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—— Abstract

Differential categories are now an established abstract setting for differentiation. The paper
presents the parallel development for integration by axiomatizing an integral transformation,
s4 1A = 1A®A, in a symmetric monoidal category with a coalgebra modality. When integration
is combined with differentiation, the two fundamental theorems of calculus are expected to hold
(in a suitable sense): a differential category with integration which satisfies these two theorem is
called a calculus category.

Modifying an approach to antiderivatives by T. Ehrhard, it is shown how examples of calculus
categories arise as differential categories with antiderivatives in this new sense. Having antide-
rivatives amounts to demanding that a certain natural transformation, K : !A — !A] is invertible.
We observe that a differential category having antiderivatives, in this sense, is always a calculus
category and we provide examples of such categories.
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1 Introduction

The two fundamental theorems of calculus relate the two most important operations of
calculus: differentiation and integration. The first theorem states that the derivative of

. . . . . (" f(a) da) .
the integral of a real function f is the original function: ————(x) = f(z). While the
second states that the integral of the derivative of a real function f on a closed interval
[a, b] is equal to the difference of f evaluated at the end points: fj %(tt)(a:) dt = f(b) — f(a).
They are called “fundamental" theorems because they are absolutely fundamental to the
development of classical calculus.

Since the turn of the 21%% century, there has been significant progress in the abstract
understanding of differentiation with the study of differential categories. The abstract for-
mulation of integration, on the other hand, has not received the same level of attention.
Nonetheless, one might expect that, when suitably adjoined to the formulation of differenti-
ation, a commensurate abstract form for integration should encompass these fundamental
theorems. The purpose of this extended abstract is to explore the extent to which this
expectation is realized.
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Integral Categories and Calculus Categories

In the early 2000’s, T. Ehrhard and L. Regnier introduced the differential A-calculus [12]
and differential proof nets [13], which formalized differentiation in linear logic. A few years
later, R. Blute, R. Cockett and R. Seely introduced differential categories 7], which were
the appropriate categorical structure for modelling Ehrhard and Regnier’s differential linear
logic. Differential categories now have a rich literature of their own [4, 3, 2, 6, 14, 10, 9]
and there are many examples which have been extensively studied [7, 11, 5]. However, as
mentioned above, little attention has been given to abstracting integration.

In 2014, T. Ehrhard observed that in certain x-autonomous categories which had the
appropriate structure to be a differential category, it was possible with one additional
assumption to produce antiderivatives [11]. The additional assumption was that a certain
natural transformation — which he called J — constructed from the deriving transformation was
a natural isomorphism. With this assumption, Ehrhard constructed an integral transformation
with an inverse behaviour to the deriving transformation, in the sense that he gave necessary
and sufficient conditions for a map to satisfy the first fundamental theorem of calculus — by
proving Poincaré’s Lemma. Furthermore, when the deriving transformation satisfied an extra
— non-equational — condition, which he called the “Taylor Property", he then showed that
every differentiable function satisfied the second fundamental theorem of calculus.

While much of the inspiration for our approach to integration derives from these observa-
tions, Ehrhard made no attempt to axiomatize integration separately from differentiation.
Here we introduce (tensor) integral category as a notion which stands on its own (i.e. in
the absence of differentiation). The inspiration for this independent axiomatization of in-
tegral categories comes from the much older notion of a Rota-Baxter algebra [1, 20, 15],
the classical algebraic abstraction of integration. Briefly, for a commutative ring R and
A € R, a Rota-Baxter algebra of weight A\ is an R-algebra A with an R-linear morphism
P : A — A which satisfies the Rota-Baxter rule: P(a)P(b) = P(aP(b))+ P(P(a)b) + AP(ab)
for all a,b € A. The map P is called a Rota-Baxter operator of weight A\. A particular
example of a Rota-Baxter algebra of weight zero is the R-algebra of real continuous func-
tions Cont(R), where the Rota-Baxter operator P Cont( ) — Cont(R) is defined as the

integral of the function centred at zero: P(f fo ) dt. The Rota-Baxter rule for
this example is the expresswn of the mtegratlon by parts rule without the use of derivatives:
Jo f@) dt- [ g(t)dt= [T f fo ) du) dt + [ fo u) du) - g(t) dt (see [15] for more

detalls). This motlvates the Rota—Baxter rule as an axiom of integration.

