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Abstract
Model categories constitute the major context for doing homotopy theory. More recently, homotopy type
theory (HoTT) has been introduced as a context for doing syntactic homotopy theory. In this paper, we
show that a slight generalization of HoTT, called interval type theory (ITT), allows to define a model struc-
ture on the universe of all types, which, through the model interpretation, corresponds to defining a model
structure on the category of cubical sets. This work generalizes previous works of Gambino, Garner, and
Lumsdaine from the universe of fibrant types to the universe of all types. Our definition of ITT comes from
the work of Orton and Pitts to define a syntactic approximation of the internal language of the category of
cubical sets. In this paper, we extend the work of Orton and Pitts by introducing the notion of degenerate
fibrancy, which allows to define a fibrant replacement, at the heart of the model structure on the universe
of all types. All our definitions and propositions have been formalized using the Coq proof assistant.
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1. Introduction
Homotopy type theory (HoTT) can be seen both as a language to formalize mathematics and
as a language to do synthetic homotopy theory. Synthetic homotopy theory consists in proving
homotopy properties in a syntactic language, here a type theory, which can then be interpreted in
several models of homotopy theory (e.g. simplicial sets, cubical sets).

The first model of HoTT has been proposed by Voevodsky using a standard notion in ho-
motopy theory – simplicial sets. This model has later been reworked and polished by Kapulkin
and Lumsdaine (2012). In this model, a type is interpreted by a Kan simplicial set1 and univalent
equality is interpreted by paths in those topological spaces.

The simplicial model uses classical logic crucially as it requires to decide whether a map is a
degeneracy or not (Bezem et al. 2015). Cubical model, in which a type is interpreted by a Kan
cubical set, have been considered to build an intuitionistic model of HoTT. There are several
variants of this model, depending on which cube category is chosen:

• for cubes without connections, it is called the BCH model (from the initials of its authors)
(Bezem et al. 2013, 2019)

• for cubes with connections, it is called the CCHM model (Cohen et al. 2017; Coquand et al.
2018).

• cartesian cube category (including diagonals) also give rise to a model of HoTT (Angiuli et al.
2018, 2019).
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In their works about CCHM, Coquand et al. not only develop a model of HoTT but also an inter-
nal language of this model to carry syntactically some constructions of the model. This internal
language has been coined cubical type theory.

Recently, Orton and Pitts (2018a) have developed a new abstraction layer for the CCHMmodel.
As Martin-Löf type theory can be interpreted in any presheaf category (and even any topos), they
identified nine axioms which are valid through the interpretation in the CCHMmodel and which
are enough to carry several constructions of the model (basically, all but the universe of fibrant
types) and thus to define cubical type theory internally. So their type theoretic setting can be used
to describe the CCHMmodel.

Orton and Pitts work in the internal language of the presheaf model considered. In this article,
we call interval type theory (ITT), Martin-Löf type theory enriched with the constructions intro-
duced by Orton and Pitts. Thus, ITT can be seen as a syntactic subset of the internal language. It is
a subset because all its constructions have their interpretation in the model but it is not complete.
For instance, we use an intensional type theory while the internal language is extensional.

The simplicial and the cubical models have been settled to describe a notion of equality upto
homotopy, satisfying the univalence axiom. But both models allow to interpret a second notion
of equality, induced by the equality of the meta-theory. Voevodsky (2013) was the first to propose
a type theory where this equality is reflected in the system and called it homotopy type system.
In this system, the equality coming from the equality of the meta-theory is called strict, it enjoys
uniqueness of identity proof (UIP), by opposition to the univalent equality which satisfies the
univalence axiom. To avoid the collapse of those two equalities, and thus the inconsistency of the
theory, the property of being fibrant (or Kan) is also reflected at the level of types. The idea is that
the univalent equality can only be eliminated over a fibrant predicate, whereas the strict equality
can be eliminated over any predicate. Later, Altenkirch et al. gave a more general analysis of a type
theory with two equalities and a fibrancymechanism and called it two-level type theory (Altenkirch
et al. 2016; Capriotti 2017). In ITT, the strict equality is primitive and the univalent equality can
be defined internally.

The main contribution of this paper is to show internally in ITT that there is a pre-model
structure on the universe of all types. Through the interpretation in the model, a direct corollary
of this internal construction is that the category of cubical sets is a model category.

Amodel category is a setting for homotopy theory. It consists of a category equipped with three
classes of arrows – fibrations, cofibrations, and weak equivalences – enjoying several properties.
In particular, they have to give rise to two ways of factorizing an arbitrary function. Fibrations can
be seen as “nice surjections,” cofibrations as “nice injections” and weak equivalence as “homotopy
equivalences.” Typical examples of model categories are Top, the category of topological spaces,
sSet, the category of simplicial sets, and cSet, the category of cubical sets. Model categories are
of great importance to compare those different settings in which to formalize homotopy theory,
using the notion of Quillen equivalences.

It has already been shown inHoTT that there is a pre-model structure on the universe of fibrant
types. The first factorization system (acyclic cofibrations and fibrations, or simply (AC,F)) has
been given by Gambino and Garner (2008) using homotopy fibers and the second factorization
system (cofibrations and acyclic fibrations or simply (C,AF)) has been given by Lumsdaine (2011)
using mapping cylinders. HoTT can be seen as a fibrant fragment of ITT, this result can thus be
understood as a pre-model structure on the universe UF of fibrant types. Our work is thus a
generalization to the universe U of arbitrary types. UF corresponds to the homotopy category
thus its model structure is quite trivial as everything in the universe it already fibrant. To the
opposite, U corresponds to the general model category which has a much more complex model
structure. In particular, our construction requires the existence of a fibrant replacement, which is
not needed in the fibrant case as all types are fibrant.

Note that the notion of fibrant replacement is not admissible with the standard notion of fi-
brancy provided by a two-level type theory. For instance, it is inconsistent with the existence
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of types which are not h-sets (Capriotti 2017) or with an interval (Homotopy Type Theory wiki
2014). Thus, another contribution of this paper is to distinguish between two notions of fibrancy –
degenerate and regular – which allows to define a notion of fibrant replacement compatible with
the substitution of type theory.

A description of a model structure on the category of cubical sets has recently been given by
Sattler (2017) and it should be interesting to compare its model structure with the one given by
the interpretation of our internal model structure in ITT in the cubical sets model.

Plan of the paper. In Sections 2 and 3, we make precise our notion of ITT and redefine a whole
part (paths, identity types) of the CCHM model in ITT as there are still few references on the
topic. We also introduce a new weaker notion of fibrancy called degenerate fibrancy. In Section 4,
we discuss briefly the model of ITT and look at the induced notion of fibrancy in cubical sets
through the model interpretation. In Section 5, we construct the fibrant replacement as a quotient
inductive type (QIT) in ITT. Section 6 provides the complete definition of a model category.
Then, we describe internally in ITT the (AC,F) weak factorization system (Section 7) and two
variants of the (C,AF) weak factorization system (Section 9), one which makes use of the notion
of mapping cylinders (Section 8), and one which makes us of the notion of partial elements.
Finally, we provide a complete description of the model structure on U in ITT (Section 10) and
discuss the formalization (Section 11).

Formalization. Following Orton and Pitts approach, all the results of our article have been for-
malized using an axiomatic presentation of ITT. The formalization as been carried in Coq (while
Orton and Pitts used Agda) and can be found in the following repository:

https://gitlab.inria.fr/sboulier/thesis-formalizations/blob/emptyctx/InternalCubical-Coq

For each subsection, we give a direct link to the corresponding file in the repository.

