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THE LOGIC OF THE REVERSE MATHEMATICS ZOO

GIOVANNA D’AGOSTINO AND ALBERTO MARCONE

AsstracT. Building on previous work by Mummert, Saadaoui and SoviMSS15]), we
study the logic underlying the web of implications and noplications which constitute
the so called reverse mathematics zoo. We introduce a teb®astem for this logic and
natural deduction systems for important fragments of thguage.
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1. INTRODUCTION

Reverse mathematics is a wide ranging research prograne ifotindations of math-
ematics: its goal is to systematically compare the strenfthathematical theorems by
establishing equivalences, implications and nonimplicetover a weak base theory. Cur-
rently, reverse mathematics is carried out mostly in theiedrof subsystems of second-
order arithmetic and very often a specific system knowR@4; is used as the base theory.

The earlier reverse mathematics research, leading to Stengson’s fundamental mono-
graph [Sim09], highlighted the fact that most mathematicabrems formalizable in sec-
ond order arithmetic were in fact either provable witRi@A or equivalent to one of four
other specific subsystems, linearly ordered in terms ofadsiity strength. This is sum-
marized by theBig Fiveterminology coined by Antonio Montalban in [Mon11]. Hovesv
in recent years there has been a change in the reverse méttsemain focus: following
Seetapun’s breakthrough result that Ramsey theorem fog jganot equivalent to any of
the Big Five systems, a plethora of statements, mostly imiadile combinatorics, have
been shown to form a rich and complex web of implications amdmplications. The first
paper featuring complex and non-linear diagrams repregestatements of second order
arithmetics appears to be [HS07] (notice that the diagrgpearing in[[CMS04, Mar07]
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are of a diferent sort, as they deal with properties of mathematicaaibj rather than
with mathematical statements). Nowadays diagrams of tinid &re a common feature
of reverse mathematics papers. This is called the zoo ofgeveathematics, a terminol-
ogy coined by Damir Dzhafarov when he designed “a progranetp brganize relations
among various mathematical principles, particularly ¢httet fail to be equivalent to any
of the big five subsystems of second-order arithmetic”. phigyram is available at [DZzh].
Ludovic Patey’s web site features a manually maintained(fféat]). The recent mono-
graph|[Hir15], devoted to a small portion of the zoo, feasiaevhole chapter of diagrams.
These diagrams cover also situations wherefie@int base theory (e.&CA, which is
RCAq with unrestricted induction) is used, or where only the fingter consequences are
considered.

Actually, the zoo is not peculiar to subsystems of secondraaidthmetic. For example,
the study of weak forms of the Axiom of Choice and the relattips between them has
a long tradition in set theoryi [HR98] consists of a catal6§®3 forms of the Axiom of
Choice and of their equivalent statements. Connected tbdbg, there is also the web
page[How], which claims also to be able to produce zoo-bEleds; unfortunately the site
appears to be no longer maintained and, as of December 2&llnls are broken.

Mummert, Saadaoui and Sovine in [MS$15] introduced a fraonkfor discussing the
logic that is behind the web of implications and nonimplicas in the reverse mathematics
zoo. They called their system s-logic, introducing its syrand semantics and proposing a
tableaux system for satisfiability of sets of s-formulag] arfierence systems for two frag-
ments of s-logic (called; and¥>, with the first a subset of the second) that are important
in the applications.

The present paper can be viewed as a continuation of [MS&i5]goal is to improve
the systems introduced by Mummert, Saadaoui and Sovinehavd lsow widespread au-
tomated theorem proving tools can be used to déaiently with s-logic. As a byproduct,
our analysis also points out that, notwithstanding the fiaat the semantics for s-logic
borrows some ideas from the one for modal logic, s-logic isalty much closer to propo-
sitional logic than to modal logic.

Here is the plan of the paper. After reviewing s-logic, int&ed2 we make some obser-
vations about its semantics. Using these, in Se€lion 3 waldesto simplify the tableaux
system of Mummert, Saadaoui and Sovine. Our formulatiangsrit closer to the familiar
tableaux systems for propositional logic, and thus, usimgficient implementation of
the latter, leads to mordfiient algorithms. Moreover, in Sectibh 4, we improve als® th
treatment of the fragmen®g, and# by proposing natural deduction systems for them. We
also consider a new natural fragment of s-loig which includesf, and for which we
provide a sound and complete natural deduction system.doB& we show how logical
consequence between formulasfef(and hence of1) can be treated by using standard
propositional Prolog: this provides affieient way of answering queries about whether a
certain implication or nonimplication follows from a date® of known zoo facts.

