
07 May 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Fair Subtyping for Multi-Party Session Types

Published version:

DOI:10.1017/S096012951400022X

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is a pre print version of the following article:

This version is available http://hdl.handle.net/2318/154509 since 2016-11-21T09:10:05Z

Under consideration for publication in Math. Struct. in Comp. Science

Fair Subtyping for
Multi-Party Session Types
L U C A P A D O V A N I

email: luca. padovani@ unito. it

Dipartimento di Informatica, Università di Torino, Italy.

Received 14 January 2013

The subtyping relation defined for dyadic session type theories may compromise the
liveness of multi-party sessions. In this paper we define a fair subtyping relation for
multi-party session types that preserves liveness, we relate it with the subtyping relation
for dyadic session types, and we provide coinductive, axiomatic, and algorithmic
characterizations for it.

1. Introduction

Session types have been introduced by Honda [1993] and Honda et al. [1998] as a type
discipline for structuring inter-process communications: a session is a private place of in-
teraction between processes that communicate messages; each process plays a role within
the scope of the session and behaves according to a session type that describes the se-
quence of messages the process is willing to send/capable to receive within the session
through one of the session endpoints. In a sense, session types generalize traditional
channel types [Pierce and Sangiorgi, 1996; Castagna et al., 2008] by allowing messages
of different types to travel along the same endpoint.

Dyadic session type theories require the two endpoints of a session to be used by exactly
two processes and in complementary ways. This requirement enforces session correctness,
which comprises both communication safety (no message of unexpected type is ever sent)
and liveness (whenever a message is exchanged, all of the processes involved in the session
make progress). For example, the session

buyer : T | seller : R (1.1)

where T and R are the session types defined by the equations

T = seller!Buy.T ⊕ seller!Done.end
R = buyer?Buy.R+ buyer?Done.end

describes a conversation between two processes playing roles buyer and seller: buyer
sends either a Buy message or a Done message to seller; the decision as to which type of
message is sent is taken by buyer, whence the internal choice operator ⊕; seller must be
ready to receive either a Buy or a Done message from buyer, whence the external choice

luca.padovani@unito.it

Luca Padovani 2

operator +. If a Buy message is exchanged, the two processes repeat this pattern; as soon
as a Done message is exchanged, the session terminates. The correctness of session (1.1)
can be easily established by noticing that T and R specify complementary behaviors:
any message sent by buyer is accepted by seller; any internal choice taken by buyer is
matched by an external choice offered by seller.

The shift from dyadic to multi-party sessions [Honda et al., 2008] makes the definition
of session correctness more subtle. First, it is no longer obvious what it means to use the
endpoints of the session “in complementary ways” if the session involves more than two
participants. Second, it is unreasonable to pretend that all of the involved participants
make progress whenever a message is exchanged if communications are point-to-point.
Still, one would like to make sure that no participant is left behind trying to deliver a
message that no other process in the session is willing to accept, or waiting for a message
that no other process in the session sends. A natural and practically reasonable formal-
ization of correctness for multi-party sessions requires that the session must preserve the
possibility to reach a terminal configuration where all of its participants no longer use
the session endpoints. For example, in the session

buyer : T ′ | seller : R | bank : buyer?Pay.end

where T ′ is defined by the equation

T ′ = seller!Buy.T ′ ⊕ seller!Done.bank!Pay.end ,

the processes buyer and seller may exchange an arbitrary number of Buy messages and,
during their interaction, the process bank does not make any progress. However, as long
as Buy messages are exchanged, it is always possible that buyer sends a Done message to
seller followed by a Pay message to bank. If this happens, all of the involved partici-
pants reach a terminal state and the session terminates. This potential for termination
is sometimes called fair termination because it relies on a fairness assumption on the
behavior of buyer: even though buyer can choose to send an arbitrary number of Buy
messages, we exclude the “unfair” behavior in which buyer never chooses to send Done.
Therefore, under a fairness assumption we conclude that bank will eventually receive Pay
and make progress.

The adoption of fair termination to characterize the correctness of multi-party ses-
sions has dramatic effects on the subtyping relation for session types [Gay and Hole,
2005; Castagna et al., 2009]. Subtyping is a compatibility relation between types such
that, when T is a subtype of S, it is harmless to replace an endpoint with type S with
another one with type T or, equivalently, it is harmless to replace a process that be-
haves according to T with another one that behaves according to S. For example, the
session type T defined above is a subtype of seller!Done.end: using an endpoint of type
seller!Done.end means sending a Done message to process seller. Since the session
type T permits sending both a Buy message and a Done message, using an endpoint
with type T in place of another one with type seller!Done.end does not compromise the
correctness of the session. Intuitively, we say that T is a subtype of S if S is a variant
of T where some branches of some internal choices have been pruned. According to this

Fair Subtyping for Multi-Party Session Types 3

T

end

seller!Buy

seller!Done

S2

•

end

seller!Buy

seller!Done

seller!Buy

S∞

seller!Buy

Fig. 1. Relation between T = seller!Buy.T ⊕ seller!Done.end and
S2 = seller!Buy.seller!Buy.S2 ⊕ seller!Done.end.

intuition every session type in the family

S2 = seller!Buy.seller!Buy.S2 ⊕ seller!Done.end
...

Sn = (seller!Buy.)nSn ⊕ seller!Done.end
...

S∞ = seller!Buy.S∞

is a supertype of T . The type Sn describes the behavior of a buyer that always buys a
number of items that is multiple of n. The type S∞ is somewhat the limit of the sequence
{Si}i≥2 and describes a buyer that only sends Buy messages. The fact that T is a subtype
of S∞ may be questionable, because the sessions buyer : Si | seller : R for i ≥ 2 all
have the potential to terminate (it is always possible that a Done message is sent), while
the session buyer : S∞ | seller : R is doomed to loop forever. In a dyadic session like
buyer : S∞ | seller : R this shortcoming is mitigated by the fact that every participant
of the session makes indefinite progress anyway. However, this may no longer be the case
when multi-party sessions are considered. Indeed, using the same arguments we might
also deduce that S∞ is a supertype of T ′, and now in the session

buyer : S∞ | seller : R | bank : buyer?Pay.end

participant buyer keeps interacting with seller while bank starves waiting for a Pay
message that is never sent. We conclude that the well-known subtyping relation for dyadic
session types is unsound in multi-party theories because it may compromise the liveness
of multi-party sessions.

In this paper we study a subtyping relation, which we call fair subtyping, that preserves
liveness also in multi-party sessions. Understanding when two session types are related
by fair subtyping is a surprisingly complex business, for essentially two reasons: first
of all, the differences between standard and fair subtyping emerge only when recursive
session types are involved, while the two relations coincide for finite session types; second,
deciding whether some branch of an internal choice can be safely pruned may involve a
non-local check on the structure of the session types being compared.

To illustrate the subtleties of fair subtyping, consider again the session types T , S2,
and S∞ depicted as the three automata in Figure 1, where the initial states have been
labeled with the name of the session type and the solid arcs with the actions performed by

Luca Padovani 4

T

•

end

?Offer

?Done

!OK, !NO

S

•

end

•

•

?Offer

?Done

!NO

?Done

?Offer

!OK, !NO

×

Fig. 2. Relation between T = ?Offer.(!OK.T ⊕ !NO.T) + ?Done.end and
S = ?Offer.!NO.(?Offer.(!OK.S ⊕ !NO.S) + ?Done.end) + ?Done.end.

the processes that behave according to these types. The subtyping relation establishes a
correspondence between states of two session types which is represented, in the figure, by
the three dotted arrows showing, for each state of S2, the corresponding state of T . The
fact that S∞ is not a supertype of T is blatantly obvious, since no end state is reachable
from S∞, but this does not explain why S2 is a supertype of T . Observe that S2 has an
intermediate state • which lacks the outgoing seller!Done-labeled transition that T has.
In a manner of speaking, a participant seller : R interacting with buyer : S2 has fewer
chances to terminate than if it were interacting with buyer : T because buyer : S2 sends
Done messages less frequently. The point is that every participant seller : R such that
buyer : T | seller : R is correct must be ready to accept a Done message from buyer
at any time. Therefore, even if buyer behaves according to S2 and cannot send a Done
message because it is in the • state, buyer can always send a Buy message followed by a
Done one and drive the session into a successfully terminated state. Stated in other words,
there is no seller : R participant that terminates successfully only if it observes a Done
message after an odd number of Buy messages has been received, because it is buyer –
not seller – that internally chooses how many items to buy and when to move into the
terminal state. We express this property saying that S2 rules over (every context, like
seller : R, that completes) T , which we denote by T ≺ S2.

An even subtler example is depicted in Figure 2 where T and S describe the behav-
ior of two hypothetical sellers engaged into a bargain with a buyer (for the sake of
readability, the role name ‘buyer’ has been omitted from the figure and its caption).
The buyer participant (not shown in the figure) sends either Offer or Done messages
depending on whether it wants to make an offer regarding the purchase of an item or
quit the bargain. The seller participant answers to each offer with either an OK or a
NO message, respectively indicating that the offer was accepted or rejected. The only
difference between T and S is that S lacks one outgoing buyer!OK-labeled transition that
T has. Basically, seller : S systematically rejects the first offer (more precisely, every
odd-indexed offer) and it may send back an OK message only after an odd number of
Offers have been received. Consider now the session type

R = !Offer.(?OK.!Done.end + ?NO.!Offer.(?OK.R+ ?NO.R)) (1.2)

Fair Subtyping for Multi-Party Session Types 5

describing the behavior of a buyer process that terminates its bargain only when the
seller it is interacting with accepts the first offer (in fact, an odd-indexed offer). We
have that seller : T |buyer : R is correct while seller : S |buyer : R loops through state
S. What happens is that buyer forces seller : S to go through state S in hopes that an
OK message is received. This was possible with seller : T , but not with seller : S. The
fact that a participant like buyer : R exists means that S does not rule over T (T 6≺ S),
and therefore T is not a subtype of S.

Higher-Order Session Types. So far we have discussed examples of session types
where messages are abstracted as atomic tags such as Offer or OK. In practice, one is
usually interested in providing more structured information about the type of messages
being exchanged, since such information is key in assessing the correctness of processes
with respect to the session types of the channels they use. As a particular but paradig-
matic case, we want to define higher-order session types so as to promote channels to
messages, just like higher-order arrow types promote functions to values in functional
languages. For instance, the session type

p!a〈T 〉.end

describes a channel on which it is possible to send an a-tagged message with an argument
which is itself a channel described by the session type T . In addition to these practical
considerations, the reason why we are interested in this refinement of session types is
that it has an interesting impact on the theory of fair subtyping. To see why, consider
the session

p : q?a〈S〉.end | q : p!a〈T 〉.end
involving two participants exchanging a message that is itself a channel. In order for
this session to be correct, it must be the case that T is a (fair) subtype of S, following
the usual intuition that a channel of type T can be safely used where a channel of
type S is expected. That is, the notion of session correctness depends on that of fair
subtyping. At the same time, fair subtyping is just defined as the relation that does not
compromise session correctness. To break this circularity we use an original technique:
we parameterize session correctness on a generic subtyping relation and define subtyping
as the solution of a fixpoint equation.

Contributions. We summarize the contributions of the present work as follows:

— We define a language of higher-order, multi-party session types along with semanti-
cally defined notions of session correctness and fair subtyping. While analogous no-
tions can be found in the current literature, this is the first time that fair subtyping
is extended to a higher-order language.

— We provide a complete coinductive characterization of fair subtyping based on the
“ruled by” relation. We show that there is an intimate connection between the “ruled
by” relation and the semantic notion of “type emptyness” for session types.

— We give a complete axiomatization of fair subtyping that is entirely syntax directed.

Luca Padovani 6

To the best of our knowledge, this is the first complete axiomatization of a liveness-
preserving refinement for a non-trivial, higher-order process language.

— We give algorithms for deciding session type emptyness and fair subtyping.

Origin of the material. A technical report with an early draft of this work was up-
loaded on HAL in December 2010.† The same work has been presented in Lisbon at the
Behavioral Types Workshop in April 2011, and it was subsequently published in the pro-
ceedings of COORDINATION 2011 [Padovani, 2011a]. The current article corresponds
to a thoroughly revised and improved version of [Padovani, 2011a] whose most promi-
nent novelties, aside from the presentation of the full proofs of all the results, are the
treatment of higher-order session types and the syntax-directed axiomatization of fair
subtyping and of session type emptyness.

Structure of the paper. We devote Section 2 to defining syntax and semantics of
session types. The section ends with the definitions of fair subtyping and of session
correctness. In Section 3 we show that fair and standard subtyping are incomparable.
Then we introduce a normal form for session types that allows us to define fair subtyping
as a refinement of standard subtyping. The difference between the two relations is fully
captured by the “ruled by” relation we have informally introduced earlier. Section 4
provides a complete axiomatization of fair subtyping, as well as algorithms for deciding
it. We discuss related work in Section 5 and conclude in Section 6 illustrating some
intriguing challenges posed by fair subtyping that we aim at addressing in future work.
For the sake of readability, proofs and supplementary technical material corresponding
to Sections 2, 3, and 4 have been moved to Appendixes A, B, and C respectively.

2. Syntax and Semantics of Session Types

2.1. Syntax

We assume given: an infinite set R of role tags ranged over by p, q, . . . ; an infinite
set N of message tags ranged over by a, b, . . . ; a set V of recursion variables ranged
over by x, y, Table 1 defines the syntax of sessions and session types. Sessions,
ranged over by M , N , . . . , are finite compositions p1 : T1 | · · · | pn : Tn representing a
fixed number of participants that communicate with each other within a protected scope.
Each participant is uniquely identified by a role pi and behaves according to the session
type Ti. We work exclusively with well-formed sessions, where i 6= j implies pi 6= pj .

Session types, ranged over by T , S, . . . , are the closed terms generated by the grammar
in Table 1 such that:
— every recursion variable is guarded by at least one (input or output) prefix, and
— in every subterm

∑
i∈I p?ai〈ti〉.Ti or

⊕
i∈I p!ai〈ti〉.Ti the set I is finite and non-empty

and the ai’s are pairwise distinct.

† See http://hal.archives-ouvertes.fr/hal-00546531/fr/.

http://hal.archives-ouvertes.fr/hal-00546531/fr/

Fair Subtyping for Multi-Party Session Types 7

Table 1. Syntax of types, session types, and sessions.
Type t ::= top (top type)

| T (session type)

Session Type T ::= bot (bottom type)
| end (termination)
| x (variable)
|

∑
i∈I p?ai〈ti〉.Ti (input)

|
⊕

i∈I p!ai〈ti〉.Ti (output)
| µx.T (recursion)

Session M ::= p : T (participant)
| M |M (composition)

The first condition forbids non-contractive session types such as µx.x, while the sec-
ond condition ensures that the tag ai in an internal/external choice uniquely determines
a continuation Ti. The session types end and bot both describe the behavior of a par-
ticipant that performs no input/output actions. In the former case, the participant has
successfully terminated, while in the latter case it has not. We use bot to represent an
unrecoverable error state. The session type

⊕
i∈I p!ai〈ti〉.Ti describes the behavior of a

participant that sends a message to participant p. The message is made of a tag ai and
carries an argument of type ti. According to the tag ai of the message, the participant
then behaves as specified by Ti. In a dual manner, the session type

∑
i∈I p?ai〈ti〉.Ti de-

scribes the behavior of a participant that waits for a message from participant p. As for
outputs, ai specifies the tag of the message, ti is the type of the message argument and
Ti the behavior that the receiver conforms to after having received the message. For the
sake of technical simplicity, we restrict ourselves to messages with a single argument, the
extension to the general case not posing substantial issues. Terms x and µx.T can be
used to describe recursive behaviors, as usual. Since µ is the only binder for recursion
variables, the notions of free and bound variables are defined as expected.

