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Abstract

In the distributed Deutsch-Jozsa promise problem, two parties are to determine whether their respective

strings x, y ∈ {0, 1}n are at the Hamming distance H(x, y) = 0 or H(x, y) = n
2 . Buhrman et al. (STOC’ 98)

proved that the exact quantum communication complexity of this problem is O(log n) while the determin-

istic communication complexity is Ω(n). This was the first impressive (exponential) gap between quantum

and classical communication complexity. In this paper, we generalize the above distributed Deutsch-Jozsa

promise problem to determine, for any fixed n
2 ≤ k ≤ n, whether H(x, y) = 0 or H(x, y) = k, and show that

an exponential gap between exact quantum and deterministic communication complexity still holds if k is

an even such that 1
2n ≤ k < (1− λ)n, where 0 < λ < 1

2 is given. We also deal with a promise version of the

well-known disjointness problem and show also that for this promise problem there exists an exponential

gap between quantum (and also probabilistic) communication complexity and deterministic communication

complexity of the promise version of such a disjointness problem. Finally, some applications to quantum,

probabilistic and deterministic finite automata of the results obtained are demonstrated.

Keywords: Quantum communication complexity, Deutsch-Jozsa promise problem, Query complexity,

Finite automata

1. Introduction

Since the topic of communication complexity was introduced by Yao [34], it has been extensively studied

[9, 13, 22, 26]. In the setting of two parties, Alice is given an x ∈ {0, 1}n, Bob is given a y ∈ {0, 1}n
and their task is to communicate in order to determine the value of some given Boolean function f :

{0, 1}n × {0, 1}n → {0, 1}, while exchanging as small number of bits as possible. In this setting, local

computations of the parties are considered to be free, but communication is considered to be expensive and

has to be minimized. Moreover, for computation, Alice and Bob have access to arbitrary computational

power.

There are usually three types of communication complexities considered for the above communication

task: deterministic, probabilistic or quantum.

Two of the most often studied communication problems are that of equality and disjointness [26], defined

as follows:

• Equality: EQ(x, y) = 1 if x = y and 0 otherwise.
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• Disjointness: DISJ(x, y) = 1 if there is no index i such that xi = yi = 1 and 0 if such an index

exists. Equivalently, this function can be defined also as DISJ(x, y) = 1 if
∑n

i=1 xi ∧ yi = 0 and 0 if∑n
i=1 xi ∧ yi > 0. (We can view x and y as being subsets of {1, · · · , n} represented by characteristic

vectors and to have DISJ(x, y) = 1 iff these two subsets are disjoint.)

Deterministic communication complexities of the above problems EQ and DISJ are both n [26].

Buhrman et al. [11, 13] proved that the exact quantum communication complexity of the distributed

Deutsch-Jozsa promise problem, for x, y ∈ {0, 1}n and n is even, that is for

EQ′(x, y) =

{
1 if H(x, y) = 0

0 if H(x, y) = n
2 ,

(1)

is O(logn). This was the first impressively large (exponential) gap between quantum and classical commu-

nication complexity1.

It has been so far a folklore belief that the promise H(x, y) = n
2 is essential for the above result. However,

we prove that the result holds also for the following generalizations of this promise problem

EQk(x, y) =

{
1 if H(x, y) = 0

0 if H(x, y) = k,
(2)

for any fixed k ≥ n
2 . That is the exact quantum communication complexity of EQk is O(logn) while the

classical deterministic communication complexity is Ω(n) if k is an even such that 1
2n ≤ k < (1−λ)n, where

0 < λ < 1
2 is given. Our proof has been inspired by methods used in [5].

Let us consider also the following problem. Namely, an analogue of the Deutsch-Jozsa promise problem:

DJk(x) =

{
1 if W (x) = 0

0 if W (x) > k,
(3)

where k ≥ n
2 is fixed and W (x) is the Hamming weight of x. We prove that the exact quantum query

complexity of DJk is 1 while the deterministic query complexity is n− k + 1.

If errors can be tolerated, both quantum and probabilistic communication complexities of the equality

problem are O(logn).

Concerning disjointness problem, the probabilistic communication complexity is Ω(n) [8, 24, 32] even

if errors are tolerated. In the quantum cases, Buhrman et al. [11] proved that quantum communication

complexity of DISJ is O(
√
n logn). This bound has been improved to O(

√
n) by Aaronson and Ambainis [3].

Finally, Razborov showed that any bounded-error quantum protocol for DISJ needs to communicate about√
n qubits [33]. Situation is different from the EQ problem, for which there is an exponential gap between

quantum (and also probabilistic) communication complexity and deterministic communication complexity

as shown in [11, 13, 26]. All known gaps for DISJ are not larger than quadratic. It is therefore of interest to

find out whether there are some promise versions of the disjointness problem for which bigger communication

complexity gaps can be obtained. We give a positive answer to such a question. In order to do that, we

consider the following set of promise problems where 0 < λ ≤ 1
4

DISJλ(x, y) =

{
1 if

∑n
i=1 xi ∧ yi = 0

0 if λn ≤∑n
i=1 xi ∧ yi ≤ (1− λ)n.

(4)

1In fact, both n and n
2

must be even in order to obtain an exponential quantum speed-up. We will justify this claim in the

Remark 1 in Section 3.
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We prove that quantum communication complexity of DISJλ is not more than log 3
3λ (3+2 logn) while the

deterministic communication complexity is Ω(n). For example, if λ = 1
4 , then the quantum communication

complexity of DISJλ is not more than 3 + 2logn while the deterministic communication complexity is

more than 0.007n. We prove also that probabilistic communication complexity of DISJλ is not more than
log 3
λ logn. Therefore, there is an exponential gap between quantum (and also probabilistic) communication

complexity and deterministic communication complexity of the above promise problem.

Number of states is a natural complexity measure for all models of finite automata and state complexity

of finite automata is one of the research fields with many applications [36]. There is a variety of methods

how to prove lower bounds on the state complexity and methods as well as the results of communication

complexity are among the main ones [23, 25, 26]. In this paper we also show how to make use of our new

communication complexity results to get new state complexity bounds.

The paper is structured as follows. In Section 2 basic needed concepts and notations are introduced

and models involved are described in details. Communication complexities and query complexities of the

promise problems EQk and DJk are investigated in Section 3. Communication complexity of the promise

problem DISJλ is dealt with in Section 4. Applications to finite automata are explored in Section 5. Some

open problems are discussed in Section 6.

