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CALIBRATING WORD PROBLEMS OF GROUPS VIA THE COMPLEXITY

OF EQUIVALENCE RELATIONS

ANDRÉ NIES AND ANDREA SORBI

Abstract. (1) There is a finitely presented group with a word problem which is a uniformly
effectively inseparable equivalence relation. (2) There is a finitely generated group of computable
permutations with a word problem which is a universal co-computably enumerable equivalence
relation. (3) Each c.e. truth-table degree contains the word problem of a finitely generated group
of computable permutations.

1. Introduction

Given two equivalence relations R,S on the set ω of natural numbers, we say that R is computably
reducible to S (or, simply, R is reducible to S; notation: R ≤ S) if there exists a computable function
f such that, for every x, y ∈ ω,

x R y ⇔ f(x) S f(y).

The first systematic study of this reducibility on equivalence relations is implicit in Ershov [13,
14]. Recently this reducibility has been successfully applied to classify natural problems arising in
mathematics and computability theory: see for instance in [11, 15, 16].

In classifying objects according to their relative complexity, an important role is played by objects
that are universal, or complete, with respect to some given class. We are interested in this notion
for the case of equivalence relations on ω.

Definition 1.1. Let A be a class of equivalence relations. An equivalence relation R ∈ A is called
A-universal, (also sometimes called A-complete) if S ≤ R for every S ∈ A.

For instance, by Fokina et al. [16] the isomorphism relation for various familiar classes of com-
putable structures is Σ1

1-universal, and by Fokina, Friedman and Nies [15] the relation of computable
isomorphism of c.e. sets is Σ0

3-universal. Ianovski et al. [20, Theorem 3.5] provide a natural example
of a Π0

1-universal equivalence relation, namely equality of unary quadratic time computable func-
tions. In contrast, they show [20, Corollary 3.8] that there is no Π0

n-universal equivalence relation
for n > 1.

In this paper we are interested in Σ0
1-universal and in Π0

1-universal equivalence relations arising
from group theory. They arise naturally via word problems, if we view the word problem of a group
as the equivalence relation that holds for two terms if they denote the same group element.

In Theorem 3.2 we will build a finitely presented group with a word problem as follows: each
pair of distinct equivalence classes is effectively inseparable in a uniform way. Since this property
for ceers implies Σ0

1-universality (see [1]), it follows that the word problem is Σ0
1-universal.
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2 NIES AND SORBI

Finitely generated (f.g.) groups of computable permutations are special cases of f.g. groups with
a co-c.e. set of relators. The word problem of any finitely generated (f.g.) group of computable
permutations is Π0

1. Using the theory of numberings, Morozov [26] built an example of a f.g.
group with Π0

1 word problem that is not isomorphic to a f.g. group of computable permutations.
(We conjecture that future research might provide a natural example of such a group, generated
for instance by finitely many computable isometries of the Urysohn space.) As our second main
result, in Theorem 5.1 we will build a f.g. group of computable permutations with a Π0

1-universal
word problem. Thus, within the groups that have a Π0

1 word problem, the maximum complexity
of the word problem is already assumed within the restricted class of f.g. groups of computable
permutations. By varying the methods, in Theorem 5.2 we show that every c.e. truth-table degree
contains the word problem of a 3-generated group of computable permutations.

We include a number of open questions. Is the computably enumerable equivalence relation
of isomorphism among finitely presented groups recursively isomorphic to equivalence of sentences
under Peano arithmetic? What is the complexity of embedding and isomorphism among f.g. groups
of (primitive) recursive permutations? A natural guess would be Σ0

3 -universality.

2. Background and preliminaries

Group theory. Group theoretic terminology and notations are standard, and can be found for
instance in [21]. Throughout let F (X) be the free group on X, consisting of all reduced words of
letters from X ∪X−1, with binary operation induced by concatenation and cancellation of x with
x−1, and the empty string as identity; see [21, p.89] for notations and details. It is customary to
write F (x1, . . . , xk) if X = {x1, . . . , xk} is finite. The symbol ∼= denotes isomorphism of groups,
and, for a group H and a set S ⊆ H, by NclH(S) one denotes the normal closure of S in H;
if H is clear from the context one writes Ncl(S). A presentation of a group G is a pair 〈X;R〉
with R ⊆ F (X) such that G ∼= F (X)/ NclF (X)(R). It is legitimate to write G = 〈X;R〉 since the
presentation identifies G up to group isomorphism. The congruence corresponding to the normal
subgroup NclF (X)(R) will be written as =G; the relation =G is clearly an equivalence relation on
F (X), which we will call the word problem of G = 〈X;R〉; the =G-equivalence class of an element
x will be denoted by [x]G. If X is a finite set then we can encode the elements of F (X) by natural
numbers, and multiplication becomes a binary computable function. A group G = 〈X;R〉 is finitely
presented (f.p.) if both X and R are finite. It is easy to see (under coding) that in this case, =G

is a computably enumerable equivalence relation on ω.
Our terminology is slightly nonstandard because by the word problem of a f.p. group G = 〈X;R〉,

one usually means the equivalence class [1]G of the identity element 1, and the problem of deciding,
for a given word w ∈ F (X), whether w ∈ [1]G. The difference is minor, though, since =G and the
set [1]G are m-equivalent. The 1-reduction x 7→ 〈x, 1〉 shows that [1]G ≤1=G (where the symbol
≤1 denotes 1-reducibility), and the m-reduction 〈x, y〉 7→ xy−1 shows that =G≤m [1]G (where the
symbol ≤m denotes m-reducibility).

