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5 THE LOGIC OF THE REVERSE MATHEMATICS ZOO

GIOVANNA D’AGOSTINO AND ALBERTO MARCONE

Abstract. Building on previous work by Mummert, Saadaoui and Sovine ([MSS15]), we
study the logic underlying the web of implications and nonimplications which constitute
the so called reverse mathematics zoo. We introduce a tableaux system for this logic and
natural deduction systems for important fragments of the language.
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1. Introduction

Reverse mathematics is a wide ranging research program in the foundations of math-
ematics: its goal is to systematically compare the strengthof mathematical theorems by
establishing equivalences, implications and nonimplications over a weak base theory. Cur-
rently, reverse mathematics is carried out mostly in the context of subsystems of second-
order arithmetic and very often a specific system known asRCA0 is used as the base theory.

The earlier reverse mathematics research, leading to SteveSimpson’s fundamental mono-
graph [Sim09], highlighted the fact that most mathematicaltheorems formalizable in sec-
ond order arithmetic were in fact either provable withinRCA0 or equivalent to one of four
other specific subsystems, linearly ordered in terms of provability strength. This is sum-
marized by theBig Five terminology coined by Antonio Montalbán in [Mon11]. However
in recent years there has been a change in the reverse mathematics main focus: following
Seetapun’s breakthrough result that Ramsey theorem for pairs is not equivalent to any of
the Big Five systems, a plethora of statements, mostly in countable combinatorics, have
been shown to form a rich and complex web of implications and nonimplications. The first
paper featuring complex and non-linear diagrams representing statements of second order
arithmetics appears to be [HS07] (notice that the diagrams appearing in [CMS04, Mar07]
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are of a different sort, as they deal with properties of mathematical objects, rather than
with mathematical statements). Nowadays diagrams of this kind are a common feature
of reverse mathematics papers. This is called the zoo of reverse mathematics, a terminol-
ogy coined by Damir Dzhafarov when he designed “a program to help organize relations
among various mathematical principles, particularly those that fail to be equivalent to any
of the big five subsystems of second-order arithmetic”. Thisprogram is available at [Dzh].
Ludovic Patey’s web site features a manually maintained zoo([Pat]). The recent mono-
graph [Hir15], devoted to a small portion of the zoo, features a whole chapter of diagrams.
These diagrams cover also situations where a different base theory (e.g.RCA, which is
RCA0 with unrestricted induction) is used, or where only the firstorder consequences are
considered.

Actually, the zoo is not peculiar to subsystems of second order arithmetic. For example,
the study of weak forms of the Axiom of Choice and the relationships between them has
a long tradition in set theory: [HR98] consists of a catalog of 383 forms of the Axiom of
Choice and of their equivalent statements. Connected to thebook, there is also the web
page [How], which claims also to be able to produce zoo-like tables; unfortunately the site
appears to be no longer maintained and, as of December 2015, the links are broken.

Mummert, Saadaoui and Sovine in [MSS15] introduced a framework for discussing the
logic that is behind the web of implications and nonimplications in the reverse mathematics
zoo. They called their system s-logic, introducing its syntax and semantics and proposing a
tableaux system for satisfiability of sets of s-formulas, and inference systems for two frag-
ments of s-logic (calledF1 andF2, with the first a subset of the second) that are important
in the applications.

The present paper can be viewed as a continuation of [MSS15].Our goal is to improve
the systems introduced by Mummert, Saadaoui and Sovine and show how widespread au-
tomated theorem proving tools can be used to deal efficiently with s-logic. As a byproduct,
our analysis also points out that, notwithstanding the factthat the semantics for s-logic
borrows some ideas from the one for modal logic, s-logic is actually much closer to propo-
sitional logic than to modal logic.

Here is the plan of the paper. After reviewing s-logic, in Section 2 we make some obser-
vations about its semantics. Using these, in Section 3 we areable to simplify the tableaux
system of Mummert, Saadaoui and Sovine. Our formulation brings it closer to the familiar
tableaux systems for propositional logic, and thus, using an efficient implementation of
the latter, leads to more efficient algorithms. Moreover, in Section 4, we improve also the
treatment of the fragmentsF1 andF2 by proposing natural deduction systems for them. We
also consider a new natural fragment of s-logicF3, which includesF2 and for which we
provide a sound and complete natural deduction system. In Section 5 we show how logical
consequence between formulas ofF2 (and hence ofF1) can be treated by using standard
propositional Prolog: this provides an efficient way of answering queries about whether a
certain implication or nonimplication follows from a database of known zoo facts.

2. Basic observations about s-logic

For the reader’s convenience, we start with a brief review ofs-logic as introduced in
[MSS15].

We start from a set of propositional variables and we build propositional formulas in the
usual way, using the connectives¬, ∧, ∨, and→. An s-formulais a formula of the form
A J B or A 6J B, whereA andB are propositional formulas. The first type of s-formula is
called positive orJ s-formula, the second one is negative or6J s-formula. Notice that the
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definition of s-formula is not recursive, and thus ifα andβ are s-formulas neitherα∧β nor
α J β are s-formulas.

The intended meaning ofA J B is that statementA implies statementB, over the fixed
weak base theory. On the other handA 6J B asserts thatA J B does not hold. In practice,
this happens when we have a model of the base theory in whichA holds andB does not (a
counterexample toAJ B).

