
Under consideration for publication in Math. Struct. in Comp. Science

Unique decomposition of homogeneous
languages and application to isothetic regions

E M M A N U E L H A U C O U R T 1 and N I C O L A S N I N I N 2

emmanuel.haucourt@lix.polytechnique.fr nicolas.ninin@epfl.ch

1LIX - UMR 7161, 1 rue Honoré d’Estienne d’Orves,
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A language is said to be homogeneous when all its words have the same length.

Homogeneous languages thus form a monoid under concatenation. It becomes freely

commutative under the simultaneous actions of every permutation group Sn on the

collection of homogeneous languages of length n ∈ N. One recovers the isothetic regions

from (Haucourt (2017)) by considering the alphabet of connected subsets of the space

|G|, viz the geometric realization of a finite graph G. Factoring the geometric model of a

conservative program amounts to parallelize it, and there exists an efficient factoring

algorithm for isothetic regions. Yet, from the theoretical point of view, one wishes to go

beyond the class of conservative programs, which implies relaxing the finiteness

hypothesis on the graph G. Provided that the collections of n-dimensional isothetic

regions over G (denoted by Rn|G|) are co -unital distributive lattices, the prime

decomposition of isothetic regions is given by an algorithm which is, unfortunately, very

inefficient. Nevertheless, if the collections Rn|G| satisfy the stronger property of being

Boolean algebras, then the efficient factoring algorithm is available again. We relate the

algebraic properties of the collections Rn|G| to the geometric properties of the space |G|.
On the way, the algebraic structure Rn|G| is proven to be the universal tensor product,

in the category of semilattices with zero, of n copies of the algebraic structure R1|G|.

1. Introduction

1.1. Motivation from concurrency theory

Geometric models of concurrent programs explicitly appeared for the first time in (Coff-

man et al. (1971)) as progress graphs. Later (Carson and Reynolds Jr. (1987)) formalized

the construction of such models for a fragment of the language introduced by (Dijkstra

(1965)). That sublanguage exactly contains every program that consists of a parallel

composition of sequential processes without loops nor branchings, the processes being

synchronized by means of semaphores. Mathematically speaking, the progress graph of

a program with n processes is a cubical region of dimension n, viz a subset of Rn that is



E. Haucourt and N. Ninin 2

covered by a finite family of cubes (i.e. products of intervals). The relevance of cubical

regions lies in the unique decomposition property they come with: the decomposition of

the model of a program is indeed related to its parallelization (Balabonski and Haucourt

(2010)). The geometric models defined so far would be satisfactory were it not for the

drastic restriction (no loops nor branchings) on the class of programs they apply to.

Several mathematical concepts have been proposed to extend the range of application

of geometric models: higher dimensional automata (van Glabbeek (1991); Pratt (2000)),

locally ordered spaces (Fajstrup et al. (2006)), d-spaces (Grandis (2003, 2009)), streams

(Krishnan (2009)). However, these objects were introduced with a view to applying meth-

ods inspired from algebraic topology (Fajstrup et al. (2016)). As a consequence, each of

them induces a category containing the unit interval (actually an object which stands for

it) as well as any object that can be obtained by gluing cubes. In particular, most objects

of such a category are so far from the geometric model of any program that they can be

regarded as pathological from the computer science point of view. The issue is addressed

in (Haucourt (2017)) providing each conservative program with a geometric model which

lies in a restricted class of locally ordered spaces. The elements of that class are called

isothetic regions (Definition 2.63). A sequential process is said to be conservative when

the amount of resources it holds only depends on the point of the control flow graph the

instruction pointer stands on. By extension, a conservative program is a parallel compo-

sition of conservative processes. The notion of an isothetic region is obtained by replacing

the intervals of R by the connected subsets of the geometric realization of a finite graph

G in the definition of cubical regions (Definition 2.56). The graph G, sometimes referred

to as the underlying graph of the isothetic region, is actually to be understood as the

disjoint union of the control flow graphs of the processes of the conservative program to

model. On one hand, any sequential process without loops is conservative so the class

of conservative programs broadly extends that of programs considered in (Carson and

Reynolds Jr. (1987)). On the other hand, the class of isothetic regions clearly contains

that of cubical ones. To complete the generalization, it remains to check that the unique

decomposition theorem for cubical regions remains valid for the isothetic ones: this is

the main purpose of this paper. On the way, we provide a factoring algorithm that is

much more efficient than the one given in (Balabonski and Haucourt (2010)). We also

clarify the algebraic framework on which our unique decomposition result is grounded

and exactly determine how far, and at which cost, the finiteness hypothesis on G can be

relaxed.

1.2. A survey of geometric models

To serve our purpose, we briefly describe the semantics of a toy language and provide

some examples to motivate the abstract development to come. More details can be found

in (Haucourt (2017)), which is the main source for this section and the next one.

A program P consists of a tuple (P1, . . . , Pn) of sequential processes running concur-

rently, and sharing a pool of resources (Haucourt, 2017, Definition 2.2). The arity of

a resource a is the number of occurrences of a that are available in the pool at the

beginning of any execution of the program. A resource of arity 1 is called a mutex for
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Fig. 1. Examples of processes

mutual exclusion. A process Pi takes an occurrence of the resource a by executing the

instruction P(a). If no occurrence of a is available in the pool of resources, the process is

blocked until another process Pj releases one by executing the instruction V(a). However,

if Pj does not hold any occurrence of a, then the instruction V(a) is just ignored and

the process Pi remains stalled. In particular, each process Pi is associated to a wallet

containing the resource occurrences it owns at any time of an execution. This should be

compared to the toy language described in (Dijkstra (1965)) whose semantics associates

each resource with a mere counter.

The processes of a program (P1, . . . , Pn) are actually given as automata (Figure 1) so

we can consider the tuple (G1, . . . , Gn) of their underlying directed graphs. Denoting the

set of vertices (resp. arrows) of Gi by Vi (resp. Ai), the elements of the set

|Gi| = Vi ∪ Ai × ]0, 1[

can be seen as the possible positions of the instruction pointer of the process Pi. The

instruction pointer of the program (P1, . . . , Pn) being the n-tuple of instruction pointers

of its processes, an overapproximation of its valid positions is given by the product

|G1| × · · · × |Gn| .

In order to refine it, we would like to take into account the constraints imposed by the

resource limitations. To do so, we assume that the amount of resources held by Pi at

a given position does not depend on the execution trace that led to it†. More precisely,

for each process Pi we suppose that we have a potential function Fi which provides the

number of occurrences of any resource x held by Pi at position pi. From there, we deduce

the potential function F of the program: given a resource x and a point p = (p1, . . . , pn)

in |G1| × · · · × |Gn|, the value of the function F (x, ) at p is defined as

F (x, p) =

n∑
i=1

Fi(x, pi) .

The point p is said to be forbidden when there exists a resource x whose arity is (strictly)

less that F (x, p). The forbidden region of a program is the set of its forbidden points; its

geometric model JP K is the complement (in |G1| × · · · × |Gn|) of its forbidden region.

† By analogy with conservative forces in physics, such a process is said to be conservative.
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Fig. 2. The potential function of a program and its geometric model

Example 1.1. Suppose that a is a mutex, and consider a program (P1, P2) made of two

copies of the process shown on the left part of Figure 1 — this process corresponds to

the sequence of instructions P(a);V(a). In particular, the underlying graphs G1 and G2

are equal to

so both sets |G1| and |G2| are, up to an obvious bijection, identified with the interval

[0, 3]. The potential function of the program is shown on the left hand part of Figure 2.

Any point p on the dashed square (Figure 2) corresponds to a position where the unique

occurrence of the resource a is simultaneously held by P1 and P2, therefore it is forbidden.

So the geometric model of the program under consideration is the complement (in [0, 3]2)

of the dashed square, that is to say
{

(x, y) ∈ [0, 3]2
∣∣ x < 1 or y < 1 or x > 2 or y > 2

}
.

1.3. Independent programs, geometric models, and homogeneous languages

The parallel composition P |Q of the programs (P1, . . . , Pn) and (Q1, . . . , Qm) is defined

as the program (P1, . . . , Pn, Q1, . . . , Qm). A resource x is said to be used by a process

when the label of some of its vertices is the instruction P(x). For example, all the pro-

cesses on Figure 1 use the resource a while the resource b is only used by the third

one. The programs P and Q are said to be syntactically independent when the sets of

resources they respectively use are disjoint. In that case, one readily checks that P and

Q are model independent in the sense that the following identity holds:

JP |QK = JP K× JQK .

The model independence of two programs P and Q is relevant in practice because it

implies that they are observationally independent† in the sense that the result produced

† See (Haucourt, 2017, Definition 3.6).
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by the execution of the parallel composition P |Q only depends on the restrictions of the

scheduling to the programs P and Q (Haucourt, 2017, Theorem 6.2).

Remark 1.2. Model independent programs may not be syntactically independent. In

Example 1.1, assume that the arity of a is 2 instead of 1. The geometric model of

the resulting program is [0, 3]2 though its processes (considered as programs) are not

syntactically independent (as they both use the resource a).

In that context, we interpret the geometric model JP K of a program (P1, . . . , Pn) as a

homogeneous† language of length n over some alphabet Ω. In Example 1.1, the set Ω is

the interval [0, 3]: we will soon clarify the way Ω depends on the program to model.

The homogeneous languages over Ω form a (noncommutative) monoid H(Ω) under

concatenation (Section 2.1). Decomposing an element L of that monoid amounts to

finding a partition (I1, . . . , Ik) of the set {1, . . . , n} (n being the length of L) such that

L = L|I1 ∗ · · · ∗ L|Ik (Definition 2.30). We can actually suppose that each element Ii of

the partition is an interval, and that for i < j we have Ii < Ij (Section 2.3).

Example 1.3. Suppose that a and b are mutexes. The geometric model of the pro-

gram P(a).V(a)|P(b).V(b)|P(a).V(a) has no non-trivial decomposition though the

programs P(a).V(a)|P(a).V(a) and P(b).V(b) are model independent (since they are

syntactically independent).

The issue raised in Example 1.3 is a direct consequence of the noncommutativity of the

parallel composition operator we have defined. This defect is prohibitive in concurrency

theory because the order in which the processes of a program are listed should neither

alter its runtime behaviour nor its semantics. Yet, one readily checks that Jπ · P K =

π · JP K holds for any permutation π of the set {1, . . . , n}. In other words, the action

of the nth symmetric group‡ Sn on programs made of n processes is compatible with

its action on n-dimensional geometric models (these actions are standard, yet they are

recalled in Section 2.1). Since the programs P and π · P should be seen as identical,

so should be their geometric models. The previous observation leads to introduce the

homogeneous monoid over Ω, denoted by H̃(Ω), as the quotient of the monoid H(Ω) by

the congruence relating L and π ·L for all n ∈ N, all π ∈ Sn, and all L ∈ H(Ω) of length

n (Definition 2.4). The monoid H̃(Ω) is freely commutative (Corollary 2.34). Concretely,

decomposing (the equivalence class of) a homogeneous language L amounts to finding a

partition X1, . . . , Xk of {1, . . . , n} such that

π · L = (π · L)|I1 ∗ · · · ∗ (π · L)|Ik = L|X1
∗ · · · ∗ L|Xk

where I1, · · · , Ik is the unique partition of {1, . . . , n} into intervals such that Ii < Ij
when i < j and there is a (necessarily unique) permutation π of {1, . . . , n} that induces

an increasing bijection from Xi to Ii for all i ∈ {1, . . . , k} — see Section 2.3.

We now pay some attention to the alphabet Ω. Note that for any superset Ω′ of Ω, any

decomposition in H(Ω′) of an element of H(Ω) only contains elements of H(Ω). Clearly,

† A language whose words share the same length n is said to to be homogeneous of length n (Section 2.1).
‡ The nth symmetric group is that of permutations of the set {1, . . . , n}.
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the same holds for H̃(Ω) and H̃(Ω′). So, in view of factoring the geometric model of a

program P , we can let Ω be the set |G1|∪ · · ·∪ |Gn| where G1, . . . , Gn are the underlying

graphs of the processes of P . Moreover, the graph over which a process is defined can be

replaced by any isomorphic graph. So we can suppose that all the graphs Gi belongs to

a finite family of graphs G in which two elements are either equal, or not isomorphic and

disjoint in the sense that their sets of vertices (resp. arrows) are disjoint. We can even

suppose that the elements of G are connected because any process has a distinguished

vertex, called the entry point, from which any other vertex can be reached. It is then

natural to let Ω be the (disjoint finite) union of the sets |G| for G ∈ G. For the programs

studied in Examples 1.1 and 1.3, the family G is reduced to a single graph shown below.

From the computer science point of view, the parallel decomposition of a program P

into model independent subprograms is more interesting than the decomposition of its

geometric model JP K. Moreover, any decomposition of P readily induces a decomposition

of JP K. Conversely, for a given decomposition of the geometric model

π · JP K = JP K|X1
∗ · · · ∗ JP K|Xk

(D)

(where X1, . . . , Xk is a partition of {1, . . . , n} and π ∈ Sn its related permutation —

see Section 2.3) we can ask whether we have JP |Xi
K = JP K|Xi

for all i ∈ {1, . . . , k}. If

the answer is ‘yes’†, then the decomposition of JP K lifts to a decomposition of P into

model independent subprograms. As a consequence, all the decompositions of a program

into model independent subprograms can be obtained from the prime decomposition

(Definition 2.13) of its geometric model.

Yet, the benefit is limited in practice because the language we have associated to

JP K is infinite. Nevertheless, this issue can be overcome by using a representation of

the geometric models that takes advantage of the topology of Ω (Definition 2.56). More

precisely, one replaces Ω by the collection C of all its connected subsets. Then, as we shall

see, the geometric model of a program is an isothetic region (Definition 2.63), that is to

say a finite union of C-blocks (i.e. Cartesian products of elements of C — Definition 2.39).

Example 1.4. Considering the program P(a).V(a)|P(a).V(a) (Example 1.1), we have

Ω = [0, 3]. It follows that C is the collection of all subintervals of [0, 3] and the geometric

model is covered by finitely many rectangles:

[0, 3]× [0, 1[ ∪ [0, 3]× [2, 3] ∪ [0, 1[×[0, 3] ∪ [2, 3]× [0, 3] . (C1)

In that context, the geometric model of P can be seen as the homogeneous language{
ΩI , ΩJ , IΩ , JΩ

}
(where Ω, I, and J respectively denote the intervals [0, 3], [0, 1[, and [2, 3] — see Figure 3)

to which we apply the generic factoring algorithm (Section 2.4).

† We conjecture that the answer is always ‘yes’ in the sense that when (D) holds, the geometric model

of the subprogram P |Xi
is indeed JP K|Xi

for every i ∈ {1, . . . , k}.
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Fig. 4. Many maximal rectangles (i.e. C-blocks), but only two maximal C′-blocks

Interpreting the geometric model of a program P as a language over the alphabets Ω and

C result in two distinct homogeneous languages. Nevertheless, their prime decompositions

match provided that the C-block covering from which the language over C is built only

contains maximal C-blocks (Definition 2.39) of the geometric model (Corollary 2.48). The

covering (C1) given in Example 1.4 is indeed the collection of all the maximal rectangles

of the geometric model.

We can actually go further and replace the collection C by the collection C′ of all

the finite unions of elements of C. Since the graphs over which processes are built are

finite, the collection C′ forms a Boolean subalgebra of the powerset ℘(Ω) (Theorem 3.12).

Then applying Proposition 2.53, we deduce that Corollary 2.48 also applies to C′-blocks.

In other words, the prime decomposition of a geometric model seen as a language over

Ω matches its prime decomposition as a language over C′. This shift comes with two

remarkable benefits. The first one is that the size of the language associated with a

geometric model may be drastically reduced (Example 1.5).

Example 1.5. Consider the program made of two copies of the process

P(a).V(a) . . . P(a).V(a)︸ ︷︷ ︸
N times

.
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Its forbidden region is the disjoint union of N2 squares which forms a single maximal

C′-block. Its geometric model has 2(N + 1) maximal rectangles (i.e. maximal C-blocks)

but only 2 maximal C′-blocks (Figure 4). That situation generalizes to higher dimension

n. Suppose that the arity of a is n − 1 and consider a program made of n copies of the

process introduced above. The forbidden region is made of Nn disjoint hypercubes which

forms a single maximal C′-block. Its geometric model has exactly n(N + 1) maximal

hyperrectangles (i.e. maximal C-blocks) but only n maximal C′-blocks.

The second benefit is an algorithm which factorizes the geometric model of a program

P = (P1, . . . , Pn) from the maximal C′-block covering L of its forbidden region. For

i ∈ {1, . . . , n}, the ith letter of w ∈ L is a subset of Ω that is actually contained in |Gi|.
So we define the support of w ∈ L as the set supp(w) of all the indices i ∈ {1, . . . , n} such

that the ith letter of w is not the entire |Gi| but a proper subset. The finest partition

of {1, . . . , n} that is coarser than the family {supp(w) | w ∈ L} induces the prime

decomposition of JP K. The correctness of the algorithm derives from Theorem 2.50 and

Remark 2.51.