Effective inseparability. The reader is referred to [28] for any unexplained notation and termi-
nology from computability theory. A partial computable function which is total is simply called
a computable function. If A,B ⊆ ω, one writes A ≡ B if there exists a computable permuta-
tion f of ω such that f(A) = B; if (A,B) and (C,D) are disjoint pairs of subsets of ω, one
writes (A,B) ≡ (C,D), if there exists a computable permutation f of ω such that f(A) = C and
f(B) = D. We recall that a disjoint pair of sets (A,B) is called recursively inseparable if there is
no recursive set X such that A ⊆ X and B ⊆ Xc, where Xc denotes the complement of X. The
following property is stronger: (A,B) is effectively inseparable (e.i.) if there is productive function,
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that is, a partial computable function ψ(u, v) such that

(∀u, v)[A ⊆Wu&B ⊆Wv &Wu ∩Wv = ∅ ⇒ ψ(u, v) ↓/∈ Wu ∪Wv].

Remark 2.1. It is well known (see e.g. [28, II.4.13]) that if (A,B) and (C,D) are disjoint pairs of
c.e. sets then:

- (C,D) e.i. implies (A,B) ≤1 (C,D);
- if both pairs are e.i. then (A,B) ≡ (C,D);
- if (A,B) ≤m (C,D) and (A,B) is e.i. then (C,D) is e.i. as well;
- if A ⊆ C, B ⊆ D and (A,B) is e.i. then (C,D) is e.i. as well.

The following fact about e.i. pairs of c.e. sets will be used in the proof of Theorem 3.2.

Lemma 2.2. If (A,B) and (C,D) are e.i. pairs of c.e. sets, then so is the pair (A × C,B ×D).
Moreover, a productive function for (A×C,B×D) can be found uniformly from productive functions
for (A,B) and (C,D).

Proof. We prove in fact that if (A,B) is a disjoint pair of c.e. sets, and (C,D) is e.i., then (A,B) ≤1

(A×C,B ×D): hence, if (A,B) is e.i., then (A×C,B ×D) is e.i. as well. Let g be a computable
function such that g(A) ⊆ C and g(B) ⊆ D; such a function exists because (A,B) ≤1 (C,D).
Clearly the 1-1 computable function

f(x) = 〈x, g(x)〉

provides a 1-reduction showing that (A,B) ≤1 (A× C,B ×D).
The claim about uniformity is straightforward. �

Although not used in this paper, it is worth noting that a statement analogous to the lemma
above holds when we replace “effectively inseparable” by the weaker notion of being recursively
inseparable.

Proposition 2.3. If (A,B) and (C,D) are recursively inseparable pairs of c.e. sets, then so is
(A× C,B ×D).

Proof. Assume that R is a computable set such that A×C ⊆ R and B ×D ⊆ Rc. For every v, let

Rv = {x : 〈x, v〉 ∈ R}.

We observe that for every v there exists x ∈ A such that 〈x, v〉 ∈ Rc, or there exists x ∈ B such that
〈x, v〉 ∈ R; otherwise A ⊆ Rv and B ⊆ Rc

v, which would contradict the inseparability of (A,B).
Let RA and RB be computable binary relations such that

(∃x)[x ∈ A& 〈x, v〉 ∈ Rc] ⇔ (∃s)RA(v, s),

(∃x)[x ∈ B& 〈x, v〉 ∈ R] ⇔ (∃s)RB(v, s),

and define

U = {v : (∃s)[RA(v, s)]& (∀t ≤ s)¬RB(v, t)]}.

The set U is decidable, as we have seen that for every v, there exists x ∈ A such that 〈x, v〉 ∈ Rc, or
there exists x ∈ B such that 〈x, v〉 ∈ R. Now v ∈ C ∩ U implies (∃x)[x ∈ A& 〈x, v〉 ∈ Rc] contrary
to A×C ⊆ R. Similarly, v ∈ DrU implies (∃x)[x ∈ B& 〈x, v〉 ∈ R], contrary to B×D ⊆ Rc. We
conclude that C ⊆ U c and D ⊆ U , which is the final contradiction. �
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C.e. equivalence relations and word problems. Computably enumerable equivalence relations
have been studied extensively; see for instance [5, 12, 18]. While they are called positive in the
Russian literature, we call such an equivalence relation a ceer following Andrews et al. [1]. Σ0

1-
universal ceers arising naturally in formal logic have been pointed out for instance in [4, 25, 29].

