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Abstract

We present a quantum algorithm for approximating the linear structures of
a Boolean function f . Different from previous algorithms (such as Simon’s
and Shor’s algorithms) which rely on restrictions on the Boolean function,
our algorithm applies to every Boolean function with no promise. Here, our
methods are based on the result of the Bernstein-Vazirani algorithm which
is to identify linear Boolean functions and the idea of Simon’s period-finding
algorithm. More precisely, how the extent of approximation changes over the
time is obtained, and meanwhile we also get some quasi linear structures if
there exists. Next, we obtain that the running time of the quantum algorithm
to thoroughly determine this question is related to the relative differential
uniformity δf of f . Roughly speaking, the smaller the δf is, the less time will
be needed.

Keywords: Bernstein-Vazirani algorithm, Simon’s algorithm, quantum
approximate algorithm, linear structure of Boolean function

1. Introduction

Linear structures of Boolean functions have important significance in
cryptography [1–4]. Given a quantum oracle to a multiple output Boolean
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function g, under the promise that g is one to one or g has a nonzero pe-
riod(i.e., a linear structure of g), Simon’s algorithm[5] could efficiently deter-
mine which is the case and find out the period if it has. Inspired by Simon’s
algorithm, Shor[6] gave a polynomial-time algorithm for factoring integers.
Both Simon’s algorithm and Shor’s algorithm have exponential speedups over
the best known classical algorithms. However, [7] pointed out that the ex-
ponential speedup could only be obtained for a problem with a promise in
advance, any quantum algorithm for no restriction Boolean function could
merely offer a polynomial speedup over the classical deterministic algorithm.

Recently, there were great interests in exploiting quantum algorithms to
approximately solve some problems [8–11]. In this paper, we mainly research
the quantum algorithm for approximating the linear structures of a Boolean
function f with no promise at all.

The Deutsch-Jozsa algorithm [12] and the Bernstein-Vazirani algorithm[13]
have the same network[14]. Suppose f has n variables, if we run the same
quantum network without the last measurement, the output will be a quan-
tum state that is a superposition of all states |w〉 (w ∈ {0, 1}n), and the am-
plitude corresponding to each state |w〉 is its Walsh spectrum value Sf (w).
There have been some quantum algorithms for studying the properties of
Boolean functions based on the Bernstein-Vazirani algorithm[15, 16]. In ad-
dition, [17] has shown a link between the Walsh spectrums and the linear
structures of Boolean functions.

Inspired by the Bernstein-Vazirani algorithm and the conclusions in [17],
we have an idea to do this work. First, we generate the results in [17], and
then give our quantum algorithm, later apply the results we have got to
analyse our algorithm.

2. Preliminaries

2.1. The linearity of Boolean functions

Let n be a positive integer. F2 = {0, 1} denotes a finite field of character-
istic 2, and F n

2 is a vector space over F2. A mapping from F n
2 to F2 is always

called a Boolean function, and let Bn denote the set of Boolean functions of
n variables.

Definition 1 A vector a ∈ F n
2 is said to be a linear structure of a function

f ∈ Bn if
f(x⊕ a) + f(x) = f(a) + f(0), ∀x ∈ F n

2 , (1)
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where ⊕ denotes bitwise exclusive-or, it is naturally the addition operation
in F n

2 .
Let Uf denote the set of the linear structures of f , and

U i
f = {a ∈ F n

2 |f(x⊕ a) + f(x) = i, ∀x ∈ F n
2 } (i = 0, 1). (2)

Obviously Uf = U0
f

⋃
U1
f .

Let

V i
f,a = {x ∈ F n

2 |f(x⊕ a) + f(x) = i} (i = 0, 1), ∀a ∈ F n
2 . (3)

Let |V | denote the cardinality of V . Obviously, 0 6 |V i
f,a|/2n 6 1. a ∈ U i

f

if and only if |V i
f,a|/2n = 1. In this paper, we will use 1 − |V i

f,a|/2n to
describe the extent of a vector a approximating to linear structure, and we
hope it will be small enough. Naturally, we give the following two definitions.

