
ar
X

iv
:1

40
1.

46
50

v1
 [

cs
.I

T
]

 1
9

Ja
n

20
14

A Gray Code for cross-bifix-free sets

A. Bernini∗ S. Bilotta∗ R. Pinzani∗ V. Vajnovszki†

January 16, 2020

Abstract

A cross-bifix-free set of words is a set in which no prefix of any
length of any word is the suffix of any other word in the set. A con-
struction of cross-bifix-free sets has recently been proposed by Chee
et al. in 2013 within a constant factor of optimality. We propose a
trace partitioned Gray code for these cross-bifix-free sets and a CAT
algorithm generating it.

1 Introduction

A cross-bifix-free set of words is a set where, given any two words over
an alphabet, possibly the same, any prefix of the first one is not a suffix of
the second one and vice versa. Cross-bifix-free sets are involved in the study
of distributed sequences for frame synchronization [11]. The problem of
determining such sets is also related to several other scientific applications,
for instance in pattern matching [6] and automata theory [3].

Fixed the cardinality q of the alphabet and the length n of the words,
a matter is the construction of a cross-bifix-free set with the cardinality
as large as possible. An interesting method has been proposed in [1] for
words over a binary alphabet. In a recent paper [5] the authors revisit
the construction of [1] and generalize it obtaining cross-bifix-free sets of
words with greater cardinality over an alphabet of arbitrary size. They also
show that their cross-bifix-free sets have a cardinality close to the maximum
possible; and to our knowledge this is the best result in literature about the
size of cross-bifix-free sets.

It is worth to mention that an intermediate step between the original
method [1] and its generalization in [5] has been proposed in [4]: it is con-
stituted by a different construction of binary cross-bifix-free sets based on

∗Dipartimento di Matematica e Informatica “U. Dini”, Università degli Studi di

Firenze, Viale G.B. Morgagni 65, 50134 Firenze, Italy. antonio.bernini@unifi.it,

stefano.bilotta@unifi.it, renzo.pinzani@unifi.it
†LE2I, Université de Bourgogne, BP 47 870, 21078 Dijon Cedex, France

vvajnov@u-bourgogne.fr

1

http://arxiv.org/abs/1401.4650v1

lattice paths which allows to obtain greater cardinality if compared to the
ones in [1].

Once a class of objects is defined, in our case words, often it could be
useful to list or generate them according to a particular criterion. A special
way to do this is their generation in a way such that any two consecutive
words differ as little as possible, i.e., in Gray code order [8]. In the case
the objects are words, as in our, we can specialize the concept of Gray
code saying that it is an infinite set of word-lists with unbounded word-
length such that the Hamming distance between any two adjacent words is
bounded independently of the word-length [18] (the Hamming distance is the
number of positions in which the two successive words differ [9]). Gray codes
find useful applications in circuit testing, signal encoding, data compression,
telegraphy, error correction in digital communication and others. They are
also widely studied in the context of combinatorial objects as: permutations
[10], Motzkin and Schröder words [16], derangements [2], involutions [17],
compositions, combinations, set-partitions [12, 14], and so on.

In this work we propose a Gray code for the cross-bifix-free set S
(k)
n,q

defined in [5]. It is formed by length n words over the q-ary alphabet A =
{0, 1, . . . , q− 1} containing a particular sub-word avoiding k consecutive 0’s
(for more details see the next section). First we propose a Gray code for

S
(k)
n,2 over the binary alphabet {0, 1}, then we expand each binary word to

the alphabet A. The expansion of a binary word α is obtained replacing all
the 1’s with the symbols of A different from 0 producing a set of words with
the same trace α. The Gray code we get is trace partitioned in the sense
that all the words with the same trace are consecutive.

2 Definitions and tools

Let n ≥ 3, q ≥ 2 and 1 ≤ k ≤ n− 2. The cross-bifix-free set S
(k)
n,q defined in

[5] is the set of all length n words s1s2 · · · sn over the alphabet {0, . . . , q−1}
satisfying:

• s1 = · · · = sk = 0;

• sk+1 6= 0;

• sn 6= 0;

• the subword sk+2 . . . sn−1 does not contain k consecutive 0’s.

Throughout this paper we are going to use several standard notations
which are typical in the framework of sets and lists of words. For the sake
of clearness we summarize the ones used here.