Example 1.6. We want to factorize JP K = [0, 3]n \ [1, 2[n where P is the program made

of n copies of the process P(a).V(a) and the arity of the resource a is n−1 (Example 1.5).

The alphabet Ω is the interval [0, 3] while the collection C (resp. C′) is that of (finite unions

of) subintervals of [0, 3]. Hence the C-blocks are the hyperrectangles. The forbidden region

is the hypercube [1, 2[n seen as a word w whose support is {1, . . . , n}. On one hand, we

instantly deduce from our algorithm that JP K is irreducible. On the other hand, the

geometric model JP K has n maximal C′-blocks (Example 1.5) so the generic algorithm

performs n · Cbn/2cn word comparisons to obtain the same result — see Section 2.4.

Example 1.7. Given n > 2, the n-philosophers program has exactly n processes

P(a1).P(a2).V(a1).V(a2)|

P(a2).P(a3).V(a2).V(a3)|
...

P(an−1).P(an).V(an−1).V(an)|

P(an).P(a1).V(an).V(a1)

where all the resources a1, . . . , an are mutexes. The alphabet Ω is the interval [0, 5] and

the collections C and C′ are defined as in Example 1.6. The forbidden region is covered by

n maximal C′-blocks, which are actually hyperrectangles. Each of them is the contribution

of a single mutex. The hyperrectangle generated by a1 is [1, 3[×[0, 5]n−2 × [2, 4[ and for

i > 2, the one generated by ai is [0, 5]i−2× [2, 4[×[1, 3[×[0, 5]n−i. The resulting family of

supports consists of the pairs {1, n} and {i− 1, i} for i ∈ {2, . . . , n}. It follows that the

geometric model of the n-philosophers program is irreducible.

Example 1.8. (Balabonski and Haucourt (2010)). Let P be the program

P(a).P(c).V(c).V(a)|

P(b).P(c).V(c).V(b)|

P(a).P(c).V(c).V(a)|

P(b).P(c).V(c).V(b)
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Fig. 5. The forbidden region of the program from Example 1.8

where a and b are two mutexes, and the arity of the resource c is 2. The sets Ω, C, and

C′ are the same as in Example 1.7 and the contribution of each resource to the forbidden

region of P is detailed in Figure 5. In particular, the forbidden region generated by c is

entirely contained in the union of the forbidden regions generated by a and b. One can

indeed observe that because of the mutex a, only one of the processes P1 and P3 can hold

an occurrence of c. The same remark applies to the processes P2 and P4 because of the

mutex b. Finally, the forbidden region of the program only contains two maximal C′-blocks

(which are actually hyperrectangles) from which we obtain the partition {{1, 3}, {2, 4}}
of {1, 2, 3, 4}. The associated permutation π swaps 2 and 3 so the program π · P is the

following one:

P(a).P(c).V(c).V(a)|

P(a).P(c).V(c).V(a)|

P(b).P(c).V(c).V(b)|

P(b).P(c).V(c).V(b)

Then we can check that we have Jπ · P K = JP |{1,3}K ∗ JP |{2,4}K, which confirms that P

can be decomposed in two model independent subprograms. By the way, expanding the

following expression

Jπ · P K =
((

([0, 1[∪[4, 5])× [0, 5]
)
∪

(
[0, 5]× ([0, 1[∪[4, 5])

))2

we note that the geometric model of P has 16 maximal C-blocks and 4 maximal C′-blocks.

According to the semantics of the instructions P( ) and V( ), the forbidden region of

a program represents the restrictions on parallel execution imposed by the program-

mer. The forbidden region of an ‘interesting’ concurrent program is thus expected to be

‘sparse’. As an illustration, those of the programs considered so far were much ‘simpler’

than the corresponding geometric models. In particular, the ratio between the number

of maximal C′-blocks of the forbidden region and that of maximal C′-blocks of the ge-

ometric model could be taken as a relevant measure of the intricateness of a program

that is due to concurrency. In the extreme case where the forbidden region is empty, that

ratio drops to zero. The above observation also provides an extra motivation for using

the factoring algorithm based on forbidden regions (Section 2.7) instead of the generic

one (Section 2.4).
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1.4. Organization

We abstract away the topological aspects of isothetic regions (Definition 2.63) from the

problem of factoring them (Section 2). To this end, we introduce the notion of a homo-

geneous language (over an alphabet Ω) and prove Theorem 2.32, from which one easily

deduces that the commutative monoid of (finite) homogeneous languages is free (Corol-

laries 2.34 and 2.36). In this context, maximal block coverings (Definition 2.42) provide

the key ingredient to practical application of factoring. Indeed, Theorem 2.44 asserts

that we can replace Ω by an alphabet C ⊆ ℘(Ω) \ {∅} containing all the singletons.

Then, provided that the collection of isothetics regions satisfies some additional proper-

ties (Conditions (A1) and (A2)), shifting to the richer alphabet C allows more efficient

representations of homogeneous languages (Corollary 2.48) and practical applications of

the factoring algorithm described in Section 2.4. In particular, Conditions (A1) and (A2)

are fulfilled as soon as the collection C is a Boolean subalgebra of the powerset ℘(Ω)

(Proposition 2.53). When this is the case, we can apply the factoring algorithm from

Section 2.7, which is proven to be much more efficient than the generic one (Section 2.4).

In Section 2.8, we finally move to the practical applications mentioned in Section 1.1. In

this context, the alphabet Ω is the underlying set of |G|, viz the geometric realization of

a graph G, and the alphabet C is (related to) the collection of connected subsets of Ω

(Definitions 2.56 and 2.63).

If the graph G is finite, then the collection of finite unions of connected subsets of Ω

forms a Boolean subalgebra of the powerset ℘(Ω). Consequently, if we are only concerned

with factoring the geometric models of conservative programs (Section 1.1), which provide

a reasonable setting in practice, then we do not need to investigate any further. But

going beyond that limitation requires to deal with infinite (control flow) graphs. In

Section 3, we prove that for a given graph G, every collection Rn|G| (Definition 2.45) is

a Boolean subalgebra of the powerset ℘(|G|n) if and only if |G| has a compactification

that is homeomorphic to the geometric realization of some finite graph (Theorem 3.12).

Such a graph is said to be almost finite (Definition 3.14). In Section 4, we prove that

Condition (A2) is satisfied if and only if each connected component of G has a spanning

tree containing all its arrows but finitely many ones (Theorem 4.10). Such a graph is said

to be almost a forest (Definition 4.4).

Being almost finite (resp. almost a forest) is equivalent to the fact that the co-unital

subsemilattice of ℘(|G|) generated by the connected subsets of |G|, vizR1|G|, is a Boolean

subalgebra (resp. a co-unital distributive sublattice) of ℘(|G|) (Theorems 3.12 and 4.10).

These results lead to the study of the algebraic structures of the collections Rn|G|, in

view of which we provide a short survey on universal tensor products (Section 5.2) with a

special emphasis on the case of co-unital semilattices (Section 5.3). Researchers dealing

with Boolean algebras usually define the tensor product of their favourite objects of

study as the ordinary tensor product of the related Boolean rings seen as idempotent

commutative† F2-algebras: they implicitly refer to the correspondence between Boolean

algebras and Boolean rings (Section 5.1). Yet, our humble contribution consists in proving

† In fact, any F2-algebra is commutative.



Unique decomposition of isothetic regions 11

that it can also be defined as a universal tensor product in the category of co-unital

semilattices (Section 5.4). The latter approach is indeed better fitted to the proof that

if G is almost finite (resp. almost a forest), then for each n ∈ N, the Boolean algebra

(resp. co-unital distributive lattice) Rn|G| is the universal tensor product of n copies of

R1|G| in the category of co-unital semilattices (Proposition 5.14).

2. The free commutative monoid of homogeneous languages over a set Ω

The disjoint union of the powersets ℘(Ωn) \ {∅} for n ∈ N can be turned into a free

commutative monoid. The corresponding unique factorisation property is related to the

parallelization of conservative programs (Haucourt (2017)). The present section general-

izes results from (Balabonski and Haucourt (2010)), (Fajstrup et al., 2016, p.101–104),

and (Ninin, 2017, Chapter 2).

2.1. Homogeneous languages

A language is a collection of finite sequences over a set Ω which are, in that context,

respectively called words and alphabet. A language is said to be homogeneous when all

the words it contains have the same length, which is then the length of the language.

Concatenation of words, denoted by ∗, extends to languages in the obvious way:

L ∗ L′ := {w ∗ w′ | w ∈ L ; w′ ∈ L′} .

In particular, the concatenation of two homogeneous languages L and L′ of length n and

n′ is a homogeneous language of length n+ n′. The empty language is absorbing in the

sense that for any language L we have ∅ ∗ L = ∅ = L ∗ ∅, so its length is conventionally

defined as −∞. With respect to our purpose, the empty language is discarded.

Definition 2.1. The set of nonempty homogeneous languages over the alphabet Ω forms

the (noncommutative) monoid H, or H(Ω) if we need to be explicit about the alphabet.

Its neutral element is {ε} (i.e. the singleton containing the empty word).

Definition 2.2. A monoid M is said to be left-cancellative when xy = xz implies y = z

for all x, y, z ∈ M . Right-cancellative monoids are defined accordingly. A monoid is

cancellative when it is both left-cancellative and right-cancellative.

Lemma 2.3. The monoid H is cancellative.

Proof. Suppose that we have L ∗ L′ = L ∗ L′′ in H. In particular L is not empty so it

contains a word w. Considering the words of L ∗ L′ and that of L ∗ L′′ admitting w as a

prefix, we deduce that {w} ∗ L′ = {w} ∗ L′′, and therefore L′ = L′′.

Given a word w of length n and a permutation π of the set {1, . . . , n}, the word π · w is

obtained by moving the kth letter of the word w to position π(k). Dually, the kth letter

of the word π · w is the one that was at position π -1(k) in the word w. Hence the nth

symmetric group Sn acts on the left of the set of words of length n as follows (words of
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length n are considered as mapping defined on the set {1, . . . , n}):

π · w := w ◦ π -1 = (wπ -1(1) · · ·wπ -1(n)) .

By extension, the group Sn also acts on the left of the collection of homogeneous lan-

guages of length n by defining π ·L as {π ·w | w ∈ L}. Two homogeneous languages are

said to be equivalent, denoted by L ∼ L′, when they have the same length n and there

exists π ∈ Sn such that L′ = π · L. We define the juxtaposition π ⊗ π′ ∈ Sn+n′ of the

permutations π ∈ Sn and π′ ∈ Sn′ as follows:

π ⊗ π′(k) :=

{
π(k) if 1 6 k 6 n(

π′(k − n)
)

+ n if n+ 1 6 k 6 n+ n′ .

The juxtaposition operator satisfies the following Godement exchange law

(π · L) ∗ (π′ · L′) = (π ⊗ π′) · (L ∗ L′) ,

which ensures that the relation ∼ is a congruence over H.

Definition 2.4. The homogeneous monoid over Ω, denoted by H̃, is the quotient of the

monoid H by the congruence ∼. We denote by L̄ the image of the homogeneous language

L by the quotient morphism q : H → H̃.

Remark 2.5. If the alphabet Ω is a singleton (resp. the empty set) then the homogeneous

monoid H̃ is isomorphic to (N,+, 0) (resp. to the null monoid).

Remark 2.6. If the alphabet Ω contains at least two elements, then the canonical

morphism from the abelianization of H to H̃ is not an isomorphism. Indeed, the language

{aab, baa} is irreducible in the abelianization of H but not in H̃ since letting π be the

permutation swapping 1 and 2, we have π · {aab, baa} = {aab, aba} = {a} ∗ {ab, ba}.

2.2. Free commutative monoids

We gather the basic facts about free commutative monoids that are needed in the sequel

of the section. The existence of unique decompositions is related to the subtle distinction

between prime and irreducible elements in a commutative monoid. In this section we

denote the neutral element of a monoid by ε. More details can be found in the first

chapter of (Geroldinger and Halter-Koch (2006)). However, we insist that in the latter,

monoids are defined as cancellative semigroups (Geroldinger and Halter-Koch, 2006,

p.xiii), which is rather unusual.

Definition 2.7. A unit of a commutative monoid is an element u for which there exists

an element u′ such that uu′ = ε. A commutative monoid is said to be reduced when it

has no unit but its neutral element. One says that d divides x when there exists x′ such

that x = dx′, this situation being denoted by d|x. The elements x and y are said to be

equivalent when y = ux for some unit u.

Example 2.8. The monoid Z× = (Z − {0},×, 1) is not reduced but the monoid N× =

(N−{0},×, 1) is. One can always reduce a commutative monoid by identifying its equiv-

alent elements, which amounts to identifying all its units with the neutral element.
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Definition 2.9. A nonunit element is said to be irreducible† when it can only be divided,

up to equivalence, by ε and itself. A nonunit element is said to be prime when it divides a

or b as soon as it divides their product. Denote by I(M) and P (M) the set of irreducible

elements and the set of prime elements of a commutative monoid M .

Example 2.10. In the monoids N× and Z×, an element is prime iff it is irreducible.

Definition 2.11. We say that G ⊆ M generates M when any element of M is, up to

equivalence, a product of elements of G. By convention, the empty product is ε.

Example 2.12. Let the support of a mapping from X to N be the subset of X on which

it is nonzero. The collection of all the mappings with finite support is denoted by F (X).

It is a commutative monoid under pointwise addition, the null map being the neutral

element. One readily checks that F (X) is reduced, cancellative, and generated by the

mappings gx : X → N defined by gx(x) = 1 and gx(y) = 0 for y 6= x. As elements of

F (X), the mappings gx are prime and irreducible. In other words, a reduced commutative

monoid is free iff any of its elements x can be written as a product i1∗· · ·∗in of irreducible

elements in a unique way up to reordering of the terms. The construction X 7→ F (X)

extends to a functor F : Set→ CMon which is left adjoint to the forgetful one.

Definition 2.13. A commutative monoid of the form F (X) is said to be free. For each

x ∈ F (X), the tuple (i1, . . . , in) is called the prime decomposition of x (Example 2.12).

Proposition 2.14. A commutative monoid M is free if and only if it is reduced, can-

cellative, and the sets P (M) and I(M) are equal and generate M .

Proof. Let X be the set of irreducible elements of M . The map φ which sends f ∈ F (X)

to the product of the elements xf(x) is well-defined because M is commutative, and onto

M by hypothesis. Suppose that we have a1 · · · an = b1 · · · bm with ai, bj ∈ X for all

i ∈ {1, . . . , n} and all j ∈ {1, . . . ,m}. By hypothesis a1 is prime and we can suppose

that it divides b1. Since b1 is irreducible and the monoid M is reduced, we have a1 = b1.

Therefore we have a2 · · · an = b2 · · · bm because M is cancellative. Suppose that n > m.

By an obvious induction we end up with an−m · · · an = ε from which we deduce that

ai = ε for all i ∈ {n−m, . . . , n} because M is reduced. So the map φ is one-to-one.

Example 2.15. The monoids (N,+, 0) and (N\{0},×, 1) are freely commutative.

Example 2.16. The monoid (R+,+, 0) has neither prime nor irreducible elements. In-

deed, for every real number x > 0 we have x > x
2 + x

2 though x 6> x
2 .

Example 2.17. The semilattice (N,∨, 0) is commutative monoid, in which every nonzero

element is prime but not irreducible. Note that in the semilattice ({0, 1},∨, 0) the element

1 is prime and irreducible. Also note that semilattices are reduced but not cancellative.

Example 2.18. In Z6 one notes that 2 is a prime but not irreducible since 2 = 2 · 4
(mod 6) and neither 2 nor 4 are unit as they are zero divisors (Hungerford, 2003, p.136).

† Other notions of irreducibility are listed in (Anderson and Valdes-Leon, 1997, p.199-200). However, if

the monoid under consideration is reduced and cancellative, they coincide.
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Example 2.19. The set {a+ b
√

10 | a, b ∈ Z, a 6= 0 or b 6= 0} forms a submonoid of the

multiplicative monoid of nonzero real numbers, in which the elements 2, 3 and 4±
√

10

are irreducible but not prime. (Hungerford, 2003, p.140).

Example 2.20. (Nakayama and Hashimoto (1950)). In the semiring N[X], the polyno-

mial X5 +X4 +X3 +X2 +X + 1 has two incompatible decompositions

(X + 1)(X4 +X2 + 1) = (X3 + 1)(X2 +X + 1)

from which we deduce that neither X3 +1 nor X4 +X2 +1 is prime in N[X]. In the mean-

time, their prime decompositions in the unique factorization domain Z[X], see (Hunger-

ford, 2003, Remark, p.138), are given by

X3 + 1 = (X + 1)(X2 −X + 1) and X4 +X2 + 1 = (X2 +X + 1)(X2 −X + 1) .