When differentiation and integration are combined into what we call here a calculus
category, we demand that the two fundamental theorems hold. The second fundamental
theorem is assumed to hold verbatim. However, the first fundamental theorem, as above, has
to be interpreted as being on maps — rather than objects — and, under this interpretation,
becomes the Poincaré property, a conditional property which provides necessary and sufficient
conditions for a map to be the differential of its integral. The name of the condition comes
from the Poincaré Lemma from cohomology [22] and differential topology [8], which states
an analogous result of giving criteria for a map to be an antiderivative.

To obtain the notion of integration as an antiderivative, we insist that a slightly different
natural transformation, which we call K, should be invertible. We show this is equivalent to
requiring both that Ehrhard’s transformation J is invertible and that the “Taylor Property” —
which Ehrhard had suggested was desirable — holds. This improvement is easily underestim-
ated: the “Taylor Property” is a conditional requirement, replacing a conditional requirement
by a purely equational requirement is always, mathematically, a significant step. Demanding
that K is invertible not only produces an integral transformation, but also secures the first
and second fundamental theorem of calculus. Inverting only Ehrhard’s transformation, J,
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does not by itself even produce an integral transformation; the “Taylor Property” is required,
in addition to the invertibility of J, to secure an integral transformation. The fact that, when

K is invertible, J is invertible is useful particularly in the proof of the Poincaré’s lemma.

Thus, it is important to observe that, the antiderivative produced by the inverse of K is
precisely the same as the antiderivative produced by the inverse of J — when K is already
invertible.

Finally, the notion of a differential category with anti-derivatives, given by requiring K to
be invertible, provides a plentiful supply of calculus categories as we explain.

Before beginning, we should mention the conventions that we use in the paper. First off,
we will use diagrammatic order for composition. Explicitly, this means that the composite
map fg is the map which first does f then g. Secondly, to simplify working in symmetric
monoidal categories, we will allow ourselves to work in strict symmetric monoidal categories
and so will generally suppress the associator and unitor isomorphisms. For a symmetric
monoidal category we will use ® for the tensor product, I for the monoidal unit, and
c:A® B — B® A for the symmetry isomorphism.

Full detailed proofs of all the results in this extended abstract can be found in the second
author’s masters thesis [18].

2 Coalgebra Modalities

Tensor integral and differential categories are structures over additive symmetric monoidal
categories with a coalgebra modality. We begin by recalling the components of this structure
starting with the notion of an additive category. Here we mean “additive” in the sense of
being commutative monoid enriched. Thus, we do not assume negatives nor do we assume
biproducts (this differs from the usage in [19] for example). This allows many important

examples such as the category of sets and relation or the category of modules of a commutative
1

rig*.
» Definition 1. An additive category is a commutative monoid enriched category, that is
a category in which each hom-set is a commutative monoid — with addition operation + and
zero 0 — and in which composition preserves addition that is:

[Add.1] k(f+g)=kf+kg and Of = 0;

[Add.2] (f+g)h=fh+gh and f0 = 0.

An additive symmetric monoidal category is an additive category with a tensor
product which is compatible with the additive structure in the sense that:
[Addg.1] (f+9)@h=f®@h+g®@h and 0 ® h=0;
[Addg.2] k@ (f+9)=k® f+k® g and h® 0=0.

In any additive category their is a notion of “scalar multiplication” of maps by the natural
numbers N. The scalar multiplication of amap f: A — Bbyn € N, isthemapn-f: A — B
defined by summing n copies of f together. If n = 0, then 0 - f is simply the zero map
from A to B. Furthermore, for additive symmetric monoidal categories, one then has that

(n-fleg=n-(feg) =fo0n-g).

» Definition 2. A coalgebra modality [7, 3] on a symmetric monoidal category is a
quintuple (!,d,¢e, A, e) consisting of a comonad (!,6,¢), a natural transformation A with

! Rigs are also known as a semirings: they are rings without negatives.
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components Ay : 1A - 1A®!A, and a natural transformation e with components e4 : A — I
such that for each object A:
(i) (!A,A4,e4) is a cocommutative comonoid, that is, the following diagrams commute:

A A

1A IAR®!1A 1A 1A IA®!1A
A\L iA@l / lA\ X\ \Lo’
IA®!A Y IAQIA® A 1A " IA®!A e 1A IA®!1A

(ii) d4 preserves the comultiplication, that is, the following diagram commutes:

M—°% A

N s

A®!A NA®!IA

045

When combined with the additive structure, this ensures that !A is a coalgebra in the
classical algebraic sense. Furthermore, one can prove that de = e so § is actually a comonoid
homomorphism.

The coKleisli maps for the comonad are important: these maps are of the form f : A — B:
amongst these are the linear maps g : |A — B where g : A — B.