2. Preliminaries

In this section, we recall some basic definitions about communication complexity, query complexity and

quantum finite automata. Concerning basic concepts and notations of quantum information processing, we

refer the reader to [18, 29].

2.1. Communication complexity

We recall here only very basic concepts and notations of communication complexity, and we refer the

reader to [13, 26] for more details. We will deal with the situation that there are two communicating parties

and with very simple tasks of computing two-argument Boolean functions for the case one argument is known

to one party and the other argument is known to the other party. We will completely ignore computational

resources needed by parties and focus solely on the amount of communication that is need to be exchanged

between both parties in order to compute the value of a given Boolean function.

More technically, let X = Y = {0, 1}n. We will consider two-argument functions f : X×Y → {0, 1} and

two communicating parties. Alice will be given an x ∈ X and Bob a y ∈ Y . They want to compute f(x, y).

If f is defined only on a proper subset of X × Y , f is said to be a partial function or a promise problem.

❄

x ∈ {0, 1}nInputs:

❄

y ∈ {0, 1}n

❄

f(x, y) ∈ {0, 1}Output:

✫✪
✬✩
Alice ✫✪

✬✩
Bob

✲
messages

✛
✲

· · ·

Figure 1: Communication protocol
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The computation of f(x, y) will be done using a communication protocol, presented in Figure 1. During

the execution of the protocol, parties alternate roles in sending messages. Each of these messages will

be a bit-string. The protocol, whose steps are based on the communication so far, also specifies for each

step whether the communication terminates (in which case it also specifies what is the output). If the

communication does not terminate, the protocol also specifies what kind of message the sender (Alice or

Bob) should send next as a function of its input and communication so far.

A deterministic communication protocol P computes a (partial) function f , if for every (promise) input

pair (x, y) ∈ X × Y the protocol terminates with the value f(x, y) as its output. In a probabilistic protocol,

Alice and Bob may also flip coins during the protocol execution and proceed according to their outputs and

the protocol can also have an erroneous output with a small probability. In a quantum protocol, Alice and

Bob may use also quantum resources for communication.

Let P(x, y) denote the output of the protocol P . We will consider two kinds of protocols for computing

a function f :

• An exact protocol, that always outputs the correct answer (that is Pr(P(x, y) = f(x, y)) = 1).

• A two-sided error (bounded error) protocol P such that Pr(P(x, y) = f(x, y)) ≥ 2
3 .

The communication complexity of a protocol P is the worst case number of (qu)bits exchanged. The

communication complexity of f is, with which respect to the communication mode used, the complexity of

an optimal protocol for f .

We will use D(f) and R(f) to denote the deterministic communication complexity and the two-sided

error probabilistic communication complexity of a function f , respectively. Similarly we use notations QE(f)

and Q(f) for the exact and two-sided error quantum communication complexity of a function f .

Let us also summarize already known communication complexity results concerning communication

problems EQ, DISJ and EQ′:

1. D(EQ) = n, D(DISJ) = n [26], D(EQ′) ∈ Ω(n) [11].

2. QE(EQ
′) ∈ O(logn) [11].

3. R(EQ) ∈ O(logn) [26], R(DISJ) ∈ Ω(n) [8, 24, 32].

4. Q(DISJ) ∈ Θ(
√
n) [3, 33].

2.2. Exact query complexity

The exact quantum query complexity for partial functions was dealt with also in [10, 15] and for total

functions in [5–7, 28].

In the next we recall definitions of two exact query complexity models. For more concerning basic

concepts and notations related to query complexity, we refer the reader to [14].

Exact classical (deterministic) query algorithms to compute a Boolean function f : {0, 1}n → {0, 1} can

be described using decision trees, in the following way:

Let the input string be x = x1x2 . . . xn. A decision tree Tf for x is a rooted binary tree in which

each internal vertex has exactly two children. Moreover, each internal vertex is labeled with a variable xi

(1 ≤ i ≤ n) and each leaf is labeled with a value 0 or 1. Tf should be designed in such a way that it can be

used to compute function f in the following way: Let us start at the root. If this is a leaf then stop and the

value of f is that assigned to that leaf. Otherwise, query the value of the variable xi that labels the root.

If xi = 0, then evaluate recursively the left subtree, if xi = 1 then the right subtree. The output of the tree

4



is then the value of the leaf that is reached eventually. The depth of Tf is the maximal length of any path

from the root to any leaf (i.e. the worst-case number of queries used for all inputs). The minimal depth

over all decision trees computing f is the exact classical query complexity (deterministic query complexity,

decision tree complexity) DT (f) of f .

Let f : {0, 1}n → {0, 1} be a Boolean function and x = x1x2 · · ·xn be an input bit string. Each exact

quantum query algorithm for f works in a Hilbert space with some fixed basis, called standard. Each of

the basis states corresponds to either one or none of the input bits. It starts in a fixed starting state, then

performs on it a sequence of transformations U1, Q, U2, Q, . . . , Ut, Q, Ut+1. Unitary transformations Ui

do not depend on the input bits, while Q, called the query transformation, does, in the following way. If a

basis state |ψ〉 corresponds to the i-th input bit, then Q|ψ〉 = (−1)xi |ψ〉. If it does not correspond to any

input bit, then Q leaves it unchanged: Q|ψ〉 = |ψ〉. Finally, the algorithm performs a measurement in the

standard basis. Depending on the result of the measurement, the algorithm outputs either 0 or 1 which

must be equal to f(x). The exact quantum query complexity QTE(f) is the minimum number of queries

used by any quantum algorithm which computes f(x) exactly for all x.

2.3. Lower bound methods for deterministic communication complexity

There are quite a few of lower bound methods to determine deterministic communication complexity.

We just recall so called “rectangles” method in this subsection. Concerning more on lower bound methods,

see [13, 22, 26].

A rectangle in X × Y is a subset R ⊆ X × Y such that R = A × B for some A ⊆ X and B ⊆ Y . A

rectangle R = A×B is called 1(0)-rectangle of a function f : X ×Y → {0, 1} if for every (x, y) ∈ A×B the

value of f(x, y) is 1(0). For a partial function f : X × Y → {0, 1} with domain D, a rectangle R = A × B

is called 1(0)-rectangle if the value of f(x, y) is 1(0) for every (x, y) ∈ D ∩ (A× B) – we do not care about

values for (x, y) 6∈ D. Moreover, Ci(f) is defined as the minimum number of i-rectangles that partition the

space of i-inputs (such inputs x and y that f(x, y) = i) of f .

