Light Logicsand Higher-Order Processes

Ugo Dal Lago Simone Matrtini Davide Sangiorgi
Universita di Bologna Universita di Bologna Universita di Bologna
INRIA Sophia Antipolis INRIA Sophia Antipolis INRIA Sophia Antipolis
dallago@cs.unibo.it martini@cs.unibo.it sangio@cs.unibo.it

We show that the techniques for resource control that haea developed in the so-called “light
logics” can be fruitfully applied also to process algebrasparticular, we present a restriction of
Higher-Orderm-calculus inspired by Soft Linear Logic. We prove that anft poocess terminates
in polynomial time. We argue that the class of soft processag be naturally enlarged so that
interesting processes are expressible, still maintaitiiagpolynomial bound on executions.

1 Introduction

A term terminates if all its reduction sequences are of fieibgth. As far as programming languages are
concerned, termination means that computation in prograitheventually stop. In computer science,
termination has been extensively investigated in seqalelatiguages, where strong normalization is a
synonym more commonly used.

Termination is however interesting also in concurrency. il&Vlarge concurrent systems often are
supposed to run forever (e.g., an operating system, or thenkt itself), single components are usually
expected to terminate. For instance, if we query a servemasewant to know that the server does not
go on forever trying to compute an answer. Similarly, whenleasl an applet we would like to know
that the applet will not run forever on our machine, possaddgorbing all the computing resources. In
general, if the lifetime of a process can be infinite, we magtvt@ know that the process does not remain
alive simply because of nonterminating internal activatyd that, therefore, the process will eventually
accept interactions with the environment.

Another motivation for studying termination in concurrgnis to exploit it within techniques aimed
at guaranteeing properties such as responsiveness anftdedom [9], which intuitively indicate that
certain communications or synchronizations will everijualicceed (possibly under some fairness as-
sumption). In message-passing languages such as thoserircticulus family (Join Calculus, Higher-
Order r-calculus, Asynchronoug-calculus, etc.) most liveness properties can be reducatstances
of lock-freedom. Examples, in a client-server system, lagdiveness properties that a client request will
eventually be received by the server, or that a server, otaeEpted a request, will eventually send back
an answer.

However, termination alone may not be satisfactory. If argue a server produces a computation
that terminates after a very long time, from the client paihview this may be the same as a nonter-
minating (or failed) computation. Similarly, an appletdea on our machine that starts a very long
computation, may engender an unacceptable consumptiatalfiesources, and may possibly be con-
sidered a “denial of service” attack. In other words, withprecise bounds on the time to complete a
computation, termination may be indistinguishable fromteamination.

Type disciplines are among the most general techniquessiarenermination of programs. Both
in the sequential and in the concurrent case, type systemesbeen designed to characterize classes
of terminating programs. It is interesting that, from thetfthat a program has a type, we may often

S. Froschle, F.D. Valencia (Eds.): Workshop on © U. Dal Lago & S. Martini & D. Sangiorgi
Expressiveness in Concurrency 2010 (EXPRESS'10). This work is licensed under the
EPTCS 41, 2010, pp. 4660, doi:10.4204/EPTCS|41.4 Creative Commoris Afttribution License.

http://dx.doi.org/10.4204/EPTCS.41.4
http://creativecommons.org
http://creativecommons.org/licenses/by/3.0/

U. Dal Lago & S. Matrtini & D. Sangiorgi 47

extract information on the structure of the program itselfy(, for the simple types, the program has
no self applications). If termination (or, more generaigme property of the computation) is the main
interest, it is only this structure that matters, and notsihecifics of the types. In this paper we take this
perspective, and apply to a certain class of programs (l#i@nder rr-calculus terms) the structural re-
strictions suggested by the types of Soft Linear Logic¢ [Adfagment of Linear Logic [7] characterizing
polynomial time computations.

Essential contribution of Linear Logic has been teénementt allows on the analysis of com-
putation. The (previously atomic) step of function apgiima is decomposed into a duplication phase
(during which the argument is duplicated the exact numbeinoés it will be needed during the com-
putation), followed by the application oflmear function (which will use each argument exactly once).
The emphasis here is not on restricting the class of progreimsnany cases, any traditional program
(e.g., anyA-term, even a divergent one) could be annotated with seitstdpe informatior(boxes in
the jargon) in such a way that the annotated program behavdseaoriginal one. However, the new
annotations embed information on the computational behdkiat was unexpressed (and inexpressible)
before. In particular, boxes delimit those parts of datawhithbe (or may be) duplicated or erased during
computation.

It is at this stage that one may appéstrictions By building on the scopes exposed in the new syn-
tax, we may restrict the computational behavior of a termthinsequential case several achievements
have been obtained via the so-callight logics[8,2,[10], which allow for type systems far-calculus
exactly characterizing several complexity classes (gt@bementary time, polynomial type, polyno-
mial space, logarithmic space). This is obtained by linoteg on the way the scopes (boxes) may be
manipulated. For the larger complexity classes (e.g., etany time) one forbids that during computa-
tion one scope may enter inside another scope (their nedipily remains constant). For smaller classes
(e.g., polynomial time) one also forbids that a duplicatimgnputation could drive another duplication.
The exact way this is obtained depends on the particulaiptiise (either a la Light Linear Logic, or a
la Soft Linear Logic).