Note that we do not assume that the coalgebra modality, !, is a monoidal functor: to do
so would put us in the realm of Seely categories [3, 14] which is more than we require for
this basic theory.

3 Integral Categories

Integral categories are the integral analogue of differential categories, thus, the main ingredient
of an integral category is an integral transformation, s :!A —-!A® A, a natural transformation
opposite in orientation to a deriving transformation which must satisfy just three equations:

» Definition 3. An additive symmetric monoidal category with a coalgebra modality is an
integral category if there is a natural transformations4 : !4 — |A® A, called the integral
transformation, satisfying the following equations:

[s.1] Constants Rule: s(e® 1) =¢

[s.2] Rota-Baxter Rule: A(s®s) =s(A®1)s®1®1)+s(A1)(1®0)(1®1®s)

[s.3] Interchange Rule: s(s®1) =s(s® 1)(1 ® o)

The integral of a map f:!A® A — B is defined as the composition S[f] :=saf : !4 — B.
This should be thought of as the classical integral of f evaluated from 0 to = as a function of
x: S[f](x) := [, f(t) dt. To interpret this as S[f] one must regard f as being a function of
two variables ¢ and dt, which is linear in dt. Classically, f is regarded as a function of one
(one dimensional) variable, ¢, and to obtain the interpretation as a function of two arguments
one simply multiplies by the variable d¢. This allows a simple interpretation of the integral
notation for one dimensional functions: it leaves open the interpretation for multidimensional
functions — an issue to which we shall return.

The additive structure of the category ensures the integral of a sum of maps is equal
to the sum of the integral of each map, that is, S[f + g] = S[f] + S[g] and S[0] = 0. The
first axiom [s.1] states that the integral of a constant map is a linear map (in the sense
discussed above). The second axiom [s.2] is the Rota-Baxter rule [15], which is an expression
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of integration by parts using only integrals In classical calculus notation, the Rota—Baxter

rule is expressed as: [ f(¢) dt- [ g(t) dt = [ f fo ) du) dt + [ fo du) - g(t) dt.

The third axiom [s.3] ensures the mdependence of the order of integration — the interchange
law — that is integrating with respect to u then ¢ is the same as integrating with respect to ¢
then u. It may be tempting to think this is related to Fubini’s theorem. In fact, it is not
closely related at all: we discuss this at the end of this section. [s.3] can be expressed in
classical notation as: [; fo ) dudt) = [57(fy f(t) dt du).

Just like differential categorles, integral categ‘orles have a graphical calculus (see [21] for
an introduction to the graphical calculus in monoidal categories and its variations). We
represent the integral transformation in string diagrams as follows (which should be read
from top to bottom):

1A

il
s:=f

1A A

The integral axioms [s.1], [s.2] and [s.3] are then represented in the graphical calculus as
follows (we omit writing the objects at the end of the wires).
[s-1] Constants Rule:

N
[s.2] Rota-Baxter Rule:

/\ /\ AN T%f\

[s.3] Interchange Rule:

AN - A

With the graphical calculus, we are now in a position to explore polynomial integration.

Perhaps the first formula learnt in first year calculus is fO:c "dx = ?x"“‘l However this

formula cannot be expressed in a general additive category — simply because there may not
be fractions. That said, we will soon see that in every integral category there is a notion

of scalar multiplication by positive rationals, that is, certain hom-sets are Q>¢-modules,

where Q> is the rig of non-negative rationals. The integral of monomials identity can be
re-express as the requirement that (n + 1) foz 2" dz = 2"T! and this identity does hold in
any integral category! To express this identity in an integral category, we will need the n-fold

comultiplication A, : 1A — 1A®" which is defined as A, = AA®1)(A®1®1)...(Ax1®" ).

By convention we set Ag =e, A; =1 and Ay = A.
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» Theorem 4. For every n € N, the integral transformation satisfies the polynomial identity:
[s. Poly] (n+1) -s(An ®1)(®" ® 1) = Apyr (e

e AN 1Y

Proof. The beauty of this proof is that it uses every integral transformation axiom. The
proof is much smoother using the graphical calculus, which is equivalent to proofs done
algebraically as shown in [16]. We will prove the equality for the integral transformation by
induction on n. For the base case of n = 0, this equality holds directly by the constant rule
[s.1]. Assume the induction hypothesis [s. Poly] holds for n, we now show it for n + 1:

A

{}4§jw{gz
“Mgﬁ\{VN<“{$\{VN

A\ “’*N A\ A
A QA A

An important consequence of polynomial integration is that certain hom-sets are Q>o-
modules. In an additive category, for every object A and for every natural number n € N,
define the map n4 : A — A by summing n copies of the identities: ng =n-14. We will
now prove that in any integral category that for every object A and n > 2, the map ny4 is

<

invertible.

