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A C*-algebra is determined to a great extent by the partial order of its commutative

C*-subalgebras. We study order-theoretic properties of this dcpo. Many properties

coincide: the dcpo is, equivalently, algebraic, continuous, meet-continuous, atomistic,

quasi-algebraic, or quasi-continuous, if and only if the C*-algebra is scattered. For

C*-algebras with enough projections, these properties are equivalent to

finite-dimensionality. Approximately finite-dimensional elements of the dcpo correspond

to Boolean subalgebras of the projections of the C*-algebra. Scattered C*-algebras are

finite-dimensional if and only if their dcpo is Lawson-scattered. General C*-algebras are

finite-dimensional if and only if their dcpo is order-scattered.

Introduction

One can study a C*-algebra A through the partially ordered set C(A) of its commutative

C*-subalgebras. In general this poset does not determine the C*-algebra completely,

which follows from Connes’ example of a C*-algebra A that is not isomorphic to its

opposite C*-algebra Aop, i.e. the algebra with the same underlying vector space as A

but multiplication (a, b) 7→ ba (Connes, 1975), for which clearly C(A) ≃ C(Aop). However,

C(A) does determine the structure of A to a great extent:

— C(A) determines A up to quasi-Jordan isomorphism (Hamhalter, 2011);

— C(A) determinesA up to a Jordan isomorphism ifA is an AW*-algebra† (Hamhalter, 2015);

— V(A), a variant of C(A) defined below in Definition 9.4, determines A up to Jordan

isomorphism if A is a W*-algebra (Döring and Harding, 2015);

— C(A) determinesA up to ∗-isomorphism if A is a type I AW*-algebra (Lindenhovius, 2016,

8.6.24);

— C(A), together with extra structure making it a so-called active lattice, determines A

up to ∗-isomorphism if A is an AW*-algebra (Heunen and Reyes, 2014).

Thus C(A) can be used as a substitute for the C*-algebra itself (Heunen, 2014a).

† This statement and the next one were originally proved under the condition that the algebras do not
have without type I2 summands. This condition can be removed (Lindenhovius, 2016, 9.2.9).

http://arxiv.org/abs/1504.02730v7
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The intuition is clearest in the case of quantum theory. There, the C*-algebra mod-

els all observations one can possibly perform on a quantum system. However, not all

observations may be performed simultaneously, but only those that live together in a

commutative C*-subalgebra C. There is an inherent notion of approximation: if C ⊆ D,

then D contains more observations, and hence provides more information.

This sort of informational approximation is more commonly studied in domain the-

ory (Abramsky and Jung, 1994; Gierz et al., 2003). In domain theory, elements of a poset

are sometimes interpreted as incomplete objects which are missing information. The com-

mutative C*-subalgebras of a C*-algebra do not contain information as such in the direct

sense. Instead, the incompleteness resides in the way the information in the quantum sys-

tem is observed. In this sense the poset C(A) is more akin to the poset of the domain of

definition of partial functions, ordered by extension. Classically this is not a very interest-

ing poset, but in the quantum setting it is. As we are speaking of a continuous amount of

observables, but in practice only have access to a discrete number of them, we are most

interested in partial orders where every element can be approximated by empirically

accessible ones. Domain theory has a variety of notions modelling this intuition.

This article studies how these domain-theoretic properties of C(A) relate to operator-

algebraic properties of the C*-algebra A. We show that they all coincide in our setting,

as the following are equivalent:

— the C*-algebra A is scattered (as defined in Section 1);

— the partial order C(A) is algebraic (Section 2);

— the partial order C(A) is continuous (Section 3);

— the partial order C(A) is meet-continuous (Section 4);

— the right adjoint of C(f) is Scott-continuous for each injective ∗-homomorphism

f : B → A (Section 4);

— the partial order C(A) is atomistic (Section 5);

— the partial order C(A) is quasi-algebraic (Section 6);

— the partial order C(A) is quasi-continuous (Section 6).

This makes precise exactly ‘how much approximate finite-dimensionality’ on the analyt-

ical side is required for these desirable notions of approximation on the domain-theoretic

side. It is satisfying that these notions robustly coincide with the established algebraic

notion of scatteredness, which is intimately related to approximate finite-dimensionality.

We also study finite-dimensionality of A in terms of the partial order C(A):

— a C*-algebra A is finite-dimensional if and only if C(A) is Lawson-scattered (Sec-

tion 7);

— a C*-algebra A is finite-dimensional if and only if C(A) is order-scattered (Section 7);

Finally, we study the links between domain theory and projections, which form an im-

portant part of traditional C*-algebra theory:

— the partial order CAF(A) of commutative approximately finite-dimensional C*-sub-

algebras of a C*-algebra A is isomorphic to the domain of Boolean subalgebras of

Proj(A), the projections in A, which allows us to reconstruct Proj(A) from C(A)

(Section 8).
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— an AW*-algebra A is finite-dimensional if and only if C(A) is continuous, if and only

if C(A) is algebraic (Section 9);

— the functors C and CAF do not preserve directed colimits of C*-algebras, whereas the

functor B that assigns to each orthomodular poset its poset of Boolean subalgebras

does preserve directed colimits of orthomodular posets (Section 10).

1. C*-algebras

For the benefit of readers with a background in domain theory, we briefly recall what we

need from the classical theory of C*-algebras (Kadison and Ringrose, 1983; Wegge-Olsen, 1993;

Takesaki, 2000; Conway, 1990).

Definition 1.1. A norm on a complex vector space V is a function ‖ − ‖ : V → [0,∞)

satisfying

— ‖v‖ = 0 if and only if v = 0;

— ‖λv‖ = |λ|‖v‖ for λ ∈ C;
— ‖v + w‖ ≤ ‖v‖+ ‖w‖.

A Banach space is a normed vector space that is complete in the metric d(v, w) = ‖v−w‖.

Definition 1.2. An inner product on a complex vector space V is a map 〈− | −〉 : V ×

V → C that:

— is linear in the second variable;

— is conjugate symmetric: 〈v | w〉 = 〈w | v〉;

— satisfies 〈v | v〉 ≥ 0 with equality only when v = 0.

An inner product space V is a Hilbert space when the norm ‖v‖ =
√

〈v | v〉 makes it

a Banach space. For example, Cn with its usual inner product 〈v | w〉 =
∑n

i=1 v̄iwi for

v = (v1, . . . , vn) and w = (w1, . . . , wn) is a Hilbert space.

Definition 1.3. A complex vector space A is an algebra when it carries a bilinear asso-

ciative multiplication A×A→ A. It is called unital when it has a unit 1 ∈ A satisfying

1a = a = a1. It is commutative when ab = ba for all a, b ∈ A. A ∗-algebra is an algebra

A with an involution, i.e., a map A → A, a 7→ a∗, satisfying for each a, b ∈ A and each

λ, µ ∈ C:

— (λa+ µb)∗ = λ̄a∗ + µ̄b∗;

— (a∗)∗ = a;

— (ab)∗ = b∗a∗.

A C*-algebra is a ∗-algebra A that is simultaneously a Banach space with for each

a, b ∈ A:

— ‖ab‖ ≤ ‖a‖‖b‖;

— ‖a∗a‖ = ‖a‖2.

The last identity is called the C*-identity. One can show that the norm of a C*-algebra

is completely determined by the algebraic structure of the algebra, for which the C*-

identity is crucial. As a consequence every C*-algebra has a unique norm (see for instance
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(Landsman, 2017, C.28)). We emphasise that we will always assume our C*-algebras to

be unital. This is due to the fact that Theorem 1.15 below, which is fundamental for

most results in this contribution, is only known to hold in the unital case. Similarly ∗-

homomorphisms, which we will define below, are always assumed to preserve the unit. An

element a of a C*-algebra is self-adjoint when a = a∗, and a projection when a∗ = a = a2.

We write Proj(A) for the set of all projections in A.

Example 1.4. As mentioned, the set of all n-by-n complex matrices is a C*-algebra,

with the involution given by the conjugate transpose. More generally, the space B(H) of

all bounded operators on a Hilbert space H , i.e., all continuous linear maps a : H → H ,

is a C*-algebra as follows. Addition and scalar multiplication are defined by a+ b : v 7→

a(v)+b(v) and λa : v 7→ λa(v), multiplication is composition by ab : v → a(b(v)), and 1 is

the identity map v 7→ v. The involution is defined by taking the adjoint : given a bounded

operator a : H → H , we let a∗ be the unique bounded operator satisfying 〈v | a(w)〉 =

〈a∗(v) | w〉 for each v, w ∈ H . The norm is given by ‖a‖ = sup{‖a(v)‖ | v ∈ H, ‖v‖ = 1}.

Notice that this C*-algebra is noncommutative (unless H is one-dimensional or zero-

dimensional). Moreover, B(H) equals the algebra of all n-by-n complex matrices if we

choose H = Cn.

The previous example is in fact prototypical, as the following theorem shows, for

which we first need to introduce the appropriate morphisms of C*-algebras. A linear map

f : A → B between C*-algebras is a (unital) ∗-homomorphism when f(ab) = f(a)f(b),

f(a∗) = f(a)∗. It is unital when f(1) = 1; in this article all ∗-homomorphisms are as-

sumed to be unital. If f is bijective we call it a ∗-isomorphism, and write A ≃ B. We de-

note the category of C*-algebras and ∗-homomorphisms by CStar, and note that the iso-

morphisms in this category are precisely the ∗-isomorphisms. Every ∗-homomorphism is

automatically continuous, and is even an isometry when it is injective (Kadison and Ringrose, 1983,

4.1.8). Since any ∗-homomorphism f : A→ B is linear, continuity of f implies that its op-

erator norm ‖f‖ satisfies ‖f(a)‖ ≤ ‖f‖‖a‖ for each a ∈ A (Kadison and Ringrose, 1983,

1.5.5–1.5.6). A C*-algebra B is a C*-subalgebra of a C*-algebra A when B ⊆ A, and the

inclusion B → A is a ∗-homomorphism. As a consequence B must contain the identity

element of A. Moreover, since the inclusion must be an isometry, it follows that every C*-

subalgebra of A is a closed subset of A, and conversely, every norm-closed *-subalgebra

of A is a C*-subalgebra of A. Clearly, the inverse image f−1[B] of a ∗-homomorphism

f : A → B is a C*-subalgebra of A. A less trivial fact is that the image f [A] of f is a

C*-subalgebra of B (Kadison and Ringrose, 1983, 4.1.9).

Theorem 1.5 (Gelfand–Naimark). (Kadison and Ringrose, 1983, 4.5.6 & 4.5.7). Any

C*-algebra is ∗-isomorphic to a C*-subalgebra of B(H) for a Hilbert space H .

The above C*-algebra is noncommutative unlessH is one-dimensional or zero-dimensional.

Here is an example of a commutative one.

Example 1.6. The vector space Cn is a commutative C*-algebra under pointwise op-

erations in the max norm ‖(x1, . . . , xn)‖ = max{|x1|, . . . , |xn|}. It sits inside the algebra

B(Cn) of n-by-n matrices as the subalgebra of diagonal ones, illustrating Theorem 1.5.
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The infinite version of the previous example is as follows.

Example 1.7. Write C(X) for the set of all continuous functions f : X → C on a

compact Hausdorff space X . It becomes a commutative C*-algebra as follows: addition

and scalar multiplication are pointwise, i.e., f + g : x 7→ f(x) + g(x), multiplication is

pointwise fg : x 7→ f(x)g(x), the unit is the function x 7→ 1, the involution is given by

f∗ : x 7→ f(x), and the norm is ‖f‖ = supx∈X |f(x)|.

The above example is prototypical for commutative C*-algebras.

Theorem 1.8 (Gelfand duality). (Kadison and Ringrose, 1983, 4.4.3). Any commu-

tative (unital) C*-algebra is ∗-isomorphic to C(X) for a compact Hausdorff space X

called its spectrum.

Proof (sketch) If A is a commutative unital C*-algebra, define its Gelfand spectrum to

be the set X of all nonzero‡ linear maps ϕ : A→ C such that ϕ(ab) = ϕ(a)ϕ(b). This is a

subset of the unit ball of the dual A∗ of A, i.e. the space of bounded functionals A→ C.
The dual A∗ becomes a Hausdorff space when equipped with the weak*-topology, which is

generated by a subbasis consisting of sets of the form {ψ ∈ A∗ | |ϕ(a)−ψ(a)| < ε} where

ϕ ∈ A∗, a ∈ A and ε > 0. Compactness of X follows from the Banach-Alaoglu Theorem.

For each a ∈ A, there is a continuous function â : X → C defined by â(ϕ) = ϕ(a). The

*-isomorphism A→ C(X), called the Gelfand transform, is defined by a 7→ â.

The previous theorem extends to a categorical duality, which was first shown explic-

itly in (Negrepontis, 1971), see also (Landsman, 2017, C.23). We only need the following

proposition, which guarantees that studying the poset of C*-subalgebras of a commuta-

tive C*-algebra reduces to studying compact Hausdorff quotients of its Gelfand spectrum.

Proposition 1.9. Let A be a commutative C*-algebra with spectrum X . If X → Y is

a continuous surjection onto a compact Hausdorff space Y , then Y is homeomorphic to

the spectrum of a C*-subalgebra of A. Conversely, if a C*-subalgebra of A has spectrum

Y , there is a continuous surjection X → Y .

Proof. If q : X → Y is a continuous surjection, then B = {f ◦ q | f ∈ C(Y )} is a C*-

subalgebra of A. Conversely, if B is a C*-subalgebra of A, define a equivalence relation

∼B on X by setting x ∼B y if and only if b(x) = b(y) for each b ∈ B. The quotient

Y = X/∼B is a compact Hausdorff space and it follows that C(Y ) is *-isomorphic to B.

For details, see (Weaver, 2001, 5.1.3).

It is easy to see that the intersection of any collection of C*-subalgebras of a C*-

algebra A is again a C*-subalgebra of A. Hence if S is a subset of a C*-algebra A,

there is a smallest C*-subalgebra C∗(S) of A that contains A, which we call the C*-

subalgebra of A generated by S. If S = {a1, . . . , an} is finite, we write C∗(a1, . . . , an)

instead of C∗({a1, . . . , an}). If S consists of mutually commuting elements and is closed

‡ Instead of demanding ϕ be nonzero, we can require ϕ(1) = 1. In fact, one can prove that ϕ is actually
a unital ∗-homomorphism A → C.
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under a 7→ a∗, then it can be embedded into a commutative *-subalgebra of A, whose

closure is a commutative C*-subalgebra, and so C∗(S) is commutative. C*-subalgebras

generated by a subset behave well under ∗-homomorphisms.

Lemma 1.10. Let f : A→ B be a ∗-homomorphism between C*-algebras A and B, and

let S ⊆ A be a subset. Then f [C∗(S)] = C∗(f [S]).

Proof. Clearly f [S] ⊆ f [C∗(S)] and so C∗(f [S]) ⊆ f [C∗(S)]. For the other inclusion,

note

S ⊆ f−1
[

f [S]
]

⊆ f−1[C∗(f [S])].