The aim of this paper is to apply for the first time these tetdgies to the concurrent case, in
particular to Higher-Ordert-calculus [12]. We closely follow the pattern we have dediteel above.
First, we introduce (higher-order) processes, which wa traotate with explicit scopes, where the new
construct “!” marks duplicable entities. This is indeed fimement, and not a restriction — any process
in the first calculus may be simulated by an annotated one.h@feintroduce our main object of study
— annotated processes restricted with the technigues ot 8wfar Logic. We show that the number of
internal actions performed by processes of this calculpsligomially bounded (Sectidd 4), a property
that we callfeasible termination Moreover, an extension of the calculus capturing a natxample
will be presented (Sectidn 5).

We stress that we used in the paper a pragmatic approach —frtekehe logical side tools and
techniques that may be suitable to obtain general boundsearoimputing time of processes. We are not
looking for a general relation between logical systems andgss algebras that could realize a form of
Curry-Howard correspondence among the two. That would be@hmmore ambitious goal, for which
other techniques — and different success criteria — shoeilldsied.

Related Work A number of works have recently studied type systems thatrertermination in mo-

bile processes, e.d. [14] [3, 4]. They are quite differeninfitbe present paper. First, the techniques
employed are measure-based techniques, or logical matio combinations of these, rather than tech-
niques inspired by linear logics, as done here. Secondiplbfective is pure termination, whereas here

48 Light Logics and Higher-Order Processes

we aim at deriving polynomial bounds on the number of stepsléad to termination. (In some of the
measure-based systems bounds can actually be derivetigyudre usually exponential with respect to
integer annotations that appear in the types.) Thirdlyh Wit exception of [4], all works analyse name-
passing calculi such as threcalculus, whereas here we consider higher-order calewiihich terms of
the calculus are exchanged instead of names.

Linear Logic has been applied to mobile processes by EhraaddLaurent[[5], who have stud-
ied encodings oft-calculus-like languages into Differential Interactioretsl [6], an extension of the
Multiplicative Exponential fragment of Linear Logic. Tha@dings are meant to be tests for the expres-
siveness of Differential Interaction Nets; the issue ofi@ation does not arise, as the process calculi
encoded are finitary. Amadio and Dabrowski [1] have appligghs from term rewriting to a-calculus
enriched with synchronous constructs a la Esterel. Coatiputin processes proceeds synchronously,
divided into cycles called instants. A static analysis afiidige-control condition guarantee that, during
each instant, the size of a program and the times it takesnplede the instant are polynomial on the
size of the program and the input values at the beginningeoirtstant.

2 Higher-Order Processes

This section introduces the syntax and the operational sersaof processes. We callOrt the cal-
culus of processes we are going to define (it is the caladi@s™i*~+ in [12]). In HOm the values
exchanged in interactions can be first-order values ancehigider values, i.e., terms containing pro-
cesses. For economy, the only first-order value employdukisinit valuex, and the only higher-order
values are parametrised processes, called abstractmssxe forbid direct communication of processes;
to communicate a process we must add a dummy parameterThé)process constructs are nil, parallel
composition, input, output, restriction, and applicatigkpplication is the destructor for abstraction: it
allows us to instantiate the formal parameters of an aligiradHere is the complete grammar:

P:=0|P||P|aXx).P|a(V).P|(va)P|VV;
Vi=x|X|AXP;
wherearanges over a denumerable ebf channels, and over the denumerable set of variables. Input,
restriction, and abstractions are binding constructs,gawel rise in the expected way to the notions of
free and bound channels and of free and bound variables,|basyaf a-conversion.
lll-formed terms such asx can be avoided by means of a type systems. The details adasizand
are omitted here; see [12].
The operational semantics, in the reduction style, is ptesein Figurd Il, and uses the auxiliary

relation ofstructural congruencewritten=. This is the smallest congruence closed under the following
rules:

P = Qif PandQ area-equivalent;
PIIQIIR=(PIQIIR
PIlQ=QJlP;
(va)((vb)P) = (vb)((va)P);
((va)P || Q) = ((va)P) || Qif ais not free inQ;
Unlike other presentations of structural congruence, walldiw the garbage-collection laws|| 0 = P

and (va)0 = a, which are troublesome for our resource-sensitive armly3ihe reduction relation is
written —p, and is defined on processes without free variables.

U. Dal Lago & S. Matrtini & D. Sangiorgi 49

a\V).P|la(x).Q —p P|| Q[x/V] (AX.P)V —p P[x/V]
PpQ P—pQ P=Q Q—pR R=S
PI|IR—pQI|IR (va)P —p (va)Q P—pS

Figure 1: The operational semanticsH® T processes.

In general, the relatiorsp is nonterminating. The prototypical example of a nonteatiing process
is the following proces©OMEGA

OMEGA= (va)(DELTAx || a(DELTA)), where DELTA= Ay.(a(x).(x = || a(x))).

Indeed, it holds thaOMEGA—>§, OMEGA Variants of the construction employed fOMEGAcan be
used to show that process recursion can be modellétiOm. An example of this construction is the
following SERVERprocess. It accepts a requgsbn channeb and forwards it along. After that, it
can handle another request frdmin contrast tc(OMEGA SERVERSs terminating, because there is no
infinite reduction sequence starting frdERVERYet hand, the number of requeSERVERan handle
is unlimited, i.e. SERVERan be engaged in an infinite sequence of interactions wgigmniironment.

SERVER= (va)(COMPx || a(COMP));
COMP= Az (a(x).(b(y).c{y).a(x) || xx)).

A remark on notation: in this paper, ! is the Linear Logic agger (more precisely, an operator
derived from Linear Logic), and should not be confused witl teplication operator often used in
process calculi such as thecalculus.