» Theorem 5. In an integral category, for every natural number n € N, n > 2, and every
object A € X, the map ni4 : 'A — A is an isomorphism.

» Remark. Notice that the case n =1 is also true since the identity map is an isomorphism.
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Proof. We will simply define the inverse of n;4. For each object A and n > 2, define
nit 1A = 1A ast nl = dasia(A 1 @ 1) (S @)1 ® ¢®" "), written in the graphical

calculus as:

it = j{ ’

This implies, in an integral category, hom-sets with domain !A are Q>p-modules. The scalar
multiplication of a map f : !A — B with a non-negative rational g € Q5o is the map
L. f:1A— Bdefined as £ - f =g, (p- f).

Finally, we discuss the interpretation of Fubini’s theorem. The theorem requires that
the coalgebra modality is monoidal and, thus, that there is a Seely isomorphism [2, 14]:
X :!A®!B — (A x B). Fubini’s theorem concerns the double integration of a function
of the form f:1(A x B) ® A® B — C whose type ensures it is bilinear in the second two
occurrences of A and B. Functions of this form can be integrated with respect to either A or
B, or both A and B: the latter, the double integral of f, is obtained as follows:

-1 s® s o
(AxB) X5 1A®IB 25 140 A®IBe B 2225 140 1Be A9 B 2225 1(Ax B)® Ao B L C
Fubini’s theorem asserts that the order of integration in this double integral does not
matter. At this level of generality this order independence is an immediate consequence of
the bifunctoriality of _ ®

4 Calculus Categories

In this section we wish to put integration together with differentiation and to discuss how
they should interact. We start by briefly recalling the definition of a differential category
[7] before introducing calculus categories whose structure is induced by the fundamental
theorems of calculus.

» Definition 6. An additive symmetric monoidal category with a coalgebra modality is a
differential category if the coalgebra modality comes equipped with a deriving trans-
formation [7], that is, a natural transformation d with components d4 : |1A ® A — A,
satisfying the following equations:

[d.1] Constant Rule: de =0

[d.2] Leibniz Rule: dA = (A®1)(1®0)(d® 1)+ (A®1)(1®d)

[d.3] Linear Rule: de = (e ® 1)A

[d.4] Chain Rule: dd = (A®1)(0®1®1)(1®d)d

[d.5] Interchange Rule: (d®1)d=(1®0)(d® 1)d

The derivative of a map f : !4 — B is the composition D[f] :=daf:!A® A — B. The
first axiom, [d.1], states that the derivative of a constant map is zero. The second axiom
[d.2] is the Leibniz rule for differentiation — also called the product rule. The third axiom
[d.3] says that the derivative of a linear map is a constant. The fourth axiom [d.4] is the
chain rule. The last axiom [d.5] is the independence of differentiation or the interchange law,
which naively states that differentiating with respect to x then y is the same as differentiation
with respect to y then z. It should be noted that [d.5] was not a requirement in [7] but
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was later added to the definition [3, 3] to ensure that the coKleisli category of a differential
category was a Cartesian differential category.

As previously stated, differential categories have a graphical calculus. The deriving
transformation is represented as follows:

1A

The string diagram representations of [d.1] to [d.5] are as follows:

[d.1] Constant Rule:

"
7

[d.2] Leibniz Rule:

N
XA

[d.3] Linear Rule:

IR

[d.4] Chain Rule:

o

C

[d.5] Interchange Rule:

We are now ready to tackle the interaction between integration and differentiation.
We start with the second fundamental theorem of calculus and return to discuss the first
fundamental theorem of calculus:

» Definition 7. Let X be a differential category and an integral category with deriv-
ing transformation d and integrating transformation s on the same coalgebra modality
(I,d,e,Ae).
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(i) d and s are said to satisfy the Second Fundamental Theorem of Calculus if:
sd + !0 = 1, written in the graphical calculus as:

©

(ii) d and s are said to be compatible if: dsd = d, written in the graphical calculus as:

v

(iii) d is said to be Taylor if for every pair of maps f,g: C ® !A — B, such that

-Cr

-CAC

(ledf=(1xdyg
then f + (1®1(0))g =g+ (1 ®!(0))f.

The first part of the definition expresses the second fundamental theorem of calculus.
Compatibility is a weaker version of the second fundamental theorem. The Taylor property
(see [11]) is the property that if two maps have the same derivative then they differ by
constants.