Types are either the top type top or any session type. Other data types can be easily
accommodated within this syntactic category, but we keep the formal type language as
simple as possible to avoid unnecessary clutter. The fact that bot is a session type while
top is not is motivated by the observation that there are many session types – those
describing “bad” behaviors – that are syntactically different from bot but semantically
equivalent to it (the session type S∞ we have introduced in Section 1 is one example).
Therefore, the bot type provides a handy normal form for all these “bad” behaviors.
Conversely, there is no session type that is equivalent to top, and for good reasons: it
would be a behavior capable of satisfying any kind of request, which is clearly impossible
to achieve.

In what follows, we adopt the following conventions:

— We write T for the set of session types.

Luca Padovani 8

— Whenever convenient we use an infix notation for choices and write

p!a1〈t1〉.T1 ⊕ · · · ⊕ p!an〈tn〉.Tn in place of
⊕
i=1..n

p!ai〈ti〉.Ti

and

p?a1〈t1〉.T1 + · · ·+ p?an〈tn〉.Tn in place of
∑
i=1..n

p?ai〈ti〉.Ti .

Note that mixed choices like p?a〈t〉.T + q?a〈t〉.S and p!a〈t〉.T ⊕ q!a〈t〉.S are for-
bidden. In particular, the source participant p and the destination participant q in∑
i∈I p?ai〈ti〉.Ti and

⊕
i∈I q!ai〈ti〉.Ti must be the same in all branches (all the ex-

amples in the introduction are consistent with these conventions). While slightly re-
dundant, the syntax for inputs and outputs allows us to conveniently switch between
the prefix and the infix forms.

— Sometimes we omit the argument type specification in input prefixes when it is top
and in output prefixes when it is bot. Therefore, we may write p?a.T in place of
p?a〈top〉.T and p!a.T in place of p!a〈bot〉.T .

— We take an equirecursive point of view and do not distinguish between a recursive ses-
sion type and its unfolding. That is, we assume µx.T = T{µx.T/x} where T{µx.T/x}
denotes the capture-avoiding substitution of the free occurrences of x in T with µx.T .

Note that all the session types defined in the introduction can be finitely represented as
possibly recursive terms generated by the grammar in Table 1 ([Courcelle, 1983] is the
standard reference for the formal treatment of regular trees and their finite representa-
tions). Here are a few more examples:

— µx.q!a.x is analogous to S∞ in Figure 1 and describes a process that repeatedly sends
a-tagged messages to participant q;

— µx.(q?a.(q!c.x ⊕ q!d.x) + q?b.end) is analogous to session type T in Figure 2 and
describes a process that waits for either an a-tagged or a b-tagged message. If it
receives an a-tagged message it sends either a c-tagged or a d-tagged message and
then repeats this pattern. If it receives a b-tagged message it terminates successfully.

— T
def= µx.q!a〈x〉.end describes a process that sends a single a-tagged message to q with

an argument that has type T . Note that T satisfies the equation T = q!a〈T 〉.end.

2.2. Transition System for Sessions

Intuitively, the participants of a session behave as described by the corresponding session
type and the session evolves by means of internal choices taken by the participants
and by synchronizations occurring between them. A session is correct if, no matter how
it evolves, it preserves the possibility to reach a state in which every participant has
successfully terminated. The most natural way to formalize correctness is to express the
evolution of a session by means of a transition system, whose definition is the subject of
this subsection.

Fair Subtyping for Multi-Party Session Types 9

Table 2. Transition system of sessions.
(T-End)
p : end X−→S p : end

(T-Output)
p : q!a〈t〉.T p:q!a〈t〉−−−−→S p : T

(T-Choice)
k ∈ I

p :
⊕
i∈I

q!ai〈ti〉.Ti
τ−→S p : q!ak〈tk〉.Tk

(T-Input)
k ∈ I (t, tk) ∈ S

p :
∑
i∈I

q?ai〈ti〉.Ti
p:q?ak〈t〉−−−−−→S p : Tk

(T-Par Action)
M

`−→S M ′ ` 6= X

M |N `−→S M ′ |N

(T-Par Comm)

M
α−→S M ′ N

α−→S N ′

M |N τ−→S M ′ |N ′

(T-Par End)
M

X−→S M N
X−→S N

M |N X−→S M |N

Labels of the transition system, ranged over by `, are generated by the grammar below:

Label ` ::= τ (internal action)
| X (termination)
| α (visible action)

Action α ::= p : p?a〈t〉 (input)
| p : p!a〈t〉 (output)

The label τ denotes an internal action, which may result from a participant performing
an internal choice or from the synchronization between two participants. The label X
denotes the successful termination of a participant or of the whole session. Visible actions,
ranged over by α, denote input/output operations performed by participants: the label
p : q?a〈t〉 states that participant p receives from participant q an a-tagged message
whose argument has type t; dually, the label p : q!a〈t〉 states that participant p sends
to participant q an a-tagged message whose argument has type t. Note that, as session
types are abstract descriptions of the behavior of processes, input and output actions only
describe the type of the arguments in messages, not the actual arguments themselves.
We write α for the complement of action α, where

p : q?a〈t〉 = q : p!a〈t〉 and p : q!a〈t〉 = q : p?a〈t〉

(note the switching of roles). We let ϕ, ψ, . . . range over finite strings of visible actions,
and we extend complementation · to strings of visible actions.

Table 2 defines the transition system (symmetric rules omitted) in terms of a family
of labeled relations `−→. Since the transition system depends on subtyping (see rule (T-
Input)), we parameterize transitions with a pre-subtyping relation S and postpone the
problem of defining subtyping concretely to Section 2.3.
Definition 2.1. A preorder S is a pre-subtyping relation if (bot, t) ∈ S and (t, top) ∈ S

for every t ∈ T .
In what follows we let S , R, . . . range over pre-subtyping relations.
An informal explanation of the axioms and rules of Table 2 is given in the following

paragraphs. Rule (T-End) states that p : end performs a X action that flags successful
termination of p and reduces to itself. Rules (T-Output) and (T-Choice) deal with

Luca Padovani 10

outputs. The former one shows that a participant p willing to send an a-tagged message
to participant q performs a p : q!a〈t〉 action. The latter one states that a participant that
is ready to send any message from a set internally and irrevocably chooses one particular
message to send. In both rules we use the abbreviation q!a0〈t0〉.T0 for

⊕
i∈{0} q!ai〈ti〉.Ti.

Rule (T-Input) deals with inputs and states that a participant p performs p : q?a〈t〉
actions according to the tags of messages it is willing to receive and the participant
q from which it expects these messages to come. The session type states that an ak-
tagged message carries an argument of type tk. However, following the intuition that a
value of type t can be used wherever a value of type tk is expected if t is a subtype
of tk, the rule yields a (possibly infinite) number of transitions of the form p : q?ak〈t〉
for every t that is a subtype of tk according to S . The transition relation remains
image finite, since the residual session type can only be one of the Ti for i ∈ I. Note
the fundamental asymmetry between inputs and outputs: a participant autonomously
commits to sending one particular message by means of rule (T-Choice), while it retains
the ability to receive any message from a given set by means of rule (T-Input). This
asymmetry lies at the heart of the variance properties of the subtyping relation we are
going to define. Rule (T-Par Action) propagates transitions through compositions,
provided that the label is different from X. Rule (T-Par Comm) describes the usual
synchronization between participants performing complementary actions. Finally, (T-
Par End) states that a composition has successfully terminated if all of its participants
have. Note that the session type bot has no transitions. It plays a similar role as the δ
atom in process algebras with explicit deadlock (see Aceto and Hennessy [1992]).

In the following we adopt these conventions: we write τ=⇒S for the reflexive, transitive
closure of τ−→S ; we write `=⇒S for the composition τ=⇒S

`−→S
τ=⇒S and α1···αn====⇒S for

the composition α1=⇒S · · ·
αn=⇒S ; we write M `−→S (respectively, M `=⇒S) if there exists

N such that M `−→S N (respectively, M `=⇒S N); we write M X `−→S (respectively,
M Y `=⇒S) if there exists no N such that M `−→S N (respectively, M `=⇒S N). We also
extend the labeled transition relation and the above notation to session types so that,
for example, T `−→S S if p : T `−→S p : S for some p.

We now have all the ingredients for defining correct sessions formally. Just like the
transition system is parametric over some subtyping relation S , the notion of correctness
is parametric over the same relation.

Definition 2.2 (S -correct session). We say that M is S -correct if M τ=⇒S N implies
N

X=⇒S .

The definition states that a correct session preserves the possibility of reaching a state
in which all of its participant have successfully terminated. Note in particular that S -
correctness is preserved by τ−→S reductions, that is if M is S -correct and M

τ=⇒S N ,
then N is also S -correct.

A few examples of correct and incorrect sessions follow:

— p : end is the simplest S -correct session and p : end |M is S -correct if and only if so
is M .

— The session M
def= p : T | q : S where T = µx.(q!a.x ⊕ q!b.end) and S = µy.(p?a.y +

Fair Subtyping for Multi-Party Session Types 11

p?b.end) is S -correct, because either

M
τ−→S p : q!b.end | q : S τ−→S p : end | q : end X−→S

or
M

τ−→S p : q!a.T | q : S τ−→S M

and no other transitions are possible. Note that the notion of S -correctness does
not exclude the existence of infinite interactions, provided that a path to successful
termination does exist.

— The session p : bot|M is not S -correct no matter of M and S , because p : bot XX−→S .
In general, a necessary condition for session M to be correct is that the session
types associated with all the participants in M must have the potential to termi-
nate successfully. This condition is not sufficient. For example, a participant M | p :
(q!a.end⊕ q!b.bot) terminates successfully if M is willing to receive an a-tagged mes-
sage from p, but we also have M | p : (q!a.end⊕ q!b.bot) τ−→S M | p : q!b.bot which
is doomed to fail.

— Session correctness may crucially depend on the subtyping relation being considered.
For example, the session p : q!a〈t〉.end | q : p?a〈s〉.end is S -correct provided that
(t, s) ∈ S . Conversely, both p : q!a〈bot〉.end | q : p?a〈s〉.end and p : q!a〈t〉.end | q :
p?a〈top〉.end are correct no matter of S (recall that S is a pre-subtyping relation,
meaning that (bot, s) ∈ S and (t, top) ∈ S).

2.3. Fair Subtyping

Now that we have a notion of session correctness we should be able to define subtyping
semantically as the relation that preserves correctness. More formally, we would like to
define fair subtyping as the largest pre-subtyping S that satisfies the equation:

S = {(t, top) | t ∈ T } ∪ {(bot, t) | t ∈ T }
∪ {(T, S) | ∀M, p : (M | p : T) S -correct implies (M | p : S) S -correct}

(2.1)
At this stage we do not know whether an S satisfying (2.1) does exist, but before we

address this issue it is worth reasoning on why such an S would serve as a subtyping
relation. What is surprising about equation (2.1) is that it speaks about left-to-right
substitutability (of behaviors), while subtyping is concerned with right-to-left substi-
tutability (of endpoints). The mismatch is only apparent, however, and is due to the fact
that session types are behavioral types (they describe the behavior of processes using
session endpoints). To clarify this point, suppose that S is the type associated with an
endpoint c and that some process P uses c as indicated by S. By replacing endpoint c in
P with another endpoint d with type T such that (T, S) ∈ S , we are changing the set of
processes that P is interacting with, which together behave according to some M such
that M | p : T is S -correct. In particular, replacing c with d does not affect the way P
behaves: P uses endpoint d (whose type is T) as if it were endpoint c (thus according to
S). This means that the actual implemented session is M | p : S. Since (T, S) ∈ S , we
know that this session is S -correct from the very definition of S .

Luca Padovani 12

To solve equation (2.1), we define an operator F that computes the fair subtyping
relation induced by a generic pre-subtyping S , thus:
Definition 2.3 (S -subtyping). The subtyping relation induced by S , denoted by F(S),
is defined as:

F(S) def= {(t, top) | t ∈ T } ∪ {(bot, t) | t ∈ T }
∪ {(T, S) | ∀M, p : (M | p : T) S -correct implies (M | p : S) S -correct}

Note that F(S) is itself a pre-subtyping relation. Also, the set of pre-subtyping re-
lations forms a complete lattice: given an arbitrary family {Si}i∈I of pre-subtyping
relations,

∨
i∈I Si is the smallest pre-subtyping that includes all the Si and

∧
i∈I Si is

the largest pre-subtyping included in all the Si. Therefore, we can conclude that F has
a greatest fixpoint thanks to the Knaster-Tarski theorem provided that F is monotone.
This property does indeed hold (its proof, which involves a number of technical results,
can be found in Appendix A).
Theorem 2.4. F is monotone.

At last we can define fair subtyping as the greatest fixpoint of F:
Definition 2.5 (fair subtyping). The fair subtyping relation, denoted by 6, is the
greatest fixpoint of F. We write ≶ for the equivalence relation induced by 6, namely
≶ = 6 ∩6−1.

Having closed the circularity between session correctness (Definition 2.2) and subtyping
(Definition 2.3), we can dispense with the annotations in transition relations. We will
therefore write `−→ (respectively, `=⇒) in place of `−→6 (respectively, `=⇒6). We can also
define the notion of session correctness that uses (and induces) 6 as subtyping:
Definition 2.6 (correct session). We say that M is correct if M is 6-correct.

A thorough study of the subtyping relation that solely relies on Definitions 2.3 and 2.5
is hard, because of the universal quantification over an infinite set of contexts M and the
fact that 6 is the solution of a fixpoint equation. Nonetheless, a few basic properties of
6 are easy to establish.
Proposition 2.7. The following relations hold:
(1) p?a〈t〉.T 6 p?a〈t〉.T + p?b〈s〉.S;
(2) p!a〈t〉.T ⊕ p!b〈s〉.S 6 p!a〈t〉.T ;
(3) p?a〈t〉.T 6 p?a〈s〉.T if and only if t 6 s;
(4) p!a〈t〉.T 6 p!a〈s〉.T if and only if s 6 t;
(5) bot ≶ µx.p?a〈t〉.x ≶ µy.q!b〈s〉.y.