3 Linearizing Processes

Linear Logic can be seen as a way to decompose the type ofdnsét— B into a refined typeA — B.
Since the argument (i) may be used several (or zero) times to compute the resBltire first turn the
input into a duplicable (and erasable) object (of typg MWe now duplicate (or erase) it the number of
times it is needed, and finally we use each of the copies gx@ntle to obtain the result (this is the linear
function space—). The richer language of types (with the new constructorsll-a) is matched by new
term constructs, whose goal is to explicitly enclose in radr&copes (boxes) those subterms that may be
erased or duplicated. In the computational process weitegcabove, there are three main ingredients:
(i) the mark on a duplicable/erasable entity; (i) its atwaplication/erasure; (i) the linear use of the
copies. For reasons that cannot be discussed here (seer'¥/B3 for the notation we will use) we
may adopt a syntax where the second step (duplication) isnade fully explicit (thus resulting in a
simpler language), and where the crucial distinction is enlagtween linear functions (denoted by the
usual syntax x.P — but interpreted in a strictly linear way:occurs once i), and nonlinear functions,
denoted withA!x.P, where thex may occur several (or zero) timesh When a nonlinear function is
applied, its actual argument will be duplicated or erased.evitlose the argument in a box to record this
fact, using an eponymous unary operator ! also on terms.eSirgcwant to control the computational
behavior of duplicable entities, a term in a !-box is prageicand cannot be reduced. Only when it will

50 Light Logics and Higher-Order Processes

FIAFPP AAFPQ rxkpP
THp O FAIIAFRP|IQ M Fpa(x).P
MIxFp P FIAFYVY AR P Mep P
[p a(!x).P rAAFpaV).P Mp (va)P
FIAFYV AN W
A AFp VW IT -y * IT, X Fy X

rxkpP M IxkpP IT Fy V

IT, IXFy X My AXP [y AIX.P IT Fy!IV

Figure 2: Processes and valued.idO7t.

be fed to a (nonlinear) function, and thus (transparentlglidated, its box will be opened (the mark !
disappears) and the content will be reduced.

The constructs ottermsarising from Linear Logic have a natural counterpart in eigarder pro-
cesses, where communication and abstraction play a sirol&rThis section introduces a linearization
of HOm, that we here dubhHO7. The grammars of processes and values are as follows:

P:=0|P|/P|laXx).P|a(lx).P|a(V).P|(va)P|VV,
V=% |X|AXP | AIXP|IV.

On top of the grammar, we must enforce the linearity constisaiwhich are expressed by the rules in
Figure[2. They prove judgements in the fofini-p P andl , V, wherel is acontextconsisting of a
finite set of variables — a single variable may appedr &ither as< or as &, but not both. Examples of
contexts are, !y; or x,y, z or the empty context 0. As usual, we writewhen all variables of the context
(if any) are I-marked. A proced? (respectively, a valu¥) is well-formediff there is a context” such
thatl' Fp P (respectivelyl” Fy V). In the rules with two premises, observe the implicit caations on
I-marked variables in the context — they allow for transpaduplication. Thedepthof a (occurrence
of a) variablex in a process or value is the number of instances of the ! apreitat enclosed to. As an
example, ifP = (Ix)(y), thenx has depth 1, whilg has depth 0.

A judgement” p P can informally be interpreted as follows. Any variable aguireg asxin I’ must
occur free exactly once iR; moreover the only occurrence »fs at depth 0 irP (that is, it is not in the
scope of any !). On the other hand, any variapkppearing asylin ' may occur free any number of
times inP, at any depth. Variables likearelinear, while those likey arenonlinear Nonlinear variables
may only be bound by nonlinear binders (which have a ! to relael fact).

The operational semantics bHOT is a slight variation on the one ¢fOrr, and can be found in
Figure[3. The two versions of communication and abstradti@n, the linear and the nonlinear one)
are governed by two distinct rules. In the nonlinear casetament to the function (or the value sent
through a channel) must be in the correct duplicable farmwWell-formation is preserved by reduction:

Lemma 1 (Subject Reduction) If +p P and P—| Q, thentp Q.

U. Dal Lago & S. Matrtini & D. Sangiorgi 51

aV).P|la(x).Q =L Pl Qx/V] (AXP)V = P[x/V]
a(V).P[[a(ix).Q = P|| Qx/V] AXP)V — Px/V]
_P=Q P—LQ P=Q Q- R R=S

PR—LQ|R (va)P - (va)Q P>.S

Figure 3: The operational semanticsLdflO 1T processes.

3.1 Embedding Processesinto Linear Processes

Processes (and values) can be embedded into linear pre¢assevalues) as follows:

v =% v
0p =0; Xy =x;
[P Qlr=[Plr || [Qlp; [a(x).Plp = a(!x).[P]p;
[aV).Ple =a(![Vlv).[Plp; [(va)Plp = (va)[Pp;
VWlp = [V]v!W]v

Linear abstractions and linear inputs never appear in pegseobtained viglp: whenever a value is sent
through a channel or passed to a function, it is made dupdicdlihe embedding induces a simulation of
processes by linear processes:

Proposition 1 (Simulation) For every process P|P|p is well-formed. Moreover, if P>p Q, then
[Plp =1 [Qlp.
By applying the mag]p to our example procesSERVERa linear procesSERVERcan be obtained:

SERVER= (va)(COMP (%) || a(lCOMR));
COMR = Alz (a(!x).(b(ly).T{ly) A(IX) || X(1%))).

4 Termination in Bounded Time: Soft Processes

In view of Propositiori L. HOmr admits non terminating processes. Indeed, the prototygicargent
process from Sectidd 2 can be translated into a linear psoces

OMEGA = (va)((DELTA(!x)) || a(!DELTA)), where DELTA = Aly.(a('x).(x (%) || a(!x))).

OMEGA cannot be terminating, sin€c@MEGAItself does not terminate.