» Theorem 8. For a deriving transformation d and an integral transformation s on the same
coalgebra modality, the following are equivalent:

(i) d and s satisfy the Second Fundamental Theorem of Calculus;

(ii) d and s are compatible and d is Taylor.

» Remark. This is an extension of Proposition 14 of [11] which proved (ii) = (i) for Ehrhard’s
original integral using J=1, however the notion of compatibility was not identified although
it was used in the proof.

Proof. (i) = (ii): Suppose d and s satisfy the Second Fundamental Theorem of Calculus.
For Taylor, suppose that (1 ®d)f = (1 ® d)g. Then we have the following equality:

FH(1®!10)g = (18s)(10d) f+(1®!0) f+(1®!0)g = (18s)(1®d)g+ (1®!0) f+(1®!0)g = g+ (1R!0) f
For compatibility, by naturality, we have the following equality:
d = dsd + d!(0) = dsd + (!(0) ® 0)d = dsd + 0 = dsd .

(i) = (ii): Suppose d and s are Compatible and d is Taylor. Notice by Compatibility we
have: dsd = d, and then by Taylor (where f = sd and g = 1) we have the following equality:
sd 4+ 1(0) = 1 4 1(0)sd. However, using naturality, we have:

sd+1(0) =1+!(0)sd =1+s(1(0)®0)d=1+0=1. <

The interpretation of the first fundamental theorem of calculus, unlike the second funda-
mental theorem, is as a property of a map:

20:9
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» Definition 9. A map f: C ®!4A® A — B satisfies the First Fundamental Theorem
(in the last two arguments) if (1 ® (dasa))f = f, written in the graphical calculus as:

—C

Thus, if f satisfies the First Fundamental theorem, it may be viewed as the differential of
a map — namely the differential of its integral. Clearly not all maps will satisfy the First
Fundamental theorem calculus, a necessary condition is:

» Lemma 10. If a map, f: C®!A® A — B, satisfies the First Fundamental Theorem,
then: (1@1@0)(1@de1)f=(1dx1)f.

Proof. As (1®ds)f = f, the interchange rule for the deriving transformation [d.5] gives:
(1®lee)(ledel)f = (1010)(lede1)(1e(ds))f = (1ed®1)(1e(ds)) f = (1ed®1) f
<
We shall use the converse of this lemma as an axiom and call it the Poincaré condition:

» Definition 11. A differential category with an integral transformation satisfies the Poin-
caré condition if any map f : C®!A®A — B for which: (1®1®0c)(1@d®1)f = (1d®1)f,
satisfies the First Fundamental Theorem — that is: (1 ®ds)f = f.

The Poincaré condition and Lemma 10 imply the following equivalence:

-l

The Poincaré condition also implies compatibility of the deriving transformation and
integrating transformation.

» Theorem 12. The integral and deriving transformation are compatible in any differential
category with an integral transformation which satisfies the Poincaré condition.

Proof. By [d.5], the deriving transformation d satisfies the Poincaré pre-condition that
(1®0)(d®1)d = (d®1)d. Therefore, d satisfies the First fundamental theorem of Calculus,
which is simply the statement of compatibility: dsd = d. <

» Corollary 13. A deriving and integral transformation which satisfy the Poincaré condition
such that d is Taylor, satisfies the Second Fundamental Theorem of Calculus.

This suggests the following basic definition:

» Definition 14. A calculus category is a differential category and an integral category
on the same coalgebra modality such that the deriving transformation and the integral
transformation satisfy the Second Fundamental Theorem of Calculus and the Poincaré
condition.
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5 Antiderivatives

In this last section, we explore how one obtains a calculus category from a differential category
with “antiderivatives”. A differential category has “antiderivatives” when a certain natural

transformation, K — which is present in all differential categories — is a natural isomorphism.

This is a strengthening of Ehrhard’s original idea in [11], which required a different natural
transformation, J, to be a natural isomorphism. Inverting J by itself does not appear to
give even an integral category: to obtain an integral category and the second fundamental
theorem of calculus Ehrhard also demanded the Taylor property. Inverting K, as we shall
see, gets all these properties — and, thus, a calculus category — in one step.