2. Interval Type Theory
The kernel of ITT is Martin-Löf type theory with � types, � types, an impredicative universe of
propositions P and a strict equality ≡ modeled using an identity type. Its typing rules are given in
Figures 1 and 2. We call the equality strict because it enjoys UIPs. The type of strict equalities live
in the universe of propositions P. As a consequence, UIP follows from the more general principle
of proof irrelevance. We also suppose that the strict equality enjoys function extensionality and
propositional extensionality. The conversion encompasses β reduction for functions, pairs, and
equality, and η reduction for functions and pairs. It is written as �βη.

The impredicative2 universe P is closed under � types (written ∀), � types (written ∃), dis-
junction ∨, unit type �, and empty type ⊥. The complete rules are given in Appendix A. In ITT,
we will also consider a universe U, closed under � and � types. The El operator on those two
universes, which turns a proposition or a code A into a type, is written A. We also consider that
U contains a unit type 1 and a type of booleans (which will be noted OI in this paper) with their
standard introduction and elimination rules.

We use the usual notations: A→ B for non-dependent �/∀ type; A× B for non-dependent
� type; A↔ B for (A→ B)× (B→A); P ⇔Q for its counterpart in P; p #P t for the transport
along a strict equality (non-dependent version of J≡). We say that P is a type family over a type A
if it is a type in a context ending by A: �, x :A
 P. We will write x :A. P such a family. If P fits in
an universe U, it amounts to having a function A→ U. To ease the reading, many arguments of
functions will be considered as implicit arguments and thus be omitted in the paper, as well as the
underlines of the El operator which can be inferred easily. Last, the context �, always supposed
well formed, is often omitted in the typing rules. An omitted context is written 
, while an empty
context is written ∅ 
.
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Figure 1. Martin-Löf type theory.

Figure 2. Axioms for strict equality in Martin-Löf type theory.

In Sections 5 and 8, we will use some QITs. QITs are a generalization of inductive types where
equality between elements of the inductive type can be defined at the same time as the definition
of its constructors. They are the strict counterpart of higher inductive types (HITs) for a strict
equality (i.e. enjoying UIP). HITs and QITs form an active field of research and both their syntax
and their semantic are not fully established. We will use an intuitive syntax and will give the in-
troduction and elimination rules for each one. See Coquand et al. (2018) and Cavallo and Harper
(2019) for recent developments on HITs and Altenkirch et al. (2018) for QITs.

In this paper, we work in ITT which is a syntactic approximation of the internal language of
the CCHMmodel. It consists of the above-mentioned Martin-Löf type theory enriched with:

• an interval I
• a universe of cofibrant propositions Cof

satisfying nine axioms highlighted by Orton and Pitts (2018a) which we now detail.

2.1 Interval [Interval.v]
The interval I is the first distinguishing feature of ITT. It is a closed type which has two endpoints
0 and 1 and supports min (�) and max (�) operations:


 I 
 0, 1 : I 
 � : I → I → I 
 � : I → I → I
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Figure 3. Axioms satisfied by the interval I.

I is required to satisfy the four axioms given in Figure 3. The axioms ensure that the interval is
connected (ax1) that the two endpoints are distinct for strict equality (ax2) and that min and max
give a path algebra structure to I (ax3 and ax4). A path algebra structure is like a bounded lattice
but without associativity, commutativity, and absorption law.

An important difference with the cubical model CCHM is that the interval does not have nega-
tion not : I → I. We could add it, restricting slightly the presheaf models in which we can interpret
our theory. But here, we stick to Orton and Pitts approach.

A variable typed by the interval is called a dimension and having a dimension i : I in the context
corresponds to going one dimension up. An element of a type a :A represents a point:

• a

A function p : I →A represents a line in A, also called a path, between the two points p 0 and p 1:

•p 0 •p 1 i

The constant function λ _ : I. a is the constant path from a to a. It is written idpath a.
A two variable function p : I → I →A represents a square in A:

•p 0 1
p i 1

p i i
ij

For instance, the up left point is p 0 1, the upper side is the line λ i. p i 1, and the upward diagonal
is λ i. p i i. Note that it is not possible to represent the other diagonal because there is no negation
operation.

As a last example, a function p : I →A is a line between a and b:

•a •b

Then λ i, j. p (i � j) is the following square:

idpath b

p

idpath bp

•a •b

•b •b

p (i � j)

ij
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Figure 4. Axioms satisfied by Cof.

2.2 Cofibrant propositions [Cof.v]
The other important feature of ITT is the universe of cofibrant propositions Cof. It is a subtype of
P defined by a predicate cof asserting that a proposition is cofibrant, and it satisfies the axioms of
Figure 4:


 cof : P → P Cof := � P : P. cof P
Cofibrant propositions represent formulas restricting the introduced dimensions. A typical

cofibrant proposition is for instance:
(i≡ 0)∨ ((i≡ 1)∧ ( j≡ 0))

We have seen that a function p : I → I →A is a square. Now, a function restricted by this formula:
p′ : �i, j : I. (i≡ 0)∨ ((i≡ 1)∧ ( j≡ 0))→A

represents the following subsquare:

•

•

• ij

An element of a type A specified only on a face φ (f : φ →A) is called a partial element of type A.
The axioms assert that Cof contains endpoint equality (ax5) is closed under disjunction,

dependent conjunction, and universal quantification over I (ax6, ax7, and ax8).
The last axiom is a strictness axioms asserting that under some conditions, a type can be re-

placed by a strictly equivalent type satisfying additional strict equalities. By strict equivalence, we
mean a type equivalence for the strict equality:

A∼= B := �( f :A→ B) (g : B→A). ( g ◦ f ≡ id)∧ ( f ◦ g ≡ id).
Axiom 5 together with propositional extensionality ensures that true and false proposition �

and ⊥ are cofibrant. For φ and ψ in Cof, we will continue writing φ ∧ ψ for the element of Cof
associated with the proposition π1(φ)∧ π1(ψ). The same for φ ∨ ψ, i≡ 0, ⊥, . . . We will also
blithely write φ instead of π1(φ).

As last requirement on Cof, we suppose that the universe of cofibrant propositions allows to
form the join of two partial elements. Given two cofibrant propositions φ, ψ :Cof and two partial
elements f and g which agree where there are both defined:

f : φ →A g : ψ →A �(u : φ) (v : ψ). fu≡ gv
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the join of f and g is a partial element on φ ∨ ψ :
joinA( f , g) : φ ∨ ψ →A

such that joinA( f , g) (inl u)≡ fu and joinA( f , g) (inr v)≡ gv. The join cannot be defined by
usual disjunction because this would require ∨-elimination to an arbitrary type while it is
restricted to P.

3. Paths and Fibrancy
In the previous section, we have specified what is ITT. We can now describe some basic and
fundamental constructions of HoTT directly inside ITT.

3.1 Paths [Paths.v]
The first fundamental construction that can be carried over internally in ITT is the notion of paths.
A path between two points is a line with these points at its ends. We write a∼A b the type of paths
between a and b in A. Reflexivity is given by a constant path:

a∼A b := � p : I →A. p 0≡A a∧ p 1≡A b

idpathA a : a∼A a
:= (λ _ : I. a, refl≡ a, refl≡ a)

Path types are not directly the types by which we will interpret the univalent equality because
the transport is not strictly constant on identity paths. Instead, we will use identity types, which
are built on top of them (Section 3.4).

