̃ ⊲⊳ q̃ and p̃ ⊑RS q̃, there exist q′′′Y (Y ∈ Ỹ )

such that

qiY
τ

=⇒F |q′′′Y and p′′′Y ⊏
∼RS

q′′′Y for each Y ∈ Ỹ .

Then it follows from (MS-τ -3-ii) that

CX̃,Z̃{q̃/X̃, t̃/Z̃}
ǫ

=⇒ C′
X̃,Z̃,Ỹ

{q̃/X̃, t̃/Z̃, q̃′′′Y /Ỹ }. (6.6.1)

Moreover, since Z is active and occurs at most once in CX̃,Z̃ for each Z ∈ Z̃, by

Lemma 5.4, it follows from r̃
ǫ

=⇒ t̃ that

CX̃,Z̃{q̃/X̃, r̃/Z̃}
ǫ

=⇒ CX̃,Z̃{q̃/X̃, t̃/Z̃}. (6.6.2)

Since p̃ ⊲⊳ q̃, s̃ ⊏
∼RS

t̃ and p̃′′′Y ⊏
∼RS

q̃′′′Y , by p′ ≡ C′
X̃,Z̃,Ỹ

{p̃/X̃, s̃/Z̃, p̃′′′Y /Ỹ } 6
τ

−→ and
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Lemma 5.6, we can conclude that C′
X̃,Z̃,Ỹ

{q̃/X̃, t̃/Z̃, q̃′′′Y /Ỹ } is stable. Hence T has a

proper subtree with root C′
X̃,Z̃,Ỹ

{q̃/X̃, t̃/Z̃, q̃′′′Y /Ỹ }F by (6.6.1) and (6.6.2); moreover, we

also have p′ ≡ C′
X̃,Z̃,Ỹ

{p̃/X̃, s̃/Z̃, p̃′′′Y /Ỹ } /∈ F and p̃′′′Y ⊏
∼RS

q̃′′′Y . Consequently, C′
X̃,Z̃,Ỹ

,

p̃′′′Y and q̃′′′Y are what we seek.

Lemma 6.7. For any CX̃ and processes r̃ and s̃, if r̃ ⊲⊳ s̃ and r̃ ⊑RS s̃, then CX̃{r̃/X̃} /∈

F implies CX̃{s̃/X̃} /∈ F .

Proof. Set

Ω = {BX̃{q̃/X̃} : p̃ ⊲⊳ q̃, p̃ ⊑RS q̃, BX̃{p̃/X̃} /∈ F and BX is a context}.

Let CX̃{q̃/X̃} ∈ Ω and T be any proof tree of Strip(PCLLR
,MCLLR

) ⊢ CX̃{q̃/X̃}F .

Similar to Lemma 6.3, it suffices to show that T has a proper subtree with root sF for

some s ∈ Ω. We distinguish six cases based on the form of CX̃ .

Case 1 CX̃ is closed or CX̃ ≡ Xi.

In this situation, CX̃{q̃/X̃} /∈ F because of CX̃{p̃/X̃} /∈ F and p̃ ⊑RS q̃. Thus there

is no proof tree of CX̃{q̃/X̃}F . Hence the conclusion holds trivially.

Case 2 CX̃ ≡ α.BX̃ .

Then the last rule applied in T is
B

X̃
{q̃/X̃}F

α.B
X̃
{q̃/X̃}F

. Moreover BX̃{p̃/X̃} /∈ F due to

CX̃{p̃/X̃} /∈ F . Hence BX̃{q̃/X̃} ∈ Ω, as desired.

Case 3 CX̃ ≡ BX̃ ∨DX̃ .

Obviously, the last rule applied in T is
B

X̃
{q̃/X̃}F,D

X̃
{q̃/X̃}F

B
X̃
{q̃/X̃}∨D

X̃
{q̃/X̃}F

. Due to CX̃{p̃/X̃} /∈ F ,

we have either BX̃{p̃/X̃} /∈ F or DX̃{p̃/X̃} /∈ F , which implies BX̃{q̃/X̃} ∈ Ω or

DX̃{q̃/X̃} ∈ Ω. Thus T contains a proper subtree with root sF for some s ∈ Ω.

Case 4 CX̃ ≡ BX̃ ⊙DX̃ with ⊙ ∈ {�, ‖A}.

W.l.o.g, assume the last rule applied in T is
B

X̃
{q̃/X̃}F

B
X̃
{q̃/X̃}⊙D

X̃
{q̃/X̃}F

. Since CX̃{p̃/X̃} /∈ F ,

we get BX̃{p̃/X̃} /∈ F , which implies BX̃{q̃/X̃} ∈ Ω, as desired.

Case 5 CX̃ ≡ 〈Y |E〉.

Clearly, the last rule applied in T is

either
〈tY |E〉{q̃/X̃}F

〈Y |E〉{q̃/X̃}F
with Y = tY ∈ E or

{rF : 〈Y |E〉{q̃/X̃}
ǫ

=⇒ |r}

〈Y |E〉{q̃/X̃}F
.

For the first alternative, we have 〈tY |E〉{p̃/X̃} /∈ F because of CX̃{p̃/X̃} /∈ F , and

hence 〈tY |E〉{q̃/X̃} ∈ Ω.
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For the second alternative, due to CX̃{p̃/X̃} /∈ F , we get

CX̃{p̃/X̃}
ǫ

=⇒F |s for some s.

For such transition, by Lemma 5.16, there exist C′
X̃,Z̃

and iZ ≤ |X̃|, p′Z(Z ∈ Z̃) that

realize (MS-τ -1) – (MS-τ -7). Amongst them, by (MS-τ -2,7), we have

piZ
τ

=⇒ |p′Z for each Z ∈ Z̃ and s ≡ C′
X̃,Z̃

{p̃/X̃, p̃′Z/Z̃} /∈ F. (6.7.1)

Thus, for each Z ∈ Z̃, by (MS-τ -1) and Lemma 5.5, it follows that p′Z /∈ F , and hence

piZ
τ

=⇒F |p′Z by Lemma 4.2. Further, since p̃ ⊲⊳ q̃, it follows from p̃ ⊑RS q̃ that for each

Z ∈ Z̃,

qiZ
τ

=⇒F |q′Z and p′Z ⊏
∼RS

q′Z for some q′Z . (6.7.2)

Then CX̃{q̃/X̃}
ǫ

=⇒ C′
X̃,Z̃

{q̃/X̃, q̃′Z/Z̃} by (MS-τ -3-ii). In addition, since p̃ ⊲⊳ q̃ and

p̃′Z ⊏
∼RS

q̃′Z , by Lemma 5.6, it follows from s ≡ C′
X̃,Z̃

{p̃/X̃, p̃′Z/Z̃} 6
τ

−→ that C′
X̃,Z̃

{q̃/X̃, q̃′Z/Z̃}

is stable. Therefore

CX̃{q̃/X̃}
ǫ

=⇒ |C′
X̃,Z̃

{q̃/X̃, q̃′Z/Z̃}.

Hence T has a proper subtree with rootC′
X̃,Z̃

{q̃/X̃, q̃′Z/Z̃}F ; moreoverC′
X̃,Z̃

{q̃/X̃, q̃′Z/Z̃} ∈

Ω due to (6.7.1) and (6.7.2).

Case 6 CX̃ ≡ BX̃ ∧DX̃ .

The argument splits into five subcases depending on the last rule applied in T .

Case 6.1
B

X̃
{q̃/X̃}F

B
X̃
{q̃/X̃}∧D

X̃
{q̃/X̃}F

.

Similar to Case 4, omitted.

Case 6.2
B

X̃
{q̃/X̃}

a
−→r,D

X̃
{q̃/X̃}6

a
−→,C

X̃
{q̃/X̃}6

τ
−→

B
X̃
{q̃/X̃}∧D

X̃
{q̃/X̃}F

.

Clearly, BX̃{p̃/X̃} /∈ F and DX̃{p̃/X̃} /∈ F due to CX̃{p̃/X̃} /∈ F . Moreover, by

p̃ ⊲⊳ q̃ and Lemma 5.6, we have CX̃{p̃/X̃} 6
τ

−→ because of CX̃{q̃/X̃} 6
τ

−→. Further,

by Lemma 6.2, we also have BX̃{p̃/X̃}
a

−→ and DX̃{p̃/X̃} 6
a

−→. So, CX̃{p̃/X̃} ≡

BX̃{p̃/X̃} ∧ DX̃{p̃/X̃} ∈ F by Rule Rp10, which contradicts CX̃{q̃/X̃} ∈ Ω. Hence

such case is impossible.

Case 6.3
C

X̃
{q̃/X̃}

τ
−→r′,{rF :C

X̃
{q̃/X̃}

τ
−→r}

C
X̃
{q̃/X̃}F

.

It follows from CX̃{p̃/X̃} /∈ F that

CX̃{p̃/X̃}
ǫ

=⇒F |s for some s. (6.7.3)

Since p̃ ⊲⊳ q̃ and CX̃{q̃/X̃}
τ

−→, by Lemma 5.6, we get CX̃{p̃/X̃}
τ

−→. Then, by (6.7.3),

we have

CX̃{p̃/X̃}
τ

−→F t
ǫ

=⇒F |s for some t.

For the τ -labelled transition leading to t, either the clause (1) or (2) in Lemma 5.6 holds.



Yan Zhang, Zhaohui Zhu and Jinjin Zhang 48

For the former, there exists C′
X̃

such that t ≡ C′
X̃
{p̃/X̃} and CX̃{q̃/X̃}

τ
−→ C′

X̃
{q̃/X̃}.