The semantics of s-logic is based on the notion offrame, which is just a nonempty set
of valuations. Here by valuation we mean the usual notion forpropositional logic, i.e. a
function assigning to every propositional variable one of the truth valuesT andF.

A frameW satisfiesthe positive s-formulaAJ B if for every valuationv ∈W such that
v(A) = T we have alsov(B) = T. W satisfies the negative s-formulaA 6J B if there exists a
valuationv ∈W such thatv(A) = T andv(B) = F.

Once we have the notion of satisfaction we can introduce in the usual way notions such
assatisfiabilityof a set of s-formulasΓ (there exists a frame satisfying every member of
Γ) andlogical consequencebetween a set of s-formulasΓ and a given s-formulaα (every
frame satisfyingΓ satisfies alsoα): for the latter we use the notationΓ |=s α.

We point out that although→ andJ (and their negations) are superficially similar,
there are important difference between them. For example, ifX andY are propositional
variables, the set of s-formulas{X 6J Y,Y 6J X} is satisfiable (by a frame with two valu-
ations), while the “corresponding” set of propositional formulas{¬(X → Y),¬(Y → X)}
is unsatisfiable. Expressing the same example in terms of logical consequence, we have
that although¬(X → Y) |= Y → X in propositional logic, it is certainly not the case that
X 6J Y |=s Y J X. Notice that in these examples we are using s-formulas fromF1.

Mummert, Saadaoui and Sovine introduced also the followingfragments of s-logic:

Definition 1. The fragmentF1, F2 of s-logic are:

• F1 is the set of all s-formulas of the forms XJ Y and X 6J Y, where X,Y are
propositional variables;
• F2 is the set of all s-formulas of the forms AJ Y and A 6J Y, where A is a

nonempty conjunction of propositional variables and Y is a single propositional
variable.

As pointed out in [MSS15],F1 captures the basic implications and nonimplications
in reverse mathematics, while inF2 we can express also results such as the equivalence
between Ramsey Theorem for pairs with two colors and the conjunction between the same
theorem restricted to stable colorings and the cohesiveness principle. Notice that we do
not need to consider also s-formulas with conjunctions of propositional variables afterJ,
asΓ |=s A J X ∧ Y if and only if Γ |=s A J X andΓ |=s A J Y, while Γ |=s A 6J X ∧ Y if
and only ifΓ |=s A 6J X or Γ |=s A 6J Y.

We introduce another fragment of s-logic, which is a naturalgeneralization of the frag-
mentF2, and captures some implications between members of the reverse mathematics
zoo escapingF2. Recall, for example, that the statement about the existence of iterates of
continuous mappings of the closed unit interval into itselfwas proved in [FSY93] to be
equivalent to the disjunction of weak König’s lemma andΣ0

2-induction.

Definition 2. F3 is the set of all s-formulas of the forms CJ D and C 6J D, where C and
D are a nonempty conjunction of propositional variables anda nonempty disjunction of
propositional variables, respectively.
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Here we do not need to consider also s-formulas with disjunctions of propositional
variables beforeJ, asΓ |=s X ∨ Y J A if and only if Γ |=s X J A andΓ |=s Y J A, while
Γ |=s X ∨ Y 6J A if and only if Γ |=s X 6J A or Γ |=s Y 6J A.

We now make a couple of useful basic observations about the semantics of s-logic which
use the following definition.

Definition 3. Given a set of s-formulasΓ, the set of s-formulasΓ+, Γ− are defined as

Γ
+ := {AJ B : AJ B ∈ Γ}, Γ− := {A 6J B : A 6J B ∈ Γ},

whileΓ+prop is the set of propositional formulas

Γ
+

prop := {A→ B : AJ B ∈ Γ}.

Lemma 4. LetΓ be a set of s-formulas. The following are equivalent:

(1) Γ is satisfiable;
(2) the set of s-formulas

Γ
+ ∪ {A 6J B}

is satisfiable, for each A6J B ∈ Γ−;
(3) the set of propositional formulas

Γ
+

prop ∪ {A,¬B}

is satisfiable (in the usual sense of propositional logic), for each A6J B ∈ Γ−.

Proof. (1) implies (2) is immediate.
To prove that (2) implies (3) fixA 6J B ∈ Γ−. SinceΓ+ ∪ {A 6J B} is satisfiable, there

exists a frameW which validates this set of s-formulas; hence there exists avaluation
v ∈ W with v(A) = T, v(B) = F. SinceW |= X J Y for all X J Y ∈ Γ+ we have
that v(X) = T implies v(Y) = T for each such s-formula. Hencev satisfies the set of
propositional formulasΓ+prop ∪ {A,¬B}.

For (3) implies (1), suppose (3) holds, and for eachA 6J B ∈ Γ− let wA6JB be a valuation
satisfying the set of propositional formulasΓ+prop∪ {A,¬B}. Let W be the frame consisting
of all these valuations:W = {wA6JB : A 6J B ∈ Γ}. It is easily seen thatW satisfiesΓ. �

Corollary 5. A set of s-formulasΓ is unsatisfiable if and only if there exists A6J B ∈ Γ−

such thatΓ+ |= AJ B. In particular, every set of positive s-formulas is satisfiable.