The fact that paths are functions has nice consequences. For instance, function extensionality
for paths becomes trivial: it is only a change in the order of the arguments of the path seen as a
function. If p is a proof of type �x :A. fx∼B gx, then λ i. λ x :A. p x i is a path between f and g.

In the same spirit, paths enjoy contractibility of singletons. A type is contractible if it is
inhabited and if all its elements are path-equal:

Contr A := � a :A. �x :A. a∼A x
For every type A and x :A , the type of singletons in x is contractible:

Contr(� y :A. x∼A y)
The center of contraction is (x, idpathA x) and the path between (x, idpathA x) and (y, p) is
given by:

λ i.(p i, λ j. p(i � j))

3.2 Fibrancy [Fibrations.v]
Now that we have path types, we want to transport along them. Transport is only valid along
fibrant type families so we have to define fibrancy.

As we said, a partial elements of a type A is an element of A only specified on a restricted face
of the current context. We write�A the type of partial elements of A:

�A := � φ :Cof. φ →A
Let a :A be an element of A and (φ, u) be a partial element, we say that a extends (φ, u) if they
coincide where u is defined:

(φ, u)↗ a := �w : φ. u w≡A a
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There is always the empty inhabitant of�A:

(⊥, ⊥−elim) : �A

It is the partial element of A which is specified nowhere. Every partial element (φ, f ) of A turns
out to be path-equal to this empty inhabitant via the path λ i. (φ ∧ i≡ 1, f ◦ π1). Hence, the type
�A is always contractible:

Contr(�A)

A type has an extension structure if all its partial elements can be extended:

Ext A := �a :�A. � a1 :A. a↗ a1
Fibrancy is a weaker condition than having an extension structure where the partial element is

required to be specified in at least one endpoint.
To overcome the lack of negation, Orton and Pitts parameterize their definition of fibrancy by

the direction in which the extension is done. To do this, we introduce the inductive type OI which
has two elements O and I (it is thus a synonym for bool):

OI := O | I

And we define ι : OI → I, the coercion to the interval, by ι O := 0 and ι I := 1. In the following,
we will suppose that this coercion is always implicitly inserted where needed. We will also use the
negation ! : OI → OI which is defined by:

! O := I
! I := O

Definition 1. A type A is said to be fibrant, if the following type is inhabited:

Fib A := Π (e : OI) (φ :Cof) (a : Π i : I. φ ∨ i≡ e→A). Σ a1 :A. (φ, a !e ◦ inl)↗ a1
It means that every partial element specified at least in i≡ e can be extended.

This type is not exactly the one proposed by Orton and Pitts but is strictly equivalent. For the
sake of completeness, they use

� (e : OI) (φ :Cof) (a : I → φ →A). (� a0 :A. (φ, a e)↗ a0)→ (� a1 :A. (φ, a !e)↗ a1)

Our variant is slightly more compact and will allow to define the fibrant replacement in a
simpler way.

Fibrancy is weaker than having an extension structure:

Ext A → Fib A

In fact, it turns out that a type has an extension structure if and only if it is both fibrant and
contractible.

Proposition 1. For any type A we have

Ext A ↔ (Fib A × Contr A)

It is not a strict equivalence a priori.

Fibrancy generalizes to type families in the following way.

Definition 2. A type family x :A. P is said to be regularly fibrant3 if the following type is inhabited:

RFib(x. P) := Π (e : OI) (a : I →A) (φ :Cof) (p : Π i : I. φ ∨ i≡ e→ P{x := a i}).
Σ p1 : P{x := a !e}. (φ, p !e ◦ inl)↗ p1
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The operation to which fibrancy gives access is called composition. If P is regularly fibrant, then we
write

compP(e : OI) (a : I →A) (φ :Cof) (p : Π i : I. φ ∨ i≡ e→ P{x := a i}) : P{x := a !e}
And for all w : φ we have that:

compP e a φ p ≡ p !e (inl w)
A type A amounts to be fibrant if and only if the constant family over unit _ : 1. A is regularly
fibrant.

For a type family x :A. P, it is not equivalent to be regularly fibrant and that for every x, P is
fibrant. The later is weaker than the former. We will say that a type family is degenerately fibrant4
or pointwise fibrant if we only have the weaker condition:

DFib(x. P) := �x :A. Fib P

Remark 2. A notable exception is the case when P has all its fibers contractible in which case
regular fibrancy and uniform fibrancy coincide. Indeed, by Proposition 1, we have

DFib(x. P)× (� x. Contr P) ↔ � x. Ext P
But the extension structure on fibers is enough to establish the regular fibrancy , hence we also
have

DFib(x. P)× (� x. Contr P) ↔ RFib(x. P)× (� x. Contr P).

For a two variables type family x :A, y : B. P, we will writeRFib2(x, y. P) if the type family over
the sigma � x :A. B is regularly fibrant (and so one for three variables families):

RFib2(x :A, y : B. P) := RFib(z. P
{
x := π1(z), y := π2(z)

}
)

A useful remark is that regular fibrancy is stable under precomposition:
RFib(y. P) → RFib(x. P

{
y := fx

}
)

Orton and Pitts proved the following propositions, which show that the category with families
of regularly fibrant families supports several type formers.

Proposition 3.
Fib 1 and Fib N

Proposition 4. For x : X. A and x : X, a :A. B, if RFib(x.A) and RFib2(x, a. B) then,
RFib(x : X. �a :A. B)
RFib(x : X. � a :A. B)

Proposition 5. For x : X. A, if RFib(x.A), then path types on A are regularly fibrant as a three
variables family:

RFib3(x : X, a :A, b :A. a∼A b)

See Orton and Pitts’ article or the formalization for the proofs.
We also have that the universe of pretypes is fibrant. In fact, it even has an extension structure.

This is quite surprising because it means that for all types A and B, there is a path connecting A
and B:

A∼U B
However, this will not be enough to transport along it and get a map A→ B because the type
family X : U. X is not regularly fibrant.
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Proposition 6. The universe has an extension structure, and hence is fibrant:
Ext U

Proof. Let A : φ → U be a partial element of U. We have to give B′ : U such that for all w : φ,
A w≡ B′.

B′ is given by the strictness axiom taken in A. There are two choices for the B appearing in the
axiom: either �w : φ. A w or � w : φ. A w , both work.

From the composition operation, we can derive a richer operation: Kan filling.

Proposition 7. If x :A. P is regularly fibrant, then we can define an operation:
fillP(e : OI) (a : I →A) (φ :Cof) (p : Π i : I. φ ∨ i≡ e→ P{x := a i})(i : I) : P{x := a i}

such that for all e, φ, a, and p, fillP agrees with p on φ ∨ i≡ e and with comp in !e:
Π i : I. wφ ∨ i≡ e fillP e a φ p i ≡ p i w

fillP e a φ p !e ≡ compP e a φ p

This is a notable feature of the CCHMmodel that Kan filling can be defined from composition,
it is not the case in BCH for instance. Again, see Orton and Pitts’ article or the formalization for
the proof.

3.3 Transport [Paths.v]
Now that if we have defined fibrancy, we can at last define transport along a path.

Proposition 8. Let x :A. P be a regularly fibrant type family, p : a∼A b a path between two points
of A and u of type P a. Then, u can be transported along p to get an element of type P b :

transport(P, p, u) : Pb
Proof. The transport is given by:

compP O ⊥ ⊥−elim u
modulo rewriting by strict equalities.

Transport together with contractibility of singletons give the dependent elimination for path
types (still restricted to regularly fibrant families).