Hence C′
X̃
{q̃/X̃}F is one of premises of the last inferring step in T . Moreover, it is evident

that C′
X̃
{q̃/X̃} ∈ Ω.

For the latter, there exist C′
X̃
, C′′

X̃,Z
with Z /∈ X̃ and i0 ≤ |X̃| that realize (P-τ -1) –

(P-τ -4). In particular, by (P-τ -2), we have

t ≡ C′′
X̃,Z

{p̃/X̃, p′/Z} for some p′ with pi0
τ

−→ p′.

Further, since t
ǫ

=⇒F |s and Z is 1-active in C′′
X̃,Z

, by Lemma 5.20 and 4.2, there exists

p′′ such that p′
ǫ

=⇒ |p′′ and

t ≡ C′′
X̃,Z

{p̃/X̃, p′/Z}
ǫ

=⇒F C′′
X̃,Z

{p̃/X̃, p′′/Z}
ǫ

=⇒F |s.

Moreover, p′′ /∈ F by Lemma 5.5. Hence pi0
τ

−→F p′
ǫ

=⇒F |p′′ by Lemma 4.2. Since

p̃ ⊲⊳ q̃, it follows from p̃ ⊑RS q̃ that

qi0
τ

−→F q′
ǫ

=⇒F |q′′ and p′′ ⊏
∼RS

q′′ for some q′ and q′′. (6.7.4)

Then CX̃{q̃/X̃}
τ

−→ C′′
X̃,Z

{q̃/X̃, q′/Z} by (P-τ -4). Therefore, T contains a proper subtree

T ′ with root C′′
X̃,Z

{q̃/X̃, q′/Z}F . In order to complete the proof, it is sufficient to show

that T ′ contains a node labelled with s′F for some s′ ∈ Ω. Since Z is 1-active, p̃ ⊑RS q̃,

p̃ ⊲⊳ q̃, q′
ǫ

=⇒ |q′′, p′′ ⊏
∼RS

q′′ and C′′
X̃,Z

{p̃/X̃, p′′/Z} /∈ F , by Lemma 6.6, there exist

C∗
X̃,Z,Ỹ

and q′′′Y , p
′′′
Y (Y ∈ Ỹ ) such that

(a.1) T ′ has a subtree with root C∗
X̃,Z,Ỹ

{q̃/X̃, q′′/Z, q̃′′′Y /Ỹ }F ,

(a.2) C∗
X̃,Z,Ỹ

{p̃/X̃, p′′/Z, p̃′′′Y /Ỹ } /∈ F , and

(a.3) p̃′′′Y ⊏
∼RS

q̃′′′Y .

Clearly, C∗
X̃,Z,Ỹ

{q̃/X̃, q′′/Z, q̃′′′Y /Ỹ } ∈ Ω due to (a.2), (a.3) and (6.7.4), as desired.

Case 6.4
C

X̃
{q̃/X̃}

a
−→r′,{rF :C

X̃
{q̃/X̃}

a
−→r}

C
X̃
{q̃/X̃}F

(a ∈ Act).

Since p̃ ⊲⊳ q̃, by Lemma 5.6, it follows from CX̃{q̃/X̃}
a

−→ that CX̃{p̃/X̃} is stable.

Further, since p̃ ⊑RS q̃ and CX̃{p̃/X̃} /∈ F , we get CX̃{p̃/X̃}
a

−→ by Lemma 6.2. So, by

Theorem 4.2 and CX̃{p̃/X̃} /∈ F , we have

CX̃{p̃/X̃}
a

−→F t
ǫ

=⇒F |s for some t and s. (6.7.5)

On the one hand, for the a-labelled transition in (6.7.5), by Lemma 5.8, there exist

C′
X̃
, C′

X̃,Ỹ
and C′′

X̃,Ỹ
that satisfy (CP-a-1) – (CP-a-4). In particular, by (CP-a-3-ii), there

exist iY ≤ |X̃|, p′Y (Y ∈ Ỹ ) such that

piY
a

−→ p′Y for each Y ∈ Ỹ and t ≡ C′′
X̃,Ỹ

{p̃/X̃, p̃′Y /Ỹ }.

Moreover, by (CP-a-1) and (CP-a-3-i), we have

CX̃{p̃/X̃} ⇛ C′
X̃
{p̃/X̃} ≡ C′

X̃,Ỹ
{p̃/X̃, p̃iY /Ỹ }.
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Hence C′
X̃,Ỹ

{p̃/X̃, p̃iY /Ỹ } /∈ F by CX̃{p̃/X̃} /∈ F and Lemma 5.14. Further, for each

Y ∈ Ỹ , since Y is 1-active in C′
X̃,Ỹ

(i.e., (CP-a-2)), by Lemma 5.5, piY /∈ F .

On the other hand, for the transition t ≡ C′′
X̃,Ỹ

{p̃/X̃, p̃′Y /Ỹ }
ǫ

=⇒F |s in (6.7.5), by

Lemma 5.20, it follows from each Y (∈ Ỹ ) that is 1-active in C′′
X̃,Ỹ

(i.e., (CP-a-2)) that

there exist p′′Y (Y ∈ Ỹ ) such that p′Y
ǫ

=⇒ |p′′Y for each Y ∈ Ỹ and

t ≡ C′′
X̃,Ỹ

{p̃/X̃, p̃′Y /Ỹ }
ǫ

=⇒ C′′
X̃,Ỹ

{p̃/X̃, p̃′′Y /Ỹ }
ǫ

=⇒ |s.

Since s /∈ F , we obtain C′′
X̃,Ỹ

{p̃/X̃, p̃′′Y /Ỹ } /∈ F by Lemma 4.2, which implies that p′′Y /∈ F

for each Y ∈ Ỹ due to Lemma 5.5. Thus

piY
a

−→F p′Y
ǫ

=⇒F |p′′Y for each Y ∈ Ỹ .

Since p̃ ⊲⊳ q̃, it follows from p̃ ⊑RS q̃ that, for each Y ∈ Ỹ , there exist q′Y and q′′Y such

that

qiY
a

−→F q′Y
ǫ

=⇒F |q′′Y and p′′Y ⊏
∼RS

q′′Y . (6.7.6)

Then CX̃{q̃/X̃}
a

−→ C′′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ } by (CP-a-3-iii). Hence T has a proper subtree

T ′ with root C′′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ }F . In order to complete the proof, it suffices to show

that T ′ contains a node labelled with s′F for some s′ ∈ Ω. Since each Y (∈ Ỹ ) is 1-active

in C′′
X̃,Ỹ

, p̃ ⊑RS q̃, p̃ ⊲⊳ q̃, q̃′Y
ǫ

=⇒ |q̃′′Y , p̃
′′
Y ⊏

∼RS
q̃′′Y and C′′

X̃,Ỹ
{p̃/X̃, p̃′′Y /Ỹ } /∈ F , by

Lemma 6.6, there exist C∗
X̃,Ỹ ,Z̃

and q′′′Z , p
′′′
Z (Z ∈ Z̃) such that

(b.1) T ′ has a subtree with root C∗
X̃,Ỹ ,Z̃

{q̃/X̃, q̃′′Y /Ỹ , q̃
′′′
Z /Z̃}F ,

(b.2) C∗
X̃,Ỹ ,Z̃

{p̃/X̃, p̃′′Y /Ỹ , p̃
′′′
Z /Z̃} /∈ F , and

(b.3) p̃′′′Z ⊏
∼RS

q̃′′′Z .

Obviously, C∗
X̃,Ỹ ,Z̃

{q̃/X̃, q̃′′Y /Ỹ , q̃
′′′
Z /Z̃} ∈ Ω due to (b.2), (b.3) and (6.7.6), as desired.

Case 6.5
{rF :B

X̃
{q̃/X̃}∧D

X̃
{q̃/X̃}

ǫ
=⇒|r}

B
X̃
{q̃/X̃}∧D

X̃
{q̃/X̃}F

.

Similar to the second alternative in Case 5, omitted.

In the remainder of this section, we shall prove that ⊑RS is indeed precongruent.

Let us first recall a distinct but equivalent formulation of ⊑RS due to Van Glabbeek

(Lüttgen and Vogler 2010).

Definition 6.2. A relationR ⊆ T (ΣCLLR
)×T (ΣCLLR

) is an alternative ready simulation

relation, if for any (p, q) ∈ R and a ∈ Act

(RSi) p
ǫ

=⇒F |p′ implies ∃q′.q
ǫ

=⇒F |q′ and (p′, q′) ∈ R;

(RSiii) p
a

=⇒F |p′ and p, q stable implies ∃q′.q
a

=⇒F |q′ and (p′, q′) ∈ R;

(RSiv) p /∈ F and p, q stable implies I(p) = I(q).

We write p ⊑ALT q if there exists an alternative ready simulation relation R with

(p, q) ∈ R.
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The next proposition reveals that this definition agrees with the one given in Def. 2.3.

Proposition 6.1. ⊑RS=⊑ALT .

Proof. See Prop. 13 in (Lüttgen and Vogler 2010).

One advantage of Def. 6.2 is that, given p and q, we can prove p ⊑RS q by means of

giving an alternative ready simulation relation relating them. It is well known that up-to

technique is a tractable way for such coinduction proof. Here we introduce the notion of

an alternative ready relation up to ⊏
∼RS

as follows.