To get some acquaintance with 6, we conclude this section with an informal discussion
on the reasons that make the relations in Proposition 2.7 hold. The rest of the paper is
then entirely devoted to providing alternative characterizations of 6.

Regarding item (1), observe that any session M such that M | q : p?a〈t〉.T is correct
must eventually send an a-tagged message to q and the argument of the message must
be some t′ 6 t. Therefore, the same session will interact successfully with q : p?a〈t〉.T +
p?b〈s〉.S, which accepts b-tagged messages in addition to a-tagged ones. Item (2) is the
dual of item (1): any session M such that M | q : (p!a〈t〉.T ⊕ p!b〈s〉.S) is correct must be

Fair Subtyping for Multi-Party Session Types 13

willing to accept both a-tagged messages with an argument of type t as well as b-tagged
messages with an argument of type s. This is because of the two reductions

q : p!a〈t〉.T ⊕p!b〈s〉.S τ−→ q : p!a〈t〉.T and q : p!a〈t〉.T ⊕p!b〈s〉.S τ−→ q : p!b〈s〉.S

where q may autonomously choose to send either kind of message. In particular, we have
that M | q : p!a〈t〉.T must be correct.

Items (3) and (4) focus on the variance properties of 6 with respect to the type of
arguments in input and output actions. In item (3), just like in item (1), a session M

such that M | q : p?a〈t〉.T is correct can send to q messages whose argument has at
most type t. This is because q : p?a〈t〉.T accepts a-tagged messages whose argument is
t or 6-smaller (c.f. rule (T-Input) in Table 2). If we replace the behavior associated
with q with p?a〈s〉.T , then it must necessarily be the case that t 6 s, namely that the
new behavior be willing to accept a broader range of messages than those accepted by
p?a〈t〉.T . The dual scenario occurs in item (4). Overall, we see that 6 is covariant with
respect to input actions and contravariant with respect to output actions.

Item (5) illustrates the possibly most peculiar feature of the 6 relation, which does
not distinguish between apparently unrelated behaviors. In fact, all these behaviors lack
the possibility of successful termination (no end subterm occurs in them). Consequently,
there is no M that, combined with any of them, yields a correct session and they all
happen to be the 6-smallest elements of fair subtyping.

3. Coinductive Characterization of Fair Subtyping

3.1. Relationship with Unfair Subtyping

We begin our study of 6 by recalling the traditional subtyping relation for session
types [Gay and Hole, 2005], which we denote by 6U and dub “unfair” subtyping to
distinguish it from 6. We show that 6U and 6 are incomparable and we identify the
class of session types for which 6 is a refinement of 6U.
Definition 3.1 (unfair subtyping [Gay and Hole, 2005]). We say that U is a coinductive
unfair subtyping relation if (t, s) ∈ U implies either:
(1) t = bot, or
(2) s = top, or
(3) t = s = end, or
(4) t =

∑
i∈I p?ai〈ti〉.Ti and s =

∑
i∈I∪J p?ai〈si〉.Si and (ti, si) ∈ U and (Ti, Si) ∈ U

for every i ∈ I, or
(5) t =

⊕
i∈I∪J p!ai〈ti〉.Ti and s =

⊕
i∈I p!ai〈si〉.Si and (si, ti) ∈ U and (Ti, Si) ∈ U for

every i ∈ I.
Unfair subtyping, denoted by 6U, is the largest coinductive unfair subtyping relation.
Items (1) and (2) state the expected properties of bot and top as the smallest and

biggest types, respectively. Item (3) states that the only subtype of end is end. Item (4)
is the standard covariant rule for input actions and states that it is safe for a process that
is capable of receiving any message from the set {p?ai〈t〉 | i ∈ I ∪ J, t 6U si} to wait for
messages from a channel from which a subset of messages {p?ai〈t〉 | i ∈ I, t 6U ti} can

Luca Padovani 14

Table 3. Axiomatization of unfair subtyping (coinductive definition).
(S-Bot)
bot 6U t

(S-Top)
t 6U top

(S-End)
end 6U end

(S-Input)
∀i ∈ I : ti 6U si ∀i ∈ I : Ti 6U Si∑
i∈I

p?ai〈ti〉.Ti 6U
∑
i∈I∪J

p?ai〈si〉.Si

(S-Output)
∀i ∈ I : si 6U ti ∀i ∈ I : Ti 6U Si⊕
i∈I∪J

p!ai〈ti〉.Ti 6U
⊕
i∈I

p!ai〈si〉.Si

be received. Item (5) is dual of item (4) and deals with outputs. It states that a process
can safely use a channel to send any message from the set {p!ai〈t〉 | i ∈ I, t 6U si} if the
channel can accept any message from the set {p!ai〈ti〉 | i ∈ I∪J} where si 6U ti for every
i ∈ I. Observe that item (4) generalizes Propositions 2.7(1,3) and item (5) generalizes
Propositions 2.7(2,4).

As shown by Gay and Hole [2005], 6U is the largest preorder that satisfies the axioms
and rules in Table 3.
Remark 3.2. It is clear from Definition 3.1 and Table 3 that liveness plays a major role in
the definition of session correctness also in dyadic session type theories. Indeed, if safety
were the only concern, then it would be feasible (and technically easy) to allow for the
subtyping laws

end 6U
∑
i∈I

p?ai〈ti〉.Ti and
⊕
i∈I

p!ai〈ti〉.Ti 6U end .

In the former case, a process waiting for a message is allowed to use a channel from
which no message ever arrives. In the latter case, a process not sending any message is
allowed to use a channel on which it is possible to send a message. In both cases the
safety of the session is preserved (no message of unexpected type is ever received, no
message of unexpected type is ever sent), but liveness is not. Therefore, our focus on
liveness in this work is not really a novelty for session type theories. Rather, it is the
shift from dyadic to multi-party session that makes liveness preservation more subtle. �

Unfair subtyping is appealing because of its simple and intuitive definition. Unfortu-
nately, it is easy to see that 6 and 6U are incomparable relations:
— On the one hand, we have T1 66U S1 and T1 6 S1 by taking T1 = µx.p?a.x and

S1 = µy.q!b.y. Indeed, T1 and S1 are 6-equivalent, because neither of them can
be part of a correct session, but they are unrelated by 6U because, according to
Definition 3.1, related session types must be syntactically similar.

— On the other hand, we have T2 6U S2 and T2 66 S2 by taking T2 = µx.p?a.(p!b.x ⊕
p!c.end) and S2 = µy.(p?a.p!b.y+ p?b.end). A behavior that distinguishes T2 from S2
is R = µz.q!a.(q?b.z+q?c.end) because p : R |q : T2 is correct but p : R |q : S2 is not.
This example shows that 6U allows the “unfair” behavior in which q never sends the
p!c message on which p relies to terminate.

In this section we show how to amend the definition of 6U so as to completely charac-
terize 6. We do so in three steps:

Fair Subtyping for Multi-Party Session Types 15

(1) We introduce a normal form for session types that allows us to focus on the subclass of
viable session types, those that can be part of correct sessions. We show that T 6U S

is a necessary condition for T 6 S when T and S are in normal form.
(2) We express T 6 S as the combination of the familiar T 6U S unfair subtyping for

session types and a T ≺ S relation that holds when the paths leading to successful
termination in T that have disappeared in S do not endanger correctness.

(3) We show that the T ≺ S relation can be reduced to checking the viability of a suitably
defined T −S session type, somehow representing the “behavioral difference” between
T and S.

3.2. Viability and Normal Form

We have seen that there exist flawed session types that cannot occur in any correct session
and that these session types are all equivalent according to fair subtyping regardless of
their syntax. We reserve a name for session types that can occur in correct sessions.
Definition 3.3 (viability). We say that T is viable if there exist M and p such that
M | p : T is correct. We write Tv for the set of viable session types.

A session type T is not viable if and only if T 6 bot. That is, being not viable
means being (6-smaller than) the bottom type. In a sense, viability and non-viability
correspond to the notions of inhabited and empty types in traditional type theories,
with one important caveat: there exist processes that behave according to non-viable
session types, but there are no contexts that can successfully interact (according to
Definition 2.2) with these processes. The existence of non-viable session types hinders
the coinductive characterization of the subtyping relation in the style of Definition 3.1
because this characterization is based on the intuition that semantically related session
types must be syntactically similar, while we have seen that this is not necessarily true
when non-viable session types are involved.

We now define a normal form that makes non-viable session types readily detectable
and the syntax of viable ones meaningful. Intuitively, we want to focus on those session
types such that every subterm contained in them has an end subterm. This property is
motivated by our definition of session correctness, which imposes the reachability of a
successfully terminated state. Therefore, we formalize the set of trees of a (session) type t
as the set of all the closed subterms of t. In fact, we will distinguish between continuation
trees and prefix trees of t: the former ones are the subterms that can be reached “at the
top level” of t without entering any prefix of t; the latter ones are the subterms of t
occurring within a prefix of t. Formally:
Definition 3.4 (trees of a type). For every type t we define the sets of continuation
trees and prefix trees of t as the smallest sets ctrees(t) and ptrees(t) such that:
— T ∈ ctrees(T);
—

∑
i∈I p?ai〈ti〉.Ti ∈ ctrees(T) or

⊕
i∈I p!ai〈ti〉.Ti ∈ ctrees(T) implies ti ∈ ptrees(T)

and Ti ∈ ctrees(T) for every i ∈ I.
A few examples to clarify the definitions are in order:

— We have ctrees(end) = {end} and ptrees(end) = ∅.

Luca Padovani 16

— We have ctrees(bot) = {bot} and ctrees(top) = ptrees(bot) = ptrees(top) = ∅.
— Given T = µx.p?a〈t〉.x we have ctrees(T) = {T} and ptrees(T) = {t}.
— Given T = µx.(q?a.(q!c.x ⊕ q!d.x) + q?b.end) we have ctrees(T) = {T, q!c.T ⊕

q!d.T, end} and ptrees(T) = {bot, top}.
— Given T = µx.p!a〈x〉.end we have ctrees(T) = {T, end} and ptrees(T) = {T}.

Note that the sets ctrees(t) and ptrees(t) are always finite because t is a regular tree
and therefore it is made of a finite number of distinct subtrees [Courcelle, 1983]. We are
now ready to define the class of session types in normal form.
Definition 3.5 (normal form). The set of types in normal form is the largest set Tnf ⊆ T

such that t ∈ Tnf implies either:
(1) t = bot, or
(2) t = top, or
(3) ptrees(t) ⊆ Tnf and end ∈ ctrees(T) for every T ∈ ctrees(t).

In words, the types bot and top are in normal form and the session type T is in normal
form if so is every type in ptrees(T) and if every continuation tree of T contains end. For
example T = µx.(q?a.(q!c.x⊕q!d.x)+q?b.end) is in normal form but S = µx.(q?a.(q!c.x⊕
q!d.bot) + q?b.end) is not because bot ∈ ctrees(S) and end 6∈ ctrees(bot).

Now:
Theorem 3.6. For every t ∈ T there exists s ∈ Tnf such that s ≶ t.

We postpone the algorithm for computing the normal form of a type to Section 4.2.
Intuitively, the normal form of any non-viable session type is bot and that of a viable
session type T can be obtained from T by recursively computing the normal form of all the
types in ptrees(T) and by pruning those branches of external choices whose continuation
is non-viable. For example, in the session type S = µx.(q?a.(q!c.x⊕ q!d.bot) + q?b.end)
defined above the a-tagged branch of the external choice is useless because followed by a
non-viable continuation. That branch can be pruned without changing the semantics of
S, hence we have S ≶ q?b.end where the latter session type is in normal form.

We now turn our attention to the properties of the normal form that are relevant to
the characterization of fair subtyping. The first one is that every type in normal form
other than bot and top is a viable session type. Therefore, the normal form effectively
makes the flawed/impossible behaviors easily recognizable from their syntax.
Theorem 3.7. For every t ∈ Tnf \ {bot, top} we have t ∈ Tv.

The second property is that, when restricted to types in normal form, fair subtyping
implies unfair subtyping.
Theorem 3.8. Let t, s ∈ Tnf . Then t 6 s implies t 6U s.
Remark 3.9. Given the notion of session correctness that we are considering, requiring
the reachability of an end state for all of the session types describing the behavior of the
participants of the session, it would appear natural to define session types as those terms
generated by the grammar in Table 1 that satisfy condition (3) of Definition 3.5. The
reason why we did not do so in the first place is that in general we need to be able to
write and reason on terms according to that grammar in its full generality. In particular,

Fair Subtyping for Multi-Party Session Types 17

in Section 3.4 we will define an operator that may produce session types that are not in
normal form. �

Note that the normal form imposes constraints only on the subterms in ctrees(t),
while the ones in ptrees(t) are only required to be in normal form. This observation
tells us that the viability of a session type T does not depend in any way on the types
that occur in the prefixes of T . To see why this is the case, consider a session M such that
M |p : T is S -correct. Then we can always define a “gentler” and “more accommodating”
session [M] from M such that [M] | p : T is R-correct for every R. The session [M] is
defined thus:
Definition 3.10 (ground session / session type). We say that a session (type) is ground if
every type in its output prefixes is bot and every type in its input prefixes is top. We write
[M] (respectively, [T]) for the ground session (type) corresponding to M (respectively,
T).

Intuitively, [M] is gentler than M because it only sends message arguments of type bot
(which T can always receive since (bot, t) ∈ R for every pre-subtyping R) and it is more
accommodating than M because it accepts message arguments of any type t (which is
granted from (t, top) ∈ R). We therefore have the following proposition:
Proposition 3.11. T is viable if and only if [T] is viable.

Proof. Trivial by definition of ground session (type).

The fact that the viability of T is independent of the types in ptrees(T) has important
consequences in the following. In particular, it allows us to characterize non-viability in
a purely inductive way (see Section 4.1).

3.3. Characterization of the Termination Property

Now that we work with session types with a “meaningful” syntax (Theorem 3.8) we can
more easily focus on the reasons why 6U is unsound with respect to 6. To begin with,
we see that 6U cannot introduce deadlocks and it can introduce livelocks only when
recursive session types are involved:
Proposition 3.12. Let T, S ∈ Tnf and T 6U S. The following properties hold:
(1) If T and S are finite, then T 6 S;
(2) If M | p : T is correct and M | p : S τ=⇒ N X τ−→, then N

X−→.
Proposition 3.12 shows that 6U is not too far away from being a characterization of

6. Therefore, we attempt at characterizing T 6 S as the combination of two relations:
T 6U S, expressing a safety property (S does not introduce deadlocks), and T ≺ S,
expressing a liveness property (S does not preclude the successful termination of any
context M that completes T). The “ruled by” relation ≺ is defined thus:
Definition 3.13. Let T, S ∈ Tnf and T 6U S. We say that T is ruled by S, written
T ≺ S, if M | p : T correct implies M | p : S X=⇒ for every M ground.