However, paths have a defect: the transport does not compute on reflexivity. For all a :A and
u : P a, we have a path:

transport(P, idpathA a, u) ∼P a u
but this equality does not hold strictly a priori. Identity types are introduced in the next section to
remedy this.

With the transport and the dependent elimination, we can recover all the groupoidal laws
satisfied by a univalent equality. First of them are inverse and concatenation:

_ -1 : x∼A y→ y∼A x
_ � _ : x∼A y→ y∼A z → x∼A z

There are some operations which are proven with a transport in HoTT setting but which does not
need the fibrancy structure in the cubical setting. They can be defined directly using the cubical
definition of paths. For instance:

apf : x∼A y→ fx∼B f y
ap10x : f ∼A→B g → fx∼B gx
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To a path p, the first associates the path λ i. f (p i) and the second the path λ i. (p i) x. It is the same
phenomenon that for the definition of function extensionality: as a path type is a richer type than
in HoTT, some definitions are simpler.

3.4 Identity types [Id.v]
Identity types are a modified version of path types to recover the strict equality for the transport
of reflexivity. They were introduced by Swan (2016) and reused in the CCHMmodel (Cohen et al.
2017). An element of an identity type is a path together with a cofibrant proposition indicating
“where the path is refl.” We will note x=A y the identity types:

x=A y := �(p : x∼A y) (φ :Cof). φ → �i : I. p i≡A x
Reflexivity is given by the constant path with the proposition “true”:

refl= x : x=A x
:= ( idpathA x, �, λw i. refl≡ x)

Identity types and paths are logically equivalent. From identity types to paths, there is a forgetful
map, and in the other direction we use the proposition “false”:

id2paths : x=A y → x∼A y
:= λ (p, _, _). p

paths2id : x∼A y → x=A y
:= λ p. (p, ⊥, ⊥−elim)

Note that id2paths sends “refl to refl” (i.e. refl= to idpath), but paths2id does not send idpath to
refl=.

Given the extra propositionφ asserting where the path is refl, it is possible to define a dependent
eliminator for identity types which computes strictly on refl=:

x :A, p : t =A x 
 P 
H :RFib2(x, p. P)

 q : t =A t′ 
 u : P{

x := t, p := refl= t
}


 J=(P, H, q, u) : P{
x := t′, p := q

} J=(P, H, refl= t, u)≡ u

4. Models of ITT
The intended model of ITT is the CCHMmodel, although a wider class of presheaf model can be
considered, see Orton and Pitts (2018a).

In the presheaf model of dependent type theory, a context is interpreted by a presheaf which is
a type parametrized by the objects of a category C . Presheaves are used to model notions, such as
“variation over time,” “resource availability” and, in our case, “dimension.” The presheaf model
support � types, � types, and universes. See Hofmann (1997) for an account of the presheaf
model.

The CCHM model is a presheaf model over a cube category with connections, which will be
written �. The definition of � as well as the interpretation of the interval I and the face lattice F
are given in Cohen et al. (2017, Section 8.1).

To interpret ITT, it remains to check that the presheaf model preserves function extensionality,
propositional extensionality, proof irrelevance, and QITs. It is true for the three axioms. It should
also be the case for QITs but we did not do the formal verification.

Remark. The requirement of having propositional extensionality in the meta-theory is very
strong. It seems that the use of this axiom could be avoided by working with the face lattice F
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of CCHM instead of the cofibrancy predicate cof (the definition of Cof as� P : P. cof P has really
a set theoretic flavor). We let this for future works.

4.1 Degenerate fibrancy
ITT can be viewed as a syntactic subset of the internal language of CCHM,meaning that the syntax
of ITT can be used to carry constructions in CCHM. Indeed, in the presheaf model, no interpreta-
tion of rule makes the assumption that the premises of the rule are “coming from the syntax.” For
instance, the interpretation of the formation rule of � types can be carried for arbitrary presheaf
families A over � and B over �, A, even if they are not the interpretation of a type of ITT:

� 
A �, A
 B
� 
 �A B

Hence, for an arbitrary presheaf family A, we can form the presheaf family Fib A by unfolding
the definition of the Fib type former. Taking the proposition-as-types point of view, we say that
the presheaf family A is fibrant if the presheaf family Fib A has a section. In this paragraph, we
compare this induced notion of fibrancy with the one introduced in Coquand et al. article’s.

Even if we do not want to detail here the definition of the cube category �, we need to
know a little about it. Its objects are written I, J, . . . and are finite sets of dimensions. For each
object I, there exists a fresh dimension not in I written i # I giving rise to an object I, i which
is one dimension higher. There are two arrows I → I, i written (i= 0), (i= 1) and called face
maps. And in the other direction, there is an arrow sI : I, i→ I called a degeneracy. We have
sI(i= 0)≡ sI(i= 1)≡ idI .

Let us recall the definition of fibrancy introduced in Cohen et al. (2017) – we only rephrased it
to use Orton and Pitts’ trick to avoid negation.

Definition 3 (CCHMfibrancy). Let Γ 
A be a presheaf family. Then, A is fibrant if it is equipped
with a composition structuremeaning that, for each e : OI, I : �, i # I, ρ : Γ (I, i), φ : F(I), u partial
element in Aρ of extent φ, a0 :A(ρ(i= e)) such that for all f : J → I with φf ≡ 1F, a0f ≡ u(i=e)f , we
have an element:

comp(e, I, i, ρ, φ, u, a0) : A(ρ(i= !e))
such that for any f : J → I and j # J,

(comp(e, I, i, ρ, φ, u, a0))f ≡ comp(e, J, j, ρ( f , i= j), φf , u( f , i= j), a0f )
and comp(e, I, i, ρ, 1F, u, a0)≡ u(i=!e).

Now, if we unfold our definition of fibrancy, we get the following.

Proposition 9. LetΓ 
A andΓ ,A
 P be presheaf families. Then, there is a section ofΓ 
RFib P
if and only if, for each e : OI, I : �, i # I, ρ : Γ (I), x :A(ρsI), φ : F(I), u partial element in P(ρsI , x)
of extent φ, p0 : P(ρ, x(i= e)) such that for all f : J → I with φf ≡ 1F, p0f ≡ u(i=e)f , we have an
element:

comp(e, I, i, ρ, x, φ, u, p0) : P(ρ, x(i= !e))
such that for any f : J → I and j # J,

(comp(e, I, i, ρ, x, φ, u, p0))f ≡ comp(e, J, j, ρf , x( f , i= j), φf , u( f , i= j), p0f )
and comp(e, I, i, ρ, x, 1F, u, p0)≡ u(i=!e).

We remark the introduction of a degenerate part (the ρsI) and a regular part (the x). Thus, we
will say that P is regularly fibrant with respect to A and degenerately fibrant with respect to �, or
simply that P is regularly fibrant when � and A are clear.
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For a presheaf family, we thus get several notions of fibrancy depending on where we put the
limit between the degenerate and the regular part.

• If all the dependency is put in the regular part, we recover the CCHM notion of fibrancy. It
corresponds to the fact that, in the empty context, the presheaf ∅ 
RFib(z : � �A. P) has
a section. We will say that P is fully fibrant.

• If all the dependency is put in the degenerate part, we get something weaker which corre-
sponds to the fact that �,A
 Fib P has a section, or equivalently that Γ 
DFib(x :A. P)
has a section. We will say that P is degenerately fibrant.