We now recall a lemma on “rectangles” method from [26]:

Lemma 1. For every (partial) function f , D(f) ≥ max{logC1(f), logC0(f)}.

2.4. Measure-once one-way finite automata with quantum and classical states

In this subsection we recall the definition of 1QCFA. Concerning more on classical and quantum automata

see [18, 19, 21, 30].

Two-way finite automata with quantum and classical states (2QCFA) were introduced by Ambainis and

Watrous [2] and explored also by Yakaryılmaz, Zheng and others [27, 35, 38–40]. Informally, a 2QCFA can

be seen as a two-way deterministic finite automaton (2DFA) with an access to a quantum memory for states

of a fixed Hilbert space upon which at each step either a unitary operation is performed or a projective

measurement and the outcomes of which then probabilistically determine the next move of the underlying

2DFA. 1QCFA are one-way versions of 2QCFA [37]. In this paper, we only use 1QCFA in which a unitary

transformation is applied in every step after scanning a symbol and a measurement is performed at the

end of the computation. Such model is called a measure-once 1QCFA (MO-1QCFA) and corresponds to

a variant of measure-once quantum finite automata, which can also be seen as a special case of one-way

quantum finite automata together with classical states defined in [31].
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Definition 1. An MO-1QCFA A is specified by a 8-tuple

A = (Q,S,Σ,Θ, δ, |q0〉, s0, Qa), (5)

where

1. Q is a finite set of orthonormal quantum (basis) states;

2. S is a finite set of classical states;

3. Σ is a finite alphabet of input symbols and let Σ′ = Σ ∪ {|c, $}, where symbol |c will be used as the left

end-marker and symbol $ as the right end-marker;

4. |q0〉 ∈ Q is the initial quantum state;

5. s0 is the initial classical state;

6. Qa ⊆ Q denotes the set of accepting quantum basis states;

7. Θ is a quantum transition function

Θ : S × Σ′ → U(H(Q)), (6)

where U(H(Q)) is the set of unitary operations on the Hilbert space generated by quantum states

from Q;

8. δ is a classical transition function

δ : S × Σ′ → S, (7)

such that δ(s, σ) = s′, then the new classical state of the automaton is s′.

The computation of an MO-1QCFA A = (Q,S,Σ,Θ, δ, |q0〉, s0, Qa) on an input w = σ1 · · ·σn ∈ Σ∗ starts

with the string |cw$ on the input tape. At the start, the tape head of the automaton is positioned on the

left end-marker and the automaton begins the computation in the initial classical state and in the initial

quantum state. After that, in each step, if the classical state of the automaton is s, its tape head reads a

symbol σ and its quantum state is |ψ〉, then the automaton changes its quantum state to Θ(s, σ)|ψ〉 and its

classical state to δ(s, σ). At the end of the computation, the projective measurement {Pa, Pr} is applied on

the current quantum state, where Pa =
∑

|i〉∈Qa
|i〉〈i| and Pr = I − Pa. If the classical outcome is a (r),

then the input is accepted (rejected).

For any state s, any string w ∈ (Σ′)∗ and any σ ∈ Σ, let δ̂(s, σw) = δ̂(δ(s, σ), w); if |w| = 0, δ̂(s, w) = s.

Let σ0 = |c and σn+1 = $. The probability that the automaton A accepts the input w is

Pr[A accepts w] = ‖PaΘ(sn+1, σn+1) · · ·Θ(s1, σ1)Θ(s0, σ0)|q0〉‖2, (8)

where si+1 = δ̂(s0, σ0 · · ·σi). The probability that A rejects the input w is Pr[A rejects w] = 1 −
Pr[A accepts w].

The language acceptance is a special case of so called promise problem solving. A promise problem [17]

over an alphabet Σ is a pair A = (Ayes, Ano), where Ayes, Ano ⊂ Σ∗ are disjoint sets. Languages over an

alphabet Σ may be viewed as promise problems that obey the additional constraint Ayes ∪ Ano = Σ∗.

A promise problem A = (Ayes, Ano) is solved exactly by a finite automaton A if

• ∀w ∈ Ayes, Pr[A accepts w] = 1, and

• ∀w ∈ Ano, Pr[A rejects w] = 1.

6



On the other side, a finite automaton A is said to solve a promise problem A = (Ayes, Ano) with a

one-sided error ε ( 0 < ε ≤ 1
2 ) if

• ∀w ∈ Ayes, Pr[A accepts w] = 1, and

• ∀w ∈ Ano, Pr[A rejects w] ≥ 1− ε.

3. Generalizations of the distributed Deutsch-Jozsa promise problem

We will explore communication complexity of several generalizations of the distributed Deutsch-Jozsa

promise problem.

Theorem 1. QE(EQk) ∈ O(logn) for any fixed k ≥ n
2 .

Proof. Assume that Alice is given an input x = x1 · · ·xn and Bob an input y = y1 · · · yn. The following

quantum communication protocol P computes EQk(x, y) using n + 1 quantum basis states |0〉, |1〉, . . . , |n〉
as follows:

1. Alice begins with the initial quantum state |0〉 and performs on it the unitary map Uk such that

Uk|0〉 =
√

2k−n
2k |0〉+

√
n
2k |1〉, where

Uk =




√
2k−n
2k −

√
n
2k 0

√
n
2k

√
2k−n
2k 0

0 0 In−1,n−1


 . (9)

2. Alice then performs the unitary map Uh on her quantum state such that Uh|0〉 = |0〉 and Uh|1〉 =
1√
n

∑n
i=1 |i〉, i.e. the first column of Uh is (1, 0, . . . , 0)T , the second column of Uh is (0, 1√

n
, . . . , 1√

n
)T ,

and the other entries are arbitrary, but such that the resulting matrix is unitary what is clearly always

possible.

3. Alice then applies to the current state the unitary map Ux such that Ux|0〉 = |0〉 and Ux|i〉 = (−1)xi |i〉
for i > 0.

4. Afterwards Alice sends her current quantum state |ψ4〉 = UxUhUk|0〉 =
√

2k−n
2k |0〉+

√
n
2k

√
1
n

∑n
i=1(−1)xi |i〉

to Bob.

5. Bob then applies to the state that he has received the unitary map Uy such that Uy|0〉 = |0〉 and

Uy|i〉 = (−1)yi |i〉 for i > 0.