2. BASIC OBSERVATIONS ABOUT $-LOGIC

For the reader’s convenience, we start with a brief review-tifgic as introduced in
[MSS15].
We start from a set of propositional variables and we buitgppsitional formulas in the
usual way, using the connectives A, v, and—. An s-formulais a formula of the form
A 3 Bor A A B, whereA andB are propositional formulas. The first type of s-formula is
called positive or3 s-formula, the second one is negativeos-formula. Notice that the
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definition of s-formula is not recursive, and thugiindg are s-formulas neither A 8 nor
a -3 B are s-formulas.

The intended meaning & 3 B is that statemer implies statemenB, over the fixed
weak base theory. On the other hahek B asserts thaf 3 B does not hold. In practice,
this happens when we have a model of the base theory in whiadids andB does not (a
counterexample té -3 B).

The semantics of s-logic is based on the notiofrafng which is just a nonempty set
of valuations. Here by valuation we mean the usual notiorpfopositional logic, i.e. a
function assigning to every propositional variable oneheftruth valueg andF.

A frameW satisfieshe positive s-formul@ 3 B if for every valuationv € W such that
V(A) = T we have als®(B) = T. W satisfies the negative s-formulaA B if there exists a
valuationv € W such that(A) = T andv(B) = F.

Once we have the notion of satisfaction we can introducedruual way notions such
assatisfiabilityof a set of s-formula¥ (there exists a frame satisfying every member of
I') andlogical consequenceetween a set of s-formul@sand a given s-formula (every
frame satisfying" satisfies alsa): for the latter we use the notatidni=; «.

We point out that although» and 3 (and their negations) are superficially similar,
there are important ffierence between them. For exampleXiandY are propositional
variables, the set of s-formuldX A Y,Y A X} is satisfiable (by a frame with two valu-
ations), while the “corresponding” set of propositionaifmlas{=(X — Y), (Y — X)}
is unsatisfiable. Expressing the same example in terms afdbgonsequence, we have
that although-(X — Y) E Y — X in propositional logic, it is certainly not the case that
X AY EsY 3 X. Notice that in these examples we are using s-formulas ffgm

Mummert, Saadaoui and Sovine introduced also the folloviiagments of s-logic:

Definition 1. The fragmen¥, ¥ of s-logic are:

e 77 is the set of all s-formulas of the forms X Y and XA Y, where XY are
propositional variables;

e F5 is the set of all s-formulas of the forms A Y and A4 Y, where A is a
nonempty conjunction of propositional variables and Y israle propositional
variable.

As pointed out in[[MSS15]#; captures the basic implications and nonimplications
in reverse mathematics, while i, we can express also results such as the equivalence
between Ramsey Theorem for pairs with two colors and theucmtipn between the same
theorem restricted to stable colorings and the cohesigemrsciple. Notice that we do
not need to consider also s-formulas with conjunctions oppsitional variables aftes,
asT EsAs3 XAaYifandonlyifT'Es A3 Xandl' Es A 3 Y, whileT Es A B XA Y if
andonlyiflT EsAA XorT'EsAAY.

We introduce another fragment of s-logic, which is a natgeaderalization of the frag-
ment¥,, and captures some implications between members of theseemeathematics
zoo escaping. Recall, for example, that the statement about the existehiterates of
continuous mappings of the closed unit interval into itsedfs proved in[[ESY93] to be
equivalent to the disjunction of weak Konig's lemma a?@iinduction.

Definition 2. #3 is the set of all s-formulas of the forms-€ D and C A D, where C and
D are a nonempty conjunction of propositional variables ahdonempty disjunction of
propositional variables, respectively.
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Here we do not need to consider also s-formulas with disjanstof propositional
variables befores, asI' Es X VY 3 Aifand only if ' s X 3 Aandl’ s Y 3 A, while
F'eEsXVvY AAifandonlyifT Es X B AorTEsY A A

We now make a couple of useful basic observations about tharsics of s-logic which
use the following definition.

Definition 3. Given a set of s-formulds, the set of s-formulaE*, I'~ are defined as
I'={A3B:A3Bel}, T":={AAB:AABeT},
while [, is the set of propositional formulas

[hop ={A—>B:A3Bel}

Lemma 4. LetI be a set of s-formulas. The following are equivalent:

(1) I'is satisfiable;
(2) the set of s-formulas

r"u{AAB}
is satisfiable, foreach 8 BeTI;
(3) the set of propositional formulas

Thop U (A B}

is satisfiable (in the usual sense of propositional logio) dach A Be .

Proof. (1) implies (2) is immediate.

To prove that (2) implies (3) fbA A B € I'". Sincel'* U {A A B} is satisfiable, there
exists a framaV which validates this set of s-formulas; hence there existalaation
v e Wwithv(A) = T, v(B) = F. SinceW X 3 Yforall X 3 Y e I'" we have
thatv(X) = T impliesv(Y) = T for each such s-formula. Heneesatisfies the set of
propositional formulaﬁg,op U {A, -B}.