In the transport rule:
�, x :A
 P � 
 p : t ∼A t′ � 
H :RFib(x. P) � 
 u : P t

� 
 transport (P, H, p, u) : P t′

the fibrancy hypothesis is minimal in the sense that only what is needed to interpret the transport
is required to be in the regular part.

The notion of regular fibrancy has been generalized to damped horn inclusions by Nuyts (2018).
It is called contextual fibrancy there. In particular, Nuyts has shown that there is always a fibrant re-
placement for contextual fibrancy. We will demonstrate this for our particular case in the coming
section.

5. Fibrant Replacement [FibRepl.v]
The fibrant replacement is an operator turning an arbitrary type A into a fibrant type A satisfying
an universal property. Several authors have remarked that the fibrant replacement is not admis-
sible in two-level type theories. For instance, it is inconsistent with the existence of types which
are not h-sets (Capriotti 2017) or with an interval (Homotopy Type Theory wiki 2014). Things go
nicer in our setting because we use degenerate fibrancy: given a type family x :A. P, we will only
get a family x :A. P which is degenerately fibrant,DFib(x. P), and not regularly fibrant,RFib(x. P)
(and even less fully fibrant). It turns out that such a degenerate fibrant replacement is admissible.
In fact, it can be defined in ITT using a QIT, which is quite remarkable. See Appendix B for the
proof that a regular fibrant replacement would be inconsistent.

The fibrant replacement of a type A is the (strict) QIT defined as follows:
Quotient A :=
| η : A→A
| hcomp : � (e : OI) (φ :Cof) (a : �i : I. φ ∨ i≡ e→A). A
| eq : � e, φ, (a : �i : I. φ ∨ i≡ e→A) (w : φ). a !e (inl w)≡ hcomp e φ a

η is the embedding of A into A, hcomp freely adds the compositions needed so that A is
(degenerately) fibrant, and eq assert than hcomp e φ a extends (φ, a !e ◦ inl).

For any type A, A is fibrant, but for a type family x :A. P, x :A. P is not regularly fibrant in
general.

This QIT enjoys the following elimination principle:

z :A
 P 
 η′ : �a :A. P{z := η a}

 hcomp′ : � e, φ, (a : �i : I. φ ∨ i≡ e→A) (a′ : � i, w. P{z := a i w}). P{

z := hcomp e φ a
}


 eq′ : � e, φ, a, a′, w. eq e φ aw #P a′ !e (inl w)≡ hcomp′ e φ a a′


 repl_ind (P, η′, hcomp′, eq′) : �z :A. P
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repl_ind (P, η′, hcomp′, eq′) (η a)�βη η′ a
repl_ind (P, η′, hcomp′, eq′) (hcomp e φ a)

�βη hcomp′ e φ a (λ i, w. repl_ind (P, η′, hcomp′, eq′)(a i w))
From this “raw elimination principle” generated by the quotient, we can prove that the fibrant re-
placement has another elimination principle, which is the one expected for a fibrant replacement.

Proposition 10. The degenerate fibrant replacement satisfies the following elimination principle:

z :A
 P 
 η′ : � a :A. P{z := η a} 
H :RFib(z. P)

 repl_ind′ (P, η′, H) : � z :A. P z

repl_ind′ (P, η′, H) (η a)�βη η′ a
Proof. repl_ind′ (P, η′, H) is defined by induction on the quotient (using repl_ind). In the case
of hcomp e φ a, modulo strict rewritings, the provided term is given by a composition in P:

compP e a0 φ p0
with a0 := λ i. hcomp e (φ ∨ (i≡ e)) (λ j w. a (i �e j) (. . . # w))
and p0 := λ i w. . . . # w
where �O := � and �I := �.

Instantiated with a constant type family _ :A. B, we get the non-dependent elimination
principle asserting that for every map f :A→ B, if B is fibrant, then f can be factorized as:

A B

A

f

η repl_rec ( f )

(
Fib B

)

and the triangle commutes definitionally.
With this non-dependent elimination principle we can lift every map f :A→ B to a map f :

A→ B and we have the following equalities:

f(η x) �βη η( fx) g ◦ f ≡ g ◦ f idA ≡ idA
The two strict equalities are proven by induction on the quotient, using the first elimination
principle repl_ind.

Last, we will need the property that any type family P :A→ U regularly fibrant can be extended
to A preserving regular fibrancy. We call the property the extension rule. Unfortunately, we only
know how to prove it in the empty context (the proof relies on the universe of fibrant types).
We cannot be certain that it holds in an arbitrary context, but we were not able to derive an
inconsistency neither. In the remaining of this paper, we will take care to use it only in an empty
context. The propositions only valid in an empty context will be marked by an empty set context
symbol “valid in ∅ ctx”.

Proposition 11 (extension rule, valid in ∅ ctx). For every type family ∅ 
 P :A→ U which is
regularly fibrant (RFib P), there exists a type family ∅ 
 P̃ :A→ U such that :

P̃ ◦ η ≡ P and RFib P̃

The proof relies on the existence of a universe of fibrant types UF constructed in Cohen et al.
(2017) and the fact that it is fibrant. This universe classifies fully fibrant type families. UF has
not to be confused with UH defined as � A : U. Fib A and which classifies only degenerately
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fibrant families. The interest of UF lies in the fact that it is univalent (which is not the case for
UH : it even has an extension structure). Note that UF is not definable internally in ITT, doing
so requires to move to a more complicated setting, Crisp type theory, which we do not detail here.
See Licata et al. (2018) for more on this topic.

Proof. Let P :A→ U be a regularly fibrant family in the empty context. Since the context is
empty, P is in fact fully fibrant. This fibrancy structure give a map:

P′ :A→ UF

such that El ◦ P′ ≡ P. But the universe UF is itself fibrant, hence we have the map:

repl_rec(P′) :A→ UF

We take P̃ to be El ◦ repl_rec (P′). By the fibrancy rule of El, this type family is fully fibrant, and
hence regularly fibrant.

The extension rule has a very strong consequence, it allows transporting along an equality ηx=
ηy to get a map P x→ P y if P is regularly fibrant.

Proposition 12. The following operator J= is derivable:

 P : � x :A. η t =A η x→ U 
H :RFib2 (x, p. P)


 p : η t =A η t′ 
 u : P t ( refl= η t)

 J=(P, H, p, u) : P t′ p

J=(P, H, refl= t, u)≡ u

Proof. J= is obtained by applying J= to P̃.

Let us finish this section by remarking that the extension rule is a consequence of Sattler’s
fibration extension property (Sattler 2017, Corollary 7.7). Indeed, this one gives that for any type
family x :A. P and acyclic cofibration f : B→A (still in the empty context), if P ◦ f is regularly
fibrant, then so is P.

6. Model Category
The fibrant replacement is one of the major ingredients to define a pre-model structure on the
universe U. This will be done in the next sections, but first, we recall what is a model category.
We use here a type theoretic setting, see Hirschhorn (2009), Hovey (2007) which are standard
references for a set theoretic account.

Defining the right notion of category in HoTT with a relevant equality is quite intricate as
several choices can be made to tame higher coherences. There is no such shilly-shallying when a
strict equality is used, as already noticed in Altenkirch et al. (2016). In fact, everything takes place
exactly as in set theory.

