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Abstract

In previous works, by importing ideas from game semantics (notably Faggian-Maurel-Curien’s
ludics nets), we defined a new class of multiplicative/additive polarized proof nets, called J-proof

nets. The distinctive feature of J-proof nets with respect to other proof net syntaxes, is the possibility
of representing proof nets which are partially sequentialized, by using jumps (that is, untyped extra
edges) as sequentiality constraints. Starting from this result, in the present work we extend J-proof
nets to the multiplicative/exponential fragment, in order to take into account structural rules: more
precisely, we replace the familiar linear logic notion of exponential box with a less restricting one
(called cone) defined by means of jumps. As a consequence, we get a syntax for polarized nets where,
instead of a structure of boxes nested one into the other, we have one of cones which can be partially

overlapping. Moreover, we define cut-elimination for exponential J-proof nets, proving, by a variant
of Gandy’s method, that even in case of “superposed” cones, reduction enjoys confluence and strong
normalization.

Introduction

Since its inception in 1987 [Gir87], Linear Logic has proved to be a useful tool to enlighten and deepen
the relation between proofs and programs, in the framework of Curry-Howard isomorphism.

Born from a fine semantical analysis of intuitionistic logic, Linear Logic (briefly LL ) provides a logical
status to the structural rules (weakening and contraction) of sequent calculus (due to the introduction
of the exponential connectives, ! and ? ) and splits the usual propositional connectives (“and”, “or”) in
two classes (the additives &,⊕, and the multiplicatives ⊗,O).

The most relevant byproducts of such a refinement are a logical characterization of resource-bounded
computation, and the introduction of a graph-theoretical syntax for LL, (the proof nets), first introducing
parallelism in proofs representation.

Due to its huge expressive power (full second-order LL being as powerful as system F [Gir72]),
Linear Logic has been a central topic of research over the last two decades, for different aims and
purposes. From one side, a lot of work has been done to analyze the syntactical and semantical structure
of LL itself (for a detailed survey, see [Gir06],[Gir07]). From the other side, a variety of subsystems
and systems derived from LL have been considered, in order to characterize specific properties (as for
example polytime bounded computation, see [Gir98], [Laf04]): among them, a remarkable place is held
by polarized systems, which have been extensively studied by Olivier Laurent (see [Lau02]).

The cornerstone of these systems is the distinction (defined by Girard in [Gir91b], following the work
of Andreoli [And92]) inside LL between negative and positive formulas, according to two dual syntactical
properties: reversibility and focalization, respectively. A polarized system is a system restricted only to
polarized formulas.

The discovery of the positive/negative duality has then contributed in an essential way to the achieve-
ment of many important results inside the proofs-as-programs paradigm, notably:

• the exploitation of the computational content of classical proofs, in particular its relation with the
λµ-calculus (see [Gir91b], [LR03], [Lau03]);

• the development of game models for linear logic, with proofs of injectivity and full completeness
(see [Lau04],[Lau05]);
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Figure 1: Two “parallel” terminal ⊗ rules

• the reduction of non-determinism in linear logic proof search, establishing a new paradigm for
linear logic programming (see [And02],[FM08], [Mil95]);

• the birth of ludics, a pre-logical framework giving an interactive account of logic (see [Gir01],
[FH02], [Ter08]);

• the advances in the search for a logical characterization of concurrency, by the interpretation of
π-calculus in polarized systems (see [EL10],[HL10],[FP07]).

Nonetheless, the benefits of polarized systems have a cost: the loss of parallelism.
As a matter of fact, the restriction to polarized formulas imposes a strict alternation in proofs between

a “positive” phase (introducing positive formulas) and a “negative” one (introducing negative formulas),
with the exponentials being in charge of switching between polarities; eventually, such a discipline makes
polarized systems sequential in a strong sense.

As a further evidence, the usual proof net syntax (which represents the ! rule by means of a box, the
correspondent of a sequent in proof nets syntax), in the framework of polarized systems, is no longer
able to represent two positive rules in parallel (as in Fig. 1)1 , such a configuration being the “core” of
the parallelism induced by proof nets in standard LL.

A lot of work has been done recently (mostly from the semantical side, see [AM99, HS02, Abr03,
Mel04, Mel05, MM07]) to try to free polarities from such a sequential framework. In [DG08, DGF06,
DG09], taking L-nets of Faggian-Maurel-Curien (see [FM05, CF05]) as a model, we proposed a framework
for polarized prof nets of the multiplicative and multiplicative additive fragment (called J-proof nets),
where partially sequentialized nets are allowed; our principal tool relies on the notion of jump, that is
untyped edges expressing sequentiality constraints, introduced by Girard in [Gir91a].

In the present work we extend the framework of J-proof nets to the multiplicative exponential frag-
ment: our principal result is the replacement of the familiar linear logic notion of exponential box with
a less restricting one (called cone) defined by means of jumps.

The main difference is that while exponential boxes satisfy a nesting condition (that is, any two
exponential boxes are either disjoint or included one into the other), cones can overlap (that is, the
intersection of two cones may not be empty, while neither of them is included in the other); in such a
way we recover the possibility of representing the configuration given in Fig. 1.

Moreover, cones are computationally meaningful ; that is, with respect to cut-elimination, they behave
exactly like boxes, allowing to isolate the part of the net to be erased or duplicated during structural
reductions.

We stress that replacing boxes with less “sequential” structures (i.e. cones) is quite a novelty, since
exponential boxes are commonly believed to be the last, impregnable, stronghold of sequent calculus
inside the proof nets syntax; the fact that such an operation naturally arises in a framework (the polarized
one) usually considered strongly sequential represents another, unexpected surprise.

Related and future works

In the present paper we replace, in the setting of polarized linear logic, the explicit notion of exponential
box with the implicit notion of cone, which is retrieved by the introduction of jumps. A similar approach
is used also by Accattoli and Guerrini in [AG09], with the introduction of Λ-nets, a graph syntax for

1This happens because, w.r.t. the configuration given in Fig. 1, in polarized proof nets above the left premise of the
right hand ⊗ (resp. the right premise of the left hand ⊗ ) eventually there will be a ! link a (resp. b); but then by the
usual ! box condition of proof nets, either the left hand ⊗ is included in the box associated with a, or the right hand ⊗ is
included in the box associated with b, so that the two ⊗ cannot be at the same “level” See [Lau02] for more details.
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λ-terms, where jumps are used to represent sub terms which have a non-linear behavior (i.e. boxes). The
main difference between the present work and the one of Accattoli-Guerrini is the role of the nesting
condition: we introduce cones in order to generalize exponential boxes, relaxing the nesting condition;
Accattoli and Guerrini use jumps to reconstruct standard exponential boxes, accepting nesting condition
as it is.

The notion of cone seems to be linked to other traditional notions coming from proof nets, like the ones
of empire and kingdom (see [BVDW95] for definitions), as we pointed out in [GF08]; such connections
deserve to be properly investigated. In this context, several interesting observations about jumps, boxes
and kingdoms in a polarized setting are contained in Accattoli’s PhD thesis (see [Acc11]).

We are confident that the semantical analysis of J-proof nets (which we postpone to future work),
both static (the family of coherent spaces based models) and dynamic (games, and especially the recent
advances on exponential ludics, see [BF09]), will shed new light on the nature of cones and its computa-
tional meaning. A good tool to perform such analysis may be the notion of thick subtree, introduced by
Pierre Boudes in [Bou09] to relate static and dynamic semantics of polarized proof nets.

Outline of the paper

The paper is divided in the following six sections:

Section 1: we provide the reader with basic notions concerning polarized systems, graphs and rewriting.

Section 2: we present the syntax of J-proof nets, and the fundamental notion of cone, analogous to the
one of exponential box in our setting. Basically, we will define cones as upward-closed subgraphs
of a net, retrieved from the sequentialization order induced by jumps.

Section 3: we define a correctness criterion and prove sequentialization for J-proof nets: the cri-
terion will take into account the presence of cones (as the correctness criterion for multiplica-
tive/exponential proof nets takes into account the presence of boxes).

Section 4: we define cut-elimination on J-proof nets, and prove some properties of reduction, namely
weak normalization and local confluence. The portion of a J-proof net to be erased or duplicated
during reduction will be determined using cones.

Section 5: using a variation of Gandy’s method, we prove strong normalization and confluence of
reduction on J-proof nets.

Section 6: the final section is dedicated to concluding remarks and observations; we will discuss about
axioms, the role of the Mix rule for the confluence result, and the relation between J-proof nets
and polarized proof nets.

1 Preliminaries

First we present the system MELLP (multiplicative exponential polarized linear logic) of Laurent (see
[Lau02]); then we modify it to get another system (called multiplicative exponential hypersequentialized
calculus, briefly MEHS), based on the hypersequentialized calculus of Girard (see [Gir00]), which will
serve better our purpose. The rest of the section is a reminder of some basic notions of graph and
rewriting theory.

1.1 Polarization

A multiplicative/exponential polarized formula is a formula obtained by the following grammar (where
n ∈ N and X range over an enumerable set of propositional variables):

N ::= X⊥ | O
n
i=1(?Pi)

P ::= X | ⊗n
i=1(!Ni)

X and X⊥ will be called atoms ; if n = 1, then we denote ⊗n
i=1(!Ni) by !N (resp. O

n
i=1(?Pi) by ?P );

if n = 0, then we denote ⊗n
i=1(!Ni) by 1 (resp. O

n
i=1(?Pi) by ⊥).
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Duality is defined as follows:

P⊥⊥ = P

⊗n
i=1(!Ni)

⊥ =O
n
i=1(?(N

⊥
i ))

O
n
i=1(?Pi)

⊥ = ⊗n
i=1(!(P

⊥
i ))

Remark 1 Our definition of polarized formulas relies on the notion of synthetic connective ([Gir99]):
that is, given a multiset of negative formulas {N1, . . . , Nn} (resp. of positive formulas {P1, . . . , Pn}) by
⊗n

i=1(!Ni) (resp. O
n
i=1(?Pi)) we indicate the formula which corresponds to all possible combinations of

the formulas {!N1, . . . , !Nn} (resp. {?P1, . . . , ?Pn}) by the usual binary ⊗ (resp. O) connective of linear
logic, equivalent modulo associativity of ⊗ (resp. O) and neutrality of the multiplicative constant 1 (resp.
⊥) w.r.t. ⊗ (resp. O).

Given a polarized formula A , we call immediate positive (resp. negative) subformulas of A:

• A, if A is a positive (resp. negative) formula;

• Pi (resp. Ni) if A =O
n
i=1(?Pi) (resp. ⊗n

i=1(!Ni)).

Let Γ be a multiset of polarized formulas: by O(Γ) we denote the formula O
n
i=1(?Pi) where {P1, . . . , Pn}

is the multiset containing, for each formula A ∈ Γ, all the immediate positive subformulas of A.
By N (resp. P) we denote a multiset of negative (resp. positive) formulas.
By ?P we denote the multiset containing ?P for every formula P ∈ P .
The more delicate issue concerning polarities is the polarization of atoms, since, while non-atomic

formulas are naturally polarized, the polarity assigned to atoms is arbitrary. For the sake of simplicity
then, in the rest of the paper we will always consider polarized formulas which do not contain atoms ; we
will consider the wider picture, including also atoms, in Section 6.1.