For (3) implies (1), suppose (3) holds, and for eAck B € I'™ letwazg be a valuation
satisfying the set of propositional formulg§,, U {A, —B}. LetW be the frame consisting
of all these valuationstV = {wasg : A B B eT}. Itis easily seen thal/ satisfied". O

Corollary 5. A set of s-formula§ is unsatisfiable if and only if there existsAB € I'™
such thaf™ = A 3 B. In particular, every set of positive s-formulas is satiske.

Lemmal4 suggests a fairly simple algorithm for the satidfiglgproblem for sets of
s-formulas. In fact given the set of s-formulasne needs only to check whether for each
A B B e I'" the set of propositional formula$rop U {A, —B} is satisfiable. Given the
constantimprovement in thefigiency of SAT-solvers (see e.g. [MSL14, ST13]), thisisin
fact a quite éicient way of dealing with the problem.

Corollary 6. The problem of satisfiability for a (finite) set of s-formulsass the same
complexity of propositional satisfiability, i.e. it is Nwoplete.

Proof. The problem is in NP because, if we fix a finite set of s-formillasd seh = ||
andk = ||, using the last point of the previous Lemma, we can reducsdtisfiability
of I' to the satisfiability oh — k sets of propositional formulas each of cardinakity 1.
The problem is NP-complete because it essentially confamsositional satisfiability.
m]
4



The previous corollary implies that with respect to comjiieg-logic is more similar
to propositional logic than to modal logic (recall that s#ibility for propositional logic
is NP-complete, while satisfiability for the modal logic KRSPACE-complete).

Next, we consider logical consequence among s-formulas.

Lemma 7. LetI be a satisfiable set of s-formulas. For any propositionatrfalas A and
B we have:

() T EsA3Bifandonlyifl* s A 3 Bif and only iﬂ"grop EA—- B;

(i) T s A A Bifand only if there exists an s-formula& F € '™ such that

I, A3BEsE3F,
if and only if there exists an s-formula& F € T~ such that
[hopA—> BEE—F.

Proof. (i) If T s A 3 BthenI' U {A A B} is unsatisfiable. By Lemnid 4, there exists
E B8 F e I U{A A B} such thal'* U {E A F} is unsatisfiable. SincE is satisfiable,
E A F mustbeA & B, and henc&* =5 A 3 B. The viceversais obvious. The equivalence
betweed Es A3 B andl";;rop E A — Bfollows easily from LemmAl4.

As for (i), I' Es A B B iff the set of s-formulaf U {A 3 B} is unsatisfiableff (by
Lemmd4) there exist& A F € I'” such thaf™ U {A 3 B} U {E A F} is unsatisfiableff

there existE B F e I'" suchthal*, A3SBEsE 3 F iffl";rop,A—> BEE—>F. |

The previous Lemma says that only positive s-formulas aezleé to check whether
a positive s-formula is logical consequence of a satisfiabteof s-formulas. Moreover,
if only positive s-formulas are considered, their logic slot difer substantially from
propositional logic, because behaves exactly as.

If we want to prove that a negative s-formula is logical capsnce of a satisfiable set
of s-formulas then dierences with propositional logic do appear. The previousiba
tells us that the collection o8& s-formulas which are logical consequences of sefre
formulas (i.e. typically from the existence ofidirent models showing that the implications
fail) and somes s-formulas is just the union of the consequences of a sihgidormula
and the given set oB s-formulas. In other words, having two models availableutiame-
ously gives no new information. This might again suggedt $Hagic is not substantially
different from propositional logic. Nevertheless, the dedweatieta-properties of s-logic
and propositional logic dlier, as showed by the following example.

Example8. In propositional logic, ifA, B, C, D are propositional variables amdis a for-
mula, we have:

INA—-CEkEa and I'B—-CEa then T AAB—->CEa.
This is not the case in s-logic because, for example:

AAD,BAD,A3CEsCAD,
AAD,BAD,B3CEsCAD
but
AAD,BAD,AAB3CEksC AD.

In fact the set of s-formulagdA A D,B A D,AA B 3 C,C 3 D} is satisfied e.g. by the
frameW = {vi, vz} with vi(A) = vo(B) = T, v1(B) = V2(A) = v1(D) = v2(D) = v1(C) =
Vz(C) =F.