In an additive symmetric monoidal category with a coalgebra modality, the coderiving
transformation is the natural transformation d$ := As(lia ®e4) : 1A - 1A ® A (this
called the “annihilation operator” in [14]). We represent the coderiving transformation as an
upside down deriving transformation in the graphical calculus:

[ l}a
The coderiving transformation would probably be one’s first attempt at constructing an

integrating transformation in differential category. The following theorem indicates how close
the coderiving transformation is to being an integrating transformation:

» Theorem 15. The coderiving transformation d° satisfies the following properties:
[cd.1] d°(e® 1) =¢

[cd.2] d°(e®1) = A(e ®e¢)

[cd3]d(A® 1H=A(1®d°)

[cd.4] d*(A®1)(1®0o)=A(d°®1)

[cd.5] 2. A(d°®d°)=d°(A@1)(d°®1®1)+d°(A®1)(1®0)(l®1xd°%)
[cd.6] d°(6®1) =dd°(1®e)

[cd.7] d°(d° @ 1) = d°(d° ® 1)(1 ® 0)

Notice in particular [cd.1], [ed.5] and [cd.7]. If we let s = d°, then [cd.1] and [cd.7] are
precisely the same as [s.1] and [s.3]. However, the coderiving transformation fails to satisfy
[s.2], the Rota-Baxter rule, since [cd.5] has an extra factor of 2. Of course, if the differential
category is in fact enriched over idempotent commutative monoids, so that 1 4+ 1 =1, the
coderiving transformation would be an integral transformation: this happens, for example,
in the category of sets and relations.

Another important property the coderiving transformation satisfies is its relation with
the deriving transformation.

» Theorem 16. The deriving and coderiving transformations satisfy the following equality:
dad) =Wa + Liaga

where W is the natural transformation with components W4 = (d% @ 14)(lia ® 0)(da ® 14).

20:11
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The notation W was introduced by Ehrhard’s in [11] where a proof can be found. In the
graphical calculus, the above identity is expressed as follows:

N
T

In a differential category there are two important natural transformations K and J defined
by Ka :=d%da+10:14 = 1A and J4 :=d%da + 114 : !A = A, written in the graphical

calculus as:
1 1
SO Nop
| |

K and J satisfy a long list of very similar properties which describe their interaction with the
differential structure. We give some of the more important ones in the following theorem:

» Theorem 17. K and J satisfy the following properties:
[K.1] K!(0) =!(0) = (0)K;

[K.2] Ke =¢;

[K.3] Ke =¢;

[K.4] KA = A((dd°) ® 1) + A(1 ® (dd®)) + A(!(0) ® 1(0));
[K.5] Ké =4dd°(1® (dd®))d + 8!(1(0));

[K.6] (K@ )W =W(K® 1);

[K.7] (K®1)dd° =dd°(K® 1).

[J.1] J1(0) = 1(0) = 1(0)J;

[.2] Je =¢;

[J.3] Je=2-¢

[J.4] JA=AUJ®1)+A(1®(dd°)) = A((dd°) @ 1) + A(1®J) ;
[J.5] J6 = 6d°(1 ® (dd°))d + 6

[J.6] J®1)d =dK;

[J.7] d°(J® 1) = Kd°;

[J.8] Ue1)W=WJ®1);

[J.9] J®1)dd° =dd°(J®1).

Recall that Ehrhard’s original idea was to obtain integration by requiring that J be
a natural isomorphism. However, Ehrhard’s integral transformation, using only that J is
invertible, appears to fail the Rota-Baxter rule [s.2]. This is why we have strengthened
Ehrhard’s approach by requiring instead that K be a natural isomorphism. We observe:

» Theorem 18. For a differential category, K is a natural isomorphism if and only if J is a
natural isomorphism and the deriving transformation is Taylor.
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Proof. We give the definitions of K~ and J7!:
(i) = (ii) If K is a natural isomorphism, then: J;' := §4K,[d?,(1(c4) ® ea)pra, Written in
the graphical calculus as:

(ii) = (i) If J is a natural isomorphism and the deriving transformation is Taylor, then
Kyt o= do(Jyt @ 14)(J; @ 1a)da + 10, where 0 : A — A, and written in the graphical
calculus as:

1

®
_ .
®

T

<
» Definition 19. A differential category has antiderivatives if K is a natural isomorphism.

Equivalently, of course, a differential category has antiderivatives if J is a natural iso-
morphism and the deriving transformation is Taylor. While our definition of antiderivatives
differs only slightly from Ehrhard’s, [11], our definition does imply Ehrhard’s definition and,
at the same time, secures the property of being an integral category for which, as far as we
can see, inverting J is insufficient.