Definition 2 A vector a ∈ F n
2 is called a quasi linear structure of a function

f ∈ Bn if

1− |{x ∈ F
n
2 |f(x⊕ a) + f(x) = i}|

2n
< l(n), (4)

here the function l(n) is negligible, more specifically, for any polynomial p(·),
there exists an N > 0 such that for all integers n > N , l(n) < 1/p(n) holds.
That is to say, (1) holds except a negligible number of x.

Definition 3 The relative differential uniformity (usually say differential
uniformity for abbreviation in this paper) of f ∈ Bn is

δf =
1

2n
max

06=a∈Fn2
max
i∈F2

|{x ∈ F n
2 |f(x⊕ a) + f(x) = i}|. (5)

Generally speaking, the δf given in (5) satisfies 1
2
≤ δf ≤ 1. Uf 6= {0} if

and only if δf = 1.

To study linear structures of a Boolean function, we define the Walsh
spectrum of it.

Definition 4 Suppose f ∈ Bn, the Walsh spectrum of f is defined as

Sf (w) =
1

2n

∑
x∈Fn2

(−1)f(x)+w·x. (6)
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The following two theorems demonstrate the links between the Walsh
spectrals and the linear structures, and we get inspirations from them.

Theorem A[17] Suppose f ∈ Bn, the set of the linear structures of f is
Uf = U0

f

⋃
U1
f , then a ∈ U i

f (i = 0, 1) if and only if for ∀w ∈ F n
2 : w · a = i =

i+ 1 (i.e. w · a 6= i), Sf (w) = 0.

Theorem B[17]

U0
f = {α ∈ F n

2 |β · α = 0,∀β ∈ {w ∈ F n
2 |w =

∑
j

wj, Sf (wj) 6= 0}}. (7)

We will generate these two theorems in the following section, and ours
contain them. For convenience, let

N0
f = {w ∈ F n

2 |Sf (w) = 0}, N1
f = {w ∈ F n

2 |Sf (w) 6= 0}. (8)

2.2. The Bernstein-Vazirani algorithm [13, 14]

The Bernstein-Vazirani algorithm is to distinguish linear functions. Specif-
ically, suppose

f(x) = a · x =
n∑
i=1

aixi. (9)

The algorithm aims to determine a. We give a description about how the
algorithm works as follows.

1. Perform the Hadamard transform H(n+1) on the initial state |ψ0〉 =
|0〉⊗n|1〉, giving

|ψ1〉 =
∑
x∈Fn2

|x〉√
2n
· |0〉 − |1〉√

2
. (10)

2. Apply the f -controlled-NOT gate on |ψ1〉, producing

|ψ2〉 =
∑
x∈Fn2

(−1)f(x)|x〉√
2n

· |0〉 − |1〉√
2

. (11)

3. We again apply n Hadamard gates to the first n qubits yielding

|ψ3〉 =
∑
y∈Fn2

1

2n

∑
x∈Fn2

(−1)f(x)+y·x|y〉 · |0〉 − |1〉√
2

. (12)
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If f(x) = a · x,

|ψ3〉 =
∑
y∈Fn2

χa(y)|y〉 · |0〉 − |1〉√
2

= |a〉 · |0〉 − |1〉√
2

, (13)

where

χa(y) =

{
1 if y = a,

0 if y 6= a.
(14)

Now we measure the first n qubits of |ψ3〉 in the computational basis, we find
a with probability 1.

If f(x) ∈ Bn is not linear, run the Bernstein-Vazirani algorithm, the
output can be expressed as

|ψ3〉 =
∑
y∈Fn2

Sf (y)|y〉 · |0〉 − |1〉√
2

(15)

according to (6) and (12). And then we measure the first n qubits in the
computational basis, we find y with probability (Sf (y))2 (we will write it as
S2
f (y) for convenience). That is, if we repeat the algorithm time and again,

we will obtain the y ∈ N1
f all the time. It will be helpful when we take

account of the linear structures of Boolean functions.

3. The further relationships between the linear structures and Walsh
spectrums of Boolean functions

The following theorems play a pivotal role in applying the quantum algo-
rithm to seek the linear structures of Boolean functions. They build a bridge
between the linear structures and the Walsh spectrums of Boolean functions
so that we can use the Bernstein-Vazirani algorithm to solve the problem.
Compare with the previous two theorems, ours list here are more specific.
Theorem A is qualitative, the following one is quantitative.

