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We show that the techniques for resource control that have been developed in the so-called “light
logics” can be fruitfully applied also to process algebras.In particular, we present a restriction of
Higher-Orderπ-calculus inspired by Soft Linear Logic. We prove that any soft process terminates
in polynomial time. We argue that the class of soft processesmay be naturally enlarged so that
interesting processes are expressible, still maintainingthe polynomial bound on executions.

1 Introduction

A term terminates if all its reduction sequences are of finitelength. As far as programming languages are
concerned, termination means that computation in programswill eventually stop. In computer science,
termination has been extensively investigated in sequential languages, where strong normalization is a
synonym more commonly used.

Termination is however interesting also in concurrency. While large concurrent systems often are
supposed to run forever (e.g., an operating system, or the Internet itself), single components are usually
expected to terminate. For instance, if we query a server, wemay want to know that the server does not
go on forever trying to compute an answer. Similarly, when weload an applet we would like to know
that the applet will not run forever on our machine, possiblyabsorbing all the computing resources. In
general, if the lifetime of a process can be infinite, we may want to know that the process does not remain
alive simply because of nonterminating internal activity,and that, therefore, the process will eventually
accept interactions with the environment.

Another motivation for studying termination in concurrency is to exploit it within techniques aimed
at guaranteeing properties such as responsiveness and lock-freedom [9], which intuitively indicate that
certain communications or synchronizations will eventually succeed (possibly under some fairness as-
sumption). In message-passing languages such as those in the π-calculus family (Join Calculus, Higher-
Orderπ-calculus, Asynchronousπ-calculus, etc.) most liveness properties can be reduced toinstances
of lock-freedom. Examples, in a client-server system, are the liveness properties that a client request will
eventually be received by the server, or that a server, once accepted a request, will eventually send back
an answer.

However, termination alone may not be satisfactory. If a query to a server produces a computation
that terminates after a very long time, from the client pointof view this may be the same as a nonter-
minating (or failed) computation. Similarly, an applet loaded on our machine that starts a very long
computation, may engender an unacceptable consumption of local resources, and may possibly be con-
sidered a “denial of service” attack. In other words, without precise bounds on the time to complete a
computation, termination may be indistinguishable from nontermination.

Type disciplines are among the most general techniques to ensure termination of programs. Both
in the sequential and in the concurrent case, type systems have been designed to characterize classes
of terminating programs. It is interesting that, from the fact that a program has a type, we may often
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extract information on the structure of the program itself (e.g., for the simple types, the program has
no self applications). If termination (or, more generally,some property of the computation) is the main
interest, it is only this structure that matters, and not thespecifics of the types. In this paper we take this
perspective, and apply to a certain class of programs (Higher-Orderπ-calculus terms) the structural re-
strictions suggested by the types of Soft Linear Logic [10],a fragment of Linear Logic [7] characterizing
polynomial time computations.

Essential contribution of Linear Logic has been therefinementit allows on the analysis of com-
putation. The (previously atomic) step of function application is decomposed into a duplication phase
(during which the argument is duplicated the exact number oftimes it will be needed during the com-
putation), followed by the application of alinear function (which will use each argument exactly once).
The emphasis here is not on restricting the class of programs—in many cases, any traditional program
(e.g., anyλ -term, even a divergent one) could be annotated with suitable scope information(boxes, in
the jargon) in such a way that the annotated program behaves as the original one. However, the new
annotations embed information on the computational behavior that was unexpressed (and inexpressible)
before. In particular, boxes delimit those parts of data that will be (or may be) duplicated or erased during
computation.

It is at this stage that one may applyrestrictions. By building on the scopes exposed in the new syn-
tax, we may restrict the computational behavior of a term. Inthe sequential case several achievements
have been obtained via the so-calledlight logics [8, 2, 10], which allow for type systems forλ -calculus
exactly characterizing several complexity classes (notably, elementary time, polynomial type, polyno-
mial space, logarithmic space). This is obtained by limitations on the way the scopes (boxes) may be
manipulated. For the larger complexity classes (e.g., elementary time) one forbids that during computa-
tion one scope may enter inside another scope (their nestingdepth remains constant). For smaller classes
(e.g., polynomial time) one also forbids that a duplicatingcomputation could drive another duplication.
The exact way this is obtained depends on the particular discipline (either à la Light Linear Logic, or à
la Soft Linear Logic).

The aim of this paper is to apply for the first time these technologies to the concurrent case, in
particular to Higher-Orderπ-calculus [12]. We closely follow the pattern we have delineated above.
First, we introduce (higher-order) processes, which we then annotate with explicit scopes, where the new
construct “!” marks duplicable entities. This is indeed a refinement, and not a restriction — any process
in the first calculus may be simulated by an annotated one. We then introduce our main object of study
— annotated processes restricted with the techniques of Soft Linear Logic. We show that the number of
internal actions performed by processes of this calculus ispolynomially bounded (Section 4), a property
that we callfeasible termination. Moreover, an extension of the calculus capturing a naturalexample
will be presented (Section 5).

We stress that we used in the paper a pragmatic approach — takefrom the logical side tools and
techniques that may be suitable to obtain general bounds on the computing time of processes. We are not
looking for a general relation between logical systems and process algebras that could realize a form of
Curry-Howard correspondence among the two. That would be a much more ambitious goal, for which
other techniques — and different success criteria — should be used.