6. Bob applies the unitary map U−1
k U−1

h to his quantum state.

7. Afterwards Bob measures the resulting state in the standard basis and outputs 1 if the measurement

outcome is |0〉 and outputs 0 otherwise.

The state after the step 5 will be

|ψ5〉 = UyUxUhUk|0〉 =
√

2k − n

2k
|0〉+

√
n

2k

√
1

n

n∑

i=1

(−1)xi+yi |i〉. (10)

Therefore, if x = y, then the state after the step 6 will be

|ψ6〉 = U−1
k U−1

h UyUxUhUk|0〉 = U−1
k U−1

h UhUk|0〉 = |0〉. (11)

7



If x 6= y, then H(x, y) = k and the state after the step 6 is

|ψ6〉 = U−1
k U−1

h UyUxUhUk|0〉 = U−1
k U−1

h

(√
2k − n

2k
|0〉+

√
n

2k

√
1

n

n∑

i=1

(−1)xi+yi |i〉
)

(12)

= U−1
k

(√
2k − n

2k
|0〉+

√
n

2k

1

n

n∑

i=1

(−1)xi+yi |1〉+
n∑

i=2

αi|i〉
)

(13)

= U−1
k

(√
2k − n

2k
|0〉+

√
n

2k

n− 2k

n
|1〉+

n∑

i=2

αi|i〉
)

(14)

=

(√
2k − n

2k

√
2k − n

2k
+

√
n

2k

√
n

2k

n− 2k

n

)
|0〉+

n∑

i=1

βi|i〉 (15)

=

n∑

i=1

βi|i〉, (16)

where αi, βi are amplitudes that we do not need to be specified more exactly.

Because the amplitude of |0〉 is 0, we can get the exact result after the measurement in the step 7.

It is clear that this protocol communicates only ⌈log(n+ 1)⌉ qubits.

Obviously, D(EQk) ≤ n−k+1. For the case that k = n
2 and k is even, EQk = EQ′ and D(EQk) ∈ Ω(n)

[11, 13]. For the cases that 1
2n ≤ k < (1 − λ)n, where 0 < λ < 1

2 is given, we can prove, using a similar

proof method as in [11, 13], the following theorem:

Theorem 2. Suppose 0 < λ < 1
2 is given and k is an even. Then D(EQk) ∈ Ω(n) for all k such that

1
2n ≤ k < (1− λ)n.

Proof. In order to prove the theorem, we introduce a lemma (Theorem 1 in [16]) first.

For x, y ∈ {0, 1}n, let us denote |x∧ y| =
∑n

i=1 xi ∧ yi. Let also M(n, l) denote the maximum of the sets

cardinality |F |, where F ⊂ {0, 1}n subject to the constraint: |x ∧ y| 6= l holds for all distinct x, y ∈ F .

Lemma 2. [16] If 0 < η < 1
4 is given, then there exists a positive constant ε0 = ε0(η) such that M(n, l) ≤

(2− ε0)
n for all l such that ηn < l < (12 − η)n.

Let P be a deterministic protocol for EQk. Let us consider the set E = {(x, x) |W (x) = ⌊n
2 ⌋}. For every

(x, x) ∈ E, we have P(x, x) = 1. Suppose now that there is a 1-monochromatic rectangle R = A × B ⊆
{0, 1}n × {0, 1}n such that P(x, y) = 1 for every promise pair (x, y) ∈ R. Let S = R ∩ E. We now prove

that for any distinct (x, x), (y, y) ∈ S, |x ∧ y| 6= ⌊n−k
2 ⌋.

If |x∧ y| = ⌊n−k
2 ⌋, then H(x, y) = 2(⌊n

2 ⌋− ⌊n−k
2 ⌋) = k and P(x, y) = 0. Since (x, x) ∈ R and (y, y) ∈ R,

we have (x, y) ∈ R and P(x, y) = 0, which is a contradiction.

Because of the assumption, we have λ
2n < ⌊n−k

2 ⌋ ≤ 1
4n < (12 − λ

2 )n. Let η = λ
2 . According to Lemma 2,

there exists a constant ε0 such that |S| ≤ (2− ε0)
n.

Let us now continue the proof of Theorem 2 . The minimum number of 1-monochromatic rectangles

that partition the space of inputs is

C1(EQk) ≥
|E|
|S| ≥

(
n

⌊n/2⌋
)

(2− ε0)n
>

2n/n

(2 − ε0)n
. (17)
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According to Lemma 1, the deterministic communication complexity of the problem EQk then holds:

D(EQk) ≥ logC1(EQk) > log
2n/n

(2− ε0)n
= n− logn− n log(2− ε0). (18)

Since 1 − u ≤ e−u ≤ 2−u, for any real number u > 0, we have log(2 − ε0) = 1 + log(1 − ε0/2) < 1 − ε0/2.

Therefore

D(EQk) ≥ n− logn− n(1− ε0
2
) =

ε0
2
n− logn. (19)

Thus, D(EQk) ∈ Ω(n).

Remark 1. If k is odd, we can prove that D(EQk) ∈ O(1) as follows:

1. Alice calculates W (x) and then sends one bit information of W (x)’s parity to Bob (for example, Alice

sends “1” if W (x) is even and “0” otherwise).

2. After receiving Alice’s information, Bob calculates W (y). If the parities of W (y) and W (x) are the

same, then EQk(x, y) = 1; otherwise, EQk(x, y) = 0.

The above protocol computes EQk since if H(x, y) = 0, W (x)+W (y) must be even; if H(x, y) = k, then

the parity of W (x) +W (y) must be the same as the parity of k.

We can now explore also the exact quantum query complexity of DJk.

Theorem 3. The exact quantum query complexity QTE(DJk) = 1 for any fixed k ≥ n
2 .

Proof. Let us consider a query algorithm A that will solve the promise problem DJk using n+ 1 quantum

basis states |0〉, |1〉, . . . , |n〉 and works as follows: (where the unitary transformations Uk and Uh are the

same ones as in the proof of the Theorem 1.)

1. A begins in the state |0〉 and performs on it the unitary transformation U1 = UhUk.

2. A performs a query Q.

3. A performs the unitary transformation U2 = U−1
k U−1

h .

4. A measures the resulting state in the standard basis and outputs 1 if the measurement outcome is |0〉
and outputs 0 otherwise.

The rest of the proof is similar to that of Theorem 1.