For a set of words L over an alphabet A we denote by L an ordered list
for L, and

2

• L denotes the list obtained by covering L in reverse order;

• if L′ is another list, then L ◦ L′ is the concatenation of the two lists,
obtained by appending the words of L′ after those of L;

• first(L) and last(L) are the first and the last word of L, respectively;

• if u is a word in A∗, then u · L (resp. L · u) is a new list where each
word has the form uω (resp. ωu) where ω is any word of L;

• if u is a word in A∗, then |u| is its length, and un = uuu . . . u
︸ ︷︷ ︸

n

.

For our purpose we need a Gray code list for the set of words of a certain
length over the (q − 1)-ary alphabet {1, 2, . . . , q − 1}, q ≥ 3. An obvi-
ous generalization of the Binary Reflected Gray Code [8] to the alphabet
{1, 2, . . . , q − 1} is the list Gn,q for the set of words {1, 2, . . . , q − 1}n de-
fined in [7, 19] where is also shown that it is a Gray code with Hamming
distance 1. The authors defined this list as:

Gn,q =







λ if n = 0,

1 · Gn−1,q ◦ 2 · Gn−1,q ◦ · · · ◦ (q − 1) · G′
n−1,q if n > 0,

(1)

where G′
n−1,q is Gn−1,q or Gn−1,q according on whether q is even or odd. The

reader can easily verify the following proposition.

Proposition 2.1. For q ≥ 3,

• first(Gn,q) = 1n;

• last(Gn,q) = (q − 1)1n−1 if q is odd, and (q − 1)n if q is even.

Now we are going to present another tool we need in the paper. If β is a
binary word of length n such that |β|1 = t (the number of 1’s in β), we
define the expansion of β, denoted by ǫ(β), as the list of (q − 1)t words,
where the i-th word is obtained by replacing the t 1’s of β by the t symbols
(read from left to right) of the i-th word in Gt,q. For example, if q = 3 and
β = 01011 (the trace), then G3,3 = (111, 112, 122, 121, 221, 222, 212, 211) and
ǫ(β) = (01011, 01012, 01022, 01021, 02021, 02022, 02012, 02011). Notice that
in particular first(ǫ(β)) = β and all the words of ǫ(β) have the same trace.

We observe that ǫ(β) is the list obtained from Gt,q inserting some 0’s,
each time in the same positions. Since Gt,q is a Gray code and the insertions
of the 0’s does not change the Hamming distance between two successive
word of ǫ(β) (which is 1), the following proposition holds.

Proposition 2.2. For any q ≥ 3 and binary word β, the list ǫ(β) is a Gray
code.

3

3 Trace partitioned Gray code for S
(k)
n,q

Our construction of a Gray code for the set S
(k)
n,q of cross-bifix-free words

is based on two other lists:

• F
(k)
n , a Gray code for the set of binary words of length n avoiding k

consecutive 0’s, and

• H
(k)
n,q, a Gray code for the set of q-ary words of length n which begin and

end by a non zero value and avoiding k consecutive 0’s. In particular,

H
(k)
n,2 = 1 · F

(k)
n−2 · 1.

Finally, we will define the Gray code list S
(k)
n,q for the set S

(k)
n,q as 0k·H

(k)
n−k,q.

3.1 The list F
(k)
n

Let Cn be the list of binary words defined as:

Cn =







λ if n = 0,

1 · Cn−1 ◦ 0 · Cn−1 if n ≥ 1,
(2)

with λ the empty word. The list Cn is a Gray code for the set {0, 1}n and
it is a slight modification of the original Binary Reflected Gray Code list
defined in [8].

By the definition of Cn given in relation (2), we have for n ≥ 1,

• last(Cn) = 0 · last(Cn−1) = 0n;

• first(Cn) = 1 · first(Cn−1) = 1 · last(Cn−1) = 10n−1.

Let now define the list F
(k)
n of length n binary words as:

F (k)
n =







Cn if 0 ≤ n < k,

1 · F
(k)
n−1 ◦ 01 · F

(k)
n−2 ◦ 001 · F

(k)
n−3 ◦ · · · ◦ 0

k−11 · F
(k)
n−k if n ≥ k.

(3)

For k ≥ 2 and n ≥ 0, F
(k)
n is a list for the set of length n binary words

with no k consecutive 0’s, and Proposition 3.2 says that it is a Gray code

(actually, F
(k)
n is a adaptation of a similar list defined earlier [15]).