Related Work A number of works have recently studied type systems that ensure termination in mo-
bile processes, e.g. [14, 3, 4]. They are quite different from the present paper. First, the techniques
employed are measure-based techniques, or logical relations, or combinations of these, rather than tech-
niques inspired by linear logics, as done here. Secondly, the objective is pure termination, whereas here
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we aim at deriving polynomial bounds on the number of steps that lead to termination. (In some of the
measure-based systems bounds can actually be derived, but they are usually exponential with respect to
integer annotations that appear in the types.) Thirdly, with the exception of [4], all works analyse name-
passing calculi such as theπ-calculus, whereas here we consider higher-order calculi in which terms of
the calculus are exchanged instead of names.

Linear Logic has been applied to mobile processes by Ehrhardand Laurent [5], who have stud-
ied encodings ofπ-calculus-like languages into Differential Interaction Nets [6], an extension of the
Multiplicative Exponential fragment of Linear Logic. The encodings are meant to be tests for the expres-
siveness of Differential Interaction Nets; the issue of termination does not arise, as the process calculi
encoded are finitary. Amadio and Dabrowski [1] have applied ideas from term rewriting to aπ-calculus
enriched with synchronous constructs à la Esterel. Computation in processes proceeds synchronously,
divided into cycles called instants. A static analysis and afinite-control condition guarantee that, during
each instant, the size of a program and the times it takes to complete the instant are polynomial on the
size of the program and the input values at the beginning of the instant.

2 Higher-Order Processes

This section introduces the syntax and the operational semantics of processes. We callHOπ the cal-
culus of processes we are going to define (it is the calculusHOπunit,→,⋄ in [12]). In HOπ the values
exchanged in interactions can be first-order values and higher-order values, i.e., terms containing pro-
cesses. For economy, the only first-order value employed is the unit value⋆, and the only higher-order
values are parametrised processes, called abstractions (thus we forbid direct communication of processes;
to communicate a process we must add a dummy parameter to it).The process constructs are nil, parallel
composition, input, output, restriction, and application. Application is the destructor for abstraction: it
allows us to instantiate the formal parameters of an abstraction. Here is the complete grammar:

P ::= 0 | P || P | a(x).P | a〈V〉.P | (νa)P |VV;

V ::= ⋆ | x | λx.P;

wherea ranges over a denumerable setC of channels, andx over the denumerable set of variables. Input,
restriction, and abstractions are binding constructs, andgive rise in the expected way to the notions of
free and bound channels and of free and bound variables, as well as of α-conversion.

Ill-formed terms such as⋆⋆ can be avoided by means of a type systems. The details are standard and
are omitted here; see [12].

The operational semantics, in the reduction style, is presented in Figure 1, and uses the auxiliary
relation ofstructural congruence, written≡. This is the smallest congruence closed under the following
rules:

P≡ Q if P andQ areα-equivalent;

P || (Q || R)≡ (P || Q) || R;

P || Q≡ Q || P;

(νa)((νb)P) ≡ (νb)((νa)P);

((νa)P || Q)≡ ((νa)P) || Q if a is not free inQ;

Unlike other presentations of structural congruence, we disallow the garbage-collection lawsP || 0 ≡ P
and (νa)0 ≡ a, which are troublesome for our resource-sensitive analysis. The reduction relation is
written→P, and is defined on processes without free variables.
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a〈V〉.P || a(x).Q→P P || Q[x/V] (λx.P)V →P P[x/V]

P→P Q
P || R→P Q || R

P→P Q
(νa)P→P (νa)Q

P≡ Q Q→P R R≡ S
P→P S

Figure 1: The operational semantics ofHOπ processes.

In general, the relation→P is nonterminating. The prototypical example of a nonterminating process
is the following processOMEGA:

OMEGA= (νa)(DELTA⋆ || a〈DELTA〉), where DELTA= λy.(a(x).(x ⋆ || a〈x〉)).

Indeed, it holds thatOMEGA→2
P

OMEGA. Variants of the construction employed forOMEGAcan be
used to show that process recursion can be modelled inHOπ. An example of this construction is the
following SERVERprocess. It accepts a requesty on channelb and forwards it alongc. After that, it
can handle another request fromb. In contrast toOMEGA, SERVERis terminating, because there is no
infinite reduction sequence starting fromSERVER. Yet hand, the number of requestsSERVERcan handle
is unlimited, i.e.,SERVERcan be engaged in an infinite sequence of interactions with its environment.

SERVER= (νa)(COMP⋆ || a〈COMP〉);

COMP= λz.(a(x).(b(y).c〈y〉.a〈x〉 || x⋆)).

A remark on notation: in this paper, ! is the Linear Logic operator (more precisely, an operator
derived from Linear Logic), and should not be confused with the replication operator often used in
process calculi such as theπ-calculus.

3 Linearizing Processes

Linear Logic can be seen as a way to decompose the type of functionsA→ B into a refined type !A⊸ B.
Since the argument (inA) may be used several (or zero) times to compute the result inB, we first turn the
input into a duplicable (and erasable) object (of type !A). We now duplicate (or erase) it the number of
times it is needed, and finally we use each of the copies exactly once to obtain the result (this is the linear
function space⊸). The richer language of types (with the new constructors ! and⊸) is matched by new
term constructs, whose goal is to explicitly enclose in marked scopes (boxes) those subterms that may be
erased or duplicated. In the computational process we described above, there are three main ingredients:
(i) the mark on a duplicable/erasable entity; (ii) its actual duplication/erasure; (iii) the linear use of the
copies. For reasons that cannot be discussed here (see Wadler’s [13] for the notation we will use) we
may adopt a syntax where the second step (duplication) is notmade fully explicit (thus resulting in a
simpler language), and where the crucial distinction is made between linear functions (denoted by the
usual syntaxλx.P — but interpreted in a strictly linear way:x occurs once inP), and nonlinear functions,
denoted withλ!x.P, where thex may occur several (or zero) times inP. When a nonlinear function is
applied, its actual argument will be duplicated or erased. We enclose the argument in a box to record this
fact, using an eponymous unary operator ! also on terms. Since we want to control the computational
behavior of duplicable entities, a term in a !-box is protected and cannot be reduced. Only when it will
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!Γ ⊢P 0
Γ, !Λ ⊢P P ∆, !Λ ⊢P Q