Lemma 4 suggests a fairly simple algorithm for the satisfiability problem for sets of
s-formulas. In fact given the set of s-formulasΓ one needs only to check whether for each
A 6J B ∈ Γ− the set of propositional formulasΓ+prop ∪ {A,¬B} is satisfiable. Given the
constant improvement in the efficiency of SAT-solvers (see e.g. [MSL14, ST13]), this is in
fact a quite efficient way of dealing with the problem.

Corollary 6. The problem of satisfiability for a (finite) set of s-formulashas the same
complexity of propositional satisfiability, i.e. it is NP-complete.

Proof. The problem is in NP because, if we fix a finite set of s-formulasΓ and setn = |Γ|
andk = |Γ+|, using the last point of the previous Lemma, we can reduce thesatisfiability
of Γ to the satisfiability ofn− k sets of propositional formulas each of cardinalityk+ 1.

The problem is NP-complete because it essentially containspropositional satisfiability.
�
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The previous corollary implies that with respect to complexity s-logic is more similar
to propositional logic than to modal logic (recall that satisfiability for propositional logic
is NP-complete, while satisfiability for the modal logic K isPSPACE-complete).

Next, we consider logical consequence among s-formulas.

Lemma 7. LetΓ be a satisfiable set of s-formulas. For any propositional formulas A and
B we have:

(i) Γ |=s AJ B if and only ifΓ+ |=s AJ B if and only ifΓ+prop |= A→ B;
(ii) Γ |=s A 6J B if and only if there exists an s-formula E6J F ∈ Γ− such that

Γ
+,AJ B |=s E J F,

if and only if there exists an s-formula E6J F ∈ Γ− such that

Γ
+

prop,A→ B |= E→ F.

Proof. (i) If Γ |=s A J B thenΓ ∪ {A 6J B} is unsatisfiable. By Lemma 4, there exists
E 6J F ∈ Γ− ∪ {A 6J B} such thatΓ+ ∪ {E 6J F} is unsatisfiable. SinceΓ is satisfiable,
E 6J F must beA 6J B, and henceΓ+ |=s AJ B. The viceversa is obvious. The equivalence
betweenΓ+ |=s AJ B andΓ+prop |= A→ B follows easily from Lemma 4.

As for (ii ), Γ |=s A 6J B iff the set of s-formulasΓ ∪ {A J B} is unsatisfiable iff (by
Lemma 4) there existsE 6J F ∈ Γ− such thatΓ+ ∪ {A J B} ∪ {E 6J F} is unsatisfiable iff
there existsE 6J F ∈ Γ− such thatΓ+,AJ B |=s E J F iff Γ+prop,A→ B |= E→ F. �

The previous Lemma says that only positive s-formulas are needed to check whether
a positive s-formula is logical consequence of a satisfiableset of s-formulas. Moreover,
if only positive s-formulas are considered, their logic does not differ substantially from
propositional logic, becauseJ behaves exactly as→.

If we want to prove that a negative s-formula is logical consequence of a satisfiable set
of s-formulas then differences with propositional logic do appear. The previous Lemma
tells us that the collection of6J s-formulas which are logical consequences of some6J s-
formulas (i.e. typically from the existence of different models showing that the implications
fail) and someJ s-formulas is just the union of the consequences of a single6J s-formula
and the given set ofJ s-formulas. In other words, having two models available simultane-
ously gives no new information. This might again suggest that s-logic is not substantially
different from propositional logic. Nevertheless, the deductive meta-properties of s-logic
and propositional logic differ, as showed by the following example.

Example8. In propositional logic, ifA, B,C,D are propositional variables andα is a for-
mula, we have:

Γ,A→ C |= α and Γ, B→ C |= α then Γ,A∧ B→ C |= α.

This is not the case in s-logic because, for example:

A 6J D, B 6J D,AJ C |=s C 6J D,

A 6J D, B 6J D, BJ C |=s C 6J D

but
A 6J D, B 6J D,A∧ BJ C 2s C 6J D.

In fact the set of s-formulas{A 6J D, B 6J D,A ∧ B J C,C J D} is satisfied e.g. by the
frameW = {v1, v2} with v1(A) = v2(B) = T, v1(B) = v2(A) = v1(D) = v2(D) = v1(C) =
v2(C) = F.
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3. Tableaux for s-logic

Another application of Lemma 4 regards the existence of a tableaux system to check
unsatisfiability of finite set of s-formulas. In [MSS15], theauthors introduce a tableaux
system which keeps track of valuations in the syntax. For this reason the tableaux are
unusual compared e.g. to the standard tableaux described ina textbook such as [BA12] (see
§2.6, where they are called semantic tableaux). In fact to deal with strict non-implication
the system considers not only s-formulas, but also so-called world formulas, that is, pairs
(A, v) whereA is a propositional formula andv represents a variable for a propositional
evaluation. The tableaux system of [MSS15] contains e.g. the following rule (whereΓ is a
set of s- and world formulas, andv is new forΓ):1

Γ,A 6J B
Γ, (A, v), (¬B, v)

The tableaux system of [MSS15] has also the peculiarity of not discharging the formulas
which are used in a step (this is instead a common feature of tableaux systems for propo-
sitional logic, see [BA12, Algorithm 2.64]). This is motivated by the fact that positive
s-formulas are in fact universal assertions about the collection of all possible worlds, and
thus might be used again on a different world. However Lemma 4 shows that this pre-
caution is superfluous, because the unsatisfiability of a setof s-formulas depends only on
a single world, the one witnessing the satisfiability of one of the negative s-formulas that
imply the unsatisfiability of the whole set.