1.1.1 Multiplicative Exponential Polarized Linear Logic (MELLP )

The sequent calculus of the multiplicative and exponential fragment of polarized linear logic is obtained
by restricting LL to polarized formulas, and allowing structural rules on negative formulas :

⊢ Γ, ?P1, . . . , ?Pn
O

⊢ Γ,On
i=1(?Pi)

⊢ Γ1, !N1 ⊢ Γn, !Nn
⊗

⊢ Γ1, . . . ,Γn,⊗n
i=1(!Ni)

⊢ N , N
!

⊢ N , !N

⊢ Γ, P
d

⊢ Γ, ?P

⊢ Γ
w

⊢ Γ, N
⊢ Γ, N, . . . , N

c
⊢ Γ, N

⊢ Γ, P ⊢ ∆, P⊥

⊢ Γ, ∆
(Cut)

The structure of the calculus verifies the following property (see [Lau02]):

Proposition 1 Every provable sequent in MELLP contains at most one positive formula.

Remark 2 The 0-ary cases of the O (resp. ⊗) rules correspond to the usual rules for the multiplicative
constants of Linear Logic, as depicted below:

⊢ Γ
⊥

⊢ Γ,⊥
1

⊢ 1
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1.1.2 Multiplicative Exponential Hypersequentialized Logic (MEHS)

In order to better enlighten the hidden sequential structure induced by polarities, we switch to another
polarized sequent calculus , based on the the hypersequentialized calculus, introduced by Girard in [Gir00].
Such a calculus is obtained from the previous one, by clustering together the rules introducing formulas
of the same polarity: ⊗ and promotion rules are clustered into a unique positive rule, while O, dereliction
and structural rules are clustered into a single negative rule. In this way we obtain a calculus with only
two, strictly alternating, “logical” rules : the positive and the negative one.

The sequent calculus of the multiplicative and exponential fragment of hypersequentialized logic
(briefly MEHS) is depicted below; such a calculus has the general constraint that each sequent can
contain at most one negative formula.

⊢ Γ1, N1 . . . ⊢ Γn, Nn

⊢ Γ1, . . . ,Γn, ⊗n
i=1(!Ni)

(+)
⊢ Γ, P 1

1 , .., P
k1
1 , . . . , P 1

n , .., P
kn
n

⊢ Γ, O
n
i=1(?Pi)

(−)

⊢ Γ, P ⊢ ∆, P⊥

⊢ Γ, ∆
(Cut)

We stress that in the − rule:

• n, k1, . . . , kn,∈ N;

• P j
i = P j′

i , for i ≤ n and j, j′ ≤ ki.

Notice that in case ki = 0, ?Pi is a weakened formula; in case ki = 1, ?Pi is a derelicted formula; in
case ki > 1, ?Pi are contracted formulas.

Due to the clusterization of rules, the constraint on sequents inMEHS (at most one negative formula)
is reversed with respect to MELLP (see Proposition 1). Nevertheless, provability in MELLP and in
MEHS are equivalent (modulo translations which allow to switch from the constraint of MELLP to
the one of MEHS, and vice versa):

Proposition 2 For every proof π of a sequent ⊢ Γ in MELLP there exists a proof π′ of ⊢O(Γ) in
MEHS.

Proof. The proof is by induction on the height of π; since cut-elimination holds for MELLP , we can
suppose π cut-free (so by induction π′ is cut-free too). We have different cases depending on the last rule
r of π: we show only the case where r is a ! rule, the others being either trivial or similar to this one.
If r is a ! rule, then we apply the induction hypothesis to the proof π0 of its premise ⊢ N , N obtaining
a cut free proof π′0 of ⊢O(N , N) in MEHS. The last rule of such a proof must be a − rule having as

premise the proof π′1 of ⊢ P1, . . . ,Pm, P 1
1 , . . . , P

k1
1 , . . . , P 1

n , . . . , P
kn
n , where each P

kj

i (resp. each Pi) is
an immediate positive subformula of N (resp. a multiset of immediate positive subformulas of a formula
in N ). To get π′ we apply to the conclusion of π′1 the following sequence of rules (in this order): first a
− rule having as conclusion ⊢ P1, . . . ,Pm, N , then a + rule with conclusion ⊢ P1, . . . ,Pm, !N and finally
a − rule with conclusion ⊢O(N , !N).

�

Proposition 3 For every proof π of a sequent ⊢ P , N in MEHS (where N is the unique negative
formula of the sequent, if it exists), there exists a proof π′ of ⊢?P , N in MELLP .

Proof. The proof is a simple induction on the height of π, and we leave its verification to the reader.
�

We must remark that in MEHS in general cut-elimination does not hold: this is not a real problem,
since the only reason behind this limitation lies in the clusterization of the structural rules into the
negative one.

A simple way to restore cut elimination is to restrict the focus on closed proofs. By closed proof we
mean all proofs of MEHS whose final sequent does not contain positive formulas; actually this is not a
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true restriction, since it is straightforward that every proof π of a sequent ⊢ Γ of MEHS can be turned
into a closed proof π′ of ⊢O(Γ) by properly adding a final − rule to π (or by properly modifying the final
− rule of π, if this is the case), so nothing is lost in term of provability.

Combining the closure of proofs with cut-elimination we can state the following:

Proposition 4 For every proof π of a sequent ⊢ Γ in MEHS, there exists a cut-free proof π′ of ⊢O(Γ)
in MEHS.

Proof. We will prove that in Section 4.3.2. �

We extend MEHS with the following rule, called Mix 2 :

⊢ P1 . . . ⊢ Pn
Mix

⊢ P1, . . . ,Pn

The 0-ary case of the Mix rule corresponds to the introduction of the empty sequent; in this case the
following rule becomes derivable:

Dai
⊢ N

We shall make clearer in Section 6.2 the reason behind the introduction of the Mix rule.

1.2 Basic notions on graphs

A directed graph G is an ordered pair (V,E), where V is a finite set whose elements are called nodes,
and E is a set of ordered pairs of nodes called edges ; if 〈a, b〉 belongs to E, we say that there is an edge
going from the node a to the node b in G.

We say that an edge from a to b is emergent from a and incident on b; b is called the target of x and
a is called the source. Two nodes a, b share an edge x when x is emergent from a and incident on b (or
vice versa).

Given a directed graph G = (V,E) and a subset V ′ of V the restriction of G to V is the directed
graph (V ′, E′), where E′ is the subset of E containing only elements of V ′.

Given a directed graph G a path (resp. directed path) r from a node b to a node c is a sequence
〈a1, . . . , an〉 of nodes such that b = a1, c = an, and for each ai, ai+1, there is an edge x either from ai
to ai+1, or from ai+1 to ai (resp. from ai to ai+1); in this case, x is said to be used by r; moreover, we
require that all nodes in a path from a node b to a node c are distinct, with the possible exception of b
and c.

A graph G is connected if for any pair of nodes a, b of G there exists a path from a to b.
A cycle (resp. directed cycle) is a path (resp. directed path) 〈a1, . . . , an〉 such that a1 = an.
A directed acyclic graph (d.a.g.) is a directed graph without directed cycles.
When drawing a d.a.g we will represent edges oriented up-down so that we may speak of moving

downwardly or upwardly in the graph; in the same spirit we will say that a node is just above (resp.
hereditary above) or below (resp. hereditary below) another node.

A d.a.g. with pending edges is a d.a.g. G where edges with a source but without a target are allowed.
We call module a d.a.g with pending edges G, where edges with a target but without a source are

allowed.
We call typed d.a.g. a d.a.g. whose edges are possibly labelled with formulas (called types); we call

such edges typed.
We call typed d.a.g. with ports a typed d.a.g. where for each node b the typed edges incident on b

are partitioned into subsets called ports, in such a way that if two edges belong to the same port of b,
they have the same type.

When drawing a typed d.a.g. with ports, we will denote ports by black spots, unless (for simplicity’s
sake) when a port contains a single edge.

We recall that the transitive closure of a d.a.g. G induces a strict partial order <G on the nodes of
G, defined as follows: a <G b iff there is and edge from b to a in the transitive closure of G.

2Admitting such a rule corresponds, in proof net syntax, to discarding connectedness from correction graphs (see
[Gir96],[TdF00]).
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We call immediate predecessor of a node b, a node a such that, in the order <G associated with G,
a <G b, and there is no c such that a <G c and c <G b. Similarly we can define the notion of predecessor,
immediate successor and successor.

A strict order on a set is arborescent when each element has at most one immediate predecessor.

1.3 Preliminaries on rewriting theory

Let
x
−→ be a binary relation on a set A; by

x
−→∗ we denote the reflexive/ transitive closure of

x
−→. We

say that an element R of A is in normal form for
x
−→, whenever there is no R′ ∈ A with R

x
−→ R′; R is

weakly normalizable for
x
−→, whenever there is an R1 ∈ A such that R

x
−→∗ R1, and R1 is in normal form

for
x
−→; R is strongly normalizable for

x
−→ whenever there is no infinite sequence (Ri)i∈N ∈ A such that

R0 = R and Ri
x
−→ Ri+1. We denote by WNx and SNx the elements of A which are respectively weakly

normalizable and strongly normalizable for
x
−→. Given a set B ⊆ A if B ⊆ WNx (resp. B ⊆ SNx) we

say that
x
−→ is weakly normalizing (resp. strongly normalizing) for B. We say that the relation

x
−→ is

locally confluent for B ⊆ A if for every R,R1, R2 ∈ B such that R1
x
←− R

x
−→ R2 there exists an R3 ∈ B

such that R1
x
−→∗ R3∗

x
←− R2; we say that

x
−→ is confluent for B ⊆ A if for every R,R1, R2 ∈ B such that

R1∗
x
←− R

x
−→∗ R2 there exists an R3 ∈ B such that R1

x
−→∗ R3∗

x
←− R2. We say that the relation

x
−→

is increasing for B ⊆ A if there is a mapping | − | from B to integers such that for all R1, R2 ∈ B, if

R1
x
−→ R2 then |R1| < |R2|.

Proposition 5 (Gandy) If a relation
x
−→ is increasing, confluent and weakly normalizing on a set A,

then it is strongly normalizing on A.

Proof. See [Gan80]. �

Proposition 6 (Bezem-Klop) If a relation
x
−→ is increasing, locally confluent and weakly normalizing

on a set A, then it is strongly normalizing on A.

Proof. See [Ter03]. �

Lemma 1 (Newman) If a relation
x
−→ is strongly normalizing and locally confluent on a set A, then it

is confluent on A.

Proof. See [Ter03]. �

2 J-nets

Definition 1 (J-net) A J-net is a typed d.a.g. with ports and with pending edges, whose edges are
possibly typed by polarized formulas and whose nodes (also called links) are labelled by one of the symbols
+,−, cut. An edge typed by a positive (resp. negative) formula will be called positive (resp. negative)
edge.