Γ,∆, !Λ ⊢P P || Q
Γ,x⊢P P

Γ ⊢P a(x).P

Γ, !x⊢P P
Γ ⊢P a(!x).P

Γ, !Λ ⊢V V ∆, !Λ ⊢P P
Γ,∆, !Λ ⊢P a〈V〉.P

Γ ⊢P P
Γ ⊢P (νa)P

Γ, !Λ ⊢V V ∆, !Λ ⊢V W
Γ,∆, !Λ ⊢P VW !Γ ⊢V ⋆ !Γ,x⊢V x

!Γ, !x⊢V x
Γ,x⊢P P

Γ ⊢V λx.P
Γ, !x⊢P P
Γ ⊢V λ!x.P

!Γ ⊢V V
!Γ ⊢V!V

Figure 2: Processes and values inLHOπ.

be fed to a (nonlinear) function, and thus (transparently) duplicated, its box will be opened (the mark !
disappears) and the content will be reduced.

The constructs ontermsarising from Linear Logic have a natural counterpart in higher-order pro-
cesses, where communication and abstraction play a similarrole. This section introduces a linearization
of HOπ, that we here dubLHOπ. The grammars of processes and values are as follows:

P ::= 0 | P || P | a(x).P | a(!x).P | a〈V〉.P | (νa)P |VV;

V ::= ⋆ | x | λx.P | λ!x.P | !V.

On top of the grammar, we must enforce the linearity constraints, which are expressed by the rules in
Figure 2. They prove judgements in the formΓ ⊢P P andΓ ⊢V V, whereΓ is acontextconsisting of a
finite set of variables — a single variable may appear inΓ either asx or as !x, but not both. Examples of
contexts arex, !y; or x,y,z; or the empty context /0. As usual, we write !Γ when all variables of the context
(if any) are !-marked. A processP (respectively, a valueV) is well-formediff there is a contextΓ such
thatΓ ⊢P P (respectively,Γ ⊢V V). In the rules with two premises, observe the implicit contractions on
!-marked variables in the context — they allow for transparent duplication. Thedepthof a (occurrence
of a) variablex in a process or value is the number of instances of the ! operator it is enclosed to. As an
example, ifP= (!x)(y), thenx has depth 1, whiley has depth 0.

A judgementΓ ⊢P P can informally be interpreted as follows. Any variable appearing asx in Γ must
occur free exactly once inP; moreover the only occurrence ofx is at depth 0 inP (that is, it is not in the
scope of any !). On the other hand, any variabley appearing as !y in Γ may occur free any number of
times inP, at any depth. Variables likex arelinear, while those likey arenonlinear. Nonlinear variables
may only be bound by nonlinear binders (which have a ! to recall this fact).

The operational semantics ofLHOπ is a slight variation on the one ofHOπ, and can be found in
Figure 3. The two versions of communication and abstraction(i.e., the linear and the nonlinear one)
are governed by two distinct rules. In the nonlinear case theargument to the function (or the value sent
through a channel) must be in the correct duplicable form !V. Well-formation is preserved by reduction:

Lemma 1 (Subject Reduction) If ⊢P P and P→L Q, then⊢P Q.
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a〈V〉.P || a(x).Q→L P || Q[x/V] (λx.P)V →L P[x/V]

a〈!V〉.P || a(!x).Q→L P || Q[x/V ] (λ!x.P)!V →L P[x/V]

P→L Q
P || R→L Q || R

P→L Q
(νa)P→L (νa)Q

P≡ Q Q→L R R≡ S
P→L S

Figure 3: The operational semantics ofLHOπ processes.

3.1 Embedding Processes into Linear Processes

Processes (and values) can be embedded into linear processes (and values) as follows:

[⋆]V = ⋆; [λx.Q]V = λ!x.[P]P;

[0]P = 0; [x]V = x;

[P || Q]P = [P]P || [Q]P; [a(x).P]P = a(!x).[P]P;

[a〈V〉.P]P = a〈![V ]V〉.[P]P; [(νa)P]P = (νa)[P]P;

[VW]P = [V]V![W]V.

Linear abstractions and linear inputs never appear in processes obtained via[·]P: whenever a value is sent
through a channel or passed to a function, it is made duplicable. The embedding induces a simulation of
processes by linear processes:

Proposition 1 (Simulation) For every process P,[P]P is well-formed. Moreover, if P→P Q, then
[P]P →L [Q]P.

By applying the map[·]P to our example process,SERVER, a linear processSERVER! can be obtained:

SERVER! = (νa)(COMP!(!⋆) || a〈!COMP!〉);

COMP! = λ!z.(a(!x).(b(!y).c〈!y〉.a〈!x〉 || x(!⋆))).

4 Termination in Bounded Time: Soft Processes

In view of Proposition 1,LHOπ admits non terminating processes. Indeed, the prototypical divergent
process from Section 2 can be translated into a linear process:

OMEGA! = (νa)((DELTA!(!⋆)) || a〈!DELTA!〉), where DELTA! = λ!y.(a(!x).(x(!⋆) || a〈!x〉)).