A straightforward application of Lemma 4 leads to a more traditional tableaux system,
which has the advantage of dealing only with propositional formulas, except for the first
(root) step. This system can be described as follows. The rules of the system are given by
the standard rules of a traditional tableaux system for propositional logic plus the6J-rule,
which is:

Γ,A 6J B
Γ+prop,A,¬B

,

subsuming the rule
Γ

Γ+prop

whenΓ− = ∅.
Notice that, starting fromΓ,A 6J B,C 6J D, the6J-rule allows to derive eitherΓ+prop,A,¬B

or Γ+prop,C,¬D.

Definition 9. A tableau for a set of s-formulasΓ is a finite tree T such that:

(a) the root of T is labeled byΓ, while the inner nodes are labelled by sets of propositional
formulas;

(b) the label of the child of the root is obtained from the label of the root by an application
of the 6J-rule;

(c) the label of every other node is obtained from the label ofits parent by one of the
standard propositional tableaux inference rules (see e.g.[BA12, Algorithm 2.64]).

A path through a tableau is closed if it contains a node for which the label contains both A
and¬A for some propositional formula A. A tableau is closed if every maximal branch is
closed.

1here and below we adopt the convention that the premisses of arule are above their consequence, while in
[MSS15] the reverse convention is adopted
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Notice that, in contrast with the propositional case, a given set of s-formulas might have
both closed and non-closed tableaux. In fact to obtain a closed tableau we must pick the
“right” negative s-formula when we apply the6J-rule to construct the child of the root, as
is easily seen for the set of s-formulas{A 6J A,A 6J B}.

Applying Lemma 4 we immediately obtain:

Corollary 10. A set of s-formulaΓ is unsatisfiable if and only if there exists a tableau for
Γ in which every branch is closed.

The previous corollary is useful in practice, because to check satisfiability of s-formulas
after the first step we use a standard tableaux system for propositional logic.

However, the tableaux system presented here and the one proposed in [MSS15] are
hybrid systems, where s-formulas and propositional formulas coexist. Hence neither sys-
tem is appropriate to study s-logic for itself, and compare its deductive properties with the
ones of propositional logic, as we did in Example 8. What are the rules of s-logic, and
can we have a calculus dealing exclusively with s-formulas?As in [MSS15], we answer
these questions for some fragments of s-logic which are relevant to the practice of reverse
mathematics. In our case these are the ones introduced in Definition 1 (considered also in
[MSS15]) but also the fragmentF3 introduced in Definition 2.

4. Natural deductions for fragments of s-logic

Lemma 7 is especially useful when dealing with the fragmentsof Definitions 1 and 2.
In [MSS15] sound and complete deductive systems forF1 andF2 are presented.

The system forF1 consists of the following axioms and rules:

(Axiom): X J X, whereX is a propositional variable;
(HS): FromAJ X andX J Y deduceAJ Y;
(N): FromX 6J Y, X J W andZ J Y deduceW 6J Z.

The system forF2 consists of the following axioms and rules:

(Axiom): X J X, whereX is a propositional variable;
(W): From A J Y, deduceB J Y, whereB is any conjunction such that every

conjunct ofA is also a conjunct ofB;
(HS): FromX ∧ BJ Y andAJ X, deduceA∧ BJ Y;
(N): FromA 6J X, A∧ Z J X, andAJ Y for each conjunctY of B, deduceB 6J Z.

We propose natural deduction calculi forF2 and forF1, differing from the systems in
[MSS15] because of a simpler rule for negative s-formulas. We also introduce a natural
deduction system forF3. These systems are presented in a style similar to [HR04] (see
§1.2.3 for a summary of natural deduction for propositional logic).

4.1. A Natural Deduction Calculus for F2. The Natural Deduction Calculus forF2 has
the following axioms and rules, whereX,Y,Z,Xi, . . . are propositional variables,A, B,C, . . .
are arbitrary (possibly empty) conjunctions of propositional variables,α is an arbitraryF2

formula, andΓ andΓ′ are sets ofF2 s-formulas:

(Axiom): X J X

Γ

▽

AJ Y(conj1):
A∧ BJ Y

7



Γ

▽

X1 ∧ . . . ∧ Xn J Y
(conj2):

Xi1 ∧ . . . ∧ Xik J Y,

where{Xi1, . . . ,Xik} = {X1, . . . ,Xn} assetsof propositional variables.

Γ

▽

AJ Y

Γ
′

▽

Y∧ BJ Z(trans):
A∧ BJ Z

Γ

∇

AJ B

Γ

∇

A 6J B
(⊥): α

For negative s-formulas we want a rule allowing to constructof a proof ofA 6J X from
hypothesisΓ,C 6J Y, whenever we have a proof ofC J Y from hypothesisΓ,AJ X:

Γ
′

▽

C 6J Y

Γ, [AJ X]
▽

C J Y
(neg):

A 6J X

Let Γ ⊲F2 α denote the existence of a natural deduction proof (in the system just de-
scribed) of theF2 s-formulaα from hypothesis in the set ofF2 s-formulasΓ.