The typed edges incident on a link are called premises and the typed edges emergent from a link are
called conclusions of the link; a pending edge is called a conclusion of the proof structure and its source
is called a terminal link.

The label of a link imposes some constraints on both the number and the types of its premises and
conclusions:

• the cut-link has no conclusions and two premises labelled by dual formulas, each of them belonging
to a distinct port;

• the negative link (or − link) has m ≥ 0 ordered ports and one conclusion. If the type of the edges
belonging to the i-th port is Pi then the conclusion is labelled by O

n
i=1(?Pi), for n ≥ m;

• the positive link (or + link) has n ≥ 0 ordered ports, each containing a unique premise, and
one conclusion. If the i-th premise is labelled by the formula Ni then the conclusion is labelled by
⊗n

i=1(!Ni).
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cut

P P⊥

N1 Nn

+ -

. . .

+ -

. . .. . . . . .

O
n
i=1(?Pi)

Pkm
mP

k1
1P 1

1 P 1
m

⊗
n
i=1(!Ni)

Figure 2: MEHS links

1⊥

! ⊥

−

+
−

+

+

+ +

− −

⊥

11
?1

⊗(! ⊥, !(?1))

O(?1, ?1, ?(⊗(! ⊥, ! ⊥)))

Figure 3: an example of a J-net

Moreover:

1. we allow untyped edges, called jumps, oriented from positive to negative links (we will usually draw
them as dashed lines);

2. we impose the constraint that a J-net has at most one negative conclusion.

2.1 Order associated with a J-net

The role of jumps in J-net is to express a sequentiality constraint: if a positive link a jumps on a negative
link b, this means that a “follows” b, so (bottom-up) we cannot access a unless we have accessed b first.
Together with the natural notion of sequentiality induced by the premise/conclusion structure of links,
this allows to retrieve an order (denoted by ≺R) between links of a J-net R. In case R is cut free, such
an order (denoted by ≺R) coincides with the order <R associated to R as a d.a.g.. In presence of cut
links, in order to be able to express sequentiality constraints on them, we identify any cut link c with
the positive link just above it 3 (see Fig. 4).

More formally, we define the notion of order associated with a J-net R (≺R) in the following way:

• we take the order <R associated to R as a d.a.g. ;

• starting from it we define a pre-order ≤R in the following way:

1. if b is a cut link and b shares a positive edge with a link a, then a ≤R b and b ≥R a;

2. for all other links a, b if a <R b then a ≤R b;

• the order ≺R associated to the J-net R is the quotient of the pre-order ≤R so obtained.

3This coincides with the standard (in the setting of linear logic proof nets) identification of cut links with ⊗ links during
sequentialization, combined with the clusterization of ⊗’s in MEHS.
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P P⊥

Cut

+

Figure 4: Identification of cut links

⊥

! ⊥

−

+
−

+

+

+ +

− −1
1

?1

⊗(! ⊥, !(?1))

1 ⊥

O(?1, ?1, ?(⊗(! ⊥, ! ⊥)))

Figure 5: Two cones of a J-net

2.2 Cones

Now we are in the position to introduce the notion of cone, which replaces, in the setting of J-nets, the
familiar notion of linear logic exponential box.

Definition 2 Given a J-net R, the cone of a negative edge a (denoted by Ca
R) conclusion of a node w

is the restriction of R to the set {b ∈ R;w ≺R b} ∪ {w} ; an edge x 6= a is said to be on the border of
Ca

R iff x is emergent from a node b such that b ∈ Ca
R and either x is a conclusion of R, or x is incident

on a node c in R s.t. c /∈ Ca
R.

Proposition 7 Given a negative edge a of R, if an edge belongs to the border of Ca
R, then its source is

a positive link; in particular all typed edges in the border of Ca
R are labelled by positive formulas.

Proof. Suppose that there is an edge in the border of Ca
R whose source is a negative link: then it is

the conclusion of a negative link n. The only way for n to be in Ca
R is to be above a positive link which

belongs to Ca
R (since n is negative and only positive links can jump); in this case n cannot be in the

border of Ca
R. �

Given an edge x (resp. y) emergent from a positive link b (resp. c) we denote by x ‖ y the fact that
x, y are both in the border of Ca

R for some negative edge a; by b ‖ c we will denote the fact that b, c are
sources of edges belonging to the border of the same cone.

Given a J-net R, the inclusion relation on the set of cones in R, induced by ≺R, is obviously a partial
order; moreover:

Remark 3 If the order ≺R associated with a J-net R is arborescent, then given any two negative edges
a, b of R, either Cb

R and Ca
R are included one into the other, either they are disjoint.

3 Correctness and sequentialization

3.1 J-nets and sequent calculus

Given an MEHS proof π and a J-net R, we say that R can be associated with π, if R can be inductively
decomposed in such a way that each step of decomposition of R corresponds to the writing down of a
rule of π. If a J-net R can be associated with a proof π of MEHS, we say that π is a sequentialization
of R.

Not all J-nets can be associated with proofs; to formally define the J-nets corresponding to MEHS
proofs, we introduce the notion of sequentializable J-net. The content of the following definitions is
straightforwardly adapted from [Lau99]:

9



Definition 3 (Sequentialization of a J-net) We define the relation “L sequentializes R in ε”, where
R is a J-net, L is a terminal link of R and ε is a set of J-nets , in the following way, depending from L:

• If L is a positive or a negative 0-ary link, and is the only link of R, then L sequentializes R into ∅;

• if L is a cut link, and if it is possible to split the graph obtained by erasing L into two J-nets R1, R2,
then L sequentializes R into {R1, R2};

• if L is a positive link with n premises, and if it is it is possible to split the graph obtained by erasing
L into n J-nets R1, . . . , Rn, then L sequentializes R into {R1, . . . , Rn} J-nets;

• if L is a negative link and when we erase L we obtain a J-net R0 then L sequentializes R in {R0}.

Definition 4 (Sequentializable J-net) A J-net R is sequentializable if one of the following holds:

• R is composed by a single connected component, and at least one of its link sequentializes R into a
set of sequentializable J-nets or into the empty set;

• R is composed by more than one connected component and each component is a sequentializable
J-net.

Proposition 8 If a J-net R is sequentializable, there exists a proof π of MEHS, such that π is the
sequentialization of R.

Proof.
The proof is an easy induction on the number of links of R:

1. n = 1: the only node in R is either a positive 0-ary, to which we associate the proof
⊢ 1

(+) or a

0-ary negative link of conclusion N , to which we associate the proof
⊢ N

(Dai).

2. n > 1: suppose R contains one terminal negative link n with conclusion O
n
i=1(?Pi); then by defini-

tion of sequentializable J-net, n sequentializesR into a J-netR0 with conclusions Γ, P 1
1 , . . . P

k1
1 , . . . , P 1

n . . . P kn
n ;

by induction hypothesis there exists a proof π0 with conclusion Γ, P 1
1 , . . . P

k1
1 , . . . , P 1

n . . . P kn
n such

that π0 is the sequentialization of R0. We obtain the proof π which is the sequentialization of R,
by applying a (−) rule with conclusion Γ,On

i=1(?Pi) to π0.

Otherwise suppose R is composed by a single connected component; since it is sequentializable
there exists at least one link L which sequentializes R. Then we reason by cases:

• L is a cut link whose premises are typed by P, P⊥; then L sequentializes R into two J-
nets R1, R2 with conclusions respectively Γ, P and ∆, P⊥; by induction hypothesis there
exists a proof π1 with conclusion ⊢ Γ, P (resp. π2 with conclusion ⊢ ∆, P⊥) which is the
sequentialization of R1 (resp. R2). We obtain the proof π which is the sequentialization of R,
by applying to π1, π2 a cut rule with conclusion ⊢ Γ,∆;

• L is a positive link with conclusion ⊗n
i=1(!Ni); then L sequentializes R into R1, . . . , Rn J-nets

with conclusions respectively Γ1, N1 . . .Γn, Nn; by induction hypothesis there exist n proofs
π1, . . . , πn with conclusion respectively ⊢ Γ1, N1, . . . ⊢ Γn, Nn, such that π1, . . . , πn are sequen-
tializations respectively of R1, . . . , Rn. We obtain the proof π which is the sequentialization
of R, by applying a (+) rule with conclusion ⊢ Γ1, . . . ,Γn,⊗n

i=1(!Ni) to π1, . . . , πn.

Otherwise, R is composed by more than one connected component, and every connected component
R1, . . . , Rn is a sequentializable J-net; we conclude by applying induction hypothesis on R1, . . . , Rn,
getting π1, . . . , πn proofs. Since R has no negative conclusions, we obtain the proof π which is the
sequentialization of R by (a sequence of) application of the Mix rule on π1, . . . , πn.

�
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Figure 6: an example of a incorrect J-net

3.2 Correctness

Our purpose now is to define a correctness criterion, that is to isolate a geometrical property allowing
to characterize (with a non-inductive definition) all J-nets which are logically correct (that is, all J-nets
which correspond to MEHS proofs). Then we shall prove that the purely geometrical condition we
defined characterizes exactly all sequentializable J-nets: this will be called sequentialization theorem.

Definition 5 Given a J-net R, a flat path Π from a node a to a node b is a sequence 〈a1, . . . , an〉 of
nodes s.t. a1 = a, an = b and for each ai, ai+1 one of the two following holds:

• ai and ai+i share an edge; we call such an edge the edge shared by ai, ai+1 in Π.

• if ai and ai+i do not share an edge, then ai−1 and ai share an edge p : ai−1 ← ai in Π and p ‖ p′

for an edge p′ incident on ai+1; we call p′ the flat edge shared by ai, ai+1 in Π.

Moreover, we require all nodes in a flat path from a to b to be distinct (with the possible exception of
a, b). The edges used by a flat path Π are all the edges (resp. flat edges) shared by the elements of Π.

Informally, in a flat path, if we are going up through an edge which is in the border of some cone C,
we can continue the path by going down through any other edge in the border of C, even if inside C
there is no connection between them (we call such property the black box principle).

Definition 6 A switching path is a flat path which never uses two edges incident on the same negative
link (called switching edges); a switching cycle is a switching path 〈a1, . . . , an〉 such that a1 = an.

Definition 7 A J-net R is acceptable when it does not contain any switching cycle.

We point out that our definition of switching path “sees” cones (as it usually happens in standard
proof nets syntax with exponential boxes, see [Pag06]); in this way we can detect the switching cycle
of Fig. 6. Contrarily to what usually happens with standard polarized proof net, in our setting not all
cut-free proof structures are correct: this means that discarding boxes we have managed to enlarge our
object space.

Remark 4 The notion of acceptability above is sufficient to characterize all sequentializable J-nets (as
we will show later), but not to define cut elimination (for the same reasons why we cannot define cut-
elimination for full MEHS ). Reduction then is defined only for a particular class of acceptable J-nets
(as in MEHS), that we call J-proof nets, defined just below.

Definition 8 An acceptable J-net R is saturated, when for every negative link n and for every positive
link p of R adding a jump between n and p either creates a switching cycle or does not increase the order
≺R.