OMEGA! cannot be terminating, sinceOMEGAitself does not terminate.
The more expressive syntax, however, may revealwhya process does not terminate. If we trace its

execution, we see that the divergence ofOMEGA! comes fromDELTA!, wherex appears free twice in
the inner body(x(!⋆) || a〈!x〉): once in the scope of the ! operator, once outside any !. When avalue is
substituted forx (and thus duplicated) one of the two copies interacts with the other, being copied again.
It is this cyclic phenomenon (calledmodal impredicativityin [11]) that is responsible for nontermination.
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#Γ ⊢SP 0
Γ,#Λ ⊢SP P ∆,#Λ ⊢SP Q

Γ,∆,#Λ ⊢SP P || Q
Γ,x⊢SP P

Γ ⊢SP a(x).P

Γ, !x⊢SP P
Γ ⊢SP a(!x).P

Γ,#x⊢SP P
Γ ⊢SP a(!x).P

Γ,#Λ ⊢SV V ∆,#Λ ⊢SP P
Γ,∆,#Λ ⊢SP a〈V〉.P

Γ ⊢SP P
Γ ⊢SP (νa)P

Γ,#Λ ⊢SV V ∆,#Λ ⊢SV W
Γ,∆,#Λ ⊢SP VW #Γ ⊢SV ⋆

#Γ,x⊢SV x #Γ,#x⊢SV x
Γ,x⊢SP P

Γ ⊢SV λx.P

Γ,#x⊢SP P
Γ ⊢SV λ!x.P

Γ, !x⊢SP P
Γ ⊢SV λ!x.P

Γ ⊢SV V
!Γ,#∆ ⊢SV!V

Figure 4: Processes and values inSHOπ.

The Linear Logic community has studied in depth the impact ofunbalanced and multiple boxes on
the complexity of computation, and singled out several (different) sufficient conditions for ensuring not
only termination, but termination with prescribed bounds.We will adopt here the conditions arising
from Lafont’s analysis (and formalized in Soft Linear Logic, SLL [10]), leaving to further work the
usage of other criteria. We thus introduce the calculusSHOπ of soft processes, for which we will prove
termination in polynomial time. In our view, this is the maincontribution of the paper.

Soft processes share the same grammar and operational semantics than linear processes (Section 3),
but are subjected to stronger constraints, expressed by thewell-formation rules of Figure 4. A contextΓ
can now contain a variablex in at most one ofthreedifferent forms:x, !x, or #x. The implicit contraction
(or weakening) happens on #-marked variables, but none of them may ever appear inside a !-box. In the
last rule it is implicitly assumed that the contextΓ in the premise is composed only of linear variables,
if any (otherwise the context !Γ of the conclusion would be ill-formed). Indeed, the rules amount to say
that, if Γ ⊢SP P (and similarly for values), then: (i) any linear variablex in Γ occurs exactly once inP,
and at depth 0 (this is as inLHOπ); (ii) any nonlinear variable !x occurs exactly once inP, and at depth
1; (iii) any nonlinear variable #x may occur any number of times inP, all of its occurrences must be at
level 0. As a result, any bound variable appears in the scope of the binder always at a same level. As in
LHOπ, well-formed processes are closed by reduction:

Proposition 2 If ⊢SP P and P→L Q, then⊢SP Q.

The nonterminating processOMEGA! which started this section isnot a soft process, because the
bound variablex appears twice, once at depth 0 and once depth 1. And this is good news: we would like
SHOπ to be a calculus of terminating processes, at least! But thishas some drawbacks: alsoSERVER!
is not a soft process. Indeed,SHOπ is not able to discriminate betweenSERVER! andOMEGA! , which
share a very similar structure. We will come back to this after we proved our main result on the polyno-
mial bound on reduction sequences for soft processes.



U. Dal Lago & S. Martini & D. Sangiorgi 53

4.1 Feasible Termination

This section is devoted to the proof of feasible terminationfor soft processes. We prove that the length
of any reduction sequence from a soft processP is bounded by a polynomial on the size ofP. Moreover,
the size of any process along the reduction is itself polynomially bounded.

The proof proceeds similarly to the one forSLL proof-nets by Lafont [10]. The idea is relatively
simple: a weight is assigned to every process and is proved todecrease at any normalization step. The
weight of a process can be proved to be anupper boundon the size of the process. Finally, a polynomial
bound on the weight of a process holds. Altogether, this implies feasible termination.

Before embarking on the proofs, we need some preliminary definitions. First of all, thesizeof a
processP (respectively, a valueV) is defined simply as the number of symbols in it and is denotedas
|P| (respectively,|V|) Another crucial attribute of processes and values is theirbox depth, namely the
maximum nesting of ! operators inside them; for a processP and a valueV, it is denoted either asB(P)
or asB(V). Theduplicability factorD(P) of a processP is the maximum number of free occurrences of
a variablex for every binder inP; similarly for values. The precise definition follows, whereFO(x,P)
denotes the number of free occurrences onx in P.

D(⋆) = D(x) = D(0) = 1; D(λx.P) = D(λ !x.P) = max{D(P),FO(x,P)};

D(!V) =D(V); D(P || Q) = max{D(P),D(Q)};

D(a(x).P) = D(a(!x).P) = max{D(P),FO(x,P)}; D(a〈V〉.P) = max{D(V),D(P)};

D((νa)P) =D(P); D(VW) = max{D(V),D(W)}.

Finally, we can define the weight of processes and values. A notion of weight parametrized on a natural
numbern can be given as follows, by induction on the structure of processes and values:

Wn(⋆) =Wn(x) =Wn(0) = 1; Wn(λx.P) =Wn(λ !x.P) =Wn(P);

Wn(!V) = n·Wn(V)+1; Wn(P || Q) =Wn(P)+Wn(Q)+1;

Wn(a(x).P) =Wn(a(!x).P) =Wn(P)+1; Wn(a〈V〉.P) =Wn(V)+Wn(P);

Wn((νa)P) =Wn(P); Wn(VW) =Wn(V)+Wn(W)+1.