It is easy to see that the number of binary words in F
(k)
n is given by f

(k)
n ,

the well known k-Fibonacci integer sequence defined by:

f (k)
n =







2n if 0 ≤ n < k,

f
(k)
n−1 + f

(k)
n−2 + · · ·+ f

(k)
n−k, if n ≥ k,

4

and the words in F
(k)
n are said k-generalized Fibonacci words. For example,

the list F
(3)
3 for the length 3 binary words avoiding 3 consecutive 0’s is

F
(3)
3 = (100, 101, 111, 110, 010, 011, 001).

Proposition 3.1.

• first(F
(k)
n) is the length n prefix of the infinite periodic word (10k−11)(10k−11) . . .;

• last(F
(k)
n) is the length n prefix of the infinite periodic word (0k−111)(0k−111)

Proof. For the first point, if 1 ≤ n < k, then first(F
(k)
n) = first(Cn) = 10n−1;

and if n = k, then first(F
(k)
n) = 1 · first(F

(k)
n−1) = 1 · last(Cn−1) = 10k−1, and

the statement holds in both cases.
Now, if n > k, by the definition of F

(k)
n we have

first(F (k)
n) = 1 · first(F

(k)
n−1)

= 1 · last(F
(k)
n−1)

= 10k−11 · last(F
(k)
n−k−1)

= 10k−11 · first(F
(k)
n−k−1),

and recursion on n completes the proof.

For the second point, if 1 ≤ n < k, then last(F
(k)
n) = last(Cn) = 0n; and

if n = k, then last(F
(k)
n) = 0k−11, and the statement holds in both cases.

Now, if n > k, we have

last(F (k)
n) = 0k−11 · last(F

(k)
n−k)

= 0k−11 · first(F
(k)
n−k),

and by the first point of the present proposition, recursion on n completes
the proof.

Proposition 3.2. The list F
(k)
n is a Gray code where two consecutive strings

differ in a single position.

Proof. It is enough to prove that there is a ‘smooth’ transition between any

two consecutive lists in the definition of F
(k)
n given in relation (3), that is,

for any ℓ, 1 ≤ ℓ ≤ k − 1, the words

α = 0ℓ−11 · last(F
(k)
n−ℓ) = 0ℓ−11 · first(F

(k)
n−ℓ)

and

β = 0ℓ1 · first(F
(k)
n−ℓ−1) = 0ℓ1 · last(F

(k)
n−ℓ−1)

5

differ in a single position. By Proposition 3.1,

α = 0ℓ−11α′

and
β = 0ℓ1β′

with α′ and β′ appropriate length prefixes of (10k−11)(10k−11) . . . and (0k−111)(0k−111) . . .,
and so α and β differ only in position ℓ.

As a by-product of the proof of the previous proposition we have the fol-
lowing remark which is critical in algorithm process used for the generating
algorithm in Section 4.2.

Remark 1. If α = a1a2 . . . an and β = b1b2 . . . bn are two successive words

in F
(k)
n which differ in position ℓ, then either ℓ = n or aℓ+1 = bℓ+1 = 1.

3.2 The list H
(k)
n,q

Let H
(k)
n,q be the list defined by:

H(k)
n,q = ǫ(α1) ◦ ǫ(α2) ◦ ǫ(α3) ◦ ǫ(α4) ◦ · · · ◦ ǫ

′(α
f
(k)
n−2

) (4)

with αi = 1φi1 and φi is the i-th binary word in the list F
(k)
n−2, and ǫ′(α

f
(k)
n−2

)

is ǫ(α
f
(k)
n−2

) or ǫ(α
f
(k)
n−2

) according on whether f
(k)
n−2 is odd or even.

Clearly, H
(k)
n,q is a list for the set of q-ary words of length n which begin

and end by a non zero value, and with no k consecutive 0’s. In particular,

H
(k)
n,2 = 1 · F

(k)
n−2 · 1.

Proposition 3.3. The list H
(k)
n,q is a Gray code.

Proof. From Proposition 2.2 it follows that consecutive words in each list
ǫ(αi) and ǫ(αi) differ in a single position (and by +1 or −1 in this position).
To prove the statement it is enough to show that, for two consecutive binary

words φi and φi+1 in F
(k)
n−2, both pair of words

• last(ǫ(1φi1)) and first(ǫ(1φi+11)) = last(ǫ(1φi+11)), and

• last(ǫ(1φi1)) = first(ǫ(1φi1)) and first(ǫ(1φi+11))

differ in a single position.
In the first case, by Proposition 2.1, the first symbols of last(ǫ(1φi1)) and

of last(ǫ(1φi+11)) are both (q− 1), and the other symbols are either 1 if q is
odd, or (q − 1) if q is even; and since φi and φi+1 differ in a single position,
the result holds.