Remark 5 We stress that any acceptable J-net R can be turned into a saturated J-net by properly adding
jumps on it. In fact, if no jumps could be added to R (either because they do not preserve acceptability
of R or because they do not increase the order), R would already be saturated, by definition.

Definition 9 A J-net is closed when it has no positive conclusion.

Definition 10 A J-proof net R is a J-net s.t. is acceptable and closed.

11
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Figure 7: an example of a saturated J-net

3.3 Arborization

To prove sequentialization of acceptable J-nets we extend the method already used for the multiplicative
fragment: for a detailed explication and more examples on sequentialization by incremental insertion of
jumps on a proof net, we refer to [GF08].

The general design of the proof follows these steps:

• given an acceptable J-net R, we can obtain a saturated J-net R′ by adding jumps on R (Remark
5);

• the order associated with a saturated J-net is arborescent (Lemma 5);

• if the order associated with R′ is arborescent, R′ is trivially sequentializable (Proposition 9);

• if R′ is sequentializable, then R is sequentializable (Theorem 1).

The most delicate point is the emphasized one, which corresponds to the key arborization Lemma.
Due to the role cones play in the definition of acceptability (namely the black box principle), in order

to prove the arborization Lemma we need some preliminary lemmas; this is the main difference with
respect to the proof of sequentialization for the purely multiplicative case.

Lemma 2 Given an acceptable J-net R and two different premises a, b of a positive link c in R, Ca
R ∩

Cb
R = ∅.

Proof. The result follows from the simple observation that if the cones were not disjoint, there would
be a node d with two different directed paths from d to c, yielding a switching cycle, contradicting
acceptability. �

Lemma 3 Given an acceptable J-net R, a node b ∈ Ca
R for some negative edge a of R and a link c which

is source of an edge p in the border of Ca
R, there cannot be any switching path Π which starts from b,

and ends by entering c using p.

Proof. If Π enters c from p, then starting from b, at some moment Π must exit Ca
R by crossing an edge

p′ incident on some node b′. We take the sub path Π′ of Π starting from b′ and entering in c using p. If
p′ = a, then we trivially get a switching cycle (since, as c is in Ca

R there is directed path from c to b′ in
R).

Otherwise p ‖ p′, and then by definition of switching path we can extend Π′ using p′ as a flat edge to
get back to b′; but then we have a switching cycle. �

Lemma 4 Let R be an acceptable J-net, and a (resp. b) be a positive (resp. negative) link of R s.t. a, b
are incomparable w.r.t. ≺R and adding a jump from a to b yields a J-net R′ which is not acceptable.
Then there is a switching path Π in R which starts down from b and ends either:

1. with a;

2. or by entering from below into a positive link a′ in the border of a cone C such that a ∈ C and
b /∈ C.

12



Proof.
Obviously in R′ there is a switching path Π′ as the one we are searching; the switching cycle in R′

must use the jump a→ b, so either it enters into a, or it uses the jump a→ b as a flat edge (by entering
into a cone C such that a ∈ C and a → b is in the border of C in R′; in this case obviously b must not
belong to C) . We have to prove then that a path Π similar to Π′ exists also in R. First of all we observe
that for every premise c of a, by adding the jump a→ b the edges in the border of Cc

R becomes edges in
the border of Cb

R′ (resp. in the border of all cones C containing b in R); no other borders of cones are
modified. Now let us consider the first flat edge p : ai → ai+1 used by Π′ starting from b; since p is a
flat edge, p ‖ p′ in R′, for the edge p′ : ai−1 ← ai used by Π′ before p. Moreover, since p is the first flat
edge used by Π′, the sub path Π′′ of Π′ ending with p′ is a switching path also in R. Suppose that p ∦ p′

in R; we have two different cases:

1. in R, p′ is in the border of Cc
R for some premise c of a: then if we extend Π′′, entering into Cc

R

through p′ and then going down from c to a, we find Π;

2. in R, p′ is in the border of Cb
R (or in the border of a cone C containing b in R): but then by Lemma

3 we get a switching cycle in R, contradicting the fact that R is acceptable.

�

Lemma 5 (Arborization) Given an acceptable J-net R, if R is saturated then ≺R is arborescent.

Proof.
We reason by contraposition, showing that if ≺R is not arborescent, then R is not saturated (so there

exists a negative link c and a positive link b s.t. adding a jump between b and c doesn’t create switching
cycles and makes the order increase).

If ≺R is not arborescent, then in ≺R there exists a link a with two immediate predecessors b and c
(they are incomparable).

We distinguish two cases:

1. either b or c is terminal in R. Let us assume that c is terminal; then b cannot be terminal ( by
definition of J-net), and there is a positive link b′ which immediately precedes b. If we add a jump
between b′ and c, this doesn’t create switching cycles and makes the order increases, so R is not
saturated.

b′

b c

a

2. Neither b or c are terminal in R. Each of them has an immediate positive predecessor, respectively
b′ and c′.

In this case we proceed ad absurdum by assuming that R is saturated: then adding a jump, either
from b′ to c or from c′ to b creates a switching cycle.

Since by adding to R the jump b′ → c we break correctness, that means by Lemma 4 that there
is in R a switching path r1 = 〈c, c′....b〉, or a switching path r2 = 〈c, c′....b′′〉, for a positive link b′′

such that b′′ is in the border of some cone C of R, b ∈ C but c /∈ C, and r2 enters b′′ from below.
First we show that the former is the only possible case: If b′ ∈ C, then the edge a→ c must be on
the border of C (otherwise c ∈ C). But if a → c is on the border of C, then we can extend r2 by
going down to c using a→ c as a flat edge, and we get a switching cycle in R: this contradicts the
acceptability of R. So the only possible case is that there is path r1 = 〈c, c′....b〉 in R.
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Similarly, since adding a jump c′ → b breaks correctness then there is a switching path r3 =
〈b, b′...c〉.

  

b

b
′ c′

c

a a

b

b′ c
′

c

r3
r1

Assume that r1, and r3 are disjoint: then the path obtained by concatenation of r1, and r3 is a
switching cycle. This contradicts the fact that R is acceptable.

 

a

c

c′b′

b

r1

r3

Assume that r1 and r3 are not disjoint. Let x be the first node in r3 (starting from b ) where they
meet. Observe that x must be negative (by acceptability of R). Each path uses one switching edge
of x, and its conclusion (hence the paths meets also in the node below x). From the fact that x is
the first point starting from b where r1 and r3 meet it follows that: (i) r3 enters x using one of its
switching edges, and exits from the conclusion; (ii) each path must use a different switching edge
of x. Then we distinguish two cases:

• r1 enters in x using one of its switching edges; we build a switching path contradicting ac-
ceptability of R taking the sub path of r1 ending with x and the sub path of r3 starting with
x;

• r1 enters x from the conclusion; then we build a switching path contradicting acceptability of
R by composing the sub path of r1 ending with x, the (reversed) sub path of r3 starting with
x, and the path 〈b, a, c〉.

In each case we obtained a contradiction. Therefore the assumption that R was saturated is false,
so R is not saturated.

�
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3.4 Sequentialization

Definition 11 (Splitting) Let R be a J-net, c a positive or a cut link, and b1, . . . , bn the nodes which
are immediately above c (the premises of c have the same type as the conclusions of b1, . . . , bn). We say
that c is splitting for R if it is terminal, and removing c there is no more connection (i.e. no sequence
of connected edges) between any two of the nodes bi.

Lemma 6 (Splitting Lemma) Let R be an acceptable J-net without negative conclusions, such that
R is composed by a single connected component, and ≺R is arborescent; if c is a terminal positive link
(resp. a cut link) which is minimal in ≺R then c is the unique minimal link in ≺R and is splitting.

Proof. For simplicity’s sake we just consider the case when c is a terminal positive link; if c is a cut link
we can just consider it as a positive link having as premises the negative premise of c and the negative
premises of the positive link c′ which shares its conclusion with c (since they are identified in ≺R )

By Remark 3 the cones of the premises b1, . . . , bn of c are disjoint. First we want to show that given
a bi the typed edges in the border of Cbi

R are conclusions of R. To prove it, suppose there is a negative

link m with conclusion z such that m does not belong to Cbi
R and a premise of m is in the border of Cbi

R ;

then Cbi
R ∩C

z
R 6= ∅; by Remark 3 either Cz

R ⊂ Cbi
R (contradicting our hypothesis) or Cbi

R ⊂ Cz
R, but then

c ∈ Cz
R, contradicting minimality of c. Moreover, we can prove that there is no connection between the

nodes of Cbi
R , C

bj
R for i 6= j once erased c; suppose that a node in Cbi

R is connected with a node in C
bj
R ,

and consider the path Π connecting them; let d be the first (negative) node outside Cbi
R in Π, and d′ the

last node inside Cbi
R in Π (so that there is an edge d′ → d in R). By minimality of c, d must belong to a

cone of a premise of c, but by Proposition 2 it could be only Cbi
R (otherwise d′ would be shared by the

cones of two different premises of c): contradiction. In the same way we can prove that if there exists
another minimal positive (or cut) link a in R, given a negative premise ak of a, there cannot be any
connection between the nodes in Cbi

R and the nodes in Cak

R , once erased a and b; but then there cannot
be any connection at all, since a and b are terminal, contradicting the fact that R is connected. So R=
Cb1

R ∪ . . . ∪Cbn
R ∪ c. �

Proposition 9 A J-net R whose associated order is arborescent is sequentializable.

Proof.
The proof is by induction on the number of links of R:

n = 1: in this case, R is composed by a positive or a negative link without premises, and it is trivially
sequentializable;

n = k + 1: suppose R has a terminal negative link n; then it is minimal in ≺R. The graph R0 obtained by
removing n is obviously an acceptable J-net whose order associated is arborescent, so by induction
hypothesis it is sequentializable; then R is sequentializable.

Otherwise, R does not have any terminal negative link. Now suppose R is composed by more than
one connected component; obviously each component R1, . . . , Rn is an acceptable J-net whose
order associated is arborescent , so by induction hypothesis it is sequentializable; but then, R is
sequentializable.

If R is composed by a single connected component, there is a unique positive terminal link (or cut
link) c which is minimal in ≺R. By the splitting Lemma c is splitting, so it sequentializes into
R1, . . . , Rn acceptable and arborescent J-nets: the rest follows by induction hypothesis.

�

Corollary 1 Given an arborescent J-net R, its sequentialization π is unique (up to permutation of Mix
rules).

Proof. Trivial from the fact that the order associated with R (which correspond to the order of the
(+) and (−) rules of π) is arborescent, and from the proof of Theorem 9. �
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Theorem 1 (Sequentialization) Any acceptable J-net is sequentializable.

Proof. It is easy to see that given any J-net R, if a saturation of R is sequentializable into a proof π,
then also R is sequentializable into π (all splitting links in the saturation of R are splitting also in R). �

4 J-proof nets and cut elimination

In this section we present the dynamic behavior of J-proof nets, by defining the procedure of cut-
elimination on J-nets, and proving that the correctness criterion is stable under reduction. Then, after
giving some relevant examples of reductions, we prove two basic properties of such rewriting: local
confluence and weak normalization for J-proof nets.