Now, theweightW(P) of a processP isWD(P)(P). Similarly for values.
The first auxiliary result is about structural congruence. As one would expect, two structurally con-

gruent terms have identical size, box depth, duplicabilityfactor and weight:

Proposition 3 if P ≡ Q, then|P|= |Q|, B(P) = B(Q), D(P) = D(Q). Moreover, for every n,Wn(P) =
Wn(Q).

Observe that Proposition 3 would not hold in presence of structural congruence rules likeP || 0 ≡ P and
(νa)0 ≡ a.

How doesD(P) evolve during reduction? Actually, it cannot grow:

Lemma 2 If ⊢SP Q and Q→L P, thenD(Q)≥ D(P).

Proof. As an auxiliary lemma, we can prove that wheneverΓ ⊢SP P and /0⊢SV V,∆ ⊢SV W, both
D(P[x/V ]) ≤ max{D(P),D(V)} andD(W[x/V]) ≤ max{D(W),D(V)}. This is an easy induction on
derivations forΓ ⊢SP P and∆ ⊢SV W. The thesis follows. ✷

The weight of a process is an upper bound to the size of the process itself. This means that bounding
the weight of a process implies bounding its size. Moreover,the weight of a process strictly decreases at
any reduction step.
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Lemma 3 For every P,W(P)≥ |P|.

Proof. By induction onP, strengthening the induction hypothesis with a similar statement for values. In
the induction, observe thatD(P),D(V)≥ 1 for every processP and valueV. ✷

Proposition 4 If ⊢SP Q and Q→L P, thenW(Q)>W(P).

Proof. As an auxiliary result, we need to prove the following (slightly modifications of) substitution
lemmas (let /0⊢SV V andn≥ m≥ 1):
• If π : Γ,x⊢SP R, thenWm(R[x/V ])≤Wn(R)+Wn(V);
• If π : Γ,x⊢SV W, thenWm(W[x/V ])≤Wn(W)+Wn(V);
• If π : Γ,#x⊢SP R, thenWm(R[x/V])≤Wn(R)+FO(x,R) ·Wn(V);
• If π : Γ,#x⊢SV W, thenWm(W[x/V ])≤Wn(W)+FO(x,W) ·Wn(V);
• If π : Γ, !x⊢SP R, thenWm(R[x/V])≤Wn(R)+n·Wn(V);
• If π : Γ, !x⊢SV W, thenWm(W[x/V ])≤Wn(W)+n·Wn(V);

This is an induction onπ. An inductive case:
• If π is:

Γ,x⊢SV Z
!Γ, !x,#∆ ⊢SV!Z

thenW =!Z and(!Z)[x/V ] is simply !(Z[x/V]). As a consequence:

Wm(W[x/V ]) = m·Wm(Z[x/V])+1≤ n· (Wn(Z)+Wn(V))+1= n·Wn(Z)+n·Wn(V)+1

=Wn(!Z)+n·Wn(V) =Wn(W)+n·Wn(V).

With the above observations in hand, we can easily prove the thesis by induction on any derivationρ of
P→P Q:
• Supposeρ is

a〈V〉.R || a(x).S→L R || S[x/V ]

From /0⊢SP a〈V〉.R || a(x).S, it follows that /0⊢SP R, /0⊢SV V andx⊢SP S. As a consequence, since
D(Q)≤ D(P),

W(P) =W(a〈V〉.R || a(x).S) =WD(P)(V)+WD(P)(R)+WD(P)(S)+2

≥WD(Q)(S[x/V ])+WD(Q)(R)+2>WD(Q)(S[x/V ])+WD(Q)(R)+1=WD(Q)(S[x/V ] || R).

• Supposeρ is

a〈!V〉.R || a(!x).S→L R || S[x/V ]

From /0⊢SP a〈V〉.R || a(x).S, it follows that /0⊢SP R, /0⊢SV V and either !x⊢SP Sor #x⊢SP S. In the
first case:

W(P) =W(a〈!V〉.R || a(x).S) =WD(P)(!V)+WD(P)(R)+WD(P)(S)+2

=D(P) ·WD(P)(V)+WD(P)(R)+WD(P)(S)+3≥WD(Q)(S[x/V ])+WD(Q)(R)+3

>WD(Q)(S[x/V ])+WD(Q)(R)+1=WD(Q)(S[x/V ] || R).

In the second case:

W(P) =W(a〈!V〉.R || a(x).S) =WD(P)(!V)+WD(P)(R)+WD(P)(S)+2

= D(P) ·WD(P)(V)+WD(P)(R)+WD(P)(S)+3

≥ FO(x,S) ·WD(P)(V)+WD(P)(R)+WD(P)(S)+3

≥WD(Q)(S[x/V ])+WD(Q)(R)+3>WD(Q)(S[x/V ])+WD(Q)(R)+1=WD(Q)(S[x/V ] || R).
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• Supposeρ is
σ : R→L S

R || T →L S|| T

From /0⊢SP R || T, it follows that /0⊢SP R and /0⊢SP T. By induction hypothesis onσ , this yields
W(R)>W(S), and in turnW(R) =W(R)+W(T)+1>W(S)+W(T)+1=W(S).

This concludes the proof. ✷

Lemma 3 and Proposition 4 together imply that the weight is anupper bound to both the number of
reduction steps a process can perform and the size of any reduct. So, the only missing tale is bounding
the weight itself:

Proposition 5 For every process P,W(P)≤ |P|B(P)+1.

Proof. By induction onP, enriching the thesis with an analogous statement for values:W(V)≤ |V|B(V)+1.
✷

Putting all the ingredients together, we reach our soundness result with respect polynomial time:

Theorem 1 There is a family of polynomials{pn}n such that for every process P and for every m, if
P→m

L
Q, then m, |Q| ≤ pB(P)(|P|).