It follows that both X3 + 1 and X4 +X2 + 1 are irreducible in N[X].

Definition 2.21. A commutative monoid M is said to be graded when there exists a

morphism of monoid d : M → N such that d -1({0}) is the set of units of M .

Remark 2.22. A free commutative monoid is graded since each of its elements can be

associated with the number of terms (with their multiplicity) of its prime decomposition.

Conversely, a graded monoid is not far from being freely commutative.

Proposition 2.23. For every graded monoid M , I(M) generates M and contains P (M).

Proof. Given x1, . . . , xn non-unit elements of M we have

d(x1 · · ·xn) = d(x1) + · · ·+ d(xn) > n

because M is graded. It is therefore generated by its irreducible elements. Suppose that

p = a · b is prime. So we can suppose p divides a, and then we have

d(a) + d(b) = d(a · b) = d(p) 6 d(a) .

Therefore d(b) = 0 from which we deduce that b is a unit of M .

Corollary 2.24. A commutative monoid M is free iff it is reduced, cancellative, graded,

and all its irreducible elements are prime.

Example 2.25. The monoid M =< a, b | ab = ba; aab = abb > is commutative, reduced,

graded, and satisfies I(M) = P (M) = {a, b}, but it is not cancellative because aa 6= ab.

Example 2.26. The monoid H̃ (Definition 2.4) is reduced and graded by the length of

homogeneous languages. We denote by H̃n the subset of the elements of length n.

Any submonoid of a graded monoid is graded. Yet, a submonoid of a free commutative

monoid might not be free e.g. define α = x + 2y, β = 2x + y, and γ = x + y so the

submonoid of N{x,y} generated by α, β, and γ satisfies α+ β = 3γ.

Definition 2.27 (Grillet (1969a)). A submonoid M ′ of M is said to be consistent

when for all x, y ∈M , if x · y ∈M ′ then both x and y belong to M ′.
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Lemma 2.28. Any consistent submonoid M ′ of a free commutative monoid M is free,

and the prime decomposition of an element of M ′ is its prime decomposition in M .

Proof. Let M ′ be a consistent submonoid of a free commutative monoid M . Then M ′

is graded. Let p be an irreducible element of M ′, it is also irreducible in M by consistency

of M ′. Moreover, if p divides x · y with x, y ∈ M ′ then we can suppose that x = p · x′
with x′ ∈M . Since M ′ is consistent, x′ belongs to M ′. We conclude by Corollary 2.24.

2.3. Partitions of the set {1, . . . , n} and factorizations of an element of H̃n

We establish a result (Theorem 2.32) which generalizes (Ninin, 2017, Proposition 2.4.1)

and completes the proof of (Balabonski and Haucourt, 2010, Theorem 1). The latter

indeed contains the fact that every irreducible element of H is prime, but not that H is

cancellative. Given the natural numbers a and b we denote by [a : b] the set of natural

numbers x such that a 6 x 6 b. An interval of N is a subset I such that [a : b] ⊆ I for

all a, b ∈ I. Given the intervals I and J we denote by I < J the fact that every element

of I is strictly less than any element of J . For each partition (X1, . . . , Xk) of the interval

[1 : n] there exists a unique permutation π ∈ Sn such that:

1 for all i ∈ [1 : k], the set π(Xi) is an interval (denoted by Ii),

2 for all i, i′ ∈ [1 : k], if i < i′ then Ii < Ii′ , and

3 for all i ∈ [1 : k], the restricted mapping π : Xi → Ii is increasing.

Remark 2.29. Define the index ix of an element x ∈ [1 : n] as the unique element ix
of [1 : k] such that x ∈ Xix . Also define the rank rx of x as the number of elements of

Xix that are less or equal than x. The permutation π is the unique element of Sn such

that for all x, y ∈ [1 : n], if (ix, rx) is less of equal than (iy, ry) in the lexicographic order,

then π(x) 6 π(y). Even more explicitly, we have π(x) = nx + rx where nx is the number

of elements of X1 ∪ · · · ∪Xix−1, with the convention that nx = 0 when ix = 1.

Definition 2.30. Given a word w of length n and a subset X = {x1 < · · · < xk} of

{1, . . . , n}, the restriction of w to X, which we denote by w|X , is the word of length k

whose ith letter, for i ∈ [1 : k], is the xthi letter of w. By extension, the restriction to X

of a homogeneous language L of length n, which we denote by L|X , is the set of words

w|X for w ∈ L. One checks that for all π ∈ Sn that is increasing on X we have

(π · w)|X = w|π -1(X) and (π · L)|X = L|π -1(X) .

Remark 2.31. The language π · L is always included in the language L|X1
∗ · · · ∗ L|Xk

.

The partition (X1, . . . , Xk) induces a factorization of L̄ ∈ H̃n when the other inclusion

is also satisfied, that is to say when the following equality holds in H :

π · L = L|X1 ∗ · · · ∗ L|Xk
. (1)

The other way round, given a permutation π ∈ Sn such that π · L = L1 ∗ · · · ∗ Lk in H,

which amounts to a factorization of L̄, one recovers the partition (X1, . . . , Xk) by noting

that Xi = π−1([di−1 + 1 : di]) with d0 = 0 and di = di−1 + length(Xi) for all i ∈ [1 : k].

Note that the permutation related to the partition (X1, . . . , Xk) may differ from π since
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the latter is not required to be increasing on each element Xi of the partition. Thus each

factorization H1 ∗ · · · ∗Hk of L̄ is induced by some partition (X1, . . . , Xk) of [1 : n] such

that L|Xi
= Hi for all i ∈ [1 : k].

The next result is the technical cornerstone of the proof that H̃ is freely commutative,

its proof is based on ideas from (Ninin (2017)).

Theorem 2.32. Let L be a homogeneous language of length n. If X and Y are two

subsets of [1 : n] such that L|X and L|Y both divide L, then the equality

L|X = L|X ∩ Y ∗ L|X ∩ ([1:n]\Y )

holds in the homogeneous monoid H̃ (Definition 2.4).

Proof. Denote the cardinals of X ∩ Y and X ∩ ([1 : n] \ Y ) by A and B, and let

{α1 < · · · < αA} and {β1 < · · · < βB} be their enumerations. Let π and π′ be the

permutations associated with the partitions (X, [1 : n] \ X) and (Y, [1 : n] \ Y ). By

definition of π, for each i ∈ [1 : card(X)], π−1(i) belongs to X. If it also belongs to Y ,

then there is a unique j ∈ [1 : A] such that π−1(i) = αj . In that case we define π′′(i) = j.

The same way, if π−1(i) belongs to [1 : n] \ Y , then there is a unique j ∈ [1 : B]

such that π−1(i) = βj . In that case we define π′′(i) = A + j. So π′′ is the permutation

of [1 : card(X)] associated to the partition of [1 : card(X)] induced by the partition

(Y, [1 : n] \ Y ) of [1 : n]. From Remark 2.31 we deduce the following inclusion

π′′ · L|X ⊆ L|X ∩ Y ∗ L|X ∩ ([1:n]\Y ) .

Now we prove the opposite one. Since L|X and L|Y both divide L, we have

π · L = L|X ∗ L|[1:n]\X and π′ · L = L|Y ∗ L|[1:n]\Y

from which we deduce that

L|X ∗ L|[1:n]\X = (π ◦ π′−1) · (L|Y ∗ L|[1:n]\Y ) .

It follows that

L|X =
(
(π ◦ π′−1) · (L|Y ∗ L|[1:n]\Y )

)
|[1:card(X)] .

We will conclude by proving the following inclusion:(
(π ◦ π′−1) · (L|Y ∗ L|[1:n]\Y )

)
|[1:card(X)] ⊇ π′′−1 ·

(
L|X ∩ Y ∗ L|X ∩ ([1:n]\Y )

)
.

Let w be a word of length card(X) of the form

w(1)|X∩Y ∗ w(2)|X∩([1:n]\Y )

for some words w(1) and w(2) of L. We will prove, letter by letter, that the words π′′−1 ·w
and (π ◦ π′−1) · (w(1)|Y ∗ w(2)|[1:n]\Y ) are equal. Let i be an element of [1 : card(X)].

By definition of π, the index π−1(i) belongs to X. Moreover, if π−1(i) ∈ Y , then the

index π′ ◦ π−1(i) belongs to [1 : card(Y )] and there is a unique j ∈ [1 : A] such that

π−1(i) = αj ; otherwise it belongs to [card(Y ) + 1 : n] and there is a unique j ∈ [1 : B]
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such that π−1(i) = βj . In the first case the ith letter of the word

(π ◦ π′−1) · (w(1)|Y ∗ w(2)|[1:n]\Y )

is the π′(αj)
th letter of the word

w(1)|Y ∗ w(2)|[1:n]\Y

which is also the jth letter of the word w(1)|Y or equivalently the αth
j letter of the word

w(1). Moreover, by definition of π′′, we have π′′(i) = j, which is the rank of αj in the set

X ∩Y . So the π′′(i)th letter of the word w is the jth letter of the word w(1)|X∩Y which is

also the αth
j letter of the word w(1). The second case (i.e. π−1(i) ∈ [1 : n] \ Y ) is treated

the same way.

Corollary 2.33. Let L be a homogeneous language of length n, and X be a subset of

[1 : n] such that L|X is irreducible and divides L̄. If (X1, . . . , Xk) is a partition of [1 : n]

inducing a factorization of L̄, then there exists some i ∈ [1 : k] such that X ⊆ Xi.

Proof. By induction on k with the help of Theorem 2.32.

Corollary 2.34. The monoid H̃ is freely commutative.

Proof. From Example 2.26 we already know that H̃ is reduced and graded. As a

consequence of Corollary 2.24, proving that H is freely commutative amounts to proving

that it is cancellative and that its irreducible elements are prime.

Suppose that we have H ∗H1 = H ∗H2 in H̃. Equivalently, we have L, L1, and L2,

representatives of H, H1, and H2 such that L ∗ L1 = π · (L ∗ L2) where n is the length

of L, m is that of L1 and L2, and π is a permutation of [1 : n+m] (Remark 2.31). We

can suppose that π is increasing on π -1([1 : n]) so that we have

L = (L ∗ L1)|[1:n]
= (π · (L ∗ L2))|[1:n]

= (L ∗ L2)|π -1([1:n])

the second equality being due to the final remark in Definition 2.30. We also have L =

(L∗L2)|[1:n]
so the sets π -1([1 : n]) and [1 : n] are either equal or disjoint (Theorem 2.32).

In the first case, the permutation π can be written as π1 ⊗ π2 where π1 and π2 are

permutations of [1 : n] and [1 : m] respectively (Section 2.1) so we have

L ∗ L1 = π · (L ∗ L2) = (π1 ⊗ π2) · (L ∗ L2) = (π1 · L) ∗ (π2 · L2) .

Since H is right-cancellative (Lemma 2.3), we deduce that L1 = π2 ·L2. The second case,

we consider a permutation π′ that leaves each element of [n+ 1 : n+m] \ π -1([1 : n])

unchanged and maps [1 : n] onto π -1([1 : n]) in a way that

(π′ ◦ π) · (L ∗ L2) = π · (L ∗ L2) .

Then we apply the first case noting that π′ ◦ π([1 : n]) = [1 : n].

Let L be a homogeneous language of length n such that L̄ = H1 ∗H2 and suppose that

some irreducible element H of H̃ divides H1 ∗H2. There exists some subset X of [1 : n]

such that L|X = H while the factorization H1 ∗H2 is related to a partition (X1, X2) of

[1 : n]. We conclude that X ⊆ X1 or X ⊆ X2 (Corollary 2.33), in other words that H

divides Hi for some i ∈ {1, 2}.
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Even if we take term reordering into account, there may be many partitions leading to

the same decomposition. For example, all the partitions {{1}, {2, 3}}, {{2}, {1, 3}}, and

{{3}, {1, 2}} lead to the same decomposition when L̄ = H1 ∗ H2 where the length of

H1 is 1 and H2 = H1 ∗ H1 in H̃. The phenomenon vanishes when the elements of the

decomposition are irreducible.

Corollary 2.35. Up to term reordering, there is a unique partition of [1 : n] correspond-

ing to the prime decomposition of L̄.

Proof. Two such partitions have the same number of elements, the result follows from

an immediate induction on that number together with Corollary 2.33.

By definition, an element of H̃ is an equivalence class whose elements are sets of the

same cardinal. Therefore we can define the cardinal of an element of H̃ as the cardinal of

any of its representatives. In particular, the collection H̃f of finite elements of H̃ forms a

consistent submonoid of H̃ because for all nonempty languages L and L′, the language

L ·L′ is finite if and only if the languages L and L′ are so. The next result is an immediate

consequence of Corollary 2.34 and Lemma 2.28.

Corollary 2.36. The monoid H̃f is freely commutative.

2.4. The generic factoring algorithm

Assuming that the range of homogeneous languages L under consideration is restricted

to finite ones, whether the identity (1) from Remark 2.31 holds is decided by an obvious

algorithm that performs card(L) tests of equality between words. Whether an element

of H̃f of length n is prime can thus be decided by checking all the subsets X ⊆ [1 : n]

whose cardinal is at most bn/2c (the greatest natural number less of equal than the half

of n). This is the algorithm given in (Balabonski and Haucourt (2010)). Denoting the

number of such subsets by C
bn/2c
n , the algorithm requires at most card(L)×Cbn/2cn word

comparisons. Its complexity is thus more than exponential in n.

2.5. Homogeneous monoids inherit preorders from alphabets

Suppose that the alphabet Ω comes with a preorder 4Ω and denote by 4nΩ the product

preorder on Ωn. Given two homogeneous languages L and L′ of the same length n, write

L 4H L′ when for each w ∈ L there exists w′ ∈ L′ such that w 4nΩ w′. In that case, for

all π ∈ Sn we also have π · L 4H π · L′. Then given two elements H and H ′ of H̃, write

H4H̃H
′ when there exist representatives L and L′ of H and H ′ such that L 4H L′.

Proposition 2.37. The map q from Definition 2.4 induces a morphism of preordered

monoids† from (H,4H) onto (H̃,4H̃). Moreover, if 4H is antisymmetric, then so is 4H̃ .

† Given a preorder 4 on a monoid M , we say that (M,4) is a preordered monoid when for all elements

a, b, c, d of M , if a 4 b and c 4 d then ac 4 bd. The morphisms of preordered monoids are the
preorder-preserving morphisms of monoids.
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H1

H3

H2

H4

Fig. 6. Two elements with two non comparable minimal upper bounds

Proof. The morphism of monoids q is obviously onto and readily preserves the binary

relations in the sense that if L 4H L′, then q(L) 4H̃ q(L′). We deduce that if H1 4H̃ H ′1
and H2 4H̃ H ′2, then H1 ∗ H2 4H̃ H ′1 ∗ H ′2. It remains to check that the relation 4H̃
is a preorder. It is obviously reflexive. If H1 4H̃ H2 4H̃ H3 then we have L1 ∈ H1,

L2, L
′
2 ∈ H2, and L3 ∈ H3 such that L1 4H L2 and L′2 4H L3. By definition, there

exists some permutation π such that π · L2 = L′2, from which we deduce that π · L1 4H
π ·L2 4H L3, and therefore that H1 4H̃ H3. Now suppose that H 4H̃ H ′ and H ′ 4H̃ H

and that 4H is antisymmetric. Then we have L ∈ H, L′ ∈ H ′ and some permutation π

such that L 4H L′ 4H π · L. An immediate induction provides the following sequence,

where m ∈ N:

L 4H π · L 4H · · · 4H πm · L 4H · · ·

By finiteness of the group of permutations of a finite set, we have πm = id for some

m ∈ N \ {0}, hence L = L′ because 4H is antisymmetric.

Remark 2.38. The preorder 4H̃ does not, in general, inherit the properties from 4Ω.

For example, let the alphabet Ω be the complete lattice of subintervals of R ordered

by inclusion. The frames on Figure 6 are extensive descriptions of the elements H1,

H2, H3 and H4 of H̃. Formally we have H1 = {[0, 1] × [1, 3], [1, 3] × [0, 1]} and H2 =

{[1, 3] × [3, 4], [3, 4] × [1, 3]}. Then observe that H3 and H4, described below, are non

comparable minimal upper bounds of H1 and H2. The preorder 4H̃ thus lack binary

least upper bounds.

H3 = {[0, 1]× [1, 3] ∪ [1, 3]× [3, 4], [1, 3]× [0, 1] ∪ [3, 4]× [1, 3]}

H4 = {[0, 1]× [1, 3] ∪ [3, 4]× [1, 3], [1, 3]× [0, 1] ∪ [1, 3]× [3, 4]}

2.6. Blocks of words

Let C be a collection of subsets of Ω containing all the singletons so that in some sense, it

contains Ω. We denote the inclusion relation on C by ⊆C while =Ω stands for the discrete

order on Ω. Any point of Ωn can be seen as a word on the alphabet Ω so a (nonempty)

subset of Ωn can be seen as a (nonempty) homogeneous language of length n over Ω.
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Definition 2.39. A block, or C-block if one needs to emphasize on the dependency, is a

finite Cartesian product of nonempty elements of C. Blocks are thus identified with words

over the alphabet of nonempty elements of C. A block contained in L ⊆ Ωn is said to be

a block of L. Such a block is said to be maximal when no block of L strictly contains it.