4.1 Cut elimination

Given two J-nets R1, R2 and a cut link c of R1, we define the relation
cut
−−→ on J-nets by saying that

R1
cut
−−→ R2 (“R1 reduces to R2 in one step”) whenever R2 could be obtained from R1 by replacing a

module β , called redex, contained in R1 and which contains c (the “reduced” cut), with a module γ,
called contractum, following the rule depicted in Fig. 8, called +/− step:

+/− step the redex β is composed by :

• the cut c, the positive link a (with n ports) and the negative link b (with m ≤ n ports) that
share their conclusion with c (we say that a, b are the active links of c) ;

• the set of negative links a1, . . . , an such that the conclusion of ai belong to the i-th port of a,

and the set of positive links b11, . . . , b
k1
1 , . . . , b1m, . . . bkm

m such that the conclusions of b1j , . . . , b
kj

j

belong to the j-th port of b ;

• the cones π1, . . . , πn of the premises of a and any negative link n such that for some πi an
edge in the border of πi is a premise of n;

• any positive link w which jumps on b, and any negative link z such that a jumps on z.

To replace β with γ the following constraints must be respected:

1. w is different from a (resp. z is different from b);

2. the premises of b are not in the border of any of the cones π1, . . . , πn;

3. the typed edges in the border of π1, . . . , πn are not conclusions of R1;

4. π1, . . . , πn are disjoint.

The contractum γ is obtained by :

• erasing c, a and b;

• for all the positive links b1i , . . . , b
ki

i whose conclusion belonged to the i-th port of b in β, we
consider the negative link ai whose conclusion belonged to the i-th port of a in β and we
make ki copies of the corresponding cone πi; then we connect pairwise each copy of ai with
one of the positive links b1i , . . . , b

ki

i through a new cut link. Moreover, we make ki copies of

each edge p in the border of πi in β; if p is typed, then we assign all the copies p1i , . . . , p
ki

i of
p to the same port of the negative link n which contained p in β;

• we add a jump from w and from all positive links b11, . . . , b
k1
1 , . . . , b1m, . . . bkm

m to z;

• for any negative link aj whose conclusion belonged to the j-th port of a in β, such that
m < j < n (so that for aj there is no corresponding port of b), we erase the corresponding
cone πj ; consequently, we erase each typed edge p in the border of πj from the port of the
negative link n that contained it in β.

16



− +

−

cut

+

cut

−−

−

+

−

+

+−−

−

cut

−

+

−

−

+

−

P

. . .

. . .

. . .

M N

N

?M

?N

w

z

. . .

πP⊥

PP⊥

P⊥

?L
πP⊥

M

P⊥ P P
. . .

. . .

. . .

w

z

M N

?M ?N

L

?L

πP⊥

πR⊥

R⊥

O(?P, . . . , ?R)⊗(!P⊥, . . . , !R⊥)

Figure 8: The +/− reduction step

Given a J-net R, and a cut link t of R, we denote by t(R) the J- net R′ obtained by reducing t in R.

When a node a (resp. an edge l) of t(R) comes from a (unique) node (resp. edge) ←−a (resp.
←−
l ) of R we

say that ←−a (resp.
←−
l ) is the ancestor of a (resp. l) in R and that a (resp l) is a residue of ←−a (resp.

←−
l )

in t(R); otherwise we said that a is a created node (in particular, all the new cut links introduced by the

+/− step are created). We denote sometimes the residues of a node b (resp. an edge r) by
−→
b (resp. −→r ).

Remark 6 We stress the fact that reduction preserves the order, in the sense that if R1
cut
−−→ R2 reducing

a cut c, given two nodes a, b of R1 such that a ≺R1 b and two residues a′, b′ respectively of a, b in R2,
then a′ ≺R2 b′. Nevertheless, the inclusion relation on cones may change during reduction: if a premise
pi of the negative active link of c belongs to the border of a cone C in R1, then given the corresponding
negative premise ni of the positive active link of c, the cone C′ of −→ni in R2 is included into C in R2 (and
the edges in the border of C′ are in the border of C too).

Theorem 2 (Preservation of correctness) Given a J-proof net R, if R
cut
−−→ R′, then R′ is a J-proof

net.

Proof.
We must show that closedness and acceptability are preserved. The former property is trivial, since

cut-elimination does not modify the conclusions of a net; let us focus on the latter. Let t be the cut
reduced by the +/− step which replaces a module β with a module γ. We will proceed ad absurdum,
by showing that if there was a switching cycle in R′, then there would be a switching cycle in R too,
contradicting the hypothesis that R is a J-proof net.

First of all we must show that given two edges p, p′ in the border of the same cone in R′, if ←−p and
←−
p′ are not in the border of the same cone in R, then there is a switching path connecting them in R; if
this was not the case, we could lose some switching paths going back from R′ to R.
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So let us suppose that p ‖ p′ in R′ but ←−p ∦
←−
p′ in R; then given ←−p ,

←−
p′ by Remark 6 one of them (say

←−p ) must be in the border of Cni

R for a negative premise ni of the active positive link of t, and the other

one (that is
←−
p′ ) must be in the border of some other cone C of R, together with a positive premise pi of

the active negative link of t (so pi ‖
←−
p′ in R); but then there is a switching path connecting ←−p with

←−
p′

in R, since inside the module β, there is a switching path going from ←−p to pi through t, and pi ‖
←−
p′ .

Now we can proceed with the main proof: suppose then that there is a switching cycle in R′: if it
does not cross the module γ in R′, then the switching cycle is also in R and we are done.

Otherwise, it does cross γ: let us call c1, . . . , cn the cut links of R′ created by reducing t in R, ai being
the negative premise and bi being the positive premise of ci for i = 1, . . . , n; let us call f any negative

link and g any positive link in γ in R′ such that g jumps on f but ←−g does not jump on
←−
f in R.

The switching cycle may cross the module in different ways; we detail each case, showing that it
brings to a contradiction.

1. Suppose the cycle connects ai with bi with a path going outside the module γ in R′; then there is

a switching cycle in R, obtained by choosing
←−
bi as a switching edge in R.

2. Suppose the cycle connects aj with bi and bj with ai (for j 6= i) with a path going outside the
module γ in R′; then we reason as in the previous case, opportunely choosing a switching edge.

3. Suppose the cycle connects ai with aj and bi with bj (for j 6= i) with a path going outside the
module γ in R′. Here we have two subcases:

• if ←−ai 6=
←−aj ,then it is easy to see that there is a switching cycle in R too, since ←−ai and ←−aj are

connected inside the module β in R.

• if ←−ai = ←−aj , since there is a switching path connecting ai and aj outside the module γ in R′,
such a path must go down on an edge mi in the border of Cai

R′ and go up to an edge mj in the
border of C

aj

R′ (or the other way round). Now if ←−mi =
←−mj , by definition of γ, mi and mj are

incident on the same negative link in R′, so they cannot belong to the same switching path,
so this cannot be the case. The only possibility left is that ←−mi 6=

←−mj; but then in R there
exists a switching path connecting ←−mi with

←−mj ; since they are two edges of the border of the

same cone C
←−ai

R , this means that there is a switching cycle in R.

4. suppose that the cycle connects f with g outside the module γ in R′; then there is a switching path

connecting ←−g with
←−
f outside the module β in R too, and is easy to see that there is a switching

cycle in R too (since ←−g and
←−
f are connected in the module β in R).

In all cases, supposing that R′ contains a switching cycle implies that R contains a switching cycle,
contradicting the hypothesis that R is a J-proof net. So R′ is a J-proof net.

�

Proposition 10 Let R be a J-proof net. R is in normal form w.r.t.
cut
−−→ iff R is cut-free.

Proof. The right to left direction is trivial. Concerning the left to right direction, let us suppose that
R is in normal form but is not cut-free; we proceed by absurdum showing that R is not a J-proof net. If
R is not cut-free, then it contains a cut link c such that c cannot be reduced by a +/− step; so it does
not respect one or more of the constraints 1-4 given in the definition of the +/− step. It is easy to see
that the violation of any of the constraints implies that R is not a J-proof net:

• violation of conditions 1,2 implies that R contains a switching cycle (so R is not acceptable, then
is not a J-proof net);

• violation of condition 3 implies that R is not closed (but then R is not a J-proof net);

• violation of condition 4 contradicts acceptability of R (by Proposition 2), so R is not a J-proof net.

Then we have showed that if R contains an irreducible cut (that is, a cut that cannot be eliminated
through a +/− step), R is not a J-proof net. �
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4.2 Some special reduction steps

Concerning the definition of +/− reduction step, in order to clarify the relation between usual proof net
reduction and the one we just defined, we depict below some “special cases” of reduction:

• the “axiom” reduction step, where we reduce a cut between a 0-ary positive link (which jumps on
a link z) and a 0-ary negative link (on which a link w jumps) :

+
−

1⊥

− + − +

cut
11⊥ 1 ⊥

• the “multiplicative” reduction step, where we reduce a cut between a positive and a negative link
with the same number n of ports, each containing a unique premise :

−+

+ +−−

−

− − + +

−
+

+
cut

cut

cut

. . .. . .

PnP1P⊥
nP⊥

1

P1

PnP⊥
n

P⊥

1

. . . . . .

a

a

b

b

O(?P1, . . . , ?Pn)⊗(!P⊥

1 , . . . , !P⊥
n )

• the “contraction” reduction step, where we reduce a cut between a unary positive link and a
negative link with a unique port, containing n premises:

. . .P1 . . .

. . .

P⊥ Pn P1 Pn

P⊥
P

P
cut

cut

− −

?P1 ?Pn

. . . PnP1−

−
−

cut
?P !P⊥

?P1
?Pn

+

. . .

PP

• the “weakening” reduction step, where we reduce a cut between a unary positive link and a 0-ary
negative link:
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. . .

− −

?P1 ?Pn

. . . Pn− +

cut

−
−

?P

P1

!P⊥

?P1
?Pn

• the “commutative” reduction step, where we reduce a cut between a unary positive link (whose
premise has a cone C1) and a unary negative link (whose premise is in the border of a cone C2); in
this step we make the cut “enters” in C1 and put the content of C1 into C2 (and in all the cones
which include C2):

+

−

cut

+

− +−

+

C2
C1

+

cut

− +−

+

C2

4.3 Properties of reduction

4.3.1 Local confluence

Given a J-proof net R, the cones associated with a cut c are the cones of the premises of the positive
link which shares its conclusion with c; given two cuts c1, c2 we say that c1 <cut c2 if c2 belongs to one
of the cones associated with c1; this relation is trivially a partial order.

Proposition 11 The relation
cut
−−→ is locally confluent on J-proof nets.

Proof.
Let c1, c2 be two cut links of a J-proof net R. We must show that there exists a J-proof net R′ such

that c1(R)
cut
−−→∗ R′ and c2(R)

cut
−−→∗ R′. We have the following cases:

1. c1 <cut c2 or c2 <cut c1;

2. c1 and c2 are incomparable with respect to <cut, and an edge in the border of a cone associated
with c1 is premise of a negative link whose conclusion is premise of c2, or vice versa (in this case
we say that c1 and c2 are in opposition, see for example Fig. 9);

3. c1 and c2 are incomparable with respect to <cut and one of the cones associated with c1 and one
of the cones associated with c2 are not disjoint.