The more expressive syntax, however, may rewdata process does not terminate. If we trace its
execution, we see that the divergencdOMIEGA comes fromDELTA, wherex appears free twice in
the inner body(x (!x) || a(!x)): once in the scope of the ! operator, once outside any !. Wheiue is
substituted fox (and thus duplicated) one of the two copies interacts wighotiher, being copied again.
It is this cyclic phenomenon (calledodal impredicativityn [11]]) that is responsible for nontermination.

52 Light Logics and Higher-Order Processes

M#ANFsp P A#AFgp Q r,Xl—sp P
Fsp O FA#\Fsp P Q I Fsp a(x).P
r,!Xl—spP I,#xtFsp P MN#NFsyV A#NFgp P
[Fsp a(lx).P [Fsp a(lx).P [A#\FspalV).P
[sp P C#AFsy V. AH#A Fsy W
IMsp (va)P A #\Fsp VW #H Fgy %
r,Xl—sp P
#I, X gy X #I,#X Fgy X Itsy AXP
I#xFsp P M IXkFsp P MFsyV
sy AlX.P sy AlXP T, #A Foy!V

Figure 4: Processes and valuesSHOTT.

The Linear Logic community has studied in depth the impacirdfalanced and multiple boxes on
the complexity of computation, and singled out severafédént) sufficient conditions for ensuring not
only termination, but termination with prescribed bound&e will adopt here the conditions arising
from Lafont’s analysis (and formalized in Soft Linear Log®l. L [10]), leaving to further work the
usage of other criteria. We thus introduce the calc@d© T of soft processegor which we will prove
termination in polynomial time. In our view, this is the maiontribution of the paper.

Soft processes share the same grammar and operationalt®sntiaan linear processes (Sectidn 3),
but are subjected to stronger constraints, expressed hydléormation rules of Figurel4. A contexkt
can now contain a variablein at most one ofthreedifferent forms:x, !x, or #. The implicit contraction
(or weakening) happens on #-marked variables, but nonesaif thay ever appear inside a !-box. In the
last rule it is implicitly assumed that the contdxin the premise is composed only of linear variables,
if any (otherwise the contexi !of the conclusion would be ill-formed). Indeed, the rulesoamt to say
that, if " Fsp P (and similarly for values), then: (i) any linear varialdén I occurs exactly once iR,
and at depth O (this is as InHOm); (ii) any nonlinear variablex occurs exactly once iR, and at depth
1; (iii) any nonlinear variable ¥may occur any number of times B all of its occurrences must be at
level 0. As a result, any bound variable appears in the scbifedinder always at a same level. As in
LHOm, well-formed processes are closed by reduction:

Proposition 2 If Fsp P and P— Q, thentsp Q.

The nonterminating proce€SMEGA which started this section isot a soft process, because the
bound variable< appears twice, once at depth 0 and once depth 1. And this érgmes: we would like
SHO7to be a calculus of terminating processes, at least! Butidsssome drawbacks: alSERVER
is not a soft process. Indee®HOrris not able to discriminate betwe&ERVERandOMEGA, which
share a very similar structure. We will come back to thisrafte proved our main result on the polyno-
mial bound on reduction sequences for soft processes.

U. Dal Lago & S. Matrtini & D. Sangiorgi 53

4.1 Feasble Termination

This section is devoted to the proof of feasible terminafmmsoft processes. We prove that the length
of any reduction sequence from a soft prodess bounded by a polynomial on the sizeRxfMoreover,
the size of any process along the reduction is itself polyiatiymbounded.

The proof proceeds similarly to the one 8L proof-nets by Lafont[10]. The idea is relatively
simple: a weight is assigned to every process and is provdddmease at any normalization step. The
weight of a process can be proved to baugper boundn the size of the process. Finally, a polynomial
bound on the weight of a process holds. Altogether, thisiesgkasible termination.

Before embarking on the proofs, we need some preliminannitiefis. First of all, thesizeof a
processP (respectively, a valu¥) is defined simply as the number of symbols in it and is denated
|P| (respectively,|V|) Another crucial attribute of processes and values is thex depth namely the
maximum nesting of | operators inside them; for a prodeasd a valud/, it is denoted either aB(P)
or asB(V). Theduplicability factorD(P) of a proces® is the maximum number of free occurrences of
a variablex for every binder inP; similarly for values. The precise definition follows, whéO(x, P)
denotes the number of free occurrencexanP.

D(x) =D(x) =D(0) = 1; D(Ax.P) =D(Ax.P) = max{D(P),FO(x,P)};
D(V) =D(V); D(P || Q) = max{D(P),D(Q)};
D(a(x).P) = D(a(!x).P) = max{D(P),FO(x, P)}; D@&V).P) =maxq{D(V),D(P)};
D((va)P) = D(P); D(VW) = max{D(V),D(W)}.

Finally, we can define the weight of processes and values.tid@mof weight parametrized on a natural
numbem can be given as follows, by induction on the structure of psses and values:

Wh(x) = Wh(X) = Wh(0) = Wh(AX.P) = Wh(AIX.P) = Wy(P);
(V) = W () Wn(P || Q) :Wn(P) +Wn(Q)‘|‘1,
Wh(a(x).P) = Wn(a(!x).P) = Wn(P) + Wn(@V).P) = Wn(V) + Wn(P);
Wa((va)P) = Wn(P); Wn(VW) = W (V) + Wr(W) + 1.

Now, theweightW (P) of a proces® is Wy (P). Similarly for values.