A collection of blocks whose union is L is called a block covering of L.

Remark 2.40. The restriction of the relation 4HΩ to HnΩ, where 4HΩ is defined from

=Ω at the beginning of Section 2.5, is the inclusion relation between subsets of Ωn. Given

two collections of sets F and F ′, we write F 4 F ′ when every element of F is included

in some element of F ′. The relation 4 is called the covering preorder. In particular, the

restriction to HnC of the relation 4HC defined from ⊆C at the beginning of Section 2.5 is

the covering preorder over the collection of n-dimensional block coverings. Hence we will

write ⊆ and 4 instead of 4HΩ and 4HC . With the notation introduced in Section 2.5

we will also write ⊆̃ and 4̃ instead of 4H̃Ω and 4H̃C .

Remark 2.41. The composition law of the monoid HΩ (i.e. the concatenation of lan-

guages) readily corresponds to the usual Cartesian product of sets. From the standard

logical equivalence

A×B ⊆ C ×D if and only if A ⊆ C and B ⊆ D (E1)

which holds for all sets A, B, C, and D, we deduce that the two monoids (HΩ,⊆) and

(HC,4) are preordered, and also that the map γ sending each element ofHC to the union

of its elements is a morphism of preordered monoids. As a consequence of equivalence

(E1) we obtain, for all L,L′ ∈ HΩ, the following equalities in HC:{
blocks of L× L′

}
=

{
blocks of L

}
∗
{

blocks of L′
}

(E2){
max. blocks of L× L′

}
=

{
max. blocks of L

}
∗
{

max. blocks of L′
}
. (E3)

Because C contains all the singletons, each element L of HΩ is covered by its blocks.

Hence the map sending each element of HΩ to its collection of blocks is both a morphism

of preordered monoids (Equality (E2)) and the right adjoint to γ (i.e. γ ◦ α = id and

id 4 α ◦ γ).

In the spirit of Galois connections, the right adjoint to γ should provide an abstraction of

L that is simpler than L itself. It is not the case if L is abstracted by its whole collection

of blocks since the latter contains every singleton contained in L. In view of Equality

(E3) it would be natural to take the collection of maximal blocks of L as an abstraction

of it. However, without taking precautions, it might be that L has no maximal block.

The generic example of that situation is the subset Z of R together with the collection

C of finite unions of intervals. To address that issue, we make an additional assumption

about the C-blocks: for all n ∈ N and all L ⊆ Ωn,

every block of L is included in some maximal block of L. (A′1)

Definition 2.42. Since every singleton is a block, Condition (A′1) implies that the set

of all maximal blocks of L ∈ HΩ covers L. This set is called the maximal block covering

of L and it is denoted by α(L). Note that α(L) = ∅ if and only if L = ∅.
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Proposition 2.43. The map α : HΩ→ HC sending L to its maximal block covering is

both a morphism of preordered monoids and a right adjoint to the morphism γ which

sends a family of blocks to the union of its elements (Remark 2.41). The morphism α

induces an isomorphism onto its image, its converse being induced by γ.

Proof. We have γ ◦ α = id by Definition 2.42 and id 4 α ◦ γ by Condition (A′1). The

map α is a morphism of monoids by Equality (E3), and it is preorder preserving by

definition of the covering preorder and Equivalence (E1). The last statement is obvious.

We now prove that the Galois connection and the isomorphism described in Proposi-

tion 2.43 are compatible with the quotient maps qΩ and qC from Definition 2.4. Given a

homogeneous language L ∈ HnC and a permutation π ∈ Sn, one readily has π · γ(L) =

γ(π ·L). Due to the universal property of the quotient map qC , there exists a unique map

γ̃ : H̃C → H̃Ω such that qΩ ◦ γ = γ̃ ◦ qC . Given a subset X ⊆ Ωn (i.e. L ∈ HnΩ) and

a permutation π ∈ Sn, if B is a maximal block of L, then π · B is a maximal block of

π · L. Due to the universal property of the quotient map qΩ, there exists a unique map

α̃ : H̃Ω→ H̃C such that qC ◦ α = α̃ ◦ qΩ.

Theorem 2.44. Both mappings γ̃ and α̃ are morphisms of preordered monoids inducing

a Galois connection γ̃ a α̃. The image of α̃, denoted by img(α̃), is a consistent submonoid

of H̃C. The induced maps γ̃ : (img(α̃), 4̃) → (H̃Ω, ⊆̃) and α̃ : (H̃Ω, ⊆̃) → (img(α̃), 4̃)

are isomorphisms of preordered (freely commutative) monoids, inverse of each other.

Proof. Both mappings qΩ and qC are surjective morphisms of preordered monoids

(Proposition 2.37), so we deduce that both mappings α̃ and γ̃ are morphisms of pre-

ordered (commutative) monoids from the fact that both γ and α are such morphisms.

The mapping α is one-to-one and the mapping γ is onto because γ ◦α = id. For the same

reason, the restriction of γ to img(α) is one-to-one, hence bijective. From the following

relations (where all the involved maps has to be understood replacing HC and H̃C by

img(α) and img(α̃) respectively),

qΩ ◦ γ = γ̃ ◦ qC qC ◦ α = α̃ ◦ qΩ

α ◦ γ = id γ ◦ α = id

we deduce that α̃ ◦ γ̃ ◦ qC = qC and γ̃ ◦ α̃ ◦ qΩ = qΩ. Therefore α̃ ◦ γ̃ = id and γ̃ ◦ α̃ = id

because both qC and qΩ are onto. Hence α̃ and γ̃ are isomorphisms of monoids between

img(α̃) and H̃Ω which is free (Corollary 2.34). To prove the consistency of img(α̃) it

remains to prove that α̃ sends irreducible elements of H̃Ω to irreducible elements of H̃C.
Let I be an irreducible element of H̃Ω and suppose that α̃(I) = H ∗H ′ in H̃C. We have

I = γ̃ ◦ α̃(I) = γ̃(H) ∗ γ̃(H ′) and without loss of generality, we can suppose that γ̃(H ′)

is the unit of the monoid H̃Ω. Therefore H ′ is the unit of the monoid HC because the

units of H̃Ω and H̃C are the only elements of zero length. Hence α̃(I) is irreducible in

HC, and the submonoid img(α̃) is consistent in HC.

Definition 2.45. The image of Hf C under γ is exactly the collection of elements of HΩ

having a finite block covering, we denote it by RΩ. It forms a consistent submonoid of
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HΩ. For all n ∈ N, we denote by RnΩ the collection of elements of RΩ of length n. Then

observe that RnΩ forms a semilattice with zero (or join-semilattice with zero), that is to

say, from the order theoretic point of view, a poset with a least element 0 in which every

pair {a, b} has a least upper bound a ∨ b.

Remark 2.46. Let C′ be the least subset of ℘(Ω) containing all the elements of C and

closed under binary union. Observe that we have γ(Hf C) = γ(Hf C′). Hence we can always

replace the alphabet C by the alphabet C′ in Definition 2.45.

The maximal block covering of L contains far less elements than the whole collection of

blocks of L. As an extreme example, suppose that Ω is an infinite set and let L be Ωn.

In view of the applications described in Section 1.3, we focus on subsets of Ωn admitting

a finite block covering. However, we have to be careful that the finite block covering

property is misleading: a subset of Ωn satisfying it might have infinitely many maximal

blocks. For example, let C be the collection of intervals of R of length at most 1 and let L

be the hypercube [0, 2]n. One may argue that the preceding example is pathological, but

we will see that ill behaved ones also arise in a very natural setting (Section 4). For the

moment, we just make another assumption about C-blocks: for all n ∈ N and all L ⊆ Ωn,

if L has a finite block covering, then it has finitely many maximal blocks. (A2)

We also introduce a weaker (yet more relevant) form of Condition (A′1): for all n ∈ N
and all L ⊆ Ωn with a finite block covering :

every block of L is included in some maximal block of L. (A1)

Proposition 2.47. If the collection of blocks satisfies Conditions (A1) and (A2) then

the maps α and γ from Proposition 2.43 can be restricted to† the preordered monoids

(RΩ,⊆) and (Hf C,4). Those restrictions induce isomorphisms of preordered monoids

between (RΩ,⊆) and its image under α, and a Galois connection γ|Hf C
a α|RΩ

.

Proof. Condition (A2) exactly states that the restriction of α to RΩ is well-defined.

The remaining statements immediately derive from Definition 2.42 and Proposition 2.43

which readily adapts to RΩ.

Corollary 2.48. If the collection of blocks satisfies Conditions (A1) and (A2), then the

morphisms of preordered monoids γ̃ and α̃ from Theorem 2.44 can be restricted to R̃Ω

and H̃f C. These restrictions induce an isomorphism of preordered monoids between R̃Ω

and its image under α̃, and a Galois connection γ̃|H̃f C
a α̃|R̃Ω

.

Proof. The proof of Theorem 2.44 remains valid for the restrictions γ|H̃f C
and α|R̃Ω

except that it is built on Proposition 2.47 instead of Proposition 2.43.

† Strictly speaking, if Condition (A′
1) fails, then the map α from Proposition 2.43 is not well-defined.
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2.7. A less generic but drastically more efficient factoring algorithm

From Corollary 2.48, we obtain the prime decomposition of a (possibly) infinite language

L from that of the finite language α(L). The latter decomposition is given by the algo-

rithm from Section 2.4 whose complexity is really poor. However, under the assumption

that C is a Boolean subalgebra of the powerset ℘(Ω), there exists a drastically more

efficient factoring algorithm (Ninin, 2017, Chapter 2). The subsets of Ωn are identified

with the elements of HnΩ (Section 2.6). The complement of a subset L of Ωn is denoted

by Lc. In this section, (I1, . . . , Ik) is a partition of [1 : n] into intervals such that Ii < Ij
for all i, j ∈ [1 : k] such that i < j. We denote the cardinal of Ii by di.

Lemma 2.49. For i ∈ [1 : k], let Li be a subset of Ωdi . If B is a block of Ωn\L1×· · ·×Lk,

then there exists i ∈ [1 : k] such that

Ωd1+···+di−1 ×B|Ii × Ωdi+1+···+dk ⊆ Ωn \ L1 × · · · × Lk . (2)

Proof. There exists i ∈ [1 : k] such that B|Ii ⊆ Ωdi \Li. Otherwise, for each i ∈ [1 : k]

we choose a word wi in B|Ii ∩Li, and form the concatenation w1 ∗ · · · ∗wk which belongs

to B ∩ L1 × · · · × Lk thus leading to a contradiction. Hence we have inclusion (2).

As a Boolean subalgebra of ℘(Ω), the collection C contains the element Ω, so it makes

sense to define the support of a block B ⊆ Ωn as the set

supp(B) =
{
x ∈ [1 : n]

∣∣ B|{x} 6= Ω
}
.

Theorem 2.50 (Ninin (2017)). Let L ∈ HnΩ and F be a block covering of Lc. The

finest partition (X1, . . . , Xk) of [1 : n] that is coarser than the family {supp(B) | B ∈ F}
induces a decomposition of L̄. Moreover, if F only contains maximal blocks of Lc, then

it induces the prime decomposition of L̄.

Proof. By Remark 2.31, it suffices to prove that the inclusion

L|X1
∗ · · · ∗ L|Xk

⊆ π · L (3)

holds with π being the permutation associated to the partition (X1, . . . , Xk). This amounts

to proving that any word w ∈ Ωn such that w|Xi
belongs to L|Xi

for all i ∈ [1 : k] is an

element of L. Let di be the cardinal of Xi (i.e. the length of L|Xi
) and let Fi be the set{

B ∈ F
∣∣ supp(B) ⊆ Xi

}
. First we check the following inclusion:

L|Xi ⊆ Ωdi \
⋃
B∈Fi

B|Xi . (4)

The mapping that sends w ∈ Ωn to w|Xi ∈ Ωdi is onto, so the following inclusion holds

for any B ∈ Fi:
Ωdi \B|Xi

⊆ (Ωn \B) |Xi
. (5)

Conversely, if w belongs to Ωn \B, there exists some x ∈ [1 : n] such that the xth letter

of w does not belongs to B|{x}. Since B ∈ Fi, the index x lies in Xi, and therefore ω|Xi

belongs to Ωdi \B|Xi
. Hence inclusion (5) is actually an equality:

Ωdi \B|Xi
= (Ωn \B) |Xi

. (6)
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By unfolding definitions and applying the standard relation between direct image and

set intersection, we have

L|Xi
=

(( ⋃
B∈F

B
)c)

Xi

=

( ⋂
B∈F

Bc

)
Xi

⊆
⋂
B∈F

(Bc)|Xi
.

Observe that if B ∈ Fj for i 6= j, then (Bc)|Xi
= Ωdi so we can restrict the indexing set

to Fi and apply relation (6) :⋂
B∈F

(Bc)|Xi
=

⋂
B∈Fi

(Bc)|Xi
=

⋂
B∈Fi

Ωdi \B|Xi
= Ωdi \

⋃
B∈Fi

B|Xi
.

We have proven relation (4). Then let w ∈ Ωn be so that for all i ∈ [1 : k], the extracted

word w|Xi
belongs to X|Xi

. Given B ∈ F there exists some i ∈ [1 : k] such that B ∈ Fi
hence w 6∈ B. Since the word w does not belong to any element of the covering F of

Lc, it belongs to L. We have proven relation (3). Now suppose that F only contains

maximal blocks of Lc (possibly not all of them) and let (X ′1, . . . , X
′
k′) be the partition

associated to the prime decomposition of L (Corollary 2.35). Let π′ be the corresponding

permutation. For a given B ∈ F , the block π′ · B is included in Ωn \ L|X′1
∗ · · · ∗ L|X′

k′

therefore by Lemma 2.49, there exists j ∈ [1 : k′] such that

Ωd
′
1+···+d′j−1 × (π′ ·B)|X′j

× Ωd
′
j+1+···+d′

k′ ⊆ Ωn \ L|X′1
∗ · · · ∗ L|X′

k′
.

Since π′ ·B is maximal, it is actually equal to Ωd
′
1+···+d′j−1 × (π′ ·B)|X′j

× Ωd
′
j+1+···+d′

k′ ,

hence the support of B is included in X ′j . The finest partition compatible with all

the supports of the elements of F , namely (X1, . . . , Xk), is thus finer than the par-

tition (X ′1, . . . , X
′
k′). Moreover, according to the first part of the proof, the partition

(X1, . . . , Xk) induces a factorization of L. It follows from Corollary 2.35 that the parti-

tions (X1, . . . , Xk) and (X ′1, . . . , X
′
k′) are the same up to term reordering.

The decomposition of L that is associated to a finite block covering of Lc is thus provided

by a mere union-find algorithm (Cormen et al., 2009, Chapter 21). The algorithm is

illustrated is Examples 1.6, 1.7, and 1.8 In these examples, the alphabets Ω and C are

respectively a compact interval of R and the collection of finite unions its subintervals.

Remark 2.51. In practical cases, the subsets L of Ωn that we want to factor are included

in the product Ω1 × · · · ×Ωn where for all x, y ∈ {1, . . . , n}, the subsets Ωx and Ωy of Ω

are disjoint or equal — see Section 1.3. The padding and unpadding maps

B 7→ (B|1 ∪ Ωc1)× · · · × (B|x ∪ Ωcx)× · · · × (B|n ∪ Ωcn) (Padding)

B 7→ (B|1 ∩ Ω1)× · · · × (B|x ∩ Ωx)× · · · × (B|n ∩ Ωn) (Unpadding)

(where for all x ∈ {1, . . . , n}, Ωcx and B|x respectively stands for Ω\Ωx and the restriction

of B to {x} (Definition 2.30)) turn any block covering of Ω1 × · · · × Ωn \ L into a block

covering of Ωn \ L, and vice-versa. These maps preserve maximal block coverings and

Theorem 2.50 remains valid defining the support of a block B ⊆ Ω1 × · · · × Ωn as{
x ∈ [1 : n]

∣∣ B|x 6= Ωx
}

provided that we consider block coverings of Ω1 × · · · ×Ωn \L.
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We conclude this section proving that under the assumption that C is a Boolean subal-

gebra of the powerset ℘(Ω), Conditions (A1) and (A2) are both satisfied.

Lemma 2.52. Let F and F ′ be finite block coverings of two subsets L and L′ of Ωn

containing all the maximal blocks of L and L′ respectively. Assume that any block of L

(resp. L′) is included in a maximal block of L (resp. L′). Then the collection

F ′′ =
{
B ∩B′

∣∣ B ∈ F ; B′ ∈ F ′
}

is a finite block covering of L∩L′ containing all its maximal blocks. Moreover, any block

of L ∩ L′ is included in a maximal block.