3. TABLEAUX FOR S-LOGIC

Another application of Lemmia 4 regards the existence of e#atx system to check
unsatisfiability of finite set of s-formulas. 1h [MSS15], thathors introduce a tableaux
system which keeps track of valuations in the syntax. Fa thason the tableaux are
unusual compared e.g. to the standard tableaux descrilbadxtbook such a5 [BA12] (see
§2.6, where they are called semantic tableaux). In fact tbwlitla strict non-implication
the system considers not only s-formulas, but also sodalteld formulas that is, pairs
(A,v) whereA is a propositional formula and represents a variable for a propositional
evaluation. The tableaux system lof [MS$15] contains egyfdlowing rule (wherd' is a
set of s- and world formulas, ands new forl")ﬂ

IAAB
T, (A’ V), (_' B, V)

The tableaux system df [MSS15] has also the peculiarity ofdmcharging the formulas
which are used in a step (this is instead a common featurdlgfaax systems for propo-
sitional logic, seel[BA12, Algorithm 2.64]). This is motiel by the fact that positive
s-formulas are in fact universal assertions about the ctidle of all possible worlds, and
thus might be used again on afdrent world. However Lemnid 4 shows that this pre-
caution is superfluous, because the unsatisfiability of afsefformulas depends only on
a single world, the one witnessing the satisfiability of ofi¢he negative s-formulas that
imply the unsatisfiability of the whole set.

A straightforward application of Lemnfd 4 leads to a moreitiailal tableaux system,
which has the advantage of dealing only with propositionaifulas, except for the first
(root) step. This system can be described as follows. Thes afithe system are given by
the standard rules of a traditional tableaux system for @sitipnal logic plus thes-rule,
which is:

IAAB
Chrop A -B’
subsuming the rule
r
Lbrop
whenl'™ = 0.
Notice that, starting frorf, A A B,C A D, theA-rule allows to derive eithd?;,op, A -B

or I'rop: C, =D.

Definition 9. A tableau for a set of s-formuldsis a finite tree T such that:

(a) the root of T is labeled b, while the inner nodes are labelled by sets of propositional
formulas;

(b) the label of the child of the root is obtained from the ladifethe root by an application
of theA-rule;

(c) the label of every other node is obtained from the labetoparent by one of the
standard propositional tableaux inference rules (see[B&12, Algorithm 2.64).

A path through a tableau is closed if it contains a node foralitthe label contains both A
and-A for some propositional formula A. A tableau is closed ifrgwaaximal branch is
closed.

Ihere and below we adopt the convention that the premissesuté are above their consequence, while in
[MSS15] the reverse convention is adopted
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Notice that, in contrast with the propositional case, amgset of s-formulas might have
both closed and non-closed tableaux. In fact to obtain adiéasbleau we must pick the
“right” negative s-formula when we apply thg-rule to construct the child of the root, as
is easily seen for the set of s-formula@s A A, A 3 B}.

Applying Lemmd#4 we immediately obtain:

Corollary 10. A set of s-formuld is unsatisfiable if and only if there exists a tableau for
I" in which every branch is closed.

The previous corollary is useful in practice, because teklsatisfiability of s-formulas
after the first step we use a standard tableaux system foogitamal logic.

However, the tableaux system presented here and the onesan [MSS15] are
hybrid systems, where s-formulas and propositional foamabexist. Hence neither sys-
tem is appropriate to study s-logic for itself, and comp#seleductive properties with the
ones of propositional logic, as we did in Example 8. What aeerules of s-logic, and
can we have a calculus dealing exclusively with s-formulasin [MSS15], we answer
these questions for some fragments of s-logic which areaatdo the practice of reverse
mathematics. In our case these are the ones introduced imitizefll (considered also in
[MSS15]) but also the fragmeffi; introduced in Definition 2.

4. NATURAL DEDUCTIONS FOR FRAGMENTS OF S-LOGIC

LemmdY is especially useful when dealing with the fragmeh@efinitions1 andR.
In [MSS15] sound and complete deductive systemsrioand#, are presented.
The system fofF; consists of the following axioms and rules:

(Axiom): X 3 X, whereX is a propositional variable;
(HS): FromA 3 XandX 3 Y deduceA 3 Y;
(N): FromX AY, X 3WandZ 3 Y deduceVN A Z.
The system fofF, consists of the following axioms and rules:
(Axiom): X 3 X, whereX is a propositional variable;
(W): FromA 3 Y, deduceB 3 Y, whereB is any conjunction such that every
conjunct ofA is also a conjunct oB;
(HS): FromX A B =3Y andA 3 X, deduceAA B 3Y;
(N): FromA A X, AAZ 3 X, andA 3 Y for each conjuncY of B, deduceB A& Z.

We propose natural deduction calculi 65 and for#, differing from the systems in
[MSS15] because of a simpler rule for negative s-formulag algo introduce a natural
deduction system foF;. These systems are presented in a style simildr to [HRO4] (se
§1.2.3 for a summary of natural deduction for propositiongi¢).