Since the inverse image of a C*-subalgebra under a ∗-homomorphism is clearly a C*-

subalgebra, it follows that f−1[C∗(f [S])] ⊆ A is a C*-subalgebra. Hence C∗(S) ⊆

f−1[C∗(f [S])], and f [C∗(S)] ⊆ C∗(f [S]).

Commutative C*-subalgebras

We now come to our main object of study, namely commutative C*-subalgebras. When

generally describing (quantum) systems C*-algebraically, observables become self-adjoint

elements a = a∗ ∈ A. For each self-adjoint element a, there is a unique injective ∗-

homomorphisms C(σ(a)) → A sending function x 7→ x to a (Kadison and Ringrose, 1983,

4.4.5) linking observables to commutative C*-subalgebras. Here σ(a) is the spectrum of

a, i.e., the compact Hausdorff space

σ(a) = {λ ∈ C | a− λ1 is not invertible}.

The following definition captures the main structure of approximation on the algebraic

side.

Definition 1.11. For a C*-algebra A, define

C(A) = {C ⊆ A | C is a commutative C*-subalgebra},

partially ordered by inclusion: C ≤ D when C ⊆ D.

Let us consider some elementary domain-theoretic properties of C(A) now. For detailed

information about domain theory, we refer to (Abramsky and Jung, 1994; Gierz et al., 2003).

Let C be a partially ordered set. We think of its elements as partial computations or ob-

servations, and the partial order C ≤ D as “D provides more information about the

eventual outcome than C”. With this interpretation, it is harmless to consider downsets,

or principal ideals, instead of C ∈ C:

↓C = {D ∈ C | D ≤ C}.

Dually, it is also of interest to consider upsets, or principal filters, consisting of all possible

expansions of the information contained in C ∈ C:

↑C = {D ∈ C | D ≥ C}.
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This extends to subsets D ⊆ C as:

↓D =
⋃

D∈D

↓D, ↑D =
⋃

D∈D

↑D.

If D has a least upper bound in C, it is denoted by
∨

D. Furthermore, D is called directed

if for each D1, D2 ∈ D there is a D3 ∈ D such that D1, D2 ≤ D3. This can be interpreted

as saying that the partial computations or observations in D can always be compatibly

continued without leaving D. If we want to emphasize that the set D over which we take

the supremum if directed, we write
∨↑ D instead of

∨

D. Similarly, we write
∧

D for

a greatest lower bound, when it exists. For two-element sets D we just write the meet
∧

{D1, D2} as D1 ∧D2.

Definition 1.12. A partially ordered set C is directed-complete partially ordered (dcpo)

if each directed subset of C has a least upper bound.

Proposition 1.13. If A is any C*-algebra, then C(A) is a dcpo, where the supremum
∨

D of a directed set D ⊆ C(A) is given by
⋃

D.

Proof. Let D ⊆ C(A) be a directed subset. Let S =
⋃

D. We show that S is a com-

mutative *-algebra. Let x, y ∈ S and λ, µ ∈ C, there are D1, D2 ∈ D such that x ∈ D1

and y ∈ D2. Since D is directed, there is some D3 ∈ D such that D1, D2 ⊆ D3. Hence

x, y ∈ D3, whence λx + µy, x∗, xy ∈ D3, and since D3 is commutative, it follows that

xy = yx. Since D3 ⊆ S, it follows that S is a commutative *-subalgebra of A. Then S

is a commutative C*-subalgebra of A, which is clearly the least upper bound of D. See

also (Spitters, 2012).

In order to show that the assignment A 7→ C(A) is also functorial, we first have to

introduce the appropriate notion of morphisms of dcpos. A function f : P → Q between

partially ordered sets P and Q is monotone when p ≤ q in P implies f(p) ≤ f(q) in Q;

it is an order embedding if it is monotone and f(p) ≤ f(q) implies p ≤ q, and it is is an

order isomorphism is a monotone bijection with a monotone inverse, or equivalently, if it

is a surjective order embedding. If P and Q are dcpos, then we say that a monotone map

f : P → Q is Scott-continuous function it it preserves the suprema of directed subsets.

The category of dcpos with Scott continuous maps is denoted by DCPO.

The next proposition shows that C is a functor CStar → DCPO.

Proposition 1.14. Let f : A → B be a ∗-homomorphism between C*-algebras A and

B. Then the map C(f) : C(A) → C(B), C 7→ f [C] is Scott continuous. In particular, if f

is injective, then C(f) is an order embedding.

Proof. Let f : A → B be a ∗-homomorphism, and let C ⊆ A be a commutative C*-

subalgebra. Since the image of a ∗-homomorphism is a C*-subalgebra of the codomain,

it follows that f [C] is a C*-subalgebra of B. Since C is commutative, and f preserves

all algebraic operations, it follows that f [C] is commutative. Hence the assignment C 7→

f [C] is a well-defined map C(A) → C(B), which clearly preserves inclusions, hence it is
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monotone. Let D ⊆ C(A) be directed. Since C(f) is monotone, C(f)[D] is directed. Now

f
[

∨

D
]

= f

[

⋃

D

]

⊆ f
[

⋃

D
]

⊆ f

[

⋃

D

]

= f
[

∨

D
]

= f
[

∨

D
]

,

where the first inclusion holds because ∗-homomorphisms are continuous, and where the

last equality holds because C*-subalgebras are closed. Thus

f
[

∨

D
]

= f
[

⋃

D
]

=
⋃

D∈D

f [D] =
∨

D∈D

f [D],

hence C(f) is Scott continuous. Finally, let f be injective and assume that C(f)(C) ⊆

C(f)(D), i.e., f [C] ⊆ f [D]. Let x ∈ C. Then f(x) ∈ f [D], so there is some y ∈ D such

that f(x) = f(y). By injectivity of f it follows that x = y, hence x ∈ D. We conclude

that C(f) is an order embedding.

The dcpo C(A) is of interest because it determines the C*-algebra A itself to a great

extent, as mentioned in the Introduction. The following theorem, which generalizes

an earlier result in the setting of compact Hausdorff quotients of compact Hausdorff

spaces (Mendivil, 1999, Theorem 11), illustrates this.

Theorem 1.15. (Hamhalter, 2011, 3.4). Let A,B be commutative C*-algebras. Given

any order isomorphism ψ : C(A) → C(B), there exists a ∗-isomorphism f : A → B such

that C(f) = ψ that is unique unless A is two-dimensional.

If A is two-dimensional, the ∗-isomorphism A → B is not unique because C2 has

two automorphisms, the identity and the flip map (x, y) 7→ (y, x), that both induce the

identity automorphism on C(C2).

It already follows that for arbitrary C*-algebrasA, the partial order on C(A) determines

the C*-algebra structure of each individual element of C(A). Indeed, if C ∈ C(A), then

↓C is order isomorphic to C(C), and since C is a commutative C*-algebra, it follows that

the partially ordered set ↓C determines the C*-algebra structure of C.

Approximate finite-dimensionality

In practice, within finite time one can only measure or compute up to finite precision, and

hence can only work with (sub)systems described by finite-dimensional C*-subalgebras.

Therefore one might think that the natural extension is for the finite-dimensional C*-

subalgebras to be dense in the whole C*-algebra. C*-algebras that can be described in

this way are called approximately finite-dimensional. In the separable case these can be

classified in several ways, for instance by means of Bratteli diagrams (Bratteli, 1972) or

by K-theory (Wegge-Olsen, 1993).

Definition 1.16. We call a C*-algebra A:

— approximately finite-dimensional, or an AF-algebra, if there is a directed set D of

finite-dimensional C*-subalgebras of A whose union is dense in A with respect to the

norm topology.
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— locally approximately finite-dimensional, or a locally AF-algebra, when for each ε > 0

and each a1, . . . , an ∈ A there exist a finite-dimensional C*-subalgebra B ⊆ A and

b1, . . . , bn ∈ B such that ‖ai − bi‖ < ε for any i = 1, . . . , n.

Before we give some examples, we need to develop some theory, but the reader could

already fast-forward to Example 1.19 for an example of a commutative AF-algebra, and

to Example 1.24 for an example of a non-commutative locally AF-algebra. Let us point

out that we do not, as most authors do, restrict approximately finite-dimensional C*-

algebras to be separable (in which case the directed set D can be replaced by a chain

of finite-dimensional C*-algebras), since all our results also hold in the non-separable

case. It is easy to see that any AF-algebra is locally approximately finite-dimensional:

if a1, . . . , an and ε > 0, then there are b1, . . . , bn ∈
⋃

D such that ‖ai − bi‖ < ε. Each

ai is contained in some Di ∈ D, and since D is directed, there is some B ∈ D con-

taining D1, . . . , Dn, hence also {b1, . . . , bn}. In case A is separable, the converse holds

(Bratteli, 1972, 2.2), but in general the class of locally AF-algebras is strictly larger

than the class of AF-algebras (Farah and Katsura, 2010). However, Proposition 1.18 be-

low shows that for commutative C*-algebras both notions coincide. Moreover, it turns

out that a commutative C*-algebra is approximately finite-dimensional if and only if

its spectrum is totally disconnected : that is, when its connected components are ex-

actly the singletons. Separability gives the additional requirement that the spectrum be

second-countable (Bratteli, 1974, Proposition 3.1). The proposition is well known, and

we provide a proof for convenience. We first need a lemma.

Lemma 1.17. Let X be compact Hausdorff, and let p1, . . . , pn be projections in C(X).

Then C∗(p1, . . . , pn) is a finite-dimensional subalgebra of C(X), and is spanned by all

finite products of elements in the set {p1, . . . , pn, 1}.

Proof. Let S be the collection of all finite products of p1, . . . , pn and 1. Since C(X)

is commutative, the pi mutually commute, and moreover, since they are idempotent, it

follows that S must be finite. As a consequence, S is closed under the multiplication.

Since all projections are self-adjoint and commute, their products should be self-adjoint,

too, hence S is closed under the involution a 7→ a∗. Now let V be the span of S. Then V

is finite-dimensional, and since S is closed under the multiplication and the involution, it

follows that V is a *-subalgebra of C(X), which is finite-dimensional, hence topologically

closed. Thus V is a C*-subalgebra of C(X) containing the projections p1, . . . , pn, hence

it must contain C∗(p1, . . . , pn). Since the latter must contain S, hence also V , we find

that V = C∗(p1, . . . , pn). We conclude that C∗(p1, . . . , pn) must be finite-dimensional.

Proposition 1.18. The following are equivalent for a compact Hausdorff space X :

(1) C(X) is approximately finite-dimensional;

(2) C(X) is locally approximately finite-dimensional;

(3)X is totally disconnected.

(4) C(X) is generated by its projections;

Proof. We already showed that a C*-algebra is locally approximately finite-dimensional

if it is approximately finite-dimensional, which yields (1) =⇒ (2). For (2) =⇒ (3), assume
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that C(X) is locally approximately finite-dimensional, and let x, y ∈ X be distinct points.

Urysohn’s lemma gives f ∈ C(X) with f(x) = 1 6= 0 = f(y). Then there exist a finite-

dimensional C*-subalgebra B and g ∈ B with ‖f−g‖ < 1
2 . This implies that g(x) 6= g(y).

Since B is finite-dimensional, Lemma 3.2 below makes the set {z ∈ X | ∀h ∈ B : h(x) =

h(z)} clopen. Hence x and y cannot share a connected component, and X is totally

disconnected.

Next we show (3) =⇒ (4), so let X be totally disconnected. Distinct points x, y ∈ X

induce a clopen subset C ⊆ X containing x but not y. Now, the characteristic function

of C is continuous, and is therefore a projection, which clearly attains different values on

x and y. Thus the projections of C(X) separate X . It follows from the Stone–Weierstrass

theorem (Kadison and Ringrose, 1983, 3.4.14) that the projections span an algebra B

that is dense in C(X), hence C(X) is generated by its projections.

Finally, we prove (4) =⇒ (1), so assume that C(X) is generated by its projections.

Let D be the collection of all C*-subalgebras of C(X) generated by a finite number of

projections. By Lemma 1.17, D consists solely of finite-dimensional C*-subalgebras of

C(X). It is also directed: if D1, D2 ∈ D where D1 is generated by projections p1, . . . , pn
and D2 is generated by projections q1, . . . , qm, then the C*-subalgebra D generated by

p1, . . . , pn, q1, . . . , qm is clearly a member of D containing both D1 and D2. Since
⋃

D

contains all projections of C(X), and the latter C*-algebra is generated by its projections,

it follows that C(X) is the least upper bound of D, hence C(X) is approximately finite-

dimensional.

Example 1.19. Let X be the Cantor set. Then C(X) is a separable commutative AF-

algebra. Since there exists a continuous surjection X → [0, 1], there is a C*-subalgebra

of C(X) that is ∗-isomorphic to C([0, 1]) by Proposition 1.9. This C*-subalgebra is not

approximately finite-dimensional because [0, 1] is not totally disconnected. This patholog-

ical behaviour demonstrates why the notion of C*-subalgebras is sometimes replaced by

that of hereditary C*-subalgebras, i.e., C*-subalgebras B such that for each self-adjoint

b ∈ B and each self-adjoint a in the ambient algebra the inequality 0 ≤ a ≤ b implies

a ∈ B, where a ≤ b if and only if b− a = c∗c for some c in the ambient algebra.

The following useful lemma explains the terminology ‘approximately’ by linking the

topology of a C*-algebra to approximating C*-subalgebras.

Lemma 1.20. (Wegge-Olsen, 1993, Proposition L.2.2) Let A be a C*-algebra and D a

directed family of C*-subalgebras with A =
⋃

D. For each a ∈ A and ε > 0, there exist

D ∈ D and x ∈ D satisfying ‖a− x‖ < ε. If a is a projection, then x can be chosen to be

a projection as well.

As far as we know, approximate finite-dimensionality of A does not correspond to any

nice order-theoretic properties of C(A). We will need the following more subtle notion. In

general, we will rely on the point-set topology of totally disconnected spaces, as covered

e.g. in (Gierz et al., 2003).

Definition 1.21. A topological space is called scattered if every nonempty closed subset

has an isolated point.
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Equivalently, a topological space X is scattered if there is no continuous surjection

X → [0, 1] (Semadeni, 1971, Theorem 8.5.4). Scattered topological spaces are always

totally disconnected, so commutative C*-algebras with scattered spectrum are always

approximately finite-dimensional.

Example 1.22. Any discrete topological space is scattered, and any finite discrete space

is additionally compact Hausdorff, but there are more interesting examples.

The one-point compactification of the natural numbers is scattered, as well as compact

Hausdorff. This is homeomorphic to the subspace { 1
n
| n ∈ N}∪{0} of R under the usual

Euclidean topology.

More generally, any ordinal number α is scattered under the order topology. A basis

for this topology is given by the intervals {δ | β < δ < γ} for ordinals β, γ ≤ α. If α is a

limit ordinal, then α + 1 is furthermore compact Hausdorff (Semadeni, 1971, Corollary

8.6.7).

There is also an established notion of scatteredness in general C*-algebras A, which

can be defined as follows.