When T 6U S, the behavior S may preclude successful termination of a context M
that completes T only when some outputs in T have disappeared in S. The additional

Luca Padovani 18

property T ≺ S prevents this from happening. Observe that T 6 S implies T ≺ S, but
T ≺ S is much weaker than T 6 S. For example, we have p!a.end ≺ p!a.end⊕p!b.end even
though p!a.end 66 p!a.end⊕ p!b.end. In fact, ≺ precisely captures the difference between
6U and 6, in the sense that the largest relation included in 6U that is coherent with ≺
coincides with 6.
Theorem 3.14. Let 6C be the largest coinductive unfair subtyping such that T 6C S

implies T ≺ S. Then t 6 s if and only if t 6C s for every t, s ∈ Tnf .

3.4. Characterization of ≺ and Behavioral Difference

Although ≺ is a much weaker relation than 6, it still is defined in terms of an infinite set
of (ground) contexts M . We devote the last part of this section to seeking an alternative
characterization of it.

Assume for the sake of discussion that T 6U S and T 6≺ S, meaning that there exists
some context M such that the correctness of M | p : T crucially depends on the outputs
that T emits and that S does not. To find M , we define a session type T − S that
somehow represents the “difference” between T and S and that is viable if (and only if)
such M does exist. The intuition is for T − S to be the same as T , except that every
end that lies on a path shared by T and S is turned to a bot in T − S. Therefore, any
hypothetical context M such that M | p : (T − S) is correct can only count on those end
leaves found in T that have disappeared in S. Also, T −S performs no more inputs than
those performed by T . In this way we stay assured that, if M exists, it does not use any
additional input capability provided by S that is not provided by T .

Formally:
Definition 3.15 (session type difference). Let T 6U S. The difference of T and S,
denoted by T − S, is coinductively defined by the following equations:

bot− S = end− end = bot∑
i∈I p?ai〈ti〉.Ti −

∑
i∈I∪J p?ai〈si〉.Si =

∑
i∈I p?ai〈ti〉.(Ti − Si)⊕

i∈I∪J p!ai〈ti〉.Ti −
⊕

i∈I p!ai〈si〉.Si =
⊕

i∈J\I p!ai〈ti〉.Ti ⊕
⊕

i∈I p!ai〈ti〉.(Ti − Si)

The notation T − S is justified by the following properties:
Proposition 3.16. Let T 6U S. The following properties hold:
(1) T − S ϕ=⇒ if and only if T ϕ=⇒;
(2) [T − S] ϕX=⇒ if and only if [T] ϕX=⇒ and [S] Y ϕ=⇒.

Proof. Straightforward consequence of the definition of T − S.

In words, T −S performs all traces of actions performed by T and the completed traces
of [T] that are not completed traces of [S]. If we let traces(T) = {ϕ | T ϕX=⇒} denote
the set of completed traces of T , then we may reformulate Proposition 3.16(2) as

traces([T − S]) = traces([T]) \ traces([S]) .

The fact that Proposition 3.16(2) holds for ground session types [T − S], [T], and [S] is
because, in general, T and S may input/output messages with different argument types

Fair Subtyping for Multi-Party Session Types 19

in accordance with the covariance/contravariance of 6U with respect to input/output
prefixes.
Example 3.17. Consider the session types T , S2, and S∞ from Figure 1. We can express
their corresponding set of completed traces using regular expressions over the alphabet
of actions of the form seller!Buy and seller!Done, in this way:

traces(T) = seller!Buy∗ seller!Done
traces(S2) = (seller!Buy seller!Buy)∗ seller!Done

traces(S∞) = ∅

In particular, we have: traces(T) is the language of strings made of an arbitrary number
of seller!Buy actions followed by exactly on seller!Done action; traces(S2) is similar,
but the number of seller!Buy actions is always even; traces(S∞) is empty because S∞
has no end subterm.

Now, according to Definition 3.15 we have:

T − S2 = seller!Buy.(seller!Buy.(T − S2)⊕ seller!Done.end)⊕ seller!Done.bot
T − S∞ = T

from which we verify that traces(T − S∞) = traces(T) and

traces(T − S2) = seller!Buy (seller!Buy seller!Buy)∗ seller!Done

which corresponds to the language of strings made of an odd number of seller!Buy
actions followed by exactly on seller!Done action, that is the difference of traces(T)
and traces(S2). �

Example 3.18. Consider the session types T and S from Figure 2. We have:

traces(T) = (?Offer (!OK + !NO))∗ ?Done
traces(S) = (?Offer !NO ?Offer (!OK + !NO))∗ (ε+ ?Offer !NO) ?Done

showing that seller : S systematically rejects any odd-indexed offer from buyer. Now
we have:

T−S = ?Offer.(!OK.T⊕!NO.(?Offer.(!OK.(T−S)⊕!NO.(T−S))+?Done.bot))+?Done.bot

and

traces(T − S) = (?Offer !NO ?Offer (!OK + !NO))∗ ?Offer !OK traces(T)

where every trace has at least one odd-indexed offer that is accepted. This suggests the
existence of a behavior for buyer such as (1.2). �

The general relation between T ≺ S and T −S is stated by the following result, which
allows us to reduce T ≺ S to the viability of T − S.
Theorem 3.19. Let T, S ∈ Tnf and T 6U S. Then T ≺ S if and only if T − S is not
viable.

The basic idea of the proof, which is detailed in Section B, is that any session M such
that M | p : (T − S) is correct crucially relies on the paths to end that are in T but not
in S. In particular, it can be shown that M | p : T is correct and M | p : S YX=⇒, which
means T 6≺ S.

Luca Padovani 20

Table 4. Termination paths of a session type (inductive definition).
(P-End)
end ↓ {end}

(P-Input)
T =

∑
i∈I p?ai〈ti〉.Ti ∃k ∈ I : Tk ↓ π

T ↓ {T} ∪ π

(P-Output)
T =

⊕
i∈I p!ai〈ti〉.Ti ∃k ∈ I : Tk ↓ π

T ↓ {T} ∪ π

4. Deduction Systems and Algorithms

4.1. Axiomatization of Fair Subtyping

The viability of a session type T is related to the reachability of end subtrees occurring
in it. The first notion we formalize is that of termination path of a session type T , which
is defined as a set of subterms of T denoting a path from T to one of its end subterms.
If we think of a session type T as a possibly infinite, regular tree, a termination path of
T is just a set of nodes traversed following any path from T to one of its leaves.
Definition 4.1 (termination paths). The relation T ↓ π, read T has termination path
π, is inductively defined by the axiom and rules in Table 4. We write paths(T) for the
set of termination paths of T , that is paths(T) def= {π | T ↓ π}.

According to axiom (P-End), the session type end has one termination path only,
which contains end. Rules (P-Input) and (P-Output) simply state that branching
session types T have as many termination paths as the overall number of termination
paths of their branches, each path enriched with the T node.

The following ones are straightforward properties of termination paths:
Proposition 4.2. The following properties hold:
(1) paths(T) is finite for every T ;
(2) T ϕX=⇒ implies T ↓ π and π ⊆ {S | ∃ψ ≤ ϕ : T ψ=⇒ S} for some π.

Proof. Regarding item (1), observe that T ↓ π implies π ⊆ ctrees(T) and ctrees(T) is
finite. Item (2) follows from a simple induction on ϕ.

Item (2) states that, whenever there is a derivation T
ϕX=⇒, then this derivation goes

through every node of some termination path of T and possibly other nodes. The reason
why the derivation T

ϕX=⇒ may go through nodes that are not in a termination path of
T is that the traversal of internal choices may yield subterms that are not in ctrees(T)
because of rule (T-Choice). For example, a session type such as T = p!a.end⊕ p!b.end
has only the termination path {T, end}, but T has two derivations

T
τ−→ p!a.end q:p!a−−−→ end

T
τ−→ p!b.end q:p!b−−−→ end

that traverse the nodes p!a.end and p!a.end not in ctrees(T).
We can now present the complete axiomatization of non-viability as the least predicate

Fair Subtyping for Multi-Party Session Types 21

Table 5. Axiomatization of non-viability (inductive definition).
(B-Path)
∀T ↓ π : ∃S ∈ π : NonViable(S)

NonViable(T)

(B-Output)
∃k ∈ I : NonViable(Tk)

NonViable(
⊕
i∈I

p!ai〈ti〉.Ti)

NonViable(T) defined by the rules in Table 5. Rule (B-Path) serves as an axiom when
T has no termination paths. In this case T has no end subterm and therefore is trivially
non-viable (reachability of end is a necessary condition for viability). In general, the
rule says that T is non-viable if every termination path of T goes through some node
S (different from T) that is itself non-viable. Rule (B-Output) states that an internal
choice T is non-viable if some of its branches are non-viable. This follows from the fact
that the participant behaving as T may autonomously choose that particular branch,
which leads the whole session to an unrecoverable error state.

The presented axiomatization is correct and complete with respect to non-viability:
Theorem 4.3. NonViable(T) if and only if T is not viable.
Example 4.4. Consider the session type T = µx.(p?a.x + p?b.(q!c.end⊕ q!d.bot)) and
observe that it has only the termination path π = {T, q!c.end ⊕ q!d.bot, end}. We have
the following derivation showing that T is not viable:

q!c.end⊕ q!d.bot ∈ π

(B-Path)
NonViable(bot)

(B-Output)
NonViable(q!c.end⊕ q!d.bot)

(B-Path)
NonViable(T)

The topmost application of rule (B-Path) has no premises because bot has no termina-
tion paths. Note that rule (B-Output) is essential for proving NonViable(T) (and more
generally for completeness of NonViable(·)) because q!c.end⊕ q!d.bot has a termination
path, but it also has a non-viable branch. �

Example 4.5. Consider the session types T and S from Figure 2. We have:

T − S = ?Offer.R1 + ?Done.bot
R1 = !OK.T ⊕ !NO.R2
R2 = ?Offer.R3 + ?Done.bot
R3 = !OK.(T − S)⊕ !NO.(T − S)

Every termination path of T − S has either the form {T − S,R1} ∪ π or the form
{T − S,R1, R2, R3} ∪ π where π is a termination path of T . None of the session types in
π is non-viable because T is in normal form and different from bot. As a consequence,
R1 is non-viable only if R2 is non-viable, R2 is non-viable only if R3 is non-viable, and
R3 is non-viable only if T −S is non-viable. In conclusion, we are not able to find a finite
derivation proving NonViable(T − S), as expected. �

Now that we have a complete axiomatization for non-viability, we can easily derive one
for fair subtyping. We define 6F as the largest relation that satisfies the axioms and rules
of Table 6, which basically are the same axioms and rules for unfair subtyping (Table 3)

Luca Padovani 22

Table 6. Axiomatization of fair subtyping for session types in normal form
(coinductive definition).

(F-Bottom)
bot 6F t

(F-Top)
t 6F top

(F-End)
end 6F end

(F-Input)
∀i ∈ I : ti 6F si ∀i ∈ I : Ti 6F Si∑
i∈I

p?ai〈ti〉.Ti 6F
∑
i∈I∪J

p?ai〈si〉.Si

(F-Output)
∀i ∈ I : si 6F ti ∀i ∈ I : Ti 6F Si NonViable(T − S)

T =
⊕
i∈I∪J

p!ai〈ti〉.Ti 6F
⊕
i∈I

p!ai〈si〉.Si = S

except for the additional premise NonViable(T −S) for rule (F-Output) relating T and
S when these are internal choices. We have:
Theorem 4.6. Let t, s ∈ Tnf . Then t 6C s if and only if t 6F s.

Note that the axiomatization is complete with respect to the set of session types in
normal form. In Section 4.2 we will see an algorithm for deciding the viability of a session
type. This will give us an effective way of computing the normal form of a session type
according to the equations (4.1).
Example 4.7. Consider once again the session types T and S from Example 3.17. The
infinite derivation...

T 6F S NonViable(T − seller!Buy.S)
T 6F seller!Buy.S end 6F end NonViable(T − S)

T 6F S
shows that T 6 S. Indeed, we have

T − S = seller!Buy.(T − seller!Buy.S)⊕ seller!Done.bot
T − seller!Buy.S = seller!Buy.(T − S)⊕ seller!Done.end

and the derivations
(B-Path)

NonViable(bot)
(B-Output)

NonViable(T − S)
and

(B-Path)
NonViable(bot)

(B-Output)
NonViable(T − S)

(B-Output)
NonViable(T − seller!Buy.S)

easily follow from Table 5. �

4.2. Algorithms

We now present algorithms for deciding viability, for computing the normal form of viable
session types, and for deciding subtyping. As we have seen, viability is a crucial notion

Fair Subtyping for Multi-Party Session Types 23

of our theory since it characterizes those behaviors that can successfully cooperate in at
least one session. From a practical point of view, the algorithm for viability gives us the
tool for computing the normal form of session types and for deciding fair subtyping (see
Table 6).

The algorithm for deciding viability assumes initially that every subtree of some session
type T is viable and iteratively discards those subtrees for which this assumption is
disproved. Each iteration performs two checks, corresponding to the two rules of Table 5: a
subtree S ∈ trees(T) is viable provided that end can be reached from it via a termination
path whose nodes are all viable; output nodes are viable provided that every branch is
viable. Formally, let the viability sequence for T be the sequence {VT

i }i∈N of sets of
session types defined in this way:

VT
0 = ctrees(T)

VT
2i+1 = {S ∈ VT

2i | ∃π ∈ paths(S) : π ⊆ VT
2i}

VT
2i+2 = {end ∈ VT

2i+1} ∪ {
∑
j∈I p?aj〈tj〉.Tj ∈ VT

2i+1}
∪ {

⊕
j∈I p!aj〈tj〉.Tj ∈ VT

2i+1 | ∀j ∈ I : Tj ∈ VT
2i+1}

Every set in the sequence is finite and the sequence is decreasing. Therefore, there
exists k ∈ N such that VT

k = VT
k+1 = VT

k+2 and we denote the fixpoint of the sequence
with viables(T). We have:
Theorem 4.8 (viability). T ∈ Tv if and only if T ∈ viables(T).
Example 4.9. In Example 4.4 we have shown that the session type T = µx.(p?a.x +
p?b.(q!c.end⊕ q!d.bot)) is not viable by building a derivation for NonViable(T). This is
the viability sequence for T :

VT
0 = {end, bot, q!c.end⊕ q!d.bot, T}

VT
1 = {end, q!c.end⊕ q!d.bot, T}

VT
2 = {end, T}

VT
3 = VT

4 = VT
5 = {end}

Note that T is in VT
1 because it has a termination path whose nodes are all in VT

0 . It
is only at step 3 that the algorithm discards T because all of its termination paths go
through some non-viable node. �

Once we know how to identify viable session types effectively, computing their normal
form is only a matter of pruning away those subtrees that are not viable. The normal
form of a type t, denoted by nf(t), is defined coinductively according to the following
equation:

nf(t) =

top if t = top
bot if t = T 6∈ viables(T)
end if t = end∑
i∈I,Ti∈viables(Ti) p?ai〈nf(ti)〉.nf(Ti) if t =

∑
i∈I p?ai〈ti〉.Ti⊕

i∈I p!ai〈nf(ti)〉.nf(Ti) if t =
⊕

i∈I p!ai〈ti〉.Ti

(4.1)

where the cases from the third to the last one apply when t ∈ viables(t). Note that,