Proof. A block B′′ of L∩L′ is contained in a maximal block B of L and in a maximal

block B′ of L′. Then B ∩ B′ is a block of L ∩ L′ because C is stable under intersection.

Consequently, if B′′ is maximal, then it is equal to B ∩ B′. Since any block of L ∩ L′ is

included in some element of F ′′, which is finite because so are F and F ′, every block of

L ∩ L′ is included in a maximal block of L ∩ L′.

Proposition 2.53. If the collection C is a Boolean subalgebra of the powerset ℘(Ω),

then the collection of blocks satisfies both Conditions (A1) and (A2).

Proof. If B is a block, then by Lemma 2.49, the set Bc has finitely many maximal

blocks (they are of the form (2) with Ω \ B|Ii instead of B|Ii) and any block of Bc is

contained in one of them. Now let F be a finite block covering of Lc containing all its

maximal blocks and such that any block of Lc is included in a maximal one. From de

Morgan’s law we have (L ∪ B)c = Lc ∩ Bc. Then denoting the collection of maximal

blocks of Bc by F ′, we can apply Lemma 2.52 to the block coverings F and F ′ of Lc and

Bc. By induction, we have proven that if the subset L of Ωn has a finite block covering,

then its complement has finitely many maximal blocks and each of its blocks is included

in a maximal one. The conclusion follows from the usual relation (Lc)c = L.

2.8. Application to isothetic regions over the geometric realization of a finite graph

In practice, Ω is related to the geometric model of a conservative program — see Sec-

tion 1.2 and (Haucourt (2017)). In particular it is a continuum (Nadler Jr. (1992)), viz

a connected compact metric space, and the powerset ℘(Ω) is not a tractable Boolean

algebra. In view of Sections 1.3, 2.6 and 2.7 we are in search for a convenient substitute

for it. All the basic facts we need concerning topology can be found in (Munkres (2000)).

Definition 2.54. A graph is an ordered pair (∂-, ∂+) of maps from its set A of arrows

to its set V of vertices.

A
∂-
//

∂+
// V

The vertices ∂-a and ∂+a are the source and the target of the arrow a. An arrow a is

said to be v-ingoing (resp. v-outgoing) when ∂+a = v (resp. ∂-a = v), and it is said

to be v-adjacent when it is v-ingoing or v-outgoing. A graph in which each vertex has

finitely many adjacent arrows is said to be locally finite. The size of a graph is the
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. . .. . .

Fig. 7. The totally ordered set Z seen as a graph.

cardinal of the set V ∪ A, it may be infinite. A graph morphism from (∂-, ∂+ : A ⇒ V )

to (∂-, ∂+ : A′ ⇒ V ′) is pair of maps (f : A → A′, g : V → V ′) such that ∂- ◦ f = g ◦ ∂-

and ∂+ ◦ f = g ◦ ∂+. Graphs and their morphisms form the category Grph.

Example 2.55. The n-cycle, for n > 1, is the graph whose vertices are the elements of

the set {0, . . . , n−1} with an arrow from k to k+1 modulo n. A graph that is isomorphic

to some n-cycle with n > 1 is said to be cyclic. The case n = 0 also makes sense because

the ordered set of integers (Z,6) can be seen as a graph whose set of vertices is Z and

that of arrows is {(n, n+ 1) | n ∈ Z} (Figure 7). When the context is clear, this graph is

denoted by Z. A chain is a graph that is isomorphic to some connected subgraph of Z.

It is said to be proper when it is not isomorphic to Z, and trivial when it has only one

vertex.

Definition 2.56. The geometric realization of a graph G : A ⇒ V is the union of the

sets V and A×]0, 1[ equipped with the greatest topology that makes the following maps

continuous, with α ranging through the set of arrows of the graph.

[0, 1] → V t A×]0, 1[

t 7→


∂-α if t = 0

(α, t) if 0 < t < 1

∂+α if t = 1

Example 2.57. The geometric realization of an n-cycle with n > 1 is homeomorphic to

the unit circle, that of a chain is either homeomorphic to R, R+, [0, 1] or {0}.

Remark 2.58. A star is the colimit of a diagram in Top made of inclusion maps

fk : {0} ↪→ R+×{k} with k ranging in some cardinal κ. Therefore a star is, up to homeo-

morphism, entirely determined by the cardinal κ which is, by definition, the degree of the

star. One checks that every point p of the geometric realization |G| of a graph G admits

a basis of neighbourhoods whose elements are stars. In particular, the space |G| is locally

simply connected. Moreover, any star that belongs to such a basis of neighbourhood has

the same degree κ, which only depends on the point p. By definition, the cardinal κ is the

degree of p, it is denoted by degG(p). As one expects, if p ∈ V , then degG(p) matches the

degree of p as a vertex of G, namely card{p-ingoing arrows}+ card{p-outgoing arrows};
otherwise p belongs to A×]0, 1[ and its degree is 2. The next four lemmas are standard.

Lemma 2.59. There is a canonical bijection between the connected components of G

and that of |G|. Hence the latter is connected iff so is the former.

Lemma 2.60. The geometric realization of a graph is Hausdorff.

Lemma 2.61. A graph is finite iff its geometric realization is compact.
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Lemma 2.62. A graph is locally finite if and only if its geometric realization is locally

compact if and only if its geometric realization is metrizable.

Definition 2.63. When Ω is the geometric realization of some graph G, we let C be

the collection of its connected subsets. Then, the elements of R|G| (Definition 2.45)

are called the isothetic regions† over the graph G. In particular, for all X ∈ R1|G|, the

collection α1(X) is that of connected components of X. For each isothetic region X, we

denote by R|G||X (or just RX) the collection of isothetic regions contained in X.

Any increasing union‡ of blocks is a block because any increasing union of connected

sets is connected. Therefore, by the Hausdorff maximal principle, the collection of blocks

based on C always satisfies Condition (A′1). Moreover, it is proven in (Haucourt (2017))

that if the graph G is finite, then the collection R1|G| is a Boolean subalgebra of ℘(|G|).
Hence by Proposition 2.53 we know that R1|G| satisfies both Conditions (A1) and (A2).

On the way we check that the maximal C-blocks of an isothetic region X are the maximal

C-blocks of the maximal R1|G|-blocks of X so the collection C also satisfies Condition

(A2). Following Remark 2.46, the collection R1|G| can thus be chosen as the alphabet

C in Sections 2.6 and 2.7 (it is denoted by C′ in Section 1.3). This substitution has a

practical interest: if X1, . . . , Xn are 1-dimensional cubical regions, viz disjoint unions of

intervals, and for i ∈ [1 : n] the cubical region Xi has ci connected components, then the

n-dimensional cubical region X1 × · · · ×Xn has c1 × · · · × cn maximal C-blocks but only

one maximal R1|G|-block — see Example 1.5.

3. Isothetic regions whose subregions form a Boolean algebra

From the final paragraph of Section 2.8, we know that the isothetic regions over a finite

graph provide an ideal framework to apply the results from Sections 2.6 and 2.7. Isothetic

regions based on finite graphs cover all the geometric models of conservative programs

(Haucourt (2017)). Nevertheless, for theoretical purposes, we would like to go beyond

that limitation. Therefore we give an exact characterization, in topological terms, of the

class of graphs G such that R1|G| form a Boolean subalgebra of ℘(|G|) (Theorem 3.12),

which is the right property to apply the efficient factoring algorithm (Section 2.7).

3.1. Freudenthal extension of a topological space

We will need to extend certain topological spaces in a way that we now explain. Given K0

and K1 compact closed subsets of a space X with K0 ⊇ K1, each nonempty connected

component C0 of X \K0 is contained in a unique connected component C1 of X \K1.

Therefore we have a functor KX sending each closed compact subset of X (ordered by

reversed inclusion) to the set of nonempty connected components of its complement in

X. The above construction is illustrated on Figure 8.

† The term ‘isothetic region’ is borrowed from (Preparata and Shamos, 1985, p.329).
‡ The union of a family of sets is said to be increasing when that family is a ⊆-chain.
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A′
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· · ·
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K1

Fig. 8. K0 ⊆ K1 ; A′, A′′ 7→ A ; B′, B′′ 7→ B

Definition 3.1. Following the terminology from (Diestel and Kühn (2003)) the elements

of limKX , the (inverse) limit of KX in Set, are called the directions of X. They indeed

correspond to the inclusion-reversing maps d from K(X) to the collection of nonempty

subspaces of X such that d(K) is a connected component of X \K. The set X t limKX
is equipped with the topology whose open subsets are those U such that U \ limKX is

open in X and for all directions d ∈ U , there exists some compact closed subset K ⊆ X
such that d(K) ⊆ U . The resulting topological space is denoted by DX and called the

Freudenthal extension of X. In the case where DX is actually compact, it is called the

Freudenthal compactification of X.

Remark 3.2. According to Definition 3.1, (X\K)∪limKX is a neighbourhood of limKX
for all closed compact set K of X. This is why K(X) only contains closed compact subsets

instead of all. Since we mainly consider Hausdorff spaces, the distinction vanishes.

Remark 3.3. Assuming that d and K are respectively a direction and a compact closed

subset of X, the closure (in X) of d(K) is not compact. Otherwise K ∪ clo(d(K)) would

be compact closed and for d is order reversing we would have d(K∪clo(d(K))) ⊆ d(K) ⊆
clo(d(K)). But we would also have d(K ∪ clo(d(K))) ⊆ X \ clo(d(K)) by definition of

a direction. As a consequence, if the connected components of X are compact, then

limKX = ∅ and DX = X. In particular the Freudenthal extension of a topological space

may not be compact.

Example 3.4 (The real line). The Freudenthal compactification of R is [0, 1]. Note

that |Z| = |{· · · < −2 < −1 < 0 < 1 < 2 < · · · }| ∼= R and |{0 < 1}| ∼= [0, 1].

Example 3.5 (The infinite comb). The infinite comb is the graph G depicted on

Figure 9. Formally, its set of vertices is Z×{0, 1} with one arrow from (n, 0) to (n+ 1, 0)

(resp. (n, 1)) for all n ∈ Z. Its geometric realization can be embedded into the plane.

|G| ∼=

(
R× {0} ∪

⋃
n∈Z
{n} × [0, 1]

)
⊆ R2
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Fig. 9. The infinite comb.
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Fig. 10. The infinite grid.

Consequently, the Freudenthal compactification of the (geometric realization of the) in-

finite comb has two directions.

Example 3.6 (One-point compactification). The Freudenthal compactification of

Rn for n > 2 is the n + 1-dimensional sphere. More generally, if X is a locally compact

Hausdorff space in which the complement of any compact subset is connected, then the

Freudenthal compactification of X is its Alexandroff compactification (i.e. a single point

∞ is added at infinity).

Example 3.7 (The infinite grid). The infinite grid is the graph G depicted on Fig-

ure 10. Formally, its set of vertices is Z × {0, 1} with one arrow from (a, b) to (c, d) iff

a 6 c, b 6 d, and (c − a) + (d − b) = 1. Its geometric realization can be embedded into

the plane.

|G| ∼=
⋃
n∈Z

(
R× {n} ∪ {n} × R

)
⊆ R2

As a consequence of Example 3.6, the Freudenthal compactification of the (geometric

realization of the) infinite grid has a single direction. It is not locally simply connected

since no neighborhood of∞ is simply connected. In particular, by Remark 2.58, it cannot

be the realization of a graph.

Lemma 3.8. Let X be a topological space every compact closed subset K of which

is contained in a compact closed subset K ′ whose complement X \ K ′ is nonempty

connected. Then X has a single direction.

Proof. Let f and g be two directions of X, we have f(K ′) = g(K ′) because X\K ′ has a

single nonempty connected component. Consequently the connected component of X \K
that contains f(K ′) is also the one that contains g(K ′). In other words f(K) = g(K).

Example 3.9. Let p such that p 6∈ N. Consider the graph G whose set of vertices is

N t {p} with one arrow from p to each element of N. The geometric realization of G is

p t N×]0, 1] with the obvious topology. Any compact subspace of |G| is contained in
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graph G
R1G stable

counterexample
under complement

finite graph yes –

Z yes –

star with finitely
yes –

many branches

star with infinitely
no center of the star

many branches

infinite comb no line

infinite grid no

all the vertical lines

connected by a

horizontal one

Fig. 11. Stability of R1G under complement.

K = p t S×]0, 1] for some finite subset S of N. The connected components of |G| \ K
are the branches {n}×]0, 1], for n ∈ N \ S, and they are relatively compact in |G|. By

Remark 3.3, the geometric realization of G has no direction, hence DX = X.

Example 3.10. Let p such that p 6∈ N×N. Consider the graph G whose set of vertices

is N t {p} with one arrow from p to (n, 0) and one arrow from (n, k) to (n, k + 1) for all

n, k ∈ N. The value n identifies a branch while k indicates how many vertices one finds

between the vertices (n, k) and p. The geometric realization of G is p t N×]0,+∞[ with

the obvious topology. Any compact subspace of |G| is contained in K = p t S×]0, r] for

some finite subset S of N and r > 0. The connected components of |G| \ K are of the

form {n}×]r,+∞[ with r being zero exactly when for n ∈ N \ S. They are not relatively

compact in |G|. Hence each branch of G induces a direction. In fact D|G| is homemorphic

with the geometric realization of the graph described in Example 3.9.

Lemma 3.11. The Freudenthal extension preserves disjoint unions.

3.2. Graphs such that the collection R1|G| forms a Boolean algebra

The collection R1|G| is always stable under binary union. By De Morgan’s law, proving

that R1|G| is a Boolean subalgebra of ℘(|G|) amounts to prove that it is also stable under

complement. In Figure 11, we have summarized the properties of R1|G| for some graphs

G. The following theorem generalizes Lemma 2.61, is the main result of this section.

Theorem 3.12. Given a graph G, the following are equivalent:

1 The collection R1|G| is a Boolean subalgebra of ℘(|G|).
2 For all n ∈ N, the collection Rn|G| is a Boolean subalgebra of ℘(|G|n).

3 The graph G has finitely many connected components, all its vertices have finitely
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many adjacent arrows, and the degree of all but finitely many vertices is 2. In other

words the following sum is finite.∑
v vertex

|degG(v)− 2|+ #{connected components}

4 The graph G can be obtained as a coequalizer of D ⇒ L with D being finite and

discrete, and L being a finite disjoint union of points, segments, and half-lines.

5 The Freudenthal compactification of |G| is homeomorphic to the geometric realization

of some finite graph.

When the preceding statements are satisfied, the number of directions of |G| is the number

of half-lines appearing in L.

Proof. We prove that the first assertion implies the second one. If G has infinitely many

connected components then R1G has no greatest element. From now on G is assumed

to be connected.

Suppose some vertex v has infinitely many adjacent arrows and let S ⊆ |G| be an

open star centered in v. If |G| \ S has infinitely many connected components, then S

is a connected subset of |G| whose complement does not belong to R1G. Otherwise

(|G| \S)∪{v} is a finite union of connected components of |G| whose complement, which

is the union of infinitely many pairwise disjoint segments, does not belong to R1G.

Suppose that there are infinitely many vertices whose number of adjacent arrows is not

2 and let T be a spanning tree of G (i.e. a connected subgraph of G containing all the

vertices of G such that T loses its connectedness if one removes a single arrow from it).

The set theoretic difference |G| − |T | is thus a disconnected union of segments B×]0, 1[

with B being a set of arrows of G. If B is infinite then we have a connected component of

|G| whose complement in |G| does not belong to R1|G|. Assume that B is finite. It follows

that all the vertices v but finitely many ones have the same neighborhood in T than in

G. In particular T has infinitely many vertices whose number of adjacent arrows is not

2. From a general fact about trees we deduce that T has infinitely many vertices whose

number of adjacent arrows is at least 3. By an easy induction we build a linear subgraph

L of T containing infinitely many vertices with (at least) 3 adjacent arrows. The subgraph

L ⊆ T is connected and |T | − |L| has infinitely many connected components (at least

one for each vertex of L with at least 3 neighbors in T ). We note that any connected

component of |G| − |L| is actually obtained as the union of connected components of

|T | − |L| related by “bridges”, that is to say B′×]0, 1[ for a subset B′ ⊆ B. As B was

assumed to be finite |G| − |L| has infinitely many connected components. Whether B is

finite or not, the collection R1|G| is not a Boolean subalgebra of 2|G|.