Obviously, the exact classical query complexity of DJk is n− k + 1.

4. Communication complexity of a promise version of the disjointness problem

It may seem that if we consider DISJ′k as a similar promise version to the problem DISJ as we did with

EQk, we get a similar result.

However, the reality is a bit different. Indeed, let us denote

DISJ′k(x, y) =

{
1 if

∑n
i=1 xi ∧ yi = 0

0 if
∑n

i=1 xi ∧ yi = k,
(20)

where k ≥ n
2 is fixed. Using an analogous proof method as in Section 3, we can prove that QE(DISJ′k) ∈

O(logn). But, when comparing to the deterministic communication complexity, this is no improvement at

all. Actually, we can prove that for k > n
2 , D(DISJ′k) ∈ O(1). Indeed, let us consider the following protocol:

9



1. Alice calculates W (x). If W (x) < k, Alice sends 1 as the outcome of DISJ′k(x, y) to Bob; otherwise,

she sends 0 to Bob.

2. After receiving Alice’s information, if Bob did not get 1 as the result of DISJ′k(x, y) from Alice, he

then calculates W (y). If W (y) < k, then Bob outputs 1 as the result of DISJ′k(x, y); otherwise,

DISJ′k(x, y) = 0.

For the case k = n
2 , we can prove that D(DISJ′k) ∈ O(1) using the following protocol:

1. Alice calculates W (x). If W (x) < n
2 , then Alice sends 1 as the outcome of DISJ′k(x, y) to Bob; if

W (x) = n
2 , Alice sends 0 and x1 to Bob; otherwise, she sends 0 to Bob.

2. After receiving Alice’s information, if Bob did not get 1 as the result of DISJ′k(x, y) from Alice,

he then calculates W (y). If W (y) < n
2 , then Bob outputs the result 1 as the of DISJ′k(x, y). If

W (y) = n
2 = W (x), Bob compares y1 with x1 and then outputs the result DISJ′k(x, y) = 0 if y1 = x1

and DISJ′k(x, y) = 1 if y1 6= x1. Otherwise, DISJ′k(x, y) = 0.

Obviously, the above protocol computes DISJ′k(x, y) and uses for communication only O(1) bits.

4.1. Quantum protocol

Let us now explore how much of advantages can be obtained when quantum resources can be used for

dealing with such communication problems as DISJλ. We give at first a quantum communication protocol

for DISJ 1
4
(x, y). From this protocol we can get the following result.

Theorem 4. Q(DISJ 1
4
) ≤ 3 + 2 logn.

Proof. Assume that Alice is given an input x = x1 · · ·xn and Bob an input y = y1 · · · yn. The quantum

communication protocol P which computes DISJ 1
4
using 2n quantum basis states {|i, j〉 : 1 ≤ i ≤ n, 0 ≤

j ≤ 1} (the basis state |i, j〉 is a 2n-dimensional column vector with the (nj+ i)-th entry being 1 and others

being 0’s.) will work as follows:

1. Alice starts with the quantum state |ψ0〉 = |1, 0〉 = (1,

2n−1︷ ︸︸ ︷
0, · · · , 0)T and applies to it the following unitary

transformation Us:

Us|ψ0〉 =
n∑

i=1

1√
n
|i, 0〉 = 1√

n
(

n︷ ︸︸ ︷
1, · · · , 1,

n︷ ︸︸ ︷
0, · · · , 0)T . (21)

Alice then applies the following unitary transformation Ux when x = x1 · · ·xn is the input word:

Ux = Uxn · · ·Ux1 (22)

where

Uxi =

{
I, if xi = 0

|i, 1〉〈i, 0|+ |i, 0〉〈i, 1|+∑j 6=i |j, 0〉〈j, 0|+
∑

j 6=i |j, 1〉〈j, 1|, if xi = 1.
(23)

Ux is therefore a unitary transformation that exchanges the amplitudes of |i, 0〉 and |i, 1〉 if xi = 1.

The resulting quantum state, after performing Ux, will be

|ψ1〉 =
1√
n

n∑

i=1

((1− xi)|i, 0〉+ xi|i, 1〉) =
1√
n
(x1, · · · , xn, x1, · · · , xn)T , (24)

where xi = 1− xi.

Alice then sends the resulting quantum state |ψ1〉 to Bob.

10



2. Bob applies to the state received the unitary mapping Vy , defined for each y as follows

Vy |i, 0〉 = |i, 0〉 (25)

and

Vy |i, 1〉 = (−1)yi|i, 1〉. (26)

The quantum state after applying Vy will therefore be

|ψ2〉 =
1√
n
(x1, · · · , xn, (−1)y1x1, · · · , (−1)ynxn)

T . (27)

If xi = yi = 1, then (−1)yixi = −1 = (−1)xi∧yi; if xi = 1 and yi = 0, then (−1)yixi = 1 = (−1)xi∧yi ;

otherwise (−1)yixi = 0.

Bob then sends his quantum state |ψ2〉 to Alice.

3. Alice applies the unitary transformationUx to the state |ψ2〉 received from Bob and gets a new quantum

state:

|ψ3〉 =
1√
n
(z1, · · · , zn,

n︷ ︸︸ ︷
0, · · · , 0)T . (28)

If xi = 0, then zi = xi = 1 = (−1)xi∧yi . If xi = 1, then zi = (−1)yixi = (−1)xi∧yi . Therefore,

zi = (−1)xi∧yi for 1 ≤ i ≤ n.

Alice then applies the unitary transformation Uf (to be specified later) to get the following state:

Uf |ψ3〉 =


 1

n

n∑

i=1

(−1)xi∧yi,

2n−1︷ ︸︸ ︷
∗, · · · , ∗




T

. (29)

and then she measures the resulting quantum state with the observable {|i, 0〉〈i, 0|, |i, 1〉〈i, 1|}ni=1. If

the measurement outcome is |1, 0〉, Alice sends 1 otherwise 0 to Bob.

It is clear that this protocol uses for communication 1 + 2(log 2n) = 3 + 2 logn qubits. Unitary trans-

formations Us and Uf do exist. The first column of Us is 1√
n
(

n︷ ︸︸ ︷
1, · · · , 1,

n︷ ︸︸ ︷
0, · · · , 0)T and the first row of Uf is

1√
n
(

n︷ ︸︸ ︷
1, · · · , 1,

n︷ ︸︸ ︷
0, · · · , 0). It is easy to verify that Vy’s are unitary transformations.