Definition 6.3 (ALT up to ⊏
∼RS

). A relation R ⊆ T (ΣCLLR
)× T (ΣCLLR

) is an alter-

native ready simulation relation up to ⊏
∼RS

, if for any (p, q) ∈ R and a ∈ Act

(ALT-upto-1) p
ǫ

=⇒F |p′ implies ∃q′.q
ǫ

=⇒F |q′ and p′ ⊏
∼RS

R ⊏
∼RS

q′;

(ALT-upto-2) p
a

=⇒F |p′ and p, q stable implies ∃q′.q
a

=⇒F |q′ and p′ ⊏
∼RS

R ⊏
∼RS

q′;

(ALT-upto-3) p /∈ F and p, q stable implies I(p) = I(q).

As usual, given a relation R satisfying the conditions (ALT-upto-1,2,3), in general, R

in itself is not an alternative ready simulation relation. But simple result below ensures

that up-to technique based on the above notion is sound.

Lemma 6.8. If a relation R is an alternative ready simulation relation up to ⊏
∼RS

then

R ⊆⊑RS.

Proof. By Prop. 6.1, it is sufficient to prove that the relation ⊑RS ◦R◦ ⊑RS is an

alternative ready simulation. We leave it to the reader.

Now we are ready to prove the main result of this section: ⊑RS is precongruent w.r.t

all operations in CLLR. We shall divide the proof into the next two lemmas.

Lemma 6.9. CX{p/X} =RS CX{τ.p/X} for any context CX and stable process p.

Proof. Let p be any stable process. First, we shall show that CX{p/X} ⊑RS CX{τ.p/X}.

Set

R , {(BX{p/X}, BX{τ.p/X}) : BX is a context}.

By Prop. 6.1 and Lemma 6.8, it is sufficient to prove that R is an alternative ready

simulation relation up to ⊏
∼RS

. Let (CX{p/X}, CX{τ.p/X}) ∈ R.

(ALT-upto-1) Assume that CX{p/X}
ǫ

=⇒F |p′. For this transition, since p is stable,

by Lemma 5.16, there exists a stable context C′
X such that

p′ ≡ C′
X{p/X} and CX{τ.p/X}

ǫ
=⇒ C′

X{τ.p/X}. (6.9.1)

Moreover, by Lemma 5.17, it follows from τ.p
τ

−→ |p that

C′
X{τ.p/X}

ǫ
=⇒ |r for some r. (6.9.2)

For this transition, by Lemma 5.16, there exists a context C′′
X,Ỹ

with X /∈ Ỹ such that
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r ≡ C′′
X,Ỹ

{τ.p/X, p/Ỹ } and

p′ ≡ C′
X{p/X}⇛ C′′

X,Ỹ
{p/X, p/Ỹ }. (6.9.3)

Since p′ /∈ F , by Lemma 5.14, we get C′′
X,Ỹ

{p/X, p/Ỹ } /∈ F . Further, by Lemma 6.3,

r ≡ C′′
X,Ỹ

{τ.p/X, p/Ỹ } /∈ F . So, by (6.9.1), (6.9.2) and Lemma 4.2, we obtain

CX{τ.p/X}
ǫ

=⇒F |C′′
X,Ỹ

{τ.p/X, p/Ỹ }.

Moreover, by Lemma 5.15, it follows from (6.9.3) that

p′ ⊏
∼RS

C′′
X,Ỹ

{p/X, p/Ỹ }RC′′
X,Ỹ

{τ.p/X, p/Ỹ }.

(ALT-upto-2) Assume that CX{p/X} and CX{τ.p/X} are stable and CX{p/X}
a

=⇒F

|p′. Hence CX{p/X}
a

−→F r
ǫ

=⇒F |p′ for some r. Moreover, by Lemma 6.3 and CX{p/X} /∈

F , we have

CX{τ.p/X} /∈ F. (6.9.4)

Next we intend to prove that p does not involve in the transition CX{p/X}
a

−→F r. For

this transition, by Lemma 5.8, there exist C′
X , C′

X,Ỹ
and C′′

X,Ỹ
that realize (CP-a-1) –

(CP-a-4). By (CP-a-1) and (CP-a-3-i), we have

CX{τ.p/X} ⇛ C′
X{τ.p/X} ≡ C′

X,Ỹ
{τ.p/X, τ.p/Ỹ }.

If Ỹ 6= ∅ then, by (CP-a-2) and Lemma 5.4, we have C′
X,Ỹ

{τ.p/X, τ.p/Ỹ }
τ

−→, and

hence CX{τ.p/X}
τ

−→ by Lemma 5.11, which contradicts that CX{τ.p/X} is stable.

Thus Ỹ = ∅, as desired. So, r ≡ C′′
X,Ỹ

{p/X} by (CP-a-3-ii) and

CX{τ.p/X}
a

−→ C′′
X,Ỹ

{τ.p/X} by (CP-a-3-iii) and CX{τ.p/X} 6
τ

−→ . (6.9.5)

Moreover, by (ALT-upto-1), it follows from (C′′
X,Ỹ

{p/X}, C′′
X,Ỹ

{τ.p/X}) ∈ R and r ≡

C′′
X,Ỹ

{p/X}
ǫ

=⇒F |p′ that C′′
X,Ỹ

{τ.p/X}
ǫ

=⇒F |q′ and p′ ⊏
∼RS

R ⊏
∼RS

q′ for some q′.

Moreover, we also have CX{τ.p/X}
a

=⇒F |q′ due to (6.9.4) and (6.9.5), as desired.

(ALT-upto-3) Immediately follows from Lemma 6.2.

Next we intend to prove CX{τ.p/X} ⊑RS CX{p/X}. Set

R , {(BX{τ.p/X}, BX{p/X}) : BX is a context}.

Similarly, it is sufficient to prove that R is an alternative ready simulation relation

up to ⊏
∼RS

. Let (CX{τ.p/X}, CX{p/X}) ∈ R. (ALT-upto-3) immediately follows from

Lemma 6.2. In the following, we prove the other two conditions.

(ALT-upto-1) Assume that CX{τ.p/X}
ǫ

=⇒F |p′. For this transition, by Lemma 5.19,

there exist r and stable context C∗
X such that CX{p/X}

ǫ
=⇒ C∗

X{p/X} and

CX{τ.p/X}
ǫ

=⇒ C∗
X{τ.p/X}

ǫ
=⇒ |r ⇛ p′. (6.9.6)
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Moreover, since p is stable, so is C∗
X{p/X} by Lemma 5.6. Due to r ⇛ p′ and p′ /∈ F ,

by Lemma 5.14, we get r /∈ F . Hence C∗
X{τ.p/X} /∈ F by (6.9.6) and Lemma 4.2. Then

C∗
X{p/X} /∈ F by Lemma 6.5. Thus

CX{p/X}
ǫ

=⇒F |C∗
X{p/X}.

To complete the proof, it remains to prove that p′ ⊏
∼RS

R ⊏
∼RS

C∗
X{p/X}. For the

transition C∗
X{τ.p/X}

ǫ
=⇒ |r in (6.9.6), by Lemma 5.16, there exists a stable context

C′∗
X,Ỹ

such that r ≡ C′∗
X,Ỹ

{τ.p/X, p/Ỹ } ⇛ p′ and C∗
X{p/X} ⇛ C′∗

X,Ỹ
{p/X, p/Ỹ }, which,

by Lemma 5.15, implies

p′ ⊏
∼RS

C′∗
X,Ỹ

{τ.p/X, p/Ỹ }RC′∗
X,Ỹ

{p/X, p/Ỹ } ⊏
∼RS

C∗
X{p/X}.

(ALT-upto-2) Assume that CX{τ.p/X} and CX{p/X} are stable and CX{τ.p/X}
a

=⇒F

|p′. Hence CX{τ.p/X}
a

−→F r
ǫ

=⇒F |p′ for some r. Moreover, by Lemma 6.5 and

CX{τ.p/X} /∈ F , we have

CX{p/X} /∈ F.

For the a-labelled transition CX{τ.p/X}
a

−→F r, by Lemma 5.8, it is not difficult to see

that there exists C′
X such that

CX{τ.p/X}
a

−→ C′
X{τ.p/X} ≡ r and CX{p/X}

a
−→ C′

X{p/X}.

Moreover, by (ALT-upto-1), it follows from (C′
X{τ.p/X}, C′

X{p/X}) ∈ R and r ≡

C′
X{τ.p/X}

ǫ
=⇒F |p′ that C′

X{p/X}
ǫ

=⇒F |q′ and p′ ⊏
∼RS

R ⊏
∼RS

q′ for some q′. Clearly,

we have CX{p/X}
a

=⇒F |q′, as desired.

Lemma 6.10. If p̃ ⊲⊳ q̃ and p̃ ⊑RS q̃ then CX̃{p̃/X̃} ⊑RS CX̃{q̃/X̃} for any CX̃ .

Proof. Set

R , {(BX̃{p̃/X̃}, BX̃{q̃/X̃}) : p̃ ⊲⊳ q̃, p̃ ⊑RS q̃ and BX̃ is a context}.

Similarly, it suffices to prove that R is an alternative ready simulation relation up to

⊏
∼RS

. Suppose (CX̃{p̃/X̃}, CX̃{q̃/X̃}) ∈ R. Then, by Lemma 6.2, it is obvious that such

pair satisfies the condition (ALT-upto-3). In the following, we consider two remaining

conditions in turn.