Definition 1.23. (Jensen, 1977). A positive functional on a C*-algebraA is a continuous

linear map f : A→ C satisfying f(a∗a) ≥ 0. Positive functionals of unit norm are called

states, and form a convex set, whose extremal points are called pure. A positive functional

is called pure if it is a positive multiple of a pure state. A is called a scattered C*-algebra

when each positive functional can be written as the countable sum of pure positive

functionals, where the sum converges pointwise.

Theorem 1.25 characterizes scattered C*-algebras completely. For now, let us mention

that scattered C*-algebras are locally AF-algebras (cf. (Lin, 1989, 5.1), where the author

uses ‘AF-algebra’ to mean ’locally AF-algebra’); it was only recently that a scattered C*-

algebra that is not approximately finite-dimensional was found (Bice and Koszmider, 2017,

1.10).

Example 1.24. An operator f ∈ B(H) on a Hilbert space H is compact when it is

a limit of operators of finite rank. If H is infinite-dimensional, the compact operators

form a proper ideal K(H) ⊆ B(H), and all self-adjoint elements of K(H) have count-

able spectrum (Conway, 1990, VII.7.1). It follows that the C*-algebra K(H) + C1H is

scattered (Huruya, 1978).

The following theorem connects the notions of AF-algebras, scattered topological

spaces, and scattered C*-algebras.

Theorem 1.25. The following are equivalent for C*-algebras:

(1) A is scattered;

(2) each C ∈ C(A) is approximately finite-dimensional;

(3) each C ∈ C(A) has totally disconnected spectrum;

(4) each maximal C ∈ C(A) has scattered spectrum;

(5) no C ∈ C(A) has spectrum [0, 1].
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Proof. It follows from (Kusuda, 2010, 2.2) that (1) implies (2). The converse follows

from (Kusuda, 2012, 2.3). The equivalence between (2) and (3) is proven in Proposi-

tion 1.18. By the same lemma, (2) implies (5). We show that (5) implies (4) by contra-

position. Assume that some maximal commutative C*-subalgebra M has non-scattered

spectrum X . Then there is a continuous surjection X → [0, 1], and it follows that M ,

and hence A, has a commutative C*-subalgebra whose spectrum is (homeomorphic to)

[0, 1]. Finally, we show that (4) implies (3). Assume that all maximal commutative C*-

subalgebras have scattered spectrum. Since by Zorn’s lemma every commutative C*-

subalgebra is contained in a maximal one, it follows from (Fabian et al., 2001, 12.24) that

all commutative C*-subalgebras have scattered and hence totally disconnected spectrum.

2. Algebraicity

In this section we characterize C*-algebras A for which C(A) is algebraic. First recall

what the latter notion means. Consider elements B,C of a dcpo C. The element C could

contain so much information that it is practically unobtainable. What does it mean for B

to approximate C empirically? One answer is: whenever C is the eventual observation of

increasingly fine-grained experiments Di, then all information in B is already contained

in a single one of the approximants Di. More precisely: we say that B is way below C

and write B ≪ C if for each directed subset {Di} of C the inequality C ≤
∨

Di implies

that B ≤ Di for some i. Define:

։
C = {B ∈ C | B ≪ C},

։

C = {B ∈ C | C ≪ B}.

With this interpretation, C is empirically accessible precisely when C ≪ C. Such elements

are called compact, and the subset they form is denoted by K(C).

Definition 2.1. A dcpo is algebraic when each element C satisfies C =
∨↑ (K(C)∩↓C

)

,

i.e., if every element is the supremum of the compact elements below it.

We start by identifying the compact elements of C(A). If K is a closed subspace of a

compact Hausdorff space X , define

CK = {f ∈ C(X) | f is constant on K},

which is clearly a C*-subalgebra of C(X). The following lemma gives a convenient way

to construct directed subsets of C(A).

Lemma 2.2. Let A be a C*-algebra, and C ⊆ A a commutative C*-subalgebra with

spectrum X . If P ⊆ X is finite, then

D =
{

⋂

p∈P
CUp

∣

∣ Up open neighbourhood of p
}

is a directed family in C(A) with supremum C.

Proof. If Up and Vp are open neighbourhoods of p, then so is Up ∩ Vp. Moreover

Up ∩ Vp ⊆ Up ∩ Vp ⊆ Up,
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and so CUp
⊆ CUp∩Vp

. Similarly CVp
⊆ CUp∩Vp

. Hence
⋂

CUp
and

⋂

CVp
are both

contained in
⋂

CUp∩Vp
, making D directed.

Since Proposition 1.13 assures that
∨

D is a C*-subalgebra of C = C(X), it is closed

under the operation f 7→ f∗, and it contains the identity of C(X), hence also all constant

functions on X . Hence to show that
∨

D = C(X), it suffices to show that
∨

D separates

all points of X by the Stone–Weierstrass Theorem (Kadison and Ringrose, 1983, 3.4.14).

Thus let x and y be distinct points in X ; we will show that f(x) 6= f(y) for some f ∈
∨

D

by distinguishing two cases. For the first case, suppose x, y ∈ P . Since P is finite, it is

closed, as is P \ {x}. Hence {x} and P \ {x} are disjoint closed subsets in X , and since

X is compact Hausdorff, there are open subsets U and V containing x and P \ {x},

respectively, with disjoint closures. Because U is an open neighbourhood of x and V is

an open neighbourhood of p for each p ∈ P \ {x}, it follows that CU ∩ CV is in D. But

Urysohn’s lemma provides a function f ∈ C(X) satisfying f(U) = {0} and f(V ) = {1}.

Hence f is constant on U and on V , so f ∈ CU ∩ CV . Since y ∈ P \ {x} ⊆ V , we find

f(x) = 0 6= 1 = f(y).

For the second case, suppose x 6∈ P , and proceed similarly. Regardless of whether

y ∈ P or not, {x} and P ∪ {y} are disjoint closed subsets, hence there are open sets U

and V containing {x} and P ∪{y}, respectively, with disjoint closures. Since V is an open

neighbourhood of p for each p ∈ P , we find that CV is in the family. Again Urysohn’s

lemma provides a function f ∈ C(X) satisfying f(U) = {0} and f(V ) = {1}, and since

f is constant on V , we find f ∈ CV , and again f(x) 6= f(y).

We can now identify the compact elements of C(A) as the finite-dimensional ones.

Proposition 2.3. Let A be a C*-algebra. Then C ∈ C(A) is compact if and only if it is

finite-dimensional.

Proof. Suppose C is compact, and write X for its spectrum. Let x ∈ X and consider

D = {CU | U is an open neighbourhood of x}.

It follows from Lemma 2.2 that D is directed and C(X) =
∨

D. Because C is compact,

it must equal some element CU of D. Since C(X) separates all points of X , so must CU .

But as each f ∈ CU is constant on U , this can only happen when U is a singleton {x}.

This implies {x} = U , so {x} is open. Since x ∈ X was arbitrary, X must be discrete.

Being compact, it must therefore be finite. Hence C is finite-dimensional.

Conversely, assume that C has a finite dimension n. By Theorem 1.8, C is isomorphic to

C(X), where X is a discrete n-point space, which is clearly spanned by the characteristic

functions on the singleton sets. Hence C is generated by a finite set {p1, . . . , pn} of

mutually orthogonal projections in the sense that pipj = 0 for i 6= j. Let D ⊆ C(A)

be a directed family satisfying C ⊆
∨

D, and let X be the Gelfand spectrum of
∨

D.

Fix i ∈ {1, . . . , n}. Since the projection pi is contained in
∨

D, using Lemma 1.20 there

is some D ∈ D and some projection p ∈ D such that ‖pi − p‖ < 1
2 . Since projections

p : X → C can only take the value 0 or 1, p 6= pi implies ‖pi − p‖ = 1, so we must have

p = pi. Hence there are D1, . . . , Dn ∈ D such that pi ∈ Di for each i ∈ {1, . . . , n}. Since
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D is directed, there must be some D ∈ D with D1, . . . , Dn ⊆ D. So p1, . . . , pn ∈ D, which

implies that C ⊆ D. We conclude that C is compact.

This leads to the following characterization of algebraicity of C(A).

Theorem 2.4. A C*-algebra A is scattered if and only if C(A) is algebraic.

Proof. By Proposition 2.3 and Proposition 1.18, the dcpo C(A) is algebraic if and only

if each C ∈ C(A) is approximately finite-dimensional. By Theorem 1.25, this is equivalent

with scatteredness of A.

3. Continuity

In this section we characterize C*-algebras A for which C(A) is continuous.

Definition 3.1. A dcpo is continuous when each element satisfies C =
∨↑ ։ C.

We start with two lemmas that govern the equivalence relation ∼B on a compact

Hausdorff space X defined by x ∼B y if and only if b(x) = b(y) for each element b of a

C*-subalgebra B ⊆ C(X).

Lemma 3.2. For a compact Hausdorff space X and C*-subalgebra B ⊆ C(X):

(1) each equivalence class [x]B is a closed subset of X .

(2) B is finite-dimensional if and only if [x]B ⊆ X is open for each x ∈ X ;

(3) if X is connected, B is the (one-dimensional) subalgebra of all constant functions on

X if and only if [x]B is open for some x ∈ X ;

(4) if B is infinite-dimensional, there are x ∈ X and p ∈ [x]B such that B * CU on each

open neighbourhood U ⊆ X of p. If X is connected, this holds for all x ∈ X .

Proof. Fix X and B.

(1)The proof of Proposition 1.9 shows that the quotient X/∼B is compact Hausdorff,

hence its points are closed. If q denotes the quotient map, then [x]B as subset of X

is equal to the preimage under the continuous map q of [x]B as point of X/∼B. Thus

[x]B is closed.

(2)Let q : X → X/∼B be the quotient map. By definition of the quotient topology,

V ⊆ X/∼B is open if and only if its preimage q−1[V ] is open in X . We can regard

[x]B both as a subset of X and as a point in X/∼B. Since [x]B = q−1[{[x]B}], we

find that {[x]B} is open in X/∼B if and only if [x]B is open in X . Hence X/∼B is

discrete if and only if [x]B is open in X for each x ∈ X . Now X/∼B is compact, being

a continuous image of a compact space. It is also Hausdorff by Proposition 1.9. Hence

X/∼B is discrete if and only if it is finite. Thus each [x]B is open in X if and only if

B is finite-dimensional.

(3)An equivalence class [x]B is always closed in X by (1). Assume that it is also open.

By connectedness X = [x]B , so f(y) = f(x) for each f ∈ B and each y ∈ X . Hence

B is the algebra of all constant functions on X , and since this algebra is spanned by

the function x 7→ 1, it follows that B is one dimensional.

Conversely, if B is the one-dimensional subalgebra of all constant function on X ,
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then for each f ∈ B there is some λ ∈ C such that f(x) = λ for each x ∈ X . Hence

f(x) = f(y) for each x, y ∈ X , whence for each x ∈ X we have [x]B = X , which is

clearly open.

(4)Assume that B is infinite-dimensional. By (2) there must be some x ∈ X such that

[x]B is not open. Hence there must be a point p ∈ [x]B such that U * [x]B for each

open neighbourhood U of p. If X is connected, (3) implies that [x]B is not open for

any x ∈ X , so p can be chosen as an element of [x]B for each x ∈ X . In both cases,

we have U * [x]B for any open neighbourhood U of p, hence there is q ∈ U such that

q /∈ [x]B . We have y ∈ [x]B if and only if f(x) = f(y) for each f ∈ B. So p ∈ [x]B,

and q /∈ [x]B implies the existence of some f ∈ B such that f(p) 6= f(q). That is,

there is some f ∈ B such that f is not constant on U , so f is certainly not constant

on U . We conclude that for each open neighbourhood U of p there is an f ∈ B such

that f /∈ CU , so B * CU for each open neighbourhood U of p.

We can now characterize the way-below relation on C(A) in operator-algebraic terms.

Proposition 3.3. The following are equivalent for a C*-algebra A and B,C ∈ C(A):

(1) B ≪ C;

(2) B ∈ K(C) and B ⊆ C;

(3) B is finite-dimensional and B ⊆ C.

Proof. By Proposition 2.3, B is finite-dimensional if and only if B is compact, which

proves the equivalence between (2) and (3). It is almost trivial that (2) implies (1) by

unfolding definitions. For (1) ⇒ (3), assume B ≪ C, which implies B ⊆ C. For a

contradiction, assume that B is infinite-dimensional. Without loss of generality we may

assume that C = C(X) for the spectrum X of C. Lemma 3.2 gives p ∈ X with B * CU
for each open neighbourhood U ⊆ X of p. Consider the family

{CU | U open neighbourhood of p}.

By Lemma 2.2, this is a directed family in C(A) with supremum C(X). However, B is

not contained in any member of the family, and so cannot be way below C = C(X).

This leads to the following characterization of continuity of C(A).

Theorem 3.4. A C*-algebra A is scattered if and only if C(A) is continuous.

Proof. Let C ∈ C(A). It follows from Proposition 3.3 that

։

C = K(C) ∩ ↓C, whence

C =
∨

K(C) ∩ ↓C if and only if C =
∨ ։

C. Thus continuity and algebraicity coincide.

The statement now follows from Theorem 2.4.

4. Meet-continuity

In this section we characterize C*-algebras A for which C(A) is meet-continuous.

Definition 4.1. A dcpo C is meet-continuous when it is a meet-semilattice, and

C ∧
∨

D =
∨

D∈D

C ∧D (4.2)
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for each element C and directed subset D of C.

A closed equivalence relation on a topological space X is a reflexive, symmetric, and

transitive relation R on X that is closed as a subset of X ×X in the product topology.

Lemma 4.3. There is a dual equivalence between the poset of closed equivalence rela-

tions on a compact Hausdorff space X and C(C(X)), that sends R to

CR = {f ∈ C(X) | ∀x, y ∈ X : (x, y) ∈ R⇒ f(x) = f(y)}.

Proof. The map R 7→ CR is essentially bijective because any C ∈ C(C(X)) corresponds

to a quotient X ։ Spec(C) of compact Hausdorff spaces, which in turn corresponds to

a closed equivalence relation ∼ on X by Spec(C) = X/∼. Clearly R ⊆ S if and only if

CR ⊇ CS .

Closed equivalence relations on X form a complete lattice under reverse inclusion,

which follows from the observation that the intersection of a family of equivalence re-

lations is an equivalence relation, and the intersection of a family of closed subsets is

closed, hence the infimum of a family of closed equivalence relations is simply given by

intersection. The supremum is harder to describe, and can in general only be given as

∨

Rn =
⋂

{

S ⊆ X2 closed equivalence relation
∣

∣

⋃

Rn ⊆ S
}

.

Recall that composition of relations R and S on X is defined by

R ◦ S = {(x, z) ∈ X2 | ∃y ∈ X : (x, y) ∈ S, (y, z) ∈ R}.

In the special case where R ◦ S = S ◦ R we have R ∨ S = R ◦ S (Ellis and Ellis, 2013,

Proposition 6.9). By Lemma 4.3, meet-continuity of C(C(X)) comes down to the question

whether R∨
⋂

Sn ⊇
⋂

R∨Sn for closed equivalence relations R and S1 ⊇ S2 ⊇ S3 ⊇ · · ·

on X . Notice that CK , for a C*-algebra C = C(X) and closed subset K ⊆ X , is a special

case of CR of Lemma 4.3 for the closed equivalence relation R = {(x, x) | x ∈ X}∪K2 ⊆

X2. In general CR =
⋂

x∈X C[x]R . It will always be clear from the context which of the

two is meant.