Definition 2.4 ([3]). A ceer E is called uniformly effectively inseparable (u.e.i.) if there is a
computable binary function p such that, whenever a��Eb, the partial computable function ψ(u, v) =
ϕp(a,b)(u, v) witnesses that the pair of equivalence classes ([a]E , [b]E) is e.i.

As already observed in the introduction, it is shown in [1] that every u.e.i. ceer is Σ0
1-universal.

It is worth recalling that uniformity plays a crucial role in yielding universality, as there are non-
universal ceers yielding a partition of ω into effectively inseparable pairs of distinct classes [1].

Surprisingly, f.p. groups with a Σ0
1-universal word problem appeared in the literature prior to

any explicit study of computable reducibility among equivalence relations. Charles F. Miller III [24]
proved that there exists a f.p. group with Σ0

1-universal word problem. He shows that another inter-
esting equivalence relation is Σ0

1-universal: the isomorphism relation between finite presentations of
groups, which (via encoding of finite presentations by numbers) can be seen as a ceer. Not knowing
of this much earlier result, Ianovski, Miller, Ng, and Nies [20, Question 6.1] had recently posed this
as an open question.

Theorem 2.5 ([24]).

(1) Given a ceer E one can effectively build a f.p. group GE = 〈X;R〉, and a computable
sequence of words (wi)i∈ω in F (X) such that, for every i, j,

i E j ⇔ wi =GE
wj .

(2) Given a finite presentation 〈X;R〉 of a group G one can effectively find a computable family
(HG

w )w∈F (X) of f.p. groups such that, for all v,w ∈ F (X),

v =G w ⇔ HG
v

∼= HG
w .

Proof. The first item is obtained in [24, p 90f], used as a preliminary step to prove Theorem V.2.
The second item is [24, Theorem V.1]. �

Corollary 2.6.

(1) There exists a f.p. group G such that =G is a Σ0
1-universal ceer.

(2) The isomorphism problem ∼=f.p. between finite presentations of groups is a Σ0
1-universal ceer.

Proof. Let E be a Σ0
1-universal ceer. Then

(1) by Theorem 2.5(1), E ≤=GE
, and thus =GE

is Σ0
1-universal;

(2) by Theorem 2.5(2),

i E j ⇔ HGE

v
∼= HGE

w .

This shows that E ≤∼=f.p., whence ∼=f.p. is Σ
0
1-universal.

�

We observe that Σ0
1-universality of the word problem does not necessarily imply being u.e.i.

Theorem 2.7. There exists a f.p. group G such that =G is Σ0
1-universal, but not u.e.i.

Proof. We build a f.p. group G such that =G is Σ0
1-universal, but it does not even yield a partition

into recursively inseparable pairs of disjoint equivalence classes. To see this, let H = 〈X;R〉 be a
f.p. group such that =H is Σ0

1-universal. Let v 6∈ X be a new letter. The free product G = H ∗F (v)
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(where F (v) is the free group on v) has the finite presentation 〈X, v;R〉. Since H can be seen as
a subgroup of G and the embedding is computable, the group G has Σ0

1-universal word problem.
Any word w ∈ F (X ∪ {v}) can be uniquely written as w = h1v

n1h2 · · · v
nrhr+1, with hj ∈ F (X)

and nj 6= 0, for all j. Let

nv(w) = n1 + · · ·+ nr

be the exponent sum of v in w, and let S = {w ∈ F (X ∪ {v}) : nv(w) = 0}. It is immediate that
[1]G ⊆ S and [v]G ⊆ Sc, so the recursive set S separates the pair ([1]G, [v]G). �

The proof of the previous theorem suggests an additional comment. We observe that if in a
group G the operations are computable, then all =G-equivalence classes are uniformly computably
isomorphic: the function w 7→ wu−1v is a computable permutation of the group (uniformly de-
pending on u, v) which maps [u]G onto [v]G. Thus if an equivalence class [u]G is creative, so is any
other equivalence class [v]G, and creativeness holds uniformly, i.e. there is a computable function
p such that, for every v, ϕp(v) is productive for the complement of [v]G. Nothing like this holds
for effective inseparability, or for computable inseparability. Indeed, one can take the group H
considered in the proof of Theorem 2.7 to be such that its word problem yields at least a pair of
effectively inseparable classes (for instance take H = D, where D is the group built in Theorem 3.2
in which all distinct pairs of equivalence classes are effectively inseparable). Thus the word problem
of the group G of Theorem 2.7 does have effectively inseparable classes, but not all pairs are so,
since there are pairs which can be computably separated.

3. A finitely presented group with u.e.i. word problem

We now build a f.p. group with a word problem that is a u.e.i. ceer. We first provide Lemma 3.1
that if G is a f.p. group containing a word w such that ([1]G, [w]G) is e.i., then all disjoint pairs
([s]G, [t]G) with s, t ∈ NclG(w) are e.i. in a uniform way. For the main construction, using a
result of Miller III, we take a computably presented group A containing a word w such that the
pair ([1]A, [w]A) is e.i. By the Higman Embedding Theorem combined with a construction due to
Rabin, we embed A into a f.p. group D so that if N is a non-trivial normal subgroup of D, with
w ∈ N , then N = D. Taking N = NclD(w) and observing that the pair ([1]D, [w]D) is also e.i., the
lemma shows that =D is u.e.i.

