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We present a formalisation in Agda of the theory of concurrent transitions, residuation,
and causal equivalence of traces for the π-calculus. Our formalisation employs de Bruijn
indices and dependently-typed syntax, and aligns the “proved transitions” proposed by
Boudol and Castellani in the context of CCS with the proof terms naturally present in
Agda’s representation of the labelled transition relation. Our main contributions are
proofs of the “diamond lemma” for the residuals of concurrent transitions and a formal
definition of equivalence of traces up to permutation of transitions.
In the π-calculus transitions represent propagating binders whenever their actions

involve bound names. To accommodate these cases, we require a more general diamond
lemma where the target states of equivalent traces are no longer identical, but are related
by a braiding that rewires the bound and free names to reflect the particular interleaving
of events involving binders. Our approach may be useful for modelling concurrency in
other languages where transitions carry metadata sensitive to particular interleavings,
such as dynamically allocated memory addresses.

1. Introduction

The π-calculus [Milner 1999; Milner et al. 1992] is an expressive model of concurrent and
mobile processes. It has been investigated extensively and many variants, extensions and
refinements proposed, including the asynchronous, polyadic, and applied π-calculus [San-
giorgi and Walker 2001]. The π-calculus has also attracted considerable attention from
the logical frameworks and meta-languages community, and formalisations of its syntax
and semantics have been developed in most of the extant mechanised metatheory systems,
including HOL [Melham 1994; Aït Mohamed 1995], Coq [Hirschkoff 1997; Despeyroux
2000; Honsell et al. 2001], Isabelle/HOL [Röckl et al. 2001; Gay 2001], Isabelle/FM [Gab-
bay 2003], Nominal Isabelle [Bengtson and Parrow 2009], Abella [Baelde et al. 2014],
CLF [Cervesato et al. 2002], and Agda [Orchard and Yoshida 2015]. Indeed, some early
formalisations motivated or led to important developments in mechanised metatheory,
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such as the Theory of Contexts [Bucalo et al. 2006], or CLF’s support for monadic
encapsulation of concurrent executions.
Prior formalisations have typically considered the syntax, semantics and bisimulation

theory of the π-calculus. One interesting aspect of the π-calculus that has not been
formally investigated, and remains to some extent ill-understood informally, is its theory
of causal equivalence. Two transitions t, t′ that can be taken from a process term P
are said to be concurrent, written t ^ t′, if they can be performed “in either order” —
that is, if after performing t, there is a natural way to transform the other transition
t′ so that its effect is performed on the result of t, and vice versa. The transformed
version of the transition is said to be the residual of t′ after t, written t′/t. The key
property of this operation, called the “diamond lemma” [Lévy 1980], is that the two
residuals t/t′ and t′/t result in the same process. Finally, permutation of concurrent
transitions induces a causal equivalence relation on pairs of traces. This relation is the
standard notion of permutation-equivalence from the theory of traces over concurrent
alphabets [Mazurkiewicz 1987].
In classical treatments of concurrency and residuation, starting with Lévy [1980], a

transition is usually considered to be a triple (e, t, e′) where e and e′ are the source and
target terms of the transition and t is some information about the step performed. Boudol
and Castellani [1989] introduced the proved transitions approach for CCS in which the
labels of transitions are enriched with an approximation of the derivation tree which
proves that a particular triple is in the transition relation. Boreale and Sangiorgi [1998]
and Degano and Priami [1999] developed theories of causal equivalence for the π-calculus,
building indirectly on the proved transition approach; Danos and Krivine [2004] and
Cristescu et al. [2013] developed notions of causality in the context of reversible CCS and
π-calculus respectively.
None of the above treatments has been mechanised, although the theory of residuals

for the λ-calculus was formalised in Coq by Huet [1994] and in Abella by Accattoli
[2012]. In this paper, we report on a formalisation of concurrency, residuation and causal
equivalence for the π-calculus carried out in the dependently-typed programming language
Agda [Norell 2009]. Our approach is inspired by the proved transitions method of Boudol
and Castellani. However, by taking a “Church-style” view of the labelled transition
semantics and treating transitions as proof terms, rather than triples (e, t, e′), we avoid
the need for an auxiliary notion of “proved transition”. Agda’s dependent typing allows us
to define the concurrency relation on (compatibly-typed) transition proofs, and residuation
as a total function taking two transitions along with a proof that the transitions are
concurrent. Our formalisation employs de Bruijn indices [de Bruijn 1972], an approach
with well-known strengths and weaknesses compared, for example, to higher-order or
nominal abstract syntax techniques employed in existing formalisations; some of these
other techniques are discussed in § 5.
Our definition of concurrency is not the only plausible one for the π-calculus. Indeed,

there appears to be little consensus regarding the characteristics of a canonical definition.
For example, Cristescu et al. [2013] write “[in] the absence of an indisputable definition of
permutation equivalence for [labelled transition system] semantics of the π-calculus it is
hard to assert the correctness of one definition over another.” We do, however, show that
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our definition of concurrency is sound by proving the diamond property; to the best of
our knowledge, ours is the first mechanised version of this result for any process calculus.

However, one key observation that emerges in our development is that requiring residuals
of concurrent transitions to reach exactly the same state is too restrictive. When the action
of a transition involves a bound name, the transition represents a propagating binder. In
such cases equivalent traces no longer have identical target states, but rather states which
are equal up to a braiding that rewires the bound and free names to reflect the different
order of events in the two traces. Although typically unobservable to a program, such
interleaving-sensitive information may be important for other purposes, such as memory
locations in a debugger, or transaction ids in a financial application. In these situations
being able to robustly translate between the target states of different interleavings may
be important. Our development may therefore be a useful case study for formalising
concurrency in other settings where transition labels carry interleaving-sensitive metadata.

This is a substantially revised version of a paper presented at the Logical Frameworks
and Meta-Languages: Theory and Practice workshop [Perera and Cheney 2015]. This
version extends the earlier work with graphical proof-sketches for various lemmas, a more
detailed comparison of related formalisation efforts, extensive examples and discussion
regarding the generalised diamond property, a more precise definition of cofinality, and
a formalisation of composite braids. A companion paper [Perera et al. 2016] uses the
formalisation of concurrent transitions presented here as the basis for “causally consistent”
dynamic slicing of π-calculus programs.
The paper is organised as follows. § 2 describes our variant of the (synchronous)

π-calculus, including syntax, renamings, and transitions. § 3 defines concurrency and
residuation for transitions, and discusses the diamond lemma and the notion of “cofinal”
transitions. § 4 presents our definition of causal equivalence. § 5 discusses related work
in more detail and § 6 concludes and discusses prospects for future work. Appendix A
summarises the Agda module structure; the source code can be found at https://github.

com/rolyp/proof-relevant-pi, release 0.3.

2. Synchronous π-calculus

We present our formalisation in the setting of a first-order, synchronous, monadic π-
calculus with recursion and internal choice, using a labelled transition semantics.

Names are ranged over by x, y and z. An input action is written x. Output actions are
written x〈y〉 if y is in scope and x if the action represents the output of a name whose
scope is extruding, in which case we say the action is a bound output. Bound outputs do
not appear in source programs but arise during execution.

Name x, y, z ::= 0 | 1 | · · ·
Action a ::= x input

x〈y〉 output
x bound output
τ silent
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Although it has become common practice to limit attention to sums of guarded processes,
here we study the calculus as originally formulated by Milner et al, which allows sums of
arbitrary processes. (Our basic approach should transfer to guarded choice, and other
common variants.)

Process P,Q, R, S ::= 0 inactive
x.P input
x〈y〉.P output
P +Q non-guarded choice
P | Q parallel
νP restriction!P replication

Although the formal development uses de Bruijn indices, and we give definitions and
state properties in terms of this notation, we will sometimes illustrate their meaning in
terms of conventional π-calculus notation. For example, the conventional π-calculus term(νx) x(z).y〈z〉.0 | x〈c〉.0 would be represented using de Bruijn indices as ν(0.n+ 1〈0〉.0 |0〈m+ 1〉.0), provided that y and c are associated with indices n and m. Here, the first 0
represents the bound variable x, the second 0 the bound variable z, and the third refers
to x again. Note that the symbol 0 denotes the inactive process, not a de Bruijn index.

The syntax of actions and processes is defined more formally in Figure 1 overleaf. LetΓ and ∆ range over contexts, which in an untyped setting are simply natural numbers. A
membership witness x ∈ Γ is a proof that x < Γ. A context Γ closes P if x ∈ Γ for every
free variable x of P. We denote by Proc Γ the set of processes closed by Γ, as defined
below. We write Γ ` P to mean P ∈ Proc Γ. Similarly, actions are well-formed only in
closing contexts; we write a : Action Γ to mean that Γ is closing for a.

To specify the labelled transition semantics, it is convenient to distinguish bound actions
b from non-bound actions c. A bound action b : Action Γ is of the form x or x, and
shifts a process from Γ to a target context Γ + 1, freeing the index 0. A non-bound
action c : Action Γ is of the form x〈y〉 or τ, and has a target context which is also Γ.
Meta-variable a ranges over all actions, bound and non-bound. |a| denotes the amount
by which the action increments the context; thus |b| = 1 and |c| = 0.
2.1. Renamings

A de Bruijn indices formulation of π-calculus makes extensive use of renamings. A
renaming ρ : Γ −→ ∆ is any function (injective or otherwise) from names in Γ to names
in ∆. The labelled transition semantics makes use of the lifting of the successor function
·+ 1 on natural numbers to renamings, which we call push to avoid confusion with the
·+ 1 operation on contexts; pop y, which undoes the effect of push, replacing 0 by y; and
swap, which transposes the roles of 0 and 1 but otherwise acts as the identity. This de
Bruijn treatment of π-calculus is similar to that of Hirschkoff’s asynchronous µs calculus
[Hirschkoff 1999]; in particular Hirschkoff’s 〈x〉, φ and ψ operators correspond roughly to
pop x, push and swap. We give a late rather than early semantics; other differences are
discussed in § 5 below.
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Γ ` P
Γ ` 0

Γ + 1 ` PΓ ` x.P x ∈ Γ Γ ` PΓ ` x〈y〉.P x, y ∈ Γ Γ ` P Γ ` QΓ ` P +Q

Γ ` P Γ ` QΓ ` P | Q Γ + 1 ` PΓ ` νP Γ ` PΓ ` !P
a : Action Γ
x : Action Γ x ∈ Γ

x : Action Γ x ∈ Γ
x〈y〉 : Action Γ x, y ∈ Γ

τ : Action Γ
............................................................................................................................................

Fig. 1: Syntax of processes and actions

pushΓ : Γ −→ Γ + 1
push x = x + 1

popΓ y : Γ + 1 −→ Γ
pop y 0 = y

pop y (x + 1) = x

swapΓ : Γ + 2 −→ Γ + 2
swap 0 = 1
swap 1 = 0

swap (x + 2) = x + 2
..........................................................................................................................................

Fig. 2: push, pop and swap renamings

The Γ subscripts that appear on pushΓ, popΓ y and swapΓ are shown in grey to indicate
that they may be omitted when their value is obvious or irrelevant; this is a convention
we use throughout the paper.