In the second case, first(ǫ(1φi1)) = 1φi1 and first(ǫ(1φi+11)) = 1φi+11,
and again the result holds.

6

3.3 The list S
(k)
n,q

Now we define the list S
(k)
n,q as

S(k)
n,q = 0k · H

(k)
n−k,q,

and clearly, S
(k)
n,q is a list for the set of cross-bifix-free words S

(k)
n,q . In partic-

ular,

S
(k)
n,2 = 0k1 · F

(k)
n−k−2 · 1,

for example, the set S
(3)
8,2 of length 8 binary cross-bifix-free words which begin

by 000 is

S
(3)
8,2 = 0001 · F

(3)
3 · 1 =

= (00011001, 00011011, 00011111, 00011101, 00010101, 00010111, 00010011).

A consequence of Proposition 3.3 is the next proposition.

Proposition 3.4. The list S
(k)
n,q is a Gray code.

For the sake of clearness, we illustrate the previous construction for the

Gray code list S
(3)
8,3 on the alphabet A = {0, 1, 2}. We have:

G3,3 = (111, 112, 122, 121, 221, 222, 212, 211);

G4,3 = (1111, 1112, 1122, 1121, 1221, 1222, 1212, 1211, 2211, 2212, 2222,
2221, 2121, 2122, 2112, 2111);

G5,3 = (11111, . . . , 12111, 22111, . . . , 21111);

and

S
(3)
8,3 = (00011001, 00011002, 00012002, 00012001, 00022001, 00022002,

00021002, 00021001, 00021011, . . . , 00011011, 00011111, . . .
. . . , 00021111, 00021101, . . . , 00011101, 00010101, 00010102,
00010202, 00010201, 00020201, 00020202, 00020102, 00020101,
00020111, . . . , 00010111, 00010011, 00010012, 00010022,
00010021, 00020021, 00020022, 00020012, 00020011).

4 Algorithmic considerations

In this section we give a generating algorithm for binary words in the

list F
(k)
n and an algorithm expanding binary words; then, combining them,

we obtain a generating algorithm for the list H
(k)
n,q, and finally prepending

7

0k to each word in H
(k)
n−k,q the list S

(k)
n,q is obtained. The given algorithms

are shown to be efficient.

The list F
(k)
n defined in (3) has not a straightforward algorithmic im-

plementation, and now we explain how F
(k)
n can be defined recursively as

the concatenation of at most two lists, then we will give a generating algo-

rithm for it. Let F
(k)
n (u), 0 ≤ u ≤ k − 1, be the sublist of F

(k)
n formed by

strings beginning by at most u 0’s. By the definition of F
(k)
n , it follows that

F
(k)
n = F

(k)
n (k − 1), and

F (k)
n (0) = 1 · F

(k)
n−1

= 1 · F
(k)
n−1(k − 1),

and for u > 0,

F (k)
n (u) = 1 · F

(k)
n−1 ◦ 01 · F

(k)
n−2 ◦ · · · ◦ 0

u1 · F
(k)
n−u−1

= 1 · F
(k)
n−1 ◦ 0 · (1 · F

(k)
n−2 ◦ · · · ◦ 0

u−11 · F
(k)
n−u−1)

= 1 · F
(k)
n−1 ◦ 0 · F

(k)
n−1(u− 1).

By the above considerations we have the following proposition.

Proposition 4.1. Let k ≥ 2, 0 ≤ u ≤ k− 1, and F
(k)
n (u) be the list defined

as:

F (k)
n (u) =







λ if n = 0,

1 · F
(k)
n−1(k − 1) if n > 0 and u = 0,

1 · F
(k)
n−1(k − 1) ◦ 0 · F

(k)
n−1(u− 1) if n, u > 0.

(5)

Then F
(k)
n (k − 1) is the list F

(k)
n defined by relation (3).