If
∑n

i=1 xi∧yi = 0, then 1
n

∑n
i=1(−1)xi∧yi = 1. After the measurement, Alice gets the quantum outcome

|1, 0〉 and sends 1 to Bob. Thus,

Pr(P(x, y) = DISJ 1
4
(x, y)) = 1. (30)

If n/4 ≤
∑n

i=1 xi ∧ yi ≤ 3n/4, then | 1n
∑n

i=1(−1)xi∧yi | ≤ 1/2 and Alice gets as the quantum outcome

|1, 0〉 with the probability not more than | 1n
∑n

i=1(−1)xi∧yi |2 = 1/4. Thus,

Pr(P(x, y) = DISJ 1
4
(x, y)) = 1−

∣∣∣∣∣
1

n

n∑

i=1

(−1)xi∧yi

∣∣∣∣∣

2

≥ 3

4
. (31)

Therefore P is a bounded error protocol for DISJ 1
4
and Q(DISJ 1

4
) ≤ 3 + 2 logn.

Now we are in position to deal with the general case.

Theorem 5. Q(DISJλ) ≤ log 3
3λ (3 + 2 logn), where 0 < λ ≤ 1

4 .
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Proof. For the general case, the new quantum protocol P ′ works as follows: Repeat the protocol P from

the proof of previous theorem k times (k will be specified later). If all measurement outcomes in Step 3 are

|1, 0〉, then P ′(x, y) = 1; otherwise, P ′(x, y) = 0.

If
∑n

i=1 xi ∧ yi = 0, then

Pr(P(x, y) = 1) = 1 (32)

and

Pr(P(x, y) = 0) = 0. (33)

Therefore,

Pr(P ′(x, y) = DISJλ(x, y) = 1) = 1. (34)

If λn ≤∑n
i=1 xi ∧ yi ≤ (1− λ)n, then

p0 = Pr(P(x, y) = DISJλ(x, y) = 0) = 1− | 1
n

n∑

i=1

(−1)xi∧yi |2 ≥ 1− |1− 2λ|2 (35)

= 4λ− λ2 = 4λ(1− λ) ≥ 4λ(1− 1

4
) = 3λ. (36)

If k = log 1/3
log(1−3λ) , and the protocol P is repeated k times, then

Pr(P ′(x, y) = DISJλ(x, y) = 0) = 1− (1− p0)
k ≥ 1− (1− 3λ)k ≥ 1− (1− 3λ)

log 1/3
log(1−3λ) (37)

= 1− 2log((1−3λ)
log 1/3

log(1−3λ) ) = 1− 2
log 1/3

log(1−3λ)
×log((1−3λ) = 1− 2log 1/3 =

2

3
. (38)

Since 1− u ≤ e−u ≤ 2−u, for any real number u > 0, we have

k =
log 1/3

log(1− 3λ)
≤ log 1/3

log 2(−3λ)
=

log 3

3λ
. (39)

Thus, Q(DISJλ) ≤ log 3
3λ (3 + 2 logn).

4.2. Deterministic lower bound

To prove the main result, we will use a modification of the lower bound proof method from [11, 13].

Theorem 6. D(DISJλ) ∈ Ω(n), where 0 < λ ≤ 1
4 .

Proof. Let P be a deterministic protocol for DISJλ. Let us consider the set Fλ = {x ∈ {0, 1}n |λn ≤
W (x) ≤ (1 − λ)n}. If x ∈ Fλ, then also x ∈ Fλ, where x = x1 · · ·xn. Let E = {(x, x) |x ∈ Fλ}. For

every (x, x) ∈ E, we then have P(x, x) = 1. Suppose now that there is a 1-monochromatic rectangle

R = A × B ⊆ {0, 1}n × {0, 1}n such that P(x, y) = 1 for every pair of promise input (x, y) ∈ R. For

S = R ∩ E, we now prove that |S| < 1.99n.

Suppose |S| ≥ 1.99n. According to Corollary 1.2 from [16], there exist (x, x) ∈ S and (z, z) ∈ S such

that |x ∧ z| = n
4 . Since S ⊆ E, we have x, x, z, z ∈ Fλ. Without a lost of generality, let

x =

n/4︷ ︸︸ ︷
1 · · · 1

λn︷ ︸︸ ︷
0 · · · 0

λn︷ ︸︸ ︷
1 · · · 1

3n/4−2λn︷ ︸︸ ︷
∗ · · · ∗ and (40)

z =

n/4︷ ︸︸ ︷
1 · · · 1

λn︷ ︸︸ ︷
1 · · · 1

λn︷ ︸︸ ︷
0 · · · 0

3n/4−2λn︷ ︸︸ ︷
∗ · · · ∗ (41)
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such that |x ∧ z| = n
4 . In such a case

x =

n/4︷ ︸︸ ︷
0 · · · 0

λn︷ ︸︸ ︷
1 · · · 1

λn︷ ︸︸ ︷
0 · · · 0

3n/4−2λn︷ ︸︸ ︷
∗ · · · ∗ (42)

and therefore λn ≤ |z ∧ x| ≤ 3n/4− λn < (1− λ)n. Thus, P(z, x) = 0. Since S ⊂ R and R is a 1-rectangle,

we get (x, x) ∈ R, (z, z) ∈ R and also (z, x) ∈ R. Since (z, x) is a pair of the promise input, it holds

P(z, x) = 1, which is a contradiction.

Therefore, the minimum number of 1-monochromatic rectangles that partition the space of inputs is

C1(DISJλ) ≥
|E|
|S| =

|Fλ|
|S| ≥ |F1/4|

|S| >
2n/2

1.99n
. (43)

According to Lemma 1, the deterministic communication complexity then holds:

D(DISJλ) ≥ logC1(DISJλ) > log (
2n/2

1.99n
) = n− 1− n log 1.99 (44)

> n− 1− 0.9927n = 0.0073n− 1. (45)

Thus, D(DISJλ) ∈ Ω(n).

Remark 2. The lower bound proved in the previous theorem is quite a weak bound. We expect that a

better lower bound will be relative to λ. When λ is close to 0, then the lower bound is expected to be close

to n instead of 0.007n.

4.3. Probabilistic protocol

As already mentioned, the two-sided error probabilistic communication complexity R(DISJ) ∈ Ω(n).

However, for DISJλ, the communication complexity can be dramatically improved as will now be shown.

Let us first deal with the case λ = 1
4 .