4.1. A Natural Deduction Calculus for #,. The Natural Deduction Calculus fé% has
the following axioms and rules, wheXey, Z, X;, . .. are propositional variables, B,C, . ..
are arbitrary (possibly empty) conjunctions of propositibvariablesg is an arbitraryf
formula, and” andI” are sets of~, s-formulas:

(Axiom): X 33X

A3Y

(conil): A B=v



r
v

XiA. . AX3Y

(conj2). X A AX, 3Y,
where{X,, ..., X} = {Xq, ..., Xy} assetsof propositional variables.
r I’
\Y \Y
. A3Y YAB3Z

(trans): ANB37
r r
\Y \Y

A=3B AAB

(L): T

For negative s-formulas we want a rule allowing to constadfié proof ofA 4 X from
hypothesid’, C A Y, whenever we have a proof 6f3 Y from hypothesis’, A 3 X:

r I,[A3X]
v v
CAY C3Y

LetI" >4, @ denote the existence of a natural deduction proof (in theesygust de-
scribed) of theF, s-formulaa from hypothesis in the set of; s-formulad’.

Examplell. Here is a deduction showing that
ABXAANZ3IXA3Y,....,A3Yy>r, Y1IA-- AV AZ
corresponding to rule (N) in thg; system of [MSS15]:
A=3Y; [Yan...AYy37Z]

A3Y, AAYoA---AYya3Z
AAYsA---AY,3Z

A3Y, AAY,3Z
A3Z AANZ 3 X
AAX A3 X
YiAN...AYnBRZ

Here double lines indicate combined applications of (cpajitl (trans), the top step con-
sists of an application of (trans), and the last step is aficgin of (neg).

One can easily prove that af}, rules are sound with respect to s-logical consequence.
As for completeness, we divide the proof into cases, depgnati the satisfiability of the
set of premisseB.

Lemma 12. If T is a satisfiable set of, s-formulas andy is a %> s-formula such that
I' Es e thenI >y, a.



Proof. To prove the Lemma we rely on Theorem 17 fram [MSS15], whigrsdhat ifI"

is a satisfiabandI ks « thene is derivable fronT using the rules (Axiom), (W), (HS),
and (N). Hence, to show thatis derivable in our system it is enough to show the existence
of natural deduction proofs for rules (W), (HS), and (N). Tdrdy nontrivial case is rule
(N), which is dealt with in Example1. m]

To finish the completeness proof fieg,, we have to consider the case wieis unsat-
isfiable, where we need to prove that#, a, for any#, s-formulac.

Lemma 13. If " is unsatisfiable, then for arfi; s-formulac we havd >, a.

Proof. By Corollary[5, ifT is unsatisfiable then there exigiss B € I'" such thaf™ k4
A 3 B. Sincel'* is satisfiable (again by Corollary 5), by Lemma 12 we have#, A 3 B.
Hencel >#, A 3 B, andI’ >, « follows by rule (L). O

Putting all the results of this subsection together, weiobta

Theorem 14. If T is a set off, s-formulas andv is a#, s-formula, then
I'kEsa =3 I'eg, a.

4.2, A Natural Deduction Calculus for #;. The Natural Deduction Calculus fgr, has
the following axioms and rules (whebg§ Y, Z are propositional variableg; is a 1 s-
formula, and” andI” are sets ofF; s-formulas):

(Axiom): X 33X

r I
v v
. X3Y Y32
(trans): X327
r I[X3Y]
v v
YAZ Y3Z
r I’
v v
. A3B AAB
(J‘)' o

LetI' >, « denotes the existence of a natural deduction proof (in tetesyjust de-
scribed) of theF; s-formulaa from hypothesis in the set ¢f; s-formulad’.

Examplel5. Here is a deduction showing that
XABYL,X3WZ3Yes WAZ
corresponding to rule (N) in thg; system of [MSS15]:

2actually, the hypothesis in [MSS115] is tHats consistent, but an inspection of the proof reveals tretitht
hypothesis is the one of satisfiability.
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X3W W= Z]
X=3Z Z3Y
X3Y XABY

WAZ
Here we employed (trans) twice and (neg) for the last step.

As for the case of thé, system, the soundnessef, is easily proved, and left to the
reader. For completeness, we may follow the same line ofdhepteteness proof fars,,
dividing the proof into cases, depending on whefi&s a satisfiable set of; s-formulas
or not. The case wheieis satisfiable can be dealt using Theorem 20 from [M$S15], and
consists in proving thé rules of [MSS15] in our system. The only nontrivial case is
rule (N), which is dealt with in Exampl[elL5. In the case whEiis unsatisfiable, we may
proceed using rule. as we did for-#,. Hence:

Theorem 16. If T is a set off; s-formulas andv is a#; s-formula, then
I'kEsa =3 I'es a.