Now we explain how the relation (5) defining the list F
(k)
n (u) can be im-

plemented in a generating algorithm. It is easy to check that F
(k)
n = F

(k)
n (k−

1) has the following properties: for α = a1a2 . . . an and β = b1b2 . . . bn two

consecutive binary words in F
(k)
n , there is a p such that

• ai = bi for all i, 1 ≤ i ≤ n, except bp = 1− ap,

• 0k−1 can not be a suffix of a1a2 . . . ap−1 = b1b2 . . . bp−1,

8

• the sublist of F
(k)
n formed by the strings with the prefix b1b2 . . . bp is

b1b2 . . . bp · L, where L is F
(k)
n−p(u− 1) or F

(k)
n−p(u− 1) according to the

prefix b1b2 . . . bp has an even or odd number of 1’s, and u is equal to k

minus the length of the maximal 0 suffix of b1b2 . . . bp.

Let us consider procedure gen fib in Figure 1 where process switches
the value of b[pos] (that is, b[pos] := 1 − b[pos]), and prints the obtained
binary string b. By the above remarks and relation (5) in Proposition 4.1 it

follows that after the initialization of b by the first string in F
(k)
m (given in

Proposition 3.1) and printing it out, the call of gen fib(1,k−1,0) produces

the list F
(k)
m . Moreover, as we will show below, for m = n− 1 and after the

appropriate initialization of b = b1b2 . . . bn the call of gen fib(k+2,k−1,0)

produces the list 0k1 · F
(k)
n−k−2 · 1 = S

(k)
n,2.

Procedure gen fib is an efficient generating procedure. Indeed, each
recursive call induced by gen fib is either

• a terminal call (which does not produce other calls), or

• a call producing two recursive calls, or

• a call producing one recursive call, which in turn is in one of the
previous two cases.

By ‘CAT’ principle in [13] it follows that procedure gen fib runs in constant
amortised time.

4.1 Generating S
(k)
n,2

After the initialization of b1b2 . . . bn by 0k1·first(F
(k)
n−k−2)·1, with first(F

(k)
n−k−2)

given in Proposition 3.1, and printing it out, the call of gen fib(k+ 2,k −
1,0) where

• m = n− 1, and

• procedure process called by gen fib switches the value of b[pos] (that
is, b[pos] := 1− b[pos]) and prints b

produces, in constant amortized time, the list 0k1 · F
(k)
n−k−2 · 1 = 0k · H

(k)
n−k,2

which is, as mentioned before, the list S
(k)
n,2.

4.2 Generating S
(k)
n,q , q > 2

Before discussing the expansion algorithm expand needed to produce

the list S
(k)
n,q when q > 2 we show that gen tuple procedure in Figure 2, on

which expand is based, is an efficient generating algorithm for the list Gn,q

defined in relation (1). Procedure gen tuple is a ‘naive’ odometer principle
based algorithm, see again [13], and we have the next proposition.

9

procedure gen fib(pos,u,dir)

global b,k,m;

if pos ≤ m

then if u = 0
then gen fib(pos+ 1,k − 1,1− dir);

else if dir = 0
then gen fib(pos+ 1,k − 1,1);

process(pos);

gen fib(pos+ 1,u− 1,0);
else gen fib(pos+ 1,u− 1,1);

process(pos);

gen fib(pos+ 1,k − 1,0);
end if

end if

end if

end procedure.

Figure 1: Algorithm producing the list F
(k)
n or S

(k)
n,q , according to the initial

values of m, b and the definition of process procedure.

Proposition 4.2. After the initialization of v by 11 · · · 1, the first word in
Gn,q, and di by 1, for 1 ≤ i ≤ n, procedure gen tuple produces the list Gn,q

in constant amortized time.

Proof. The total amount of computation of gen tuple is proportional to the
number of times the statement i := i − 1 is performed in the inner while
loop; and for a given q and n let denote by cn this number. So, the average
complexity (per generated word) of gen tuple is cn

qn
. Clearly, c1 = q−1 and

cn = (q−1) ·n+ q · cn−1, and a simple recursion shows that cn = q · q
n−1
q−1 −n

and finally the average complexity of gen tuple is cn
qn

≤ q
q−1 .