(ALT-upto-1) Assume that CX̃{p̃/X̃}
ǫ

=⇒F |s. For this transition, by Lemma 5.16,

there exist C′
X̃,Ỹ

and iY ≤ |X̃ |, p′Y (Y ∈ Ỹ ) that satisfy (MS-τ -1) – (MS-τ -7). In partic-

ular, by (MS-τ -2,7), we have

piY
τ

=⇒ |p′Y for each Y ∈ Ỹ and s ≡ C′
X̃,Ỹ

{p̃/X̃, p̃′Y /Ỹ } /∈ F.

Then, by (MS-τ -1) and Lemma 5.5, p′Y /∈ F and hence piY
τ

=⇒F |p′Y by Lemma 4.2 for

each Y ∈ Ỹ . Since p̃ ⊲⊳ q̃, it follows from p̃ ⊑RS q̃ that there exist q′Y (Y ∈ Ỹ ) such that

qiY
τ

=⇒F |q′Y and p′Y ⊏
∼RS

q′Y for each Y ∈ Ỹ . (6.10.1)
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So, by (MS-τ -3-ii), we get

CX̃{q̃/X̃}
ǫ

=⇒ C′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ }.

Moreover, by Lemma 5.6, it follows from s ≡ C′
X̃,Ỹ

{p̃/X̃, p̃′Y /Ỹ } 6
τ

−→, p̃ ⊲⊳ q̃ and p̃′Y ⊏
∼RS

q̃′Y that

C′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ } 6
τ

−→ .

In addition, by Lemma 6.7 and C′
X̃,Ỹ

{p̃/X̃, p̃′Y /Ỹ } /∈ F , we get C′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ } /∈ F .

Hence, by Lemma 4.2, we obtain

CX̃{q̃/X̃}
ǫ

=⇒F |C′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ }.

Clearly, (C′
X̃,Ỹ

{p̃/X̃, p̃′Y /Ỹ }, C′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ }) ∈⊏
∼RS

R ⊏
∼RS

due to (6.10.1) and the

reflexivity of ⊏
∼RS

.

(ALT-upto-2) Let CX̃{p̃/X̃} and CX̃{q̃/X̃} be stable and CX̃{p̃/X̃}
a

=⇒F |s. Then

CX̃{p̃/X̃}
a

−→F r
ǫ

=⇒F |s for some r. (6.10.2)

Moreover, by Lemma 6.7, it follows from p̃ ⊲⊳ q̃, p̃ ⊑RS q̃ and CX̃{p̃/X̃} /∈ F that

CX̃{q̃/X̃} /∈ F. (6.10.3)

For the transition CX̃{p̃/X̃}
a

−→ r, by Lemma 5.8, there exist C′
X̃
, C′

X̃,Ỹ
and C′′

X̃,Ỹ
that

satisfy (CP-a-1) – (CP-a-4). In particular, by (CP-a-3-ii), there exist iY ≤ |X̃|, p′Y (Y ∈

Ỹ ) such that piY
a

−→ p′Y for each Y ∈ Ỹ and r ≡ C′′
X̃,Ỹ

{p̃/X̃, p̃′Y /Ỹ }. Moreover, by

(CP-a-1) and (CP-a-3-i), we have

CX̃{p̃/X̃} ⇛ C′
X̃
{p̃/X̃} ≡ C′

X̃,Ỹ
{p̃/X̃, p̃iY /Ỹ }.

Hence C′
X̃,Ỹ

{p̃/X̃, p̃iY /Ỹ } /∈ F by CX̃{p̃/X̃} /∈ F and Lemma 5.14. Further, since each

Y (∈ Ỹ ) is 1-active in C′
X̃,Ỹ

, by Lemma 5.5, we get

piY /∈ F for each Y ∈ Ỹ . (6.10.4)

For the transition r ≡ C′′
X̃,Ỹ

{p̃/X̃, p̃′Y /Ỹ }
ǫ

=⇒ |s in (6.10.2), by Lemma 5.20, it follows

that for each Y ∈ Ỹ , there exists p′′Y such that p′Y
ǫ

=⇒ |p′′Y and

C′′
X̃,Ỹ

{p̃/X̃, p̃′Y /Ỹ }
ǫ

=⇒ C′′
X̃,Ỹ

{p̃/X̃, p̃′′Y /Ỹ }
ǫ

=⇒ |s.

Then C′′
X̃,Ỹ

{p̃/X̃, p̃′′Y /Ỹ } /∈ F due to s /∈ F and Lemma 4.2, and hence p′′Y /∈ F for each

Y ∈ Ỹ by Lemma 5.5. Therefore, by (6.10.4) and Lemma 4.2, we have

piY
a

−→F p′Y
ǫ

=⇒F |p′′Y for each Y ∈ Ỹ .

So it follows from p̃ ⊲⊳ q̃ and p̃ ⊑RS q̃ that for each Y ∈ Ỹ , there exist q′Y and q′′Y such
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that qiY
a

−→F q′Y
ǫ

=⇒F |q′′Y and p′′Y ⊏
∼RS

q′′Y . By (CP-a-3-iii), we get

CX̃{q̃/X̃}
a

−→ C′′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ }. (6.10.5)

Further, by Lemma 5.4 and (CP-a-2), we obtain

C′′
X̃,Ỹ

{q̃/X̃, q̃′Y /Ỹ }
ǫ

=⇒ C′′
X̃,Ỹ

{q̃/X̃, q̃′′Y /Ỹ }. (6.10.6)

Clearly, (C′′
X̃,Ỹ

{p̃/X̃, p̃′′Y /Ỹ }, C′′
X̃,Ỹ

{q̃/X̃, q̃′′Y /Ỹ }) ∈ R. So, by C′′
X̃,Ỹ

{p̃/X̃, p̃′′Y /Ỹ }
ǫ

=⇒F

|s and (ALT-upto-1), there exists t such that C′′
X̃,Ỹ

{q̃/X̃, q̃′′Y /Ỹ }
ǫ

=⇒F |t and s ⊏
∼RS

R ⊏
∼RS

t; moreover, we also have CX̃{q̃/X̃}
a

=⇒F |t due to (6.10.3), (6.10.5), (6.10.6)

and Lemma 4.2, as desired.

We are now in a position to state the main result of this section.

Theorem 6.1 (Precongruence). If p ⊑RS q then CX{p/X} ⊑RS CX{q/X} for any

context CX .

Proof. By Lemma 6.9 and 6.10, it immediately follows from τ.p =RS p ⊑RS q =RS τ.q.

As an immediate consequence of this theorem, we also have

Corollary 6.1. If p̃ ⊑RS q̃ then CX̃{p̃/X̃} ⊑RS CX̃{q̃/X̃} for any context CX̃ .

Proof. Applying Theorem 6.1 finitely many times.

7. Unique solution of equations

This section focuses on the solutions of equations. Especially, we shall prove that the

equation X =RS tX has at most one consistent solution modulo =RS provided that X is

strongly guarded and does not occur in the scope of any conjunction in tX ; moreover, the

process 〈X |X = tX〉 is indeed the unique consistent solution whenever such equation has

a consistent solution. We begin with giving two results on the inconsistency predicate F .

Lemma 7.1. For any stable processes p, q /∈ F and context CX such that X does not

occur in the scope of any conjunction, if CX{p/X} ∈ F then CX{q/X} ∈ F .

Proof. Assume that CX{p/X} ∈ F and T is any proof tree of Strip(PCLLR
,MCLLR

) ⊢

CX{p/X}F . We proceed by induction on the depth of T . The argument is a routine case

analysis on CX . Moreover, since X does not occur in the scope of any conjunction, in

addition to that CX is closed, the form of CX is one of the following: X , α.BX , BX ⊙DX

with ⊙ ∈ {∨,�, ‖A} and 〈Y |E〉. Here, we give the proof only for the case CX ≡ 〈Y |E〉,

the other cases are straightforward and omitted.

In case CX ≡ 〈Y |E〉, the last rule applied in T is

either
〈tY |E〉{p/X}F

〈Y |E〉{p/X}F
with Y = tY ∈ E or

{rF : 〈Y |E〉{p/X}
ǫ

=⇒ |r}

〈Y |E〉{p/X}F
.
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For the first alternative, we have 〈tY |E〉{q/X} ∈ F by IH, and hence CX{q/X} ≡

〈Y |E〉{q/X} ∈ F .

For the second alternative, assume 〈Y |E〉{q/X}
ǫ

=⇒ |s. Since q is stable, by Lemma 5.16,

s ≡ C′
X{q/X} for some stable C′

X such that X does not occur in the scope of any

conjunction in C′
X and 〈Y |E〉{p/X}

ǫ
=⇒ C′

X{p/X}. Moreover, since p is stable, so is

C′
X{p/X}. Thus there exists a proper subtree of T with root C′

X{p/X}F . So, by IH,

s ≡ C′
X{q/X} ∈ F . Hence CX{q/X} ∈ F by Theorem 4.2, as desired.

This result is of independent interest, but its principal use is that it will serve as an

important step in demonstrating the next lemma, which reveals that the above result

still holds if it is deleted from the hypotheses that q and p are stable.

Lemma 7.2. For any processes p, q /∈ F and context CX such that X does not occur in

the scope of any conjunction, if CX{p/X} ∈ F then CX{q/X} ∈ F .

Proof. Suppose that CX{p/X} ∈ F . We proceed by induction on the depth of the

proof tree T of Strip(PCLLR
,MCLLR

) ⊢ CX{p/X}F . Similar to the preceding lemma,

we handle only the case CX ≡ 〈Y |E〉. In this situation, the last rule applied in T is

either
〈tY |E〉{p/X}F

〈Y |E〉{p/X}F
with Y = tY ∈ E or

{rF : 〈Y |E〉{p/X}
ǫ

=⇒ |r}

〈Y |E〉{p/X}F
.