The first auxiliary result is about structural congruencs.ofie would expect, two structurally con-
gruent terms have identical size, box depth, duplicabitittor and weight:
Proposition 3 if P = Q, then|P| = |Q|, B(P) = B(Q), D(P) = D(Q). Moreover, for every nW,(P) =
Wn(Q).
Observe that Propositidd 3 would not hold in presence otsiral congruence rules liké || 0= P and
(va)0=a.

How doesD(P) evolve during reduction? Actually, it cannot grow:
Lemma?2 If Fsp Q and Q— P, thenD(Q) > D(P).

Proof. As an auxiliary lemma, we can prove that wheneliersp P and OFsy V,A sy W, both

D(P[x/V]) < max{D(P),D(V)} andD(W|[x/V]) < max{D(W),D(V)}. This is an easy induction on

derivations fol” Fsp P andA sy W. The thesis follows. O
The weight of a process is an upper bound to the size of thepsdtself. This means that bounding

the weight of a process implies bounding its size. Moredberweight of a process strictly decreases at
any reduction step.

54 Light Logics and Higher-Order Processes

Lemma3 For every P,W(P) > |P|.

Proof. By induction onP, strengthening the induction hypothesis with a similaresteent for values. In
the induction, observe th&t(P),D(V) > 1 for every procesP and valueV. O

Proposition 4 If Fsp Q and Q— P, thenW(Q) > W(P).

Proof. As an auxiliary result, we need to prove the following (stlgtmodifications of) substitution
lemmas (let @-sy V andn>m> 1):

o If m:T xFsp R thenWn(R[x/V]) < Wh(R) +W,(V);

If 71: 1, XFsy W, thenWy(W([x/V]) < Wh(W) +Wn(V);

If 71: [, #xtsp R, thenWn(RX/V]) < Wp(R) +FO(X,R) - Wn(V);

If 70: T, #x Fsy W, thenWyy(W[x/V]) < Wp(W) +FO(X,W) - Wn(V);

If :7,!1xFsp R, thenWy(Rx/V]) < Wi(R) +n-W,(V);

If 717, 1XFoy W, thenW(W[x/V]) < W, (W) +n-W,(V);

This is an induction omt. An inductive case:

o If mTis:

_DxtsvZ
IT I #A Foy!Z
thenW =!Z and(!Z)[x/V] is simply (Z[x/V]). As a consequence:
Wn(W[X/V]) =m-Wn(Z[x/V])+1<n- (Wh(Z)+Wr(V))+1=n-Wn(Z)+n-Wy(V)+1
=Wn(1Z) +n-Wp(V) = Wr(W) +n-Wp(V).
With the above observations in hand, we can easily provehiggd by induction on any derivatignof

P —PpP QZ
e Suppose is

alV).R|la(x).S—L R Sx/V]
From Osp a(V).R || a(x).S, it follows that O-sp R, OFsy V andxsp S. As a consequence, since
D(Q) < D(P),

W(P) =W(@EV).R a(x).)=W p(e)(V) +Wpp) (R) + W) (S) +2
= W) (SX/V]) + Wi q)(R) +2 > Wiy q) (SX/V]) + Wp(q) (R) + 1 = W) (SX/V] || R).
e Suppose is

a('V).R|| a(!x).S—L R|| Sx/V]
From Osp a(V).R|| a(x).S it follows that O-sp R, 0F-sy V and eitherXxsp Sor #+sp S In the
first case:

W(P) =W(@E(IV).R[[a(x).S) = Wpp) (V) + Wpp)(R) + Wpp) (S) +2
=D(P)-Wpp) (V) +Wpp)(R) + Wppy(S) + 3 > W) (SX/V]) + Wp(g)(R) +3
> Wp(q) (SX/V]) + Wi q) (R) + 1= Wpq) (SX/V] || R).
In the second case:
W(P) = W(@(IV).R|| a(x).9) = Wy p)(IV) + Wp(p)(R) + Wip)(S) + 2
=D(P) - Wpp) (V) + Wpp)(R) + Wpp)(S) +3
> FO(%,5) - Wpp) (V) + Wpp) (R) + Wpp) (S) + 3
> W) (SX/V]) + Wp(q)(R) +3 > Wp(q) (SX/V]) + Wi q)(R) + 1 = W) (SXx/V] || R).

U. Dal Lago & S. Matrtini & D. Sangiorgi 55

e Suppose is
o.:R—LS
RIIT—=LS|T

From OFsp R| T, it follows that O-sp Rand OFsp T. By induction hypothesis oo, this yields
W(R) > W(S), and in turnW(R) = W(R) + W(T) +1> W(S)+W(T)+1=W(S).
This concludes the proof. |

Lemma3 and Propositidd 4 together imply that the weight isgwer bound to both the number of
reduction steps a process can perform and the size of angtre8lo, the only missing tale is bounding
the weight itself:

Proposition 5 For every process PW(P) < |P|B(P)+1,

Proof. By induction onP, enriching the thesis with an analogous statement for galigV) < |V|B(V)+1,
O

Putting all the ingredients together, we reach our soursdressult with respect polynomial time:

Theorem 1 There is a family of polynomial§p, }n such that for every process P and for every m, if
P—"Q, then m|Q| < pg(p)(|P|)-

The polynomials in Theorefd 1 depend on terms, so the bounteonumber of internal actions is not
polynomial, strictly speaking. Please observe, howetet, dll processes with the same box ddpdre
governed by the same polynomigl, similarly to what happens in Soft Linear Logic.