Luca Padovani 24

Table 7. Algorithmic subtyping (inductive definition).
(A-Axiom)
Γ, (t, s) ` t 6A s

(A-Bottom)
Γ ` bot 6A t

(A-Top)
Γ ` t 6A top

(A-End)
Γ ` end 6A end

(A-Input)
∀i ∈ I : Γ, (t, s) ` ti 6A si ∀i ∈ I : Γ, (t, s) ` Ti 6A Si

Γ ` t =
∑
i∈I

p?ai〈ti〉.Ti 6A
∑
i∈I∪J

p?ai〈si〉.Si = s

(A-Output)
∀i ∈ I : Γ, (T, S) ` si 6A ti ∀i ∈ I : Γ, (T, S) ` Ti 6A Si T − S 6∈ viables(T − S)

T =
⊕
i∈I∪J

p!ai〈ti〉.Ti 6A
⊕
i∈I

p!ai〈si〉.Si = S

since t is a regular tree, nf(t) can always be expressed by means of a finite number
of equations that can be folded into a finite term using µ and recursion variables (see
Example 4.11 below).
Theorem 4.10 (normal form). For every t ∈ T we have nf(t) ∈ Tnf and t ≶ nf(t).
Example 4.11. Consider the session type T = µx.(q!a.(q?c.x+ q?d.bot)⊕ q!b.end) and
observe that it is viable. According to equation (4.1), we have:

nf(T) = q!a.nf(q?c.T + q?d.bot)⊕ q!b.nf(end)
nf(q?c.T + q?d.bot) = q?c.nf(T)

nf(end) = end

from which we obtain nf(T) = µy.(q!a.q?c.y ⊕ q!b.end). �

We conclude this section with the presentation of algorithmic fair subtyping: we write
t 6A s if ∅ ` t 6A s is inductively derivable by the axioms and rules in Table 7. Beside
the fact that 6A is defined inductively, rather than coinductively, there are only two
differences with respect to 6F presented in Table 6:
— Judgments have the form Γ ` t 6A s where Γ is a memoization context recording pairs

of types that are assumed to be related by fair subtyping. The context is enriched in
rules (A-Input) and (A-Output) with the pair of types being related and the new
rule (A-Axiom) allows one to deduce t 6A s whenever this pair of types occurs in
the memoization context.

— The premise NonViable(T − S) in rule (F-Output) has been replaced by its algo-
rithmic variant T − S 6∈ viables(T − S), which corresponds to the non-viability of
T − S as by Theorem 4.8.

Algorithmic subtyping is complete with respect to 6F and, therefore, with respect to
6 for session types in normal form. Termination of the algorithm is trivially guaranteed
by the memoization context: for every pair of types t and s, the memoization context of a
derivation for t 6A s is bounded by the set (trees(t)∪trees(s))×(trees(t)∪trees(s)),
which is finite (the details can be found in Appendix C).

Fair Subtyping for Multi-Party Session Types 25

Theorem 4.12. Let t, s ∈ Tnf . Then t 6F s if and only if t 6A s.
One can now combine Theorems 4.8, 4.10, and 4.12 to define a complete algorithm for

deciding t 6 s in the general case:
Corollary 4.13. t 6 s if and only if nf(t) 6A nf(s).

5. Related Work

Notions that are similar (if not equal) to session correctness and fair subtyping can
be found in several different contexts. The works by Malik et al. [2004, 2006] define a
notion of conflict for concurrent systems as a state of the system from which no terminal
state can be reached anymore. Therefore, systems that are free from conflicts, which
are called nonblocking, correspond to correct sessions and the induced preorder relation,
called conflict preorder, has the same properties of fair subtyping. In the context of Web
services and service replaceability, Bravetti and Zavattaro [2008, 2009] define notions
of correct composition and of subcontract for Web services contracts that correspond
to correct sessions and fair subtyping. Contracts are represented as terms of a ccs-
like process algebra and describe the observable behavior of Web services. Mooij et al.
[2010] also work in the context of Web services, although they describe the behavior of
services by means of labeled transition systems and do not resort to a concrete language.
Their accordance relation corresponds to our fair subtyping. Finally, Baldoni et al. [2009]
define notions of interoperability and conformance for finite-state automata describing
the behavior of multi-agent systems. Again, these two notions present many similarities
with session correctness and fair subtyping in our setting.

Aside from the terminology, we can identify two major differences between the present
work and the aforementioned ones. First of all, we work with a language of higher-order
session types where it is possible to describe the type of the exchanged messages, while in
all the mentioned approaches messages are abstracted as atomic names. As we have seen
in Section 2, this aspect has a substantial impact on the theory, because it requires to
address a circularity between the labeled transition system of sessions (which is defined in
terms of subtyping) and fair subtyping (which is defined in terms of the labeled transition
system). We are aware of just two ways to break this circularity: one possibility is to
impose a stratification on session types so that the type of messages in a session type
is “simpler” than the session type itself. A shortcoming of this approach, pursued for
example in Castagna et al. [2009]; Barbanera and de’Liguoro [2010]; Padovani [2012], is
that it prevents the usage of session types of the form µx.p?a〈x〉.end or µy.p!a〈y〉.end,
denoting the behavior of processes that communicate messages having the same type of
the channels over which they are communicated. The second approach, which we have
pursued here for the first time, is to define subtyping as the fixpoint of suitable (i.e.,
monotone) operator.

The second substantial difference between the present work and the ones cited above
is the degree of characterization of the fair subtyping relation. Bravetti and Zavattaro
[2009] only present a reduction of the subcontract relation to the should testing pre-
order [Natarajan and Cleaveland, 1995; Rensink and Vogler, 2007]; Mooij et al. [2010]

Luca Padovani 26

provide conditions under which the two relations coincide; Ware and Malik [2011] pro-
vide a characterization of the conflict preorder by comparing corresponding states on
the behaviors being related. The characterization relies on a notion of “less conflicting
states” and of language of “certain conflicts”. Bugliesi et al. [2010] provide a coinduc-
tive characterization that is sound but not complete. The coinductive characterization
given by Baldoni et al. [2009] is unsound in our setting, since it relies on a notion of
interoperability that is coarser than session correctness. For example, the session

p : µx.(q?a.q!c.x+ q?b.end) | q : µy.p!a.(p?c.y + p?d.end)

is incorrect but interoperable according to Baldoni et al. [2009]. In summary, to the
best of our knowledge we have provided the first complete coinductive and axiomatic
characterizations of a liveness-preserving refinement relation. Remarkably, both these
characterizations are variations of corresponding characterizations for “unfair” subtyping
relations (see Gay and Hole [2005]), which makes them easy to understand.

The framework we have depicted is similar and closely related to fair testing [Natarajan
and Cleaveland, 1995; Rensink and Vogler, 2007]. Testing is a general technique for
defining refinement relations v between processes so that, when P v Q holds, the process
Q can be safely used in place of process P because every test that P passes is passed
also by Q. Fair testing adds a fairness assumption to standard testing: if a system goes
infinitely often through a state from which some action is possible, a component of the
system may rely upon the eventual observation of that action to terminate successfully.
In the present paper, we instantiate fair testing to a context where processes are session
types describing the behavior of participants of a multi-party session and the test is given
by the correctness of a session. Unlike the standard fair testing framework, our notion
of test is therefore symmetric, in the sense that all of the session participants must be
able to terminate successfully, whereas in the traditional fair testing only the “tester”
process has to. This difference has deep consequences on the properties of fair subtyping.
In particular, the existence of equivalent, non-viable session types is the distinguishing
feature between fair subtyping and the should testing preorder and, interestingly enough,
both the coinductive and the axiomatic characterizations of fair subtyping heavily rely
on non-viability.

Alternative characterizations of the should testing preorder have already been given in
the literature. Natarajan and Cleaveland [1995] present a characterization based on sets of
infinite strings, while Rensink and Vogler [2007] rely on a denotational model of processes.
In both cases the characterizations are quite complex, if compared to ours, because they
are semantically – rather than syntactically – based. In fact, as pointed out in Rensink and
Vogler [2007], no complete axiomatization of the should testing preorder is known at the
present time. We are currently investigating whether the insight gained with our theory
can help solving this open problem and we conjecture that the restriction of should-testing
to finite-state processes (where parallel composition is forbidden underneath recursions)
shares the same trace-related properties (and possibly the behavioral characterization)
of fair subtyping. A major obstacle to extending the characterization of fair subtyping to
a more general process language, in particular one that includes parallel composition, is
that a normal form for such processes with respect to liveness-preserving refinements is

Fair Subtyping for Multi-Party Session Types 27

not known. Traditionally, parallel composition is dealt with with suitable expansion laws
that rephrase it in terms of sequential and choice operators. In our case, however, it is
not clear whether such law can be defined.

In [Padovani, 2013] we report on some preliminary results regarding various extensions
of the present work. First of all, in [Padovani, 2013] we have weakened the notion of session
correctness so as to take into account non-terminating behaviors. The fair subtyping
relation induced in this way is finer than 6 and all session types turn out to be viable.
On the one hand, this makes the technique described in the present paper, which is based
on behavioral difference (Definition 3.15), no longer applicable. On the other hand, we
have been able to generalize the “ruled by” relation appropriately. Second, in [Padovani,
2013] we show how to extend fair subtyping to open session types (see Section 6 for
the reasons why this extension is important). The obtained relation turns out to be an
original precongruence not investigated elsewhere and for which we are able to provide
complete coinductive and axiomatic characterizations. The axiomatic characterization,
in particular, is more involved than the one given in Section 4, because the syntactic
structure of recursive terms impacts subtyping. In [Padovani, 2013] we have also chosen
to work with atomic messages not distinguishing the identity of the participants of a
session. When restricted to closed session types, and modulo the differences induced
by non-terminating behaviors, the fair subtyping relation in [Padovani, 2013] coincides
with 6. This seems to suggest that fair subtyping defined in the present paper can be
easily adapted to more general session type languages like for example that described
in [Castagna et al., 2012], where choices are not directed (different branches of the same
internal/external choice may regard different participants).

6. Conclusion and Future Work

The subtyping relation for session types has been originally introduced by Gay and Hole
[2005] and later explored in a semantic framework by Castagna et al. [2009], Padovani
[2011b], and by Barbanera and de’Liguoro [2010]. The subtyping relations defined in these
works do not guarantee liveness in multi-party sessions (see Section 1). In the present work
we have proposed an alternative theory of (higher-order) session types with a stronger
notion of session correctness in which the session preserves the possibility to reach a
successfully terminated state for all of its participants. We have thoroughly studied the
subtyping relation semantically induced by this notion of session correctness and provided
coinductive and axiomatic characterizations for it. In both cases, the characterizations
are variants of the corresponding ones for “unfair” subtyping relations.

Beside its liveness preserving property, it may be argued that preserving the possibility
of termination is a general, desirable property of sessions in session-oriented computing.
This consideration is supported by everyday experience, whereby sessions established
with online services (such as electronic auctions and commerce, home banking and postal
services, social networks) always envisage an implicit or explicit “log out” action. In this
respect our theory makes sense (and is applicable) also in the dyadic case, when only
two communicating parties are involved. However, the study of fair subtyping pursued in
this work is just the first step to make the theory profitable in practice. We devote the

Luca Padovani 28

rest of this section to illustrating a few interesting problems that may deserve further
investigations.

A first problem has to do with the fact that the standard coinductive techniques
for type checking recursive processes are unsound when used in conjunction with fair
subtyping. For example, consider the process

P = rec X.x!a〈e〉.X

that repeatedly sends an a-tagged message with argument e (a generic expression) on
channel x, and consider the session type

T = µx.(p!a〈t〉.x⊕ p!b〈s〉.end)

associated with channel x. Clearly, P cannot fulfill its obligation to (eventually) send a
b-tagged message and yet P would be declared well typed according to a derivation like
the following one:

` e : t
(T-Rec Var)

{X 7→ x : T};x : T ` X
(T-Output)

{X 7→ x : T};x : p!a〈t〉.T ` x!a〈e〉.X T 6 p!a〈t〉.T
(T-Sub)

{X 7→ x : T};x : T ` x!a〈e〉.X
(T-Rec)

x : T ` rec X.x!a〈e〉.X
Rule (T-Rec) records the environment x : T used for type checking P , so that an
occurrence of the process variable X within the same environment can be declared well
typed. Rule (T-Sub) is a standard subsumption rule asserting that the process correctly
uses channel x with type T even though the actual behavior of P on x is p!a〈t〉.T .
The reason why p!a〈t〉.T 6 T holds is because the two behaviors only differ for just
one output action. Then, (T-Output) simply verifies that the process behaves correctly
with respect to the channel it uses, and (T-Rec Var) closes the deduction. The problem
of this derivation is that the subsumption rule is applied only once, but since it occurs
within a recursion it is used to enforce the relation T 6 µx.p!a〈t〉.x which does not
hold. An easy way to circumvent the problem, at the expense of a quite rigid type
discipline, is to forbid (T-Sub) applications altogether or within the scope of recursions.
Alternatively, one may attempt at extending the semantics of session types to open
terms and identify the recursive contexts for which 6 is sound. This extension, however,
is far from being trivial. Indeed, in the two main bodies of work on fair testing, proper
handling of open terms is either not addressed [Natarajan and Cleaveland, 1995] or
shown to have considerable effects on the properties of the relation (by inducing trace
equivalence) [Rensink and Vogler, 2007]. As discussed in Section 5, some preliminary
results concerning fair subtyping for open session types can be found in [Padovani, 2013].

A second problem that concerns the static analysis in conjunction with the expressive-
ness of the session type language is related to the fairness assumption. In the present
work, as well as in all the other works where liveness-preserving refinements are pre-
sented, the so-called “fairness assumption” holds globally: every internal choice that is
taken infinitely often must infinitely often enable all of its branches. This assumption im-
plies that the internal choice is taken by the process performing it independently of the
environment. There are cases, however, where the outcome of an internal choice depends

Fair Subtyping for Multi-Party Session Types 29

on data that the process has received from the environment. As an example, consider the
(correct) session

p : µx.q!Login〈string〉.(q?OK.end + q?NO.x) | q : µy.p?Login〈string〉.(p!OK.end⊕ p!NO.y)

describing a participant p trying to log into a service provided by participant q. The
internal choice performed by q depends on the credentials sent by p: if the process im-
plementing p insists on sending the same invalid credentials to the process implementing
q, q will systematically answer with a NO-tagged message. Therefore, we have an incon-
sistency between the fair termination of the session as abstracted in terms of session
types and the fact that one of its possible implementations fails to terminate. In this
example it may be argued that the internal choice performed by q is actually an external
choice in disguise: it is true that q performs a test to verify the credentials sent by p,
but ultimately it is p that determines the outcome of the internal choice. At the same
time, the choice cannot be advertised as external in the session type, if only because
this would require the publication of the valid credentials that make q answer with an
OK-tagged message! One way to address this issue could be to distinguish between “fair”
and “unfair” internal choices within the same language of session types. In the example
above, the internal choice performed by q would be “unfair” because utterly dependent
on some decision (which credentials to send) that is external to q. As a consequence,
the session would be declared incorrect because, among the admitted behaviors of p, is
the one where p repeatedly sends the same credentials. We are not aware of any work
considering both “fair” and “unfair” internal choices within the same process language,
whose semantics appears to be an intriguing challenge.