Theorem 1 Let f ∈ Bn, then ∀a ∈ F n
2 , ∀i ∈ F2,∑

w·a=i

S2
f (w) =

|V i
f,a|
2n

=
|{x ∈ F n

2 |f(x⊕ a) + f(x) = i}|
2n

. (16)
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Theorem 1 demonstrates if we run the Bernstein-Vazirani algorithm, the

probability of getting w with w · a = i will be equal to
|V if,a|
2n

. To prove
Theorem 1, we will need the following lemma appearing in [17], and we will
give a proof of it in appendix.

Lemma 1

Cf (a) =
∑
x∈Fn2

(−1)f(x)+f(x⊕a) = 2n(
∑
w·a=0

S2
f (w)−

∑
w·a=1

S2
f (w)), (17)

where Cf (a) is the correlation function of f , and − is the subtraction oper-
ation of the integer ring.

Proof of Theorem 1 First of all,

Cf (a) = |{x ∈ F n
2 |f(x⊕ a) + f(x) = 0}| − |{x ∈ F n

2 |f(x⊕ a) + f(x) = 1}|
= |V 0

f,a| − |V 1
f,a|,

(18)

From (17) and (18), we have∑
w·a=0

S2
f (w)−

∑
w·a=1

S2
f (w) =

|V 0
f,a|
2n
−
|V 1
f,a|
2n

. (19)

In addition, Parseval’s relation gives∑
w·a=0

S2
f (w) +

∑
w·a=1

S2
f (w) =

∑
w∈Fn2

S2
f (w) = 1. (20)

And by the definition of V i
f,a, we have

|V 0
f,a|+ |V 1

f,a| = 2n. (21)

From (20) and (21), we obtain∑
w·a=0

S2
f (w) +

∑
w·a=1

S2
f (w) =

|V 0
f,a|
2n

+
|V 1
f,a|
2n

. (22)

Combining (19) and (22), we achieve{∑
w·a=0 S

2
f (w) =

|V 0
f,a|
2n

,∑
w·a=1 S

2
f (w) =

|V 1
f,a|
2n

.
(23)
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(23) is essentially the same as (16).
As an application, we have the following theorem.

Theorem 2 Let f ∈ Bn, then ∀i ∈ {0, 1},

U i
f = {a ∈ F n

2 |w · a = i, ∀w ∈ N1
f }. (24)

Proof of Theorem 2 Recall that if and only if is usually abbreviated
to iff in mathematics. By the definition of U i

f and V i
f,a, we have a ∈ U i

f iff

|V i
f,a| = 2n and |V i

f,a| = 0. Reference to (23), this holds iff
∑

w·a=i S
2
f (w) =

1 and
∑

w·a=i S
2
f (w) = 0. In other words, ∀w ∈ F n

2 , as long as w · a =

i, it will beSf (w) = 0; and ∀w ∈ F n
2 , as long asSf (w) 6= 0, it will bew ·a = i.

This is in fact equivalent to

a ∈ {a ∈ F n
2 |w · a = i, ∀w ∈ N1

f }.

From Theorem 2, if we can get the set N1
f , we will obtain U i

f . Moreover,
we have known that repeating the Bernstein-Vazirani algorithm will give a
subset of N1

f .

4. The quantum algorithm for the linear structures of Boolean
Functions

We will now state a quantum algorithm to decide whether a function has
non-zero linear structures or not. If the differential uniformity δf of f ∈ Bn is
no more than a constant δ (1

2
6 δ < 1 is independent to n), it will definitely

give ”no.” If 1− 1
e(n)

6 δf 6 1 (e(n) is a exponential function of n), it will give
”yes” with a great probability and give quasi linear structures. These quasi
linear structures may be the real ones, and also may be the approximate
ones.

4.1. The quantum algorithm

Our algorithm is based on the Bernstein-Vazirani algorithm. Further-
more, we solve a system of linear equations as Simon’s algorithm does. The
details of the algorithm are presented as following.