Proposition 4.4. There are closed equivalence relations R and S1 ⊇ S2 ⊇ S3 ⊇ · · · on

[0, 1] such that R ∨
⋂

Sn 6=
⋂

R ∨ Sn.

Proof. We will construct R and Sn similar to the Cantor set; R by keeping the closed

middle thirds, and Sn by keeping the closed first and last thirds. The definitions of Sn
below can be illustrated as follows:

S1 = ⊇ S2 = ⊇ S3 = ⊇ S4 = ⊇ · · ·
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Similarly, R can be drawn as follows:

R =

Formally, let ǫ denote the empty string. Inductively define numbers aσ, bσ, cσ, dσ ∈ [0, 1]

indexed by finite strings σ of zeroes and ones:

aǫ = 0, bǫ = 1/3, cǫ = 2/3, dǫ = 1,

aσ0 = aσ, bσ0 = aσ + 1
3 (bσ − aσ), cσ0 = bσ − 1

3 (bσ − aσ), dσ0 = bσ,

aσ1 = cσ, bσ1 = cσ + 1
3 (dσ − cσ), cσ1 = dσ − 1

3 (dσ − cσ), dσ1 = dσ,

where σ ∈ {0, 1}∗, where the star is the Kleene star. Write ∆ = {(x, x) | x ∈ [0, 1]} for

the diagonal, and define

R = ∆ ∪
⋃

σ∈{0,1}∗

[bσ, cσ]
2,

Sn = ∆ ∪
⋃

σ∈{0,1}n

[aσ, dσ]
2.

The Sn are certainly closed equivalence relations, and
⋂

Sn = ∆.

Clearly R is reflexive and symmetric. It is also transitive: if (x, y) and (y, z) in R have

x 6= y 6= z, then (x, y) ∈ [bσ, cσ]
2 and (y, z) ∈ [bτ , cτ ]

2 for some σ, τ ∈ {0, 1}∗; but if

y ∈ [bσ, cσ] ∩ [bτ , cτ ] then σ = τ , so (x, z) ∈ R. The set R ⊆ [0, 1]2 is also closed: if

(xn, yn) ∈ R is a sequence that converges in [0, 1]2, then either it eventually stays in one

block [bσ, cσ]
2, or it converges to a point on the diagonal.

In total we see that R ∨
⋂

Sn = R ∨∆ = R. But we now prove that R ∨ Sn = [0, 1]2

for any n, so
⋂

R ∨ Sn = [0, 1]2, and hence R ∨
⋂

Sn 6=
⋂

R ∨ Sn. By induction it

suffices to show R ∨ S1 = [0, 1]2 and Sn ⊆ R ∨ Sn+1. For the latter it suffices to show

(aσ, dσ) ∈ R ∨ Sn+1 for σ ∈ {0, 1}n, which follows from transitivity:

aσ = aσ0 Sn+1 bσ0R cσ0 Sn+1 dσ0 = bσ R cσ = aσ1 Sn+1 bσ1 Rcσ1 Sn+1 dσ1 = dσ.

Similarly R ∨ S1 = [0, 1]2.

Theorem 4.5. A C*-algebra A is scattered if and only if C(A) is meet-continuous.

Proof. If A is not scattered, there is an element of C(A) that is ∗-isomorphic to C([0, 1])
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by Theorem 1.25. Therefore we may assume without loss of generality that A = C([0, 1]).

But it now follows from Lemma 4.3 and Proposition 4.4 that C(A) is not meet-continuous.

If A is scattered, then C(A) is continuous by Theorem 3.4. But C(A) is also a complete

semilattice, because the intersection
⋂

Ci of a family of commutative C*-subalgebras

Ci of A is again a commutative C*-subalgebra. And continuous dcpos that are also

semilattices are meet-continuous (Gierz et al., 2003, I-1.8).

We can give another characterization of meet-continuity of C(A), namely in order-

theoretic terms of injective ∗-homomorphisms f : B → A. In this case the upper adjoint

of C(f) : C(A) → C(B), i.e. the monotone map C(f)∗ : C(B) → C(A) satisfying

C(f)(C) ⊆ D ⇐⇒ C ⊆ C(f)∗(D)

exists, and is given by D 7→ f−1[D], which clearly preserves inclusions. To see that this

map is well defined, we have to show that f−1[D] is a commutative C*-subalgebra of A

if D is a commutative C*-subalgebra of B. Clearly f−1[D] is a *-subalgebra that topo-

logically closed (as ∗-homomorphisms are continuous). To show that it is commutative,

let x, y ∈ f−1[D]. Then

f(xy − yx) = f(x)f(y)− f(y)f(x) = 0,

since D is commutative. By injectivity of f it follows that xy − yx = 0, whence f−1[D]

is commutative. To see that C(f)∗ is indeed the upper adjoint of C(f), we recall that the

latter is given by C 7→ f [C], and it is well known that

f [C] ⊆ D ⇐⇒ C ⊆ f−1[D].

Theorem 4.6. The dcpo C(A) of a C*-algebra A is meet-continuous if and only if C(f)∗
is Scott-continuous for any injective ∗-homomorphism f : B → A.

Proof. Suppose C(f)∗ is Scott-continuous for each injective ∗-homomorphisms f : B →

A. Let D be a directed family in C(A), and let C ∈ C(A). Write i : C → A for the

inclusion. Then C(i) has an upper adjoint C(i)∗ : C(B) → C(A) given by D 7→ i−1[D] so

C(i)∗(D) = i−1[D] = C ∩D. Because C(i)∗ is Scott-continuous,

C ∩
∨

D = C(i)∗
(

∨

D
)

=
∨

D∈D

C(i)∗[D] =
∨

D∈D

C ∩D.

Hence C(A) is meet-continuous.

Now assume C(A) is meet-continuous and let f : B → A be an injective ∗-homomorphism.

Write C(f)∗ : C(B) → C(A) for the upper adjoint, and let D be a directed family in C(B).

Then C(ϕ)∗(D) ⊆ C(f)∗ (
∨

D) for each D ∈ D, and hence
∨

D∈D

f−1[D] =
∨

D∈D

C(f)∗(D) ⊆ C(f)∗
(

∨

D
)

= f−1
[

∨

D
]

.

To show that this inclusion is in fact an equality, let x ∈ f−1[
∨

D] be self-adjoint. Then

the smallest C*-algebra C = C∗(x) containing x is commutative, hence an element of

C(B). It follows from Lemma 1.10 that f [C] = C∗(f(x)). Since f(x) ∈
∨

D, hence

C∗(f(x)) ⊆
∨

D, it follows that f [C] ⊆
∨

D. Meet-continuity of C(A) now shows f [C] =
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∨

D∈D f [C] ∩ D. Being a C*-subalgebra, f [B] is closed in A, so that the injection f

restricts to a ∗-isomorphism and hence a homeomorphism B → f [B]. Observe that

f−1[S] = f−1[S] for S ⊆ f [B]. Hence

C = f−1[f [C]] = f−1
[

∨

D∈D
f [C] ∩D

]

= f−1
[

⋃

D∈D
f [C] ∩D

]

= f−1
[

⋃

D∈D
f [C] ∩D

]

=
⋃

D∈D
f−1

[

f [C] ∩D
]

⊆
⋃

D∈D
f−1[D] =

∨

D∈D
f−1[D].

As x ∈ C, it follows that x ∈
∨

D∈D f
−1[D]. Finally, since f−1[

∨

D] is a C*-subalgebra

of A, any of its elements is a linear combination of self-adjoint elements in f−1[
∨

D],

hence f−1[
∨

D] ⊆
∨

D∈D f
−1[D]. We conclude that C(f)∗ (

∨

D) =
∨

D∈D C(f)∗(D).

5. Atomicity

In this section we characterize the C*-algebras A for which C(A) is atomistic.

Definition 5.1. Let C be a partially ordered set with least element 0. An atom in C is

a minimal non-zero element. A partially ordered set is called atomistic if each element is

the least upper bound of some collection of atoms.

We begin by identifying the atoms in C(A). Recall that C∗(S) ⊆ A denotes the C*-

subalgebra of A generated by a subset S of A, i.e., the smallest C*-subalgebra containing

S ⊆ A. By Lemma 1.17, C∗(p) is just the linear span Span{p, 1− p} for projections p2 =

p∗ = p ∈ A; this is two-dimensional unless p is trivial, i.e. 0 or 1, in which case it collapses

to the least element C1 of C(A). The next lemma is simple and known (Hamhalter, 2011),

but for completeness we include a proof.

Lemma 5.2. Let A be a C*-algebra. Then C is an atom in C(A) if and only if it is

generated by a nontrivial projection.

Proof. Clearly two-dimensional C are atoms in C(A). Conversely, assume that C is

an atom of C(A). By Theorem 1.8, C ≃ C(X) for a compact Hausdorff space X . If X

contains three distinct point x, y, z, then C(X) contains a proper subalgebra {f ∈ C(X) |

f(x) = f(y)} with dimension at least two, which contradicts atomicity of C. Hence X

must contain exactly two points x and y. Using the ∗-isomorphism between C and C(X),

let p ∈ C be the element corresponding to the element of C(X) given by x 7→ 1 and y 7→ 0

for y 6= x. It follows that C = Span{p, 1− p}.

To characterize atomicity we will need two auxiliary results. The first deals with least

upper bounds of subalgebras in terms of generators.

Lemma 5.3. Let A be a C*-algebra and C ∈ C(A). If {Si}i∈I is a family of subsets of

C, then each C∗(Si) is in C(A), and C∗
(
⋃

i∈I Si
)

=
∨

i∈I C
∗(Si).

Proof. For any i ∈ I, clearly C∗(Si) is a commutative C*-subalgebra of A, and hence

an element of C(A).
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Writing S =
⋃

i∈I Si, we have Sj ⊆ C∗(S), and so C∗(Sj) ⊆ C∗(C∗(S)) = C∗(S).

Therefore,
∨

i∈I C
∗(Si) is contained in C∗(S). For the inclusion in the other direction,

notice that clearly S ⊆
∨

i∈I C
∗(Si), whence

C∗(S) ⊆ C∗

(

∨

i∈I

C∗(Si)

)

=
∨

i∈I

C∗(Si).

This finishes the proof.

The second auxiliary result deals with subalgebras generated by projections. It shows

that projections are the building blocks for C*-algebras A whose dcpos C(A) are atom-

istic. This explains why mere approximate finite-dimensionality is not good enough to

characterize algebraicity and/or continuity. See also Section 9 below.

Proposition 5.4. For a C*-algebra A, a C*-subalgebra C of A is the least upper bound

of a collection of atoms of C(A) if and only if it is generated by projections.

Proof. Let C ∈ C(A). For any collection P of projections in A, of course P =
⋃

p∈P {p},

so Lemma 5.3 guarantees C∗(P ) =
∨

p∈P C
∗(p). Hence C is generated by projections if

and only if C = C∗(P ) for some collection P of projections in C if and only if C =
∨

p∈P C
∗(p) for some collection of projections in C. It now follows from Lemma 5.2 that

C is generated by projections if and only if it is the least upper bound of atoms in C(A).

This leads to the following characterization of atomicity of C(A).

Theorem 5.5. A C*-algebra A is scattered if and only if C(A) is atomistic.

Proof. By Theorem 2.4 it suffices to prove that C(A) is algebraic if and only if it is

atomistic. Assume that C(A) is algebraic and let C ∈ C(A). If C = C1, then C is the

least upper bound of the empty set, which is a subset of the set of atoms. Otherwise, it

follows from Proposition 2.3 that C is the least upper bound of all its finite-dimensional

C*-subalgebras. Since every finite-dimensional C*-algebra is generated by a finite set of

projections, it follows from Proposition 5.4 that each element D ∈ K(C(A))∩↓C can be

written as the least upper bound of atoms in C(A). Hence C is a least upper bound of

atoms, so C(A) is atomistic.

Conversely, assume C(A) is atomistic and let C ∈ C(A). Because C being finite-

dimensional implies that it is a least upper bound of K(C(A)) ∩ ↓C, we may assume

that C is infinite-dimensional. By Lemma 5.2, C =
∨

p∈P C
∗(p) for some collection P

of projections in A. As we must have P ⊆ C, all projections in P commute. We may

replace P by the set of all projections of C, which we will denote by P as well; then

we still have C =
∨

p∈P C
∗(p). Write F for the collection of all finite subsets of P , and

consider the family {C∗(F ) ∈ C(A) | F ∈ F}. If F ∈ F , then C∗(F ) is finite-dimensional,

and since finite-dimensional C*-algebras are generated by a finite number of projections,

it follows that this family equals K(C(A)) ∩ ↓C. Now let F1, F2 ∈ F . By Lemma 5.3,
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C∗(F1) ∨ C∗(F2) = C∗(F1 ∪ F2), making the family directed. Then:

C =
∨

p∈P

C∗({p}) =
∨

F∈F

∨

p∈F

C∗(p) =
∨

F∈F

C∗(F ),

where the third equality used Lemma 5.3. Hence C(A) is algebraic.

6. Quasi-continuity and quasi-algebraicity

In this section we show that for dcpos C(A) of C*-algebras A, the notions of quasi-

continuity and quasi-algebraicity, which are generally weaker than continuity and alge-

braicity, are in fact equally strong.

To define quasi-continuity and quasi-algebraicity (Gierz et al., 2003, III-3) we gen-

eralize the way below relation of a dcpo C to nonempty subsets: write G ≤ H when

↑H ⊆ ↑G. This is a pre-order, and we can talk about directed families of nonempty sub-

sets. A nonempty subset G is way below another one H, written G ≪ H, when
∨

D ∈ ↑H

implies D ∈ ↑G for some D ∈ D. Observe that {B} ≪ {C} if and only if B ≪ C, so we

may abbreviate G ≪ {C} to G ≪ C, and {C} ≪ H to C ≪ H.

Definition 6.1. For an element C in a dcpo C, define

Fin(C) = {F ⊆ C | F is finite, nonempty, and F ≪ C},

KFin(C) = {F ∈ Fin(C) | F ≪ F}.

The dcpo is quasi-continuous if each Fin(C) is directed, and C � D implies D 6∈ ↑F for

some F ∈ Fin(C). It is quasi-algebraic if each KFin(C) is directed, and C � D implies

D 6∈ ↑F for some F ∈ KFin(C).

It is asserted without proof in (Gierz et al., 2003, III-3.10) that continuity implies

quasi-continuity. For completeness let us sketch a proof. Let C be continuous and C ∈ C.