The polynomials in Theorem 1 depend on terms, so the bound on the number of internal actions is not
polynomial, strictly speaking. Please observe, however, that all processes with the same box depthb are
governed by the same polynomialpb, similarly to what happens in Soft Linear Logic.

4.2 Completeness?

Soundness of a formal system with respect to some semantic criterion is useless unless one shows that
the system is alsoexpressive enough. In implicit computational complexity, programming languages
are usually proved both sound andextensionally completewith respect to a complexity class. Not only
any program can be normalized in bounded time, but every function in the class can be computed by
a program in the system. Preliminary to any completeness result for SHOπ, however, would be the
definition of what a complexity class for processes should be(as opposed to the well known definition
for functions or problems). This is an elusive—and very interesting—problem that we cannot tackle in
this preliminary work and that we leave for future work.

Certainly the expressiveness ofSHOπ is weak if we take into account the visible actions of the
processes (i.e., their interactions with the environment). This is due to the limited possibilities of copying,
and hence also of writing recursive process behaviours. Indeed, one cannot considerSHOπ, on its own,
as a general-purpose calculus for concurrency. However, webelieve that the study ofSHOπ, or similar
languages, could be fruitful in establishing bounds on the internal behaviour of parts, or components,
of a concurrent systems; for instance, on the time and space that a process may take to answer a query
from another process (in this case theSHOπ techniques would be applied to the parts of the syntax of the
process that describe its internal computation after the query). Next section considers a possible direction
of development ofSHOπ, allowing more freedom on the external actions of the processes.

We are convinced, on the other hand, that a minimal completeness result can be given, namely the
possibility of representing all polynomial timefunctions(or problems) inSHOπ. Possibly, this could
be done by encoding Soft Linear Logic intoSHOπ through a continuation-passing style translation. We
leave this to future work.



56 Light Logics and Higher-Order Processes

5 An Extension to SHOπ: Spawning

In this section we propose an extension ofSHOπ that allows us to accept processes such asSERVER!,
capable of performing infinitely many interactions with their external environment while maintaining
polynomial bounds on the number of internal steps they can make between any two external actions.

The reason whySERVER! is not a SHOπ process has to do with the bound variablex in the sub-
processCOMP!:

COMP! = λ!z.(a(!x).(b(!y).c〈!y〉.x(!⋆) || a〈!x〉)),

The variable appears twice in the body(b(!y).c〈!y〉.x(!⋆) || a〈!x〉), at two different !-depths. This pattern
is not permitted inSHOπ, because otherwise also the nonterminating processOMEGA! would be in the
calculus. There is however a major difference betweenOMEGA! andSERVER!: in COMP!, one of the
two occurrences ofx (the one at depth 0) is part of the continuation of an input onb; moreover, such
channelb is only used bySERVER! in input —SERVER! does not own the output capability. This implies
that whatever process will substitute that occurrence ofx, it will be able to interact with the environment
only after an input onb is performed. So, its “computational weight” does not affect the number of
reduction steps made by the processbeforesuch an input occurs. This phenomenon, which does not
occur inOMEGA!, can be seen as a form of process spawning:COMP! can be copied an unbounded
number of times, but the rhythm of the copying is dictated by the input actions atb.

Consider a subsetI C of C (whereC is the set of all channels which can appear in processes). The
process calculusEHOπ(I C ) is an extension ofSHOπ parametrized onI C . WhatEHOπ(I C ) adds
to SHOπ is precisely the possibility of marking a subprocess as a component which can be spawned.
This is accomplished with a new operator✷. Channels inI C are calledinput channels, because outputs
are forbidden on them. The syntax of processes and values is enriched as follows:

P ::= . . . | a(✷x).P;

V ::= . . . | λ✷x.P | ✷V;

but outputs can only be performed on channels not inI C . The term✷V is a value (i.e., a parametrized
process) which can be spawned. Spawning itself is performedby passing a process✷V to either an
abstractionλ✷x.P or an inputa(✷x).P. In both cases, exactly one occurrence ofx in P is the scope of a
✷ operator, and only one of the following two conditions holds:

1. The occurrence ofx in the scope of a✷ operator is part of the continuation of an input channela,
and all other occurrences ofx in P are at depth 0.

2. There are no other occurrences ofx in P.
The foregoing constraints are enforced by the well-formation rules in Figure 5. The well-formation rules
of EHOπ(I C ) are considerably more complex than the ones ofSHOπ. Judgements have the form
Γ ⊢EP P or Γ ⊢EV V, where a variablex can occur inΓ in one of five different forms:
• As eitherx, !x or #x: here the meaning is exactly the one fromSHOπ (see Section 4).
• As✷x: the variablex then appears exactly once inP, in the scope of a spawning operator✷.
• As ✸x: x occurs at least once inP, once in the scope of a✷ operator (itself part of the continuation

for an input channel), and possibly many times at depth 0.
A variable marked as✸x can “absorb” the same variable declared as #x in binary well-formation rules
(i.e. the ones for applications, outputs, etc.). Note the special well-formation rules that are only applica-
ble with an input channel: in that case a portion of the context ✷∆ becomes✸∆.