2.1.1. Lifting renamings to processes and actions The functorial extension ρ∗ : Proc Γ −→
Proc ∆ of a renaming ρ : Γ −→ ∆ to processes is defined in the usual way. Renaming under
a binder utilises the action of ·+ 1 on renamings, which is also functorial. Syntactically,
ρ∗ binds tighter than any process constructor, and · + 1 has higher precedence than
composition, so that (for example) pop 0 ◦ push + 1 means pop 0 ◦ (push + 1), not(pop 0 ◦ push) + 1.
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·∗ : (Γ −→ ∆) −→ Proc Γ −→ Proc ∆
ρ∗0 = 0

ρ∗(x.P) = ρx.(ρ + 1)∗P
ρ∗(x〈y〉.P) = ρx〈ρy〉.ρ∗P
ρ∗(P +Q) = ρ∗P + ρ∗Q
ρ∗(P | Q) = ρ∗P | ρ∗Q
ρ∗(νP) = ν(ρ + 1)∗P
ρ∗(!P) = !ρ∗P

·∗ : (Γ −→ ∆) −→ Action Γ −→ Action ∆
ρ∗ x = ρx
ρ∗ x = ρx
ρ∗ τ = τ

ρ∗ x〈y〉 = ρx〈ρy〉

·+ 1 : (Γ −→ ∆) −→ Γ + 1 −→ ∆ + 1
(ρ + 1) 0 = 0(ρ + 1) (x + 1) = ρx + 1

..........................................................................................................................................
Fig. 3: Renaming for processes and actions

2.1.2. Properties of renamings Several equational properties of renamings are used
throughout the development; here we present the ones mentioned elsewhere in the paper.
For each lemma, we give the corresponding commutative diagram underneath on the left,
along with a string diagram that offers a graphical intuition for why the lemma holds.

Lemma 1. pop x ◦ push = id

Freeing the index 0 and then immediately substituting x for it is a no-op.

Γ Γ + 1
Γ

push

pop x

Γ
0
1
⋮

Γ + 1
0
1
2
⋮

Γ
0
1
2
⋮

x

push pop x

= Γ
0
1
⋮

Γ
0
1
⋮

id

Lemma 2. pop 0 ◦ push + 1 = id

Γ + 1 Γ + 2
Γ + 1

pushΓ + 1
popΓ+1 0

Γ + 1
0
1
2
⋮

Γ + 2
0
1
2
3
⋮

Γ + 1
0
1
2
⋮

push + 1 pop 0
= Γ + 1

0
1
2
⋮

Γ + 1
0
1
2
⋮

id

Lemma 3. swap + 1 ◦ swap ◦ swap + 1 = swap ◦ swap + 1 ◦ swap
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Γ + 3
Γ + 3 Γ + 3

Γ + 3 Γ + 3
Γ + 3

swapΓ+1
swapΓ + 1

swapΓ + 1
swapΓ+1

swapΓ+1

swapΓ + 1

Γ + 3
0
1
2
⋮

Γ + 3
0
1
2
⋮

Γ + 3
0
1
2
⋮

Γ + 3
0
1
2
⋮

swapΓ + 1 swapΓ+1 swapΓ + 1

=
Γ + 3
0
1
2
⋮

Γ + 3
0
1
2
⋮

Γ + 3
0
1
2
⋮

Γ + 3
0
1
2
⋮

swapΓ+1 swapΓ + 1 swapΓ+1

The above are two ways to swap indices 0 and 2.

Lemma 4. pop 0 ◦ swap = pop 0
Γ + 2 Γ + 2 Γ + 1swap

id

popΓ+1 0 Γ + 2
0
1
2
⋮

Γ + 2
0
1
2
⋮

Γ + 1
0
1
⋮

swap pop 0
= Γ + 2

0
1
2⋮

Γ + 1
0
1
⋮

pop 0

Lemma 5. swap ◦ push + 1 = push, swap ◦ push = push + 1

Γ + 1 Γ + 2
Γ + 2

pushΓ + 1
pushΓ+1 swapswap

Γ + 1
0
1
⋮

Γ + 2
0
1
2
⋮

Γ + 2
0
1
2
⋮

pushΓ+1 swapΓ
= Γ + 1

0
1
⋮

Γ + 2
0
1
2
⋮

pushΓ + 1

Γ + 1
0
1
⋮

Γ + 2
0
1
2
⋮

Γ + 2
0
1
2
⋮

pushΓ + 1 swapΓ
= Γ + 1

0
1
⋮

Γ + 2
0
1
2
⋮

pushΓ+1

Lemma 6. push ◦ ρ = ρ + 1 ◦ push

Lemma 7. ρ ◦ pop x = pop ρx ◦ ρ + 1
Lemma 8. swap ◦ ρ + 2 = ρ + 2 ◦ swap

These last three lemmas assert various naturality properties of push, pop x and swap.

Γ
∆

Γ + 1
∆ + 1

Γ
∆

pushΓ

push∆ pop∆ ρx
ρ ρ + 1

popΓ x
ρ

Γ + 2
∆ + 2

Γ + 2
∆ + 2

swapΓ

swap∆
ρ + 2 ρ + 2
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2.2. Labelled transition semantics

An important feature of our presentation is that each transition rule has an explicit
constructor name. This allow derivations to be written in a compact, expression-like
form, similar to the proven transitions used by Boudol and Castellani [1989] to define
notions of concurrency and residuation for CCS. However, rather than giving an additional
inductive definition describing the structure of a “proof” that P a−−−−→ R , we simply
treat the inductive definition of −−−−→ as a data type. This is a natural approach in a
dependently-typed setting.

The rule names are summarised below, and have been chosen to reflect, where possible,
the structure of the process triggering the rule. The corresponding relation P a−−−−→ R is
defined in Figure 4, for any process Γ ` P, any a : Action Γ and any Γ + |a| ` R .
Transition t, u ::= x.P input on x

x〈y〉.P output y on x
t +Q P + u choose left or right branch
t a| Q P |a u propagate a through parallel composition on the left or right
t |y u t y| u synchronise (receiving y on the left or right)
νt initiate extrusion of ν
t |ν u t ν | u ν-synchronise (receiving 0 on the left or right)
νat propagate a through binder!t replicate

P a−−−−−→ R

x.P
x.P x−−−−−→ P

x〈y〉.P
x〈y〉.P x〈y〉−−−−−→ P

·+Q
P a−−−−−→ R

P +Q a−−−−−→ R

· c| Q
P c−−−−−→ R

P | Q c−−−−−→ R | Q
· b| Q

P b−−−−−→ R

P | Q b−−−−−→ R | push∗Q

· |y ·
P x−−−−−→ R Q x〈y〉−−−−−→ S
P | Q τ−−−−−→ (pop y)∗R | S ν·

P (x+1)〈0〉−−−−−→ R

νP x−−−−−→ R

· |ν ·
P x−−−−−→ R Q x−−−−−→ S

P | Q τ−−−−−→ ν(R | S) νc·
P push∗c−−−−−→ R
νP c−−−−−→ νR

νb·
P push∗b−−−−−→ R

νP b−−−−−→ ν(swap∗R ) !· P | !P a−−−−−→ R!P a−−−−−→ R

............................................................................................................................................
Fig. 4: Labelled transition rules (P + ·, P |b ·, P |c ·, · ν | · and · y| · variants omitted)

The constructor name for each rule is shown to the left of the rule. There is an argument
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position, indicated by ·, for each premise of the rule. Note that there are two forms of the
transition constructors · a| · and νa· distinguished by whether they are indexed by a bound
action b or by a non-bound action c. Omitted from Figure 4 are additional (but symmetric)
rules of the form P + ·, P |b · and P |b · where the sub-transition occurs on the opposite
side of the operator, and also · y| · (synchronise) and · ν | · (ν-synchronise) rules in which
the positions of sender and receiver are transposed. These are all straightforward variants
of the rules shown, and are omitted from the figure to avoid clutter. Meta-variables t
and u range over transition derivations; if t : P a−−−−→ R then src(t) denotes P and tgt(t)
denotes R .
Although a de Bruijn formulation of π-calculus requires a certain amount of house-

keeping, one pleasing consequence is that the usual side-conditions associated with the
π-calculus transition rules are either subsumed by syntactic constraints on actions, or
“operationalised” using the renamings above. In particular:
1 The use of push in the · b| Q rule corresponds to the usual side-condition asserting

that the binder being propagated by P is not free in Q. In the de Bruijn setting every
binder “locally” has the name 0, and so this requirement can be operationalised by
rewiring Q so that the name 0 is reserved. The push will be matched by a later pop
which substitutes for 0, in the event that the action has a successful synchronisation.

2 The ν· rule requires an extrusion to be initiated by an output of the form x + 1〈0〉,
capturing the usual side-condition that the name being extruded on is distinct from
the name being extruded.

3 The rules of the form νa require that the action being propagated has the form push∗a,
ensuring that it contains no uses of index 0. This corresponds to the usual requirement
that an action can only propagate through a binder that it does not mention.

The use of swap in the νb case follows Hirschkoff [1999] and has no counterpart outside
of the de Bruijn setting. As a propagating binder passes through another binder, their
local indices are 0 and 1. Propagation transposes the binders, and so to preserve naming
we rewire R with a “braid” that swaps 0 and 1. Since binders are also reordered by
permutations that relate causally equivalent executions, the swap renaming will also play
an important role when we consider concurrent transitions (§ 3).
The following schematic derivation shows how the compact notation works. Suppose

t : P z+2〈0〉−−−−→ R takes place immediately under a ν-binder, causing the scope of the binder
to be extruded. Then suppose the resulting bound output propagates through another
binder, giving the partial derivation on the left:

νz ·

ν·

t
⋮

P z+2〈0〉−−−−−→ R

νP z+1−−−−−→ R

ννP z−−−−−→ νR
νz ·

νt
⋮

νP z+1−−−−−→ R

ννP z−−−−−→ νR
νzνt

⋮

ννP z−−−−−→ νR

with t standing in for the rest of the derivation. The constructors annotating the left-hand
side of the derivation tree (shown in blue in the electronic version of this article) can
be thought of as a partially unrolled “transition term” representing the proof. The ·
placeholders associated with each constructor are conceptually filled by the transition
terms annotating the premises of that step. We can “roll up” the derivation by a single
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step, by moving the premises into their corresponding placeholders, as shown in the
middle figure.
By repeating this process, we can write the whole derivation compactly as νzνt, as

shown on the right. Thus the compact form is simply a flattened transition derivation:
similar to a simply-typed λ-calculus term written as a conventional expression, in a
(Church-style) setting where a term is, strictly speaking, a typing derivation.

2.2.1. Residuals of transitions and renamings A transition t with action a survives any
suitably-typed renaming ρ. Moreover ρ has an image in t, which is simply ρ + |a|.
Lemma 9. Suppose t : P a−−−−→ Q and ρ : Γ −→ ∆, where Γ ` P. Then there exists a
transition ρ∗t : ρ∗P ρ∗a−−−−→ (ρ + |a|)∗Q.

P

ρ∗P

Q

ρ∗Q

tc

(ρ∗t)ρ∗c
ρ∗ ρ∗

P

ρ∗P

Q

(ρ + 1)∗Q
tb

(ρ∗t)ρ∗b
ρ∗ (ρ + 1)∗

Proof. By the following defining equations. The various renaming lemmas needed to enable
the induction hypothesis in each case are omitted.