Example11. Here is a deduction showing that

A 6J X,A∧ Z J X,AJ Y1, . . . ,AJ Yn ⊲F2 Y1 ∧ · · · ∧ Yn 6J Z,

corresponding to rule (N) in theF2 system of [MSS15]:

A 6J X

AJ Yn

AJ Y2

AJ Y1 [Y1 ∧ . . . ∧ Yn J Z]
A∧ Y2 ∧ · · · ∧ Yn J Z

A∧ Y3 ∧ · · · ∧ Yn J Z
...

A∧ Yn J Z

AJ Z A∧ Z J X
AJ X

Y1 ∧ . . . ∧ Yn 6J Z

Here double lines indicate combined applications of (conj2) and (trans), the top step con-
sists of an application of (trans), and the last step is an application of (neg).

One can easily prove that allF2 rules are sound with respect to s-logical consequence.
As for completeness, we divide the proof into cases, depending on the satisfiability of the
set of premissesΓ.

Lemma 12. If Γ is a satisfiable set ofF2 s-formulas andα is a F2 s-formula such that
Γ |=s α thenΓ ⊲F2 α.

8



Proof. To prove the Lemma we rely on Theorem 17 from [MSS15], which says that ifΓ
is a satisfiable2 andΓ |=s α thenα is derivable fromΓ using the rules (Axiom), (W), (HS),
and (N). Hence, to show thatα is derivable in our system it is enough to show the existence
of natural deduction proofs for rules (W), (HS), and (N). Theonly nontrivial case is rule
(N), which is dealt with in Example 11. �

To finish the completeness proof for⊲F2, we have to consider the case whenΓ is unsat-
isfiable, where we need to prove thatΓ ⊲F2 α, for anyF2 s-formulaα.

Lemma 13. If Γ is unsatisfiable, then for anyF2 s-formulaα we haveΓ ⊲F2 α.

Proof. By Corollary 5, ifΓ is unsatisfiable then there existsA 6J B ∈ Γ− such thatΓ+ |=s

AJ B. SinceΓ+ is satisfiable (again by Corollary 5), by Lemma 12 we haveΓ+⊲F2 AJ B.
HenceΓ ⊲F2 AJ B, andΓ ⊲F2 α follows by rule (⊥). �

Putting all the results of this subsection together, we obtain:

Theorem 14. If Γ is a set ofF2 s-formulas andα is aF2 s-formula, then

Γ |=s α ⇔ Γ ⊲F2 α.

4.2. A Natural Deduction Calculus for F1. The Natural Deduction Calculus forF1 has
the following axioms and rules (whereX,Y,Z are propositional variables,α is a F1 s-
formula, andΓ andΓ′ are sets ofF1 s-formulas):

(Axiom): X J X

Γ

▽

X J Y

Γ
′

▽

Y J Z(trans):
X J Z

Γ
′

▽

Y 6J Z

Γ, [X J Y]
▽

Y J Z
(neg):

X 6J Y

Γ

∇

AJ B

Γ
′

∇

A 6J B
(⊥): α

Let Γ ⊲F1 α denotes the existence of a natural deduction proof (in the system just de-
scribed) of theF1 s-formulaα from hypothesis in the set ofF1 s-formulasΓ.

Example15. Here is a deduction showing that

X 6J Y,X JW,Z J Y⊲F1 W 6J Z,

corresponding to rule (N) in theF1 system of [MSS15]:

2actually, the hypothesis in [MSS15] is thatΓ is consistent, but an inspection of the proof reveals that the right
hypothesis is the one of satisfiability.
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X J W [W J Z]
X J Z ZJ Y

X J Y X 6J Y
W 6J Z

Here we employed (trans) twice and (neg) for the last step.

As for the case of theF2 system, the soundness of⊲F1 is easily proved, and left to the
reader. For completeness, we may follow the same line of the completeness proof for⊲F2,
dividing the proof into cases, depending on whetherΓ is a satisfiable set ofF1 s-formulas
or not. The case whereΓ is satisfiable can be dealt using Theorem 20 from [MSS15], and
consists in proving theF1 rules of [MSS15] in our system. The only nontrivial case is
rule (N), which is dealt with in Example 15. In the case whereΓ is unsatisfiable, we may
proceed using rule⊥ as we did for⊲F2. Hence:

Theorem 16. If Γ is a set ofF1 s-formulas andα is aF1 s-formula, then

Γ |=s α ⇔ Γ ⊲F1 α.

4.3. A Natural Deduction Calculus for F3. We now consider the fragmentF3 introduced
in Definition 2. In considering anF3 s-formulaC J D or C 6J D we denote byCi a
propositional variable which is aC-conjunct and byD j a propositional variable which is a
D-disjunct.

In order to capture derivability in fragmentF3, we extend our natural deduction calculus
for F2 with the following two rules:

Γ

▽

AJ B(disj1):
AJ D

where{B1, . . . , Bn} ⊆ {D1, . . . ,Dh} assetsof propositional variables.

Γ

∇

AJ B

Γ, [AJ B1]
∇

C J E . . .

Γ, [AJ Bn]
∇

C J E(disj2):
C J E

whereB = B1 ∨ · · · ∨ Bn andΓ is a set of positive s-formulas.

Lemma 17. Rules (disj1) and (disj2) are sound in s-logic.