On a more theoretical side, we wish to recall an interesting line of work developed
around an interpretation of session types as formulas of linear logic [Caires and Pfenning,
2010]. Under this interpretation, the choice operators found in session types can be
naturally explained as standard connectives of linear logic. In accordance with other
interpretations of types as formulas, subtyping relations can be usually understood as
logical entailment. An intriguing research problem, then, is to understand the logical
characterization of the liveness preserving property of fair subtyping, in addition to the
coinductive and axiomatic (but behavioral) characterizations we have studied here.

Acknowledgments. This work has been partially supported by two visiting professor
positions at the Laboratoire Preuves, Programmes et Systèmes of the Université Paris
Diderot. The author is grateful to the MSCS reviewers for their insightful comments
which helped resolving inconsistencies and improving presentation of the article. The
author wishes to thank also Ugo de’ Liguoro, Daniele Varacca and Gianluigi Zavattaro
with whom he had enlightening discussions on the topics covered in this article.

References

Luca Aceto and Matthew Hennessy. Termination, deadlock, and divergence. Journal of
the ACM, 39:147–187, 1992.

Matteo Baldoni, Cristina Baroglio, Amit K. Chopra, Nirmit Desai, Viviana Patti, and

Luca Padovani 30

Munindar P. Singh. Choice, interoperability, and conformance in interaction protocols
and service choreographies. In Proceedings of AAMAS’09, volume 2, pages 843–850.
ACM, 2009.

Franco Barbanera and Ugo de’Liguoro. Two notions of sub-behaviour for session-based
client/server systems. In Proceedings of PPDP’10, pages 155–164. ACM, 2010.

Mario Bravetti and Gianluigi Zavattaro. A foundational theory of contracts for multi-
party service composition. Fundamenta Informaticae, 89(4):451–478, 2008.

Mario Bravetti and Gianluigi Zavattaro. A theory of contracts for strong service compli-
ance. Mathematical Structures in Computer Science, 19(3):601–638, 2009.

Michele Bugliesi, Damiano Macedonio, Luca Pino, and Sabina Rossi. Compliance pre-
orders for Web Services. In Proceedings of WS-FM’09, LNCS 6194, pages 76–91.
Springer, 2010.

Lúıs Caires and Frank Pfenning. Session types as intuitionistic linear propositions. In
Proceedings of CONCUR’10, LNCS 6269, pages 222–236. Springer, 2010.

Giuseppe Castagna, Rocco De Nicola, and Daniele Varacca. Semantic subtyping for the
pi-calculus. Theoretical Computer Science, 398(1-3):217–242, 2008.

Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, Elena Giachino, and Luca
Padovani. Foundations of session types. In Proceedings of PPDP’09, pages 219–230.
ACM, 2009.

Giuseppe Castagna, Mariangiola Dezani-Ciancaglini, and Luca Padovani. On Global
Types and Multi-Party Sessions. Logical Methods in Computer Science, 8:1–45, 2012.

Bruno Courcelle. Fundamental properties of infinite trees. Theoretical Computer Science,
25:95–169, 1983.

Simon Gay and Malcolm Hole. Subtyping for session types in the π-calculus. Acta
Informatica, 42(2-3):191–225, 2005.

Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language primitives and
type disciplines for structured communication-based programming. In Proceedings
of ESOP’98, LNCS 1381, pages 122–138. Springer, 1998.

Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asynchronous session
types. In Proceedings of POPL’08, pages 273–284. ACM, 2008.

Kohei Honda. Types for dyadic interaction. In Proceedings of CONCUR’93, LNCS 715,
pages 509–523. Springer, 1993.

Robi Malik, David Streader, and Steve Reeves. Fair testing revisited: A process-algebraic
characterisation of conflicts. In Proceedings of ATVA’04, pages 120–134. Springer, 2004.

Robi Malik, David Streader, and Steve Reeves. Conflicts and fair testing. International
Journal of Foundations of Computer Science, 17(4):797–814, 2006.

Arjan J. Mooij, Christian Stahl, and Marc Voorhoeve. Relating fair testing and accor-
dance for service replaceability. Journal of Logic and Algebraic Programming, 79(3-
5):233–244, 2010.

V. Natarajan and Rance Cleaveland. Divergence and fair testing. In Proceedings of
ICALP’95, LNCS 944, pages 648–659. Springer, 1995.

Luca Padovani. Fair Subtyping for Multi-Party Session Types. In Proceedings of CO-
ORDINATION’11, volume LNCS 6721, pages 127–141. Springer, 2011.

Luca Padovani. Session Types = Intersection Types + Union Types. In Proceedings of
ITRS’10, volume EPTCS 45, pages 71–89, 2011.

Fair Subtyping for Multi-Party Session Types 31

Luca Padovani. On projecting processes into session types. Mathematical Structures in
Computer Science, to appear, 2012.

Luca Padovani. Fair subtyping for open session types. Technical Report 146/13, Di-
partimento di Informatica, Università di Torino, 2013. Available at http://www.di.
unito.it/˜padovani/Papers/OpenFairSubtyping.pdf.

Benjamin Pierce and Davide Sangiorgi. Typing and subtyping for mobile processes.
Mathematical Structures in Computer Science, 6(5):409–453, 1996.

Arend Rensink and Walter Vogler. Fair testing. Information and Computation,
205(2):125–198, 2007.

Simon Ware and Robi Malik. A state-based characterisation of the conflict preorder. In
Proceedings of FOCLASA’11, volume EPTCS 58, pages 34–48, 2011.

Appendix A. Supplement to Section 2

For the sake of readability, in the propositions and proofs that follow we use 6S to
denote the relation F(S).

We begin by proving a number of results showing the relation between T 6S S and
the transitions of T and S. These results pave the way to the proofs of Lemmas A.5
and A.6 that form the core of the monotonicity proof for F.
Proposition A.1. T τ=⇒S T ′ implies T 6S T ′.

Proof. Let M | p : T be S -correct. Then M | p : T τ=⇒S M | p : T ′, hence M | p : T ′ must
be S -correct as well.

In what follows we will sparingly use some abbreviated notation for denoting repeated
sequences of input/output actions. In particular:
— We will write {p1, . . . , pn}?a.T in place of some p1?a · · · pn?a.T .
— We will write {p1, . . . , pn}!a.T in place of some p1!a · · · pn!a.T .
We will make sure that the order in which the various input/output actions are performed
is irrelevant. Also, we will write

∏
i=1..n pi : Ti in place of the session M = p1 : T1 |· · ·|pn :

Tn and we will write M(pi) for Ti (that is, the session type associated with role pi in
M).

Proposition A.2. Let S ⊆ R and T 6S S and T p:q?a〈t〉−−−−−→R T ′ and T ′ be viable. Then
S

p:q?a〈t〉−−−−−→R S′ and T ′ 6S S′.

Proof. From the hypothesis T p:q?a〈t〉−−−−−→R T ′ we deduce T p:q?a〈s〉−−−−−→S T ′ for some s such
that (t, s) ∈ R. Let M | p : T ′ be a S -correct session where dom(M) = {q1, . . . , qm}. We
can assume, without loss of generality, that q ∈ {q1, . . . , qm}. Consider

N
def= q : p!a〈s〉.{q1, . . . , qm} \ {q}?ack.M(q) |

∏
i=1..m,q6=qi

qi : q!ack.M(qi)

where ack is an arbitrary tag. We have that N | p : T is S -correct by construction of N
and N | p : T τ=⇒S M | p : T ′. From the hypothesis T 6S S we deduce that N | q : S is

http://www.di.unito.it/~padovani/Papers/OpenFairSubtyping.pdf
http://www.di.unito.it/~padovani/Papers/OpenFairSubtyping.pdf

Luca Padovani 32

S -correct, therefore S q?a〈s〉−−−−→S S′ for some S′ and M | p : S′ is S -correct. We deduce
T ′ 6S S′ because M is arbitrary. From (t, s) ∈ R we conclude S q?a〈t〉−−−−→R S′.

Proposition A.3. Let T =
⊕

i∈I r!ai〈ti〉.Ti be viable and T 6S S. Then S =
⊕

i∈J r!ai〈si〉.Si
and J ⊆ I and (si, ti) ∈ S and Ti 6S Si for every i ∈ J .

Proof. From the hypothesis T viable we deduce that every Ti is viable. Let {Mi}i∈I be
a family of sessions such that Mi | p : Ti is S -correct for every i ∈ I. Without loss of
generality we may assume that dom(Mi) = dom(Mj) = {q1, . . . , qm} for every i, j ∈ I (if
this is not the case, appropriate qi : end participants can be added wherever necessary).
For every j ∈ {1, . . . ,m}, let

Nj
def= qj :

{∑
i∈I p?ai〈ti〉.{q1, . . . , qm} \ {r}!ai.Mi(r) if r = qj∑
i∈I r?ai.Mi(qj) otherwise

and let N def=
∏m
i=1 Ni. We have that N | p : T is S -correct and from the hypothesis

T 6S S we deduce that N | q : S is S -correct. Therefore S =
⊕

i∈J r!ai〈si〉.Si and
J ⊆ I and (si, ti) ∈ S for every i ∈ J . Furthermore, N | p : S τ=⇒S Mi | p : Si for every
i ∈ J , hence Ti 6S Si for every i ∈ J because each Mi is arbitrary.

Proposition A.4. Let (1) T be viable and (2) T 6S S. Then:

(i) S ⊆ R and S p:q?a〈s〉−−−−−→R imply T p:q?b〈t〉−−−−−→R for some b and t.
(ii) S p:q!a〈s〉−−−−−→S S′ implies T p:q!a〈t〉====⇒S T ′ for some t and T ′ such that (s, t) ∈ S and

T ′ 6S S′.

Proof. From (1) we deduce T 6= bot and M | p : T is S -correct for some M and p.
Regarding item (i), if T = end, then no participant in M will ever send a message to

p, which contradicts (2). If T =
⊕

i∈I r!ai〈ti〉.Ti, then from Proposition A.3 we deduce
that S must perform an output, which contradicts the hypothesis that it performs an
input.

Regarding item (ii), we have S =
⊕

i∈J q!ai〈si〉.Si and a = ak and s = sk and S′ = Sk
for some k ∈ J . If T = end, then no participant in M will ever wait for a message from p,
which contradicts (2). If T =

∑
i∈I r?ai〈ti〉.Ti, then Tk must be S -viable for some k ∈ I

and from Proposition A.2 we deduce that S must perform an input, which contradicts the
hypothesis that it performs an output. So it must be the case that T =

⊕
i∈I r!ai〈ti〉.Ti.

By Proposition A.3 we deduce J ⊆ I and (si, ti) ∈ S and Ti 6S Si for every i ∈ J . We
conclude by taking t = tk and T ′ = Tk.

In the following two lemmas, the crucial hypothesis that makes them non-trivial is
M |p : T R-correct where T 6S S and R is an arbitrary pre-subtyping relation including
S . In particular, T 6S S only guarantees that M |p : S is S -correct whenever M |p : T
is also S -correct, but there can be sessions N such that N | p : T is R-correct while
N | p : T is not S -correct.
Lemma A.5. Let (1) S ⊆ R and (2) T 6S S and (3) M | p : T be R-correct and (4)
M | p : S τ=⇒R M ′ | p : S′. Then M | p : T τ=⇒R M ′ | p : T ′ for some T ′ 6S S′.

Fair Subtyping for Multi-Party Session Types 33

Proof. By unzipping the derivation (4) we deduce that M ϕ=⇒R M ′ and S
ϕ=⇒R S′ for

some ϕ. We proceed by induction on ϕ to find ψ and T ′ 6S S′ such that M ψ=⇒R M ′

and T
ψ=⇒R T ′:

— (ϕ = ε) We conclude by taking ψ = ε and T ′ = T and by Proposition A.1.
— (ϕ = ϕ′p : q?a〈t〉) Then M

ϕ′

=⇒R M ′′
q:p!a〈t〉====⇒R M ′ and S

ϕ′

=⇒R S′′
p:q?a〈t〉−−−−−→R

S′′′
τ=⇒R S′. By induction hypothesis we deduce that M ψ

′

=⇒R M ′′ and T
ψ′

=⇒R T ′′

for some ψ′ and T ′′ 6S S′′. From Proposition A.4(i) and hypothesis (3) we deduce
that T ′′ p:q?a〈t〉−−−−−→R T ′ for some T ′ that is viable, because M ′ | p : T ′ is R-correct. By
Proposition A.2 we deduce T ′ 6S S′′′, and we conclude by taking ψ = ψ′p : q?a〈t〉
and because T ′ 6S S′ by Proposition A.1.

— (ϕ = ϕ′p : q!a〈t〉) Then M
ϕ′

=⇒R M ′′
q:p?a〈t〉====⇒R M ′ and S

ϕ′

=⇒R S′′
p:q!a〈t〉−−−−→R

S′′′
τ=⇒R S′. By induction hypothesis we deduce that M ψ

′

=⇒R M ′′ and T
ψ′

=⇒R T ′′

for some ψ′ and T ′′ 6S S′′. Observe that T ′′ is viable because M ′′ | p : T ′′ is R-
correct. By Proposition A.4(ii) we deduce T ′′ p:q!a〈s〉====⇒R T ′ for some s and T ′ such that
(t, s) ∈ S and T ′ 6S S′′′. From (1) we deduce (t, s) ∈ R hence M ′′ q:p?a〈s〉====⇒R M ′. We
conclude by taking ψ = ψ′p : q!a〈s〉 and because T ′ 6S S′ by Proposition A.1.

Lemma A.6. Let (1) S ⊆ R and (2) T 6S S and (3) M | p : T be R-correct. Then
M | p : S X=⇒R.

Proof. From (3) we deduce that [M] | p : T is S -correct. Then from (2) we deduce that
[M] | p : S is also S -correct and, in particular, [M] | p : S X=⇒S . By unzipping this
derivation we deduce that [M] ϕX==⇒S and S

ϕX==⇒S for some ϕ. We proceed by induction

on ϕ to show that M ψX==⇒R and S
ψX==⇒R for some ψ:

— (ϕ = ε) Then we conclude by taking ψ = ε.
— (ϕ = p : q?a〈bot〉ϕ′) Then [M] q:p!a〈bot〉=====⇒S [M ′] ϕ′X==⇒S and S

p:q?a〈bot〉−−−−−−→S S′
ϕ′X==⇒S ,

meaning that M q:p!a〈t〉====⇒R M ′ for some t. From (3) we deduce T p:q?a〈t〉−−−−−→R T ′ for
some T ′ such that M ′ | p : T ′ is R-correct. From (2) and Proposition A.2 we deduce

S
p:q?a〈t〉−−−−−→R S′ and T ′ 6S S′. By induction hypothesis we have M ′

ψ
′
X==⇒R and

S′
ψ′X==⇒R for some ψ′. We conclude by taking ψ = p : q?a〈t〉ψ′.