Now we adapt algorithm gen tuple in order to obtain procedure expand
producing the expansion of a words; and like gen tuple, procedure expand
has a constant average time complexity. More precisely, for a words b =
b1b2 . . . bn in {0, 1, . . . , q}n, with bℓ+1, bn 6= 0 let b′ denote the trace of
bℓ+1bℓ+2 . . . bn, that is, the word obtained from bℓ+1bℓ+2 . . . bn by replac-
ing each non-zero value by 1, and b′′ that obtained by erasing each 0 letter
in bℓ+1bℓ+2 . . . bn. Procedure expand produces the list:

• b1b2 . . . bℓ · ǫ(b
′) if the initial value of b is such that b′′ is the first word

in G|b′′|,q, or

• b1b2 . . . bℓ · ǫ(b′) if the initial value of b is such that b′′ is the last word
in G|b′′|,q.

10

procedure gen tuple

global v,d,n;

output v;

do i := n;

while i ≥ 1 and

(v[i] = q − 1 and d[i] = 1 or v[i] = 1 and d[i] = −1)
d[i] := −d[i];
i := i− 1;

end while

if i ≥ 1 then v[i] := v[i] + d[i]; output v; end if

while i ≥ 1
end procedure.

Figure 2: Odometer algorithm producing the list Gn,q.

The initial value of dℓ+1, dℓ+2, . . . , dn are given by: if bi = 1, then di = 1;
and if bi = q − 1, then di = −1; otherwise di is not defined. In order to
access in constant time from a position i in the current word b, with bi 6= 0,
to the previous one, additional data structures are used. The array prec is
defined by: if bi 6= 0, then preci = j, where j is the rightmost position in
b, at the left of i and with bj 6= 0; and for convenience preci = 0 if i is the
leftmost non-zero position in b.

procedure expand

global b,d,ℓ,n,prec;

output v;

do i := n;

while i ≥ ℓ+ 1 and

(b[i] = q − 1 and d[i] = 1 or b[i] = 1 and d[i] = −1)
d[i] := −d[i];
i := prec[i];

end while

if i ≥ ℓ+ 1 then b[i] := b[i] + d[i]; output b; end if

while i ≥ ℓ+ 1
end procedure.

Figure 3: Algorithm expanding a word b and mimicking procedure
gen tuple.

Now we explain procedure process; it calls expand and we will show
that when gen fib in turn calls procedure process in Figure 4, then it

produces the list S
(k)
n,q , with q > 2. The parameter pos of process is given

11

procedure process(pos)

global b,d,succ,prec;

if b[pos] = 0
then a := prec[pos+ 1]; succ[a] := pos; succ[pos] := pos+ 1;

prec[pos] := a; prec[pos+ 1] := pos;

b[pos] := b[pos+ 1];
d[pos] := d[pos+ 1];

else a := prec[pos]; z := succ[pos];
prec[z] := a; succ[a] := z;

b[pos] := 0;
expand;

end procedure.

Figure 4: Procedure process called by gen fib in order to generate the

list S
(k)
n,q .

by the corresponding call of gen fib, and it gives the position in the current

word b1b2 . . . bn in S
(k)
n,q where bpos changes from a non-zero value to 0, or vice

versa. By Remark 1 and the definition of the list S
(k)
n,q from H

(k)
n−k,q, and so

from F
(k)
n−k−2,q, it follows that bpos+1 6= 0. Procedure process, sets bpos to

0 if previously bpos 6= 0; and sets bpos to bpos+1 if previously bpos = 0, which
according to Proposition 2.1, Remark 1 and the definition of the expansion
operation is the new value of bpos. In order to access in constant time from
a non-zero position in the array b to the previous one, process uses array
prec of procedure expand and array succ, defined as: succi = j, with j

the leftmost position in b, at the right of i and with bj 6= 0, and succi is
not defined if i is the rightmost non-zero position. In addition, procedure
process updates both arrays prec and succ.

For given q > 2, k ≥ 2 and n ≥ k+2, after the initialization of b1b2 . . . bn
by 0k1 ·first(F

(k)
n−k−2) ·1, as for generating S

(k)
n,2, the call of gen fib(k+2,k−

1,0) where

• m = n− 1, and

• procedure process is that in Figure 4, and

• procedure expand that in Figure 3, with ℓ = k + 1

produces, in constant amortized time, the list S
(k)
n,q .