4.2 Completeness?

Soundness of a formal system with respect to some semaiédam is useless unless one shows that
the system is alsexpressive enoughln implicit computational complexity, programming larages
are usually proved both sound aextensionally complet&ith respect to a complexity class. Not only
any program can be normalized in bounded time, but everytifimin the class can be computed by
a program in the system. Preliminary to any completenesdtries SHO7T, however, would be the
definition of what a complexity class for processes shoul@aseopposed to the well known definition
for functions or problems). This is an elusive—and veryriesting—problem that we cannot tackle in
this preliminary work and that we leave for future work.

Certainly the expressiveness 8iHO7T is weak if we take into account the visible actions of the
processes (i.e., their interactions with the environmertt)s is due to the limited possibilities of copying,
and hence also of writing recursive process behaviourgeadone cannot considsHO7t, on its own,
as a general-purpose calculus for concurrency. Howevebelieve that the study &HO7m, or similar
languages, could be fruitful in establishing bounds on ttiernal behaviour of parts, or components,
of a concurrent systems; for instance, on the time and spatetprocess may take to answer a query
from another process (in this case 8t¢Ormrtechniques would be applied to the parts of the syntax of the
process that describe its internal computation after tleeyquNext section considers a possible direction
of development oSHOm, allowing more freedom on the external actions of the praegs

We are convinced, on the other hand, that a minimal compsteresult can be given, namely the
possibility of representing all polynomial tinfanctions(or problems) inSHO7. Paossibly, this could
be done by encoding Soft Linear Logic i Orrthrough a continuation-passing style translation. We
leave this to future work.

56 Light Logics and Higher-Order Processes

5 An Extension to SHO. Spawning

In this section we propose an extensionSbfOrt that allows us to accept processes sucBBRVER
capable of performing infinitely many interactions with ithexternal environment while maintaining
polynomial bounds on the number of internal steps they cdternatween any two external actions.
The reason whYSERVERIs not a SHO1T process has to do with the bound variakla the sub-
processCOMR:
COMR = Alz.(a(!'x).(b(ly).c{ly) x(!*) || a('x))),

The variable appears twice in the body!y).c(!y).x('x) || a(!x)), at two different !-depths. This pattern
is not permitted irSHO T, because otherwise also the nonterminating proCd$EGA would be in the
calculus. There is however a major difference betwW®@MEGA andSERVER in COMR, one of the
two occurrences of (the one at depth 0) is part of the continuation of an inpubpmoreover, such
channebis only used bysERVERIn input —SERVERdoes not own the output capability. This implies
that whatever process will substitute that occurrence wiwill be able to interact with the environment
only after an input onb is performed. So, its “computational weight” does not affén@ number of
reduction steps made by the procéssoresuch an input occurs. This phenomenon, which does not
occur inOMEGA, can be seen as a form of process spawnibd@MRB can be copied an unbounded
number of times, but the rhythm of the copying is dictatedhmyihput actions db.

Consider a subsef ¢ of ¥ (where%’ is the set of all channels which can appear in processes). The
process calculuBHOT(.# %) is an extension o8HO 1T parametrized ot¥ €. WhatEHOT(.#¢") adds
to SHOT is precisely the possibility of marking a subprocess as apomant which can be spawned.
This is accomplished with a new operator Channels in# ¢ are callednput channelsbecause outputs
are forbidden on them. The syntax of processes and valuesichied as follows:

P:=...|a(0x).P;
Vi=...|AOx.P|OV;

but outputs can only be performed on channels nofig. The termZV is a value (i.e., a parametrized
process) which can be spawned. Spawning itself is perforpyepgassing a processV to either an
abstractiomOx.P or an inputa(Ox).P. In both cases, exactly one occurrencexof P is the scope of a
O operator, and only one of the following two conditions holds
1. The occurrence ofin the scope of & operator is part of the continuation of an input charmel
and all other occurrences grin P are at depth 0.
2. There are no other occurrencescah P.
The foregoing constraints are enforced by the well-fororatiles in Figuréls. The well-formation rules
of EHOm(.#%’) are considerably more complex than the oneSldDr. Judgements have the form
I ep PorT ey V, where a variable can occur i in one of five different forms:
e As eitherx, Ix or #: here the meaning is exactly the one fr@O7T (see Sectiohl4).
e As Ox: the variablex then appears exactly oncein the scope of a spawning operator
e As OXx: x occurs at least once R, once in the scope of @ operator (itself part of the continuation
for an input channel), and possibly many times at depth O.
A variable marked a$>x can “absorb” the same variable declared agn#binary well-formation rules
(i.e. the ones for applications, outputs, etc.). Note theigh well-formation rules that are only applica-
ble with an input channel: in that case a portion of the cadnt@xbecomes>A.
The operational semantics is obtained adding to Figure &tlmving two rules:

a(OR).P || a(0x).Q — P|| Q[x/R] (ADx.P)OQ — P[x/Q]

U. Dal Lago & S. Matrtini & D. Sangiorgi 57
AN OCOFgp P AEN,#O Fep Q IXtegp P
Fep O TA#\ OO P Q I Fep a(x).P
I IXFegp P I #xtegp P [OXFegp P IM,OXtegp P
IFep a(!x).P I Fep a(!x).P IFep a(Dx).P I Fep a(Dx).P
MNOAXtgp P ae 7€ OAXFgp P ace €
rOAFEp a(x).P rOAFEp a(!x).P
MOA#XFegp P ac 9 OAOXtgp P ae %€ MOAOXFgp P ace 9
[, OAFep a(lx).P [, o0 Fep a(0X).P [, o0 Fep a(0X).P
[N, 00 ey VA #A H#O gp P CHAHO Fey V. A#A, OO bgp P
[0 #N, OO Fep aV).P [0 #N, OO Fep aV).P
[ep P [N, O0FeyV AH#NH#O ey W T HAH#O ey V A #A OO gy W
[Fep (VA)P MO #A, 50 Fep VW F.A#0, 50 Fep VW
r,Xl—Ep P
#H Fpy x #r,Xl—EVx #r,#Xl—EVx ey AXP
I,#xXtegp P M IXFegp P [OXtFegp P
ey AP INFey AXP I ey AOX.P
[OXFep P MNFevV ey V
[ey AOXP T #0 Fey!V OF, #A Fgy OV

Figure 5: Processes and valueEifOmn(.7%).