ρ∗tc

ρ∗(x〈y〉.P) = ρx〈ρy〉.ρ∗P
ρ∗(t +Q) = ρ∗t + ρ∗Q
ρ∗(P + u) = ρ∗P + ρ∗u
ρ∗(P |c u) = ρ∗P |ρ∗c ρ∗u
ρ∗(t c| Q) = ρ∗t ρ∗c| ρ∗Q
ρ∗(t |y u) = ρ∗t |ρ∗y ρ∗u
ρ∗(t |ν u) = ρ∗t |ν ρ∗u
ρ∗(νct) = νρ∗c(ρ + 1)∗t
ρ∗(!t) = !ρ∗t

ρ∗tb

ρ∗(x.P) = ρx.(ρ + 1)∗P
ρ∗(t +Q) = ρ∗t + ρ∗Q
ρ∗(P + u) = ρ∗P + ρ∗u
ρ∗(P |b u) = ρ∗P |ρ∗b ρ∗u
ρ∗(t b| Q) = ρ∗t ρ∗b| ρ∗Q

ρ∗(νt) = ν(ρ + 1)∗t
ρ∗(νbt) = νρ∗b(ρ + 1)∗t
ρ∗(!t) = !ρ∗t

We would not expect ρ∗t to be a derivable transition, and thus Lemma 9 to hold,
for arbitrary ρ in all extensions of the π-calculus. In particular, the mismatch operator[x 6= y]P that steps to P if x and y are distinct names is only stable under injective
renamings.

2.2.2. Structural congruences Our LTS semantics is standard and therefore closed under
the usual π-calculus congruences. Structural congruences can be formalised as a bisimu-
lation, using an analogue of the notion of residuation with respect to a transition used
elsewhere in this paper. This remains out of scope of the present development.
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3. Concurrency, residuals and cofinality

Transitions P a−−−−→ R and Q a′−−−−→ S are coinitial when P = Q. In this section
we formalise a symmetric, irreflexive concurrency relation ^ over coinitial transitions.
Concurrent transitions t ^ t′ are independent, or causally unordered. In an interleaving
semantics, t and t′ can execute in either order without significant interference; in a true
concurrency setting, t and t′ form a single, two-dimensional “parallel move” [Curry and
Feys 1958]. Concurrency was explored notably by Lévy [1980] for the λ-calculus, and
later by Stark [1989] for arbitrary transition systems. The inspiration for the treatment
presented here is Boudol and Castellani’s concurrency relation for CCS [1989].

P

R

R ′

Q

t

t′

t′/t

t/t′

Fig. 5: Conventional diamond property for t ^ t′

The essence of t ^ t′ is illustrated in Figure 5. If either execution step is taken, the
other remains valid, and moreover once both are taken, one ends up in (essentially) the
same state, regardless of which step is taken first. However, concurrent transitions are not
completely independent: the location and indeed the nature of the redex acted on by one
transition may change as a consequence of the earlier transition being taken. This idea is
captured by the residual t′/t (“t′ after t”), which specifies how t′ must be transformed to
operate on tgt(t) (sometimes called pseudocommutation [Angiuli et al. 2014]).
The requirement that t′/t and t/t′ are cofinal – have the same target state – is

straightforward when the transitions preserve the free variables of a term. This is trivially
the case in CCS since there are no binders, and is also true of the λ-calculus, where
reductions are usually defined on closed terms. In the late-style π-calculus that we consider
here, there are transition rules that “open” a process with respect to a name, with the
action on the transition representing the upwards propagation of the binder through the
process term. In this setting the notion of cofinality is non-trivial; while de Bruijn indices
make this subtlety more explicit, we note that the reordering of binders complicates things
even in the named setting. We discuss this, with examples, in this section. Permutation
of concurrent transitions induces a congruence on traces called causal equivalence, which
we turn to in § 4.

3.1. Concurrent transitions

In our setting, a transition t : P a−−−−→ R is a proof that locates a redex in P, witnessing
the fact that (P, a, R ) ∈ −−−−→. The concurrency relation ^ relates two such proofs;
it is defined as the symmetric closure of the relation defined inductively by the rules in
Figure 6. The figure makes use of the compact notation for transitions introduced in
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§ 2.2. As before, trivial variants of the rules are omitted for clarity. For the transition
constructors of the form · a| Q and νa· that come in bound and non-bound variants, we
abuse notation a little and write a single ^ rule quantified over a to mean that there are
two separate (but otherwise identical) cases.

t ^ t′

P |a u ^ t a′ | Q
t ^ t′

t a| Q ^ t′ |y u
t ^ t′

t a| Q ^ t′ y| u
u ^ u′

P |a u ^ t |y u′

u ^ u′

P |a u ^ t y| u′
t ^ t′

t a| Q ^ t′ |ν u
t ^ t′

t a| Q ^ t′ ν | u
u ^ u′

P |a u ^ t |ν u′

u ^ u′

P |a u ^ t ν | u′
t ^ t′

t +Q ^ t′ +Q
u ^ u′

P + u ^ P + u′
t ^ t ′

P |a t ^ P |a′ t′

t ^ t′

t a| Q ^ t′ a′ | Q
t ^ t′ u ^ u′

t |y u ^ t′ |z u′
t ^ t′ u ^ u′

t y| u ^ t′ z | u′
t ^ t′ u ^ u′

t |y u ^ t′ z | u′

t ^ t′ u ^ u′

t |y u ^ t′ |ν u′
t ^ t′ u ^ u′

t y| u ^ t′ |ν u′
t ^ t′ u ^ u′

t |y u ^ t′ ν | u′
t ^ t′ u ^ u′

t y| u ^ t′ ν | u′

t ^ t′ u ^ u′

t |ν u ^ t′ |ν u′
t ^ t′ u ^ u′

t ν | u ^ t′ ν | u′
t ^ t′ u ^ u′

t |ν u ^ t′ ν | u′
t ^ t′

νt ^ νt′

t ^ t′

νt ^ νat′
t ^ t′

νat ^ νa′ t′
t ^ t′!t ^ !t′

............................................................................................................................................
Fig. 6: Concurrent transitions

Intuitively, transitions are concurrent when they pick out non-overlapping redexes. The
only axiom, P |a u ^ t a′ | Q, says that two transitions t and u are concurrent if they take
place on opposite sides of a parallel composition. The remaining rules propagate concurrent
sub-transitions up through restriction, choice, parallel composition, and replication. There
are no rules allowing us to conclude that a transition which takes the left branch of a
choice is concurrent with a transition which takes the right branch of the same choice;
choices are mutually exclusive. Likewise, there are no rules allowing us to conclude that
an input or output transition is concurrent with any other transition. Since t and t′ are
coinitial, if one of them picks out a prefix then the other necessarily picks out the same
prefix, and so they are equal and thus not concurrent.

The t |y u ^ t′ |z u′ rule says that a synchronisation is concurrent with another, as long
as the two input transitions t and t′ are concurrent on the left branch of the parallel
composition, and the two output transitions u and u′ are concurrent on the right. The
t |y u ^ t′ z | u′ variant is similar, but permits concurrent input and output transitions
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on the left, with their respective synchronisation partners concurrent on the right. The
t |y u ^ t′ ν | u′ rule and variants are analogous, but permit a plain synchronisation
to be concurrent with a ν-synchronisation. The main result of this section is that the
concurrency relation captured by ^ is sound up to a suitable notion of cofinality.

Example 1 (Concurrent transitions). Consider the π-calculus process (using conventional
named syntax) (νy) x〈y〉.P | z〈y〉.Q. This can take two transitions, the first one sending
y on x, resulting in P | z〈y〉.Q, and the second one sending y on channel z, resulting in
x〈y〉.P | Q. Notice that y becomes free in both processes.
In de Bruijn notation, this process is written ν(x + 1〈0〉.P | z + 1〈0〉.Q). It can take

two transitions, each resulting in an extrusion of the ν-binder; call these t and t′. The
transition t initiates the extrusion x on the left branch of the parallel composition:

ν·

· x+1〈0〉| z + 1〈0〉.Q Γ + 1 ` x + 1〈0〉.P x+1〈0〉−−−−−→ Γ + 1 ` PΓ + 1 ` x + 1〈0〉.P | z + 1〈0〉.Q x+1〈0〉−−−−−→ Γ + 1 ` P | z + 1〈0〉.QΓ ` ν(x + 1〈0〉.P | z + 1〈0〉.Q) x−−−−−→ Γ + 1 ` P | z + 1〈0〉.Q
The transition t′ initiates an extrusion z of the same binder on the right branch of the
parallel composition:

ν·

x + 1〈0〉.Q |z+1〈0〉 · Γ + 1 ` z + 1〈0〉.Q z+1〈0〉−−−−−→ Γ + 1 ` QΓ + 1 ` x + 1〈0〉.P | z + 1〈0〉.Q z+1〈0〉−−−−−→ Γ + 1 ` x + 1〈0〉.P | QΓ ` ν(x + 1〈0〉.P | z + 1〈0〉.Q) z−−−−−→ Γ + 1 ` x + 1〈0〉.P | Q
Since the two transitions are coinitial and arise on opposite sides of a parallel composition,
we can conclude t ^ t′ using the rules in Figure 6. Here is the proof, writing the derivations
t and t′ above using the compact notation for transitions:

x + 1〈0〉.P x+1〈0〉| z + 1〈0〉.Q ^ x + 1〈0〉.P |z+1〈0〉 z + 1〈0〉.Q
ν(x + 1〈0〉.P x+1〈0〉| z + 1〈0〉.Q) ^ ν(x + 1〈0〉.P |z+1〈0〉 z + 1〈0〉.Q)

�

3.2. Residuals of concurrent transitions

If two transitions are concurrent then their respective residuals provide a canonical way
of merging or reconciling them.