» Theorem 20. In a differential category with antiderivatives, K=! and J=' satisfy the

following properties:

[K=1.1] K=11(0) = !(0) = 1(0)K~1;

[K=1.2] K7le=¢;

[K=1.3] K le =¢;

[K=1.4] AKToK )+ AK1@1(0)+AN0) @K =KIAK I®1) + KA1 ®
K=1) + A(1(0) ® 1(0));

[K=15] (K1@1)W=WK 1)

[K=1.6] (K'®1)dd®° =dd°(K™'®1);

[J—1.1] J711(0) = 1(0) = 1(0)J~L;

[J71.2] JTle=¢;

[J71.3] 2- J e =¢;

[J714] '@l d=dK™ Y

[J71.5] d°(J '@ 1) = K 1d%

[J716] U '@ 1DW=WUJ'®1);

[J717] Ut ®1)dd° =dd°(J~t ®1);

In particular, [J~1.5] will imply that the integral transformation constructed using either
K=! or J=! are equal to one another. Finally, with these properties of K=! and J=!, we
obtain the main result of this section, namely that a differential category with antiderivatives
is a calculus category:
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» Theorem 21. A differential category with antiderivatives is a calculus category with the
integral transformation defined by s4 := K;ldz = dZ(J;‘l ® 14), expressed in the graphical
calculus as:

Proof. To prove the integral transformation axioms and the second fundamental theorem we
use the K~! form of the integrating transformation. While to prove the Poincaré condition
we use Ehrhard’s J~'. We will use the graphical calculus to help us. We first show that our

integral transformation satisfies [s.1] to [s.3].
[s.1]: Here we use [cd.1] and [K~1.2]:

é\t

[s.2]: Here we use [K~'.4], [cd.3], [cd.4] and naturality of the coderiving transformation:

Next we show the second fundamental theorem of calculus. Here we use [K~1.1]:
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Finally we prove the Poincaré Condition. Let f : C ® !A ® A — B satisfy the Poincaré
pre-condition, that is, (1® 1®0)(1®d®1)f = (1®d® 1)f. First notice that by Theorem
16 and the Poincaré pre-condition, f satisfies the following identity:

Then using [J~1.4] and the above identity we get the following equality:

Which completes the proof that antiderivatives give a calculus category. |

The converse of Theorem 21 is true if the coalgebra is monoidal (in the sense explained at
the end of Section 3 when discussing Fubini’s theorem) and the integral transformation is
compatible with monoidal strength, that is, a calculus category with a monoidal coalgebra

modality and a monoidal integral transformation is a differential category with antiderivatives.

More details and a proof of this will be given in a subsequent paper.
We are now are in a position to give two examples of differential categories which have
antiderivatives, and therefore, two examples of calculus categories:

» Example 22. The category of sets and relations, REL, is a differential category [7] with
antiderivatives. The symmetric monoidal strucure is given by the Cartesian product of sets
while the additive structure is given by the union of sets. The coalgebra modality is given by
the finite bag/multiset comonad (see [7] for more details), where for a set X, |X is the set of
bags/multisets of X. The deriving transformation dx : !X x X — !X is the relation which
adds an extra element to the bag:

dx = {((B,z),BUz)| z € X, B€ !X}

The additive idempotency of REL makes both K and J the identity and thus trivially
isomorphisms. Therefore, the integral transformation is the coderiving transformation
d% !X — X x X, which is the relation which removes an elements from the bag:

d% = {(B,(B - {z},2))| z € X, B e X}

» Example 23. The category of vector spaces over a field K of characteristic of 0, VECg,

is a co-differential category [7] with antiderivatives, so that, VECP is a calculus category.

While having a field of characteristic zero is not required to obtain differential structure, it
is required for antiderivatives. The additive symmetric monoidal structure is given by the
standard tensor product and additive enrichment of vector spaces. The algebra modality
is given by the free symmetric algebra monad where for a vector space V, !V is the free
commutative algebra over V (see [17] for more details). Equivalently, if X = {x1,zo,...} is
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a basis of V, then !V is isomorphic to the polynomial ring over X: !V = K[X] [17]. Then
the deriving transformation dy : 'V — IV @ V (recall VEC® is the calculus category) on
monomials is given by the sum of partial derivatives of the monomial:

n

dy (z]'...apr) = Z(m’{lx:‘_lxr) ® x;
i=1

On monomials, K multiplies the non-constant monomials by their degree and multiplies the
constants by one, while J multiplies monomials by their degree plus one. As the rationals
are embedded in our field, both are isomorphisms, and the resulting integral transformation
sy : 'V ®V — IV is defined on monomials by:
sy((zftxir) @ ;) = _ ol
e i) = = Tl
" 1+ =173 '
At first glance this may seem bizarre. One might expect the integrating transformation
to integrate a monomial with respect to the variable x; and thus only multiply by ﬁ
However, this classical idea of integration fails the Rota-Baxter rule [s.2] for any vector space
of dimension greater than one.