Lemma 3.1. Let G = 〈X;R〉 be a given f.p. group, and let w be an element of F (X) such that
([1]G, [w]G) is e.i. Let N = NclG(w). For s, t ∈ N such that s 6=G t, the pair of sets ([s]G, [t]G) is
e.i. uniformly in s, t.

Proof. Since ([s]G, [t]G) ≡ ([1]G, [s
−1t]G), it suffices to show that ([1]G, [r]G) is uniformly e.i. for any

r ∈ N r [1]G. Note that N consists of the products of conjugates of w and of w−1, so it is enough
to show:

(1) if ([1]G, [u]G) is e.i., then so is ([1]G, [u
−1]G): this follows from the fact that ([1]G, [u]G) ≡

([u−1]G, [1]G, ), via the computable permutation x 7→ u−1x;
(2) if ([1]G, [u]G) is e.i., then so is ([1]G, [g

−1ug]G) for every g ∈ G: the computable permutation
x 7→ g−1xg provides an isomorphism ([1]G, [u]G) ≡ ([1]G, [g

−1ug]G);
(3) if uv 6=G 1 and the pairs ([1]G, [u]G) and ([1]G, [v]G) are e.i., then ([1]G, [uv]G) is e.i.:

By Lemma 2.2 the pair ([1]G × [1]G, [u]G × [v]G) is e.i. On the other hand, let

X = {〈w, z〉 : wz ∈ [1]G},

Y = {〈w, z〉 : wz ∈ [uv]G}.
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Then [1]G × [1]G ⊆ X and [u]G × [v]G ⊆ Y , and thus, by Remark 2.1, (X,Y ) is e.i. Since
(X,Y ) ≤m ([1]G, [uv]G) via the mapping 〈w, z〉 7→ wz, it follows that ([1]G, [uv]G) is e.i., as
desired.

Each step provides being e.i. in a uniform fashion. If r ∈ N we can obtain its representation as
a product of conjugates of w and of w−1 effectively. Since [1]G and N are c.e., there is a partial
computable function p such that ϕp(a,r) is productive for ([a]G, [r]G), when a ∈ [1]G and r ∈ Nr[1]G.
So ([1]G, [r]G) is e.i. uniformly in r, whence ([s]G, [t]G) is e.i. uniformly in s, t as required. �

Theorem 3.2. There exists a f.p. group D such that =D is u.e.i.

Proof. For elements u, t of a group, we write Cj(u, t) = t−1ut. Following [23], take an e.i. pair
(Y0, Y1) of c.e. sets. Let F = F (c, d) be the free group on two generators c, d; for every i > 0, let

bi−1 = Cj(Cj(c, d−1), ci) · Cj(Cj(Cj(c−1, d), ci), d−2).

Next let

R = NclF ({b0b
−1
i : i ∈ Y0} ∪ {b1b

−1
j : j ∈ Y1}),

and let A = 〈c, d;R〉. Note that A is a computably presented group, namely A has a presentation
〈Z;T 〉 where Z is finite and T is c.e. It can be shown [23] that the computable mapping i 7→ bi
provides a reduction

(Y0, Y1) ≤1 ([b0]A, [b1]A).

Hence, by the third item in Remark 2.1, the pair ([b0]A, [b1]A) is e.i. We now follow a line of argument
as in the proof of Theorem IV.3.5 of [22], to which the reader is referred to fill in the details of the
present proof; the only difference between our proof and that in [22] is that we first embed A into
a f.p. group L, aiming at a final f.p. group D, whereas in the proof of Theorem IV.3.5 of [22] the
starting group C is first embedded into a countable simple group S, as the goal in that case is to
end up with a finitely generated simple group. (The construction provided by Theorem IV.3.5 of
[22] is due to Rabin [27]; the version presented in [22] is modelled on Miller III [24].)

By the Higman Embedding Theorem ([19]; see also [22, Theorem IV.7.1]) the computably pre-
sented group A can be embedded into a f.p. group L; next embed, using [22, Theorem IV.3.1], the
free product L ∗ F (x) (with x a new generator) in a f.p. group U , generated by u1 and u2 both of
infinite order.