— (ϕ = p : q!a〈s〉ϕ′) We have [M] q:p?a〈s〉====⇒S [M ′] ϕ′X==⇒S and S
τ=⇒S S′

p:q!a〈s〉−−−−−→S

S′′
ϕ′X==⇒S . From (2) and by Proposition A.1 we deduce T 6S S 6S S′. From

Proposition A.3 we deduce T p:q!a〈t〉====⇒S T ′ for some t and T ′ such that (s, t) ∈ S and
T ′ 6S S′′. From (3) we deduce M q:p?a〈t〉====⇒R M ′ where M ′ | p : T ′ is R-correct. From

(1) we also have M q:p?a〈s〉====⇒R M ′. By induction hypothesis we deduce that M ′ ψ
′
X==⇒R

and S′′
ψ′X==⇒R for some ψ′. We conclude by taking ψ = p : q!a〈s〉ψ′.

Theorem 2.4. F is monotone.

Luca Padovani 34

Proof. Suppose S ⊆ R and T 6S S and let M |p : T be R-correct. Consider a derivation
M | p : S τ=⇒R M ′ | p : S′. By Lemma A.5 we deduce that M | p : T τ=⇒R M ′ | p : T ′
for some T ′ 6S S′. Also, M ′ | p : T ′ is R-correct because correctness is preserved by τ

moves. By Lemma A.6 we conclude M ′ | p : S′ X=⇒R.

Appendix B. Supplement to Section 3

Theorem 3.7. For every t ∈ Tnf \ {bot, top} we have t ∈ Tv.

Proof. Let T ∈ Tnf \{bot}. We must define a system M such that M |p : T is correct under
the hypothesis that T is in normal form. Let {p1, . . . , pn} be the set of roles occurring
in T and let p be different from them. The basic idea is to define a session where every
participant other than p is always informed about the internal decisions taken by any
other participant. Therefore, the participants that communicate with p propagate to all
the other participants any message received from or sent to p. The behavior associated
with each pk is defined by projecting T according to the following equations:

end ↓ pk = end

∑
i∈I q?ai〈ti〉.Ti ↓ pk =

{⊕
i∈I p!ai〈bot〉.{p1, . . . , pn} \ {pk}!ai〈bot〉.(Ti ↓ pk) q = pk∑
i∈I q?ai〈top〉.(Ti ↓ pk) q 6= pk

⊕
i∈I q!ai〈ti〉.Ti ↓ pk =

{∑
i∈I p?ai〈top〉.{p1, . . . , pn} \ {pk}!ai〈bot〉.(Ti ↓ pk) q = pk∑
i∈I q?ai〈top〉.(Ti ↓ pk) q 6= pk

Now consider M def=
∏n
i=1 pi : T ↓ pi. It is a simple exercise to verify that M | p : T is

correct and this concludes the proof.

Theorem 3.8. Let t, s ∈ Tnf . Then t 6 s implies t 6U s.

Proof. We show that 6 satisfies the conditions of Definition 3.1. Suppose t 6 s. We
distinguish four possibilities according to the shape of t and s:
— (t = bot or s = top) Then either item (1) or item (2) of Definition 3.1 is satisfied.
— (t = end) We have p : end | q : t correct, hence p : end | q : s is also correct. We

conclude s = end, therefore item (3) of Definition 3.1 is satisfied.
— (t =

∑
i∈I p?ai〈ti〉.Ti) Then every Ti is in normal form for i ∈ I. By Theorem 3.7

we deduce that every Ti is viable for i ∈ I. From Proposition A.2 we deduce that
s =

∑
i∈J p?ai〈si〉.Si with I ⊆ J and ti 6 si and Ti 6 Si for all i ∈ I. We conclude

that item (4) of Definition 3.1 is satisfied.
— (t =

⊕
i∈I p!ai〈ti〉.Ti) Then every Ti is in normal form for i ∈ I. By Theorem 3.7

we deduce that every Ti is viable for i ∈ I. From Proposition A.3 we deduce that
s =

⊕
i∈J p!ai〈si〉.Si with J ⊆ I and si 6 ti and Ti 6 Si for all i ∈ J . We conclude

that item (3) of Definition 3.1 is satisfied.

Fair Subtyping for Multi-Party Session Types 35

Lemma B.1 (simulation). Let S be a coinductive unfair subtyping relation such that
(T, S) ∈ S and M | q : T be S -correct and M

ϕ=⇒S M ′ and S
ϕ=⇒S S′. Then there

exist ψ and T ′ such that M ψ=⇒S M ′ and T ψ=⇒S T ′ and (T ′, S′) ∈ S .

Proof. We proceed by induction on ϕ:
— In the base case we have ϕ = ε and we conclude by taking ψ = ε and T ′ = T (note

that S′ may be a residual of S after an application of rule (T-Choice) but even
in this case (T ′, S′) ∈ S still holds by definition of coinductive unfair subtyping
relation).

— Suppose ϕ = q : p?a〈t〉ϕ′. Then M p:q!a〈t〉====⇒S M ′′
ϕ′

=⇒S M ′ and S q:p?a〈t〉−−−−−→S S′′
ϕ′

=⇒S

S′ for some M ′′ and S′′. We deduce S =
∑
i∈J p?ai〈si〉.Si and a = ak and (t, sk) ∈ S

and S′′ = Sk for some k ∈ J . From item (2) of Definition 3.1 we deduce T =∑
i∈I p?ai〈ti〉.Ti with I ⊆ J and (ti, si) ∈ S and (Ti, Si) ∈ S for every i ∈ I. It must

be the case that k ∈ I and (t, tk) ∈ S , for otherwise M |q : T would not be S -correct
(only q can consume the q!a〈t〉 message coming from p). By induction hypothesis we

deduce that there exist ψ′ and T ′ such that M ′′ ψ
′

=⇒S M ′ and Tk
ψ′

=⇒S T ′ and
(T ′, S′) ∈ S . We conclude by taking ψ = q : p?a〈t〉ψ′.

— Suppose ϕ = q : p!a〈s〉ϕ′. Then M
p:q?a〈s〉====⇒S M ′′

ϕ′

=⇒S M ′ and S
τ=⇒S

q:p!a〈s〉−−−−−→S

S′′
ϕ′

=⇒S S′ for some M ′′ and S′′. We deduce S =
⊕

i∈J p!ai〈si〉.Si and a = ak
and s = sk and S′′ = Sk for some k ∈ J . From item (3) of Definition 3.1 we
deduce T =

⊕
i∈I p!ai〈ti〉.Ti and J ⊆ I and (si, ti) ∈ S and (Ti, Si) ∈ S for every

i ∈ J . It must be the case that M p:q?a〈tk〉=====⇒S M ′′ for otherwise M | p : T would
not be S -correct. By induction hypothesis we deduce that there exist ψ′ and T ′

such that M ′′ ψ
′

=⇒S M ′ and Tk
ψ′

=⇒S T ′ and (T ′, S′) ∈ S . We conclude by taking
ψ = q : p!a〈tk〉ψ′.

Proposition B.2. Let T 6U S and M | q : T be correct and M
ϕ=⇒ M ′ X τ−→ and

S
ϕ=⇒ S′ X τ−→. Then there exist ψ and T ′ 6U S

′ such that M ψ=⇒M ′ and T ψ=⇒ T ′.

Proof. The proof is structurally the same as that of Lemma B.1. The one critical aspect
of this results resides in the fact that 6 6⊆ 6U, so it is not obvious that the hypothesis
T 6U S is enough for granting the same synchronizations between M and S to occur
also between M and T . Unlike Lemma B.1, however, the two extra hypotheses M ′ X τ−→
and S′ X τ−→ allow us to deduce that the interaction between M and S has stopped
without having any pending output actions because, by rule (T-Choice), a such an
action always performs τ moves. We sketch the case ϕ = q : p?a〈t〉ϕ′ in more detail.
In this case M p:q!a〈t〉====⇒ M ′′

ϕ′

=⇒ M ′ and S
q:p?a〈t〉−−−−−→ S′′

ϕ′

=⇒ S′ for some M ′′ and S′′. We
deduce S =

∑
i∈J p?ai〈si〉.Si and a = ak and t 6U sk and S′′ = Sk for some k ∈ J .

From item (2) of Definition 3.1 we deduce T =
∑
i∈I p?ai〈ti〉.Ti with I ⊆ J and ti 6U si

and Ti 6U Si for every i ∈ I. It must be the case that k ∈ I and t 6U tk, for otherwise
M | q : T would not be correct. It must also be the case that t 6 tk, for otherwise the

Luca Padovani 36

q!a〈t〉 message coming from M would remain pending and q : T is the only participant
that is able to receive it. The proof continues as the one of Lemma B.1.

Proposition 3.12. Let T, S ∈ Tnf and T 6U S. The following properties hold:
(1) If T and S are finite, then T 6 S;
(2) If M | p : T is correct and M | p : S τ=⇒ N X τ−→, then N

X−→.

Proof. Regarding item (1), it suffices to show that

S
def= {(t, s) | t, s finite ∧ t 6U s }

is F-consistent, namely that S ⊆ F(S). Suppose (T, S) ∈ S and M |p : T is S -correct.
By Lemma B.1 it is enough to show that M | p : S X=⇒S . We do so by induction on T

and by cases on its shape.

— (T = end) Then M
X=⇒S . From item (1) of Definition 3.1 we deduce S = end. We

conclude M | p : S X=⇒S .
— (T =

∑
i∈I q?ai〈ti〉.Ti) From the hypothesis that M | p : T is S -correct we deduce

M
q:p!ak〈t〉=====⇒S M ′ for some k ∈ I and t where (t, tk) ∈ S and M ′ | p : Tk is S -correct.

From item (2) of Definition 3.1 we deduce S =
∑
i∈I∪J q?ai〈si〉.Si and (ti, si) ∈ S

and (Ti, Si) ∈ S for every i ∈ I. By induction hypothesis we obtain M ′ |p : Sk
X=⇒S .

We conclude by observing that M | p : S τ=⇒S M ′ | p : Sk.
— (T =

⊕
i∈I q!ai〈ti〉.Ti) From the hypothesis that M | p : T is S -correct we deduce

M
q:p?ai〈ti〉=====⇒S for every i ∈ I and M

q:p?ai〈ti〉=====⇒S M ′ implies that M ′ | p : Ti is S -
correct for every i ∈ I. From item (3) of Definition 3.1 we deduce S =

⊕
i∈J q!ai〈si〉.Si

for some J ⊆ I and (si, ti) ∈ S and (Ti, Si) ∈ S for every i ∈ J . Let M | p :
S

τ=⇒S M ′ | p : Sk for some M ′ and k ∈ J . By induction hypothesis we conclude
M ′ | p : Sk

X=⇒S .
Regarding item (2), we have N = M ′ | p : S′ for some M ′ and S′. We deduce that

there exists a string ϕ of actions such that M ϕ=⇒ M ′ X τ−→ and S
ϕ=⇒ S′ X τ−→. By

Proposition B.2 we deduce that M | p : T τ=⇒ M ′ | p : T ′ for some T ′ 6U S′. Now we
argue that T ′ = end, which implies S′ = end:
— T ′ cannot be an output, because from S′ 6U T

′ we know that S′ would be an output
as well and output actions always perform τ moves because of (T-Choice). This
contradicts the hypothesis N X τ−→.

— T ′ cannot be an input, because from M | p : T correct we deduce M ′ | p : T ′ correct
hence M ′ would contain an output operation which contradicts M ′ X τ−→.

— T ′ cannot be bot, because T ′ ∈ ctrees(T) and T is viable and in normal form.

From the hypothesis M | p : T correct we have M ′ X−→, therefore we conclude N X−→.

We report here the definition of 6C which we included in the statement of Theorem 3.14
and which is the subject of the next two results.

Fair Subtyping for Multi-Party Session Types 37

Definition B.3. We denote by 6C the largest coinductive unfair subtyping such that
T 6C S implies T ≺ S.
Lemma B.4. Let (1) T 6C S and (2) S ⊇ 6C and (3) M | p : T be S -correct. Then
M | p : S X=⇒S .

Proof. From the hypothesis (3) we deduce that [M] |p : T is correct. From the hypothesis
(1) we deduce T ≺ S, hence [M] | p : S X=⇒, namely M ϕX==⇒ and S ϕX==⇒ for some string ϕ

of actions. We reason by induction on ϕ to find some ψ such that M ψX==⇒S and S ψX==⇒S :
— (ϕ = ε) Then S = end and from the hypothesis (1) we deduce T = end. We conclude

by taking ψ = ε.
— (ϕ = p : q?a〈bot〉ϕ′) ThenM q:p!a〈t〉====⇒S N and [N] ϕ

′X=⇒ and S =
∑
i∈J q?ai〈si〉.Si

p:q?a〈bot〉−−−−−−→

Sk
ϕ′X=⇒ where a = ak for some k ∈ J . From the hypothesis (1) we deduce T =∑

i∈I q?ai〈ti〉.Ti where I ⊆ J and ti 6C si and Ti 6C Si for every i ∈ I. From the
hypothesis (3) we deduce k ∈ I and (t, tk) ∈ S and N |p : Tk is S -correct. By induc-

tion hypothesis we deduce that N ψ
′
X=⇒S and Sk

ψ′X=⇒S for some ψ′. Since (t, sk) ∈ S

we have S p:q?a〈t〉−−−−−→S Sk and we conclude by taking ψ = p : q?a〈t〉ψ′.

— (ϕ = p : q!a〈s〉ϕ′) Then [M] q:p?a〈s〉====⇒ N
ϕ′X=⇒ and S =

⊕
i∈J q!ai〈si〉.Si

p:q!a〈s〉====⇒ Sk
ϕ′X=⇒

and a = ak and s = sk for some k ∈ J . From the hypothesis (1) we deduce T =⊕
i∈I q!ai〈ti〉.Ti where J ⊆ I and si 6C ti and Ti 6C Si for every i ∈ J . From the

hypothesis (3) we deduce M q:p?a〈tk〉=====⇒S M ′ and M ′ |p : Tk is S -correct and [M ′] = N .

By induction hypothesis we deduce that M ′ ψ
′
X=⇒S and Sk

ψ′X=⇒S for some ψ′. Since
(sk, tk) ∈ S we conclude by taking ψ = p : q!a〈sk〉ψ′.

Theorem 3.14. Let t, s ∈ Tnf . Then t 6 s if and only if t 6C s.