Definition 1 (Residual t/t′). For any t ^ t′, the residual of t after t′, written t/t′, is
defined by the equations in Figure 7.
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t/t′ (P |a u)/(t c| Q) = tgt(t) |a u(P |a u)/(t b| Q) = tgt(t) |a push∗u(t a| Q)/(P |c u) = t a| tgt(u)(t a| Q)/(P |b u) = push∗t a| tgt(u)(t a| Q)/(t′ |y u) = (pop y)∗(t/t′) a| tgt(u)(P |a u)/(t |y u′) = (pop y)∗tgt(t) |a u/u′(t |y u)/(t′ b| Q) = t/t′ |y push∗u(t |y u)/(t′ c| Q) = t/t′ |y u(t |y u)/(P |b u′) = push∗t |y u/u′(t |y u)/(P |c u′) = t |y u/u′(t x | Q)/(t′ |ν u) = νx (t/t′ x+1| tgt(u))(t x | Q)/(t′ |ν u) = ν(t/t′ x+1〈0〉| tgt(u))(t c| Q)/(t′ |ν u) = νc(t/t′ push∗c| tgt(u))(P |x u)/(t |ν u′) = νx (tgt(t) |x+1 u/u′)(P |x u)/(t |ν u′) = ν(tgt(t) |x+1〈0〉 u/u′)(P |c u)/(t |ν u′) = νc(tgt(t) |push∗c u/u′)(t |ν u)/(t′ b| Q) = t/t′ |ν push∗u(t |ν u)/(t′ c| Q) = t/t′ |ν u(t |ν u)/(P |x u′) = push∗t |ν u/u′(t |ν u)/(P |x u′) = push∗t |0 u/u′(t |ν u)/(P |c u′) = t |ν u/u′(t +Q)/(t′ +Q) = t/t′(P |x u)/(P |b u′) = push∗P |x u/u′

(P |b u)/(P |x u′) = push∗P |b u/u′(P |x u)/(P |u u′) = push∗P |x+1〈0〉 u/u′(P |c u)/(P |b u′) = push∗P |c u/u′(P |a u)/(P |c u′) = P |a u/u′(t x | Q)/(t′ b| Q) = t/t′ x | push∗Q(t b| Q)/(t′ x | Q) = t/t′ b| push∗Q(t x | Q)/(t′ u| Q) = t/t′ x+1〈0〉| push∗Q(t c| Q)/(t′ b| Q) = t/t′ c| push∗Q(t a| Q)/(t′ c| Q) = t/t′ a| Q(t |y u)/(t′ |z u′) = (pop z)∗(t/t′) |y u/u′(t |y u)/(t′ |ν u′) = ντ (t/t′ |y u/u′)(t |ν u)/(t′ |z u′) = (pop z)∗(t/t′) |ν u/u′(t |ν u)/(t′ |ν u′) = ντ (t/t′ |ν u/u′)(νt)/(νt′) = t/t′(νt)/(νbt′) = ν swap∗(t/t′)(νt)/(νct′) = ν t/t′(νbt)/(νt′) = t/t′(νct)/(νt′) = t/t′(νbt)/(νbt′) = ν t/t′(νct)/(νbt′) = νc swap∗(t/t′)(νbt)/(νct′) = νb t/t′(νct)/(νct′) = νc t/t′(!t)/(!t′) = t/t′

..........................................................................................................................................
Fig. 7: Residual of t after t′, omitting · y| · and · ν | · cases

The above definition is a total and terminating function on concurrent transitions; in Agda,
this is verified by the typechecker. Syntactically, the operator ·/· has higher precedence
than any transition constructor. The definition makes use of the renaming lemmas in
§ 2.1.2 and the fact that the transition system is closed under renamings (Lemma 9).

While the definition is rather technical, the idea is quite simple: the residual says how
to update one transition to take into account the fact that the other has taken place,
for example by adjusting the path to the redex, or applying an appropriate renaming.
Several examples are included in the sections which follow. Example 2 below gives the
basic idea, and § 3.3, which explains the notion of cofinality, shows how these “residual
redexes” are obtained in more complicated cases.

Example 2 (Residuals of concurrent transitions). First recall the named process in Ex-
ample 1 above, that is, (νy) x〈y〉.P | z〈y〉.Q. Both of the transitions it can perform are
bound transitions, extruding y, which is no longer bound in the resulting process. After
the first transition, the second can be performed as a free send of y along z and vice
versa, and in both cases we obtain the process P | Q, again containing y free.
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These observations are reflected in the de Bruijn representation. Since t and t′ are
concurrent there should exist residual transitions denoted t′/t and t/t′, which are cofinal,
allowing us to complete the square

Γ ` ν(x + 1〈0〉.P | z + 1〈0〉.Q)
Γ + 1 ` P | z + 1〈0〉.Q

Γ + 1 ` x + 1〈0〉.P | Q
Γ + ∆ ` R

t

t′

t′/t

t/t′

for some ∆ ∈ {1, 2} and some process R . In the upper state tgt(t), the only candidate
for t′/t is the output prefix z + 1〈0〉. However, the ν-binder to which index 0 refers no
longer appears in tgt(t). Rather, that binder is propagating and index 0 is free, reflected
by tgt(t) being in context Γ + 1. When the output transition is taken, z + 1〈0〉 therefore
simply propagates as a non-bound action, rather than causing a further extrusion:

P |z+1〈0〉 · Γ + 1 ` z + 1〈0〉.Q z+1〈0〉−−−−−→ Γ + 1 ` QΓ + 1 ` P | z + 1〈0〉.Q z+1〈0〉−−−−−→ Γ + 1 ` P | Q
From the lower state tgt(t′) the only candidate for t/t′ is the output prefix x + 1〈0〉,

and similar reasoning applies. Thus for t/t′ we have

· x+1〈0〉| Q Γ + 1 ` x + 1〈0〉.P x+1〈0〉−−−−−→ Γ + 1 ` PΓ + 1 ` x + 1〈0〉.P | Q x+1〈0〉−−−−−→ Γ + 1 ` P | Q
and therefore ∆ = 1 and R = P | Q. In summary when concurrent t and t′ extrude the
same binder, their respective residuals are plain outputs, not bound outputs, because a
given binder can only be extruded once.

To relate this example to the defining equations of ·/· we use the compact presentations
of t and t′ from the end of Example 1. It is then easy to see that the rules in Figure 7
indeed compute (in compact form) the derivation above for t/t′:

ν(x + 1〈0〉.P x+1〈0〉| z + 1〈0〉.Q)/ν(x + 1〈0〉.P |z+1〈0〉 z + 1〈0〉.Q)= (x + 1〈0〉.P x+1〈0〉| z + 1〈0〉.Q)/(x + 1〈0〉.P |z+1〈0〉 z + 1〈0〉.Q)= x + 1〈0〉.P x+1〈0〉| Q
and similarly for t′/t. �

Example 2 illustrated the basic idea of residuation, focusing on the specific case where
the residuals of transitions with bound actions have actions that are not bound, a subtlety
of residuation particular to π-calculus first noted by Cristescu et al. [2013]. To capture
this and other aspects of residuation, it is useful to define a datatype of concurrent actions
a ^ a′ and an associated notion of residual action a/a′ and use these to index concurrent
transitions and their residuals.

We define both of these using the diagrams in Figure 8 below. The datatype of concurrent
actions, ranged over by å, has five constructors, one for each diagram; the arrows diverging
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on the left represent the concurrent actions a and a′, and the arrows converging on the
right define the corresponding residuals a′/a and a/a′. Beneath each diagram is the
braiding relation on å which constitutes the notion of cofinality induced by that form of
concurrent action.

(i) (ii) (iii) (iv) (v)

Γ
Γ

Γ
Γ

c

c′

c′

c

Γ
Γ + 1

Γ
Γ + 1

b

c

push∗c

b

Γ
Γ + 1

Γ + 1
Γ + 2

b

b′

push∗b′

push∗b

Γ
Γ + 1

Γ + 1
Γ + 1

x

y

y+ 1〈0〉

x + 1〈0〉
Γ

Γ

Γ
Γ

τν

τν

τν

τν

= = n = o

Fig. 8: Concurrent actions å : a ^ a′, residuals a′/a and a/a′, and braiding relation on å

Diagrams (i) and (ii) capture the general pattern when at most one of the actions is
bound. In (ii), image of an action in a bound action is the original action shifted under a
binder; in both cases cofinality is simply equality. Diagram (iii) is the general pattern
when both actions are bound: in this case the target states P and P ′ are related by a
“free braid” P n P ′ in the form of the permutation swap which renames 0 to 1 and 1 to 0,
reflecting the transposition of the two binders. Free braids are illustrated in some detail
in Examples 3 and 4 below.

Diagram (iv) and (v) are specific to name extrusion. Diagram (iv) is an exception to (iii)
where the two bound actions happen to be extrusions of the same binder, as in Example 1;
the νt ^ νt′ rule is the only concurrency rule that generates concurrent actions of this
form. Diagram (v) is an exception to (i) where the two non-bound actions happen to
be ν-synchronisations of distinct binders. In this case the residual actions will also be
ν-synchronisations (as suggested by the informal τν notation) and the target states are
related by a “bound braid” P o P ′, essentially a free braid which has been “closed” by a
pair of ν-binders, representing the transposition of those binders. The four variants of
the t |ν u ^ t′ |ν u′ rule generate concurrent actions of this form whenever the extruding
binders are distinct. Bound braids are illustrated in Example 5 below.

Free and bound braids are now defined more formally.

Definition 2 (Free braid). For any processes Γ + 2 ` P,R define the symmetric relation
P n R as follows. The context Γ is left implicit.

P n R ⇔ P = swap∗R

Symmetry of n is immediate from the involutivity of swap. Note that n is not irreflexive,
since swap∗P = P iff indices 0 and 1 are both unused in P.

Definition 3 (Bound braid). For any processes Γ ` P,R inductively define the symmetric
relation P o R using the rules in Figure 9. Again the context Γ is left implicit.

Note that the νν-swapP rule requires P and R to be related by a free braid (P n R)
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P o R

νν-swapP
P n R

ννP o ννR
·+Q

P o R
P +Q o R +Q

P + · Q o S
P +Q o P + S

· | Q
P o R

P | Q o R | Q
P | ·

Q o S
P | Q o P | S

ν·
P o R
νP o νR

!· P o R!P o !R
............................................................................................................................................

Fig. 9: Bound braid P o R

which it then closes with a pair of ν-binders. By contrast the ν· rule simply propagates a
bound braid (P o R ) through a ν-binder.

We adopt a compact term-like notation for o proofs similar to the convention introduced
earlier for transitions. As before, rule names are shown to the left of each rule, in blue. The
symmetry of n follows easily from the symmetry of o; moreover o is also not irreflexive,
because n is not irreflexive. Meta-variables φ and ψ range over bound braids; src(φ) and
tgt(φ) denote P and R for any φ : P o R . Bound braids are “unobservable” in the sense that
two processes related by a bound braid are strongly bisimilar. Indeed νν(swap∗P) ≅ ννP is
simply the de Bruijn counterpart of the familiar congruence (νxy) P ≅ (νyx) P. However
in our constructive setting – at least in the absence of non-trivial techniques or extensions
to type theory – the usual refrain “work up to structural congruence!” is of little help;
representing such congruences would still require explicit witnesses at least as complex as
bound braids.
Concurrent actions and action residuals give transition residuals a more precise type

(omitted for simplicity from the definitions of t ^ t′ and t/t′), making them somewhat
easier to formally define. But more important here is how they determine the appropriate
notion of cofinality relating tgt(t′/t) and tgt(t/t′), namely the braiding relation ona,a′
specified beneath each diagram in Figure 8. A braiding relation is a singleton type, whose
unique inhabitant precisely captures precisely the “rewiring” effect of reordering transitions
that involve binders.

Definition 4 (Braiding). For any context Γ, any a, a′ ∈ Action Γ and any å : a ^ a′,
define the following symmetric relation on å over processes in Γ′, where Γ′ is the target
context of å.

on å
def= one of n, o or = as defined in Figure 8

Our key soundness result is that the targets of the residuals of concurrent transitions
t ^ t′ with actions å : a ^ a′ are cofinal in the sense of being related by on å. We need
first that bound braids are closed under renamings, which we capture as a notion of
residuation φ/ρ. The other residual ρ/φ is always ρ.
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Lemma 10. For any Γ ` P, suppose φ : P o Q and ρ : Γ −→ ∆. Then there exists a
bound braid φ/ρ : ρ∗P o ρ∗Q.