Algorithm 1
Suppose p(n) is an arbitrary polynomial function of n, Φ is null.
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1. Initialize H := Φ, r := p(n).
2. For r many times do

2.1. Run the Bernstein-Vazirani algorithm to the function f for n + 1
times to get n+ 1 vectors w1, · · · , wn+1 ∈ N1

f .
2.2. Update H := H

⋃
{w1, · · · , wn+1}.

2.3. Solve the equations x ·H = i to get the solution Ai.
2.4. If A0 = {0} and A1 = Φ, then output no and halt.

3. Report f has quasi linear structures and output A0 and A1.

It must be U i
f ⊆ Ai, but it may not be U i

f ⊇ Ai. So if A0 = {0} and
A1 = Φ(Φ is a null set), the function f is declared to have no non-zero linear
structure.

Particularly, we have the following helpful results which will be proved
in appendix. If 0 ∈ H, or ∃ even numbers of wj such that

∑
j wj ∈ H, then

A1 = Φ, thereby U1
f = Φ. If there are k = n linearly independent vectors in

H, then A0 = {0}, |A1| = 1 or |A1| = 0, accordingly U0
f = {0}.

4.2. The analysis of the above quantum algorithm

Now we think about the questions below: How many times should the
algorithm be repeated to get the conclusion? If we run the algorithm at
most polynomial times, what we get? Naturally, we can get the conclusion
that a function f ∈ Bn has no non-zero linear structure or else we can’t. If
we can’t, that is, we find out some approximate or exact linear structures
through the algorithm, what properties should these vectors possess? What
is the running time of the quantum algorithm to thoroughly determine this
question? The following are the answers to these questions.

Theorem 3 Given an oracle access to a Boolean function f with n vari-
ables, Algorithm 1 gives an answer that f has no non-zero linear structure or
outputs vector sets A0 and A1. Notice that Algorithm 1 actually repeats the
Bernstein-Vazirani algorithm m = r ·(n+1) times, we have ∀a ∈ Ai(i = 0, 1),
∀ε, 0 < ε < 1,

Pr(1− |{x ∈ F
n
2 |f(x⊕ a) + f(x) = i}|

2n
< ε) > 1− e−2mε2 , (25)

here Pr(F ) denotes the probability of the event F happens.
It demonstrates that if l(n) > 0 is a polynomial function of n, ε = 1

l(n)
,

and r = p(n) = l2(n), the probability will be very close to 1. Thus those
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vectors in set A = A0 ∪ A1 are quasi linear structures except a negligible
probability. In other words, ∀a ∈ Ai(i = 0, 1), (a, i) is a high probability
differential.

Proof of Theorem 3 For any ai ∈ Ai(i = 0, 1),

Pr(f(x⊕ ai) + f(x) = i) =
|{x ∈ F n

2 |f(x⊕ ai) + f(x) = i}|
2n

=
|V i
f,ai |
2n

. (26)

Let
|V i
f,ai |
2n

= p,
|V i
f,ai |
2n

= 1− p = q. (27)

Obviously p, q ∈ [0, 1]. And let Y be a random variable

Y (w) =

{
0 w · ai = i

1 w · ai = i
(28)

then from Theorem 1, the expectation of Y is E(Y ) = 1 · q = q = 1 − p, m
times running the Bernstein-Vazirani algorithm correspond to m independent
identical random variables Y1, · · · , Ym. By Hoeffding’s inequality[18],

Pr(q − 1

m

m∑
j=1

Yj > ε) 6 e−2mε
2

. (29)

Now that one has got ai,
∑m

j=1 Yj in (29) must equal 0 (because if there exists

some Yj = 1, we can’t get ai ∈ Ai). Hence

Pr(q > ε) 6 e−2mε
2

. (30)

From (30) and q = 1− p, also p is always no more than 1, we have

Pr(1− p < ε) = Pr(1− ε < p 6 1) > 1− e−2mε2 . (31)

That is to say, (1 − 1
mλ
, 1](0 < λ 6 1

2
) is the confidence interval of p with

confidence level 1− e−2m1−2λ
(here let ε = 1

mλ
).

Theorem 4 To thoroughly determine whether a given Boolean function f
has non-zero linear structures or not, the r in Algorithm 1 should rely on
the differential uniformity δf of f . More precisely, if δf < 1, an average of
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O( n+1
1−δf

) times running the Bernstein-Vazirani algorithm (i.e. r = O( 1
1−δ ) in

Algorithm 1) will give an answer that f has no non-zero linear structure.