If none of the previous case holds, then c1 and c2 are incomparable with respect to <cut, the cones
associated with c1 and the cones associated with c2 are disjoint, and c1, c2 are not in opposition; but
then it is clear that the cuts c1, c2 are independent, so the order of reductions does not influence the final
result.
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In the cases 1. and 2. the proof is a straightforward adaptation of the standard local confluence proof
for MELL (see for example [Dan90]).

The only situation which escapes the standard MELL proof, being specific to J-proof nets, is the
one described at point 3.; we discuss it now.

In absence of erasing or duplication (so in the purely multiplicative case), local confluence of J-proof
nets has been proved in [DG08, DGF06]; then we can restrict our analysis to three specific sub-cases,
dealing only with erasing and duplication:

1. c1 is reduced through a “weakening” step, while c2 is reduced through a “contraction” step;

2. both c1 and c2 are reduced through a “contraction” step;

3. both c1 and c2 are reduced through a “weakening” step.

Once dealt with these cases, the extension to the general case will follow from the fact that the general
+/− step is actually a superposition of multiplicative,“weakening” and “contraction” steps, and that all
the cones involved in the +/− step are disjoint (by condition 4 of definition of +/− step).

Let us consider case 1). Suppose we have a J-proof net R containing the cuts c1, c2, as pictured below
(we mark in red the cone C1 associated with c1, and in blue the cone C2 associated with c2):

− +

cut cut

−

− +− −+

+

+

−

+

−

+

−−

c1 c2

a1 a2

t1 t2t

f

b1
b2

d1
d2

e2e1

Now we reduce c2 with a “contraction” step, “entering” into the cone C2 associated with c2 and
duplicating its content (both the part shared with C1 and the one specific to C2), obtaining a J-proof
net R′ :

−

cut

−

−− +

+

+

−

+

−

+

++

+ + −

−

cut

cut
−−

c1

t1 t2
t

a2

a2

b2

b2

a1

a1

b1

f f

d2

d2

e2 e2

d1

e1

+

Finally, we reduce the residue of c1 in R′ with a “weakening” step, erasing the content of the cone
C1 associated with c1, obtaining a J-proof net R′′:
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It is easy to check that reducing first c1 in R and then the residue of c2 yields R′′.
In case 2), R contains two cuts c1, c2 as pictured below :
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Now we reduce c2 with a “contraction” step, “entering” into the cone C2 associated with c2 and
duplicating its content, (both the part shared with C1 and the one specific to C2) obtaining a J-proof
net R′;

−

cut
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−− +

+
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−

+

−

+
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−
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t

f f

− −

t1 t2

+

Then we reduce the residue of c1 in R′ with a “contraction” step, “entering” into the cone C1

associated with c1 and duplicating its content, obtaining a J-proof net R′′;

− −
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f
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c1 c2

Figure 9: Two cuts incomparable with respect to <cut

We remark that if a node belongs to C1 ∩ C2 in R, then it has four residues in R′′; otherwise, if it
belongs to just one of the Ci, it has two residues in R′′. Also in this case, one can easily check that
reducing first c1 in R and then the residue of c2 yields R′′.

Finally, in case 3) the situation is as below:

− +

cut cut

−

− +− −+

+

+

−

+

−

+

c1

− −

t1 t

t2

c2

a1

b1

d1

e1

a2

b2

d2

e2f

we first reduce c1 with a “weakening” step, erasing the content of the cone C1 associated with c1
(both the part shared with C2 and the one specific to C1), obtaining a J-proof net R′:

cut

−

− + −

−

−
−

c2

tt1
t2

b2

d2

e2

+

Then we reduce the residue of c2 with a “weakening” step, erasing the content of the cone C2

associated with c2, obtaining a J-proof net R′′:

− −−

t1 t t2

It is straightforward that reducing first c2 in R and then the residue of c1 yields R′′.

�
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4.3.2 Weak normalization

The following proof of weak normalization is straightforwardly adapted from the one contained in [Lau08]
for MELL proof nets.

Sizes The size of a negative edge n conclusion of a negative link a is the number of the typed edges
incident on a .

The size |A| of a formula A is one plus the sizes of the immediate subformulas of A.
The size of a cut c is the pair (|N |, t) where N is the type of the negative premise n of c and t is the

size of n.
We compare the sizes of the cuts of a J-proof net by considering the lexicographic ordering on N×N.
The size of a J-proof net R is the multiset of the sizes of its cuts.
We briefly recall the definition of multi-set order: let X be a set, ≪ an order relation over X , and let

Mfin(X) denote the finite multisets over X . If M,N ∈ Mfin(X), we write N <1,m M if N is obtained
from M by replacing an element by a multi-set of elements which are strictly smaller (w.r.t. ≪). The
multiset order <m is the transitive closure of <1,m.

We compare the sizes of J-proof nets by considering the multiset order <m (where ≪ is the lexico-
graphic order on the sizes of cuts).

Priority A priority path is a path starting down from a negative edge which behaves in the following
way:

• if it enters a cut from one of its premises it goes up through the other premise;

• if it enters a positive link from its conclusion it goes up through one of its negative premises;

• if it enters a negative link, from its negative conclusion a, then it goes down through one of the
edges in the border of Ca

R;

• if it enters a negative link from above, it goes down through its conclusion;

• if it enters a positive link from its premises it stops.

Proposition 12 Given a J-proof net R:

1. every priority path crosses cuts from the negative to the positive premise;

2. every priority path is acyclic.

Proof.
We prove 1) by induction on the length of the path. The first node the path meets must be a cut,

otherwise it would stop; so it must cross a cut from the negative to the positive premise. This positive
premise is the conclusion of a positive link; we go up through one of its negative premises a and go down
through one of the positive edges in the border of Ca

R; such a positive edge must be premise of a negative
link (if it were premise of a cut, the cut itself would be included into Ca

R by definition of ≺R); we apply
the induction hypothesis on sub path starting from the conclusion of the link and conclude. To prove 2)
we just observe that a priority path is switching, so that if there were a cycle there would be a switching
cycle in R, contradicting the fact that R is a J-proof net.

�

By Proposition 12 we can define another partial order on cut links that we call priority order (denoted
by ⋖); c1 ⋖ c2 when there is a priority path starting from the negative premise of c1 to c2. A cut link is
priority if it is maximal for such a partial order.
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Weak normalization

Theorem 3 If R is a J-proof net, then R ∈WN cut.

Proof.
We prove that we can always reduce a cut in R in such a way to reduce the size of R, by choosing a

cut which is at the same time maximal w.r.t. the order <cut and w.r.t. the priority order (that is ⋖).
In the following we will show that such a cut always exists.

Consider a cut c1 such that the cones associated with c1 does not contain any other cut of R (that
is, c1 is maximal with respect to <cut). Then we search for a priority cut c2 such that c1 ⋖ c2. If such
a cut c2 does not exists, then c1 is also maximal w.r.t. ⋖: we reduce c1 and this decreases the size of
R. In fact, the news cuts created by reducing c1 are all of smaller size w.r.t. c1, no cuts are duplicated
(since c1 is maximal with respect to <cut) and the sizes of the cuts of R different from c1 do not change,
since there is no cut greater than c1 in the priority order.

Otherwise, the priority cut c2 s.t. c1⋖ c2 exists; note that then there is a switching path (the priority
path) connecting c1 with c2. Now, we iterate the procedure on c2; we search for a cut c3 s.t. c2 <cut c3,
and such that c3 is maximal w.r.t. <cut. If such a c3 does not exist, then c2 is maximal also w.r.t. <cut:
then we reduce c2 and for the same reasons as above the size of R decreases.

Otherwise the cut c3 exists; we remark that then there is a switching path connecting c2 with c3,
since c3 belongs to a cone associated with c2 (by definition of <cut) and such a switching path cannot
cross the one from c1 to c2 (otherwise there would be a switching cycle in R, contradicting the fact that
R is a J-proof net).

Now, either c3 is a priority cut (and in this case is maximal both w.r.t. <cut and ⋖ and we reduce
it, decreasing the size of R), or c3 is majored in the priority order by another priority cut c4; in this
case we iterate on c4 the same reasoning made for c2, and so on. In this way we build a switching path
which eventually terminates with a cut link we can reduce (otherwise by finiteness of R we would find a
switching cycle, contradicting the fact that R is a J-proof net).

�

Remark 7 Proposition 4 follows directly from weak normalization on J-proof nets, modulo sequential-
ization.

5 Strong normalization and confluence

Following the method used by Pagani and Tortora to prove strong normalization for LL in [PTdF10],
we prove that WN cut implies SN cut for J-proof nets using a variation of Gandy’s method (see [Gan80])
due to Bezem and Klop (see [Ter03]). More precisely:

• we modify the relation
cut
−−→, to get a new relation

¬e
−−→ which never erases pieces of a J-proof net: we

call such a reduction relation non erasing, and we show that switching from
cut
−−→ to

¬e
−−→ preserves

weak normalization and local confluence for J-proof nets;

• we show that
¬e
−−→ is increasing, proving by Proposition 6 that

¬e
−−→ is strongly normalizing on J-proof

nets;

• we prove that strong normalization of
¬e
−−→ implies strong normalization of

cut
−−→ for J-proof nets.

The content of the present section is a straightforward adaption of [PTdF10]; the main differences
with respect to the method used by Pagani and Tortora de Falco are the followings:

• due to the presence of synthetic connectives, we have a single elementary reduction step, while in
[PTdF10] the reduction relation is composed by several different elementary reduction steps;

• we define the relation
¬e
−−→ as a modification of the relation

cut
−−→, while in [PTdF10] the non-erasing

reduction relation is just a restriction of the ordinary reduction relation;

• Pagani and Tortora de Falco consider full linear logic (including additives and second order quan-
tifiers), while we restrict to the multiplicative/exponential fragment.
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Figure 10: The non erasing reduction step

5.1 Non erasing reduction

We define the reduction
¬e
−−→ by replacing the step 4) of the definition of +/− step of Section 4.1 with

the following one (see Fig 10):

(4∗). To any negative link aj whose conclusion belonged to the j-th port of a in β such that m < j < n
(so that for aj there is no corresponding port of b) , we add a unary positive link to aj and we connect
it through a new cut link with a 0-ary negative link; then we make the newly added positive link jump
on z.

We stress that, with respect to the former reduction rule, we simply “freeze” the erasing part of
reduction (that is the one corresponding to the “weakening” step); the rest of the reduction step is the
same as before.

Theorem 4 Given a J-proof net R, if R
¬e
−−→ R′, then R′ is a J-proof net.

Proof. Simple adaptation of the proof of Theorem 2. �

Proposition 13 The reduction
¬e
−−→ is locally confluent on J-proof nets.