P

ρ∗P

Q

ρ∗Q

φ

φ/ρ

ρ∗ ρ∗

Theorem 1 (Cofinality of residuals).

Γ ` P
Γ′ ` R

Γ′′ ` R ′

Γ + ∆ ` Q

Γ + ∆ ` Q′

t

t′

t′/t

t/t′

γt,t′

Suppose t ^ t′ with actions å : a ^ a′. Then there exists a unique γt,t′ : tgt(t′/t) on å
tgt(t/t′).
We omit the t, t′ subscripts when the particular concurrent actions are immaterial.

There is no analogous result to show that the definition of concurrency is complete: that
it includes every pair of coinitial transitions for which a cofinal notion of residuation might
be defined. It is not entirely clear what form such a theorem might take, nor are we aware
of any such theorem in the literature. Choice in particular is potentially problematic.
Although by our (and Boudol and Castellani’s) definition of ^ coinitial choices are never
concurrent, in the following we have distinct coinitial choices with “obvious” residuals,
which are indeed cofinal:

(x.P) + x.P

x.P

x.P

P

·+ x.P

(x.P) + ·

x.P

x.P

One avenue for justifying this (and other) choices about the transition concurrency
relation for π-calculus might be to prove results about the equivalence of “proved transition”
semantics and event structure semantics, analogous to the results of Boudol and Castellani
[1991] for CCS. We leave exploring canonical notions of concurrency to future work.

3.3. Examples of braiding

Example 3 (Free braid).
Free braids arise when there are concurrent bound actions. For example the push

injections used in the propagation rules · x | Q and P |x · open the process term with
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respect to index 0; if two of these happen consecutively, the order in which they happen
determines the roles of indices 0 and 1 in the final process.
Concurrent name extrusions are analogous. In the process term νν((x + 2〈0〉.P) |

z + 2〈1〉.Q) there are two binders that can be extruded; call the outer one ν1 and the
inner one ν2. The output on the left extrudes ν2, and the output on the right extrudes ν1.
Let t be the transition that extrudes ν2:

νx ·

ν·

· x+2〈0〉| z + 2〈1〉.Q Γ + 2 ` x + 2〈0〉.P x+2〈0〉−−−−−→ Γ + 2 ` PΓ + 2 ` (x + 2〈0〉.P) | z + 2〈1〉.Q x+2〈0〉−−−−−→ Γ + 2 ` P | z + 2〈1〉.QΓ + 1 ` ν((x + 2〈0〉.P) | z + 2〈1〉.Q) x+1−−−−−→ Γ + 2 ` P | z + 2〈1〉.QΓ ` νν((x + 2〈0〉.P) | z + 2〈1〉.Q) x−−−−−→ Γ + 1 ` ν(swap∗P | z + 2〈0〉.swap∗Q)
Here ν2 is extruded as the bound output x + 1, propagating through the outer binder

ν1 as x. In tgt(t), index 0 refers to the extruding ν2; the binder remaining in the process
term is ν1. The key detail here is that the rule νx · moves ν1 past ν2, explaining the use of
swap in tgt(t): whenever a propagating binder moves past a static binder, a swap must be
applied under the static binder to preserve the local meaning of indices 0 and 1 (§ 2.2
above). This is also why z + 2〈1〉 in src(t) becomes z + 2〈0〉 in tgt(t).

Now let t′ be the transition that extrudes ν1:

ν·

νz+1〈0〉·
(x + 2〈0〉.P) |z+2〈1〉 · Γ + 2 ` z + 2〈1〉.Q z+2〈1〉−−−−−→ Γ + 2 ` QΓ + 2 ` (x + 2〈0〉.P) | z + 2〈1〉.Q z+2〈1〉−−−−−→ Γ + 2 ` (x + 2〈0〉.P) | QΓ + 1 ` ν((x + 2〈0〉.P) | z + 2〈1〉.Q) z+1〈0〉−−−−−→ Γ + 1 ` ν((x + 2〈0〉.P) | Q)Γ ` νν((x + 2〈0〉.P) | z + 2〈1〉.Q) z−−−−−→ Γ + 1 ` ν((x + 2〈0〉.P) | Q)

In this case, the output x + 2〈1〉 propagates through the inner binder ν2 as z + 1〈0〉, and
then becomes the extrusion z of the outer binder ν1. In tgt(t′), index 0 thus refers to the
extruding ν1, and the binder that remains in the process term is ν2. The key detail here
is that there is no swap in tgt(t′) because this time the relative positions of ν1 and ν2 are
unchanged: the extruding ν1 is still the outer of the two binders.
The proof that t and t′ are concurrent is straightforward because the outputs occur

under opposite sides of a parallel composition. The notion of cofinality, however, is
complicated by the use of indices to refer to ν1 and ν2. Naively, our expectation would be
to derive t′/t and t/t′ that complete the square

Γ ` νν((x + 2〈0〉.P) | z + 2〈1〉.Q)
Γ + 1 ` ν(swap∗P | z + 2〈0〉.swap∗Q)

Γ + 1 ` ν((x + 2〈0〉.P) | Q)
Γ + ∆ ` R

t

t′

t′/t

t/t′

for some ∆ ∈ {1, 2} and some process R . However, the only candidate for t′/t is to select
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the output redex on the right, which becomes an extrusion of the remaining binder, in
this case ν1:

ν·

swap∗P |z+2〈0〉 · Γ + 2 ` z + 2〈0〉.swap∗Q z+2〈0〉−−−−−→ Γ + 2 ` swap∗QΓ + 2 ` swap∗P | z + 2〈0〉.swap∗Q z+2〈0〉−−−−−→ Γ + 2 ` swap∗P | swap∗QΓ + 1 ` ν(swap∗P | z + 2〈0〉.swap∗Q) z+2−−−−−→ Γ + 2 ` swap∗P | swap∗Q

leaving indices 0, 1 referring to ν1, ν2 respectively in tgt(t′/t). Equally, the only candidate
for the other residual t/t′ is to select the output redex on the left, which also becomes an
extrusion of the remaining binder, in this case ν2:

ν·

· x+2〈0〉| Q Γ + 2 ` x + 2〈0〉.P x+2〈0〉−−−−−→ Γ + 2 ` PΓ + 2 ` (x + 2〈0〉.P) | Q x+2〈0〉−−−−−→ Γ + 2 ` P | QΓ + 1 ` ν((x + 2〈0〉.P) | Q) x+2−−−−−→ Γ + 2 ` P | Q
leaving indices 0, 1 in tgt(t/t′) referring to ν2, ν1 rather than ν1, ν2. So instead of the
expected square, we have the pentagon

Γ ` νν((x + 2〈0〉.P) | z + 2〈1〉.Q)
Γ + 1 ` ν(swap∗P | z + 2〈0〉.swap∗Q)

Γ + 1 ` ν((x + 2〈0〉.P) | Q)

Γ + 2 ` swap∗P | swap∗Q

Γ + 2 ` P | Q

t

t′

t′/t

t/t′

swap∗

with a swap path between tgt(t′/t) and tgt(t/t′) reflecting the reordering of the propagating
binders ν1 and ν2. �

Example 4 (Propagating free braid).
Free braids are preserved by enclosing transitions as long as the residual actions of

those transitions are bound. In particular, if a free braid propagates through a ν-binder it
remains a free braid. Suppose t ^ t′ where the residual actions are both bound, so that
tgt(t′/t) n tgt(t/t′):

Γ + 1 ` P
Γ + 2 ` R

Γ + 2 ` R ′

Γ + 3 ` P ′

Γ + 3 ` swap∗P ′

tx+1

t′z+1

(t′/t)z+2

(t/t′)x+2

swap∗

Since both x + 1 and z + 1 are of the form push∗b, we can use the νb· rule to form the
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composite transitions νxt and νzt′ which propagate the input actions of t and t′ actions
through a ν-binder:

νx ·

t
⋮Γ + 1 ` P x+1−−−−−→ Γ + 2 ` RΓ ` νP x−−−−−→ Γ + 1 ` ν(swap∗R ) νz ·

t′
⋮Γ + 1 ` P z+1−−−−−→ Γ + 2 ` R ′Γ ` νP z−−−−−→ Γ + 1 ` ν(swap∗R ′)

Since t ^ t′ we can conclude νxt ^ νzt′ by the rules in Figure 7 and compute the
following composite residual (νzt′)/νxt:

νz+1·
swap∗·

t′/t
⋮Γ + 2 ` R z+2−−−−−→ Γ + 3 ` P ′Γ + 2 ` swap∗R z+2−−−−−→ Γ + 3 ` (swap + 1)∗P ′Γ + 1 ` ν(swap∗R ) z+1−−−−−→ Γ + 2 ` ν(swap∗(swap + 1)∗P ′)

noting that swap∗(z + 2) = z + 2 by Lemma 8. The other residual (νxt)/νzt′ is similar but
has an extra swap inherited from tgt(t/t′):

νx+1·
swap∗·

t/t′
⋮Γ + 2 ` R ′ x+2−−−−−→ Γ + 3 ` swap∗P ′Γ + 2 ` swap∗R ′ x+2−−−−−→ Γ + 3 ` (swap + 1)∗swap∗P ′Γ + 1 ` ν(swap∗R ′) x+1−−−−−→ Γ + 2 ` ν(swap∗(swap + 1)∗swap∗P ′)

Nevertheless, the target states of the composite residuals are still equated by swap,
consistent with the fact that the residual actions still bound.

Γ ` νP
Γ + 1 ` ν(swap∗R )

Γ + 1 ` ν(swap∗R ′)

Γ + 2 ` ν(swap∗(swap + 1)∗P ′)
Γ + 2 ` ν((swap + 1)∗swap∗(swap + 1)∗P ′)

Γ + 2 ` ν(swap∗(swap + 1)∗swap∗P ′)

νxt

νzt′

νz+1(swap∗t′/t)

νx+1(swap∗t/t′)

swap∗

να

Here α is the hexagon equating two ways of transposing indices 0 and 2 (Lemma 3) which
να lifts via congruence to an equality between one target and the swap image of the other.
Thus n remains the appropriate notion of cofinality. �

Example 5 (Bound braid).
A bound braid arises when concurrent ν-synchronisations have residuals that also

ν-synchronise, which requires the underlying extrusions to be distinct binders. The
concurrent transitions t ^ t′ and u ^ u′ below can be composed into concurrent ν-
synchronisations that have this property; u has an input x matching the bound output x
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of t, and u′ has a bound output z matching the input z of t′. The extrusions x and z are
clearly of distinct binders since they arise on opposite sides of a parallel composition.