Proof of Theorem 4 If ∃ξ ∈ F n
2 , µ ∈ F2, such that

δf =
1

2n
|{x ∈ F n

2 |f(x⊕ ξ) + f(x) = µ}|

=
1

2n
max

06=a∈Fn2
max
i∈F2

|{x ∈ F n
2 |f(x⊕ a) + f(x) = i}|

= δ < 1, (32)

then

1

2n
|{x ∈ F n

2 |f(x⊕ ξ) + f(x) = µ}|

=
1

2n
min

0 6=a∈Fn2
min
i∈F2

|{x ∈ F n
2 |f(x⊕ a) + f(x) = i}|

= 1− δ > 0. (33)

Therefore ∀a ∈ F n
2 , a 6= 0, ∀i ∈ F2,

0 < 1− δ 6 1

2n
|{x ∈ F n

2 |f(x⊕ a) + f(x) = i}| 6 δ < 1, (34)

let Ba,i = {w ∈ F n
2 |w · a = i}. Suppose one has repeated the Bernstein-

Vazirani algorithm for m times, and has obtained H. By theorem 1, the
probability that H ⊆ Ba,i is at most

δm = (1− (1− δ))m 6 e−m(1−δ). (35)

That can be made small if we choose m of order (1− δ)−1 (i.e. m = O( 1
1−δ )).

In particular, if

m >
c

1− δ
, (36)

here c > 1 is a constant, then

δm <
1

ec
. (37)

Therefore the probability that H * Ba,i is at least

1− δm > 1− 1

ec
. (38)
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Learning from [19], suppose we have got k(0 6 k < n) linearly inde-
pendent vectors w1, · · · , wk at some time, and a ∈ F n

2 is a solution of the
equations wj · x = 0(j = 1, · · · , k), then after another expected number of
order O( 1

1−δ ) measures, we will get a wk+1 with wk+1 ·a = 1. This wk+1 must
be linearly independent with w1, · · · , wk, since it should be w · a = 0 for any
linear combination w of w1, · · · , wk(j = 1, · · · , k). As a result, we would find
out n linearly independent vectors w1, w2 · · · , wn through an expected num-
ber of order O( n

1−δ ) measures. From this fact, we can know U0
f = {0}. About

the only one possible solution b of the equations wj ·x = 1, j ∈ {1, 2, · · · , n},
another expected number of order O( 1

1−δ ) measures will give a wn+1 with

wn+1 · b = 0, this shows U1
f = Φ. Consequently, through m = O( n+1

1−δf
) times

running we get Uf = {0}.

Generally, if δ < 1− 1
p(n)

(p(n) is a polynomial function of n), by Theorem

4, through O(n+1
1−δ ) < O((n + 1)p(n)) times running the Bernstein-Vazirani

algorithm (i.e. r = O(p(n)) in Algorithm 1) will give a ”no” answer. A
special case is the Bent function, whose differential uniformity is δ = 1

2
,

through O(2n) times will do. If 1 > δ > 1 − 1
e(n)

(e(n) is an exponential

function of n), by Theorem 3 and Theorem 4, at least O(e(n)) times running
will be needed to give the exact result. A special case is δ = 1 − 1

2n−1 ,
it need O(n2n−1) times. If after O(n2n) times running the algorithm, it
still has quasi linear structures, these ones must be linear structures except
a negligible probability. Any polynomial time would give an approximate
solution which is actually the high probability differential.

5. Conclusions

While the best known classical algorithm for computing Walsh spectral is
of order O(n2n), the quantum algorithm (specifically the Bernstein-Vazirani
algorithm) can give some informations of it efficiently. Based on this, We
present a polynomial-time quantum approximate algorithm for the linear
structure of the Boolean functions. The quantum algorithm can give a ”no”
answer or an approximate solution set (i.e. quasi linear structures set) which
includes and tends to the linear structures set. We haven’t seen any classical
efficient algorithm to this question. Besides, We have also analyzed the
efficiency of the algorithm. The error range with the error probability is
given. To thoroughly solve the question, the running time of the algorithm
is linked to the differential uniformity of the function. The smaller of the
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differential uniformity, the less time should be needed. Just like some papers
[15, 16], we can use the Grover like operator to amplify the amplitude to get
a better conclusion, but that is not our concerns. The point is that maybe
the quasi linear structures we get can guide the differential cryptanalysis.
And also the results elaborated in this paper verify the conclusion in [7].
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For the self-contained of this paper, we give the following appendixes.