Tn

6 Conclusion and Future Work

The theory of differential categories was developed in stages: (tensor) differential categories
[7], cartesian differential categories [3], differential restriction categories [10], and tangent
categories [9]. The development of integral categories, being very closely related, has parallel
stages. Here we have briefly introduced the first stage of this development: tensor integral
categories. The next stage, Cartesian integral categories, is actually well in hand. The
coKleisli category of an integral category is a Cartesian integral category. Furthermore,
Cartesian integral categories have a term logic which has a more “classic” feel: we borrowed
parts of this term logic to help motivate this paper. The study of integration in restriction
categories and tangent categories is, by comparison, in its earliest stages.
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attention to Rota-Baxter algebras. Integral categories simply would not have developed so
rapidly without this basic inspiration. Jonathan Gallagher reminded us of Ehrhard’s work at
exactly the right moment, while Kristine Bauer provided continual constructive criticism
during the evolution of our thoughts.

—— References

1 Glen Baxter et al. An analytic problem whose solution follows from a simple algebraic
identity. Pacific J. Math, 10(3):731-742, 1960.

2 R. Blute, J.R.B. Cockett, and R.A.G. Seely. Cartesian differential storage categories.
Theory and Applications of Categories, 30(18):620-686, 2015.

3 R.F. Blute, J. Robin B. Cockett, and R.A.G. Seely. Cartesian differential categories.
Theory and Applications of Categories, 22(23):622-672, 2009.

4  Richard Blute, J.R.B. Cockett, Timothy Porter, and R.A.G. Seely. Ké&hler categories.
Cahiers de Topologie et Géométrie Différentielle Catégoriques, 52(4):253-268, 2011.

5 Richard Blute, Thomas Ehrhard, and Christine Tasson. A convenient differential category.
arXiv preprint arXiv:1006.3140, 2010.



J. R. B. Cockett and J.-S. Lemay

10

11

12

13

14

15

16

17

18
19

20

21

22

Richard Blute, Rory B. B. Lucyshyn-Wright, and Keith O’Neill. Derivations in codifferential
categories. arXiv preprint arXiv:1505.00220, 2015.

Richard F. Blute, J. Robin B. Cockett, and Robert A.G. Seely. Differential categories.
Mathematical structures in computer science, 16(06):1049-1083, 2006.

Raoul Bott and Loring W. Tu. Differential forms in algebraic topology, volume 82. Springer
Science & Business Media, 2013.

J. Robin B. Cockett and Geoff S. H. Cruttwell. Differential Structure, Tangent Structure,
and SDG. Applied Categorical Structures, 22(2):331-417, 2014.

J.R.B. Cockett, G.S. H. Cruttwell, and J.D. Gallagher. Differential restriction categories.
Theory and Applications of Categories, 25(21):537-613, 2011.

Thomas Ehrhard. An introduction to differential linear logic: proof-nets, models and
antiderivatives. Mathematical Structures in Computer Science, pages 1-66, 2017.

Thomas Ehrhard and Laurent Regnier. The differential lambda-calculus. Theoretical Com-
puter Science, 309(1):1-41, 2003.

Thomas Ehrhard and Laurent Regnier. Differential interaction nets. Theoretical Computer
Science, 364(2):166-195, 2006.

Marcelo P. Fiore. Differential structure in models of multiplicative biadditive intuitionistic
linear logic. In International Conference on Typed Lambda Calculi and Applications, pages
163-177. Springer, 2007.

Li Guo. An introduction to Rota-Bazter algebra, volume 2. International Press Somerville,
2012.

André Joyal and Ross Street. The geometry of tensor calculus, I. Advances in Mathematics,
88(1):55-112, 1991.

Serge Lang. Algebra revised third edition. Graduate Texts in Mathematics, 1(211):ALL~
ALL, 2002.

J.-S.P. Lemay. Integral Categories and Calculus Categories. University of Calgary, 2017.
Saunders Mac Lane. Categories for the working mathematician, volume 5. Springer Science
& Business Media, 2013.

Gian-Carlo Rota. Baxter algebras and combinatorial identities. I. Bulletin of the American
Mathematical Society, 75(2):325-329, 1969.

Peter Selinger. A survey of graphical languages for monoidal categories. In New structures
for physics, pages 289-355. Springer, 2010.

Charles A. Weibel. An introduction to homological algebra. Cambridge university press,
1995.

20:17

CSL 2017



	Introduction
	Coalgebra Modalities
	Integral Categories
	Calculus Categories
	Antiderivatives
	Conclusion and Future Work