Γ ` P
Γ + 1 ` R ′

Γ + 1 ` R Γ + 2 ` P ′

Γ + 2 ` swap∗P ′

tx

t′z

(t′/t)z+1

(t/t′)x+1

swap∗ Γ ` Q
Γ + 1 ` S′

Γ + 1 ` S Γ + 2 ` Q′

Γ + 2 ` swap∗Q′

ux

u′z

(u′/u)z+1

(u/u′)x+1

swap∗

The composites are the ν-synchronisations t ν | u : P | Q τ−−−−→ ν(R | S) and t′ |ν u′ : P |
Q τ−−−−→ ν(R ′ | S′). Moreover since t ^ t′ and u ^ u′ we can conclude t ν | u ^ t′ |ν u′
using the rules in Figure 6. The equations in Figure 7 determine the residual (t′ |ν u′)/(t ν | u) = ντ (t′/t |ν u′/u), which we write down in full for clarity:

ντ ·
· |ν ·

t′/t
⋮Γ + 1 ` S z+1−−−−−→ Γ + 2 ` Q′ u′/u

⋮Γ + 1 ` R z+1−−−−−→ Γ + 2 ` P ′Γ + 1 ` R | S τ−−−−−→ Γ + 1 ` ν(P ′ | Q′)Γ ` ν(R | S) τ−−−−−→ Γ ` νν(P ′ | Q′)
The other residual (t′ |ν u′)/(t ν | u) = ντ (t′/t |ν u′/u) is similar, except it inherits two

extra swap renamings from t/t′ and u/u′:

ντ ·
· ν | ·

t/t′
⋮Γ + 1 ` S ′ x+1−−−−−→ Γ + 2 ` swap∗Q′

u/u′
⋮Γ + 1 ` R ′ x+1−−−−−→ Γ + 2 ` swap∗P ′Γ + 1 ` R ′ | S ′ τ−−−−−→ Γ + 1 ` ν(swap∗P ′ | swap∗Q′)Γ ` ν(R ′ | S ′) τ−−−−−→ Γ ` νν(swap∗P ′ | swap∗Q′)

Thus each residual ν-synchronises, and then propagates through the binder reinserted by
the first synchronisation, leaving a double-ν in the final process. The residuals are related
by the pentagon

Γ ` P | Q
Γ ` ν(R ′ | S′)

Γ ` ν(R | S) Γ ` νν(P ′ | Q′)

Γ ` νν(swap∗P ′ | swap∗Q′)

t ν | u

t′ |ν u′

ντ (t′/t |ν u′/u)

ντ (t/t′ ν | u/u′)

νν-swapP ′|Q′

where νν-swapP ′|Q′ is the bound braid that locates P ′ | Q′ n swap∗P ′ | swap∗Q′ under the
two binders, representing the reordering of the binders. �

Example 6 (Braid erasure by synchronisation). A free braid is erased if it is enclosed by
a concurrent transition where the notion of cofinality is equality. For example, consider a
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variant of Example 5 where the extrusions x and z occur on the same side of the parallel
composition, and represent extrusions of the same binder.

Γ ` P
Γ + 1 ` R ′

Γ + 1 ` R Γ + 2 ` P ′

Γ + 2 ` swap∗P ′

tx

t′z

(t′/t)z+1

(t/t′)x+1

swap∗ Γ ` Q
Γ + 1 ` S′

Γ + 1 ` S Γ + 1 ` Q′

Γ + 1 ` Q′

ux

u′z

(u′/u)z+1〈0〉

(u/u′)x+1〈0〉
(Using named syntax, the term Q might be of the form (νy) x〈y〉.Q1 | z〈y〉.Q2, as per
Example 1 above.)
The residuals u′/u and u/u′ are plain outputs, rather than bound outputs. While the

composites t |ν u ^ t′ |ν u′ are concurrent ν-synchronisations as before, the residuals of the
composites are plain synchronisations, again propagated through the ν-binder reinserted
by the preceding step.

Γ ` P | Q
Γ ` ν(R ′ | S′)

Γ ` ν(R | S) Γ ` ν((pop 0)∗P ′ | Q′)

Γ ` ν((pop 0)∗swap∗P ′ | Q′)

t |ν u

t′ |ν u′

ντ (t′/t |0 u′/u)

ντ (t/t′ |0 u/u′)

ν(α∗P ′= | Q′=)

Since the residual actions are plain τ actions, cofinality is simply equality. And indeed
the substitution pop 0 erases the free braid relating P ′ and swap∗P ′, by mapping indices 0
and 1 both to 0. Here α is the equality (pop 0)◦swap = pop 0 (Lemma 4) and ν(α∗P ′ | Q′=)
uses congruence to lift α to an equivalence on target states, where P ′= and Q′= denote the
canonical reflexivity proofs of P ′ and Q′. �

This completes our formal treatment of concurrent transitions in π-calculus, including
the counterpart of the diamond lemma. In our setting, transitions may open terms with
respect to variables, leading to a non-trivial notion of cofinality when such transitions are
reordered. Like Boudol and Castellani, we omit a formalisation of Lévy’s “cube” property,
which extends the notion of concurrency to dimensions greater than two, since it is not
required for the formalisation of causal equivalence.

4. Causal equivalence

We now turn to formalising causal equivalence, the congruence over sequences of transitions,
or traces, induced by the concurrency relation for transitions. This is a standard concept
from the theory of concurrent alphabets [Mazurkiewicz 1987], but is non-trivial in our
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setting because of braidings, which (as we shall see below) both propagate horizontally
and compose vertically.

An “atom” of causal equivalence equates t · t′/t and t′ · t/t′ for concurrent transitions
t ^ t′, where t · u denotes the composition of t and u. When the associated pentagon is
composed horizontally into a larger computation, the continuation must be transported
through the braiding γt,t′ which relates the target states of t′/t and t/t′. This requires two
dimensions of closure, as illustrated in Figure 10. For coinitial u and γt,t′ , the transition
u must have an image u/γt,t′ in γt,t′ , and the braiding γt,t′ must propagate as γt,t′ /u:

P

Q

Q′

R

R ′

S

S′

t

t′

t′/t

t/t′

u

γt,t′ γt,t′ /u

u/γt,t′

Fig. 10: Closure of transitions under braidings

The residual u/γt,t′ is a version of u which takes into account any braiding that arises
from the concurrency of t and t′, whereas γt,t′ /u represents the effect of the braiding on
the transition u.

For braidings to be preserved by transitions and vice-versa requires two generalisations
to the notion of braiding (Definition 4). For free braids, we need the renaming to be
of the form swap + ∆ rather than swap, so that braids can be preserved by subsequent
bound actions which further open up the process term. For bound braids, the effect of
doing more computation is that the unique pair of binders picked out by a bound braid
(Definition 3) may end up being dropped (if it occurs on the discarded side of a choice) or
duplicated (if it occurs under a replication). This requires a more general notion of bound
braid closed under reflexivity and parallel composition.

An additional requirement is that braidings compose vertically when causal equivalences
are composed via transitivity:
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P

Q

Q′

P†

P‡

R

R ′

S

S′

R ′′ S′′

t

t′

t′/t

t/t′

u

u′

u′/u

u/u′

u′/γt,t′

γt,t′

γu,u′

(γt,t′ /u′)/(u/u′)γt,t′ /u′

(u/u′)/(γt,t′ /u′)
Fig. 11: Sequential composition of concurrent transitions

This diagram represents the causal equivalence

t · t′/t · u · u′/u ' t′ · t/t′ · u′/γt,t′ · (u/u′)/(γt,t′ /u′)
with the targets S and S′′ related by the composite braiding γu,u′ · γt,t′ /(γt,t′ /u′)/(u/u′).It
is worth reiterating that while the complexity of tracking free braids is unique to the de
Bruijn setting, the implications of bound braids are not, since they arise from transposed
binders.
We proceed by defining traces t (§ 4.1), and then showing that, suitably generalised,

braidings γ “commute” with coinitial traces t, giving rise to residuals t/γ and γ/t (§ 4.2).
These are used to define causal equivalences α : t ' u and composite braidings γα relating
tgt(t) and tgt(u) (§ 4.3).
4.1. Traces

Define a : Action∗ Γ (bold a) to be a finite sequence of composable actions starting at Γ,
where a and a′ are composable iff a ∈ Action Γ and a′ ∈ Action (Γ + tgt(a)). |a| denotes
the sum of |a| for every a in a. The empty sequence (nil) at Γ is written εΓ; extension
to the left (cons) is written a · a. A trace t : P a−−−−→ R (bold t) is a finite sequence of
composable transitions, where t and u are composable iff src(u) = tgt(t). The nil trace at
P is written εP ; cons of t : P a−−−−→ R onto t : R a−−−−→ S is written t · t : P a·a−−−−→ S.
The renamings ρ∗a and ρ∗t of an action and a transition extend to action sequences

and traces respectively.

Lemma 11 (Lifting of renamings to action sequences and traces).
Suppose ρ : Γ −→ ∆ and t : P a−−−−→ R , where Γ ` P, Γ + Γ′ ` R and a : Action∗ Γ.

Γ ` P
∆ ` ρ∗P

Γ + Γ′ ` R
∆ + Γ′ ` (ρ + Γ′)∗R

ta

(ρ∗t)ρ∗a
ρ∗ (ρ + Γ′)∗

Then there exist actions ρ∗a : Action∗ ∆ and trace ρ∗t : ρ∗P ρ∗a−−−−→ (ρ + Γ′)∗R .
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Proof. By the following defining equations.

ρ∗εΓ = ε∆
ρ∗εP = εP

ρ∗(b · a) = (ρ∗b) · (ρ + 1)∗a
ρ∗(c · a) = (ρ∗c) · ρ∗a
ρ∗(tb · t) = (ρ∗tb) · (ρ + 1)∗t
ρ∗(tc · t) = (ρ∗tc) · ρ∗t

4.2. Residuals of traces and braidings

We now develop a minimal generalisation of our system of transitions and braidings
sufficient to admit the following notions of residuation:

Γ ` P
Γ ` P ′

Γ + ∆ ` R
Γ + ∆ ` R ′

t

t/γ

γ γ/t

so that we can accommodate the scenario illustrated earlier in Figure 10. Here ∆ ∈ {0, 1}
and γ is a braiding witnessing the cofinality of the target states of an earlier concurrent
transition. Recall from Definition 4 that γ relates P and P ′ either by n (free braid), o

(bound braid) or = (cofinality “on the nose”); we consider each case and explain how
cofinality must be extended to support γ/t. The final definitions of the two residuals are
given as the proof of Lemma 13 below.

Case P n P ′. Then P = swap∗P ′ and R = (swap + ∆)∗R ′ by Lemma 9. If ∆ = 1 then the
free braid has shifted under a binder and thus R 6 n R ′. Therefore the first generalisation
closes free braids under translations by an arbitrary ∆, allowing them to be preserved by
subsequent computation involving bound actions which open up the process term. We
define the following relation, noting that n= n0.
Definition 5 (Free braid, generalised). For any processes Γ + 2 + ∆ ` P,R define the
symmetric relation P n∆ R as follows. The context Γ is left implicit.

P n∆ R ⇔ P = (swapΓ + ∆)∗R
Case P o P ′. Whereas a free braid inserts a swap renaming at the root of P, a bound
braid inserts a swap under exactly one pair of adjacent binders in P, and thus points
to a specific location common to P and P ′. When a transition t : P a−−−−→ R is taken,
subterms of P may be dropped or duplicated: in particular non-taken branches of choices
are discarded, and the bodies of replications are copied into both sides of the resulting
parallel compositions. It may therefore not be possible to obtain R ′ from R by inserting
exactly one bound swap, since the braid might have been duplicated or thrown away. The
second generalisation thus closes bound braids under reflexivity (to permit dropping)
and parallel composition (to permit duplication). Figure 12 defines the new relation, also
written o.
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P o R

νν-swapP
P n R

ννP o ννR
0

0 o 0
x.P

x.P o x.P
x〈y〉.P

x〈y〉.P o x〈y〉.P

·+Q
P o R

P +Q o R +Q
P + · Q o S

P +Q o P + S
· | ·

P o R Q o S
P | Q o R | S

ν·
P o R
νP o νR

!· P o R!P o !R
............................................................................................................................................