In order to build the desired f.p. group D, we are now going to introduce additional groups,
using two well known combinatorial group theoretic constructions, namely HNN-extension (where
HNN stands for Higman-Neumann-Neumann), and free product with amalgamation. We briefly
recall these two constructions. If G = 〈T ;Z〉 is a group presentation, and ϕ : H → K is an
isomorphism between subgroups of G, then the HNN-extension of G, relative to H,K and ϕ, is the
group 〈T, p;Z ∪ {p−1hp = ϕ(h) : h ∈ H}〉, of which G is a subgroup, and p (with p /∈ G) realizes
by conjugation the given isomorphism; p is called the stable letter. It is clear that one can limit
oneself to let the added relations vary on a set of generators of H, instead of adding one relation for
each h ∈ H. Moreover, if G1 = 〈T1;Z1〉, G2 = 〈T2;Z2〉 are group presentations of disjoint groups,
with two isomorphic subgroups H1,H2, via isomorphism ϕ : H1 → H2, then their free product
amalgamating H1 and H2 by ϕ is the group 〈T1 ∪ T2;Z1 ∪ Z2 ∪ {h = ϕ(h) : h ∈ H1}〉, which is
intuitively the “freest” overgroup of both G1 and G2 in which their subgroups are identified. Again,
it is clear that one can limit oneself to let the added relations vary on a set of generators of H1,
instead of adding one relation for each h ∈ H1. For more on these constructions, see [22].
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Consider the groups

J = 〈U, y1, y2; y
−1
1 u1y1 = u21, y

−1
2 u2y2 = u22〉,

K = 〈J, z; z−1y1z = y21, z
−1y2z = y22〉,

P = 〈r, s; s−1rs = r2〉,

Q = 〈r, s, t; s−1rs = r2, t−1st = s2〉.

The group J is the (double) HNN-extension of U with stable letters y1, y2, where for each i ∈ {1, 2},
yi realizes by conjugation the isomorphism induced by ui 7→ u2i , between the subgroups generated
by ui, and by u2i , respectively; K is the HNN-extension of J , with stable letter z, realizing by
conjugation the isomorphism induced by y1 7→ y21 and y2 7→ y22 , between the subgroups generated
by y1, y2, and by y21, y

2
2 , respectively; P is the HNN-extension of F (r), with stable letter s, realizing

by conjugation the isomorphism induced by r 7→ r2, between the subgroups generated by r, and
by r2, respectively; Q is the HNN-extension of P , with stable letter t, realizing by conjugation the
isomorphism induced by s 7→ s2, between the subgroups generated by s, and by s2, respectively. It
is shown in the proof of [22, Theorem IV.3.4] that r, t freely generate a subgroup of Q. Let w ∈ L,
with w 6=L 1: since the commutator [w, x] has infinite order in U , an argument similar to the one
used for r, t, and Q (see again [22]) shows that z and [w, x] freely generate a subgroup of K. Thus,
one can form the free product with amalgamation

D = 〈K ∗Q; r = z, t = [w, x]〉.

All groups mentioned are finitely presented except for A. We summarize in the following diagram
the chains of embeddings provided by the constructions:

A −−−−→ L −−−−→ L ∗ F (x) −−−−→ U −−−−→ J −−−−→ K




y

F (r) −−−−→ P −−−−→ Q −−−−→ D.

As pointed out in the proof of [22, Theorem IV.3.4], if N ⊳ D and w ∈ N , then w = 1 in the
quotient D/N . Then [w, x] = 1 in this quotient. Using the relators, we conclude that t = 1, s = 1,
r = 1, z = 1, y1 = 1, y2 = 1, u1 = 1 and u2 = 1. Therefore the quotient is trivial, and hence
N = D.

Keeping track of the images of the generators c, d of A into D, under the chain of embeddings
leading from A to D, one sees that there is a computable function k from F (c, d) into F (X), where
X is the set of generators of D in the exhibited presentation of D, inducing the embedding of A
into D. Let us identify k(a) with a, for all a ∈ F (c, d). Since, under this identification, b0 6=D b1,
[b0]A ⊆ [b0]D, [b1]A ⊆ [b1]D, and ([b0]A, [b1]A) is e.i., it follows that ([b0]D, [b1]D) is e.i. by the last
item in Remark 2.1. Let w = b−1

1 b0: then w 6=D 1, the pair ([1]D, [w]D) is e.i., and by Lemma 3.1 the
normal closure N = NclD(w) satisfies the property that all pairs ([s]D, [t]D) of disjoint equivalence
classes of N are e.i., uniformly in s, t. Since w ∈ N , it follows that N = D. Therefore D is a f.p.
group with u.e.i. word problem. �

4. Diagonal functions

A diagonal function for an equivalence relation E is a computable function δ such that a��Eδ(a),
for all a. In this section we apply diagonal functions to ceers arising from group theory, and pose
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some related open questions. Following [25], a ceer E is uniformly finitely precomplete if there
exists a computable function f(D, e, x) such that

ϕe(x) ↓∈ [D]E ⇒ f(D, e, x) E ϕe(x),

for all D, e, x, where D is a finite set and [D]E denotes the E-closure of D. (Here, and in the
following, when given as an input to a computable function, a finite set will be always identified
with its canonical index.) An important example of a uniformly finitely precomplete ceer is provable
equivalence in Peano Arithmetic, i.e. the ceer ∼PA defined by pσq ∼PA pτq if and only if ⊢PA σ ↔ τ .
Here σ, τ are sentences of PA, and we refer to some computable bijection pq of the set of sentences
with ω. A diagonal function is given by δ(σ) = ¬σ.