Proof. Soundness of rule (disj1) is immediate.
As for rule (disj2), supposeΓ is a positive set ofF3 s-formulas andB = B1∨ · · · ∨ Bn is

such that:

• Γ |=s AJ B;
• Γ,AJ Bi |=s C J E for eachi = 1, . . . , n.

We want to prove thatΓ |=s C J E. SinceΓ contains only positive s-formulas, by Corollary
5 each setΓ,AJ Bi is satisfiable. Hence we may apply Lemma 7 obtaining:

Γ
+

prop,A→ Bi |= C→ E.

Similarly we obtainΓ+prop |= A → B, that isΓ+prop,A |= B. By propositional reasoning it
follows thatΓ+prop |= C→ E. Hence, by Lemma 7 again,Γ |=s C J E. �

10



Notice that the restriction to positive set of s-formulasΓ in rule (disj2) is necessary
because without this hypothesis the rule is no longer sound.To see this consider e.g. the
set

Γ = {AJ B1 ∨ B2,A 6J B1,A 6J B2}.

Γ is satisfiable, while each setΓ ∪ {A J Bi}, for i = 1, 2, is unsatisfiable. It follows that
any formulaC J D (with C,D new forΓ) is a s-consequence of both setsΓ ∪ {A J Bi}.
Moreover,Γ |=s AJ B1 ∨ B2, butC J D is not a s-consequence ofΓ.

We denoteF3-derivability by⊲F3. In proving the completeness of theF3 system we
shall use also the following three rules, that will be shown to be derivable in our system in
the next Lemma.

Γ

∇

BJ A

Γ

∇

C J B1
. . .

Γ

∇

C J Bn(r2):
C J A

whereB = B1 ∧ · · · ∧ Bn.

Γ

∇

D J E

Γ

∇

D ∧ E1 J F . . .

Γ

∇

D ∧ En J F
(r3): D J F

whereE = E1 ∨ · · · ∨ En.

Γ Γ

∇ . . . ∇

A1
J B1 An

J Bn . . .

Γ, [A1
J B1

h1
, . . . ,An

J Bn
hn

]

∇

C J E . . .
(disj2gen):

C J E
In (disj2gen), we requireΓ to be a set of positive s-formulas, and we have a premise

Γ,A1
J B1

h1
, . . . ,An

J Bn
hn

∇

C J E

for every choice of indicesh1, . . . , hn such thatBi
hi

is a disjunct ofBi .

Lemma 18. (r2) is a derived rule in theF2 system, while (r3) and (disj2gen) are derived
rules in theF3 system.

Proof. First, we provide a proof for (r2) in theF2 system.

Γ

∇

B1 ∧ . . . ∧ Bn J A

Γ

∇

C J B1

C ∧ B2 ∧ . . . ∧ Bn J A

Γ

∇

C J B2

C ∧ B3 ∧ . . . ∧ Bn J A
...

C ∧ Bn J A

Γ

∇

C J Bn

C J A
11



where in the first step we apply (trans) and then, in correspondence of each double line, we
use a combination of applications of (trans) and (conj2).

We now show how to derive (r3) in theF3 system.

Γ

∇

D J E

[D J E1]

Γ

∇

D ∧ E1 J F

D J F . . .
[D J En]

Γ

∇

D ∧ En J F

D J F
D J F

Again, double lines indicate a combination of applicationsof (trans) and (conj2), while in
the final step we use (disj2).

As for rule (disj2gen), supposeB1
= B1

1 ∨ · · · ∨ B1
h. We can apply rule (disj2) to

Γ ⊲F3 A1
J B1

and all premisses of the form

Γ,A1
J B1

j ,A
2
J B1

h2
, . . . ,An

J B1
hn
⊲F3 C J E,

for j = 1, . . . , h, obtaining, for all choices of indicesh2, . . . , hn such thatBi
hi

is a disjunct of
Bi, that

Γ,A2
J B2

h2
, . . . ,An

J Bn
hn
⊲F3 C J E;

In other words, we succeeded in eliminatingA1
J B1 from the premisses. In the same

way, by applying (disj2) we can successively eliminateA2
J B2, . . . ,An

J Bn, eventually
derivingΓ ⊲F3 C J E, as desired. �

In order to prove the completeness ofF3-derivability we need a preliminary Lemma.

Lemma 19. SupposeΓ is a set of positiveF3 s-formulas such thatΓ ⋫F3 C J E. Then
there exists a set of positiveF3 s-formulas∆, closed under⊲F3, such that:

• ∆ ⊇ Γ;
• ∆ ⋫F3 C J E,;
• for all positiveF3 s-formulas AJ B ∈ ∆ there exists i such that AJ Bi ∈ ∆.

Proof. Without loss of generality, we may suppose thatΓ is closed under⊲F3. Let{α1, α2, . . . }

be an enumeration of the positiveF3 s-formulas, withα j = A j
J B j.

We claim that there exists a sequenceΓ0 = Γ, Γ1, . . . , Γn, . . . of sets of positiveF3 s-
formulas, each closed under⊲F3, with the following properties:

• Γn ⋫F3 C J E;
• if, for j ≤ n, Γn ⊲F3 α j , then there existsh such thatA j

J B j
h ∈ Γn+1.