Fig. 12: Bound braid P o R that can be dropped or duplicated

Case P = P ′. The situation is trivial, since t/γ is just t and so γ/t is simply the reflexivity
proof that R = R ′.
The three cases above determine a new braiding relation on å,∆ which is closed under

transitions.

Definition 6 (Braiding, generalised). For any contexts Γ,∆, any a, a′ ∈ Action Γ and any
å : a ^ a′, define the following symmetric relation on å,∆ over processes in Γ′ + ∆, whereΓ′ is the target context of å. There are only two cases rather than three, since the = case
is now subsumed by the reflexivity of bound braids.

on å,∆ def= {

n∆ if on å = n

o otherwise

Since n = n0, and there is an obvious embedding, via reflexivity, of the old definition
of o (Figure 9) into the new one, there is also an embedding of on å into on å,0.
Lemma 12. on å ⊆ on å,0

The new braidings are sufficiently general to be closed under transitions, so we can go
ahead and define the required residuals γ/t and t/γ. We start with the case when γ is a
bound braid φ. Note that subsuming the = case into the reflexivity of o does not lose
any precision, since for any t : P a−−−−→ R we have t/P o = t and thus P o /t = R o .

Theorem 2. Suppose t : P a−−−−→ R and φ : P o P ′. Then there exists a process R ′,
transition t/φ : P ′ a−−−−→ R ′ and bound braid φ/t : R o R ′.

P

P ′

R

R ′

t

t/φ

φ φ/t

Proof. By the defining equations in Figure 13. Unlike residuals of the form t/t′, the
cofinality of t/φ and φ/t is by construction. P o denotes the reflexivity proof that P o P.
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t/φ

(ννx+1〈0〉t)/νν-swapsrc(t) = νxν(swap∗t)(νxνt)/νν-swapsrc(t) = ννx+1〈0〉(swap∗t)(νcνc′ t)/νν-swapsrc(t) = νcνc′ (swap∗t)(νbνb′ t)/νν-swapsrc(t) = νbνb′ (swap∗t)(x.P)/(x.φ) = x.tgt(φ)(x〈y〉.P)/(x〈y〉.φ) = x〈y〉.tgt(φ)(t +Q)/(φ +Q) = t/φ +Q(t +Q)/(P + ψ) = t + tgt(ψ)(P + u)/(P + ψ) = P + u/ψ(P + u)/(φ +Q) = tgt(φ) + u(t b| Q)/(φ | ψ) = t/φ b| tgt(ψ)(t c| Q)/(φ | ψ) = t/φ c| tgt(ψ)(P |b u)/(φ | ψ) = tgt(φ) |b u/ψ(P |c u)/(φ | ψ) = tgt(φ) |c u/ψ(t |y u)/(φ | ψ) = t/φ |y u/ψ(t y| u)/(φ | ψ) = t/φ y| u/ψ(t |ν u)/(φ | ψ) = t/φ |ν u/ψ(t ν | u)/(φ | ψ) = t/φ ν | u/ψ(νt)/(νφ) = ν t/φ(νbt)/(νφ) = νbt/φ(νct)/(νφ) = νct/φ(!t)/(!φ) = !t/(φ | !φ)

φ/t

νν-swapsrc(t)/(ννx+1〈0〉t) = ν tgt(t) o

νν-swapsrc(t)/(νxνt) = ν (swap∗tgt(t)) o

νν-swapsrc(t)/(νcνc′ t) = νν-swaptgt(t)
νν-swapsrc(t)/(νbνb′ t) = νν-swapswap∗(swap+1)∗swap∗tgt(t)(x.φ)/(x.P) = φ(x〈y〉.φ)/(x〈y〉.P) = φ(φ +Q)/(t +Q) = φ/t(P + ψ)/(t +Q) = tgt(t) o(P + ψ)/(P + u) = ψ/u(φ +Q)/(P + u) = tgt(u) o(φ | ψ)/(t b| Q) = φ/t | push∗ψ(φ | ψ)/(t c| Q) = φ/t | ψ(φ | ψ)/(P |b u) = push∗φ | ψ/u(φ | ψ)/(P |c u) = φ | ψ/u(φ | ψ)/(t |y u) = (pop y)∗φ/t | ψ/u(φ | ψ)/(t y| u) = φ/t | (pop y)∗ψ/u(φ | ψ)/(t |ν u) = ν(φ/t | ψ/u)(φ | ψ)/(t ν | u) = ν(φ/t | ψ/u)(νφ)/(νt) = φ/t(νφ)/(νbt) = ν swap∗φ/t(νφ)/(νct) = ν φ/t(!φ)/(!t) = (φ | !φ)/t

............................................................................................................................................
Fig. 13: Residuals of transition t and coinitial bound braid φ

Figure 14 illustrates Theorem 2 for the cases where φ is of the form νν-swapP , omitting
the various renaming lemmas used as type-level coercions.

Γ ` νν(swap∗P)

Γ ` ννP

Γ + 1 ` νR

Γ + 1 ` νR

ννx+1〈0〉t
νν-swapP

νxν(swap∗t)

Γ ` νν(swap∗P)

Γ ` ννP

Γ ` ννR

Γ ` νν(swap∗R )

νcνc′t

νν-swapP νν-swapR

νcνc′ (swap∗t)
Γ ` νν(swap∗P)

Γ ` ννP

Γ + 1 ` ν(swap∗R )

Γ + 1 ` ν(swap∗R )

νxνt

νν-swapP

ννx+1〈0〉(swap∗t)

Γ ` νν(swap∗P)

Γ ` ννP

Γ + 1 ` νν((swap + 1)∗swap∗R )

Γ + 1 ` νν(swap∗(swap + 1)∗swap∗R )

νbνb′t

νν-swapP νν-swap(swap+1)∗swap∗R

νbνb′ (swap∗t)
.........................................................................................................................................

Fig. 14: Cofinality of φ/t and t/φ in the νν-swap cases
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It is then straightforward to extend the bound braid cases t/φ and φ/t to arbitrary
braidings γ and sequences of transitions t.

Lemma 13 (Residuals of transition t and γ). Suppose t : P a−−−−→ R and γ : P on å,∆ P ′.
Then there exists process R ′, action a/γ, transition t/γ : P ′ a/γ−−−−→ R ′ and braiding
γ/t : R on å,∆′ R ′, where ∆′ = ∆ + |a|.

Γ + ∆ ` P
Γ + ∆ ` P ′

Γ + ∆′ ` R
Γ + ∆′ ` R ′

t

t/γ

γ γ/t

Proof. By the following defining equations, which are given for t/γ and γ/t simultaneously.
As before P= denotes the reflexivity proof that P = P.

(t/γ, γ/t) = {((swap + ∆)∗t, ((swap + ∆′)∗R )=) if P n∆ P ′(t/φ, φ/t) if P o P ′ and γ = φ

The diagram for Lemma 14 is the same as for Lemma 13 but with t instead of t.

Lemma 14 (Residuals of trace t and γ).
Suppose t : P a−−−−→ R and γ : P on å,∆ P ′. Then there exists process R ′, action sequence
a/γ, trace t/γ : P ′ a/γ−−−−→ R ′ and braiding γ/t : R on å,∆′ R ′, where ∆′ = ∆ + |a|.
Proof. By the following defining equations.

P

P ′

P

P ′

εP

εP ′

γ γ

P

P ′

R

R ′

S

S′

t t

t/γ t/(γ/t)
γ γ/t (γ/t)/t

εP /γ = εP ′
γ/εP = γ

(t · t)/γ = t/γ · t/(γ/t)
γ/(t · t) = (γ/t)/t

4.3. Causal equivalence

A causal equivalence α : t ' u reorders a trace t into an equal-length, coinitial trace u by
permuting concurrent transitions. Meta-variables α, β range over causal equivalences. If
α : t ' u then tgt(t) and tgt(u) are related by a unique braiding γα .
In what follows, rules which mention a trace of the form t · t have an implicit side-

condition asserting tgt(t) = src(t), and rules which mention a braiding γt,t′ have an implicit
side-condition asserting t ^ t′.

Definition 7. Inductively define the relation ' using the rules in Figure 15, where syntac-
tically ' has lower priority than ·.
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t ' u

εP εP ' εP
t · · t ' u

t · t ' t · u

(t ^ t′) · t
t · t′/t · t ' t′ · t/t′ · t/γt,t′

· ◦ ·
t ′ ' u t ' t ′

t ' u

............................................................................................................................................
Fig. 15: Causal equivalence

The εP and t · · rules are the congruence cases. The · ◦ · rule closes under transitivity,
which is a form of vertical composition and which also causes braidings to compose
vertically. The transposition rule (t ^ t′) · t composes a concurrent pair t ^ t′ with a
continuation t for t′/t, transporting t through the braiding γt,t′ witnessing the cofinality
of t and t′ to obtain the continuation t/γt,t′ for t/t′, as shown in Figure 16.

P

R

R ′

Q

Q′

S

S′

t

t′

t′/t

t/t′

t

t/γt,t′

γt,t′ γt,t′ /t

Fig. 16: Causal equivalence, transposition rule

Theorem 3. ' is an equivalence relation.

Proof. Reflexivity is a trivial induction, using the εP and t · α rules. Transitivity is
immediate from the · ◦ · rule. Symmetry is trivial in the εP , t · α and α ◦ β cases. The(t ^ t′) · t case requires the symmetry of ^ and that (t/γ)/γ = t.

A causal equivalence α : t ' u determines a composite braiding relation onα which
precisely sequences the atomic braidings required to relate tgt(t) to tgt(u).
Definition 8 (Braiding for equivalent traces). Inductively define the family onα of relations
between processes, for any a : t ' u, using the rules in Figure 17.

P onα R

P onεP P P on (t^t′)·t R γt,t′ /t : P on å,∆ R P onα R
P on t·α R

P onβ R R onα S
P onα◦β S

..........................................................................................................................................
Fig. 17: Braiding relation onα relating tgt(t) and tgt(u) for any α : t ' u
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As with on å,∆, the relation onα is a singleton, inhabited by a unique path γα between
tgt(t) and tgt(u). (However α itself is not unique, since there are many ways of proving
t ' u.) The P onεP P case is an empty composite braiding. The P on (t^t′)·t R case turns an
atomic braiding γt,t′ into one step of a composite braiding, after transporting it through
the continuation t. The P on t·α R case simply recognises that tgt(t · t) = tgt(t). Finally
P onα◦β R is the composition rule, closing under transitivity.

Theorem 4. Suppose α : t ' u. Then there exists a unique γα : tgt(t) onα tgt(u).
Theorem 5. onα is a '-indexed family of equivalence relations.