Conversely since G has finitely many connected components, the collection R1G is a

Boolean subalgebra of ℘(|G|) iff R1C is a Boolean subalgebra of ℘(|C|) for all connected

components of G. We can thus suppose that G is connected. We write |G| as D ∪ Dc

with

D = {x ∈ |G| | x admits a neighbourhood that is not isomorphic to R}

First remark that D is a discrete subspace of |G|. Also, an element of |G| belongs to

D iff its degree is not 2. Therefore, by hypothesis, D is finite. Since G is a connected
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graph, |G| is a connected space. On the contrary Dc (i.e. the complement of D in |G|) is a

disconnected union of copies of ]0, 1[ (according to our description of |G|). Let us consider

their boundaries in |G|. If some of them has an empty boundary, then it is both open and

closed, and disconnected from its complement in |G|. Therefore |G| ∼= R. Now suppose

that the boundary of any connected component of Dc contains at least one element. This

element belongs to D. For each v ∈ D and each connected component C of Dc whose

boundary contains v, the degree of v is augmented by at least 1 (if C ∪{v} ∼= R+) and at

most 2 (if C ∪ {v} ∼= S1). Hence Dc has finitely many connected components, let us say

C1, . . . , Cn. In order to conclude, remark that a finite union of connected components of

|G| can be written as a disjoint union of the following form, where D′ ⊆ D and Xk is a

finite union of intervals of Ck.

D′ ∪X1 ∪ · · · ∪Xn

Suppose the second point is satisfied. Then consider the graph G′ obtained from G as

follows: G and G′ have the same set of isolated vertices (i.e. those with null degree),

they share their set of arrows and we have ∂-α′ = ∂+α in G′ iff the same holds in G and

deg ∂+α = 2 (in G). As a consequence the degree of a vertex in G′ does not exceed 2

so G′ is a disjoint union of linear graphs. In particular we have a canonical morphism

from G′ to G which is entirely defined by the fact that it is the identity map on arrows

and vertex of zero degree. Moreover, the number of connected components of G′ is finite

because it is less than

#
{

linear connected components of G
}

+
∑

v vertex s.t.
degG(v) 6= 2

degG(v) .

Some connected component of G′ may be a circle or a line, yet both can be obtained as

the coequalizer of the form {0, 1}⇒ L′′ with L′′ being a segment in the former case, and

the disjoint union of two half lines in the latter.

Conversely, consider a graph G obtained as the coequalizer of f and g as in the fourth

assertion. The coequalizer morphism induces a map from the connected components of

L′ onto the connected components of G so there are finitely many of them. Hence the

vertices of G are the classes of the least equivalence relation over the vertices of L′ that

contains the binary relation{
(f(x), g(x))

∣∣ x vertex of L′
}
.

Since D is finite there are finitely many classes that are not reduced to a singleton (hence

G has finitely many vertices whose degree differs from 2), and each class is finite (hence

the degree of each vertex of G is finite).

Suppose that some (and then all) of the first three statements is (are) satisfied. From

Lemma 2.62 we know that |G| is locally compact. As a left adjoint, the realization functor

preserves the coequalizer given by the third statement so any copy of the half-line in L

gives rise to a copy of R+. Let n be the number of copies of the half-line in L. Given

k ∈ N consider Gk the coequalizer of D ⇒ Lk with Lk being obtained from L by keeping
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the k-length initial segment of every half-line of K. Then the sequence

|G0| ⊂ · · · ⊂ |Gk| ⊂ |Gk+1| ⊂ · · ·

forms an exhaustion† of |G|, and for k sufficiently large, |G| \ |Gk| is homeomorphic to n

copies of the real line R. It follows that for k sufficiently large, the Freudenthal extension

of |G| is homeomorphic to |Gk|.
Suppose that the fifth statement is satisfied. Let φ be some embedding of |G| into |G′| ∼=

F|G| where G′ is a finite graph. Following Remark 2.58, one has deg(x) = deg(φ(x)) so

the degrees of all the points of |G| (and thus all the vertices of G) are finite. Moreover φ

induces an embedding of the discrete subspace {x ∈ |G| | deg(x) 6= 2} into the discrete

subspace {x ∈ |G′| | deg(x) 6= 2} which is finite. Therefore G has finitely many vertices

with a degree that differs from 2. By Lemma 3.11, we conclude that |G| (and therefore

G) has finitely many connected components.

Remark 3.13. The finiteness hypothesis on D cannot be dropped from the statement of

the fourth point of Theorem 3.12. Consider indeed the case where D is the set of vertices

of a line L. Then let the first morphism of the coequalizer diagram be the inclusion of D

in L while the second one sends all the elements of D to a single point. The coequalizer

is an infinite bouquet of circles, viz an infinite graph with a single vertex.

Definition 3.14. A graph satisfying one (and then all) of the characterizing properties

from Theorem 3.12 is said to be almost finite. In particular, all the almost finite graphs

are countable, yet the converse is obviously false (Examples 3.5 and 3.7).

Theorem 3.12 can be slightly extended.

Definition 3.15. A generalized Boolean algebra is a co-unital distributive lattice with

a binary operator \ satisfying (x\y) ∨ (x ∧ y) = x and (x\y) ∧ y = 0 (Figure 13).

Remark 3.16. A lattice is said to be relatively complemented when for all a v b v c

there exists some d such that b∧ d = a and b∨ d = c (Birkhoff, 1967, p.16). If the lattice

is distributive, then such an element d is unique due to the fact that in any distributive

lattice: if c ∧ x = c ∧ y and c ∨ x = c ∨ y, then x = y (Birkhoff, 1967, Thm.10, p.12).

It follows that the generalized Boolean algebras are exactly the relatively complemented

distributive lattices with zero. Given a generalized Boolean algebra, the element d is given

by (c\b) ∨ a. Conversely, in a relatively complemented distributive lattice with zero, one

has 0 v x ∧ y v x and x\y is the unique z such that (x ∧ y) ∨ z = x and x ∧ y ∧ z = 0.

One checks that the difference operator distributes over the meet and the join operators,

and that De Morgan’s laws have their counterparts for generalized Boolean algebras.

Lemma 3.17. Let x, y1, . . . , yn be elements of a distributive lattice.

— (distributivity) If all the differences yi\x exist then the differences (y1 ∨ · · · ∨ yn)\x
and (y1 ∧ · · · ∧ yn)\x also exist and they are respectively equal to (y1\x)∨· · ·∨(yn\x)

and (y1\x) ∧ · · · ∧ (yn\x).

† An exhaustion is a ⊂-increasing family of compact subsets that covers the whole space
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— (De Morgan laws) If all the differences x\yi exist then the differences x\(y1 ∨ · · · ∨ yn)

and x\(y1 ∧ · · · ∧ yn) also exist and they are respectively equal to (x\y1)∧· · ·∧(x\yn)

and (x\y1) ∨ · · · ∨ (x\yn).

Corollary 3.18. All the connected components of the graph G are almost finite if and

only if R1|G| is a generalized Boolean algebra.

Proof. Given two isothetic regions X and Y of dimension 1, the difference X \ Y
involves only finitely many connected components of |G| so it still has finitely many

connected components. Conversely, for each connected component G′ of the graph G,

the Boolean operations on the elements of R1|G′| are obtained by taking the operations

on subsets of |G| relatively to |G′|.

4. Isothetic regions whose subregions form a distributive lattice with zero

Theorem 3.12 and Corollary 3.18 imply that the factoring algorithm from Section 2.7

only applies to isothetic regions based on disjoint unions of almost finite graphs. Such a

framework does not allow us to treat the geometric models of nonconservative programs.

From the theoretical point of view, it remains interesting to determine the class of iso-

thetic regions to which the generic factoring algorithm applies (Section 2.4). So following

Section 2.6, we aim at characterizing the graphs whose associated collection of isothetic

regions satisfies Condition (A2), which amounts to knowing whether an isothetic region,

viz a finite union of blocks, has finitely many maximal blocks. If we do not make any

assumption on the graph G, there may be counter-examples.

Remark 4.1. Consider the case where the geometric realization of G is R and let A

and B be the squares [0, 2]2 and [1, 3]2. Both A and B are maximal blocks of A∪B, but

they are not the only ones. Indeed, the rectangles [1, 2]× [0, 3] and [0, 3]× [1, 2] are two

other maximal blocks of A∪B, and there is no other. There may be infinitely many such

unexpected maximal blocks (Example 4.2).

Example 4.2. Let G be the graph with two vertices {⊥,>} and infinitely many arrows

from ⊥ to >: let us say that G(⊥,>) = N. Note that the subset N×]0, 1[ of |G| has

infinitely many connected components and denote it by E. For the sake of readability,

for all n ∈ N, denote the subset {n}×]0, 1[ of |G| by ]0, 1[n. By extension, we denote the

subsets {⊥} ∪ ({n}×]0, 1[), ({n}×]0, 1[) ∪ {>}, and {⊥} ∪ ({n}×]0, 1[) ∪ {>} by [0, 1[n,

]0, 1]n, and [0, 1]n. Let I and I ′ be the sets {⊥} ∪ E and E ∪ {>}, and let J and J ′ be

the sets [0, 1[0 and ]0, 1]0. Then define A and B as I × J and I ′× J ′, and note that both

A and B are maximal blocks of A∪B. The intersection of the first projections of A and

B is E. Then for all n ∈ N, the set ]0, 1[n×[0, 1]0 is a maximal block of A∪B. There are

even examples with locally finite graphs (Example 4.3).

Example 4.3. The infinite ladder is the graph G whose set of vertices is N×{⊥,>} with

a single arrow from (n, ε) to (n + 1, ε) for ε ∈ {⊥,>} and a single arrow from (n,⊥) to

(n,>) for all n ∈ N (Figure 12). The bottom vertices are, by definition, those of the form

(n,⊥). The top vertices are defined dually. Denote by G⊥ the subgraph of G containing
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Fig. 12. The infinite ladder

all the bottom vertices together with all the arrows between them. The subgraph G> is

defined dually. The geometric realization of G⊥, which is homeomorphic to R+, is seen

as the subspace of |G| gathering all the bottom vertices and all the segments {α}×]0, 1[

such that α is an arrow of G⊥. The subspace |G| \ (|G⊥| ∪ |G>|), which we denote by E,

is made of infinitely many disjoint copies of ]0, 1[. Then Example 4.2 is adapted letting

I and I ′ be |G⊥| ∪ E and E ∪ |G>|.

4.1. Spanning trees and bouquets of circles

A point p of a connected topological space X is said to be separating when X \ {p} is

no longer connected. An arc of a topological space is a subspace that is homeomorphic

to the compact unit segment. Such an arc is said to relate its extremities (i.e. its two

non-separating points). A tree is a subset of the geometric realization of a graph in which

any two distinct points are related by a unique arc. Such a subset is also said to be a

subtree of the geometric realization of the graph. A connected graph G is a tree in the

above sense exactly when for any arrow a of G, the space |G| \{a}×]0, 1[ is disconnected.

In other words the notion of a tree we have just defined generalizes the usual one. A

spanning tree of a graph is a subtree containing all the vertices of the graph.

Definition 4.4. We say that a connected graph is almost a tree when it has a spanning

tree containing all its arrows but finitely many. We say that it is almost a forest when

each of its connected components is almost a tree.

Remark 4.5. Extending the geometric model construction to nonconservative programs

requires to deal with isothetic regions based on locally finite trees. Roughly speaking, such

trees appear as unfolded control flow graphs, therefore in most cases, they are infinite.

Definition 4.6. A bouquet of circles is a graph with a single vertex denoted by ∗. A

topological bouquet of circles is the geometric realization of a bouquet of circles.

Remark 4.7. Given a bouquet of circles G, the intersection of the isothetic regions

{∗} ∪
⋃
α

arrow
of G

{α}×]0, 1
2 ] and {∗} ∪

⋃
α

arrow
of G

{α} × [ 1
2 , 1[

is the set {∗} ∪ {(α, 1
2 ) | α arrow of G}, which is finite iff the graph G is finite.

This section relies on a standard result from algebraic topology stating that a graph is

almost a tree if and only if it is homotopy equivalent to a finite bouquet of circles. It

is obtained by collapsing a spanning tree of G — see (Munkres, 2000, Theorem 84.7,

p.511) or (Hatcher, 2002, Proposition 1A.2, p.84). In particular, all the spanning trees
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of a graph that is almost a tree contain all but finitely many arrows of that graph. The

next result is also standard.

Lemma 4.8. The collection of subtrees of a tree is stable under intersection.

Proof. Let T0 and T1 be two subtrees of a tree T . Let x and y be two distinct points

of T0 ∩ T1. There is an arc α0 in T0 and an arc α1 in T1 that both relate x and y. In

particular α0 and α1 are two arcs of the tree T joining x and y, hence they are equal.

Remark 4.9. Generalizing Remark 4.7, if T is a spanning tree of a connected graph G,

then the intersection of the connected sets

T ∪ (G \ T )×]0, 1
2 ] and T ∪

⋃
α∈G\T

{α} × [ 1
2 , 1[

is the set T ∪
{
〈α, { 1

2}〉
∣∣ α ∈ G \ T} which finite iff the set of arrows G \ T is finite.

4.2. Characterizing isothetic regions with finitely many maximal blocks

Theorem 4.10. Given a graph G, the following assertions are equivalent:

1 The collection of maximal blocks of any isothetic region over |G| is finite (i.e. Condi-

tion (A2) from Section 2.6 is satisfied).

2 For all n ∈ N, the collection Rn|G| is stable under intersection (i.e. it is a sublattice

of that of subsets of |G|n).

3 The collection R1|G| is stable under intersection (i.e. it is a sublattice of that of

subsets of |G|).
4 The graph G is almost a forest.

Proof. It is easy to check that the third point implies the second one. The intersection

of two n-dimensional isothetic regions X and Y that are respectively covered by the finite

families of blocks {A1, . . . , AN} and {B1, . . . , BM}, with N,M ∈ N, can be written as

follows:

X ∩ Y =

N⋃
i=1

M⋃
j=1

Ai ∩Bj .

Moreover we have the following standard equality

Ai ∩Bj = (proj1Ai ∩ proj1Bj)× · · · × (projnAi ∩ projnBj)

from which we deduce that Ai ∩ Bj is also an isothetic region. Indeed, by hypothesis,

each component of the product here above has finitely many connected components.

Proving that the second point implies the first one is slightly more technical. Let

〈A′, B′〉, 〈A1, B1〉, . . . , 〈AN , BN 〉, with N ∈ N, be elements of the set RX × RY (Defi-

nition 2.63). Suppose that A′ × B′ is contained in the union A1 × B1 ∪ · · · ∪ AN × BN .

Given a ∈ A′, we denote by Sa the set of indices i ∈ {1, . . . , N} such that a ∈ Ai. The

“horizontal” slice {a}×B′ is thus contained in the union of products Ai×Bi for i ∈ Sa.

In particular the element a belongs to the intersection⋂{
Ai
∣∣ i ∈ Sa}
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while the set B′ is included in the union⋃{
Bi
∣∣ i ∈ Sa}.

Applying the preceding reasoning to all the elements of A, we obtain a finite collection

S1, . . . , SM of subsets of {1, . . . , N} such that

A′ ⊆
M⋃
m=1

⋂
i∈Sm

Ai ×Bi︸ ︷︷ ︸
=U

and B′ ⊆
M⋂
m=1

⋃
i∈Sm

Ai ×Bi︸ ︷︷ ︸
=V

. (7)

We have proven that A′×B′ is contained in the union A1×B1∪· · ·∪AN×BN iff there exist

finitely many finite subsets S1, . . . , SM satisfying the relations (7). From the hypothesis

on the collections RnG for n ∈ N, we readily deduce that both RX and RY are co

-unital distributive lattices whose join and meet are given by the set-theoretic union and

intersection. Now let F be the family of all the products U × V obtained from relations

(7) letting {S1, . . . , SM} range through the family of all the finite collections of finite

subsets of {1, . . . , N}. The elements of F are isothetic regions because RX and RY are

stable under intersection. The family F is finite and by construction, a product A′ ×B′
with A′ ∈ RX and B′ ∈ RY is included in the isothetic region A1×B1∪· · ·∪AN×BN if

and only if it is included in some element U×V of F . Therefore the collection of maximal

isothetic region of the form A′ × B′ where A′ ∈ RX and B′ ∈ RY is finite. Assuming

that all the elements of RX and RY have finitely many maximal blocks we deduce from

Equality (E3) (Remark 2.41) that any element of R(X × Y ) has finitely many maximal

blocks. By definition, any one-dimensional isothetic region has finitely many maximal

blocks, which are actually its connected components. Then letting X and Y be R1G and

RnG, we deduce the first point from an immediate induction on the dimension n.

The proof that the first point implies the third one is a generalization of Examples 4.2

and 4.3: let X and Y be one-dimensional isothetic regions whose intersection has infinitely

many connected components. We can suppose that both X and Y are connected. In

particular, the union X ∪ Y is connected because the intersection X ∩ Y is not empty.

We conclude noting that for all connected components C of the intersection X ∩ Y , the

block C × (X ∪ Y ) is maximal in the isothetic region X2 ∪ Y 2. We prove that the fourth

point implies the third one. Let T be a spanning tree of a graph G and assume that the

set of arrows G \ T , which we denote by A, is finite. Let X and Y be two connected

subsets of |G|. Then both X \ A×]0, 1[ and Y \ A×]0, 1[ are finite disconnected unions

of trees. Moreover both X ∩ A×]0, 1[ and Y ∩ A×]0, 1[ are finite disconnected unions

of intervals. It follows from Lemma 4.8 that the intersection X ∩ Y has finitely many

connected components. The converse is given by Remark 4.9.