Ceers E and F are called computably isomorphic if there exists a computable permutation p of
ω such that p(E) = F . The notions of a diagonal function and a uniformly finitely precomplete
ceer play an important role in the study and classification of Σ0

1-universal ceers.

Proposition 4.1 ([25]). (i) Every uniformly finitely precomplete ceer is u.e.i.
(ii) A ceer E is computably isomorphic to ∼PA if and only if E is uniformly finitely precomplete
and E has a diagonal function.

A strong diagonal function for an equivalence relation E is a computable function δ such that
δ(D) /∈ [D]E , for every finite set D. Andrews and Sorbi [2] have shown that every u.e.i. ceer with
a strong diagonal function is uniformly finitely precomplete, and therefore computably isomorphic
to ∼PA.

Suppose a f.p. group G = 〈X;R〉 is nontrivial, say w 6=G 1 for some w ∈ F (X). Then =G has
a diagonal function, namely the map δ(r) = rw (r ∈ F (x)). It would be interesting to prove that
there exists a f.p. group G such that =G is uniformly finitely precomplete, for this would yield
an example of a word problem of a f.p. group which is computably isomorphic to ∼PA. To show
this, one can try to strengthen Theorem 3.2 to provide a f.p. group G such that =G is u.f.p., or,
equivalently, to extend its proof in order to provide a f.p. group G such that =G is u.e.i. and G
has a strong diagonal function. Thereafter one can use the above-mentioned result of Andrews and
Sorbi [2]. We do not know at present how to do carry out this plan.

Proposition 4.2. The isomorphism problem ∼=f.p. between finite presentations of groups has a
strong diagonal function.

Proof. Uniformly in a finite presentation G = 〈x1, . . . , xn; r1, . . . , rk〉, the abelianization Gab has
the finite presentation

Gab = 〈x1, . . . , xn; r1, . . . , rk, [xi, xj ] : 1 ≤ i < j ≤ n〉,

where [u, v] = u−1v−1uv is the usual commutator of u, v. Given a finite set S = {G1, . . . , Gr}
of finite presentations, let δ(S) be the canonical finite presentation of the abelian group H =
Z ×

∏

1≤u≤r(Gu)ab. Then H 6∼= Gu for each u. For, if Gu is abelian, then the torsion free rank of
H exceeds that of Gu.

We note that, via a less elementary method involving the Grushko-Neumann Theorem (see [22,
p. 178]), one could also simply let H be the amalgam of Z and all the Gu. �

We conjecture that ∼=f.p. is uniformly finitely precomplete, and hence computably isomorphic to
∼PA. In view of the foregoing proposition it would suffice to show that the ceer ∼=f.p. is u.e.i. By
a result of Rabin [27], every equivalence class of ∼=f.p. is creative; see also [24, p. 79].
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5. Π0
1-universality and groups of computable permutations

We use the following notation: the product αβ of two permutations on some set S is the permu-
tation αβ(s) = β(α(s)) where s ∈ S.

Theorem 5.1. There is a f.g. group of computable permutations with a Π0
1-universal word problem.

Proof. Given a Π0
1 equivalence relation E, by [20, Prop. 3.1] there is a computable binary function

f such that
x E y ⇔ (∀n)[f(x, n) = f(y, n)].

The construction of f shows that f(x, n) ≤ x for each x, n.
Fix now a Π0

1-universal equivalence relation E (for the existence of such an equivalence relation
see [20]) and a corresponding function f as above. Via a computable bijection we identify Z × ω
with ω. We think of the domain of our computable permutations as a disjoint union of pairs of
“columns”

Ci
x = {2x+ i} × ω,

where i = 0, 1, x ∈ Z for the rest of this proof.
The first two of the three computable permutations σ, τ, α we are about to define do not depend

at all on f . The permutation σ shifts Ci
x to Ci

x+1:

σ(〈2x + i, n〉) = 〈2x+ 2 + i, n〉.

The permutation τ exchanges Ci
0 with C1−i

0 and is the identity elsewhere:

τ(〈i, n〉) = 〈1− i, n〉.

We now define a computable permutation α coding f in the sense that there exists a fixed com-
putable sequence (tx(α, σ, τ))x∈ω of words in the free group generated by the symbols α, σ, τ , such
that for each x, y ∈ ω,

(5.1) ∀n f(x, n) = f(y, n) ⇔ tx = ty,

where equality tx = ty is in the group generated by the three permutations. For each x, n, the
permutation α has a cycle of length f(x, n) in the interval n(x+ 1), . . . , (n + 1)(x + 1) − 1 of C0

x.
Thus, for each x, n ∈ ω and k ≤ x,

α(〈2x, n(x + 1) + k〉) =











〈2x, n(x+ 1) + k + 1〉 if k < f(x, n)

〈2x, n(x+ 1)〉 if k = f(x, n)

〈2x, n(x+ 1) + k〉 otherwise,

and α is the identity on the remaining columns. We now define the terms tx for x ∈ ω. The
permutation tx(α, σ, τ) will only retain the encoding of the values f(x, n), and erase all other
information. It also moves this information to the pair of columns C0

0 , C
1
0 . In this way we can

compare the values f(x, n) and f(y, n) applying tx and ty to α, σ, τ .
Recall that for elements u, t of a group we write Cj(u, t) = t−1ut. We let

tx = Cj(α, σ−x)τ Cj(α−1, σ−x).