Definition 4. A category consists of:
• a type C of objects,
• for all I, J : C , a typeHom(I, J) of arrows
• for all I : C , an identity arrow idA :Hom(I, I)
• for all I, J, K : C , a composition function:

_ ◦ _ : Hom(J,K)→Hom(I, J)→Hom(I,K)
• for all f :Hom(I, J) , a proof of f ◦ idI ≡ f and idJ ◦ f ≡ f
• for all f :Hom(I, J), g :Hom(J,K), h :Hom(K, L), a proof of

h ◦ (g ◦ f )≡ (h ◦ g) ◦ f

We write C both for the category and the type of its objects, and gf for the composition of
arrows g ◦ f .
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With this definition, each universe U forms a category where Hom(A, B) is given by A→ B.
Identity and composition are those of functions and the laws are given by βη conversion.We write
Type this category. In the following, we fix C a category.

Definition 5. Let f :Hom(X, Y) and g :Hom(X′, Y ′) be arrows of C . We say that f is a retract of
g if there exists arrows s, r, s′, and r′ such that the following diagram commutes

X X′ X

Y Y ′ Y

s

f

id

r

g f

s′

id

r′

Here and in the rest of the paper, “exists” is understood in the constructive sense, that is, as a
sigma type (witnessed existence) and not as a squashed sigma type (mere existence).

By a class of arrows ofC , we simply mean a type family X, Y : C , f :Hom(X, Y). P over arrows
ofC . We write f ∈ P for all function f such that P is inhabited. IfQ is another class, we write P ↔Q
if we have � X, Y . �f :Hom(X, Y). P f ↔Q f ; and P ∩Q for the conjunction of the two classes.

Definition 6. A class P of arrows of C satisfies the 2-out-of-3 property if, for all arrows

X Y Z
f g

such that if two of f , g, and g ◦ f belong to P, so does the third. More
precisely, it means that we have three functions:

• � f , g. P f → P g → P (g ◦ f )
• � f , g. P (g ◦ f )→ P f → P g
• � f , g. P g → P (g ◦ f )→ P f

Definition 7. Let f :Hom(X, Y) and g :Hom(X′, Y ′) be arrows of C . It is said that f has the left
lifting property (LLP) with respect to g (and that g has the right lifting property (RLP) with respect
to f ) if, for all arrows F :Hom(X, X′) and G :Hom(Y , Y ′) such that the square below commutes,
there exists an arrow γ :Hom(Y , X′) making the two triangles commute

X X′

Y Y ′

F

f g

G

γ

We then say that an arrow f has the LLP (resp. the RLP) with respect to a class of arrows P if it
has it with respect to all arrows of P. We write LLP(P) (resp. RLP(P)) the class of such arrows.

Definition 8. A weak factorization system on C consists of two classes of arrows L and R such that:

• every arrow f of C can be factorized as f ≡ r ◦ l with l ∈ L and r ∈ R
• L is exactly the class of arrows of C which have the LLP with respect to R:

L↔ LLP(R)

• R is exactly the class of arrows of C which have the RLP with respect to L:

R↔RLP(L)

The classes L and R of a weak factorization system enjoy several good properties: they contain
all isomorphisms, they are closed under retract, L is closed under pushouts, R is closed under
pullbacks, etc.
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We can now define what is model category.

Definition 9. A pre-model structure on C consists of three classes of arrows F, C, and W – the
fibrations, the cofibrations, and the weak equivalences – such that:

• W satisfies the 2-out-of-3 property
• (AC, F) and (C, AF) are two weak factorization systems,
where AC := C ∩W and AF := F ∩W.

The arrows of AC (resp. AF) are called the acyclic cofibrations (resp. acyclic fibrations).

Definition 10. A model category is a category equipped with a pre-model structure which is
complete (it has all small limits) and cocomplete (it has all small colimits).

The rest of this article is devoted to showing that there is a pre-model structure on the
category Type.

7. (AC,F) Weak Factorization System
The fibrant replacement allows us to define the first factorization system, given by homotopy
fibers, and weak equivalences. Our design choices are guided by the following definition of
fibrations.

Definition 11. A function f :A→ B is said to be a fibration if there exists a regularly fibrant type
family x : X. P such that f is a retract of π1 : (Σ x : X. P)→ X :

A Σ x. P A

B X B

f

id

π1 f

id

We write F the class of fibrations. The class of acyclic cofibrations is defined to be LLP(F) for the
moment, we will check that it coincides with C ∩W afterward.

Let us recall that for a map f :A→ B, its homotopy fiber in y : B is the type defined by:

fiberf y := Σ x :A. fx=B y

Then, every function f :A→ B factorizes through the fibers of its fibrant replacement:

A B

Σ y : B. fiberf (η y)

f

f ′
∼

π1

with f ′ := λ x :A. ( fx, η x, refl= (η ( fx))). We add the fibrant replacement so that the type family
fiberf is regularly fibrant (and thus fiberf ◦ η also).

Proposition 13 (valid in ∅ ctx). (LLP(F), F) is a weak factorization system on U.
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Proof. We have to check that:

• for all f , π ∈ F and f ′ ∈ LLP(F)
• LLP(F)↔ LLP(F)
• F ↔RLP(LLP(F))

The only two nontrivial points are that:

• for all f , f ′ ∈ LLP(F)
• RLP(LLP(F))⊆ F

We only give the proof of the first one. Many proofs of the following sections are similar, and they
all can be found in the formalization.

As the lifting property is stable under retracts, to show that f ′ ∈ LLP(F) we only have to solve
the following lifting problem:

A � x : X. P

� y : B. fiberf (η y) X

F

f ′ π1

G

γ

with x. P a regularly fibrant family.
The map γ is defined as the composition:

� y : B. fiberf (η y) � w. P{x :=G w} � x : X. P(id, α) β

where β(w, z) := (G w, z). To provide α, we need a map of type:

�(y : B) (x′ :A) (p : f x′ = η y). P
{
x :=G (y, x′, p)

}

Using the fibrancy rules of � and =, we can now do an induction on the fibrant replacement (P is
regularly fibrant and B if fibrant). Hence, we need

�(y : B) (x :A) (p : η ( fx)= η y). P
{
x :=G (y, η x, p)

}

Then, using the path induction principle given by the extension rule (Proposition 12), it becomes

�x :A. P{
x :=G ( fx, η x, refl= )

}

which is given by F. We see here that the extension rule is crucial to have the lifting. Remark also
that identity types are needed to have the commutation of the left triangle that would not hold
with path types.

7.1 Weak equivalences [Equivalences.v]
To define weak equivalences, we use HoTT equivalences. Let us recall that the predicate of being
an equivalence IsEquiv( f ) is defined to be:

�(g : B→A) (η : � x. g( fx)= x) (ε : � x. f (gx)= x). � x. apf (η x)= ε(gx)

In Orton and Pitts (2018a), Orton and Pitts use path types to define equivalences. Here, we
choose to use identity types because it implies less conversions between paths and identity types
in the following. The two types are logically equivalent but we do not know which one is more
meaningful.
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Definition 12. A map f :A→ B is a weak equivalence if f :A→ B is an equivalence:

W( f ) := IsEquiv f

Here, the fibrant replacement seems to play a role similar to geometric realization. In homotopy
theory, the usual model structure on simplicial sets has, for weak equivalences, the maps whose
geometric realization in Top are weak equivalences.

8. Pushouts and Cylinders [Cylinder.v]
For the second factorization system, we need cylinders, which are the dual of fibers. We define
cylinders from homotopy pushouts, so let us first define homotopy pushouts.

8.1 Pushout
In HoTT, homotopy pushouts are an instance of HITs. Recently, Coquand et al. gave the interpre-
tation of several HIT, including pushouts, in the CCHM model (Coquand et al. 2018). We replay
here their construction in light of the fibrant replacement.