5. Higher dimensional isothetic regions from 1-dimensional ones

The set theoretic operations on higher dimensional isothetic regions are derived from

those on one-dimensional isothetic regions and the following standard identities where
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A, B, C and D are subsets of Ω with respect to which complements are taken:

A× (B ∪ C) = (A×B) ∪ (A× C)

(A ∪B)× C = (A× C) ∪ (B × C)

}
(× distributes over ∪)

(A×B) ∩ (C ×D) = (A ∩ C)× (B ∩D) ({×,∩} - exchange law)

(A×B)c = (Ac × Ω) ∪ (Ω×Bc) . (× and complement)

The purpose of this section is to formalize this remark by expressing the algebraic struc-

ture of n-dimensional isothetic regions as a tensor product of n copies of the algebraic

structure of 1-dimensional isothetic regions.

5.1. The standard approach to tensor product of Boolean algebras

We expand the short paragraph from (Pierce, 1989, p.840) explaining the relation between

tensors product and coproducts of Boolean algebras. A ring R is said to be idempotent

when x2 = x holds for all its elements. An algebra is said to be idempotent when so is its

underlying ring. An idempotent ring R is said to be Boolean when it is unital (i.e. the

product has a neutral element, denoted by 1). Any Boolean ring (R,+, ·, 0, 1) is turned

into a Boolean algebra by setting xc = x+1, x∧y = x·y, and x∨y = x+y+x·y. Conversely,

any Boolean algebra (A,∨,∧, 0, 1, ( )c) is turned into a Boolean ring (A,+, ·, 0, 1) by

setting a + b = (a ∨ b) ∧ (a ∧ b)c and a · b = a ∧ b. Those constructions extend to

an isomorphism between the category of Boolean algebras and that of Boolean rings,

denoted by BR — see (Johnstone, 1982, p.4-7) or (Givant and Halmos, 2009, p.1-20)

BA
R //

BR .
A

oo

The way Boolean rings are related to F2-algebras comes from the specific features implied

by idempotency: any idempotent ring has characteristic 2 (i.e. x + x = 0 holds for all

its elements), and any ring of characteristic 2 is commutative (Givant and Halmos, 2009,

p.3). Consequently, any idempotent ring can be seen as an idempotent F2-algebra in a

unique way: the unary operators 0F2 · ( ) and 1F2 · ( ) are respectively interpreted as the

null map and the identity map. It follows that the category of idempotent F2-algebras

can be identified with that of idempotent rings, which we denote by IR. The finite fields

F2q with q > 2 provide examples of F2-algebras that are not idempotent. The ordinary

tensor product of two commutative algebras over a given field (Lang, 2002, p.629-631)

consists of the tensor product of their underlying vector spaces (Lang, 2002, p.601-603)

endowed with the unique bilinear product that extends the {⊗, ∗}-exchange law

(x ∗ x′)⊗ (y ∗ y′) = (x⊗ y) ∗ (x′ ⊗ y′) . (EL)

In particular, one easily checks that if both components of the ordinary tensor product

have a unit, then the pure tensor 1 ⊗ 1 is its unit. The ordinary tensor product of two

commutative unital algebras over a given field is actually their coproduct (Lang, 2002,

Proposition 6.1, p.630), which initially motivates the construction. In the present context,

we are mostly interested in the fact that it also preserves idempotency.
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Lemma 5.1. The ordinary tensor product of two idempotent F2-algebras is idempotent.

Proof. Let A and B be two idempotent F2-algebras. By definition of the ordinary tensor

product and idempotency of A and B, we have the following equalities

(a⊗ b) ∗ (a⊗ b) = (a ∗ a)⊗ (b ∗ b) = a⊗ b

for all a ∈ A and all b ∈ B. Any element of the ordinary tensor product is a linear combi-

nation of elements of the form (a⊗ b) with coefficients taken in F2 because the ordinary

tensor product of algebras over a field is built on the tensor product of their underlying

vector spaces. One can also note that ∗ distributes over + and that any product of pure

tensors is a pure tensor because of the {⊗, ∗}-exchange law (EL). The quadratic map

x 7→ x2 being linear in characteristic 2 we deduce that A⊗F2 B is idempotent.

Following Lemma 5.1 and the relation between Boolean rings and Boolean algebras, the

tensor product of the Boolean algebras A0 and A1 is defined as A(R(A0)⊗F2 R(A1)).

Remark 5.2. Coproducts of Boolean algebras can also be obtained through the Stone

duality (Johnstone, 1982, p.71) providing an isomorphism between the category of Boolean

algebras and the dual of the category of compact Hausdorff totally disconnected spaces,

or Stone spaces. In particular, a finite Boolean algebra is related to a finite Stone space,

in other word to some natural number n. Since a duality exchanges products and co-

products, the monoid of (isomorphism classes) of non-degenerate finite Boolean algebras

equipped with the tensor product is actually the multiplicative monoid (N \ {0},×, 1).

This simple remark is a special case of Ketonen’s theorem: every countable, commuta-

tive semigroup can be embedded in the commutative monoid of (isomorphism classes

of) countable Boolean algebras under tensor product. We warn the reader that following

the terminology introduced by (Sikorski (1950)), in the original paper (Ketonen (1978))

tensor product of Boolean algebras are called direct product of Boolean algebras.

5.2. Universal tensor product

The terminology used in this section is borrowed from (Borceux, 1994, Chapter 3). A

signature is a mapping α from a set Θ to N. Each element θ ∈ Θ should be thought of as

an operator and α(θ) as its arity (i.e. the number of arguments of θ). An interpretation of

the signature is a set X together with a mapping θX : Xα(θ) → X for each θ ∈ Θ. Given

two interpretations X and Y of the same signature, a morphism of interpretations from

X to Y is a mapping f : X → Y such that for all θ ∈ Θ and for all (x1, . . . , xα(θ)) ∈ Xα(θ)

the following equality holds:

f(θX(x1, . . . , xα(θ))) = θY (f(x1), . . . , f(xα(θ))) .

An algebraic theory T is a signature together with a collection of axioms of the form

∀x1 . . . ∀xn Φ(x1, . . . , xn) = Ψ(x1, . . . , xn)

where Φ and Ψ are terms built on the operators of Θ and whose free variables are

in {x1, . . . , xn}. A model of the theory is an interpretation of its signature satisfying
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Structure Signature Axioms Category

semilattice ∨ commutative idempotent semigroup SL

semilattice with zero ∨, 0 commutative idempotent monoid SL0

lattice ∨, ∧ two semilattices with
Lat

x ∨ (x ∧ y) = x and x ∧ (x ∨ y) = x

distributive lattice ∨, ∧ lattice in which ∧ distributes over ∨ DL

distributive lattice ∨, 0, ∧ distributive lattice in which
DL0

with zero ∨ has a neutral element

generalized

Boolean algebra
∨, 0, ∧, \ distributive lattice with zero s.t.

GBA
(x\y) ∨ (x ∧ y) = x and (x\y) ∧ y = 0

bounded distributive ∨, 0, ∧, 1
distributive lattice in which both

DL01
lattice ∨ and ∧ have a neutral element

Boolean algebra

∨, 0, ∧, 1, c bounded distributive lattice s.t.

BA
xc ∧ x = 0 and xc ∨ x = 1

∨, 0, ∧, 1, \ generalized Boolean algebra

with unit

Fig. 13. Some extensions of the algebraic theory of semilattices

all its axioms. A morphism of models is just a morphism of interpretations between

models of the theory. The models of an algebraic theory T and their morphisms form the

complete and cocomplete category MdlT (Borceux, 1994, Theorem 3.4.5, p.138). Most

of the objects considered in algebra (e.g. semigroups, monoids, groups, rings, modules,

algebras, and all their commutative variants) are models of some algebraic theory. Fields

provide a noteworthy exception, the reason being that the zero element of a field has no

inverse. Figure 13 summarizes the list of theories we will have to deal with. We often

write co-unital distributive lattice instead of distributive lattice with zero.

Definition 5.3. Given A, B and X three models of the same theory, a bimorphism from

A × B to X is a mapping f : A × B → X such that for all a ∈ A and for all b ∈ B the

mappings f(a, ) : B → X and f( , b) : A → X are morphisms. The composite f ◦ g of

a bimorphism f : A× B → X and a morphism g : X → Y is again a bimorphism. As a

consequence, there is a functor Bim(A,B) from the category of models of the theory to

Set sending X to the set of bimorphisms from A×B to X.

An important result about algebraic theories is that the functor Bim(A,B) is repre-

sentable (Borceux, 1994, Th.3.10.3 p.167-171). In other words there is a (necessarily

unique) model A⊗B such that the functor Bim(A,B) is isomorphic to MdlT(A⊗B, ).

It amounts to say that there is a bimorphism T : A × B → A ⊗ B such that for every

bimorphism F : A×B → X there is a unique morphism h ∈MdlT(A⊗B,X) such that
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F = h ◦ T . Following the common usage, the elements of the image of T are called the

pure tensors and for all (a, b) ∈ A×B, we write a⊗ b instead of T (a, b).

Definition 5.4. The bimorphism T is the tensor product of A and B in MdlT. We also

write universal tensor product in the event that another notion of tensor product be

under consideration for the objects of MdlT (e.g. commutative algebras).

Since the notion of bimorphism dramatically depends on the underlying algebraic cate-

gory (i.e. on the theory modelled by its objects) so does the tensor product.

Example 5.5. Let A and B be two monoids and f : A × B → X be a bimorphism of

monoids. Since morphisms preserve neutral elements we have f(εA, b) = f(a, εB) = εX
for all a ∈ A and all b ∈ B. If g : A×B → X is just a bimorphism of semigroups one may

have a ∈ A and b ∈ B such that g(εA, b) 6= g(a, εB). See also (Grillet, 1969a, Theorem

2.3). The tensor product of (commutative) semigroups have been introduced and studied

by Grillet (1969a,b) with a view to homological algebra.

5.3. Description of the universal tensor product of semilattices with zero

A monoid in which the identity xx = x holds for any element x is said to be idempotent. A

semilattice with zero (or co-unital semilattice) can be seen as an idempotent commutative

monoid. Semilattices with zero and their morphisms (i.e. the mappings that preserve the

join operator ∨ and the least element 0) form the category SL0 (Figure 13). The tensor

product in SL0 is thus a special instance of the construction described in Section 5.2.

Given two co-unital semilattices A and B, it is obtained as the quotient of the co-unital

semilattice of finite subsets of A×B by the least congruence ∼ satisfying {〈a, b〉, 〈a′, b〉} ∼
{〈a ∨ a′, b〉}, {〈a, b〉, 〈a, b′〉} ∼ {〈a, b ∨ b′〉}, and {〈∅, b〉} ∼ {〈a, ∅〉} ∼ ∅ for all a, a′ ∈ A
and all b, b′ ∈ B (Fraser, 1976, Theorem 2.3).

Remark 5.6. The tensor product A ⊗SL B of two semilattices A and B, where SL

denotes the category of semilattices, can be described as the quotient of the semilattice

of nonempty finite subsets of A×B by the least congruence ∼ satisfying {〈a, b〉, 〈a′, b〉} ∼
{〈a ∨ a′, b〉}, and {〈a, b〉, 〈a, b′〉} ∼ {〈a, b ∨ b′〉} for all a, a′ ∈ A and all b, b′ ∈ B. In

particular, even if A admits a zero element 0A, the pure tensors 〈0A, b〉 and 〈0A, b′〉 are

not identified. In the subsequent section, we consider fields of sets, and the pure tensors

〈a, b〉 are meant to represent set-theoretic cartesian products a×b. In that context, when

one of the sets a and b is empty, it is natural to identify 〈a, b〉 with the empty set. This

is why we consider tensor products in SL0 instead of SL. Yet, both are related by the

natural isomorphism

A⊗SL0 B
∼=

(
A \ {0A} ⊗SL B \ {0B}

)o
where A and B are co-unital semilattices, and ( )o : SL→ SL0 is the functor which adds

a zero element to every semilattice. It is a special case of (Grillet, 1969a, Theorem 6.2).

The next example emphasizes how the presence of a zero is important in the behaviour

of universal tensor products, it also illustrates Remark 5.6.
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0⊗ 0

1⊗ 1

0⊗ 1 1⊗ 0

1⊗ 0 ∨ 0⊗ 1

0⊗ 0

0⊗ 0

1⊗ 1

0⊗ 1 1⊗ 0

1⊗ 0 ∨ 0⊗ 1

0⊗ 0

0⊗ 0

1⊗ 1

0⊗ 1 1⊗ 0

1⊗ 0 ∨ 0⊗ 1

0⊗ 0

0⊗ 0

1⊗ 1

0⊗ 1 1⊗ 0

1⊗ 0 ∨ 0⊗ 1

0⊗ 0

0⊗ 0

1⊗ 1

0⊗ 1 1⊗ 0

1⊗ 0 ∨ 0⊗ 1

0⊗ 0 0⊗ 0

1⊗ 0 ∧ 0⊗ 1

1⊗ 1

0⊗ 1 1⊗ 0

1⊗ 0 ∨ 0⊗ 1

0⊗ 0

1⊗ 0 ∧ 0⊗ 1

1⊗ 1

0⊗ 1 1⊗ 0

1⊗ 0 ∨ 0⊗ 1

0⊗ 0

1⊗ 0 ∧ 0⊗ 1

1⊗ 1

0⊗ 1 1⊗ 0

1⊗ 0 ∨ 0⊗ 1

0⊗ 0

1⊗ 0 ∧ 0⊗ 1

1⊗ 1

0⊗ 1 1⊗ 0

1⊗ 0 ∨ 0⊗ 1

0⊗ 0

1⊗ 0 ∧ 0⊗ 1

1⊗ 1

0⊗ 1 1⊗ 0

1⊗ 0 ∨ 0⊗ 1

0⊗ 0

1⊗ 0 ∧ 0⊗ 1

1⊗ 1

0⊗ 1 1⊗ 0

1⊗ 0 ∨ 0⊗ 1

Fig. 14. The Hasse diagrams of B ⊗SL B and B ⊗DL B

Example 5.7 (Haucourt and Ninin (2014)). Let B be the Boolean algebra {0, 1}
with x ∧ y = min (x, y), x ∨ y = max (x, y), and xc = x + 1 mod 2. We determine

B⊗B in SL0, DL0, SL, and DL. Let X be a co-unital semilattice and T : B×X → X

be the bimorphism of SL0 defined by T (0, ) = 0 and T (1, x) = x for all x ∈ X. Any

bimorphism F of SL0 satisfies F (0, ) = 0 therefore f = F (1, ) is the only morphism of

SL0 satisfying the equation F = f ◦T . In other words B⊗SL0X
∼= X. We now prove that

the tensor product B ⊗SL B is the bounded distributive lattice C whose corresponding

Hasse diagram is depicted on Figure 14. Observe that any order-preserving map defined

over B also preserves binary joins and meets, from which we deduce that a set map

F : {0, 1}2 → X is a bimorphism of SL iff it satisfies the relations

F (0, 0) v F (0, 1) v F (1, 1) and F (0, 0) v F (1, 0) v F (1, 1) .

Let us check that there is a unique h ∈ SL(C,X) satisfying F = h ◦ T . Firstly, we have

h(a ⊗ b) = F (a, b) for all (a, b) ∈ {0, 1}2. Because h is a morphism of SL it preserves

binary join, therefore it satisfies

h(0⊗ 1 ∨ 1⊗ 0) = h(0⊗ 1) ∨ h(1⊗ 0) = F (0, 1) ∨ F (1, 0)

so h is uniquely defined. Checking that h is indeed a morphism of SL is a routine

verification based on the previous relation and the fact that F is a bimorphism. Note

that h might not preserve existing meets. A similar reasoning proves that the tensor

product B ⊗ B in DL is the bounded distributive lattice whose corresponding Hasse

diagram is depicted on Figure 14.