4.3. A Natural Deduction Calculus for 3. We now consider the fragmeft introduced
in Definition[2. In considering aff3 s-formulaC 3 D or C A D we denote byCi a
propositional variable which is@-conjunct and byD; a propositional variable which is a
D-disjunct.

In order to capture derivability in fragmefig, we extend our natural deduction calculus
for ¥ with the following two rules:

r
v
i1 A3B
(disj1): AZD
where(B;, ..., By} € {Dy, ..., Dy} assetsof propositional variables.
F F’ [A =3 Bl] F’ [A =3 Bn]
\Y v \Y
(i) A3B C=3E T C3E
(disj2): C3E

whereB=B; v --- v B, andI is a set of positive s-formulas.
Lemma 17. Rules (disj1) and (disj2) are sound in s-logic.

Proof. Soundness of rule (disj1) is immediate.
As for rule (disj2), supposE is a positive set of 3 s-formulasand = B; v --- Vv B, is
such that:

e 'EsA3B;
e L A3B EsC3Eforeachi=1,...,n.

We want to prove thdt =5 C 3 E. Sincel contains only positive s-formulas, by Corollary
each sef’, A 3 B; is satisfiable. Hence we may apply Lemlpha 7 obtaining:

F;rop,A—> B C—>E.

Similarly we obtainl';,, = A — B, that isT'},,, A | B. By propositional reasoning it
follows thatl'},,, E C — E. Hence, by Lemmial7 agaif,=s C 3 E. O
10



Notice that the restriction to positive set of s-formula# rule (disj2) is necessary
because without this hypothesis the rule is no longer solindee this consider e.g. the
set

I'={A3B1VvBy,AAB;,AABy}.

I' is satisfiable, while each sEtu {A 3 Bj}, fori = 1,2, is unsatisfiable. It follows that
any formulaC 3 D (with C, D new forT) is a s-consequence of both sEts {A 3 B;}.
MoreoverI' Es A 3 B; v By, butC 3 D is not a s-consequence bf

We denotefs-derivability by >#,. In proving the completeness of tifg system we
shall use also the following three rules, that will be showbe derivable in our system in
the next Lemma.

r r r
\Y \Y% \Y
(r2): B3 A C 3B C 3B,
2 C3A
whereB=B; A--- A B.
r r r
\Y \Y% \Y%
(ra): D=3 E DAE;3F DAE,3F
¥ D3F
whereE =E; v ---VE,.
r r I,[Al 3 Btlh,...,A”—a Bﬂn]
\Y% \Y% \Y%
- Al 3 B! A" 3 B" C=3E
(disj2gen). C3E

In (disj2gen), we requir€ to be a set of positive s-formulas, and we have a premise
I,Al 3 Brlh,...,An 3 B}

\Y
C3E

for every choice of indiceby, .. ., h, such thatBihi is a disjunct ofB'.

Lemma 18. (r,) is a derived rule in ther, system, while @) and (disj2gen) are derived
rules in thef; system.

Proof. First, we provide a proof forrg) in the 7, system.

r r
\Y \Y r
BiAn...ABy3A C3B; Vv
CABA...AB3A C3B;
CABsA...AB,3A
r
: \Y%
CAB,3A C 3B,

C=3A
11



where in the first step we apply (trans) and then, in corredpoce of each double line, we
use a combination of applications of (trans) and (con;j2).

We now show how to deriva ) in the ¥3 system.

r r
r \Y \Y
v [D 3 E] DAE;3F [D 3 Ej] DAE,3F
D=3E D3F D3F
D=3F

Again, double lines indicate a combination of applicatioh@&rans) and (conj2), while in
the final step we use (disj2).
As for rule (disj2gen), suppod* = B} v --- v BL. We can apply rule (disj2) to

r >, Al =3 Bl
and all premisses of the form
ILA'3Bj,A’3Bj.....,A"3B; > C=E,

for j=1,...,h, obtaining, for all choices of indicés, ..., h, such tha1Bihi is a disjunct of
B', that

IA> 3B} ... ,A"3B] by, C3E;
In other words, we succeeded in eliminatiA§ 3 B! from the premisses. In the same
way, by applying (disj2) we can successively eliminates B2, ..., A" 3 B", eventually
derivingl’ ¢, C 3 E, as desired. ]

In order to prove the completenessfafderivability we need a preliminary Lemma.

Lemma 19. Supposd’ is a set of positiveF; s-formulas such thdf ¥# C 3 E. Then
there exists a set of positi¥g s-formulasA, closed undee,, such that:

e ADT;

o A D‘(]:s C = E,;

o for all positives s-formulas A3 B € A there exists i such that 8 B; € A.