Proof. The proof is just a variation of the proof of local confluence of
cut
−−→ for J-proof nets. �

Proposition 14 If R is a J-proof net, then R ∈ WN¬e.

Proof. The proof is a straightforward adaptation of the proof of weak normalization of
cut
−−→ for J-proof

nets, with some minor modifications (for example, we have to restrict the order ⋖ excluding all cut links
which could be reduced only by a “weakening” step). It is easy to verify that at each step the size of the
J-proof net (defined in Section 4.3.2) decreases. �
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Figure 11: The labelled reduction step

5.2 Labelled reduction and SN¬e

Definition 12 A labelled J-proof net is a pair (R, l) where R is a J-proof net and l is a function from
the set {m : m is a premise of a positive link or the conclusion of R} to integers. We define the degree
|l| of (R, l) as the sum of the values of l.

Definition 13 Let t be a cut on (R, l). The result of the labelled non erasing reduction (denoted by
¬el

−−→)
of t is the following labelled J-proof net (R′, l′):

1. R′ is defined following the reduction
¬e
−−→ of the previous subsection;

2. l′ is defined in the following way: let p be the positive link of R which shares its conclusion with t;
let t1, . . . , tm be the premises of p such that

−→
ti is premise of a cut link created by the reduction of

t. We consider the set M = {n;n is premise of a positive link and p ∈ Cn
R}. We remark that, by

point 3) of the definition of reduction, for all n and for all tj,
−→
tj ∈ Cn

R′ ; moreover every n ∈ M
has a label l(n).

• Suppose M is not empty; Now let ki be the number of residues of a given ti in R′: then for
all n′ ∈M which are minimal (that is, there is no n′′ ∈M such that Cn′

R ⊂ Cn′′

R ) and for all

t1, . . . , tm, l′(
−→
n′) = (((l(t1) + 1) ∗ k1) + . . .+ ((l(tm) + 1) ∗ km) + l(n′)). For all other negative

edges s l′(−→s ) = l(s);

• If M is empty, then let c be the conclusion of R: then for all t1, . . . , tm, l′(−→c ) = (((l(t1) +
1) ∗ k1) + . . .+ ((l(tm) + 1) ∗ km) + l(c)). For all other negative edges s l′(−→s ) = l(s).

We depict the labelled version of the reduction step in Fig. 11: we mark by h, k, i (in red) the value
of l in the redex.

Proposition 15 Let (R, l) be a labelled J-proof net; if (R, l)
¬el

−−→ (R′, l′), then |l| < |l′|.
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Proof. Trivial from the definition of labelled reduction. �

Proposition 16 The labelled reduction
¬el

−−→ is locally confluent on labelled J-proof nets.

Proof.
The proof is just an adaptation of the one for local confluence of

¬e
−−→ on J-proof nets. We just show

one case, in order to clarify how labelling is modified during normalization. Suppose we have a labelled
J-proof net (R, l) with two cut c1, c2 as pictured below (we denote by h,m, r the labels assigned by l):

− +

cut

−− +

cut

+

− +

−

−

+

++

h m

c1 c2

r

We first reduce c1: we enter in the cone associated with c1 and duplicate its content, obtaining a
J-proof net R′. We change l to l′ by replacing the label r with 2(h+ 1) + r (meaning that w.r.t. l, we
have duplicated the cone associated with c1 and entered in each copy). In this way we get a new labelled
J-proof net (R′, l′).

−

cut

+

− +

−

−

+

++

−

++−

cut

cut

m

c2

2(h + 1) + r

Then we reduce the residue of c2 in (R′, l′): we enter in the cone associated with it and duplicate
its content, obtaining a J-proof net R′′. We change l′ to l′′ by replacing the label 2(h + 1) + r with
2(m + 1) + 2(h + 1) + r (meaning that w.r.t. l′, we have duplicated the cone associated with c2 and
entered in each copy). In this way we get a new labelled J-proof net (R′′, l′′).
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− −

−

+

++
++−

cut

cut

cut

cut
−

++−

2(m + 1) + 2(h + 1) + r

We leave to the reader to check that reducing first c2 in (R, l) and then the residue of c1 yields the
same labelled J-proof net (R′′, l′′).

�

Proposition 17 If (R, l) is a labelled J-proof net, then (R, l) ∈ WN¬e
l

.

Proof. The proof is a simple consequence of Proposition 14. �

Proposition 18 Let (R, l) be a labelled J-proof net. If (R, l) ∈ WN¬e
l

, then (R, l) ∈ SN¬e
l

.

Proof. Since
¬el

−−→ is increasing, locally confluent and weakly normalizing on J-proof nets, the result
follows from Proposition 6. �

Proposition 19 Let R be a J-proof net. If (R, l) ∈ SN¬e
l

, then R ∈ SN¬e.

Proof. Trivial (we just forget the labelling). �

Proposition 20 If R is a J-proof net, then R belongs to SN¬e.

Proof. From Proposition 17, Proposition 18, and Proposition 19. �

5.3 SN¬e implies SN cut (and confluence)

Remark 8 Let R,R′ be J-proof nets; if R
cut
−−→ R′, through a “weakening” step, then any cut link t′ of

R′ has an ancestor t in R. If t′ can be reduced by a non erasing reduction step, then the same holds for
t.

Proposition 21 If R
cut
−−→ R1 through a “weakening” step, and R1

¬e
−−→ R2, then there exists an R3 such

that R
¬e
−−→ R3 and R3

cut
−−→ ∗R2 only through “weakening” steps.

Proof. Let u (resp. t) be the cut reduced in R
cut
−−→ R1 (resp. R1

¬e
−−→ R2). Since R

cut
−−→ R1 through a

weakening step and t is a cut link of R1, by Remark 8, t has an ancestor t′ in R which can be reduced
with a non erasing step. Let R3 be the J-proof net obtained by reducing t′ in R with a non erasing step;
checking all cases, we find that reducing the residues of u in R3 (which can only be reduced through
“weakening” steps) yields R2.

�

Proposition 22 If R
cut
−−→ R′ by reducing a cut t with a reduction which is not a “weakening” step, then

there exists R′′ such that R
¬e
−−→ R′′ in one step and R′′

cut
−−→ ∗R′ only through “weakening” steps.
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Proof. Since t is not reduced with a “weakening” step, we can reduce it with a non erasing step,
obtaining a J-proof net R′′; now, either R′′ = R′, or the non erasing reduction creates u1, . . . , un cut
links which can only be reduced through “weakening” steps; by reducing them we get R′. �

Proposition 23 Let R be a J-proof net. If R ∈ SN¬e then R ∈ SN cut.

Proof. Suppose R does not belong to SN cut, and consider an infinite reduction sequence r : R
cut
−−→

. . . Ri
cut
−−→ Ri+1 . . . starting from R. Now, by Proposition 22 we can obtain another sequence r′ from

r by replacing any reduction Ri
cut
−−→ Ri+1 in r which is not a “weakening” step, with a non erasing

reduction Ri
¬e
−−→ Ri′ followed by a sequence of “weakening” steps Ri′

cut
−−→ ∗Ri+1; obviously r′ is infinite.

Now r′ is an infinite sequence of reductions which contains only non erasing and “weakening” steps. We
define for any number n a sequence q of non erasing steps of length n, starting from R, contradicting the

hypothesis that R ∈ SN¬e. Let k be the least number s.t. Rk
cut
−−→ Rk+1 in r′ (so it is a “weakening”

step). If k > n or does not exists, we take q as the prefix of r′ of length n. Otherwise we define q by
induction on n− k. If n = k, q is the prefix of r′ of length n. If k < n, let m be the least integer such
that m > k and Rm

¬e
−−→ Rm+1. Such an m must exists, otherwise there would be an infinite suffix of

“weakening” steps (so that they erase a portion of the net at each step). Now Rm−1
cut
−−→ Rm with a

“weakening step and Rm
¬e
−−→ Rm+1, so we can apply Proposition 21: we apply it m− k times, obtaining

a sequence of reductions r′′ which has a prefix of non erasing steps of length k + 1. We obtain q by
applying the induction hypothesis on r′′. �

Proposition 24 If R is a J-proof net, then R belongs to SN cut.

Proof. From Proposition 20 and Proposition 23. �

Proposition 25 The relation
cut
−−→ is confluent on J-proof nets.

Proof. From Lemma 1 and Proposition 24. �

6 Observations and remarks

In this final section we deal with some questions we left opened in the previous sections, namely the
relation between J-proof nets and polarized proof nets, the inclusion of atoms, and the role played by
the Mix rule.

6.1 Adding axioms

We add to MEHS rules the axiom rule: 4

⊢ X, X⊥
(Ax)

extending accordingly the definition of J-net with the corresponding ax link, with no premises and
two conclusions typed by dual formulas:

Ax

P P⊥

The notion of order ≺R associated with a J-net R is defined as before.
Now, in order to preserve the basic property of cones (namely that the source of any edge in the

border of a cone is a positive link, see Proposition 6), we must impose on J-nets a constraint called
balancedness ; with respect to usual polarized proof nets, such a condition corresponds to enclosing all
axiom links into a box.

4In order to maintain our correspondence with MELLP , we must add to MELLP the axiom rule
⊢?X, !X⊥

(Ax).

Actually, this make our correspondence weaker: we are only able to represent in MEHS the subsystem MELLpol of
MELLP (see [Lau02]).
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Figure 12: Two not balanced J-nets
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A⊥A

+

Ax

+

!?A

?A !A⊥

Figure 13: A balanced J-net

Definition 14 A balanced J-net is a J-net with axioms R such that

1. for every − link b and for every ax link a of R, such that a shares an edge with b, there exists a
positive link c below a in ≺R which jumps on b in R.

2. if R is composed by more than one connected component, then any negative conclusion of R is not
the conclusion of an axiom link5 .

Definition 15 A J-net with axioms R is acceptable when is balanced and switching acyclic.

We can properly extend the notion of sequentializable J-net to include axioms (we leave this to the
reader), so that we can state the following proposition:

Proposition 26 An acceptable J-net with axioms is sequentializable.

Cut elimination with axioms

Definition 16 A J-proof net with axioms R is a J-net with axioms s.t. is acceptable and closed.

Now we extend the relation R
cut
−−→ R′ adding another reduction rule, the ax step, which replaces a

module β containing a cut link t in R with a module γ as follows (see Fig. 14):

• β is composed by t, an axiom link a which shares an edge with t and a link b which shares the
other premise of t;

• γ is composed just by b.

Theorem 5 (Preservation of correctness) Given a J-proof net with axioms R, if R
cut
−−→ R′, then

R′ is a J-proof net with axioms.