Appendix

Lemma 1

Cf (a) =
∑
x∈Fn2

(−1)f(x)+f(x⊕a) = 2n(
∑
w·a=0

S2
f (w)−

∑
w·a=1

S2
f (w)),

Proof of the Lemma 1

Cf (a) =
∑
x∈Fn2

(−1)f(x)+f(x⊕a)

=
∑
x∈Fn2

(
∑
w∈Fn2

Sf (w)(−1)w·x) · (
∑
w∈Fn2

Sf (w)(−1)w·(x⊕a))

=
∑
x∈Fn2

(
∑
w·a=0

Sf (w)(−1)w·x +
∑
w·a=1

Sf (w)(−1)w·x)·

(
∑
w·a=0

Sf (w)(−1)w·x −
∑
w·a=1

Sf (w)(−1)w·x)

=
∑
x∈Fn2

[(
∑
w·a=0

Sf (w)(−1)w·x)2 − (
∑
w·a=1

Sf (w)(−1)w·x)2]

=
∑
x∈Fn2

∑
w·a=0

∑
η·a=0

Sf (w)Sf (η)(−1)(w⊕η)·x

−
∑
x∈Fn2

∑
w·a=1

∑
η·a=1

Sf (w)Sf (η)(−1)(w⊕η)·x

=
∑
w·a=0

∑
η·a=0

Sf (w)Sf (η)2nχw(η)

−
∑
w·a=1

∑
η·a=1

Sf (w)Sf (η)2nχw(η)

= 2n(
∑
w·a=0

S2
f (w)−

∑
w·a=1

S2
f (w)).
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From Theorem 2, according to the knowledge about the solutions of the
linear equations in algebra, we have the following conclusions.

Proposition 11 If 0 ∈ N1
f , i.e. Sf (0) 6= 0, then U1

f = Φ.

Proof If 0 ∈ N1
f , the equation 0 · x = 1 has no solution, so U1

f = Φ.

Proposition 2 If ∃w1, w2 ∈ N1
f , and w1 + w2 ∈ N1

f , then U1
f = Φ.

Proof If w1, w2, w1 + w2 ∈ N1
f , the equation set

w1 · x = 1

w2 · x = 1

(w1 ⊕ w2) · x = 1

has no solution, so U1
f = Φ.

Proposition 3 If dimN1
f = k(k 6 n), then dimU0

f = n−k. And if U1
f 6= Φ,

then |U1
f | = |U0

f |, and dimUf = n− k + 1.

Proof If dimN1
f = k(k 6 n), suppose |N1

f | = N , andN1
f = {w1, w2, · · · , wN}.

Then the equation set 
w1 · x = 0

w2 · x = 0

wN · x = 0

(39)

has the solution space of dimensions n− k. Suppose A0
f = {a01, · · · , a02n−k} is

the solution set of the equations (39), then by Theorem 2, U0
f = A0

f . Suppose
b is a special solution of the equation system

w1 · x = 1

w2 · x = 1

wN · x = 1

(40)

1Proposition 1 also appears in [17].
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Then A1
f = {a01 ⊕ b, · · · , a02n−k ⊕ b} is the solution set of the equations (40).

By Theorem 2, U1
f = A1

f . Therefore, |U1
f | = |U0

f |, and dimUf = n− k + 1.

Proposition 4 Even if dimN1
f = n, there might be U1

f 6= Φ.

Proof For example,

f(x1x2x3) = x1 + x2 + x1x2 + x2x3 + x1x3, (41)

Sf (001) = −1

2
, Sf (010) = Sf (100) = Sf (111) =

1

2
;

Sf (000) = Sf (011) = Sf (101) = Sf (110) = 0. (42)

f(x1x2x3 ⊕ 111) = x1 + x2 + x1x2 + x2x3 + x1x3 + 1 = f(x1x2x3) + 1. (43)
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