The argument for the former is the same as the one in Lemma 7.1 and omitted. In the

following, we consider the latter and suppose 〈Y |E〉{q/X}
ǫ

=⇒ |s. By Theorem 4.2, it

is not difficult to see that, to complete the proof, it suffices to prove that s ∈ F . By

Lemma 5.19, there exist t and stable context C∗
X such that

〈Y |E〉{q/X}
ǫ

=⇒ C∗
X{q/X}

ǫ
=⇒ |t⇛ s

and

〈Y |E〉{r/X}
ǫ

=⇒ C∗
X{r/X} for any r. (7.2.1)

In particular, we have 〈Y |E〉{aX .0/X}
ǫ

=⇒ C∗
X{aX .0/X} where aX is a fresh visible

action. For this transition, applying Lemma 5.6 finitely many times (notice that, in this

procedure, since aX .0 is stable, the clause (2) in Lemma 5.6 is always false), and by the

clause (1) in Lemma 5.6, we get the sequence

〈Y |E〉{aX .0/X} ≡ C0
X{aX .0/X}

τ
−→ C1

X{aX .0/X}
τ

−→

· · ·
τ

−→ Cn
X{aX .0/X} ≡ C∗

X{aX .0/X}.

Here n ≥ 0 and for each 1 ≤ i ≤ n, Ci
X satisfies (C-τ -1,2,3) in Lemma 5.6. Since X does

not occur in the scope of any conjunction in 〈Y |E〉, by (C-τ -3-iv), neither does X in Cn
X .

In addition, by Lemma 5.18, we have Cn
X ≡ C∗

X . Hence X does not occur in the scope of

any conjunction in C∗
X .

If p is stable then so is C∗
X{p/X} by Lemma 5.6. Thus, by (7.2.1), C∗

X{p/X}F is one

of premises in the last inferring step in T . Hence C∗
X{q/X} ∈ F by applying IH. Then

t ∈ F by Lemma 4.2. Further, by Lemma 5.14, it follows from t ⇛ s that s ∈ F , as

desired.
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Next we consider the other case where p is not stable. In this situation, due to p /∈ F ,

we have

p
τ

=⇒F |p∗ for some p∗. (7.2.2)

In the following, we distinguish two cases based on whether q is stable.

Case 1 q is stable.

Then, for the transition 〈Y |E〉{q/X}
ǫ

=⇒ |s, by Lemma 5.16, we have s ≡ C′
X{q/X}

for some stable C′
X such that X does not occur in the scope of any conjunction and

CX{p/X}
ǫ

=⇒ C′
X{p/X}. Moreover, by Lemma 5.17, it follows from (7.2.2) that

C′
X{p/X}

ǫ
=⇒ |p′ for some p′.

For this transition, by Lemma 5.16, there exist a stable context C′∗
X,Ỹ

and stable processes

p′Y (Y ∈ Ỹ ) that realize (MS-τ -1) – (MS-τ -7). In particular, by (MS-τ -3-ii), it follows from

(7.2.2) that

C′
X{p/X}

ǫ
=⇒ C′∗

X,Ỹ
{p/X, p∗/Ỹ }.

Then, since C′∗
X,Ỹ

, p and p∗ are stable, by Lemma 5.6, so is C′∗
X,Ỹ

{p/X, p∗/Ỹ }. Thus,

C′∗
X,Ỹ

{p/X, p∗/Ỹ }F is one of premises of the last inferring step in T . Moreover, by (MS-

τ -2), p′ ≡ C′∗
X,Ỹ

{p/X, p̃′Y /Ỹ }. Then, by (MS-τ -6) and IH, we obtain

C′∗
X,Ỹ

{q/X, p∗/Ỹ } ∈ F.

Further, by (MS-τ -6) and Lemma 7.1, we get

C′∗
X,Ỹ

{q/X, q/Ỹ } ∈ F.

In addition, due to the stableness of C′
X , by (MS-τ -4), we have

C′
X{q/X} ⇛ C′∗

X,Ỹ
{q/X, q/Ỹ }.

Hence s ≡ C′
X{q/X} ∈ F by Lemma 5.14, as desired.

Case 2 q is not stable.

By Lemma 5.16, for the transition 〈Y |E〉{q/X}
ǫ

=⇒ |s, there exist a stable context

C′
X,Z̃

and q′Z(Z ∈ Z̃) that satisfy (MS-τ -1) – (MS-τ -7). Amongst them, by (MS-τ -2,7),

q
τ

=⇒ |q′Z for each Z ∈ Z̃ and s ≡ C′
X,Z̃

{q/X, q̃′Z/Z̃}. (7.2.3)

If q′Z ∈ F for some Z ∈ Z̃ then by Lemma 5.5, we get s ∈ F (notice that each Z in Z̃ is

1-active), as desired. In the following, we handle the other case where

q′Z /∈ F for each Z ∈ Z̃. (7.2.4)

By (MS-τ -3-ii), it follows from (7.2.2) that

CX{p/X}
ǫ

=⇒ C′
X,Z̃

{p/X, p∗/Z̃}.

Since p
τ

−→, q
τ

−→, p∗ 6
τ

−→, q′Z 6
τ

−→ for each Z ∈ Z̃ and s ≡ C′
X,Z̃

{q/X, q̃′Z/Z̃} 6
τ

−→,
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by Lemma 5.6, C′
X,Z̃

{p/X, p∗/Z̃} is stable. Hence T has a proper subtree with root

C′
X,Z̃

{p/X, p∗/Z̃}F . Then C′
X,Z̃

{q/X, p∗/Z̃} ∈ F by (MS-τ -6) and IH. Further, by

Lemma 7.1, it follows from (7.2.3) and (7.2.4) that s ≡ C′
X,Z̃

{q/X, q̃′Z/Z̃} ∈ F , as

desired.

We shall use the notation Dep(T ) to denote the depth of a given proof tree T . Given

p, q and α ∈ Actτ , for any proof tree T of Strip(PCLLR
,MCLLR

) ⊢ p
α

−→ q, it is evident

that T involves only rules in Table 1. Moreover, since each rule in Table 1 has only

finitely many premises, it is not difficult to show that Dep(T ) < ω by induction on the

depth of T . This makes it legitimate to use arithmetical expressions with the form like∑
T ∈Ω

Dep(T ) where Ω is a finite set and each T ∈ Ω is a proof tree for some labelled

transition p
α

−→ r.

Definition 7.1. Given p
ǫ

=⇒F q and a finite set Ω of proof trees, we say that Ω is a

proof forest for p
ǫ

=⇒F q if there exist pi(0 ≤ i ≤ n) such that

(1) p ≡ p0
τ

−→F p1
τ

−→F · · ·
τ

−→F pn ≡ q,

(2) for each i < n, Ω contains exactly one proof tree for Strip(PCLLR
,MCLLR

) ⊢ pi
τ

−→

pi+1, and

(3) for each T ∈ Ω, T is a proof tree for Strip(PCLLR
,MCLLR

) ⊢ pi
τ

−→ pi+1 for some

i < n.

The depth of Ω is defined as Dep(Ω) ,
∑
T ∈Ω

Dep(T ). Similarly, we may define the notion

of a proof forest for p
a

=⇒F q.

It is obvious that p
ǫ

=⇒F q (or, p
a

=⇒F q) holds if and only if there exists a proof forest

for it. The following lemma will prove extremely useful in establishing the main result in

this section and its proof involves induction on the depths of proof forests.

Lemma 7.3. Let CX be any context where X is strongly guarded and does not occur in

the scope of any conjunction. For any processes p, q /∈ F with p ⊲⊳ q, if p =RS CX{p/X}

and q =RS CX{q/X} then p =RS q.

Proof. Suppose p, q /∈ F with p ⊲⊳ q, p =RS CX{p/X} and q =RS CX{q/X}. It is

sufficient to prove that p ⊑RS q. Put

R , {(BX{p/X}, BX{q/X}) : X does not occur in the scope of any conjunction in BX}.

By Prop. 6.1 and Lemma 6.8, it suffices to prove that R is an alternative ready simulation

relation up to ⊏
∼RS

. Let (BX{p/X}, BX{q/X}) ∈ R.

(ALT-upto-1) Assume that BX{p/X}
ǫ

=⇒F |p′ and Ω is any proof forest for it. Hence

BX{p/X} ≡ p0
τ

−→F p1
τ

−→ . . . pn−1
τ

−→F |pn ≡ p′ for some pi(0 ≤ i ≤ n), and Ω ex-

actly consists of proof trees Ti(0 ≤ i < n) for Strip(PCLLR
,MCLLR

) ⊢ pi
τ

−→ pi+1. We

intend to prove that there exists q′ such that BX{q/X}
ǫ

=⇒F |q′ and p′ ⊏
∼RS

R ⊏
∼RS

q′

by induction on Dep(Ω). It is a routine case analysis on BX . We treat only three cases
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as examples.

Case 1 BX ≡ X .

Then BX{p/X} ≡ p
ǫ

=⇒F |p′. Thus it follows from p =RS CX{p/X} that

CX{p/X}
ǫ

=⇒F |s and p′ ⊏
∼RS

s for some s.