Let αx be the permutation given by α(〈2x, y〉) = 〈2x, αx(y)〉. Using that everything cancels except
what α codes on the column C0

x, we obtain

tx(〈u, y〉) =











〈u, y〉, if u 6= 0, 1,

〈1, αx(y)〉, if u = 0,

〈0, (αx)
−1(y)〉, if u = 1.
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By the definition of α it is now clear that (5.1) is satisfied, and thus our Π0
1-universal E is reducible

to the word problem of G. �

In the area of computational complexity, one writes input numbers in binary and considers time
bounds compared to their length. A quadratic time variant G of the function f encoding the
equivalence relation E is obtained in [20, Theorem 3.5]. Some modifications to the proof above
yield three permutations that are polynomial time computable, as are their inverses, and they still
generate a group with Π0

1-universal word problem.
Independently Fridman [17], Clapham [9] and Boone [6, 7, 8] proved that each c.e. Turing degree

contains the word problem of a f.p. group. (Here and throughout next theorem and its proof, “word
problem” is meant classically as the equivalence class of the identity element). Later Collins [10]
extended this to c.e. truth table degrees. In contrast, Ziegler [30] constructed a bounded truth-
table degree that does not contain the word problem of a f.p. group. For f.g. groups with Π0

1 word
problem, Morozov [26] has shown that there is a two-generator group which is not embeddable into
the group of computable permutations of ω.

Using the methods of the foregoing result, here we obtain an analog of the results by Fridman,
Clapham, Boone and Collins for f.g. groups of computable permutations. In fact we can choose the
permutations of a special kind.

Let us call a permutation σ fully primitive recursive if both σ and σ−1 are primitive recursive.
Note that the fully primitive recursive permutations form a group.

Theorem 5.2. Given a Π0
1 set S we can effectively build fully primitive recursive permutations

β, σ, τ such that the group G generated by them has word problem in the same truth-table degree
as S.

Proof. In this proof we work with an array of columns indexed by integers. Let σ(〈x, n〉) = 〈x+1, n〉
(x ∈ Z, n ∈ ω) be the shift to the next column. Let τ consist of the 2-cycles (〈0, 3t+1〉, 〈0, 3t+2〉)
for each t: in other words, τ(〈0, 3t + 1〉) = 〈0, 3t + 2〉, τ(〈0, 3t + 2〉) = 〈0, 3t + 1〉 for all t, and τ is
the identity elsewhere.

Let S be a given Π0
1 set, and let Sc = ωrS be the complement of S. First we show we may assume

that, up to m-equivalence, Sc is the range of a 1-1 function with graph effectively given by an index
for a primitive recursive relation. We can uniformly replace Sc by {2n : n ∈ Sc}∪ {2n+1: n ∈ ω},
so we may assume that Sc is infinite. From a c.e. index for Sc we may effectively obtain an
index e of a Turing machine that computes a 1-1 function f with range Sc. Thus, for all x we
have f(x) = U(µy. T (e, x, y)), where U and T are respectively a primitive recursive function and
a primitive recursive predicate as in the Kleene Normal Form Theorem. Consider the primitive
recursive predicate P (e, x, y), which holds if and only if T (e, x, y)& ∀z < y [¬T (e, x, z)]. Using the
standard primitive recursive pairing function 〈. , .〉, let g(〈x, y〉) = 2U(y) if P (e, x, y) holds, and
g(〈x, y〉) = 2〈x, y〉 + 1 otherwise. Clearly g is a 1-1 function with primitive recursive graph. The
range of g is {2n : n ∈ Sc} ∪ {2〈x, y〉 + 1: ¬P (e, x, y)}, which is m-equivalent to Sc.

Next we code the graph of g into a fully primitive recursive permutation β as follows: if g(t) = x,
then β has a 2-cycle (〈x, 3t〉, 〈x, 3t + 1〉). Thus, among the three permutations only β depends on
S. Clearly β is fully primitive recursive uniformly in a c.e. index for Sc.

Let G be the group of permutations generated by σ, τ, β. For x ∈ ω, we can picture Cj(β, σ−x)
as the “shift” of β by x columns to the left. The set S is many-one below the word problem of G
because

x ∈ S ⇔ [Cj(β, σ−x), τ ] = 1,

where [u, v] = u−1v−1uv is the usual commutator of u, v. To see this, first note that if y 6= 0, then
Cj(β, σ−x)(〈y, t〉) still lies in the y-th column, and thus Cj(β, σ−x)τ(〈y, t〉) = τ Cj(β, σ−x)(〈y, t〉),
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as τ is the identity on the y-th column. Now, if x ∈ S, then β is the identity on the x-th column
and thus Cj(β, σ−x) is the identity on the 0-th column, giving [Cj(β, σ−x), τ ] = 1; if x /∈ S, and t is
such that g(t) = x, then Cj(β, σ−x)τ(〈0, i〉) 6= τ Cj(β, σ−x)(〈0, i〉), for every i ∈ {3t, 3t + 1, 3t+ 2}.