First one has to show that Fin(C) is directed, so let F ,G ∈ Fin(C). Since

։

C is directed

and has supremum C, it follows from F ≪ C and G ≪ C that there are DF and DG

in
։

C such that DF ∈ ↑F and DG ∈ ↑G. Since

։

C is directed, there is some D ∈

։

C

such that DF , DG ≤ D. It now follows that H = {D} is an element in Fin(C) such

that F ,G ≤ H. It follows by contraposition that C � D implies that D 6∈ ↑F for some

F ∈ Fin(C). Indeed, if D ∈ ↑F for each F ∈ Fin(C), then D ∈ ↑E for each E ≪ C,

which translates to E ≤ D for each E ∈

։

C. Hence C =
∨ ։

C ≤ D using the fact that

C is continuous.

In almost the same way (replacing Fin(C) by KFin(C), and replacing

։

C by the

directed set of compact elements below C) one can show that algebraicity implies quasi-

algebraicity.

Intuitively, quasi-continuity and quasi-algebraicity relax continuity and algebraicity to

allow the information in approximants to be spread out over finitely many observations

rather than be concentrated in a single one.

We start by analysing the way-below relation generalized to finite subsets.

Lemma 6.2. Let A be a C*-algebra, C ∈ C(A) and F ⊆ C(A). Then F ∈ Fin(C) if and

only if F contains finitely many elements and F ≪ C for some F ∈ F .
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Proof. Let F contain finitely many elements and assume that F ≪ C for some F ∈ F .

Let D be a directed subset of C(A) such that C ⊆
∨

D. Since F ≪ C, we have F ⊆ D

for some D ∈ D, so D ∈ ↑F . Thus F ∈ Fin(C).

Conversely, suppose F ∈ Fin(C). Then F ≪ C and F is nonempty and finite. Now {C}

is a directed subset whose supremum contains C, so there is some F = {F1, . . . , Fn} ∈ F

contained in C. Assume for a contradiction that each Fi has infinite dimension. Write

X for the spectrum of C, so C ≃ C(X). Lemma 3.2 guarantees the existence of points

p1, . . . , pn ∈ X with Fj * CUj
for each open neighbourhood Uj ⊆ X of pj . In particular,

Fj *
⋂n
i=1 CUi

for each i = 1, . . . , n and open neighbourhood Ui of pi. Consider the

family
{

n
⋂

i=1

CUi

∣

∣

∣
Ui open neighbourhood of pi, i = 1, . . . , n

}

.

It is directed and has supremum C by Lemma 2.2. However, no member of the family

contains Fi. If F ∈ F such that F * C, we cannot have F ⊆
⋂

CUi
for any i or neigh-

bourhood Ui of pi, because the latter is contained in C by construction, contradicting

F ≪ C. We conclude that there must be a finite-dimensional F ∈ F such that F ⊆ C.

Now F ≪ C follows from Proposition 3.3.

Lemma 6.3. Let A be a C*-algebra and let C ∈ C(A). If F ≪ C, then {F} ∈ KFin(C).

If F ∈ Fin(C), then F ≤ F ′ for some F ′ ∈ KFin(C).

Proof. Let F ≪ C. By Lemma 6.2, we have {F} ∈ Fin(C). By Lemma 3.3, we have

F ≪ F . Therefore {F} ≪ {F}, and so {F} ∈ KFin(C).

Let F ∈ Fin(C). By Lemma 6.2, there is an F ∈ F such that F ≪ C. The reasoning

in the previous paragraph shows {F} ∈ KFinC. Since F ∈ F , we have F ∈ ↑F , and so

↑{F} ⊆ ↑F . We conclude that F ≤ F ′ for F ′ = {F}.

We are now ready to characterize quasi-continuity and quasi-algebraicity of C(A).

Theorem 6.4. A C*-algebra A is scattered if and only if C(A) is quasi-continuous, if

and only if C(A) is quasi-algebraic.

Proof. If A is scattered, then C(A) is algebraic by Theorem 2.4, and hence quasi-

algebraic by the remarks following Definition 6.1.

Now assume that C(A) is quasi-algebraic and let C ∈ C(A). Let F1,F2 ∈ Fin(C).

By Lemma 6.3, there exist elements F ′
1,F

′
2 ∈ KFin(C) such that Fi ≤ F ′

i . By quasi-

algebraicity, KFin(C) is directed, so there is an F ∈ KFin(C) such that F ′
1,F

′
2 ≤ F .

Hence F1,F2 ≤ F . Since KFin(C) ⊆ Fin(C), it then follows that Fin(C) is directed. Let

B ∈ C(A) satisfy C 6⊆ B. Assume that B ∈ ↑F for F ∈ Fin(C). Lemma 6.3 provides

F ′ ∈ KFin(C) with F ≤ F ′. But this means that ↑F ⊆ ↑F ′. Hence B ∈ ↑F ′, which

contradicts quasi-algebraicity. Therefore we must have B /∈ ↑F for each F ∈ Fin(C),

making C(A) quasi-continuous.

Finally, assume C(A) is quasi-continuous. Let F1, F2 ∈

։

C. By Lemma 6.2, we have

{F1}, {F2} ∈ Fin(C), and since Fin(C) is directed, there is an F ∈ Fin(C) such that

F ⊆ ↑{F1} ∩ ↑{F2}. In other words, F1, F2 ⊆ F for each F ∈ F , and since F ∈ Fin(C),
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Lemma 6.2 guarantees the existence of some F such that F ≪ C, making

։

C directed.

Let B =
∨ ։

C. Since F ⊆ C for each F ∈

։

C, we have B ⊆ C. If B 6= C, then C * B,

so by quasi-continuity there must be an F ∈ Fin(C) with B /∈ ↑F . Hence F * B for each

F ∈ F , and in particular, Lemma 6.2 implies the existence of some F ∈ F satisfying

F ≪ C, but F * B. By definition of B we have F ⊆ B for each F ≪ C, giving a

contradiction. Thus C(A) is continuous, and by Theorem 3.4, A is scattered.

7. Other notions of scatteredness

In the previous sections, we have seen that the dcpo C(A) of a C*-algebra A is nice –

in the sense of being (quasi-)algebraic, (quasi-)continuous, or atomistic, which are all

equivalent – precisely when A is scattered. In this section we study when C(A) itself is

scattered, in two different ways: by putting a topology on C(A) and asking when it is a

scattered topological space; and by considering an established (but different) notion of

scatteredness for partially ordered sets directly on C(A). Both will turn out to be very

restrictive, in the sense that they coincide with A being finite-dimensional.

If the C*-algebra A is scattered, then we can turn the domain C(A) itself into the

spectrum of another C*-algebra, which this section studies. We will use the Lawson

topology, that turns approximation in domains into topological convergence.

Definition 7.1. The Scott topology declares subsets U of a dcpo to be open if ↑U = U ,

and D ∩ U 6= ∅ when
∨↑ D ∈ U . The Lawson topology has as basic open subsets U \ ↑F

for a Scott open subset U and a finite subset F .

These topologies capture approximation in the following sense. A monotone function f

between dcpos is continuous with respect to the Scott topology precisely when it is Scott

continuous, i.e., when
∨

f [D] = f(
∨

D) for directed subsets D (Gierz et al., 2003, II-2.1).

Thus Proposition 1.14 shows that C(f) is Scott continuous. Similarly, a meet-semilattice

homomorphism between complete semilattices is continuous with respect to the Lawson

topology precisely when
∧

f [D] = f(
∧

D) for nonempty subsets D (Gierz et al., 2003,

III-1.8).

Proposition 7.2. If A is a scattered C*-algebra, then C(A) is a totally disconnected

compact Hausdorff space in the Lawson topology.

Proof. If A is scattered, then C(A) is both an algebraic domain and a complete semi-

lattice. Therefore it is compact Hausdorff in the Lawson topology (Gierz et al., 2003,

III-1.11). Moreover, it follows that C(A) is zero-dimensional (Gierz et al., 2003, III-1.14),

which for compact Hausdorff spaces is equivalent to being totally disconnected (Willard, 1970,

29.7).

For example, let A be the algebra of all 2-by-2-matrices as discussed in Example 1.4.

In C(A) there is then one bottom element, and all other elements are incomparable to

each other and are in 1-1 correspondence with bases of C2. As a consequence, the Lawson

topology of C(A) is homeomorphic to the one-point compactification of a discrete space

of cardinality 2ℵ0 .
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It follows from the previous proposition that any scattered C*-algebra A gives rise

to another, commutative, C*-algebra C(X) for X = C(A) with its Lawson topology.

Thus we can speak about the domain of commutative C*-subalgebras entirely within

the language of C*-algebras. However, there is a caveat: iterating this construction only

makes sense in the finite-dimensional case, as the following theorem shows.

Theorem 7.3. A scattered C*-algebra A is finite-dimensional if and only if C(A) is

scattered in the Lawson topology.

Proof. Let A have finite dimension, so it is certainly scattered, and C(A) is algebraic. It

follows that a basis for the Scott topology is given by ↑C for C compact (Gierz et al., 2003,

II-1.15). Thus sets of the form ↑C \↑F with C compact and F finite form a basis for the

Lawson topology. Take a nonempty subset S ⊆ C(A), and letM be a maximal element of

S, which exists by (Lindenhovius, 2015, Lemma 10). Since M must be finite-dimensional

too, it is compact by Proposition 2.3. Hence ↑M is Scott open and therefore Lawson

open. Maximality of M in S now gives S ∩ ↑M = {M}, and since ↑M is Lawson open,

it follows that M is an isolated point of S. Hence C(A) is scattered (cf. Definition 1.21).

For the converse, assume A is infinite-dimensional. Then C(A) has a noncompact ele-

ment C, and ↓C contains an isolated point if it intersects some basic Lawson open set in

a single point. Hence ↓C ∩ ↑K \ ↑F must be a singleton for some finite set F ⊆ C(A)

and some compact K ∈ C(A). In other words, [K,C] \ ↑F is a singleton, where [K,C] is

the interval {D ∈ C(A) | K ⊆ D ⊆ C}. Since C is infinite-dimensional and scattered (by

Theorem 1.25), there are infinitely many atoms in [K,C]: for C(A) is atomistic by The-

orem 5.5 and hence C dominates infinitely many atoms Ci, but K is finite-dimensional

by Proposition 2.3, so that Ci ∨K, excepting the finitely many Ci ≤ K, give infinitely

many atoms in [K,C]. Hence there is no finite subset F ⊆ C(A) making [K,C] \ ↑F a

singleton. We conclude that ↓C has no isolated points, so C(A) cannot be scattered.

Just like there is an established notion of scatteredness for topological spaces and C*-

algebras, there is an established notion of scatteredness for partially ordered sets. In the

rest of this section we show that the two notions diverge, and should not be confused.

Definition 7.4. A chain C in a poset P is order-dense if none of its elements covers

another one, i.e. if x < z in C then x < y < z for some y ∈ C. A poset is order-scattered

when it does not contain an order-dense chain of at least two points.

Lemma 7.5. If a C*-algebra A is not scattered, then C(A) is not order-scattered.

Proof. If A is not scattered it has a commutative C*-subalgebra with spectrum [0, 1]

by Theorem 1.25, so without loss of generality we may assume A = C([0, 1]). Consider

{C[x,1] | x ∈ [0, 1)} ⊆ C(A).

Because C[x,1] ⊆ C[y,1] if and only if x ≤ y, this set is order-isomorphic to the order-dense

chain [0, 1) via the map C[x,1] 7→ x.

Lemma 7.6. LetX be an infinite scattered compact Hausdorff space, and let A = C(X).

Then C(A) is not order-scattered.
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Proof. First observe that X must contain an infinite number of isolated points, for

if X had only finitely many isolated points x1, . . . , xn, then X \ {x1, . . . , xn} would be

closed and hence contain an isolated point xn+1, which is also isolated in X because

X \ {x1, . . . , xn} would be open. Choose a countably infinite set Y of isolated points of

X . Note that Y is open, but cannot be closed because X is compact. Let Z = Y \ Y

be the boundary of Y . Since Y is open, Z is closed. Moreover, if S ⊆ Y , then Z ∪ S =

(Y \ Y ) ∪ S = S \ (Y \ S) is closed because Y \ S consists only of isolated points and

hence is open. As Y is countably infinite, we can label its elements by rational numbers

Y = {xq}q∈Q. For each q ∈ Q, set

Kq = Z ∪ {xr | r ≤ q},

and notice that Kq is closed and infinite. Now q 7→ Kq is an order embedding of Q into

the set F(X) of all closed subsets of X with at least two points, partially ordered by

inclusion. In turn, K 7→ CK is an order embedding of F(X)op into C(A). Composing

gives an order embedding Qop → C(A), and therefore an order-dense chain in C(A).

Theorem 7.7. A C*-algebraA is finite-dimensional if and only if C(A) is order-scattered.

Proof. If A is finite-dimensional, then so is each C ∈ C(A). Hence all chains in C(A)

have finite length, and therefore cannot be order-dense. That is, C(A) is order-scattered.

For the converse, assume that A is infinite-dimensional. We distinguish two cases. If A

is not scattered, then Lemma 7.5 shows that C(A) is not order-scattered. If A is scattered,

then it has a maximal commutative C*-subalgebra with scattered spectrum X . Because

C(X) must be infinite-dimensional (Kadison and Ringrose, 1991, 4.6.12), X is infinite.

Now Lemma 7.6 shows that C(C(X)), and hence C(A), is not order-scattered.

8. Projections and posets of Boolean subalgebras

We recall that an element p of a C*-algebra A is called a projection when p2 = p = p∗.

The set Proj(A) of all projections in A can be ordered where p ≤ q if and only if p = pq.

In general, if p is a projection then so is 1 − p, and in fact the projections form an

orthomodular poset, which we define below.

In this section we aim to reconstruct the orthomodular poset Proj(A) of projections

in a C*-algebra A from C(A) for the reason that in many cases Proj(A) encodes much of

the structure of A, especially if A belongs to a class of C*-algebras that have an ample

supply of projections such as AF-algebras or von Neumann algebras (cf. Definition 9.2

below). Given an orthomodular poset P , one can consider the poset B(P ) of Boolean

subalgebras of P , which we will also define below, and which already had been proven

to determine P up to isomorphism (Harding et al., 2017). We aim to exploit this fact,

hence we will introduce the following subposet of C(A) that turns out to be isomorphic

to B(Proj(A)):

Definition 8.1. Let A be a C*-algebra. Then we denote the subposet of C(A) consisting

of the commutative C*-subalgebras of A that are AF-algebras by CAF(A).

Lemma 8.2. Let A be a C*-algebra. Then CAF(A) is a dcpo.
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Proof. Let D ⊆ CAF(A) be directed, and consider its supremum S =
⋃

D in C(A).

We will show that S ∈ CAF(A). Let a1, . . . , an ∈
∨

D and let ε > 0. Then there are

d1, . . . , dn ∈
⋃

D such that ‖ai − di‖ < ε/2. Let Di ∈ D such that di ∈ Di. Since D

is directed, there is a D in D containing D1, . . . , Dn, hence containing d1, . . . , dn. Since

D ∈ CAF(A), Proposition 1.18 assures that there is a finite-dimensional C*-subalgebra

B ⊆ D and b1, . . . , bn ∈ B such that ‖di − bi‖ < ε/2. Hence

‖ai − bi‖ < ‖ai − di‖+ ‖di − bi‖ < ε,

hence Proposition 1.18 assures that S is an AF-algebra.