Since X is strongly guarded and does not occur in the scope of any conjunction in CX ,

by Lemma 5.16, there exists a stable context C′
X such that

(a.1) s ≡ C′
X{p/X},

(a.2) X is strongly guarded and does not occur in the scope of any conjunction in C′
X ,

and

(a.3) CX{q/X}
ǫ

=⇒ C′
X{q/X}.

Since s ≡ C′
X{p/X} 6

τ
−→, by (a.2) and Lemma 5.9, we have C′

X{q/X} 6
τ

−→. More-

over, by Lemma 7.2, C′
X{q/X} /∈ F follows from C′

X{p/X} /∈ F and p, q /∈ F . Hence

CX{q/X}
ǫ

=⇒F |C′
X{q/X} by (a.3) and Lemma 4.2. Further, it follows from q =RS

CX{q/X} that

q
ǫ

=⇒F |q′ and C′
X{q/X} ⊏

∼RS
q′ for some q′.

Therefore, BX{q/X} ≡ q
ǫ

=⇒F |q′ and p′ ⊏
∼RS

s ≡ C′
X{p/X}RC′

X{q/X} ⊏
∼RS

q′.

Case 2 BX ≡ 〈Y |E〉.

If 〈Y |E〉{p/X} is stable then so is 〈Y |E〉{q/X} by p ⊲⊳ q and Lemma 5.6. More-

over, by Lemma 7.2, we have 〈Y |E〉{q/X} /∈ F because of 〈Y |E〉{p/X} /∈ F . Hence

〈Y |E〉{q/X}
ǫ

=⇒F |〈Y |E〉{q/X} and (〈Y |E〉{p/X}, 〈Y |E〉{q/X}) ∈⊏
∼RS

R ⊏
∼RS

due to

the reflexivity of ⊏
∼RS

.

Next we handle the other case where 〈Y |E〉{p/X} is not stable. Clearly, the last rule

applied in T0 is

〈tY |E〉{p/X}
τ

−→ p1

〈Y |E〉{p/X}
τ

−→ p1
with Y = tY ∈ E.

Thus, T0 contains a proper subtree, say T ′
0 , which is a proof tree of Strip(PCLLR

,MCLLR
) ⊢

〈tY |E〉{p/X}
τ

−→ p1 and Dep(T ′
0 ) < Dep(T0). Thus Ω′ , {T ′

0 , Ti : 1 ≤ i ≤ n − 1} is a

proof forest for 〈tY |E〉{p/X}
ǫ

=⇒F |p′; moreover

Dep(Ω′) < Dep(Ω).

Then, by Lemma 5.2(5) and IH, we have 〈tY |E〉{q/X}
ǫ

=⇒F |q′ and p′ ⊏
∼RS

R ⊏
∼RS

q′

for some q′. Moreover, we also have BX{q/X} ≡ 〈Y |E〉{q/X}
ǫ

=⇒F |q′, as desired.

Case 3 BX ≡ DX�D′
X .

IfBX{p/X} is stable then we can proceed analogously to Case 2 with 〈Y |E〉{p/X} 6
τ

−→.

In the following, we consider the case BX{p/X}
τ

−→.

For the transitions DX{p/X}�D′
X{p/X} ≡ p0

τ
−→F · · ·

τ
−→F |pn ≡ p′(n ≥ 1), there

exist two sequences of processes t0(≡ DX{p/X}), . . . , tn and s0(≡ D′
X{p/X}), . . . , sn



On Recursive Operations Over LLTS 59

such that tn, sn are consistent and stable, pn ≡ tn�sn, and for each 0 ≤ i < n, pi ≡ ti�si
and the last rule applied in Ti is

either
ti

τ
−→ ti+1

ti�si
τ

−→ ti+1�si+1

or
si

τ
−→ si+1

ti�si
τ

−→ ti+1�si+1

.

For the former, si+1 ≡ si and Ti contains a proper subtree T ′
i which is a proof tree for

Strip(PCLLR
,MCLLR

) ⊢ ti
τ

−→ ti+1. We use Ω1 to denote the (finite) set of all these proof

trees T ′
i . Similarly, for the latter, ti+1 ≡ ti and Ti contains a proper subtree T ′′

i which is

a proof tree for Strip(PCLLR
,MCLLR

) ⊢ si
τ

−→ si+1. We use Ω2 to denote the (finite) set

of all these proof trees T ′′
i . It is obvious that Ω1 is a proof forest for DX{p/X}

ǫ
=⇒F |tn;

moreover,

Dep(Ω1) < Dep(Ω).

Thus, by IH, we have DX{q/X}
ǫ

=⇒F |q′1 and tn ⊏
∼RS

R ⊏
∼RS

q′1 for some q′1. Similarly,

for the transition D′
X{p/X}

ǫ
=⇒F |sn, we also have D′

X{q/X}
ǫ

=⇒F |q′2 and sn ⊏
∼RS

R ⊏
∼RS

q′2 for some q′2. Then, by Theorem 4.3, it is easy to check that p′ ≡ tn�sn ⊏
∼RS

R ⊏
∼RS

q′1�q
′
2. Moreover, we also have BX{q/X} ≡ DX{q/X}�D′

X{q/X}
ǫ

=⇒F |q′1�q
′
2.

(ALT-upto-2) Suppose that BX{p/X} and BX{q/X} are stable. Let BX{p/X}
a

=⇒F

|p′ and Ω be its proof forest. So, there exist p0, . . . , pn(n ≥ 1) such that

BX{p/X} ≡ p0
a

−→F p1
τ

−→F · · ·
τ

−→F |pn ≡ p′, (7.3.1)

and Ω exactly consists of proof trees Ti for Strip(PCLLR
,MCLLR

) ⊢ pi
αi−→ pi+1 for i < n,

where α0 = a and αj = τ(1 ≤ j < n). We want to prove that there exists q′ such that

BX{q/X}
a

=⇒F |q′ and p′ ⊏
∼RS

R ⊏
∼RS

q′ by induction on Dep(Ω). Since BX{p/X} is

stable and X does not occur in the scope of any conjunction in BX , the topmost operator

of BX is neither disjunction nor conjunction. Thus, we distinguish five cases based on

the form of BX .

Case 1 BX ≡ X .

Due to BX{p/X} ≡ p
a

=⇒F |p′, we have p /∈ F . Moreover, since p(≡ BX{p/X}) is

stable, we get p
ǫ

=⇒F |p. Hence it follows from p =RS CX{p/X} that

CX{p/X}
ǫ

=⇒F |s and p ⊏
∼RS

s for some s.

Further, since X is strongly guarded and does not occur in the scope of any conjunction

in CX , by Lemma 5.16, there exists a stable context C′
X such that

(b.1) X is strongly guarded and does not occur in the scope of any conjunction in C′
X ,

(b.2) s ≡ C′
X{p/X}, and

(b.3) CX{q/X}
ǫ

=⇒ C′
X{q/X}.

Then it follows from p ⊏
∼RS

s ≡ C′
X{p/X} and p

a
=⇒F |p′ that

C′
X{p/X}

a
=⇒F |s′ and p′ ⊏

∼RS
s′ for some s′.
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Since p 6
τ

−→, by (b.1), Lemma 5.9 and 5.16, there exists a stable context C′′
X such that

(c.1) s′ ≡ C′′
X{p/X},

(c.2) X does not occur in the scope of any conjunction in C′′
X , and

(c.3) C′
X{q/X}

a
−→

ǫ
=⇒ C′′

X{q/X}.

Moreover, since q(≡ BX{q/X}) is stable, so is C′′
X{q/X}. Then, by (b.3) and (c.3), we

have

CX{q/X}
ǫ

=⇒ |C′
X{q/X}

a
=⇒ |C′′

X{q/X}.

Further, by Lemma 7.2 and 4.2, it follows from p, q, CX{p/X}, C′
X{p/X}, C′′

X{p/X} /∈ F

that

CX{q/X}
ǫ

=⇒F |C′
X{q/X}

a
=⇒F |C′′

X{q/X}. (7.3.2)

Then, since CX{q/X} =RS q and q 6
τ

−→, we get

C′
X{q/X} ⊏

∼RS
q.

Further, due to (7.3.2), it follows that

BX{q/X}(≡ q)
a

=⇒F |q′ and C′′
X{q/X} ⊏

∼RS
q′ for some q′.

Moreover, p′ ⊏
∼RS

s′ ≡ C′′
X{p/X}RC′′

X{q/X} ⊏
∼RS

q′, as desired.

Case 2 BX ≡ α.DX .

So α = a and DX{p/X}
ǫ

=⇒F |p′. Clearly, (DX{p/X}, DX{q/X}) ∈ R. By (ALT-

upto-1), there exists q′ such that DX{q/X}
ǫ

=⇒F |q′ and p′ ⊏
∼RS

R ⊏
∼RS

q′. Moreover,

it is evident that α.DX{q/X}
a

=⇒F |q′.

Case 3 BX ≡ DX�D′
X .

W.l.o.g, assume that the last rule applied in T0 is
DX{p/X}

a
−→p1, D

′
X{p/X}6

τ
−→

DX{p/X}�D′
X
{p/X}

a
−→p1

. Then

T0 has a proper subtree, say T ′
0 , which is a proof tree for Strip(PCLLR

,MCLLR
) ⊢

DX{p/X}
a

−→ p1. Clearly, Ω
′ , {T ′

0 , Ti : 1 ≤ i ≤ n−1} is a proof forest forDX{p/X}
a

=⇒F

|p′ and Dep(Ω′) < Dep(Ω). Moreover, since BX{q/X} is stable, so are DX{q/X} and

D′
X{q/X}. Then, by IH, we have DX{q/X}

a
=⇒F |q′ and p′ ⊏

∼RS
R ⊏

∼RS
q′ for some

q′. Moreover, D′
X{p/X} /∈ F because of BX{p/X} /∈ F , which, by Lemma 7.2, im-

plies D′
X{q/X} /∈ F . Hence BX{q/X} ≡ DX{q/X}�D′

X{q/X} /∈ F , and BX{q/X} ≡

DX{q/X}�D′
X{q/X}

a
=⇒F |q′, as desired.