It remains to show that the word problem of G is truth-table below S. We note that τ and β
are involutions. For any x ∈ Z we write βx = Cj(β, σ−x) and τx = Cj(τ, σ−x). It is easy to see that
[βx, βy] = 1 and [τx, τy] = 1, for all x, y. Suppose now that a word w ∈ F (β, σ, τ) (the free group on
{β, σ, τ}) is given; we have to decide whether w = 1 in G by accessing the oracle S in a truth-table
fashion. If the exponent sum of σ in w (i.e. the sum of all exponents of occurrences of σ in w) is
nonzero then w 6= 1 in G. Otherwise, using the observations above, we can effectively replace w by
an equivalent word

(5.2) (
∏

x∈L1

βx)(
∏

u∈M1

τu)(
∏

x∈L2

βx)(
∏

u∈M2

τu) . . . (
∏

x∈Lk

βx)(
∏

u∈Mk

τu)

where the the Li and Mi are effectively given finite sets of distinct integers, which are nonempty
except for possibly L1 or Mk. Let L =

⋃

i Li and M =
⋃

iMi.
Notice that a product βxτu produces a 3-cycle in column −u precisely when x−u ∈ Sc, otherwise

βxτu coincides on C−u with τu. For every x, u let w(x, u) be the word obtained from (5.2) by deleting
all elements different from βx, τu, and cancelling all occurrences of subwords βxβx and τuτu. Since
g is 1-1, we have that the cycles of βx and βy are disjoint for any x 6= y: therefore the permutations
corresponding to w(x, u) and w coincide in the interval {〈−u, 3t〉, 〈−u, 3t + 1〉, 〈−u, 3t + 2〉} of the
column C−u, where g(t) = x.

To decide whether the word in (5.2) is equal to 1 in G, we give a procedure to decide whether
the permutation corresponding to w is the identity on each column C−u. First notice that w fixes
all columns C−u with u /∈ M if and only, for all x ∈ L, the number of occurrences of βx in (5.2)
is even. Indeed, if u /∈ M and x ∈ L, then w(x, u) is a word consisting of only occurrences of βx,
which by cancellation is either empty (if the number of occurrences is even) or equal to βx: if the
former case happens for every x ∈ L, then every column C−u with u /∈ M remains fixed; if x ∈ L
satisfies the latter case, and u /∈M is such that x− u ∈ Sc, then w does not fix C−u, in which case
we output w 6= 1 in G.

If we have already ascertained that all columns C−u remain fixed for all u /∈ M , then take any
u ∈M , and for every x ∈ L, perform the following check querying the oracle:

(1) if x− u /∈ Sc then on the column C−u the permutation corresponding to w(x, u) coincides
with the one corresponding to the word obtained from it by cancelling all occurrences of
βx; in this case, state that C−u is x-fixed if and only if the length of the resulting word is
even;

(2) if x − u ∈ Sc and the number of occurrences in w(x, u) of the subword βxτu is a not a
multiple of 3, then the 3-cycles produced by βx and τu do not cancel each other: state in
this case that C−u is not x-fixed ; otherwise, cancel from w(x, u) all occurrences of βxτu,
and state that C−u is x-fixed if and only if the resulting word is empty.

If for all x ∈ L we have stated that C−u is x-fixed, then we conclude that C−u is fixed under the
permutation corresponding to w.

If for all u ∈M , we have concluded that C−u is fixed, then we output that w = 1 in G; otherwise
we output w 6= 1 in G. An output will be achieved no matter what the oracle is, so the reduction
is truth-table. �

It would be interesting to determine the complexity of isomorphism and embedding for f.g.
groups of recursive permutations. Totality of a function described by a recursive index is already
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Π0
2 complete, so it might be more natural to restrict oneself to fully primitive recursive permutations

as defined above. It is a Π0
1 condition of an index consisting of a pair of indices (e, i) for primitive

recursive functions (one for the potential permutation, one for its potential inverse) whether it
describes such a permutation.

In both settings, isomorphism and embedding are Σ0
3 relations between finitely generated groups

given by finite sets of indices for the generators. For an example where the isomorphism relation
has an intermediate complexity, suppose the domain is Z, and consider the subgroup G of the
group of computable permutations generated by the shift. The problem whether a group generated
by finitely many fully primitive recursive permutations is isomorphic to G is Π0

2-hard. To see this,
note that infinity of a c.e. set We is Π0

2-complete. Build a fully primitive recursive permutation
pe by adding a cycle of length n involving large numbers when n enters We. Then the subgroup
generated by pe is isomorphic to G if and only if pe has infinite order, if and only if We is infinite.
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[30] M. Ziegler. Ein rekursiv aufzählbarer btt-Grad, der nicht zum Wortproblem einer Gruppe gehört. Z. Math. Logik
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