Theorem 7. R(DISJ 1
4
) ≤ 5 logn.

Proof. Let us consider the probabilistic protocol P which works as follows (where integer k will be speified

later).

1. IfW (x) < k, then Alice sends 1 as the result of DISJ 1
4
(x, y) to Bob. Otherwise, Alice chooses randomly

k 1’s of her input, says xi1 , · · · , xik , and sends their positions i1, · · · , ik to Bob.

2. If Bob does not receive 1 as the result from Alice, then he checks the positions i1, · · · , ik of his input.

If there exists a 1 ≤ j ≤ k such that yij = 1 , then P(x, y) = 0; otherwise P(x, y) = 1.

If
∑n

i=1 xi ∧ yi = 0, then

Pr(P(x, y) = DISJ 1
4
(x, y) = 1) = 1. (46)

If n/4 ≤∑n
i=1 xi ∧ yi ≤ 3n/4, then for any i ∈ {i1, · · · , ik}

Pr(yi = xi) ≥
1

4
. (47)

Therefore,

Pr(P(x, y) = 0) ≥ 1− (1− 1

4
)k = 1− (

3

4
)k. (48)

If k = 5, then Pr(P(x, y) = 0) > 0.76 > 2
3 . Since Alice needs logn bits to specifies every position, we have

R(DISJ 1
4
) ≤ 5 logn.
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A more general result we get for all problems R(DISJλ) where 0 < λ ≤ 1
4 .

Theorem 8. R(DISJλ) ≤ log 3
λ logn, where 0 < λ ≤ 1

4

Proof. For this general cases, we will use almost the same protocol as in the proof of the previous theorem,

only Alice will send to Bob more positions of 1’s in her input. It holds:

If
∑n

i=1 xi ∧ yi = 0, then

Pr(P(x, y) = DISJλ(x, y) = 1) = 1. (49)

If λn ≤
∑n

i=1 xi ∧ yi ≤ (1− λ)n, then for any i ∈ {i1, · · · , ik}

Pr(yi = xi) ≥ λ. (50)

Therefore,

Pr(P(x, y) = 0) ≥ 1− (1 − λ)k. (51)

If k = log 1/3
log (1−λ) , then (1 − λ)

log 1/3
log (1−λ) = 1

3 and Pr(P(x, y) = 0) ≥ 2
3 . Thus, R(DISJλ) ≤ log 1/3

log (1−λ) logn ≤
log 3
λ logn.

Remark 3. We can also define two-sided error mode as tolerating an error probability ε instead of 1
3 .

Modifying our proof in Theorem 5 and Theorem 8, we can get Q(DISJλ) ≤ log ε
3λ (3+2 logn) and R(DISJλ) ≤

log ε
λ logn for any error probability ε.

5. Applications to quantum, probabilistic and deterministic finite automata

It has been known, since the paper [1], that for some regular languages 1QFA can be more succinct

than their classical counterparts. However, Klauck [25] proved, for any regular language L, that the state

complexity of the exact one-way quantum finite automata for L is not less than the state complexity of an

equivalent one-way deterministic finite automata (DFA). Surprisingly, situation is again different for some

promise problems [4, 20, 39].

For any n ∈ Z
+, let us consider the promise problem AEQk

(n) over an alphabet Σ = {0, 1,#}, corre-
sponding to the EQk problem, that is defined as follow:

AEQk
(n) :

{
Ayes(n) = {x#y |H(x, y) = 0, x, y ∈ {0, 1}n}
Ano(n) = {x#y |H(x, y) = k, x, y ∈ {0, 1}n},

(52)

where k is a fixed even such that k ≥ n/2 .

The quantum protocol for EQk which is described in Theorem 1 can be implemented on an MO-1QCFA

as shown bellow. Therefore, we get the following result:

Theorem 9. The promise problem AEQk
(n) can be solved exactly by an MO-1QCFA A(n) with n + 1

quantum basis states and O(n) classical states, whereas the sizes of the corresponding DFA are 2Ω(n) if k is

an even such that 1
2n ≤ k < (1− λ)n, where 0 < λ < 1

2 is given.

Proof. Let x = x1 · · ·xn and y = y1 · · · yn. Let us consider an MO-1QCFA A(n) = (Q,S,Σ,Θ, δ, |0〉, s0, Qa),

where Q = {|i〉}ni=0, S = {si}n+1
i=0 and Qa = {|0〉}. A(n) will start in the initial quantum state |0〉 and then

perform the unitary transformation Θ(s0, |c) = U|c = UhUk to the state |0〉, where Uh, Uk are the ones defined

in the proof of Theorem 1. We use classical states si ∈ S (1 ≤ i ≤ n+ 1) to point out the positions of the
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1. Read the left end-marker |c, perform Θ(s0, |c) = U|c = UhUk on the initial quantum state |0〉,
change its classical state to δ(s0, |c) = s1, and move the tape head one cell to the right.

2. While the currently scanned symbol σ is not #, do the following:

2.1 Apply Θ(si, σ) = Ui,σ to the current quantum state.

2.2 Change the classical state si to si+1 and move the tape head one cell to the right.

3. Change the classical state sn+1 to s1 and move the tape head one cell to the right.

4. While the currently scanned symbol σ is not the right end-marker $, do the following:

4.1 Apply Θ(si, σ) = Ui,σ to the current quantum state.

4.2 Change the classical state si to si+1 and move the tape head one cell to the right.

5. When the right end-marker is reached, perform Θ(sn+1, $) = U$ = U−1
k U−1

h on the current

quantum state and measure the current quantum state with the projective measurement {Pa =

|0〉〈0|, Pr = I − |0〉〈0|}. If the outcome is |0〉, accept the input; otherwise reject the input.

Figure 2: Description of the behavior of A(n) when solving the promise problem AEQk
(n).

tape head that will provide some information for quantum transformations. If the classical state of A(n) is

si (1 ≤ i ≤ n), then the next scanned symbol of the tape head is the i-th symbol of x(y) and sn+1 means

that the next scanned symbol of the tape head is #($). The automaton proceeds as shown in Figure 2,

where

Ui,σ|i〉 = (−1)σ|i〉 and Ui,σ|j〉 = |j〉 for j 6= i (53)

The rest of the proof is analogues to the proof in Theorem 1.

The deterministic communication complexity of EQk is Ω(n). Therefore, the sizes of the corresponding

DFA are 2Ω(n) [26].