As expected,
Lemma 4 (Subject Reduction) If Fgp P and P—| Q, thentgp Q.

The procesSERVERis aEHOm(.#%) process onc€OMR is considered as a spawned process

andb € #%: define

SERVER = (va)(COMP; (%) || &(0COMP:));
COMPS = Alz.(a(Ox).(b(ly).c(ly).a(0x) || x(1x))).

and consider the following derivations:

(Z)'_EV * (Z)'_EV COMP+
OFgy COMP; Obpylx O+gy OCOMPS
OFgp COMP[\(!*) OFep a(DCOMP[\>
0Fcp COMPS (%) || a(OCOMPS)
0Fep (va)(COMPy (1) || a(0COMPL))

58 Light Logics and Higher-Order Processes

Xl—EV X
#z,O0Xlpy OX Yheyy
#z,0x Fep A(OX) lyFeyly OFgy *
#z,Ox,lyFep T(ly).a(0x) be SE #xbpyx OFpy!x
#z, OX Fgp b('y)C('y>a<Dx> #XFep X(!*)

#2, % Fep b(ly).c(ly) A(0X) [X(1%)
#2Fep a(0X).(b(ly) c(ly) A({0X) [x(1%))
0 ey Alza(Ox).(b(ly).c(ly).a(ox) || x(1%))

The use IEHO(.# %) of a distinct set of input channels may still be seen as rigat.instance, it
prevents from acceptinGERVER in parallel with a client of the server itself (because thertluses the
request channel of the server in output); similarly, it pretg from accepting reentrant servers (servers
that can invoke themselves). As pointed out earlier, we amlginterested in techniques capable of
ensuring polynomial bounds @omponentsf concurrent systems (so for instance, bounds on the server
rather than on the composition of the server and a clien@inincase, this paper represents a preliminary
investigation, and further refinements or extensionBleO (.7 %") may well be possible.

5.1 Feasible Termination

The proof of feasible termination f&EHOT(.# %) is similar in structure to the one f@HOT (see
Sectior[4.11). However, some additional difficulties dueh ppresence of spawning arise.

The auxiliary notions we needed in the proof of feasible teation forSHO7Tcan be easily extended
to EHOm(.#%) as follows: The architecture of the soundness proof is amid the one for linear
processes. The box depth, duplicability factor and weidlat process are defined as for soft processes,
plus:

B(AOx.P) =B(P); D(AOX.P) = max{D(P),FO(x,P)}; Wh(AOX.P) = Wh(P);
B(OV) =B(V) +1; D(OV) = D(V); Wn(OV) =n-Wn(V)+1;
B(a(0x).P) =B(P); D(a(Ox).P) = max{D(P),FO(x,P)}; Wh(a(Ox).P) = Wn(P) + 1.

Informally, the spawning operatar acts as ! in all the definitions above. The weidtitP), still defined
asWpp)(P) is again an upper bound to the sizeRyfout is not guaranteed to decrease at any reduction
step. In particular, spawning can makgP) bigger. As a consequence, two new auxiliary notions are
needed. The first one is similar to the weight of processesvahus, but is computed without taking
into account whatever happens after an input on a chanae¥ %' It is parametric on a natural number

n and is defined as follows:

In(A%.P) = In(AIX.P) = In(AOX.P) = In(P)
In(V)+1 In(P|| Q) =In(P) +In(Q) +1
0 ifac ¢
I(P)+1 otherwise

In((va)P) =In(P) In(PQ) = In(P) +In(Q) +1

Hn(a<v>~P) = Hn(V) JrHn(P)

The weight before inpufl(P) of a process is simply Ipp) (P). As we will see,I(P) is guaranteed to
decrease at any reduction step, but this time it is not anrdgpend to the size of the underlying process.
The second auxiliary notion captures the potential grovitprocesses due to spawning and is again
parametric on a natural numbmer

U. Dal Lago & S. Matrtini & D. Sangiorgi 59

P (%) = Pp(X) = Py (0) =0 Pn(AX.P) = Pn(AIX.P) = Py(AOX.P) = Py(P)
Py(IV) = n-Pp(V) Pn(OV) = n-Py(V) +n-Wn(V)
0 ifac ¢
Pn(P || Q) = Pn(P) + Pn(Q) Pn(a(x).P) = Pp(a(!x).P) = Pp(a(0x).P) = { Po(P) otherwise

Pn(a&(V).P) = Pn(V) +Pn(P) Pn((va)P) = Py(P)
Pr(VW) =Pn(V) +Pn(W)

Again, thepotential growthP(P) of a process is Pp(p)(P). Propositior B, Lemmal2 and Lemrnh 3
from Section 4.l continue to hold f&HOT™(.#%¢), and their proofs remain essentially unchanged.
Propositiori 4 is true only if the weight before input repladee weight:

Proposition 6 If 0Fsp Q and Q— P, then(Q) > I(P).