It follows from the next lemma that CAF is a functor CStar → DCPO:

Lemma 8.3. Let f : A→ B be a ∗-homomorphism between C*-algebras A and B. Then

C(f) : C(A) → C(B) restricts to a Scott continuous map CAF(A) and CAF(B).

Proof. First consider the case B = 0. Then B is the terminal object of the category of

unital C*-algebras, so f is the unique ∗-homomorphism A→ B. Now C(f) is a monotone

map to the 1-element poset C(B), and must therefore be Scott continuous. Hence we

may assume B 6= 0. Since f is a ∗-homomorphism, it is bounded, and it is non-zero since

f(1) = 1, so ‖f‖ 6= 0. Let C ∈ CAF(A). Then C(f)(C) = f [C], hence let x1, . . . , xn ∈ f [C],

i.e., there are c1, . . . , cn ∈ C such that xi = f(ci) for each i ∈ {1, . . . , n}. Let ε > 0. Since

C is approximately finite-dimensional and commutative, it follows from Proposition 1.18

that there is a finite-dimensional C*-algebra D ⊆ C containing d1, . . . , dn such that

‖ci − di‖ < ε/‖f‖ for each i ∈ {1, . . . , n}. Note that since f is linear, f [D] must be a

finite-dimensional C*-subalgebra of f [C]. Hence

‖f(ci)− f(di)‖ ≤ ‖f‖‖ci − di‖ < ε,

which, in combination with Proposition 1.18, shows that f [C] is an AF-algebra. Hence

C(f) restricts to a map between CAF(A) and CAF(B), and since C(f) is Scott continuous

(cf. Proposition 1.14), so is its restriction.

Next we define orthomodular posets. For a more detailed overview of orthomodular

structures we refer to (Dvurečenskij and Pulmannová, 2000).

Definition 8.4. A partially ordered set P is an orthoposet when it has a greatest element

1 and a least element 0, and it comes equipped with an operation ⊥ : P → P , called the

orthocomplementation, satisfying for each p, q ∈ P :

— p⊥⊥ = p;

— if p ≤ q, then q⊥ ≤ p⊥;

— p and p⊥ have a least upper bound and greatest upper bound, and p ∧ p⊥ = 0 and

p ∨ p⊥ = 1.

If p ≤ q⊥ (or equivalently q ≤ p⊥), then we say that p and q are orthogonal and write

p ⊥ q. If P is an orthoposet for which

— p ⊥ q implies the existence of p ∨ q;

— p ≤ q implies q = p ∨ (q ∧ p⊥),
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then we call P an orthomodular poset. If, in addition, P is a lattice, we call it an ortho-

modular lattice. If p and q are elements in an orthomodular poset P for which there are

pairwise orthogonal elements e1, e2, e3 ∈ P such that

p = e1 ∨ e3, q = e2 ∨ e3,

then we say that p and q commute.

If A is a C*-algebra, then Proj(A) becomes an orthomodular poset if we define its ortho-

complementation by p⊥ = 1− p. Note that there are C*-algebras A for which Proj(A) is

not a lattice, see for instance (Lazar, 1982, 2.1). It is easy to see two projections p and q

in a C*-algebra A are orthogonal in the orthomodular poset Proj(A) if and only if they

are orthogonal in the operator-algebraic sense pq = 0. Similarly, p and q commute in the

orthomodular poset Proj(A) if and only if they commute in an algebraic sense: pq = qp.

Next we define the appropriate morphisms for orthomodular posets:

Definition 8.5.

A map f : P → Q between orthomodular posets P and Q is called an orthomodular

morphism if

— f(1) = 1;

— f(x⊥) = f(x)⊥ for each x ∈ P ;

— x ⊥ y implies f(x ∨ y) = f(x) ∨ f(y) for each x, y ∈ P .

We denote the category of orthomodular posets with orthomodular morphisms by OMP.

Let f : A → B be a ∗-homomorphism between C*-algebras A and B. Since it preserves

all algebraic operations, it follows that f(p) is a projection in B if p is a projection in A,

hence f restricts to a map Proj(A) → Proj(B). If we define Proj(f) to be the restriction

of f to Proj(A), it is routine to check that Proj becomes a functor CStar → OMP.

If P is a Boolean algebra, then any pair x, y of elements in P commute, since we

can write x = e1 ∨ e3 and y = e2 ∨ e3 with e1 = x ∧ y⊥, e2 = x⊥ ∧ y and e3 =

x ∧ y. Conversely, if P is an orthomodular poset for which all elements mutually com-

mute, then P is a Boolean algebra, which follows from the Foulis–Holland Theorem

(Beltrametti and Cassinelli, 1981, 12.3.1). Hence we can regard Boolean algebras as ‘com-

mutative’ orthomodular posets, which gives more reason to consider the poset B(P ) of

Boolean subalgebras of an orthomodular poset, which we define now in more detail.

Definition 8.6. Let P be an orthomodular poset. A subset B that is closed under the

operation x 7→ x⊥ and for which the join of any two mutually orthogonal elements is

contained in B is called a sub-orthomodular poset, which becomes an orthomodular poset

if we equip it with the order and the orthocomplementation inherited from P . If, in

addition, B is a Boolean algebra, i.e., it is an orthocomplemented lattice in which the

distributive law holds: for each x, y, z ∈ B, we have

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z),

then we call B a Boolean subalgebra of P . We denote the set of all Boolean subalgebras

of P by B(P ), which we partially order by inclusion.
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Proposition 8.7. For each orthomodular poset P , the poset B(P ) is an algebraic semi-

lattice, where
∨

D =
⋃

D for each directed set D ⊆ B(P ), and
∧

S =
⋂

S for any

non-empty subset S ⊆ B(P ). Moreover, the compact elements of B(P ) are precisely the

finite Boolean subalgebras.

Proof. Let S be a non-empty collection of Boolean subalgebras of P , and let B be its

intersection. Let x, y ∈ B (we do not need the assumption that x and y are orthogonal).

Then x⊥, x ∨ y ∈ D for each D ∈ S, so x⊥, x ∨ y ∈ B, which shows that B is a sub-

orthomodular poset of P . Since the distributivity law holds in each D ∈ S, it follows

that it holds in B, hence B is a Boolean subalgebra of P . Clearly B is the infimum of S.

Now let D be a directed set in B(P ) and let B be its union. Let x, y ∈ B. Then there

are Dx, Dy ∈ D such that x ∈ Dx and y ∈ Dy, and since D is directed there is some

D ∈ D such that Dx, Dy ⊆ D. Hence x, y ∈ D, which is a Boolean subalgebra, hence

x ∨ y and x⊥ exist and are contained in D, whence they are elements of B. In a similar

way, if x, y, z ∈ B, we can find a D ∈ D containing x, y and z, and since D is Boolean,

x, y, z satisfy the distributivity law. We conclude that B is a Boolean subalgebra of P .

Clearly B is the supremum of D.

Let B be a finite Boolean subalgebra, and write B = {b1, . . . , bn}. Let D ⊆ B(P )

directed such that B ⊆
∨

D. Since
∨

D =
⋃

D, it follows that for each i ∈ {1, . . . , n}

there is a Di ∈ D such that bi ∈ Di. Since D is directed, there is some D ∈ D such that

D1, . . . , Dn ⊆ D. Hence B ⊆ D, which shows that B is compact.

For the converse, we first assume that B is an arbitrary Boolean subalgebra of P , and

let D be the set of all finite Boolean subalgebras of B. Then D is directed: if D1, D2 ∈ D,

let S = D1 ∪D2. Since S is finite, so is S ∪ S⊥, where S = {s⊥ : s ∈ S}. Then consider

R = {
∧

F : F ⊆ S∪S⊥}, which is also finite since S∪S⊥ is finite. Finally, let D = {
∨

X :

X ⊆ R} which is finite for R is finite. It now follows from the De Morgan Laws that D

is a subset of B that is closed under meets, joins and the orthocomplementation, whence

D is a Boolean subalgebra. For each b ∈ B, the set {0, b, b⊥, 1} forms a finite Boolean

subalgebra, hence it follows that B =
⋃

D, i.e., B =
∨

D. This shows that all Boolean

subalgebras of P are the directed supremum of finite Boolean subalgebras. Moreover, if

B is compact, then it follows that B ⊆ D for some finite Boolean subalgebra D of P ,

whence B is finite, too, which concludes the proof that the finite Boolean subalgebras

of P are exactly the compact elements of B(P ). Thus each B ∈ B(P ) is the directed

supremum of compact elements, whence B(P ) is algebraic.

The previous proposition generalizes the statement that the lattice of subalgebras a

Boolean algebra is algebraic (Grätzer et al., 1972) from Boolean algebras to arbitrary

orthomodular posets. See also (Heunen, 2014b) for a different generalization.

To show that the assignment P 7→ B(P ) extends to a functor OMP → DCPO, we

first need a lemma.

Lemma 8.8. Let f : P → Q be an orthomodular morphism between orthomodular

posets P and Q, then f preserves binary joins of of commuting elements.

Proof. Since x and y commute, we have x = e1∨e3, y = e2∨e3 and x∨y = e1∨e2∨e3
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where e1, e2, e3 are mutually orthogonal, whence

f(x ∨ y) = f(e1 ∨ e2 ∨ e3) = f(e1 ∨ e2) ∨ f(e3) = f(e1) ∨ f(e2) ∨ f(e3)

= f(e1) ∨ f(e3) ∨ f(e2) ∨ f(e3) = f(e1 ∨ e3) ∨ f(e2 ∨ e3) = f(x) ∨ f(y).

Thus f preserves binary joins of commuting elements.

Proposition 8.9. Let P and Q be orthomodular posets and let f : P → Q be an

orthomodular morphism. Then B 7→ f [B] is a well-defined map B(f) : B(P ) → B(Q)

that is Scott continuous. Moreover, if f is injective, then B(f) is an order embedding.

Proof. Let B ∈ B(P ), and let x, y ∈ B. Since B is Boolean, x and y commute. Lemma

8.8 assures that ϕ preserves their join: f(x ∨ y) = f(x) ∨ f(y). Thus the join of f(x)

and f(y) exists and is contained in f [B]. By definition of an orthomodular morphism,

f preserves orthocomplementation, so f(x)⊥ ∈ f [B]. Since the join of all elements in B

exist, and De Morgan’s laws hold in orthomodular posets:

f(x ∧ y) = f((x⊥ ∨ y⊥)⊥) = f(x⊥ ∨ y⊥)⊥ = (f(x)⊥ ∨ f(y)⊥)⊥ = f(x) ∧ f(y).

Therefore the meet of f(x) and f(y) exists and is contained in f [B], and f preserves all

binary meets. Since B is Boolean, it satisfies the distributive law, and since f preserves

all binary meets, binary joins and the orthocomplementation, it follows that f [B] also

satisfies the distributive law. We conclude that f [B] is a Boolean subalgebra of Q, which

shows that B(f) is well-defined. Clearly, it preserves inclusions, and since the direct image

preserves unions, and the supremum of a directed family in B(P ) is given by the union

of its members (cf. Proposition 8.7), it follows that B(f) is Scott continuous.

Finally, assume that f is injective, and let B1, B2 ∈ B(P ) such that B(f)(B1) ⊆

B(f)(B2). This implies that f [B1] ⊆ f [B2]. Let x ∈ B1. Then f(x) ∈ f [B2], hence there

is some y ∈ B2 such that f(x) = f(y). By injectivity of f it follows that x = y, whence

x ∈ B2.

Theorem 8.10. CAF and B ◦ Proj are functors CStar → DCPO that are naturally

isomorphic. In particular, if A is a C*-algebra, then CAF(A) ≃ B(Proj(A)) via C 7→

Proj(C).

Proof. Let A be a C*-algebra. Write ϕA : CAF(A) → B(Proj(A)) for the map C 7→

Proj(C). Define ψA : B(Proj(A)) → CAF(A) by ψA(B) = C∗(B); the proof of Proposi-

tion 5.4 shows that this is well-defined. Both ϕA and ψA are clearly monotone. Moreover,

if C ∈ CAF(A), then C
∗(Proj(C)) = C, so that ψA(ϕA(C)) = C. Now let B ∈ B(Proj(A)).

Say that B is isomorphic to the Boolean algebra B(X) of clopen subsets of the Stone

space X . There is an isomorphism B(X) ≃ Proj(C(X)). Hence we may assume that

B = Proj(C(X)) for some Stone space X . Now C∗(B) = C∗(Proj(C(X))) = C(X),

whence Proj(C∗(B)) = B, so that ϕA(ψA(B)) = B. Therefore ϕA and ψA are inverses,

hence order isomorphisms. In order to show that the functors are naturally isomorphic,

we show that ϕA forms the A-component of a natural isomorphism CAF → B ◦ Proj. So

let f : A→ A′ be a ∗-homomorphism between C*-algebras A and A′. We show that the
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following diagram commutes:

CAF(A)

CAF(f)

��

ϕA
// B(Proj(A))

B(Proj(f))

��

CAF(A
′)

ϕA′

// B(Proj(A′)).

Let C ∈ CAF(A). Then it follows from Proposition 1.18 that C = C∗(Proj(C)), hence

ϕA′ ◦ CAF(f)(C) = ϕA′(f [C]) = ϕA′(f [C∗(Proj(C))]) = ϕA′(C∗(f [Proj(C)]))

= ϕA′ ◦ ψA′(f [Proj(C)]) = f [Proj(C)] = Proj(f)[Proj(C)]

= B(Proj(f))(Proj(C)) = B(Proj(f)) ◦ ϕA(C),

where the first equality follows by definition of CAF(f) as a restriction of C(f), the third

equality follows from Lemma 1.10, the fourth equality by definition of ψA′ , which is the

inverse of ϕA′ , which gives the fifth equality, and the penultimate equality follows by

definition action of Proj on ∗-homomorphisms.

It follows that CAF(A) is an algebraic complete semilattice, whose compact elements

are precisely the finite-dimensional commutative C*-subalgebras (Lindenhovius, 2016,

6.2.5). See also (Heunen, 2014b).

Combining the previous theorem with (Harding et al., 2017) gives the following.

Corollary 8.11. We can construct an orthomodular poset P orthomodular isomorphic

to Proj(A) completely in terms of CAF(A).

The next lemma characterizes CAF(A) as a subposet of C(A).

Lemma 8.12. Let A be a C*-algebra. Then CAF(A) is the subposet of C(A) consisting

of all elements that are the supremum of some subset of atoms of C(A).

Proof. This follows directly from combining Proposition 1.18 and Proposition 5.4.

Combining Corollary 8.11 and Lemma 8.12 now gives the main result of this section.

Theorem 8.13. Let A be a C*-algebra. Then we can construct an orthomodular poset

P isomorphic to Proj(A) completely in terms of C(A).

9. AW*-algebras

The previous section observed that the projections of a commutative C*-algebra form

a Boolean algebra. In particular, the projections of C(X) are precisely the indicator

functions of clopen subsets of X . Thus, if a C*-algebra has many projections, it is in-

tuitively rather disconnected. As an example, we have seen in Proposition 1.18 that

every commutative AF-algebra has a Gelfand spectrum that is totally disconnected, or

a Stone space, since every Gelfand spectrum is also compact Hausdorff. Hence we can
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regard AF-algebras as operator-algebraic versions of Stone spaces. A stronger notion is

a disconnected space is that of an extremally disconnected space, in which the closure of

an open set is open. Extremally disconnected compact Hausdorff spaces are also called

Stonean spaces. The operator algebraic version is as follows (Kaplansky, 1951).