Case 4 BX ≡ DX ‖A D′
X .

Then the last rule applied in T0 is one of the following three formats:

(1)
DX{p/X}

a
−→t1,D

′
X{p/X}

a
−→s1

BX{p/X}‖ADX{p/X}
a

−→t1‖As1
with a ∈ A and p1 ≡ t1 ‖A s1;

(2)
DX{p/X}

a
−→t1, D

′
X{p/X}6

τ
−→

DX{p/X}‖AD′
X
{p/X}

a
−→t1‖AD′

X
{p/X}

with a /∈ A and p1 ≡ t1 ‖A D′
X{p/X};

(3)
D′

X{p/X}
a

−→s1, DX{p/X}6
τ

−→

DX{p/X}‖AD′
X
{p/X}

a
−→DX{p/X}‖As1

with a /∈ A and p1 ≡ DX{p/X} ‖A s1.

We treat the first one, and the proof of the later two runs, as in Case 3. Clearly, T0
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has two proper subtrees T ′
0 and T ′′

0 , which are proof trees for DX{p/X}
a

−→ t1 and

D′
X{p/X}

a
−→ s1 respectively. Moreover, for the transitions p1

τ
−→ · · ·

τ
−→ |pn, there

exist two processes sequences t1, . . . , tn and s1, . . . , sn such that tn, sn are stable, pn ≡

tn ‖A sn, and for each 1 ≤ i < n, pi ≡ ti ‖A si and the last rule applied in Ti is

either
ti

τ
−→ ti+1

ti ‖A si
τ

−→ ti+1 ‖A si+1

or
si

τ
−→ si+1

ti ‖A si
τ

−→ ti+1 ‖A si+1

.

For the former, si+1 ≡ si and Ti contains a proper subtree T ′
i which is a proof tree for

Strip(PCLLR
,MCLLR

) ⊢ ti
τ

−→ ti+1. We use Ω1 to denote the (finite) set of all these

proof tree T ′
i . Similarly, for the latter, ti+1 ≡ ti and Ti contains a proper subtree T ′′

i

which is a proof tree for Strip(PCLLR
,MCLLR

) ⊢ si
τ

−→ si+1. We use Ω2 to denote

the (finite) set of all these proof tree T ′′
i . Clearly, Ω′ , {T ′

0} ∪ Ω1 is a proof forest for

DX{p/X}
a

=⇒F |tn and Dep(Ω′) < Dep(Ω). Thus, by IH, we have DX{q/X}
a

=⇒F |q′1
and tn ⊏

∼RS
R ⊏

∼RS
q′1 for some q′1. Similarly, for the transition D′

X{p/X}
a

=⇒F |sn, we

also have D′
X{q/X}

a
=⇒F |q′2 and sn ⊏

∼RS
R ⊏

∼RS
q′2 for some q′2. Therefore, by Theo-

rem 4.3, we obtain p′ ≡ tn ‖A sn ⊏
∼RS

R ⊏
∼RS

q′1 ‖A q′2. Moreover, it is not difficult to

see that BX{q/X} ≡ DX{q/X} ‖A D′
X{q/X}

a
=⇒F |q′1 ‖A q′2 because of BX{q/X} 6

τ
−→,

DX{q/X}
a

=⇒F |q′1 and D′
X{q/X}

a
=⇒F |q′2.

Case 5 BX ≡ 〈Y |E〉.

Clearly, the last rule applied in T0 is 〈tY |E〉{p/X}
a

−→p1

〈Y |E〉{p/X}
a

−→p1

. Hence T0 contains a proper sub-

tree, say T ′
0 , which is a proof tree for Strip(PCLLR

,MCLLR
) ⊢ 〈tY |E〉{p/X}

a
−→ p1, and

Dep(T ′
0 ) < Dep(T0). So, Ω′ , {T ′

0 , Ti : 1 ≤ i < n} is a proof forest for 〈tY |E〉{p/X}
a

=⇒F

|p′ and Dep(Ω′) < Dep(Ω). Then, by IH, we have 〈tY |E〉{q/X}
a

=⇒F |q′ and p′ ⊏
∼RS

R ⊏
∼RS

q′ for some q′; moreover, BX{q/X} ≡ 〈Y |E〉{q/X}
a

=⇒F |q′, as desired.

(ALT-upto-3) Let BX{p/X} and BX{q/X} be stable and BX{p/X} /∈ F . We shall

prove I(BX{p/X}) ⊇ I(BX{q/X}), the converse inclusion may be proved in a simi-

lar manner and is omitted. Assume that BX{q/X}
a

−→ q′. Then, for such a-labelled

transition, by Lemma 5.8, there exist B′
X , B′

X,Ỹ
and B′′

X,Ỹ
with X /∈ Ỹ that sat-

isfy (CP-a-1) – (CP-a-4). In case Ỹ = ∅, it immediately follows from (CP-a-3-iii) that

BX{p/X}
a

−→ B′′
X,Ỹ

{p/X}.

Next we handle the case Ỹ 6= ∅. In this situation, by (CP-a-3-iii), to complete the

proof, it suffices to prove that I(p) = I(q). By (CP-a-1) and (CP-a-3-i), we have

BX{r/X} ⇛ B′
X,Ỹ

{r/X, r/Ỹ } for any r.

Then, since BX{p/X} and BX{q/X} are stable, by Ỹ 6= ∅, (CP-a-2) and Lemmas 5.11

and 5.4, it follows that both p and q are stable. Hence p
ǫ

=⇒F |p by p /∈ F . Then, due to

p =RS CX{p/X}, we have

CX{p/X}
ǫ

=⇒F |s and p ⊏
∼RS

s for some s.
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For the transition above, since X is strongly guarded in CX , by Lemma 5.16, there exists

a stable context DX such that

(d.1) s ≡ DX{p/X} 6
τ

−→,

(d.2) X is strongly guarded and does not occur in the scope of any conjunction in DX ,

and

(d.3) CX{q/X}
ǫ

=⇒ DX{q/X}.

Hence I(p) = I(DX{p/X}) by (d.1), p ⊏
∼RS

s and p /∈ F . Moreover, by (d.1), (d.2) and

Lemma 5.9, we have DX{q/X} 6
τ

−→ and

I(p) = I(DX{p/X}) = I(DX{q/X}).

We also obtain DX{q/X} /∈ F by p /∈ F , q /∈ F , s ≡ DX{p/X} /∈ F and Lemma 7.2.

So, CX{q/X}
ǫ

=⇒F |DX{q/X} by Lemma 4.2. Further, it follows from q =RS CX{q/X}

and q 6
τ

−→ that DX{q/X} ⊏
∼RS

q. Hence I(DX{q/X}) = I(q) because of DX{q/X} /∈ F .

Therefore, I(p) = I(DX{p/X}) = I(DX{q/X}) = I(q), as desired.

The next lemma is the crucial step in the demonstrating the assertion that 〈X |X = tX〉

is a consistent solution of a given equationX =RS tX whenever consistent solutions exist.

Lemma 7.4. For any term tX where X is strongly guarded and does not occur in the

scope of any conjunction, if q =RS tX{q/X} for some q /∈ F then 〈X |X = tX〉 /∈ F .

Proof. Assume p =RS tX{p/X} for some p /∈ F . Then tX{p/X} /∈ F . Set

Ω =

{
BY {〈X |X = tX〉/Y } :

BY {p/Y } /∈ F and Y does not occur in the scope of

any conjunction in BY

}
.

It is obvious that 〈X |X = tX〉 ∈ Ω by taking BY , Y . Thus we intend to show

that Ω ∩ F = ∅. Assume CY {〈X |X = tX〉/Y } ∈ Ω. Let T be any proof tree for

Strip(PCLLR
,MCLLR

) ⊢ CY {〈X |X = tX〉/Y }F . Similar to Lemma 6.3, it is sufficient

to prove that T has a proper subtree with root sF for some s ∈ Ω, which is a routine

case analysis based on the last rule applied in T . Here we treat only two cases as examples.

Case 1 CY ≡ Y .

Then CY {〈X |X = tX〉/Y } ≡ 〈X |X = tX〉. Clearly, the last rule applied in T is

either
〈tX |X = tX〉F

〈X |X = tX〉F
or

{rF : 〈X |X = tX〉
ǫ

=⇒ |r}

〈X |X = tX〉F
.

For the former, T has a proper subtree with root 〈tX |X = tX〉F ; moreover, 〈tX |X =

tX〉 ≡ tX{〈X |X = tX〉/X} ∈ Ω due to tX{p/X} /∈ F , as desired.