Let us fix the following span of which we want to construct the pushout:

A C

B

f

g

The pushout of f and g is the following HIT:

HIT B �A C :=
| pol : B→ B �A C
| por : C → B �A C
| poq : �x :A. pol( fx)=B�AC por(gx)

Remark. The homotopy pushout should not be confused with the strict pushout given by a strict
quotient.

Now we want to define this HIT in ITT. The construction goes in two steps: first, we define a
“naive” strict quotient and then we take the fibrant replacement. Let PO0 be the following strict
quotient:

Quotient PO0 :=
| pol0 : B→ PO0
| por0 : C → PO0
| poq0 : A→ I → PO0
| poql : �x :A. poq0 x 0≡PO0 pol0( fx)
| poqr : �x :A. poq0 x 1≡PO0 por0(gx)

pol0 and por0 interpret pol and por, and poq0 x is a path from pol0( fx) to por0(gx). The end-
points agree with the strict equalities by which we quotient. We will write PO0_ind the eliminator
generated by the strict quotient.
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Unfortunately, this type is never fibrant and hence we take the fibrant replacement:

B �A C := PO0

pol : B→ B �A C := η ◦ pol0

por : C → B �A C := η ◦ por0

poq : �x :A. pol( fx)∼B�AC por(gx) := apη(poq0, poql, poqr)

Let us remark that poq is a path and not an inhabitant of an identity type. Hence, if we want to
recover an identity type, we have to apply paths2id. In general, the interaction between HIT and
identity types remains to be studied.

As in the case of the fibrant replacement, we can define the expected elimination principle from
the raw elimination principle PO0_ind.

Proposition 14. B �A C satisfies the following elimination principle:

w : B �A C 
 P 
H :RFib (w. P)

 pol′ : �b : B. P{

w := pol b
} 
 por′ : �c : C. P{

w := por c
}


 poq′ : �x :A. transport(P, poq x, pol′(f x))∼P(por(g x)) por′(g x)

 PO_ind(P, H, pol′, por′, poq′) : �w : B �A C. P w

PO_ind(P, H, pol′, por′, poq′) (pol b)�βη pol′ b

PO_ind(P, H, pol′, por′, poq′) (por c)�βη por′ c

Note that the transport in poq′ is a transport along a path.
Proof. The proof goes by induction on the fibrant replacement using repl_ind’ (P is regularly
fibrant) and then by induction on the quotient with PO0_ind. A two-dimensional Kan filler (in P)
is needed to complete the case of the poq0. See the formalization.

Remark. For the non-dependent eliminator, we have a strict computational rule on poq:

apPO_rec (P,H, pol′, por′, poq′) (poq x)≡ poq′ x

Even if we expect it, we do not know, at the time of writing, if a similar strict equality holds for the
dependent eliminator.

Pushout satisfies the following fibrancy rule.

Proposition 15. If x.A, x. B, x. C are regularly fibrant type families over X. Then for all maps
f : �x : X. A→ B and g : �x : X. A→ C , the type family given by the pushout x : X. B �A C is
regularly fibrant:


RFib(x.A) 
RFib(x. B) 
RFib(x. C)

RFib(x. B �A C)

This property is quite remarkable because, in the general case, the pointwise fibrant replace-
ment x.A has no hope to be regularly fibrant. However, it is the case for this particular family
x. PO0. The secret lies in a decomposition of regular fibrancy into degenerate fibrancy and trans-
port structure. This decomposition was discovered by Coquand et al. (2018). Cavallo and Harper
(2019) also use a similar decomposition to give a semantic to wide class of HITs in computational
cubical theory.
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Definition 13. A transport structure on a type family x :A. P is an inhabitant of the following type:
Trans(x. P) := � (e : OI) (a : I →A) (φ :Cof) (cst : φ → � i. Ia e≡ a i)

(p0 : P{x := a e}).Σ p1 : P{x := a !e}. �w. φ cst w !e # p0 ≡ p1
It means that there is a composition operation along all paths a which are constant on the face φ

considered.

Proposition 16. A type family x. P is regularly fibrant if and only if it is degenerately fibrant and
has a transport structure:

RFib(x. P) ↔ DFib(x. P) × Trans(x. P)

Proof. See Coquand et al. (2018).

Proposition 17. The fibrant replacement preserves the transport structure:
Trans(x. P) → Trans(x. P)

Proof. The following argument comes from Cavallo and Orton.5

This property is true for any endofunctor6 on types, that is to say, for any operator R on types
such that there is an operator:

FA,B : (A→ B)→ (RA→ RB)
with F idA ≡ idRA and F (g ◦ f )≡ F g ◦ F f . We have seen that such equalities hold for the fibrant
replacement.

The transport operation on P gives a map P{x := a e} → P{x := a !e}. By applying F, we get a
map R (P{x := a e} )→ R (P{x := a e} ). The fact that F preserves identity maps is enough to show
that it actually gives a transport structure on x. RP.

The pushout is degenerately fibrant (because of the fibrant replacement), hence it remains to
show that it has a transport structure.

Proposition 18. x. PO0 has a transport structure.

Proof. See Coquand et al. (2018) or the formalization in Cylinder.v.

8.2 Cone
For any type A, the cone of A is the following homotopy pushout:

A 1

A cone A
id

So we define cone A := A �A 1. It can also be seen directly as an HIT:
HIT cone A :=
| inc : A→ cone A
| point : cone A
| eq : �x :A. inc x=cone A point

The cone satisfies the following elimination principle:

w : cone A
 P 
H :RFib(w. P) 
 inc′ : �x :A. P{w := inc x}

 point′ : P{

w := point
} 
 eq′ : �x :A. transport (P, eq x, inc′ x)∼ point′


 cone_ind (P, H, inc′, point′, eq′) : �w : cone A. P w
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The cone enjoys the expected fibrancy rule RFib(x.A)→RFib(x. cone(A x)).

Proposition 19. A cone is always contractible. For any type A we have
Contr(cone A)

Proof. By induction with cone_ind.

8.3 Cylinder
At last, we define the mapping cylinder. Let f :A→ B be a map and y : B . The mapping cylinder
of f in y is

Cylf y := cone(�x :A. fx= y)

Then, the cylinder satisfies the following introduction and elimination rules:
top : �x :A. Cylf ( fx)

:= λx :A. inc(x, refl= ( fx))
base : �y : B. Cylf y

:= λy : B. point
cyleq : �x :A. top x∼Cyl ( fx) base( fx)

:= λx :A. eq (x, refl= ( fx))

y : B, w :Cylf y 
 P 
H :RFib2(y,w. P)

 top′ : �x :A. P{

y := fx, w := top x
} 
 base′ : �y : B. P{

w := base y
}


 cyleq′ : �x :A. transport (P, cyleq x, top′ x)∼ base′( fx)

 cyl_ind (P, H, top′, base′, cyleq′) : �(y : B) (w :Cylf y). P

Proposition 20. Let A and B be regularly fibrant families over X. Then , Cyl is regularly fibrant as
a three variables type family:

RFib3(x : X, f :A x→ B x, y : B x. Cylf y)

Last, as a cylinder is cone, all cylinders Cylf y are contractible.

9. (C,AF) Weak Factorization System [Model_structure.v]
We can now describe the second factorization system. Every function f factorizes as:

A B

� y : B. Cylf (η y)

f

top′ π1
∼

where top′ := λ x. ( fx, topf (η x)).
With respect to the factorization that Lumsdaine (2011) gave for the fibrant fragment, the

fibrant replacement is added. It is added so that the family y.Cylf (η y) is regularly fibrant.
The need for the contractibility of cylinders comes from the following characterization of

acyclic fibrations.