Definition 9.1. An AW*-algebra is a C*-algebra A such that Proj(A) is a complete

lattice, and every maximal element in C(A) is generated by its projections.

Equivalently, but more in line with our purposes, an AW*-algebra is a C*-algebra whose

maximal C*-subalgebras have a Stonean Gelfand spectrum (Saito and Wright, 2015,

Theorem 8.2.5). The most prominent examples of AW*-algebras are the von Neumann

algebras, which we define now.

Definition 9.2. Let H be a Hilbert space, and let S ⊆ B(H). Then the commutant S′

of S is the set {b ∈ B(H) : ab = ba for each a ∈ S}. If M ⊆ B(H) is a C*-algebra that

it equal to its bicommutant M ′′, then we call M a von Neumann algebra on B(H). A

C*-algebra *-isomorphic to some von Neumann algebra is called a W*-algebra.

Example 9.3. (Takesaki, 2000, III.1.18) Let X be a set. Then ℓ∞(X), the space of all

complex-valued functions f on a set X such that supx∈X |f(x)| is a finite number (which

we define to be the norm of f), is a commutative W*-algebra.

In this section we consider variations on C(A) that cooperate well with projections.

We start with approximating an AW*-algebra by its commutative AW*-subalgebras.

Definition 9.4. An AW*-subalgebra of an AW*-algebra A is a C*-subalgebra C ⊆ A

that is an AW*-algebra in its own right, with the same suprema of projections as in A.

Write A(A) for the partially ordered set of commutative AW*-subalgebras of A under

inclusion.

There is a similar notion V(A) of W*-subalgebras of a W*-algebra A, that is studied

in (Döring and Barbosa, 2012). Here a W*-subalgebra of the W*-algebra A is just an

AW*-subalgebra, hence V(A) = A(A). Thus working in the setting of AW*-algebras is

more general. We note that ifM ⊆ B(H) is a von Neumann algebra, then a C*-subalgebra

N of M is a W*-subalgebra if and only if it is a von Neumann algebra on B(H) (cf.

(Berberian, 1972, Exercise 4.24)). Hence V(M) = {C ⊆M | C is a commutative von Neumann algebra on B(H)}.

Proposition 9.5. For an AW*-algebra A there is a Galois correspondence

A(A) C(A)⊥

where the upper adjoint maps a C*-subalgebra C ∈ C(A) to the smallest AW*-subalgebra

of A containing it. Hence A(A) is a dcpo.

Proof. Write C′ =
⋂

{W ∈ A(A) | C ⊆ W} for the smallest AW*-subalgebra of A

containing C ∈ C(A), which exists by (Berberian, 1972, Proposition 4.8.(ii)). If C ⊆ D,

then clearly C′ ⊆ D′. By construction we have C′ ⊆ W if and only if C ⊆ W , for

C ∈ C(A) and W ∈ A(A). Finally, notice that W ′ =W for W ∈ A(A).
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Next we characterize the AW*-algebras A whose dcpos C(A) and A(A) are continuous,

extending (Döring and Barbosa, 2012, 6.1). This needs the following lemma.

Lemma 9.6. Compact Hausdorff spaces that are scattered and Stonean must be finite.

Proof. Consider the open and discrete set

U = {x ∈ X | {x} is closed and open}.

Assume that X \ U 6= ∅. By scatteredness, {x} is open in X \ U for some x ∈ X \ U .

Therefore X \ (U ∪ {x}) = (X \U) \ {x} is closed in X \U and hence closed in X . Thus

both {x} and X \ (U ∪ {x}) are closed subsets. Since X is compact Hausdorff, there are

disjoint open subsets V1 and V2 containing x and X \ (U ∪ {x}), respectively. We may

assume V1 is closed because X is Stonean. Observe that V1 is infinite; otherwise V1 \ {x}

would be closed and {x} = V1 \ (V1 \ {x}) open, contradicting x /∈ U . Hence V1 \ {x}

is infinite, too. Pick two disjoint infinite subsets W1,W2 covering V1 \ {x}. Since Wi is

contained U , it must be open. If Wi were closed, then it is compact, contradicting that it

is both discrete (as subset of U) and infinite. So Wi (Wi ⊆ V1. Moreover, Wi ∩Wj = ∅

for i 6= j, and W1 ∪W2 = V1 \ {x}, so Wi =Wi ∪{x} whence W1 ∩W2 = {x}. Since X is

Stonean, Wi is open, whence {x} is open, contradicting x /∈ U . Hence X = U , and since

U is discrete and compact, it must be finite.

Theorem 9.7. The following are equivalent for an AW*-algebra A:

(1) A is finite-dimensional;

(2) C(A) is algebraic;
(3) C(A) is continuous;
(4)A(A) is algebraic;

(5)A(A) is continuous.

Proof. Clearly, if A is finite-dimensional, it is scattered, which we know to be equiva-

lent with C(A) being algebraic (cf. Theorem 2.4) or continuous (cf. Theorem 3.4). Con-

versely, assume that A is scattered. Theorem 1.25 then implies that all maximal commu-

tative C*-subalgebras of A are scattered. But maximal C*-subalgebras are automatically

AW*-algebras by Proposition 9.5, and scattered commutative AW*-algebras are finite-

dimensional by Lemma 9.6. Since all maximal commutative C*-subalgebras of A are

finite-dimensional, so is A itself (Kadison and Ringrose, 1983, 4.6.12). It follows that (1),

(2), and (3) are equivalent. Moreover, since the class of finite-dimensional C*-algebras

coincides with the class of finite-dimensional AW*-algebras, it follows that A(A) = C(A)

if A is finite-dimensional. Hence if A is finite-dimensional, then A(A) is algebraic, hence

also continuous since all algebraic dcpos are continuous (Gierz et al., 2003, I-4.3). So (1)

implies (4), which implies (5).

Finally, we show that (5) implies (1) by contraposition. Suppose A is infinite-dimensional.

Pick a maximal commutative C*-subalgebra C ⊆ A; its Stonean spectrum X will have

infinitely many points, and by compactness a non-isolated point x. Any other point

y1 ∈ X is separated from x by a clopen U1, and induction gives a sequence of disjoint

clopens U1, U2, . . .. Their indicator functions form an infinite set P of pairwise orthogonal

projections in A.
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Let I ⊆ P be an infinite subset with infinite complement. Its supremum p =
∨

I

is nonzero. Choosing some nonzero q ∈ P \ I gives rq = 0 for each r ∈ I, and hence

pq = 0 (Berberian, 1972, Proposition 3.6), so that p 6= 1. By Lemma 5.2, C∗(p) is an atom

in C(A). Consider the directed family {C∗(F ) | F ⊆ P finite} of elements of A(A), whose

supremum contains p. We will show that no element C = C∗(p1, . . . , pn) of the family

can contain p. Observe that pn+1 = 1 −
∑n

i=1 pi ∈ C is orthogonal to each p1, . . . , pn,

and hence
∑n+1

i=1 pi = 1. Therefore C = C∗(p1, . . . , pn+1) = Span{p1, . . . , pn+1} =

Span{p1, . . . , pn, 1}. If p were in C, we could thus write it as p =
∑n

i=1 λipi + λ1 for

some coefficients λ, λi. Pick a nonzero element q ∈ I distinct from p1, . . . , pn. Because

q ≤ p we find q = qp =
∑n
i=1 λiqpi+λq = λq, whence λ = 1. Now pick a nonzero element

q ∈ P \ I distinct from p1, . . . , pn. Then qp = 0 and hence qpi = 0 for each i = 1, . . . , n.

Thus q =
∑n
i=1 λiqpi + q = qp = 0, and p cannot be contained in C. Therefore C∗(p) is

not compact, but since it is an atom of A(A), it is way above the bottom element only.

Hence
∨ ։

C∗(p) 6= C∗(p), and A(A) is not continuous.

We conclude that, at least from a domain-theoretic perspective on C(A), C*-algebras

are more interesting than W*-algebras or AW*-algebras, since C*-algebras contain a

subclass of infinite-dimensional algebrasA for C(A) is a domain, whereas the only subclass

of AW*-algebras or of W*-algebras for which C(A) is a domain is the class of finite-

dimensional algebras. Nevertheless, the most satisfactory results for reconstructing the

structure of A from C(A) are obtained for AW*-algebras and W*-algebras, as discussed

in the Introduction. Any C*-algebra A can be extended to a W*-algebra by taking its

double dual A∗∗, also called the enveloping W*-algebra (Takesaki, 2000, §III.2). This in

fact gives an adjunction of categories showing that W*-algebras form a non-full reflective

subcategory of C*-algebras (Dauns, 1972, 3.2). There are many examples of C*-algebras

A for which C(A) is continuous but C(A∗∗) is not: any infinite-dimensional scattered C*-

algebra will do, such as C(X) for the infinite compact Hausdorff scattered spaces X of

Example 1.22.

10. Directed colimits

Because an AF-algebra is a directed colimit of finite-dimensional C*-algebras, one might

wonder whether the functors C or CAF preserve directed colimits of C*-algebras. In general

the answer for both functors is negative. It turns out to be useful to treat the case of CAF

first, for which we need to calculate the directed colimit of algebraic dcpos. The answer

for C can then be derived. Since CAF ≃ B◦Proj, it is useful to split the case of CAF in two

other cases, namely the behaviour Proj with respect of directed colimits of C*-algebras,

and the behaviour of B with respect to directed colimits of orthomodular posets. It turns

out that B does preserve directed colimits, but Proj does not, from which it follows that

CAF does not preserve directed colimits either.

Let A =
⋃

i∈I Ai where {Ai}i∈I is a directed collection of C*-subalgebras. When i ≤ j,

the inclusion Ai ⊆ Aj makes Proj(Ai) ⊆ Proj(Aj) into a sub-orthomodular poset. More

generally, consider a collection {Pi}i∈I , where I is directed, and Pi is a sub-orthomodular

poset of Pj if i ≤ j. The colimit P of the Pi in the category of orthomodular posets and
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orthomodular morphisms is (Navara and Rogalewicz, 1991, 4.10)

P =
⋃

i∈I

Pi,

where P is ordered by p ≤ q if and only if there is some i ∈ I such that p ≤ q in Pi. The

orthocomplementation of P is given by p⊥ = q if and only if there is some i ∈ I such

that p⊥ = q in Pi.

Proposition 8.9 shows the inclusions Pi ⊆ Pj induce Scott continuous inclusions

B(Pi) ⊆ B(Pj), and Proposition 8.7 shows that the compact elements of B(Pi) and B(Pj)

are their finite Boolean subalgebras, soK(B(Pi)) ⊆ K(B(Pj)). To compute colimi∈I B(Pi),

we need a description of the directed colimit of algebraic dcpos {Xi}i∈I such that

K(Xi) ⊆ K(Xj) if i ≤ j. This description seems to be folklore; for the sake of com-

pleteness we include a proof. We first recall a definition and two lemmas about free

directed completions.

Definition 10.1. Let X be a poset. Then we denote the set of all ideals of X , i.e., all

directed subsets I ⊆ X such that I = ↓ I, by Idl(X).

Lemma 10.2. (Gierz et al., 2003, I-4.10) Let X be a poset. Then Idl(X) is an algebraic

dcpo ordered by inclusion, where unions provide directed suprema. Moreover, x 7→ ↓x is

an order embedding X 7→ Idl(X), x 7→ ↓ x with image K(Idl(X)), the set of all compact

elements of Idl(X). If X itself is an algebraic dcpo, then X ≃ Idl(K(X)).

Lemma 10.3. (Stoltenberg-Hansen et al., 2008, 3.1.6) Let X and Y be dcpos with X

algebraic. Any monotone map ϕ : K(X) → Y has a unique Scott continuous extension

X → Y given by

x 7→
∨

{ϕ(c) : c ∈ K(X) ∩ ↓x}.

Proposition 10.4. If {Xi}i∈I be a directed family of algebraic dcpos such that Xi ⊆ Xj

and K(Xi) ⊆ K(Xj) when i ≤ j, then

colimi∈I Xi = Idl

(

⋃

i∈I

K(Xi)

)

.

The colimiting cone ϕi : Xi → colimi∈I Xi is given by x 7→
⋃

{↓ c | c ∈ K(Xi) ∩ ↓ x}.

Proof. Write X for the proposed colimit. Lemma 10.2 makes it an algebraic dcpo whose

compact elements are precisely the elements ↓ c, where c is compact in Xi for some i ∈ I.

We have to show that the ϕi are well-defined Scott continuous functions such that the

upper triangle of the following diagram commutes:

Xi
�

�

//

ϕi
  
❆❆

❆❆
❆❆

❆

ψi

##

Xj

ϕj
~~⑥⑥
⑥⑥
⑥⑥
⑥

ψj

{{

X

ψ

��
✤

✤

✤

Y
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Let θi : K(Xi) → X be the map c 7→ ↓ c. Then θi is monotone, since it is the restriction

of the canonical embedding in Lemma 10.2. Hence it has a unique Scott continuous

extension by Lemma 10.3, which is clearly equal to ϕi. Therefore ϕi is a well-defined Scott

continuous map. To see that {ϕi} forms a cocone, we have to show that ϕi(x) = ϕj(x)

for each x ∈ Xi if i ≤ j. Since K(Xi) ⊆ K(Xj) by assumption, it follows that θj is an

extension of θi. Thus the restriction of ϕj to K(Xi) equals θi, and Lemma 10.3 guarantees

that ϕi equals the restriction of ϕj to Xi.

Now let Y be another dcpo and ψi : Xi → Y Scott continuous maps such that ψi(x) =

ψj(x) for each x ∈ Xi and i ≤ j. We prove that there is a unique Scott continuous

map ψ : X → Y making the diagram above commute. Let η :
⋃

i∈I K(Xi) → Y be the

map c 7→ ψi(c) if c ∈ Xi. Since K(Xi) ⊆ K(Xj) and ψj |Xi
= ψi if i ≤ j, this map is a

well-defined monotone map. By Lemma 10.2, the map κ :
⋃

i∈I K(Xi) → K(X) given by

c 7→ ↓ c is an order isomorphism, so η ◦ κ−1 : K(X) → Y is monotone, and so Lemma

10.3 guarantees a unique Scott continuous extension ψ : X → Y . Let c ∈ K(Xi). Then

c ∈
⋃

i∈I K(Xi), so κ(c) = ↓ c, whence

ψ ◦ ϕi(c) = ψ ◦ θi(c) = ψ(↓ c) = η ◦ κ−1(↓ c) = η(c) = ψi(c).