Proof. Without loss of generality, we may suppose that closed undet . Let{a, aa, .. .}
be an enumeration of the positiffg s-formulas, witho; = Al 3 BJ.

We claim that there exists a sequenge= I',T'1,..., Iy, ... of sets of positiveFs s-
formulas, each closed undeg;,, with the following properties:

o if, for j < n, T'h >y, aj, then there exist8 such thatAl -3 Bﬂ1 € I'nit.

We start by settingo = I'. Suppose now we already defirigdsuch thal', ¥+ C 3 E.
Let ji,...Jn < nbe the list of all indices up to such thal', >, ;. Then there must exist
a choice of indices,, ..., hy, such thaB;, is a disjunct of8", and

Tn, Al 3B/ ... A" 3Bl g C3E.

1 Ih

In fact, if this were not the case, using rule (disj2gen), veeild obtain thal’, >#, C 3 E.
We fix suchhj,, ..., h;, and letl'n,1 be the closure df, U{A® 3 Bﬁj ..., A" 3 Bﬂj } under
>,. This proves the claim. ' '
Finally, it is straightforward to check that= | J, T’y has the required properties. O
12



We split the proof of the completenesswef, into cases, depending on the satisfiability
of I" and on the type of the formula to be derived. We start with:

Lemma 20. Supposd’ is a satisfiable set of; s-formulas and C3 E is a positivefs
s-formula such thaf =s C 3 E. Thenl'># C 3 E.

Proof. We reason by contradiction. If ## C 3 E thenI'* ¢# C 3 E, either. By
applying the previous Lemma 1t we find a set of positivgs s-formulasA 2 T'*, closed
unden>,, such that

A D‘(]:s C= E,

and for all¥3 s-formulasA 3 B, if A 3 B € A then there existswith A 3 B; € A.
Letw be the valuation defined by setting, for each propositioagbbleX:

W(X) = T ?fC—3XeA;
F ifCs3X¢gA.

We claim thatv(A) = T, andw(C 3 E) = F.

If B3 Ae Aandw(B) =T, then, sinceB = By A --- A Bp, we havew(B;) = T for all
i. By definition ofw, for all i it holdsC 3 B; € A, and by rule (2) we obtainC 3 A € A.
By the property ofA there exists such thalC 3 A; € A. Hencew(A;) = T and therefore
W(A) = T as well. This proves that(B 3 A) =T, forallB3 A€ A.

Let us now show thatf(C 3 E) = F. Sincew(C) = T, it suffices to prove that
W(E;j) = F, for alli. If w(E;j) = T for somei, thenC 3 E; € A andC 3 E € A would
follow by rule (disj1).

Having established the claim, we conclude the proof asvialoFor all negativers
s-formulase = A B B € T, letv, be a valuation such that,(I') = T, v,(A) = T and
Vo(B) = F. Such av, exists, because by hypothe§iss satisfiable. Then the frame
W= {WU|{v, : @« € T"}issuch tha®Ww £ I' andW ¢ C 3 E, contradicting our
hypothesis. O

Next, we consider the case in whi€his satisfiable, but the formula to be derived is
negative.

Lemma 21. Supposé is a satisfiable set of; s-formulas and CA G is a negativers
s-formula such thall =s C A G. Thenl ># C A G.

Proof. This proof follows the corresponding proof in [MSS$15] withimor adjustments.
We reason again by contradiction supposing (without loggeagrality) thaf” closed under
>r andC B G ¢ T. Foranya = D A E € T, we will find a valuationw, with
W, (') =T, w,(D) =T andw,(E) = F, and eithew,(C) = F orw,(G) = T. Once thisis
done, we may set

W={w, :adel™}
and find a contradiction, sind# is a frame satisfyin@ but failing to satisfyC & G.

Fix @ = D A E € I'". Sincel is satisfiable, there exists a valuatmwith w(I'*) = T,
w(D) = T, andw(E) = F. In order to findw, we may suppose that all the valuatioms
with these properties satisfy alggC) = T (otherwise we may choose suchwvdor w,).
Consider the set of positive s-formulesu {C 3 G}. Then

r*u{C 3G} #s D3E,

otherwise, sinc& > D A E, we would havd >#, C A G be the (neg) rule. By Lemma
[19 there exists a set of positive formulas I'" U {C 3 G}, closed under,, such that
13



Av# D 3 E, and for allA, B, if A3 B € A then there existswith A 3 B; € A. We claim
thatD 3 C; € A for everyi. To see this, we consider the valuatiwwrefined as

W(X) = T ?fD—SXeA;
F ifD3X¢A.

As in Lemmd2D, it is not diicult to check thatw(A) = T, andw(D 3 E) = F. By the
previous hypothesis, we hawgC) = T, that is,w(C;) = T for all i. By definition ofw this
impliesD 3 C;j € A.