The potential growth of a proceBscannot increase during reduction. Moreover, the weighimenease,
but at most by the decrease in the potential growth. Formally

Proposition 7 If 0Fsp Q and Q— P, thenP(Q) > P(P) andW(Q) +P(Q) > W(P) +P(P).
Polynomial bounds on all the attributes of processes we tiefieed can be proved:

Proposition 8 For every process P (P) < |P|E(P)+1, 1(P) < |P|B(P)+1 and P(P) < B(P)W(P).
And, as forSHOTT, we get a polynomial bound in the number of reduction steps fany process:

Theorem 2 There is a family of polynomial§p, }nen such that for every process P and for every m, if
P —1"Q, then m|Q| < pgp(|P|).

Proofs for the results above have been elided, due to spastraimts. Their structure, however, reflects
the corresponding proofs f@HO7T (see Sectioh 411). As an example, proofs of proposifibnsifleare
both structured around appropriate substitution lemmas.

6 Conclusions

Goal of this preliminary essay was to verify whether we capggdly to process algebras the technologies
for resource control that have been developed in the seetdibht logics” and have been successfully
applied so far to paradigmatic functional programming. Veédibérately adopted a minimalistic ap-
proach: applications between processes restricted tesallie simplest available logic, a purely linear
language (i.e., no weakening/erasing on non marked fosyua types, no search for maximal expres-
sivity. In this way the result of the experiment would havel laaclear single outcome. We believe this
outcome is a clear positive, and that this paper demonstitate

Several issues must be investigated further, of coursehatatis first experiment may become a
solid contribution. First, one may wonder whether other plaxity conscious fragments of linear logic
can be used in place @LL as guideline for box controlSLL is handy as a first try, because of its
simplicity, but we do believe that analogous results coddabtained starting from Light Affine Logic,
designed by Asperti and Roversi [2] after Girard’s treattradrthe purely linear case. This would also
allow unrestricted erasing of processes, leaving marka&dsonly for duplication. Second, individuate a
richer language of processes, still amenable to the sofigtat) treatment. Sectidn 5 suggests a possible
direction, but many others are possible. Third, the vergrigting problem of studying the notion of
complexity class in the process realm.

60 Light Logics and Higher-Order Processes

In the paper, we have proved polynomial boundsSbrOr, obtained from the the Higher-Order
r-calculus by imposing constraints inspired by Soft Lineagic. We have then considered an exten-
sion of SHOTT, taking into account features specific to processes, nothblexistence of channels: in
process calculi a reduction step does not need to be anomsyrastn theA -calculus, but may result
from an interaction along a channel. An objective of the esiien was to accept processes that are pro-
grammed to have unboundedly many external actions (iferactions with their environment) but that
remain polynomial on the internal work performed betweey taro external activities. Our definition
of the extended clasg§HO(.# %), relies on the notion of input channel — a channel that is used
a process only in input. This allows us to have more flexipilit the permitted forms of copying. We
have propose&HOT(.¥ %) because this class seems mathematically simple and pigctiteresting.
These claims, however, need to be sustained by more evidendeer, other refinements 8HO are
possible. Again, more experimentation with examples isleddo understand where to focus attention.

Another question related to the interplay between inteaindlexternal actions of processes is whether
the polynomial bounds on internal actions change when mat@ctions are performed.

Summarizing, we started with a question (“Can ICC be appbeauarocess algebras?”) and ended up
with a positive answer and many more different questiond.tiids is a feature, and not a bug.

References

[1] Roberto M. Amadio & Frédéric Dabrowski (2007lFeasible Reactivity in a Synchronomscalculus In:
PPDP 2007ACM, pp. 221-230.

[2] A. Asperti & L. Roversi (2002)intuitionistic Light Affine Logic TOCL 3(1), pp. 1-39.

[3] Romain Demangeon, Daniel Hirschkoff & Davide Sangiq@f¥10): Termination in Higher-Order Concur-
rent Calculi In: FSEN 2009LNCS5961, pp. 81-96.

[4] Romain Demangeon, Daniel Hirschkoff & Davide Sangiofg010): Termination in Impure Concurrent
Langagesin: CONCUR 201Q0LNCS 6269, pp. 328-342.

[5] Thomas Ehrhard & Olivier Laurent (2008)cyclic Solos and Differential Interaction NefBechnical report
PPS Paris VII.

[6] Thomas Ehrhard & Laurent Regnier (2008)ifferential Interaction NetsTCS364(2), pp. 166—195.
[7] J.-Y. Girard (1987)Linear Logic TCS50, pp. 1-102.
[8] J.-Y. Girard (1998)Light Linear Logic I&C 143(2), pp. 175-204.

[9] Naoki Kobayashi & Davide Sangiorgi (2008):Hybrid Type System for Lock-Freedom of Mobile Processes
In: CAV 2008 LNCS5123, pp. 80-93.

[10] Y. Lafont (2004):Soft Linear Logic and Polynomial Tim&CS318(1-2), pp. 163-180.

[11] Ugo Dal Lago, Luca Roversi & Luca Vercelli (2009)aming Modal Impredicativity: Superlazy Reduction
In: LFCS 2009LNCS5407, pp. 137-151.

[12] Davide Sangiorgi & David Walker (2001)The rr-calculus: A Theory of Mobile Processeambridge
University Press.
[13] Philip Wadler (1994)A Syntax for Linear Logicln: MFPS 1993LNCS802, pp. 513-529.

[14] N. Yoshida, M. Berger & Honda. K. (2001gtrong Normalisation in the-Calculus In: LICS 2001 IEEE,
pp. 311-322.

	1 Introduction
	2 Higher-Order Processes
	3 Linearizing Processes
	3.1 Embedding Processes into Linear Processes

	4 Termination in Bounded Time: Soft Processes
	4.1 Feasible Termination
	4.2 Completeness?

	5 An Extension to SHO: Spawning
	5.1 Feasible Termination

	6 Conclusions