We now apply also to finite automata the communication complexity results for DISJλ. Let us consider

the following promise problem

AD(n) :

{
Ayes(n) = {x#y#x | ∑n

i=1 xi ∧ yi = 0, x, y ∈ {0, 1}n}
Ano(n) = {x#y#x | 1

4n ≤∑n
i=1 xi ∧ yi ≤ 3

4n, x, y ∈ {0, 1}n}.
(54)

We implement the protocols used in Section 4 for an MO-1QCFA and for a one-way probabilistic finite

automaton (1PFA) and get the following result:

Theorem 10. The promise problem AD(n) can be solved with one-sided error 1
4 by an MO-1QCFA A(n)

with 2n quantum basis states and O(n) classical states and also by a 1PFA P(n) with O(n5) states, whereas

the sizes of the corresponding DFA are 2Ω(n).

Proof. Let x = x1 · · ·xn and y = y1 · · · yn. Let us consider an MO-1QCFAA(n) = (Q,S,Σ,Θ, δ, |q0〉, s0, Qa),

where Q = {|i, 0〉, |i, 1〉}ni=1, |q0〉 = |1, 0〉 and Qa = {|1, 0〉}. The automaton proceeds as shown in Figure 3,

where Us, Uf are the ones defined in the proof of Theorem 4 and

Ui,σ|j, 0〉 = |j, 1〉 and Ui,σ|j, 1〉 = |j, 0〉 if σ = 1 and j = i, otherwise Ui,σ|j, k〉 = |j, k〉; (55)

Vi,σ|j, 1〉 = (−1)σ|j, 1〉 if j = i, otherwise Vi,σ|j, k〉 = |j, k〉; (56)
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1. Read the left end-marker |c, perform Us on the initial quantum state |1, 0〉, change its classical
state to δ(s0, |c) = s1, and move the tape head one cell to the right.

2. While the currently scanned symbol σ is not #, do the following:

2.1 Apply Θ(si, σ) = Ui,σ to the current quantum state.

2.2 Change the classical state si to si+1 and move the tape head one cell to the right.

3. Move the tape head one cell to the right.

4. While the currently scanned symbol σ is not #, do the following:

4.1 Apply Θ(sn+i, σ) = Vi,σ to the current quantum state.

4.2 Change the classical state sn+i to sn+i+1 and move the tape head one cell to the right.

5. Change the classical state s2n+1 to s1 and move the tape head one cell to the right.

6. While the currently scanned symbol σ is not the right end-marker $, do the following:

6.1 Apply Θ(si, σ) = Ui,σ to the current quantum state.

6.2 Change the classical state si to si+1 and move the tape head one cell to the right.

7. When the right end-marker $ is reached, perform Uf on the current quantum state, measure

the current quantum state with the projective measurement {Pa = |1, 0〉〈1, 0|, Pr = I −Pa}. If
the outcome is |1, 0〉, accept the input; otherwise reject the input.

Figure 3: Description of the behavior of A(n) when solving the promise problem AD(n).

It is easy to verify that for 1 ≤ i ≤ n, Ui,σ and Vi,σ are unitary transformations. According to the analysis

in the proof of Theorem 4, if the input string w ∈ Ayes(n), then the automaton will get the outcome |1, 0〉
in Step 7 with certainty and therefore

Pr[A accepts w] = 1. (57)

If the input string w ∈ Ano(n), the automaton gets the outcome |1, 0〉 with probability not more than 1/4.

Thus,

Pr[A rejects w] ≥ 3

4
. (58)

Using the protocol from the proof of Theorem 7 and the proof that its probabilistic communication

complexity is not more than 5 logn, it is easy to design a 1PFA with O(n5) states to solve the promise

problem.

The deterministic state complexity lower bound can now be proved as follows.

Let an N -states DFA A′(n) = (S,Σ, δ, s0, Sacc) solves the promise problem AD(n), then we can get a

deterministic protocol for DISJ 1
4
(x, y) as follows:

1. Alice simulates the computation of A′(n) on the input “x#” and then sends her state δ̂(s0, x#) to

Bob.

2. Bob simulates the computation of A′(n) on the input “y#” starting at the state δ̂(s0, x#), and then

sends his state δ̂(s0, x#y#) to Alice.

3. Alice simulates the computation of A′(n) on the input “x” starting at the state δ̂(s0, x#y#). If

δ̂(s0, x#y#x) ∈ Sacc, then Alice sends the result 1 to Bob, otherwise Alice sends the result 0 to Bob.
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The deterministic complexity of the above protocol is 1+ 2 logN and therefore D(DISJ 1
4
) ≤ 1+ 2 logN .

According to the analysis in Theorem 6, we have

1 + 2 logN ≥ D(DISJ 1
4
) > 0.0073n− 1 (59)

⇒ N ∈ 2Ω(n). (60)

6. Conclusion

We have explored generalizations of the Deutsch-Jozsa promise problem and its communication and

also query complexities. We have proved that the exact quantum communication complexity QE(EQk) ∈
O(logn) for any fixed k ≥ n

2 , whereas the exact classical communication complexity D(EQk) ∈ Ω(n) if k

is an even such that 1
2n ≤ k < (1 − λ)n, where 0 < λ < 1

2 is given. We have also shown that the exact

quantum query complexity QTE(DJk) = 1 for any fixed k ≥ n
2 , whereas the exact classical query complexity

DT (DJk) = n − k + 1. Promise versions of the disjointness problem also have been discussed. We have

proved that for some promise versions of the disjointness problem that there exist exponential gaps between

quantum (and also probabilistic) communication complexity and deterministic communication complexity.

Using results of the communication complexity to prove lower bounds of the state complexity of finite

automata is one of the important methods [23, 25, 26]. In this paper we have used them not only to prove

lower bounds but also upper bounds. Two communicating parties Alice and Bob are supposed to have access

to arbitrary computational power in communication complexity models. However, we have also designed

communication protocols in Section 3 and Section 4 in which both Alice and Bob are using very limited

computational power. The computations of both Alice and Bob can even be simulated by finite automata.

Some problems for future work are:

1. We have generalized the distributed Deutsch-Jozsa promise problem to determine whether H(x, y) = 0

or H(x, y) = k, where k is a fixed integer such that k ≥ n
2 . Does there exist similar results for some

cases where k < n
2 ?

2. Does there exist a promise version of the disjointness problem such that its exact quantum communi-

cation complexity can be exponential better than its deterministic communication complexity?
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