We start by settingΓ0 = Γ. Suppose now we already definedΓn such thatΓn ⋫F3 C J E.
Let j1, . . . jh ≤ n be the list of all indices up ton such thatΓn⊲F3 α j i . Then there must exist
a choice of indicesh j1, . . . , h jh such thatB j i

hj i
is a disjunct ofB j i , and

Γn,A
j1 J B j1

hj1
, . . . ,A jn J B jn

hjh
⋫F3 C J E.

In fact, if this were not the case, using rule (disj2gen), we would obtain thatΓn⊲F3 C J E.
We fix suchh j1, . . . , h jh and letΓn+1 be the closure ofΓn∪{A1

J B1
hj1
, . . . ,An

J Bn
hjh
} under

⊲F3. This proves the claim.
Finally, it is straightforward to check that∆ =

⋃

n Γn has the required properties. �
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We split the proof of the completeness of⊲F3 into cases, depending on the satisfiability
of Γ and on the type of the formula to be derived. We start with:

Lemma 20. SupposeΓ is a satisfiable set ofF3 s-formulas and CJ E is a positiveF3

s-formula such thatΓ |=s C J E. ThenΓ ⊲F3 C J E.

Proof. We reason by contradiction. IfΓ ⋫F3 C J E thenΓ+ ⋫F3 C J E, either. By
applying the previous Lemma toΓ+ we find a set of positiveF3 s-formulas∆ ⊇ Γ+, closed
under⊲F3, such that

∆ ⋫F3 C J E,

and for allF3 s-formulasAJ B, if AJ B ∈ ∆ then there existsi with AJ Bi ∈ ∆.
Let w be the valuation defined by setting, for each propositional variableX:

w(X) =















T if C J X ∈ ∆;

F if C J X < ∆.

We claim thatw(∆) = T, andw(C J E) = F.
If B J A ∈ ∆ andw(B) = T, then, sinceB = B1 ∧ · · · ∧ Bn, we havew(Bi) = T for all

i. By definition ofw, for all i it holdsC J Bi ∈ ∆, and by rule (r2) we obtainC J A ∈ ∆.
By the property of∆ there existsi such thatC J Ai ∈ ∆. Hencew(Ai) = T and therefore
w(A) = T as well. This proves thatw(BJ A) = T, for all BJ A ∈ ∆.

Let us now show thatw(C J E) = F. Sincew(C) = T, it suffices to prove that
w(Ei) = F, for all i. If w(Ei) = T for somei, thenC J Ei ∈ ∆ andC J E ∈ ∆ would
follow by rule (disj1).

Having established the claim, we conclude the proof as follows. For all negativeF3

s-formulasα = A 6J B ∈ Γ, let vα be a valuation such thatvα(Γ) = T, vα(A) = T and
vα(B) = F. Such avα exists, because by hypothesisΓ is satisfiable. Then the frame
W = {w} ∪ {vα : α ∈ Γ−} is such thatW |= Γ and W 2 C J E, contradicting our
hypothesis. �

Next, we consider the case in whichΓ is satisfiable, but the formula to be derived is
negative.

Lemma 21. SupposeΓ is a satisfiable set ofF3 s-formulas and C6J G is a negativeF3

s-formula such thatΓ |=s C 6J G. ThenΓ ⊲F3 C 6J G.

Proof. This proof follows the corresponding proof in [MSS15] with minor adjustments.
We reason again by contradiction supposing (without loss ofgenerality) thatΓ closed under
⊲F3 andC 6J G < Γ. For anyα = D 6J E ∈ Γ−, we will find a valuationwα with
wα(Γ+) = T, wα(D) = T andwα(E) = F, and eitherwα(C) = F or wα(G) = T. Once this is
done, we may set

W = {wα : α ∈ Γ−}

and find a contradiction, sinceW is a frame satisfyingΓ but failing to satisfyC 6J G.
Fix α = D 6J E ∈ Γ−. SinceΓ is satisfiable, there exists a valuationw with w(Γ+) = T,

w(D) = T, andw(E) = F. In order to findwα we may suppose that all the valuationsw
with these properties satisfy alsow(C) = T (otherwise we may choose such aw for wα).
Consider the set of positive s-formulasΓ+ ∪ {C J G}. Then

Γ
+ ∪ {C J G} ⋫F3 D J E,

otherwise, sinceΓ ⊲F3 D 6J E, we would haveΓ ⊲F3 C 6J G be the (neg) rule. By Lemma
19 there exists a set of positive formulas∆ ⊇ Γ+ ∪ {C J G}, closed under⊲F3, such that
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∆ ⋫F3 D J E, and for allA, B, if AJ B ∈ ∆ then there existsi with AJ Bi ∈ ∆. We claim
thatD J Ci ∈ ∆ for everyi. To see this, we consider the valuationw defined as

w(X) =















T if D J X ∈ ∆;

F if D J X < ∆.

As in Lemma 20, it is not difficult to check thatw(∆) = T, andw(D J E) = F. By the
previous hypothesis, we havew(C) = T, that is,w(Ci) = T for all i. By definition ofw this
impliesD J Ci ∈ ∆.

Next, consider the valuationvi defined as

vi(X) =















T if D ∧Gi J X ∈ ∆;

F if D ∧Gi J X < ∆.