The operational semantics is obtained adding to Figure 3 thefollowing two rules:

a〈✷R〉.P || a(✷x).Q→L P || Q[x/R] (λ✷x.P)✷Q→L P[x/Q]
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#Γ ⊢EP 0
Γ,#Λ,✸Θ ⊢EP P ∆,#Λ,#Θ ⊢EP Q

Γ,∆,#Λ,✸Θ ⊢EP P || Q
Γ,x⊢EP P

Γ ⊢EP a(x).P

Γ, !x⊢EP P
Γ ⊢EP a(!x).P

Γ,#x⊢EP P
Γ ⊢EP a(!x).P

Γ,✷x⊢EP P
Γ ⊢EP a(✷x).P

Γ,✸x⊢EP P
Γ ⊢EP a(✷x).P

Γ,✷∆,x⊢EP P a∈ I C

Γ,✸∆ ⊢EP a(x).P
Γ,✷∆, !x⊢EP P a∈ I C

Γ,✸∆ ⊢EP a(!x).P

Γ,✷∆,#x⊢EP P a∈ I C

Γ,✸∆ ⊢EP a(!x).P
Γ,✷∆,✷x⊢EP P a∈ I C

Γ,✸∆ ⊢EP a(✷x).P
Γ,✷∆,✸x⊢EP P a∈ I C

Γ,✸∆ ⊢EP a(✷x).P

Γ,#Λ,✸Θ ⊢EV V ∆,#Λ,#Θ ⊢EP P
Γ,∆,#Λ,✸Θ ⊢EP a〈V〉.P

Γ,#Λ,#Θ ⊢EV V ∆,#Λ,✸Θ ⊢EP P
Γ,∆,#Λ,✸Θ ⊢EP a〈V〉.P

Γ ⊢EP P
Γ ⊢EP (νa)P

Γ,#Λ,✸Θ ⊢EV V ∆,#Λ,#Θ ⊢EV W
Γ,∆,#Λ,✸Θ ⊢EP VW

Γ,#Λ,#Θ ⊢EV V ∆,#Λ,✸Θ ⊢EV W
Γ,∆,#Λ,✸Θ ⊢EP VW

#Γ ⊢EV ⋆ #Γ,x⊢EV x #Γ,#x⊢EV x
Γ,x⊢EP P

Γ ⊢EV λx.P

Γ,#x⊢EP P
Γ ⊢EV λ!x.P

Γ, !x⊢EP P
Γ ⊢EV λ!x.P

Γ,✷x⊢EP P
Γ ⊢EV λ✷x.P

Γ,✸x⊢EP P
Γ ⊢EV λ✷x.P

Γ ⊢EV V
!Γ,#∆ ⊢EV!V

Γ ⊢EV V
✷Γ,#∆ ⊢EV ✷V

Figure 5: Processes and values inEHOπ(I C ).

As expected,

Lemma 4 (Subject Reduction) If ⊢EP P and P→L Q, then⊢EP Q.

The processSERVER! is a EHOπ(I C ) process onceCOMP! is considered as a spawned process
andb∈ I C : define

SERVER✷ = (νa)(COMP✷(!⋆) || a〈✷COMP✷〉);

COMP✷ = λ!z.(a(✷x).(b(!y).c〈!y〉.a〈✷x〉 || x(!⋆))).

and consider the following derivations:

/0⊢EV COMP✷

/0⊢EV ⋆

/0⊢EV!⋆
/0⊢EP COMP✷(!⋆)

/0⊢EV COMP✷
/0⊢EV ✷COMP✷

/0⊢EP a〈✷COMP✷〉

/0⊢EP COMP✷(!⋆) || a〈✷COMP✷〉

/0⊢EP (νa)(COMP✷(!⋆) || a〈✷COMP✷〉)
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x⊢EV x
#z,✷x⊢EV ✷x

#z,✷x⊢EP a〈✷x〉
y⊢EV y
!y⊢EV!y

#z,✷x, !y ⊢EP c〈!y〉.a〈✷x〉 b∈ I C

#z,✸x⊢EP b(!y).c〈!y〉.a〈✷x〉
#x⊢EV x

/0⊢EV ⋆

/0⊢EV!⋆
#x⊢EP x(!⋆)

#z,✸x⊢EP b(!y).c〈!y〉.a〈✷x〉 || x(!⋆)

#z⊢EP a(✷x).(b(!y).c〈!y〉.a〈✷x〉 || x(!⋆))

/0⊢EV λ!z.a(✷x).(b(!y).c〈!y〉.a〈✷x〉 || x(!⋆))

The use inEHOπ(I C ) of a distinct set of input channels may still be seen as rigid.For instance, it
prevents from acceptingSERVER✷ in parallel with a client of the server itself (because the client uses the
request channel of the server in output); similarly, it prevents from accepting reentrant servers (servers
that can invoke themselves). As pointed out earlier, we are mainly interested in techniques capable of
ensuring polynomial bounds oncomponentsof concurrent systems (so for instance, bounds on the server,
rather than on the composition of the server and a client). Inany case, this paper represents a preliminary
investigation, and further refinements or extensions ofEHOπ(I C ) may well be possible.

5.1 Feasible Termination

The proof of feasible termination forEHOπ(I C ) is similar in structure to the one forSHOπ (see
Section 4.1). However, some additional difficulties due to the presence of spawning arise.

The auxiliary notions we needed in the proof of feasible termination forSHOπ can be easily extended
to EHOπ(I C ) as follows: The architecture of the soundness proof is similar to the one for linear
processes. The box depth, duplicability factor and weight of a process are defined as for soft processes,
plus:

B(λ✷x.P) = B(P); D(λ✷x.P) = max{D(P),FO(x,P)}; Wn(λ✷x.P) =Wn(P);

B(✷V) = B(V)+1; D(✷V) = D(V); Wn(✷V) = n·Wn(V)+1;

B(a(✷x).P) = B(P); D(a(✷x).P) = max{D(P),FO(x,P)}; Wn(a(✷x).P) =Wn(P)+1.