Proof. (⇒) Immediate consequence of Theorem 3.8.
(⇐) Let S be the smallest pre-subtyping that includes 6C and observe that it is a

coinductive unfair subtyping relation because 6U is transitive. Suppose T 6C S and that
M | p : T is S -correct. Consider a derivation M | p : S τ=⇒S M ′ | p : S′. By Lemma B.1
we deduce M | p : T τ=⇒S M ′ | p : T ′ for some T ′ 6C S

′. In particular, T ′ ≺ S′. From
the hypothesis that M | p : T is S -correct we deduce that M ′ | p : T ′ is also S -correct.
From Lemma B.4 we conclude M ′ | p : S′ X=⇒S .

Proposition B.5. T ≺ S if and only if [T] ≺ [S].

Proof. We only show the “only if” part, the “if” part being symmetric. Let M | p : [T]
be correct where M is ground. Then M | p : T is also correct and, from the hypothesis
T ≺ S, we deduce M | p : S X=⇒. We conclude M | p : [S] X=⇒ since M is ground.

Theorem 3.19. Let T, S ∈ Tnf and T 6U S. Then T ≺ S if and only if T − S is not
viable.

Luca Padovani 38

Proof. We prove the equivalent property that T 6≺ S if and only if T−S is viable. Without
loss of generality we assume that both T and S are ground, since T − S is viable if and
only if [T −S] is (Proposition 3.11) and T ≺ S if and only if [T] ≺ [S] (Proposition B.5).

(⇒) Then there exists M ground such that (*) M | p : T is correct and (**) M | p :
S YX=⇒. If we prove that M | p : (T − S) is correct we are done. Consider a derivation
M | p : (T − S) τ=⇒M ′ | p : R. By unzipping this derivation we deduce that there exists
a string ϕ of actions such that M ϕ=⇒ M ′ and T − S ϕ=⇒ R. By Proposition 3.16(1)
and from the definition of T − S we have T ϕ=⇒ T ′ for some T ′ such that either T ′ = R

or there exists S′ such that S ϕ=⇒ S′ and R = T ′ − S′. From (*) we also deduce that
M ′ | p : T ′ is correct, therefore M ′ ϕ

′X=⇒ and T ′
ϕ′X=⇒ for some string ϕ′ of actions. Now

we have ϕϕ′ ∈ traces(T) and, from (**), ϕϕ′ 6∈ traces(S). By Proposition 3.16(2) we
deduce ϕϕ′ ∈ traces(T − S), that is R ϕ′X=⇒.

(⇐) Then there exist M and p such that M | p : (T − S) is correct. Without loss
of generality we may assume that M is ground. We deduce that M | p : T is also
correct. Suppose, by contradiction, that M | p : S X=⇒. Then there exists ϕ such that
M

ϕX=⇒ and S
ϕ=⇒ end. By Lemma B.1 we deduce that T ϕ=⇒ end. We deduce ϕ ∈

traces(T)∩traces(S). From Proposition 3.16 we derive T −S ϕ=⇒ bot, which is absurd
since M | p : (T − S) is correct. We must conclude M | p : S YX=⇒.

Appendix C. Supplement to Section 4

Proposition 4.2. The following properties hold:
(1) paths(T) is finite for every T ;
(2) T ϕX=⇒ implies T ↓ π and π ⊆ {S | ∃ψ ≤ ϕ : T ψ=⇒ S} for some π.

Proof. Regarding item (1), it is sufficient to observe that T ↓ π implies π ⊆ ctrees(T)
and that ctrees(T) is finite. Regarding item (2) we can decompose the derivation T ϕX=⇒
as

T = T0
τ=⇒ α1−→ T1

τ=⇒ α2−→ · · · τ=⇒ αn−→ Tn = end
where ϕ = α1 · · ·αn. We prove that T ↓ {T0, . . . , Tn} by induction on n.
— (n = 0) Then T0 = end and we conclude with an application of rule (P-End).
— (n > 0 and α1 = p : q?a〈t〉) Then T0 =

∑
i∈I q?ai〈ti〉.Si and a = ak and t 6 tk and

T1 = Sk for some k ∈ I. By induction hypothesis we deduce T1 ↓ {T1, . . . , Tn}. We
conclude T ↓ {T0, . . . , Tn} with an application of rule (P-Input).

— (n > 0 and α1 = p : q!a〈t〉) Symmetric of the previous case.

Lemma C.1. T ∈ Tv implies T ∈ viables(T).

Proof. We prove that T 6∈ viables(T) implies T 6∈ Tv. More precisely, we prove that for
every i ∈ N and S ∈ VT

i \VT
i+1 we have S non-viable by induction on i.

— (i = 0) Then paths(S) = ∅ meaning end 6∈ ctrees(S). We conclude that S is not
viable.

Fair Subtyping for Multi-Party Session Types 39

— (i > 0 and i is even) Then for every π ∈ paths(S) there exists S′ ∈ π \VT
i . Suppose,

by contradiction, that S is viable. Then there exists M such that M | p : S is correct,
hence M | p : S τ=⇒ N | p : end where N

X−→. We deduce that M ϕ=⇒ N and
S

ϕ=⇒ end for some finite string ϕ of actions. Then there exists π ∈ paths(S) such
that π ⊆ {S′ | ∃ψ ≤ ϕ : S ψ=⇒ S′} and, in particular, there exist ψ ≤ ϕ and
S′ ∈ π \VT

i such that S ψ=⇒ S′. By induction hypothesis we deduce that S′ is not
viable. This contradicts the hypothesis that M |p : S is correct, hence that S is viable.

— (i > 0 and i is odd) The session type S cannot be bot, for otherwise it would
have been removed at step 0. Furthermore, S cannot be end or an external choice
because these session types are always preserved across even-indexed steps. Then
S =

⊕
j∈I q!aj〈tk〉.Sj and Sk 6∈ VT

i for some k ∈ I. By induction hypothesis we
deduce that Sk is not viable, therefore we conclude that S is not viable either.

The next lemma establishes a strong correspondence between the traces of a session
type and those of its normal form and is used in the proof of Theorem 4.10.
Lemma C.2. Let S be the least pre-subtyping relation that includes both 6 and {(t, nf(t)) |
t ∈ T } ∪ {(nf(t), t) | t ∈ T }. The following properties hold:
(1) if M | p : T is S -correct and M | p : T τ=⇒S N | p : T ′, then M | p : nf(T) τ=⇒S

N | p : nf(T ′);
(2) M | p : nf(T) τ=⇒S N | p : S implies M | p : T τ=⇒S N | p : T ′ and S = nf(T ′).

Proof. We prove the result for a single τ reduction, the general statements follow by a
simple induction. We only prove item (1) since item (2) is easier (it follows from the fact
that the traces of nf(T) are traces of T). Regarding item (1), suppose M | p : T τ−→S

N | p : T ′. We reason by cases on the derivation of this reduction:
— (M τ−→S N) Then T ′ = T and there is nothing left to prove.
— (T τ−→S T ′) Then T =

⊕
i∈I q!ai〈ti〉.Ti and T ′ = q!ak〈tk〉.Tk for some k ∈ I. From

the hypothesis that M |p : T is S -correct we deduce that [M]|p : T is correct, hence T
is viable. From Lemma C.1 we deduce T ∈ viables(T). We conclude observing that
nf(T) =

⊕
i∈I q!ai〈nf(ti)〉.nf(Ti)

τ−→S q!ak〈nf(tk)〉.nf(Tk) by definition of nf(·).

— (M q:p!a〈t〉−−−−→S N and T
p:q?a〈t〉−−−−−→S T ′) Then T =

∑
i∈I q?ai〈ti〉.Ti and a = ak and

(t, tk) ∈ S and T ′ = Tk for some k ∈ I. From the hypothesis M | p : T S -correct we
deduce that both T and Tk are viable. By Lemma C.1 we deduce T ∈ viables(T) and
Tk ∈ viables(Tk). By definition of nf(·) we have nf(T) =

∑
i∈J q?ai〈nf(ti)〉.nf(Ti)

with k ∈ J ⊆ I. By definition of S we have (t, nf(tk)) ∈ S therefore we conclude
nf(T) p:q?a〈t〉−−−−−→S nf(T ′).

— (M q:p?a〈t〉−−−−−→S N and T
p:q!a〈t〉−−−−→S T ′) Symmetric of the previous case.

Theorems 4.3, 4.8, and 4.10 are proved in reverse order with respect to their occurrences
in Section 4 to honor their dependencies.
Theorem 4.10. For every t ∈ T we have nf(t) ∈ Tnf and t ≶ nf(t).

Luca Padovani 40

Proof. Regarding nf(t) ∈ Tnf , the only interesting fact to observe is that from Theo-
rem 3.7 we know that whenever nf(t) = T 6= bot we have T ∈ Tv. Then there exists ϕ
such that T ϕ=⇒ end, that is end ∈ ctrees(T).

Regarding the equivalence t ≶ nf(t), it suffices to show that the relation S of Lemma C.2
is F-consistent, that is S ⊆ F(S). The only interesting cases are (T, nf(T)) ∈ S and
(nf(T), T) ∈ S , which we prove in order.

Suppose that (T, nf(T)) ∈ S , that M | p : T is S -correct and consider a derivation
M | p : nf(T) τ=⇒S N | p : S. From Lemma C.2(2) we deduce M | p : T τ=⇒S N | p : T ′
and S = nf(T ′). From the hypothesis that M | p : T is S -correct we deduce N | p :
T ′

τ=⇒S N ′ | p : end. From Lemma C.2(1) we conclude N | p : S τ=⇒S N ′ | p : end.
Suppose now that (nf(T), T) ∈ S and that M | p : nf(T) is S -correct. Then it is

easy to see that M | p : T is also S -correct (T and nf(T) may only differ because some
unusable branches in T have been removed in nf(T)). Consider now a derivation M | p :
T

τ=⇒S N |p : T ′. From Lemma C.2(1) we deduce M |p : nf(T) τ=⇒S N |p : nf(T ′). From
the hypothesis that M |p : nf(T) is S -correct we deduce N |p : nf(T ′) τ=⇒S N ′ |p : end.
From Lemma C.2(2) we conclude N | p : T ′ τ=⇒S N ′ | p : end.

Theorem 4.8. T ∈ Tv if and only if T ∈ viables(T).

Proof. This is a corollary of Lemma C.1 and Theorem 4.10.

Theorem 4.3. NonViable(T) if and only if T is not viable.

Proof. (⇒) Suppose by contradiction that T is viable and that M | p : T is correct. We
prove that there exist N and S such that M | p : T τ=⇒ N | p : S YX=⇒ by induction on the
derivation of NonViable(T) and by cases on the last rule applied.
— (B-Path) Then for every π ∈ paths(T) there exists T ′ ∈ π such that NonViable(T ′).

From the hypothesis M | p : T correct we deduce M | p : T X=⇒, namely M
ϕX=⇒

and T
ϕX=⇒ for some string ϕ of actions. Then there exists π such that T ↓ π and

π ⊆ {T ′ | ∃ψ ≤ ϕ : T ψ=⇒ T ′} and T ′ ∈ π and NonViable(T ′). We have M | p :
T

τ=⇒ M ′ | p : T ′ correct for some M ′. By induction hypothesis we conclude that
M ′ | p : T ′ τ=⇒ N | p : S YX=⇒ for some N and S, which is absurd.

— (B-Output) Then T =
⊕

i∈I p!ai〈ti〉.Ti and NonViable(Tk) for some k ∈ I. From
the hypothesis M | p : T correct we deduce M | p : T τ=⇒M | p : Tk where M | p : Tk
is correct. By induction hypothesis we conclude M | p : Tk

τ=⇒ N | p : S YX=⇒ for some
N and S, which is absurd.

(⇐) From Theorem 4.8 we deduce T 6∈ viables(T). Let {VT
i }i∈N be the viability

sequence for T . We prove that for every i ∈ N and S ∈ VT
i \VT

i+1 we have NonViable(S)
by induction on i.
— (i = 0) Then paths(S) = ∅ and we conclude with an application of rule (B-Path).
— (i > 0 and i is even) Then for every π ∈ paths(S) there exists S′ ∈ π \ VT

i . By
induction hypothesis we deduce that for every π ∈ paths(S) there exists S′ ∈ π

such that NonViable(S′). We conclude NonViable(S) with an application of rule (B-
Path).

Fair Subtyping for Multi-Party Session Types 41

— (i > 0 and i is odd) The session type S cannot be bot, for otherwise it would have
been removed at step 0. Furthermore, S cannot be end or an external choice be-
cause these session types are always preserved across even-indexed steps. Therefore
S =

⊕
j∈I p!aj〈tj〉.Tj and we deduce Tk ∈ VT

i−1 \ VT
i for some k ∈ I. By induc-

tion hypothesis we obtain NonViable(Tk) and we conclude NonViable(S) with an
application of rule (B-Output).

Lemma C.3. Let t 6A s and (t, s) ` t′ 6A s
′. Then ` t′ 6A s

′.

Proof. A simple structural induction on the derivation of (t, s) ` t′ 6A s
′, replacing every

instance of (A-Axiom) of the form Γ, (t, s) ` t 6A s with a copy of the proof tree for
t 6A s.

Theorem 4.12. Let t, s ∈ Tnf . Then t 6F s if and only if t 6A s.

Proof. (⇒) Let ∆ = (trees(t)×trees(s))∪(trees(s)×trees(t)). We show how to build
a derivation for Γ ` t′ 6A s

′ by induction on ∆ \ Γ whenever t′, s′ ∈ trees(t)∪ trees(s)
and t′ 6F s

′. The statement follows by taking Γ = ∅ and t′ = t and s′ = s. In the base
case we have ∆ \Γ = ∅, namely (t′, s′) ∈ Γ. We conclude with an application of rule (A-
Axiom). In the inductive case we reason by cases on the shape of t′ and s′, taking into
account the hypothesis t′ 6F s

′:
— (t′ = bot) We conclude with an application of rule (A-Bottom).
— (s′ = top) We conclude with an application of rule (A-Top).
— (t′ = s′ ≡ end) We conclude with an application of rule (A-End).
— (t′ =

∑
i∈I p?ai〈ti〉.Ti and s′ ≡

∑
i∈I∪J p?ai〈si〉.Si) Then ti 6F si and Ti 6F Si for

every i ∈ I. By induction hypothesis we deduce Γ, (t′, s′) ` ti 6A si and Γ, (t′, s′) `
Ti 6A Si for every i ∈ I. We conclude with an application of rule (A-Input).

— (t′ =
⊕

i∈I∪J p!ai〈ti〉.Ti and s′ ≡
⊕

i∈I p!ai〈si〉.Si) Similar to the previous case, but
concluded with an application of rule (A-Output).

(⇐) Trivial by definition of 6A and 6F.

	Introduction
	Syntax and Semantics of Session Types
	Syntax
	Transition System for Sessions
	Fair Subtyping

	Coinductive Characterization of Fair Subtyping
	Relationship with Unfair Subtyping
	Viability and Normal Form
	Characterization of the Termination Property
	Characterization of and Behavioral Difference

	Deduction Systems and Algorithms
	Axiomatization of Fair Subtyping
	Algorithms

	Related Work
	Conclusion and Future Work
	 Supplement to Section 2
	 Supplement to Section 3
	 Supplement to Section 4