We claim that there existsi with vi(E) = F. Otherwise, we havevi(E) = T, for all i. This
means that for alli there existsj with vi(E j) = T, that is, by definition ofvi , D∧Gi J E j ∈

∆. It follows that, for all i, D ∧ Gi J E ∈ ∆. Consider the following natural deduction,
which uses first (r2) and then (r3);

∆

∇

C J G

∆

∇

D J C1
. . .

∆

∇

D J Ck

D J G

∆

∇

D ∧G1 J E . . .

∆

∇

D ∧Gn J E
D J E

This contradicts∆ ⋫ D J E.
Thus we can picki such thatvi(E) = F. We havevi(D) = T, vi(E) = F, andvi(G) = T,

sinceD∧Gi J Gi ∈ ∆ andG is a disjunction. Moreover, as before,vi(∆) = T: if AJ B ∈ ∆
andvi(A) = T, thenD ∧Gi J A j ∈ ∆, for all j. By rule (r2) we obtainD ∧Gi J B ∈ ∆,
and by the properties of∆ there existsh with D ∧ Gi J Bh ∈ ∆; hence,vi(Bh) = T, and
vi(B) = T. It follows thatvi(Γ+) = T, and we may choose such avi aswα, finishing the
proof. �

The two previous results prove that, ifΓ is a satisfiable set ofF3 s-formulas, then for
anyF3 s-formulaα such thatΓ |=s α we haveΓ ⊲F3 α.

To finish the completeness proof for⊲F3, we still have to consider the case whenΓ is
unsatisfiable. In this case we have to prove thatΓ ⊲F3 α, for anyF3 s-formulaα, and we
may repeat the proof of Lemma 13. Hence:

Lemma 22. If Γ is unsatisfiable, then for anyF3 s-formulaα we haveΓ ⊲F3 α.

Putting all results of this section together, we obtain:

Theorem 23. If Γ is a set ofF3 s-formulas andα is aF3 s-formula, then

Γ |=s α ⇔ Γ ⊲F3 α.

5. F2 and Prolog

In this section we show how standard Prolog may be used to dealwith logical conse-
quence inF2. Since some readers might be unfamiliar with Prolog, we recall here the
basic constructs of this programming language (restricting ourselves to the propositional
setting), following [NS97] (see§I.10, and especially Definition 10.4).
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Propositional Prolog deals withHorn clauses(finite sets of literals containing at most
one positive literal), thought as disjunctions of their elements. When the Horn clause
contains (exactly) one positive literal{Y,¬X1, . . . ,¬Xn} it is aprogram clauseand we write
Y :− X1, . . . ,Xn. If n > 0 we think that the program clause is representingX1∧· · ·∧Xn → Y
and we call it arule. If in the program clause we haven = 0 it is afact and we writeY :− .
If the Horn clause has only negative literals{¬X1, . . . ,¬Xn} we call it agoal and write
:− X1, . . . ,Xn. A Prolog programis a set of program clauses.

The typical situation is that we are given a Prolog program, and we want to know
whether a conjunction of factsY1, . . . ,Yk is logical consequence of the given facts and
rules. To this end we add the goal{¬Y1, . . . ,¬Yk} to the program and ask whether the
resulting set of Horn clauses is unsatisfiable. This is the case if and only if applying the
resolution rule repeatedly to the elements of the set starting with the goal we obtain the
empty clause. Prolog works by searching all possible ways ofapplying the resolution rule
with these constraints: if the search succeeds we have arefutationof the goal from the
program.

We can now go back to our study of theF2 fragment of s-logic.

Definition 24. Given a setΓ ofF2 s-formulas, define Prolog(Γ+) to be the following Prolog
program:

Prolog(Γ+) = {Z :− A1, . . . ,An | A1 ∧ . . . ∧ An J Z ∈ Γ+}.

We have:

Lemma 25. Let Γ be a set ofF2 s-formulas and AJ Y be aF2 s-formula, where A=
A1 ∧ · · · ∧ An.

(i) Γ |=s AJ Y if and only there is a refutation of the goal:− Y from the Prolog program

Prolog(Γ+) ∪ {A1 :− , . . . ,An :− };

(ii) Γ |=s A 6J Y if and only if there exists Z1 ∧ · · · ∧ Zn 6J W ∈ Γ− and a refutation of the
goal :−W from the Prolog program

Prolog(Γ+) ∪ {Y :− A1, . . . ,An,Z1 :− , . . . ,Zn :− }.

Proof. (i) From Lemma 7.i we have thatΓ |= A J Y if and only if Γ+prop,A |= Y. Since
Γ is a set ofF2-formulas, the elements inΓ+prop are (essentially) rules, whileA is
equivalent to the conjunction of the factsA1 :− , . . . ,An :− . SinceY is a positive
literal, the equivalence follows from the completeness of Propositional Prolog.

(ii) From Lemma 7.ii we have thatΓ |= A 6J Y if and only if there existsZ1 ∧ · · · ∧ Zn 6J

W ∈ Γ− such that
Γ
+

prop,A→ Y,Z1 ∧ · · · ∧ Zn |=W.

As before, the equivalence follows from interpreting this logical consequence in
terms of Prolog and applying the completeness of Propositional Prolog. �

Lemma 25 suggests an efficient way of checking logical consequence betweenF2 s-
formulas based on a well-known programming language such asProlog, and actually only
for the special case of goals consisting of a single literal.
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