Informally, the spawning operator✷ acts as ! in all the definitions above. The weightW(P), still defined
asWD(P)(P) is again an upper bound to the size ofP, but is not guaranteed to decrease at any reduction
step. In particular, spawning can makeW(P) bigger. As a consequence, two new auxiliary notions are
needed. The first one is similar to the weight of processes andvalues, but is computed without taking
into account whatever happens after an input on a channela∈ I C . It is parametric on a natural number
n and is defined as follows:

In(⋆) = In(x) = In(0) = 1 In(λx.P) = In(λ!x.P) = In(λ✷x.P) = In(P)

In(!V) = In(✷V) = n· In(V)+1 In(P || Q) = In(P)+ In(Q)+1

In(a(x).P) = In(a(!x).P) = In(a(✷x).P) =

{

0 if a∈ I C

In(P)+1 otherwise
In(a〈V〉.P) = In(V)+ In(P)

In((νa)P) = In(P) In(PQ) = In(P)+ In(Q)+1

The weight before inputI(P) of a processP is simply ID(P)(P). As we will see,I(P) is guaranteed to
decrease at any reduction step, but this time it is not an upper bound to the size of the underlying process.
The second auxiliary notion captures the potential growth of processes due to spawning and is again
parametric on a natural numbern:
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Pn(⋆) = Pn(x) = Pn(0) = 0 Pn(λx.P) = Pn(λ!x.P) = Pn(λ✷x.P) = Pn(P)

Pn(!V) = n·Pn(V) Pn(✷V) = n·Pn(V)+n·Wn(V)

Pn(P || Q) = Pn(P)+Pn(Q) Pn(a(x).P) = Pn(a(!x).P) = Pn(a(✷x).P) =

{

0 if a∈ I C

Pn(P) otherwise

Pn(a〈V〉.P) = Pn(V)+Pn(P) Pn((νa)P) = Pn(P)

Pn(VW) = Pn(V)+Pn(W)

Again, thepotential growthP(P) of a processP is PD(P)(P). Proposition 3, Lemma 2 and Lemma 3
from Section 4.1 continue to hold forEHOπ(I C ), and their proofs remain essentially unchanged.
Proposition 4 is true only if the weight before input replaces the weight:

Proposition 6 If /0⊢SP Q and Q→L P, thenI(Q)> I(P).

The potential growth of a processP cannot increase during reduction. Moreover, the weight canincrease,
but at most by the decrease in the potential growth. Formally:

Proposition 7 If /0⊢SP Q and Q→L P, thenP(Q)≥ P(P) andW(Q)+P(Q)≥W(P)+P(P).

Polynomial bounds on all the attributes of processes we havedefined can be proved:

Proposition 8 For every process P,W(P)≤ |P|B(P)+1, I(P)≤ |P|B(P)+1 andP(P)≤ B(P)W(P).

And, as forSHOπ, we get a polynomial bound in the number of reduction steps from any process:

Theorem 2 There is a family of polynomials{pn}n∈N such that for every process P and for every m, if
P→m

L
Q, then m, |Q| ≤ pB(P)(|P|).

Proofs for the results above have been elided, due to space constraints. Their structure, however, reflects
the corresponding proofs forSHOπ (see Section 4.1). As an example, proofs of propositions 6 and 7 are
both structured around appropriate substitution lemmas.

6 Conclusions

Goal of this preliminary essay was to verify whether we couldapply to process algebras the technologies
for resource control that have been developed in the so-called “light logics” and have been successfully
applied so far to paradigmatic functional programming. We deliberately adopted a minimalistic ap-
proach: applications between processes restricted to values, the simplest available logic, a purely linear
language (i.e., no weakening/erasing on non marked formulas), no types, no search for maximal expres-
sivity. In this way the result of the experiment would have had a clear single outcome. We believe this
outcome is a clear positive, and that this paper demonstrates it.

Several issues must be investigated further, of course, so that this first experiment may become a
solid contribution. First, one may wonder whether other complexity conscious fragments of linear logic
can be used in place ofSLL as guideline for box control.SLL is handy as a first try, because of its
simplicity, but we do believe that analogous results could be obtained starting from Light Affine Logic,
designed by Asperti and Roversi [2] after Girard’s treatment of the purely linear case. This would also
allow unrestricted erasing of processes, leaving marked boxes only for duplication. Second, individuate a
richer language of processes, still amenable to the soft (orlight) treatment. Section 5 suggests a possible
direction, but many others are possible. Third, the very interesting problem of studying the notion of
complexity class in the process realm.
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In the paper, we have proved polynomial bounds forSHOπ, obtained from the the Higher-Order
π-calculus by imposing constraints inspired by Soft Linear Logic. We have then considered an exten-
sion of SHOπ, taking into account features specific to processes, notably the existence of channels: in
process calculi a reduction step does not need to be anonymous, as in theλ -calculus, but may result
from an interaction along a channel. An objective of the extension was to accept processes that are pro-
grammed to have unboundedly many external actions (i.e., interactions with their environment) but that
remain polynomial on the internal work performed between any two external activities. Our definition
of the extended class,EHOπ(I C ), relies on the notion of input channel — a channel that is usedin
a process only in input. This allows us to have more flexibility in the permitted forms of copying. We
have proposedEHOπ(I C ) because this class seems mathematically simple and practically interesting.
These claims, however, need to be sustained by more evidence. Furher, other refinements ofSHOπ are
possible. Again, more experimentation with examples is needed to understand where to focus attention.

Another question related to the interplay between internaland external actions of processes is whether
the polynomial bounds on internal actions change when external actions are performed.

Summarizing, we started with a question (“Can ICC be appliedto process algebras?”) and ended up
with a positive answer and many more different questions. But this is a feature, and not a bug.
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