Remark 5.8. Grillet (1969a) presents the tensor product of two semigroups A and B

as the quotient of the semigroup of nonempty words on the set A×B under the quotient

generated by the relations

(a, bb′) ∼ (a, b)(a, b′) and (aa′, b) ∼ (a, b)(a′, b)

for all a, a′ ∈ A and all b, b′ ∈ B. Denoting the category of (commutative) semigroups by

(CSG) SG, we have the chain of inclusion functors

SL0 SL CSG SG .
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Each of them has a left adjoint which is easily described in terms of presentations of semi-

groups. In order to relate the presentation of the tensor product of semigroups (Grillet,

1969a, Theorem 2.1) to that co-unital semilattices, it would suffice to know how these left

adjoint functors behave with respect to tensor products. For all semigroups A and B we

have C(A⊗SGB) ∼= C(A)⊗CSGC(B) where C is the left adjoint to the inclusion functor

CSG ↪→ SG (Grillet, 1969b, Theorem 1.1). Moreover we have Ao⊗SL0B
o ∼=

(
A⊗SLB

)o
for all semilattices A and B (Remark 5.6). To conclude, we would need a similar result

for the left adjoint E : CSG→ SL. One step in that direction is given by (Grillet, 1969b,

p.282): if A is a commutative semigroup, then E(A) is isomorphic to 1⊗CSGA. Because

the tensor product in CSG is commutative and associative† (Grillet, 1969b, Proposition

2.1), we have the following isomorphisms:

E(A⊗CSG B) ∼= 1⊗CSG (A⊗CSG B)
∼= (1⊗CSG 1)⊗CSG (A⊗CSG B)
∼= (1⊗CSG A)⊗CSG (1⊗CSG B)
∼= E(A)⊗CSG E(B) .

Applying the universal properties of the tensor products in CSG and SL we deduce that

E(A)⊗CSG E(B) ∼= E(A)⊗SL E(B). In the end we obtain the following isomorphism:

A⊗SL0 B
∼=

(
E
(
C(A \ {0A} ⊗SG B \ {0B})

))o
.

5.4. Universal tensor products of (generalized) Boolean algebras in the category SL0

The purpose of this section is to prove that the universal tensor product of two Boolean

algebras in the category SL0 is their ordinary tensor product (as defined in Section 5.1).

In spite of the large amount of resources dealing with tensor product of (semi)lattices

and the even much larger amount of resources dealing with Boolean algebras, we have

not been able to find this result in the literature, so we write down the details. Yet, most

of the content is already known and we give a reference each time we have been able to

find some. Lemmas 5.9, 5.10, and 5.11 are drawn from (Fraser (1976)) which actually

deals with tensor product in SL, but following Remark 5.6, one readily adapts the needed

results to the tensor product in SL0. The first lemma provides a simple characterization

of the partial order associated with the tensor product. The second one is a generalized

form of exchange law between the pure tensors and the meet operator of A⊗SL0B, which

is indeed a co-unital distributive lattice. The last one relates universal tensor products

of bounded distributive lattices in SL0 to their coproduct in DL01.

Lemma 5.9 (Fraser (1976), Theorem 2.5). Let A, B be distributive lattices with

zero. For n ∈ N, given a, a1, . . . , an ∈ A \ {0A} and b, b1, . . . , bn ∈ B \ {0B}, we have

a⊗SL0 b v
n∨
i=1

ai ⊗SL0 bi

† However, the tensor in SG is not associative (Grillet, 1969a, Example 2.3).



E. Haucourt and N. Ninin 44

iff there are finitely many subsets S1, . . . , Sm of {1, . . . , n} such that

a v
m∨
j=1

∧
i∈Sj

ai and b v
m∧
j=1

∨
i∈Sj

bi .

Lemma 5.10 (Fraser (1976), Theorem 2.6). The universal tensor product in SL0 of

two co-unital distributive lattices is a co-unital distributive lattice in which the relation

(GEL) holds for all a1, . . . , am, c1, . . . , cn ∈ A and all b1, . . . , bm, d1, . . . , dn ∈ B.(
m∨
i=1

ai ⊗SL0 bi

)
∧

 n∨
j=1

cj ⊗SL0 dj

 =

m∨
i=1

n∨
j=1

(ai ∧ cj)⊗SL0 (bi ∧ dj) (GEL)

Lemma 5.11 (Fraser (1976), Theorem 3.3). The universal tensor product (in SL0)

of two bounded distributive lattices is their coproduct (in DL01).

The arguments from Example 5.7 also prove that B ⊗DL0 X
∼= X holds for every co

-unital distributive lattices X. However, the universal tensor product of two co-unital

distributive lattices in SL0 differ, in general, from their universal tensor product in DL0

(Fraser, 1976b, p.182). We extend the main result of (Haucourt and Ninin (2014)).

Proposition 5.12. The class of (generalized) Boolean algebras is closed under universal

tensor product in the category of co-unital semilattices.

Proof. Suppose that A and B are two (generalized) Boolean algebras. By Lemma 5.10

we know that the tensor product of two (generalized) Boolean algebras in SL0 is a

distributive lattice with zero. Given a ∈ A and b ∈ B we have the equalities

a⊗ b = (0⊗ b) ∨ (a⊗ b) = (0⊗ 0) ∨ (0⊗ b) ∨ (a⊗ b) = (0⊗ 0) ∨ (a⊗ b)

which proves that 0 ⊗ 0 is the zero of A ⊗ B. The {⊗,∧}-exchange law is given by

Lemma 5.10. In particular, if both A and B have a unit, then its unit is 1A ⊗ 1B . To

prove that the tensor product A⊗B is a (generalized) Boolean algebra, it remains to check

that the difference operator is well-defined. First we prove that the difference between

pure tensors exists and satisfies the relation

(a⊗ b)\(c⊗ d) =
(
(a\c)⊗ b

)
∨
(
a⊗ (b\d)

)
.

The general case will follow from Lemma 3.17. We evaluate the expression

(a\c⊗ b) ∨ (a⊗ b\d)︸ ︷︷ ︸
(a\c ⊗ b\d) ∨ (a∧c ⊗ b\d)

∨ (a⊗ b ∧ c⊗ d)︸ ︷︷ ︸
(a∧c ⊗ b∧d)

.

The third term is rewritten applying the exchange law. The mapping x 7→ x ⊗ b\d
preserves joins and a can be written as a\c∨ (a∧ c) so the second term can be rewritten

as above. By the same arguments we gather the first two terms and the last two ones in

the expression

(a\c⊗ b) ∨ (a\c⊗ b\d)︸ ︷︷ ︸
a\c⊗b

∨ (a ∧ c⊗ b\d) ∨ (a ∧ c⊗ b ∧ d)︸ ︷︷ ︸
a∧c⊗b

.
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The original expression thus boils down to (a\c⊗ b) ∨ (a ∧ c⊗ b) = a⊗ b. We also need

to evaluate the expression(
(a\c⊗ b) ∨ (a⊗ b\d)

)
∧ (a⊗ b ∧ c⊗ d)︸ ︷︷ ︸

(a∧c ⊗ b∧d)

.

By distributivity of ∧ over ∨ and the exchange law it can be expressed as follows:(
(a\c ∧ a ∧ c)︸ ︷︷ ︸

0

⊗b ∧ d
)
∨
(
a ∧ c⊗ (b\d ∧ b ∧ d)︸ ︷︷ ︸

0

)
.

Therefore it is reduced to (0 ⊗ b ∧ d) ∨ (a ∧ c ⊗ 0). Since tensor products are taken in

SL0 the mappings x 7→ x⊗ b ∧ d and y 7→ a ∧ c⊗ y preserve zero, so the last expression

is zero. We emphasize that the last argument does not hold in SL (Remark 5.6). It is

the only place in the proof where this subtlety indeed matters, however, as shown by

Example 5.7, it is crucial.

Corollary 5.13. The universal tensor product in SL0 of two Boolean algebras is their

coproduct in BA.

Proof. Given the Boolean algebras A and B, the universal tensor product A⊗SL0 B is

a Boolean algebra (Proposition 5.12). From Lemma 5.11 we deduce that A⊗SL0 B is the

coproduct of A and B in the category DL01. Since BA is a full subcategory of DL01,

the universal tensor product A⊗SL0 B is also the coproduct of A and B in BA.

5.5. Application to isothetic regions

Let X and Y be two isothetic regions over the graph G. Given two finite subsets C and

C ′ of RX ×RY such that C ∼ C ′ (Section 5.3), we readily have the equality⋃
(A,B)∈C

A×B =
⋃

(A′,B′)∈C′
A′ ×B′ .

Consequently, by definition of R(X × Y ), the map ΦX,Y which sends a finite subset C of

RX × RY to the set theoretic union of its elements induces a morphism of co-unital

semilattices from RX ⊗SL0 RY onto R(X × Y ).

Proposition 5.14. If G is almost a forest (resp. almost finite), then ΦX,Y is an isomor-

phism of co-unital distributive lattices (resp. Boolean algebras).

Proof. The map ΦX,Y is one-to-one (hence an isomorphism) precisely when for all

A′ ∈ RX and all B′ ∈ RY , the inclusion

A′ ×B′ ⊆
⋃

(A,B)∈C

A×B

implies that C ∼ C ∪{(A′, B′)}. Assuming that C = {〈A1, B1〉, . . . , 〈AN , BN 〉} and with

the notation from Section 5.3, the latter is equivalent to the relation

A′ ⊗B′ v
N∨
i=1

Ai ⊗Bi . (8)
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From the proof that the second point of Theorem 4.10 implies the first one, we deduce

that there exists a finite collection S1, . . . , SM of subsets of {1, . . . , N} such that the

inclusions (7) are satisfied. The relation (8) then follows from Lemma 5.9. Moreover,

with the help of Lemma 5.10, a routine computation proves that the mapping ΦX,Y is

also meet preserving, therefore it is an isomorphism of co-unital distributive lattices. In

particular, assuming that G is almost finite (Definition 3.14), the source and the target of

the morphism ΦX,Y are Boolean algebras. Since we readily have ΦX,Y (X×Y ) = X⊗Y ,

the mapping ΦX,Y is an isomorphism of Boolean algebras.

6. Future work

So far we have considered n-dimensional isothetic regions as subsets of |G|n for some

fixed graph G. Yet, the mathematical structure of |G|n is much richer than that of a

mere set, so any isothetic region inherits from that structure. Moreover, these enriched

isothetic regions have invariants that are worth to study. In all the cases that we consider

here, the mathematical objects lie in a Cartesian (resp. co-Cartesian) category and the

way they are built preserves Cartesian (resp. co-Cartesian) products.

Locally ordered length metric spaces. Each isothetic region X is a sub-locally ordered

space S(X) of |G|n for a unique n ∈ N, the dimension of X (Haucourt (2017)). Given a

tuple X1, . . . , Xk of isothetic regions over |G|, the induced locally ordered space S(X1 ∗
· · · ∗ Xk) is isomorphic to the product of locally ordered spaces S(X1) × · · · × S(Xk)

because the Cartesian product (in any category) is associative. Indeed, the later asser-

tion guarantees that the map which sends an element of X1 × · · · ×Xk (i.e. a k-word

whose ith letter is a ni-word on |G|) to the concatenation of its letters is actually an

isomorphism of locally ordered spaces. It follows that any factorization of an isothetic

region in the sense of Section 2.1 induces a factorization of the corresponding locally

ordered space. So we wonder if the prime decomposition of an isothetic region implies

the prime decomposition of the corresponding locally ordered space. To deal with that

question, we lean on two facts. The first one is that the underlying topological space of

S(X) is actually a length metric space in a natural way (Haucourt (2017)). The second

one is a unique decomposition theorem for geodesic metric spaces of finite affine rank

(Foertsch and Lytchak (2008)). A length space is a metric space in which the distance

between two points is the infimum of the lengths of the paths joining them (Bridson

and Haefliger, 1999, Chap.I.3). Length spaces raise a technical problem: in general, a

subspace of a length space is not a length space. That issue is addressed by a standard

construction: any metric space (X, d) is associated with a length space by replacing the

induced metrics by the so-called intrinsic metrics, defined for all x, y ∈ X by

d′(x, y) = inf{`(α) | α paths joining x and y} .

If no such path exists (i.e. when the points do not lie in the same path-connected compo-

nent) the distance between them is conventionally defined as infinite. More specifically,

a length space is said to be geodesic when any couple of its points are connected by a

path whose length is the distance between these points (Bridson and Haefliger, 1999,
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p.9). The geometric realization of any graph is known to admit a canonical metric struc-

ture assuming that any arrow is of length 1. Such metric spaces are called metric graphs

(Bridson and Haefliger, 1999, Chap.1) and their are geodesic Polish† spaces. Given two

metric spaces (X, dX) and (Y, dY ) the topological space X×Y is equipped with the max-

metric dX×Y = max(dX , dY ). If both Y and Y are geodesic (Polish) spaces, then so is

the max-metric space X×Y . In particular |G|n is a geodesic Polish space. Consequently,

every isothetic region X is a separable length space as a subspace of some geodesic Polish

space of the form |G|n. For such spaces, the affine rank of X boils down to the greatest

d ∈ N such that the hypercube [0, 1]d can be embedded in it, therefore it is bounded by

n. However, the metric spaces thus associated to isothetic regions may not be geodesic

(e.g. the punctured Euclidean plane R2 \ {0}). Moreover, due to the Hopf-Rinow The-

orem (Bridson and Haefliger, 1999, p.35), that situation is very likely to happen when

the isothetic region under consideration is not a closed subset of |G|n, which is the case

for many of the geometric models of concurrent programs (Haucourt (2017)). Therefore,

we would first need to prove that the unique decomposition theorem from (Foertsch and

Lytchak (2008)) remains valid for length spaces instead of geodesic ones.

Finite Connected Loop-Free Categories. A category C is said to be loop-free when for

all objects x and y of C, if both homsets C(x, y) and C(y, x) are nonempty, then x = y

and C(x, x) = {idx}. The collection of isomorphism classes of nonempty finite connected

loop-free categories is a countable commutative monoid M under Cartesian product. It

is reduced and graded by the number of morphisms of its elements. Theorem 6.1 actually

generalizes a result on finite posets which is itself a direct consequence of a refinement

theorem for products of posets (Hashimoto (1951)).

Theorem 6.1 (Balabonski (2007)). The monoid M is freely commutative.

Remark 6.2. The connectedness hypothesis cannot be dropped. Indeed we obtain a

counter-example by interpreting the product and the sum of monomials as the Cartesian

product and the coproduct of categories, and then by substituting the category {· → ·}
to X in Hashimoto’s polynomial X5 +X4 +X3 +X2 +X + 1 (Example 2.20).

The preceding digression is related to isothetic regions through their fundamental cate-

gories (Fajstrup et al., 2016, Section 4.2.3) and their categories of components (Fajstrup

et al., 2016, Chapter 6), the latter being properly defined only when the isothetic region

under consideration is loop-free:

Definition 6.3. An isothetic region X is said to be loop-free (resp. diconnected) when

its fundamental category −→π1X is loop-free (resp. connected).

Remark 6.4. An isothetic region has a natural structure of topological space and it

is rather easy to prove that if it is connected, then it is also arc-connected. However it

† complete separable metric
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might not be diconnected as it can be observed on the 2-dimensional cubical region

X = ]0, 1[×]1, 2[ ∪ {(1, 1)} ∪ ]1, 2[×]0, 1[ .

Indeed, one can always relate a point of the square ]0, 1[×]1, 2[ to a point of the square

]1, 2[×]0, 1[ via a continuous path which necessarily goes trough the point (1, 1). Yet, no

such path can be written as a finite concatenation of increasing paths and decreasing

paths on X (which inherits from the product order on R2). The fundamental category of

X is indeed the disjoint union of two copies of the posetal category (]0, 1[,6)× (]0, 1[,6)

and a copy of the terminal category†.

The category of components is an invariant actually defined for any loop-free category C,
and it is denoted by −→π0C. The category of components of a loop-free isothetic region X

is therefore defined as the category of components of its fundamental category, namely
−→π0(−→π1X). It is expected to be finite even though this has not been formally proven yet.

One easily checks that given two equivalent isothetic regions (considered as homoge-

neous languages (Sections 2.1 and 2.6)), one is loop-free (resp. diconnected) iff so is the

other. One also easily checks that a Cartesian product of non-empty isothetic regions is

loop-free (resp. diconnected) iff so are all the operands of the product. In other words

the collection of diconnected loop-free isothetic regions forms a pure submonoid of that

of isothetic regions. As a consequence we have:

Proposition 6.5. The commutative monoid of nonempty diconnected loop-free isothetic

regions is free.

The fundamental category construction preserves Cartesian products for the same rea-

sons that the fundamental groupoid construction does (Brown (2006)). The category of

components construction also preserves binary Cartesian product but it is not so obvious

(Haucourt, 2016, Section 8.5). Then we have the morphism of commutative monoids

{diconnected loop-free regions}
−→π0◦−→π1 // {finite connected loop-free categories} .

In addition, the category of components of a loop-free category C is reduced to a single

morphism iff C is isomorphic to a lattice (Fajstrup et al., 2016, p.112). Therefore the

kernel of the morphism −→π0 ◦ −→π1 is not null; it is natural to try to characterize it:

Conjecture 6.6. If X is a prime connected loop-free region whose fundamental category

is not isomorphic to a lattice, then −→π0(−→π1X) is prime.

A partial answer is given by (Ninin, 2017, Chapter 3) for a restricted collection of cubical

regions X and for a canonical overapproximation of −→π0(−→π1X).

† A category is said to be posetal when it is loop-free and when there is at most one morphism from an

object to another. The terminal category has a single object and a single morphism.
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