Next, consider the valuation defined as

T fDAG 3XeA
Vi(X) = )
F ifDAG 3X¢A.
We claim that there exisiswith vi(E) = F. Otherwise, we have(E) = T, for all i. This
means that for allthere existg with vi(E;) = T, that is, by definition of;, DAG; 3 Ej €

A. It follows that, for alli, D A G; 3 E € A. Consider the following natural deduction,
which uses firstri) and then(s);

A A A
\Y \Y \Y A A
C3G Ds3C; D 3 Ck \Y \Y
D3G DAG;3E DAG,3E

D3 E

This contradicta\ ¥ D 3 E.

Thus we can pick such that;(E) = F. We havey(D) = T, vi(E) = F, andv,(G) = T,
sinceDAG; 3 G € A andG is a disjunction. Moreover, as beforgA) = T: if A3 Be A
andvi(A) = T, thenD A G; 3 Aj € A, for all j. By rule (r2) we obtainD A G; 3 B € A,
and by the properties df there existh with D A G; 3 By, € A; hencey;(By) = T, and
vi(B) = T. It follows thatvi(I'*) = T, and we may choose suchvaasw,, finishing the
proof. O

The two previous results prove that lifis a satisfiable set of3 s-formulas, then for
any¥3 s-formulaa such thal” |5 @ we have >, a.

To finish the completeness proof foy,, we still have to consider the case wHeis
unsatisfiable. In this case we have to prove thats, «, for any¥3 s-formulaa, and we
may repeat the proof of Lemrhal13. Hence:

Lemma 22. If T is unsatisfiable, then for arfz s-formulae we have >, a.
Putting all results of this section together, we obtain:
Theorem 23. If T is a set offF3 s-formulas andr is a 3 s-formula, then

I'kEsa =3 I'eg, a.

5. %5 anp ProLoG

In this section we show how standard Prolog may be used tovd#alogical conse-
guence inF,. Since some readers might be unfamiliar with Prolog, welrdwae the
basic constructs of this programming language (restgabiarselves to the propositional
setting), following [NS9J7] (se¢l.10, and especially Definition 10.4).

14



Propositional Prolog deals witHorn clausedfinite sets of literals containing at most
one positive literal), thought as disjunctions of theirneémts. When the Horn clause
contains (exactly) one positive litergd, =Xy, ..., =X} it is aprogram clausend we write
Y = Xq,..., % If n> Owe think that the program clause is represending- - -AX, —» Y
and we call it arule. If in the program clause we hawve= 0 it is afactand we writeY :— .

If the Horn clause has only negative literdlsXy, ..., -X,} we call it agoal and write
= Xg,..., % A Prolog programis a set of program clauses.

The typical situation is that we are given a Prolog prograng we want to know
whether a conjunction of fact¥,, ..., Y is logical consequence of the given facts and
rules. To this end we add the gadalYy,..., =Yy} to the program and ask whether the
resulting set of Horn clauses is unsatisfiable. This is ttse dhand only if applying the
resolution rule repeatedly to the elements of the set staxtith the goal we obtain the
empty clause. Prolog works by searching all possible wayppfying the resolution rule
with these constraints: if the search succeeds we haeéutationof the goal from the
program.

We can now go back to our study of tffe fragment of s-logic.

Definition 24. Given a set” of >, s-formulas, define Prold§™*) to be the following Prolog
program:
PrologT™*) ={Z = As,...,An | AL A...AA3Z €T}

We have:

Lemma 25. LetT be a set off, s-formulas and A3 Y be a¥, s-formula, where A=
ALA--- A A

() T Es A3Y ifand only there is a refutation of the gaalY from the Prolog program
PrologT") U{A; i—,...,A = };

(i) T EsAARY ifandonly if there exists;Za --- A Z, A W € I'” and a refutation of the
goal :— W from the Prolog program

PrologT™*)U{Y = As,....,AnZ1—,....,Zn — }.

Proof. (i) From LemmdY.i we have thatl= A 3 Y if and only if T}, A E Y. Since

I' is a set off2-formulas, the elements ifi,, are (essentially) rules, whilé is
equivalent to the conjunction of the fadds :— ,..., A, :— . SinceY is a positive
literal, the equivalence follows from the completenessropBsitional Prolog.

(i) From LemmdY.ii we have thdt = A B Y if and only if there exist&y A --- A Z, A
W e I'™ such that

Chop A= Y Zi A ANZn EW,

As before, the equivalence follows from interpreting thagiital consequence in
terms of Prolog and applying the completeness of Propositierolog. ]

Lemmal2b suggests ariieient way of checking logical consequence betwgers-
formulas based on a well-known programming language suélaeg, and actually only
for the special case of goals consisting of a single literal.
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