5 Conclusion and further works

The cross-bifix-free sets S
(k)
n,q defined in [5] have the cardinality close to

the optimum. They are constituted by particular words s1s2 . . . sn of length

12

n over a q-ary alphabet. Each word has the form 0ksk+1sk+2 . . . sn where
sk+1 and sn are different from 0 and sk+1sk+2 . . . sn−1 does not contain k

consecutive 0’s. We have provided a Gray code for S
(k)
n,q by defining a Gray

code for the words sk+1sk+2 . . . sn and then prepending the prefix 0k to them.
Moreover, an efficient generating algorithm for the obtained Gray code is
given. We note that this Gray code is trace partitioned in the sense that all
the words with the same trace are consecutive. To this aim we used a Gray
code for restricted binary strings [15], opportunely replacing the bits 1 with
the symbols of the alphabet different from 0.

A future investigation could be the definition of a Gray code which is
prefix partitioned, where all the words with the same prefix are consecutive.

Actually, the definition of the sets S
(k)
n,q shows that it is sufficient to define a

prefix partitioned Gray code for the subwords sk+1sk+2 . . . sn.
An interesting question arising when one deals with a Gray code L on a

set is the possibility to define it in such a way that the Hamming distance
between last(L) and first(L) is 1 (circular Gray code). Usually it is not so
easy to have a circular Gray code, unless the elements of the set are not
subject to constraints; in our case it is worth to study if the ground-set we
are dealing with (which is a cross-bifix free set) allows to find a circular Gray
code.

References

[1] Bajic, D. (2007) On Construction of Cross-Bifix-Free Kernel Sets. 2nd
MCM COST 2100, TD(07)237, Lisbon, Portugal.

[2] Baril, J. and Vajnovszki, V. (2004) Gray code for derangements. Dis-
crete Applied Mathematics 140 207–221

[3] Berstel, J., Perrin, D. and Reutenauer, C. (2009) Codes and Automata
(Encyclopedia of Mathematics and its Applications). Cambridge Uni-
versity Press.

[4] Bilotta, S., Pergola, E. and Pinzani, R. (2012) A new approach to cross-
bifix-free sets. IEEE Transactions on Information Theory 58 4058–
4063.

[5] Chee, Y. M., Kiah, H. M., Purkayastha, P. and Wang, C. (2013) Cross-
bifix-free codes within a constant factor of optimality. IEEE Transac-
tions on Information Theory 59 4668–4674.

[6] Crochemore, M., Hancart, C. and Lecroq, T. (2007) Algorithms on
strings. Cambridge University Press, Cambridge.

[7] Er, M. C. (1984) On generating the N -ary reflected Gray code. IEEE
Transaction on Computer 33 739–741.

13

[8] Gray, F. (1953) Pulse Code Communication. U.S. Patent 2 632 058.

[9] Hamming, R. W. (1950) Error detecting and error correcting codes.
Bell System Technical Journal 29 147–160.

[10] Johnson, S. M. (1963) Generation of permutations by adjacent trans-
positions. Mathematics of Computation 17 282–285.

[11] de Lind van Wijngaarden, A. J. and Willink, T. J. (2000) Frame syn-
chronization using distributed sequences. IEEE Transactions on Com-
mununications 48 2127-2138.

[12] Ruskey, F. (1993) Simple combinatorial Gray codes constructed by re-
versing sublist. Lecture Notes in Computer Science 762 201–208.

[13] Ruskey F. Combinatorial generation, Book in preparation.

[14] Sagan, B. E. (2010) Pattern avoidance in set partitions. Ars Combina-
toria 94 (2010) 79–96.

[15] Vajnovszki, V. (2001) A loopless generation of bitstrings without p con-
secutive ones. Discrete Mathematics and Theoretical Computer Science
Springer (2001), 227–240.

[16] Vajnovszki, V. (2001) Gray visiting Motzkin. Acta Informatica 38 793–
811.

[17] Walsh, T. (2001) Gray codes for involutions. Journal of Combinatorial
Mathematics and Combinatorial Computing 36 95–118.

[18] Walsh, T. (2003) Generating Gray Codes in O(1) worst-case time per
word. Lecture Notes in Computer Science 2731 73–88.

[19] Williamson, S.G. (1985) Combinatorics for computer science. Computer
Science Press, Rockville, Maryland.

14

	1 Introduction
	2 Definitions and tools
	3 Trace partitioned Gray code for Sn,q(k)
	3.1 The list Fn(k)
	3.2 The list Hn,q(k)
	3.3 The list Sn,q(k)

	4 Algorithmic considerations
	4.1 Generating Sn,2(k)
	4.2 Generating Sn,q(k), q>2

	5 Conclusion and further works