So the restriction of ψ ◦ ϕi to K(Xi) equals the restriction of ψi to K(Xi). Lemma 10.3

now gives ψ ◦ ϕi = ψi. Now assume that ψ′ : X → Y is another Scott continuous map

making the diagram commute, and let J ∈ K(X). By definition, J = κ(c) for some i ∈ I

and c ∈ K(Xi). Since c ∈ K(Xi),

ϕi(c) =
⋃

{↓ c′ | c′ ∈ K(Xi) ∩ ↓ c} = ↓ c = κ(c),

whence

ψ′(J) = ψ′ ◦ κ(c) = ψ′ ◦ ϕi(c) = ψi(c) = η(c) = η ◦ κ−1(J) = ψ(J),

so ψ′ coincides with ψ on K(X). Now ψ′ = ψ by Lemma 10.3.

Corollary 10.5. The functor C does not preserve directed colimits.

Proof. Let X be the Cantor space and A = C(X). This is a commutative AF-algebra

that is not scattered. So A is the directed colimit of a set {Ai}i∈I of finite-dimensional

C*-subalgebras, i.e. A =
⋃

i∈I Ai. If i ≤ j, there is an inclusion f : Ai → Aj . Now

C(Ai) ⊆ C(Aj) because C(f) is an order embedding (by the remark below Proposition

1.13). By Proposition 2.3 then K(C(Ai)) = C(Ai) ⊆ C(Aj) = K(C(Aj)), and the previous

proposition shows that the colimit of the C(Ai) exists and is algebraic. However, since A

is not scattered, C(A) is not algebraic, and so C(A) 6≃ colimi∈I C(Ai).

Next we show that the functors A and V do not preserve directed colimits either. As

morphisms of AW*-algebras we choose ∗-homomorphisms that are normal, i.e. that pre-

serve suprema of projections. W*-algebras form a full subcategory, so finite-dimensional

C*-algebras are certainly AW*-algebras. We first have to show the existence of the

directed colimit of some diagram of finite-dimensional C*-algebras in the category of

AW*-algebras. To do so, let An = Cn+1, and define for each n ∈ ω the function

fn,n+1 : An → An+1 by (x0, x1, . . . , xn) 7→ (x0, x1, . . . , xn, xn), and for m < n, define
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fm,n : Am → An by

fm,n = fn−1,n ◦ fn−2,n−1 ◦ · · · ◦ fm+1,m+2 ◦ fm,m+1.

It is easy to see that fm,n is a ∗-homomorphism. Note that the choice of An = Cn+1

instead of An = Cn assures that also f0,1 is unital, as required in our definition of a ∗-

homomorphism. Since the domain Cm+1 of fm,n is finite-dimensional, and commutative,

it only has a finite number of projections, namely the elements (a0, a1, . . . , an) with

ai ∈ {0, 1}, and so fm,n must be normal. It follows that the fm,n form a directed diagram

in both the category of AW*-algebras and in its full subcategory of W*-algebras. Recall

the definition of ℓ∞(X) from Example 9.3. The next lemma shows that ℓ∞(ω +1) is the

colimit of the directed diagram defined above. Since ω and ω+1 have the same cardinality,

we could have considered ℓ∞(ω) instead, but ℓ∞(ω+1) is handier for notational reasons.

For each n ∈ ω, define gn : An → ℓ∞(ω + 1) by

gn(x0, x1, . . . , xn)(i) =

{

xi i ≤ n;

xn i ≥ n,

which is a normal ∗-homomorphism for the same reasons as fm,n. Since clearly gn+1 ◦

fn,n+1 = gn, so that gn ◦ fm,n = gm for each n ≥ m in ω, and the gn form a cocone.

Lemma 10.6. The cocone (ℓ∞(ω+1), gn) is a colimit of diagram {fm,n : Am → An}m,n∈ω,

both in the category of AW*-algebras with normal ∗-homomorphisms, and in its full sub-

category of W*-algebras.

Proof. Let A be an AW*-algebra, and for each n ∈ ω, let hn : An → A be a normal

∗-homomorphism satisfying hn ◦ fm,n = hm for each m < n in ω. We have to establish a

unique normal ∗-homomorphism k : ℓ∞(ω + 1) → A such that k ◦ gm = hm for all m.

Am
fm,n

//

gm
%%❏

❏❏
❏❏

❏❏
❏❏

hm

&&

An

gn
zztt
tt
tt
tt
t

hn

xx

ℓ∞(ω + 1)

k

��
✤
✤
✤

A

For each 0 ≤ i ≤ ω, let ei : ω + 1 → C be given by ei(j) = δij . Note that any projection

in ℓ∞(ω + 1) is the characteristic function χS of some subset S of ω + 1, so S 7→ χS is a

Boolean isomorphism of the power set of ω + 1 to Proj(ℓ∞(ω +1)). Since power sets are

atomistic Boolean algebras, where the singletons are the atoms, it follows that ei = χ{i}

is an atomic projection, and χS =
∨

i∈S ei.

Similarly, let eni ∈ An be the projection given by (eni )j = δij . Notice gn+1(e
n+1
n ) = en

for each n ∈ ω. Next, for each n ∈ ω set pn = hn+1(e
n+1
n ). Now pn is a projection in A
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because hn+1 is a ∗-homomorphism. If m 6= n, say m < n, then

pnpm = hn+1(e
n+1
n )hm+1(e

m+1
m ) = hn+1(e

n+1
n ) · hn+1(fm+1,n+1(e

m+1
m ))

= hn+1(e
n+1
n )hn+1(e

n+1
m ) = hn+1(e

n+1
n en+1

m ) = 0,

since en+1
n and en+1

m are orthogonal. Let pω =
(
∨

n∈ω pn
)⊥

. Clearly pω is orthogonal to

any other pn, and moreover,
∨

n∈ω+1 pn = 1.

Now, define k as follows. Let e ∈ ℓ∞(ω + 1) be a projection, so e = χS for some

S ⊆ ω+1. Then we define k(e) =
∨

i∈S pi. Since
∨

i∈ω+1 pi = 1, it follows that k(1) = 1,

which is the reason to consider ω + 1 instead of ω. Let e1 and e2 be projections in

ℓ∞(ω + 1), say e1 = χS and e2 = χT for some S, T ⊆ ω+ 1. Then e1e2 = χSχT = χS∩T ,

so Proj(ℓ∞(ω + 1)) is closed under multiplication. Moreover, since the pi are mutually

orthogonal,

g(e1)g(e2) =
∨

i∈S

pi
∨

j∈T

pj =
∨

i∈S

∨

j∈T

pipj =
∨

i∈S∩T

pi = g(χS∩T ) = g(e1e2).

Next extend k linearly to the span of Proj(ℓ∞(ω + 1)). The extended function then is

linear and still multiplicative. Moreover, since projections are self-adjoint, k preserves

the involution. Since ℓ∞(ω + 1) is a commutative AW*-algebra, it is generated by its

projections. In a commutative C*-algebra the product of two projections is again a pro-

jection, so the span of the projections in ℓ∞(ω+1) is dense. Thus k extends uniquely to

a ∗-homomorphism ℓ∞(ω + 1) → A, which is furthermore normal because its restriction

to projections by definition preserves suprema. Now, for each n ∈ ω and 1 ≤ i < n,

k ◦ gn(e
n
i ) = k(ei) = pi = hi+1(e

i+1
i ) = hn ◦ fi+1,n(e

i+1
i ) = hn(e

n
i ).

Since also k ◦ gn(1) = 1 = hn(1), and An is spanned by en0 , e
n
1 , . . . , e

n
n−1, 1, it follows that

k ◦ gn = hn, establishing existence of k.

If k′ : ℓ∞(ω+1) → A is another normal ∗-homomorphism satisfying k′ ◦ gn = hn, then

pn = hn+1(e
n+1
n ) = k′ ◦ gn(e

n+1
n ) = hn(en).

Moreover, since k′ is normal, for any projection e = χS in l∞(ω + 1),

k′(e) = k′(χS) = k′

(

∨

i∈S

ei

)

=
∨

i∈S

k′(ei) =
∨

i∈S

pi = k(e),

making k′ coincides with k on Proj(ℓ∞(ω + 1)). As we uniquely extended k to a linear

map on the span of Proj(ℓ∞(ω + 1)), it follows that k and k′ coincide on the span of

the projections of ℓ∞(ω + 1). Since k and k′ are both continuous, they also coincide on

ℓ∞(ω + 1).

Proposition 10.7. The functors A and V do not preserve directed colimits.

Proof. By Lemma 10.6, we can consider a directed set {Ai}i∈I of finite-dimensional

C*-algebras for which the colimit exists both in the category of AW*-algebras with

normal ∗-homomorphisms, and in the full subcategory of W*-algebras, and such that

the colimit is infinite-dimensional. Since A(Ai) = V(Ai) is algebraic by Theorem 9.7, it
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follows from Proposition 10.4 that colimi∈I A(Ai) is algebraic, too. However, since A is

infinite-dimensional, it follows from Theorem 9.7 that A(A) = V(A) cannot be algebraic.

Hence A and V cannot preserve colimits.

In contrast to C, A, and V , the functor B does preserve directed colimits.

Proposition 10.8. The functor B : OMP → DCPO preserves directed colimits.

Proof. Let ({Pi}i∈I , {ϕij : Pi → Pj}i,j∈I) be a directed system in OMP with colimit

P . Write ϕi : Pi → P for the colimiting cone. Replacing Pi by ϕj [Pi] if necessary, we may

assume that the ϕij are inclusions and P =
⋃

i∈I Pi. For each orthomodular poset Q, the

compact elements of B(Q) are precisely the finite Boolean subalgebras ofQ by Proposition

8.7. Hence K(B(Pi)) ⊆ K(B(Pj)) if i ≤ j, and Proposition 10.4 shows colimi B(Pi) =

Idl(
⋃

iK(B(Pi)). Since Pi embeds into P , it follows that every finite Boolean subalgebra

of Pi is a finite Boolean subalgebra of P , whence
⋃

iK(B(Pi)) ⊆ K(P ). Conversely, if

B = {b1, . . . , bn} ⊆ P is a finite Boolean subalgebra, there is ik ∈ I such that bk ∈ Pik
for k ∈ {1, . . . , n}. Directedness now produces i ≥ i1, . . . , in, and B ⊆ Pi.

Next we show that B is a Boolean subalgebra of Pi by showing that it is a sub-

orthomodular poset. Let b ∈ B, and let b⊥ be its orthocomplement in B. Since B is

a Boolean subalgebra, b⊥ is also the orthocomplement of b in P . Since Pi is a sub-

orthomodular poset, b⊥ is also the orthocomplement of b in Pi, and B is closed under

the orthocomplementation of Pi. Let a, b ∈ B be orthogonal in B. Then a ≤ b⊥ in B

and therefore in P . The join a ∨P b of a and b in P lies in B, hence must equal the join

a ∨B b of a and b in B. Since a ≤ b⊥ in P and a, b ∈ Pi, also a ≤ b⊥ in Pi. It follows

that a ∨P b ∈ Pi, whence the join a ∨Pi
b of a and b in Pi exists and equals a ∨Pi

b.

Consequently a ∨Pi
b = a ∨B b, and B is a sub-orthomodular poset of Pi. Since it is a

finite Boolean algebra, B ∈ K(B(Pi)).

We conclude that K(B(P )) ⊆
⋃

i∈I K(B(Pi)), hence K(B(P )) =
⋃

i∈I B(Pi). It now

follows from Lemma 10.2 that

B(P ) ≃ Idl(K(B(P ))) ≃ Idl

(

⋃

i∈I

K(B(Pi))

)

= colimi∈I B(Pi),

which is exactly what we wanted to prove.

We return to the case where Pi = Proj(Ai) for some directed set {Ai}i∈I of C*-

subalgebras of a C*-algebra A that contains
⋃

i∈I Ai as a subset, so that A = colimi∈I Ai.

Say that A has the lattice property if Proj(A) is a lattice, and that it has the directed

set property if its collection of finite-dimensional C*-algebras is directed. In case A is

approximately finite-dimensional, the lattice property and the directed set property can

be related to each other.

Lemma 10.9. Let A =
⋃

i∈I Ai be an AF-algebra, where {Ai}i∈I is some directed

collection of finite-dimensional C*-subalgebras of A.

(a) If Proj(A) ≃
⋃

i∈I Proj(Ai), then Proj(A) is a lattice;

(b) If A has the directed set property and {Ai}i∈I is the collection of all finite-dimensional

C*-algebras, then Proj(A) ≃
⋃

i∈I Proj(Ai).
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Proof. Let p, q ∈
⋃

i∈I Proj(Ai). Then p ∈ Ai and q ∈ Aj for some i, j ∈ I. Directedness

gives k ≥ i, j. Since Ak is finite-dimensional, r = p∨q exists in Ak. Let s ∈
⋃

i∈I Proj(Ai)

be an upper bound of p and q, say s ∈ Am. Again directedness gives n ≥ k,m. Now,

Ak ⊆ An are both finite-dimensional and so W*-algebras, and Ak is a W*-subalgebra

of An. Therefore the join of p and q in An equals their join in Ak. It follows that r is

also the join of p and q in An, and r ≤ s. Thus r = p ∨ q in A. Similarly, p ∧ q exists in
⋃

i∈I Proj(Ai) and hence in
⋃

i∈I Proj(Ai), and Proj(A) is a lattice.

For (b), we have Ai ⊆ A hence Proj(Ai) ⊆ Proj(A) for each i ∈ I, so
⋃

i∈I Proj(Ai) ⊆

Proj(A). Let p ∈ Proj(A). Then p ∈ C∗(p), which is finite-dimensional by Lemma 5.2,

hence p ∈ Aj for some j ∈ I. It follows that p ∈ Proj(Aj), whence p ∈
⋃

i∈I Proj(Ai).

Combining both statements in the previous lemma shows that an AF-algebra with

the directed set property has the lattice property. This has been shown by Lazar in

(Lazar, 1982, 3.4), who also showed the converse for separable AF-algebras. It is remark-

able that the fact that there is some directed set of finite-dimensional C*-subalgebras

whose union is dense in A does not imply that all finite-dimensional C*-subalgebras of A

are directed. This follows from Lazar’s construction of a separable AF-algebra A without

the lattice property (Lazar, 1983).

Corollary 10.10. The functors Proj: CStar → OMP and CAF : CStar → DCPO do

not preserve directed colimits.

Proof. Let A be Lazar’s AF-algebra, and let {Ai}i∈I be the directed set of finite-

dimensional C*-subalgebras of A such that A =
⋃

i∈I Ai. Since A does not have the

lattice property, it follows from Lemma 10.9 that Proj(A) 6≃ colimi∈I Proj(Ai), where

we used that the directed colimit of orthomodular posets is given by their union. We

conclude that Proj does not preserve directed colimits. Then we also have

colimi∈I B ◦ Proj(Ai) ≃ B (colimi∈I Proj(Ai)) 6≃ B ◦ Proj (colimi∈I Ai) ,

where the equivalence follows from Proposition 10.8, and the inequivalence follows from

the statement that Proj does not preserve directed colimits combined with the fact

that the functor B determines orthomodular posets up to isomorphism as proven in

(Harding et al., 2017). We conclude that B◦Proj cannot preserve directed colimits. Since

CAF ≃ B◦Proj by Theorem 8.10, it follows that neither CAF can preserve directed colimits.
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