Proof. The proof is a simple extension of the one given in Section 4.1. The ax step trivially preserves
switching acyclicity and balancedness, so we have to prove only preservation of balancedness for the
+/ − step. Point 2. in the definition of balancedness is preserved due to the the fact that J-proof nets

5This second condition is required for sequentialization, in order to respect the “positive contexts” constraint of the Mix
rule.
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Figure 14: the ax reduction step
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Figure 15: preservation of balancedness

are closed, and that if R
cut
−−→ R′, then R and R′ have the same conclusions. Concerning point 1. of the

definition of balancedness, let t be the cut between the (positive) link a and the (negative) link b reduced
by the +/− step. Let us call c1, . . . , cn the cut links of R′ created by reducing t in R, ai being the
link whose conclusion is the negative premise of ci and bi being the link whose conclusion is the positive
premise of ci for i = 1, . . . , n. Since we have added axiom links, bi could be either a positive link or an
ax link. Now, we want to show that if R is balanced, R′ is balanced too. Suppose that in R a jumps
on a negative link n s.t. n shares an edge with an axiom link d, and a ≺R d: to prove preservation of
balancedness, we must show that there exists a positive link a′ in R′ such that a′ jumps on n in R′ and
a ≺R′ d. Now it is easy to verify that one of the following holds:

• one of the bi is a positive link so that bi jumps on n in R′ (by definition of +/− step) and bi ≺R′ d
(by definition of ≺R′);

• one of the bi is an ax link which shares a conclusion with b (which is negative) in R, so that (see
Fig. 15):

1. there is a positive link m which jumps on b in R and m ≺R bi (by balancedness of R);

2. such an m jumps on n in R′ and m ≺R′ d (by definition of +/− step and ≺R′ ).

In any case, balancedness is preserved. �

We leave to the reader the proof that the relation
cut
−−→ extended with the ax step is still strongly

normalizing and confluent on J-proof nets with axioms.

6.2 Mix and confluence

Now we want to try to get rid of the Mix rule: the standard way to deal with it is by imposing
connectedness of the correction graphs :

Definition 17 (Correction graph) Given a J-net R, a switching s is the choice of an incident edge
for every negative link of R; a correction graph s(R) is the graph obtained by erasing the edges of R not
chosen by s.

Definition 18 (s-connected) A J-net R is s-connected iff the followings hold:
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• there are no maximal (w.r.t. ≺R) negative links6;

• for any possible choice of switching s, the correction graph s(R) is connected.

Given an arborescent J-proof net R (resp. a cone C of R), we say that a link a of R has depth n in
R (resp. in C) if it is contained in exactly n cones of R (resp. n cones contained in C).

Proposition 27 Given an arborescent J-proof net R, R is s-connected iff for every cone C of R there
is exactly one positive link with depth 0 in C.

Proof. Left to right: by s-connectedness we can deduce that every cone C of R contains at least one
positive link at depth 0 (otherwise there would be a maximal negative link); we must prove that such a
link is unique. We proceed ad absurdum: suppose then that a cone C contains two positive links a, b at
depth 0: by s-connectedness for every switching s there must exist a path connecting a and b in s(R).
Since by Remark 3 all the cones of the premises of a and all the cones of the premises of b are disjoint,
it is easy to verify that a path from a to b in s(R) must exit from C by going down through an edge in
the border of C, and eventually must enter back into C by going up through an edge in the border of C;
but then such a path would be a switching path, and by Lemma 3 this would contradict the fact that R
is a J-proof net. Right to left: it is enough to observe that in this case the order ≺R can be represented
by a tree which branches only on positive nodes, and without maximal negative nodes; to any path in
such a tree corresponds a switching path on R. �

Proposition 28 If R is an arborescent and s-connected J-proof net, then the sequentialization π of R
has no occurrence of the rules Mix or Dai.

Proof. By Proposition 27, for every cone C of R there is exactly one positive link with depth 0 in C;
so we can have neither a negative link with no successor (corresponding to a Dai rule), nor a negative
link with more than one immediate successor (which would correspond to an application of a Mix rule).

�

Now we must check that s-connectedness is stable under reduction: we first verify the property for
the restricted case of saturated J-proof nets:

Proposition 29 If R is an arborescent and s-connected J-proof net, then R is saturated.

Proof. Let us consider a positive link a and a negative link b of R such that a, b are incomparable with
respect to ≺R. By closedness there exists a unique terminal negative link n of R s.t. n is the minimum
of ≺R (by arborescence and s-connectdeness); n is clearly different from b (since n is comparable with
all the links of R). By Proposition 27, there exists a unique positive link p such that p is at depth 0
w.r.t. Cn

R; clearly p is different from a (since p is comparable with all the links of R). Since a and b are
incomparable, and p ≺R a (resp. p ≺R b), there exists a directed path from a to p (resp. from b to p).
But then adding a jump from a to b creates a switching cycle in R.

�

Proposition 30 Let R be a saturated and s-connected J-proof net. If R
cut
−−→ R′, then R′ is saturated

and s-connected.

Proof. Preservation of s-connectedness is a simple consequence of arborescence of R and Remark 6.

The only delicate case is if R
cut
−−→ R′ with a “weakening step”. Let us call n the negative premise of

the positive active link of the cut to be reduced in R. By arborization Lemma and Proposition 27, for
every cone C of R there is exactly one positive link with depth 0 in C; we have to be sure that erasing
the cone of Cn

R will not erase the unique positive link at depth 0 with respect to some other cone C. We
proceed ad absurdum: let us suppose that an edge in the border of Cn

R is incident on a negative link m
and emergent on a link p s.t. p is the unique positive link at depth 0 in Cm

R . Now, p ∈ Cn
R, and p ∈ Cm

R

so by arborescence and by hypothesis, p ∈ Cn
R ⊂ Cm

R , but then p has not depth 0 in Cm
R , contradicting

the assumption. The rest of the proof follows by Remark 6, Proposition 27 and Proposition 29. �

6Such a condition corresponds in our setting to the standard way to conciliate weakening and connectedness in proof
nets, by adding jumps on weakening links (see [Gir96],[TdF00]).
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When we move to the full framework, including also not saturated J-proof nets, we must notice that
preservation of s-connectedness under reduction does not hold in general, as the following counterexample
shows:

− +

cut cut

−

+− −++ a +
c

+ c

−

+ a

b

b
−

No matter what order we choose to reduce the cuts, we pass from an s-connected (not saturated)
J-proof net to a not s-connected one.

We could imagine at least two ways to deal with such a problem:

1. find another geometrical property to characterize the absence of Mix in J-proof nets;

2. modify the +/− rewriting step in order to preserve s-connectedness.

Concerning point 1., it seems quite hard to find a different characterization of Mix-free J-proof nets,
not equivalent to s-connectedness.

Concerning point 2., one possible, violent solution is to modify the reduction step, by adding all the
jumps needed to preserve s-connectedness.

Let us try to apply such a method to the J-proof net in the counterexample above:

− +

cut cut

−

+− −++ a +
c

− b

We reduce the left hand cut:

cut

−

+ −+ a +
c

− b

Now we try to add the jump needed to preserve s-connectedness:

cut

−

+ −+ a +
c

− b
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If now we reduce the right hand cut, we get the following J-proof net:

+
c

− b

We remark that (in this particular case) there are no other ways to add jumps in such a way to
preserve s-connectdness. It is then easy to observe that if we inverse the two reductions, adding jumps to
preserve s-connectedness in the same way, we get a different normal form: we have lost confluence. This
opens a third, more interesting option, besides the two aforementioned ones: that, in case of overlapping
of cones, it is necessary to allow Mix in order to preserve confluence. The analysis of the semantical and
computational properties of J-proof nets, which constitutes the natural prosecution of the present line
of work, will serve as a starting point to study in details such a connection between Mix, overlapping of
cones and reduction.

6.3 Polarized proof nets and J-proof nets

Let us describe how to encode polarized proof nets of MELLP into J-proof nets using an example. For
a formal definition of polarized proof nets we refer to [Lau05]. Let us consider the polarized proof nets
R1, R2 given resp. in Fig. 16, 17;

1

?

1 ⊥

!!

⊥

?1

⊥ ⊥

! ⊥ ! ⊥

O

? ?

?(! ⊥)

O(?(! ⊥), ?1, ?(! ⊥))

?(! ⊥)

Figure 16: The polarized proof net R1

1

?

1 ⊥

!!

⊥

?1

⊥ ⊥

! ⊥ ! ⊥

O

? ?

?(! ⊥)

O(?(! ⊥), ?1, ?(! ⊥))

?(! ⊥)

Figure 17: The polarized proof net R2

We observe that the only difference between R1, R2 is in the inclusion relation between boxes: in R1

the red exponential box is included into the blue one, while in R2 is the other way around.
Now we turn R1 into a J-proof net RJ

1 (pictured in Fig. 18) in two steps:
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• first we transform each MELLP link l of R1 into an MEHS link l′ of RJ
1 , by clustering together

multiplicative and exponential links;

• then we add jumps to RJ
1 , in such a way that if a link a belongs to the exponential box of a !-link

b in R1, then the image of a in RJ
1 is in the cone of the corresponding premise of the image of b in

RJ
1 .

Now it is easy to see that the order associated with RJ
1 is arborescent (because of the nesting condition

on exponential boxes in R1), and that RJ
1 is s-connected (by the fact that R1 is a polarized proof net),

so by Proposition 29, RJ
1 is saturated.

In the same way, we can associate with R2 a saturated J-proof net RJ
2 (pictured in Fig. 19).

1 ⊥

+

−

+ +

−

⊥

−

! ⊥ ! ⊥

O(?(! ⊥), ?1, ?(! ⊥))

Figure 18: The saturated J-proof net associated with R1

1 ⊥

+

−

+ +

−

⊥

−

! ⊥ ! ⊥

O(?(! ⊥), ?1, ?(! ⊥))

Figure 19: The saturated J-proof net associated with R2

We remark that the mapping of polarized proof nets into J-proof nets described above is injective
(two different polarized proof nets are mapped into two different saturated J-proof nets), but it is not
surjective ( a J-proof net is the image of a polarized proof net only if is saturated). In Fig. 20 we provide
an example of a J-proof net which is not the image of any polarized proof net (since its cones do not
satisfy the nesting condition).

1 ⊥

+

−

+ +

−

⊥

−

! ⊥ ! ⊥

O(?(! ⊥), ?1, ?(! ⊥))

Figure 20: A J-proof net which is not the image of a polarized proof net
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Marseille II, March 2002.

[Lau03] Olivier Laurent. Polarized proof-nets and λµ-calculus. Theoretical Computer Science,
290(1):161–188, January 2003.

[Lau04] Olivier Laurent. Polarized games. Annals of Pure and Applied Logic, 130(1–3):79–123,
December 2004.

[Lau05] Olivier Laurent. Syntax vs. semantics: a polarized approach. Theoretical Computer Science,
343(1–2):177–206, October 2005.

[Lau08] Olivier Laurent. Theorie de la demonstration, 2008. Cours du Master MPRI.

[LR03] Olivier Laurent and Laurent Regnier. About translations of classical logic into polarized
linear logic. In Proceedings of the eighteenth annual IEEE symposium on Logic In Computer
Science, pages 11–20. IEEE Computer Society Press, June 2003.

[Mel04] P.-A. Melliès. Asynchronous games 2 : The true concurrency of innocence. In CONCUR 04,
volume 3170 of LNCS. Springer Verlag, 2004.

38
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[TdF00] Lorenzo Tortora de Falco. Réseaux, cohérence et expériences obsession-
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