5. Related work

The µs calculus [Hirschkoff 1999] has a similar treatment of de Bruijn indices. Its renaming
operators 〈x〉, φ and ψ are effectively our pop x, push and swap renamings, but fused
with the ·∗ operator which applies a renaming to a process. Hirschkoff’s operators are
also syntactic forms in the µs calculus, rather than meta-operations, and therefore
the operational semantics also includes rules for reducing occurrences of the renaming
operators that arise during a process reduction step.
As noted earlier in the paper, our approach to defining causal equivalence of traces

is influenced by a line of work stemming from the study of optimal reduction in the λ-
calculus [Lévy 1980], via the “proved transition” semantics of CCS [Boudol and Castellani
1989].

Boreale and Sangiorgi [1998] and Degano and Priami [1999] investigate causality in the
context of the π-calculus. Similar ideas (from which we also drew inspiration) appear in
work on reversible CCS, such as RCCS [Danos and Krivine 2004], and reversible π-calculi,
such as ρπ [Lanese et al. 2010] and Rπ [Cristescu et al. 2013]). Reversible calculi equip
process terms with additional structure to support undoing actions; causal equivalence
and permutation of transitions is necessary here to allow undoing actions in a different
(sequential) order than they were performed. However, this additional structure changes
the metatheory: for example, in Rπ two traces are coinitial and cofinal if and only if they
are equivalent, which does not hold in our setting. To the best of our knowledge, there
is no prior work that presents a proved transition semantics for a “vanilla” π-calculus,
rather than an augmented variant.
Another related concept for concurrency calculi, confluence, has been studied for

CCS [Milner 1980] and for the π-calculus [Philippou and Walker 1997]. A process is
confluent if none of its possible actions interfere with each other. Intuitively, this should
be the case if the process has only one possible trace modulo causal equivalence. However,
to the best of our knowledge, confluence has not been studied using the proved transitions
approach and the formal relationship between confluence and causal equivalence is unclear.
Our formalisation provides a platform for future study of this matter.
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5.1. Mechanised treatments

Formalisations of the π-calculus have been undertaken in several theorem provers used
for mechanised metatheory, including Coq, HOL, Isabelle/HOL, Nominal Isabelle, CLF,
Abella, and Agda.

HOL Melham [1994] reports on a formalisation of the π-calculus in HOL, using names
axiomatised as an unspecified, infinite set, and following Milner et al. [1992] closely.
Substitution is parameterised over a choice function specifying how to choose a name
fresh for a given set of names, which is used to rename bound names to avoid capture.
Aït Mohamed [1995] formalised the π-calculus in HOL using concrete syntax and verified
proof rules for early bisimulation checking.

Coq An early mechanisation of residuation theory was Huet’s formalisation in Coq
of residuals for λ-calculus [Huet 1994], which also uses de Bruijn indices. Huet’s chief
contribution is an inductive definition of residual, a proof that residuals commute with
substitution, and a “prism” theorem that generalises Lévy’s cube lemma.

Hirschkoff [1997] formalised the π-calculus in Coq using de Bruijn indices, and verified
properties such as congruence and structural equivalence laws of bisimulation. Despeyroux
[2000] formalised the π-calculus in Coq using weak higher-order abstract syntax, assuming
a decidable type of names, and using two separate transitions, for ordinary, input and
output transitions respectively; for input and output transitions the right-hand side is a
function of type name −→ proc. This formalisation included a simple type system and
proof of type soundness. Honsell et al. [2001] formalised the π-calculus in Coq, also using
weak higher-order abstract syntax. The type of names name is a type parameter assumed
to admit decidable equality and freshness (notin) relations. Transitions are encoded using
two inductive definitions, for free and bound actions, which differ in the type of the
third argument (proc vs. name −→ proc). Numerous results from Milner et al. [1992] are
verified, using the theory of contexts (whose axioms are assumed in their formalisation,
but have been validated semantically by Bucalo et al. [2006]).

Affeldt and Kobayashi [2008] developed a library based on a variant of the π-calculus
(with channels typed using Coq types) for representing and reasoning about concurrent
processes. Processes are represented using higher-order abstract syntax, and exotic terms
are allowed; some lemmas are not formally proved but introduced as axioms with semantic
justifications.

Isabelle/HOL Röckl et al. [2001] and Röckl and Hirschkoff [2003] formalised the π-calculus
in Isabelle/HOL and verified properties such as adequacy, following the theory of contexts
approach to higher-order abstract syntax introduced by Honsell et al. [2001], and using
well-formedness predicates to rule out exotic terms. Gay [2001] developed a framework
for formalising (linear) type systems for the π-calculus in Isabelle/HOL, using de Bruijn
indices for binding syntax and a reduction-style semantics rather than labelled transitions.
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Abella Tiu and Miller [2010] encode the syntax and semantics of the π-calculus using
the λ-term abstract syntax variant of higher-order abstract syntax; like a number of other
approaches they split the transition relation into two relations to handle scope extrusion.
Their formalisations employ the meta-logic FOL∆∇ which forms the basis of the Abella
theorem prover, and similar specifications have been used as the basis for verification of
properties of the π-calculus in Abella [Baelde et al. 2014].
Accattoli [2012] adapts Huet’s Coq formalisation of residuals from de Bruijn indices

to Abella’s higher-order abstract syntax and nominal quantifier ∇, yielding a significant
simplification of Huet’s proof. Accattoli also proves the cube lemma directly, rather than
introducing an intermediate prism theorem. It may be that reformalizing our approach
using Abella would make it possible to simplify our proof in a similar way.

Nominal Isabelle The Nominal Datatype Package extension to Isabelle/HOL [Urban
2008] supports the Gabbay-Pitts style “nominal” approach to abstract syntax modulo
name-binding [Gabbay and Pitts 2002], and has been used in several formalisations. Two
early contributions using similar ideas predate its development: Röckl [2001] formalised
the syntax of π-calculus and α-equivalence in Isabelle/HOL. Gabbay [2003] described
how to use Gabbay-Pitts nominal abstract syntax to represent the π-calculus, without
giving a mechanised formalisation or proofs of properties.

Bengtson and Parrow [2009] report on an extensive formalisation in Nominal Isabelle,
including inversion principles up to structural congruence, properties of strong and weak
bisimulation, and a proof that an axiomatisation of strong late bisimilarity is sound and
complete. They use a single inductively-defined transition relation, whose third argument
is a sum type allowing either an ordinary process or a residual process with a distinguished
bound name.

CLF Cervesato et al. [2002] formalise synchronous and asynchronous versions of π-calculus
in the Concurrent Logical Framework (CLF), and Watkins et al. [2008] develop a static
type system and operational semantics modeled on that of Gordon and Jeffrey [2003]
for checking correspondence properties of protocols specified in the π-calculus. CLF
employs higher-order abstract syntax, linearity and a monadic encapsulation of certain
linear constructs that can identify objects such as traces up to causal equivalence. Thus,
CLF’s π-calculus encodings naturally induce equivalences on traces satisfying commuting
conversions among synchonous operations. However, a non-trivial effort appears necessary
to compare CLF’s notion of trace equivalence with others, because traces are quotiented
by a definitional equality by default and there is no explicit notion of concurrency or
residuation.

Agda Orchard and Yoshida [2015] present a translation from a functional language with
effects to a π-calculus with session types and verify some type-preservation properties of
the translation in Agda.
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6. Conclusions and future work

To the best of our knowledge, we are the first to report on a mechanised formalisation
of concurrency, residuation and causal equivalence for the π-calculus. We employed de
Bruijn indices to represent binders and names. Formalisations of λ-calculi often employ
this technique, but to our knowledge only Orchard and Yoshida also employ de Bruijn
indices in a mechanised formalisation of π-calculus. Whilst de Bruijn indices incur a
certain level of administrative overhead, the use of dependent types helps tame their
complexity: many invariants are automatically checked by the type system rather than
requiring additional explicit reasoning.

Our work appears to be the first to align the notion of “proved transitions” from Boudol
and Castellani’s work on CCS with “transition proofs” in the π-calculus. This hinges
on the capability to manipulate and perform induction or recursion over derivations,
and means we can leverage dependent typing so that residuation is defined only for
concurrent transitions, rather than on all pairs of transitions. It is worth noting that while
CLF’s approach to encoding π-calculus automatically yields an equivalence on traces, it
is unclear (at least to us) whether this equivalence is similar to the one we propose, or
whether such traces can be manipulated explicitly as proof objects if desired.

The most notable aspect of our development is the generalised diamond lemma, which
allows causally equivalent traces to have target states which are not equal “on the nose”
but only up to a precise braiding which captures how binders were reordered. These
braidings are more explicit in a de Bruijn indices setting, since free as well as bound names
must be rewired when binders are transposed. Generalised cofinality may be relevant to
modelling concurrency in other languages where concurrent transitions have effects which
commute only up to some equivalence relation, such as dynamic memory allocation.

6.1. Future work

One possible future direction would be to explore trace structures explicitly quotiented
by causal equivalence, such as dependence graphs [Mazurkiewicz 1987], event struc-
tures [Boudol and Castellani 1989], or rigid families [Cristescu et al. 2015]. We are also
interested in extending our approach to accommodate structural congruences, and in
understanding whether ideas from homotopy type theory [Univalent Foundations Program
2013], such as quotients or higher inductive types, could be applied to ease reasoning
about π-calculus traces modulo causal equivalence and structural congruence.
An interesting possibility would be to separately formalise the abstract notion of a

“residuation system” parameterised on a notion of cofinality. One could then show that the
π-calculus (equipped with a particular notion of name binding) admits such a residuation
system, with cofinality suitably instantiated. This would shed light on which aspects of
concurrency and causality are specific to the choice of name-binding formalism. Potentially
this modular approach would also make it easier to study variants of π-calculus where
interaction arises from different communication patterns, such as the join-calculus [Fournet
and Gonthier 2002] or polyadic π-calculus [Carbone and Maffeis 2003]. Again, it might
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be possible to model concurrency and causality in these settings independently of the
rewiring issues associated with permuting transitions that manipulate scope.
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Appendix A. Agda module structure

Figure 18 summarises the module structure of the Agda formalisation.

Utilities
Ext Extensions to Agda library, https://github.com/rolyp/agda-stdlib-ext

Core modules
Action Actions a
Action.Concur Concurrent actions a ^ a′; residuals a/a′

Action.Seq Action sequences a
Braiding.Proc Bound braids φ : P o P ′

Braiding.Transition Residuals t/φ and φ/t
Name Contexts Γ; names x
Proc Processes P
ProofRelevantPi Include everything; compile to build project
ProofRelevantPiCommon Common imports from standard library
Ren Renamings ρ : Γ −→ Γ′
Ren.Properties Additional properties relating to renamings
Transition Transitions t : P a−−−−−→ R
Transition.Concur Concurrent transitions t ^ t′; residuals t/t′

Transition.Concur.Cofinal Cofinality witnesses γ
Transition.Concur.Cofinal.Transition Residuals t/γ and γ/t
Transition.Seq Transition sequences
Transition.Seq.Cofinal Residuals t/γ and γ/t; permutation equivalence α : t ' u
Transition.Seq.Cofinal.Cofinal Proof that t/γ and γ/t are (heterogeneously) cofinal

Common sub-modules
.Ren Renaming lifted to entity defined in parent module

..........................................................................................................................................
Fig. 18: Module overview, release 0.3
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