For the latter, if 〈X |X = tX〉 6
τ

−→, then, in T , the unique node directly above the root

is labelled with 〈X |X = tX〉F ; moreover 〈X |X = tX〉 ∈ Ω, as desired. In the following,

we consider the nontrivial case 〈X |X = tX〉
τ

−→. Since tX{p/X} /∈ F , by Theorem 4.2,

we get tX{p/X}
ǫ

=⇒F |p′ for some p′. For this transition, since X is strongly guarded

and does not occur in the scope of any conjunction, by Lemma 5.16, there exists a stable

context BX such that
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(a.1) X is strongly guarded and does not occur in the scope of any conjunction,

(a.2) p′ ≡ BX{p/X}, and

(a.3) tX{〈X |X = tX〉/X}
ǫ

=⇒ BX{〈X |X = tX〉/X}.

Since p′ ≡ BX{p/X} 6
τ

−→, by (a.1) and Lemma 5.9, BX{〈X |X = tX〉/X} 6
τ

−→. Then it

follows from (a.3) and 〈X |X = tX〉
τ

−→ that 〈X |X = tX〉
ǫ

=⇒ |BX{〈X |X = tX〉/X}.

Hence T has a proper subtree with root BX{〈X |X = tX〉/X}F ; moreover, BX{〈X |X =

tX〉/X} ∈ Ω because of p′ /∈ F , (a.1) and (a.2).

Case 2 CY ≡ 〈Z|E〉.

Here, CY {〈X |X = tX〉/Y } ≡ 〈Z|E{〈X |X = tX〉/Y }〉. Then the last rule applied in T

is

either
〈tZ |E〉{〈X |X = tX〉/Y }F

〈Z|E〉{〈X |X = tX〉/Y }F
(Z = tZ ∈ E) or

{rF : 〈Z|E〉{〈X |X = tX〉/Y }
ǫ

=⇒ |r}

〈Z|E〉{〈X |X = tX〉/Y }F
.

For the first alternative, by Lemma 4.1(8), it follows from 〈Z|E〉{p/Y } /∈ F that

〈tZ |E〉{p/Y } /∈ F . Since Y does not occur in the scope of any conjunction in 〈Z|E〉,

by Lemma 5.2(5), neither does it in 〈tZ |E〉. Therefore 〈tZ |E〉{〈X |X = tX〉/Y } ∈ Ω, as

desired.

For the second alternative, since 〈Z|E〉{p/Y } /∈ F and p =RS tX{p/X}, we get

〈Z|E〉{tX{p/X}/Y } /∈ F by Theorem 6.1. So 〈Z|E〉{tX{p/X}/Y }
ǫ

=⇒F |p′ for some

p′. Then, for this transition, by Lemma 5.16, there exist processes qW (W ∈ W̃ ) and a

context D
Y,W̃

with Y /∈ W̃ such that

(b.1) tX{p/X}
τ

=⇒ |qW for eachW ∈ W̃ and p′ ≡ D
Y,W̃

{tX{p/X}/Y, q̃W/W̃},

(b.2) Y and each W (∈ W̃ ) are strongly guarded and do not occur in the scope of any

conjunction in D
Y,W̃

, and

(b.3) 〈Z|E〉{r/Y }
ǫ

=⇒ D
Y,W̃

{r/Y, r̃W /W̃} for any r and rW (W ∈ W̃ ) such that r
τ

=⇒

rW for each W ∈ W̃ .

Then, since X is strongly guarded and does not occur in the scope of any conjunction in

tX , by Lemma 5.16 and 5.9, for each transition tX{p/X}
τ

=⇒ |qW , there exists a stable

context tWX such that

(c.1) X is strongly guarded and does not occur in the scope of any conjunction in tWX ,

(c.2) qW ≡ tWX {p/X}, and

(c.3) tX{〈X |X = tX〉/X}
τ

=⇒ |tWX {〈X |X = tX〉/X}.

For the simplicity of notation, we let QW stand for tWX {〈X |X = tX〉/X} for eachW ∈ W̃ .

So, by (c.3), 〈X |X = tX〉
τ

=⇒ |QW for each W ∈ W̃ . Hence it follows from (b.3) that

〈Z|E〉{〈X |X = tX〉/Y }
ǫ

=⇒ DY,W̃{〈X |X = tX〉/Y, Q̃W/W̃}. (7.4.1)

By (b.2) and (c.1), it is not difficult to see that X is strongly guarded and does not

occur in the scope of any conjunction in D
Y,W̃

{tX/Y, t̃WX /W̃}. So, by Lemma 5.9 and

p′ ≡ DY,W̃ {tX/Y, t̃WX /W̃}{p/X} 6
τ

−→, we get

D
Y,W̃

{tX/Y, t̃WX /W̃}{〈X |X = tX〉/X} 6
τ

−→ .
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Hence DY,W̃{〈X |X = tX〉/Y, Q̃W /W̃} 6
τ

−→ by Lemma 5.6 and I(〈X |X = tX〉) =

I(tX{〈X |X = tX〉/X}). Then T has a proper subtree with rootD
Y,W̃

{〈X |X = tX〉/Y, Q̃W/W̃}F

due to (7.4.1). Moreover, by Theorem 6.1 and p =RS tX{p/X}, it follows from p′ ≡

DY,W̃ {tX{p/X}/Y, ˜tWX {p/X}/W̃} /∈ F that DY,W̃{p/Y, ˜tWX {p/X}/W̃} /∈ F . Set

D′
Y , DY,W̃ { ˜tWX {Y/X}/W̃}.

Therefore, D
Y,W̃

{〈X |X = tX〉/Y, Q̃W/W̃} ≡ D′
Y {〈X |X = tX〉/Y } ∈ Ω, as desired.

We now have the assertion below which states that given an equation X =RS tX satis-

fying some conditions, 〈X |X = tX〉 is the unique consistent solution whenever consistent

solutions exist.

Theorem 7.1 (Unique solution). For any p, q /∈ F and tX where X is strongly

guarded and does not occur in the scope of any conjunction, if p =RS tX{p/X} and

q =RS tX{q/X} then p =RS q. Moreover, 〈X |X = tX〉 is the unique consistent solution

modulo =RS for the equation X =RS tX whenever consistent solutions exist.

Proof. If p ⊲⊳ q then p =RS q follows from Lemma 7.3, otherwise, w.l.o.g, we assume

that p is stable and q is not. By Theorem 6.1, τ.p =RS p =RS tX{p/X} =RS tX{τ.p/X}.

Then, by Lemma 7.3, it follows from τ.p, q /∈ F , τ.p ⊲⊳ q, τ.p =RS tX{τ.p/X} and

q =RS tX{q/X} that τ.p =RS q . Hence p =RS q.

Suppose that X =RS tX has consistent solutions. It is obvious that 〈X |X = tX〉 =RS

tX{〈X |X = tX〉/X} due to 〈X |X = tX〉 ⇛1 〈tX |X = tX〉 ≡ tX{〈X |X = tX〉/X} and

Lemma 5.15. Further, by Lemma 7.4, 〈X |X = tX〉 is the unique consistent solution of

the equation X =RS tX .

As an immediate consequence, we have

Corollary 7.1. For any term tX where X is strongly guarded and does not occur in

the scope of any conjunction, then the equation X =RS tX has consistent solutions iff

〈X |X = tX〉 /∈ F .

Proof. Immediately by Theorem 7.1.

We conclude this section with providing a brief discussion. For Theorem 7.1, the con-

dition that X is strongly guarded can not be relaxed to that X is weakly guarded. For

instance, consider the equation X =RS τ.X , it has infinitely many consistent solutions.

In fact, for any p, it always holds that p =RS τ.p. Moreover, the condition that p, q /∈ F

is also necessary. For example, both 〈X |X = a.X〉 and ⊥ are solutions of the equation

X =RS a.X , but they are not equivalent modulo =RS .

8. Conclusions and future work

This paper considers recursive operations over LLTSs in pure process-algebraic style and

a process calculus CLLR, which is obtained from CLL by adding recursive operations, is

proposed. We show that the behavioral relation ⊑RS is precongruent w.r.t all operations
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in CLLR, which reveals that this calculus supports compositional reasoning. Moreover,

we also provide a theorem on the uniqueness of consistent solution of a given equation

X =RS tX where X is required to be strongly guarded and does not occur in the scope

of any conjunction in tX .

Although CLL contains logic operators ∧ and ∨ over processes, due to lack of modal

operators, it does not afford describing abstract properties of concurrent systems. As we

know, some modal operators could be characterized by equations and fixpoints (Bradfield and Stirling 2001).

Fortunately, under the mild condition that the set of actions Act is finite, we can inte-

grate standard temporal operators always and unless into CLLR (Zhu et al. 2013) but

this requires us to strengthen Theorem 7.1 by removing the restriction that “recursive

variables do not occur in the scope of any conjunction in recursive specifications”. We

leave the strengthened Theorem 7.1 as a open problem.

In this paper, we adopt a proof method well-ordered proof tree contradiction to obtain

properties of F -predicate. It reflects a kind of principle negation as failure and it is

different from proof method witnesses adopted by Lüttgen and Vogler. Their method

requires one to find proofs (i.e., witness set) to illustrate the existence of properties.

However, the way of constructing witnesses is similar to our method.

Future work could proceed along two directions. Firstly, we will add hiding operator

to CLLR. As an important feature of LLTS (Lüttgen and Vogler 2010), hiding in the

presence of recursion may lead to divergence and introduce inconsistency by (LTS2). For

example, 〈X |X = a.X〉 /∈ F but 〈X |X = a.X〉\a ∈ F . The other direction of future work

is to find a (ground) complete proof system for regular processes in CLLR along lines

adopted in (Milner 1989; Baeten and Bravetti 2008). Here a process is regular if its LTS

has only finitely many states and transitions.
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