Proposition 21 (valid in ∅ ctx). Amap f :A→ B is an acyclic fibration (i.e. both a fibration and a
weak equivalence) if and only if there exists a regularly fibrant type family x : X. P with contractible
fibers (� x : X. Contr P) such that f is a retract of π1 : (Σ x : X. P)→ X :
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A Σ x. P A

B X B

f

id

π1 f

id

We write AF the class of acyclic fibrations. The class of cofibrations is defined as LLP(AF).

Remark 22. With this definition of cofibrancy, all objects A : U are cofibrant (in the sense that
the map ⊥ →A is a cofibration).

Proposition 23 (valid in ∅ ctx). ( LLP(AF), AF) is a weak factorization system on U.

9.1 (C,AF) factorization through partial elements [Other_facto.v]
In Cohen et al. (2017, Section 9.1), the authors propose another factorization as a cofibration
followed by an acyclic fibration. This factorization uses partial elements and does not make use of
cylinders.

Let f :A→ B be a function. Then, it factorizes as:

A B

� y : B. Tf y

f

true π1
∼

where Tf y := � x :�A. fx≡ y and true := λ x. ( f x, (�, λ _ . x), λ _ . refl≡ x).
Reusing the definitions of classes F (Definition 11) and C (Proposition 21), we can rederive the

Proposition 23.

Proposition 23′. ( LLP(AF), AF) is a weak factorization system on U.

Proof. We can check that:

(1) . y. Tf y is always a regularly fibrant family (even if A and B are not fibrant)
(2) . for all y : B, Tf y is contractible
(3) . true is a cofibration (i.e. lifts against all acyclic fibrations)

The point 2 is an adaptation of the fact that �A is always contractible. The point 3 uses the
characterization of acyclic fibrations of Remark 2.

The proof of 1 requires dependent conjunction in Cof. Cofibrancy of dependent conjunction
follows from axiom ax7 and proposition extensionality:

�(φ : P) (ψ : φ → P). cof φ → (� u. cof(ψ u))→ cof(∃ u : φ. ψ u)
We let the reader refer to the formalization to have the details of the proofs.

Let us remark that the proof of this proposition does not rely on the extension rule.

10. The Model Structure [Model_structure.v]
We check now that we have taken a correct characterization of acyclic fibrations.

Proposition 24 (valid in ∅ ctx). A map f :A→ B is in LLP(F) if and only if it is both a weak
equivalence and in LLP(AF).
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As a consequence, if we plug the two weak factorization systems together we have a pre-model
structure.

Theorem 25 (valid in ∅ ctx). There is a pre-model structure on U where:
• the weak equivalences are maps f such that IsEquiv f
• the fibrations are retracts of π1 : (� x : X. P)→ X with P regularly fibrant
• the cofibrations are maps which have the LLP with respect to acyclic fibrations
• the (AC,F) factorization of f is done through the homotopy fibers of f
• the (C,AF) factorization of f is done through the mapping cylinders of f .

We could also use factorization through partial elements (Section 9.1) for the (C,AF)
factorization.

Remark 26 (not formalized). � types, � types, and strict equality give all small limits and strict
quotients give small colimits. Hence, U is a model category.

10.1 Externalization
Through the interpretation in the CCHM model, the pre-model structure (defined at the level of
ITT, as in Definition 9) on U provides a pre-model structure (defined externally, as in standard
homotopy text books) on the category of cubical sets with connections �̂ (or any other presheaf
model of ITT).

Although we did not formally checked out the details, we conjecture that the pre-model struc-
ture onU gives an alternative description of Sattler’s model structure on the category �̂ (Gambino
and Sattler 2015; Sattler 2017) in the sense that the classes F, C, andW are the same.

10.2 Characterization of the classes
On the way of proving the previous theorem, we highlighted some characterizations of the four
classes F, C, AF, and AC.

The two factorization systems give prototypical examples of maps which are (acyclic) fibrations
and (acyclic) cofibrations. We proved that, in fact, all (acyclic) fibrations and (acyclic) cofibrations
arise as retracts, in a canonical sense, of such maps.

Proposition 27 (valid in ∅ ctx). Let A and B be arbitrary types and f :A→ B a map. Then, we
have

• f is a fibration if and only if there exists j : Σ y. fiberf (η y)→A such that f ◦ j≡ π1 and
j ◦ f ′ ≡ idA

• f is an acyclic fibration if and only if there exists j : Σ y. Cylf (η y)→A such that f ◦ j≡ π1
and j ◦ top′ ≡ idA

• f is a cofibration if and only if there exists j : B→ Σ y. Cylf (η y) such that j ◦ f ≡ top′ and
π1 ◦ j≡ idB

• f is an acyclic cofibration if and only if there exists j : B→ Σ y. fiberf (η y) such that j ◦ f ≡ f ′
and π1 ◦ j≡ idB

where f ′ is λ x. ( fx, η x, refl= (η ( fx))) and top′ is λ x. ( fx, topf (η x)). Diagrams are given in
Figure 5.
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Figure 5. Diagrammatic illustration of Proposition 27.

Proof. The forward implication is given by closure of the four classes under retract. The converse
implication is the standard retract argument.7

Gambino and Garner (2008) already gave the characterization of fibrations (in the fibrant case)
and call such maps type-theoretic normal isofibration.

Acyclic cofibrations have an even better description. As already noticed by Gambino and
Garner, they are the injective equivalences. We generalize their definition to encompass non-
fibrant types.

Proposition 28. Let A and B be arbitrary types and f :A→ B a map. Then, f is an acyclic cofi-
bration if and only if it is an injective equivalence, that is, if and only if there exists r : B→A
and

• θ : � x :A. r ( fx)≡ ηAx
• ε : � y : B. f (r y)= ηBy
• α : � x :A. strict2id (ap≡ f(θ x))= ε( fx).

where strict2id is the map x≡ y→ x= y.
The last condition means that ε( fx) is “identity-equal” to refl= modulo strict equality rewritings.

11. Formalization
We used the Coq proof assistant (Coq Development Team 2018) to simulate ITT. In this way, we
have been able to formalize all the results stated in ITT in this paper except the extension rule.

For this purpose, we have used:

• The Prop universe for P. Proof irrelevance and propositional extensionality are postulated
as axioms.

• The equality eq of Coq for the strict equality. It is typed in Prop.
• The usual inductive types of Coq.
• QITs are implemented with a private inductive type and an axiom. This is the (slightly
hacky) way HITs are for the moment implemented in Coq.

• The interval and the universe of cofibrant propositions together with the nine axioms are
postulated as Coq axioms. See Appendix C.

The paper and the formalization diverge a bit on the universes: there are à la Tarski in the former
while Coq’s universes are à la Russell.
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The beginning of our formalization is essentially a replay in Coq of Orton and Pitts’ Agda
formalization (Orton and Pitts 2018b). The formalization in Coq goes pretty well, the only painful
thing is to rewrite all strict equalities by hand. The advantage of Coq over Agda is that we can use
the rewrite tactic. On the other hand, Orton and Pitts used “rewrite rules” available in Agda to
add equalities of the path algebra structure (like “i∨ 0≡ i” . . . ) as definitional equality in Agda.
This simplifies the proofs by avoiding some explicit rewritings.

Let us have a quick look at some part of the formalization. The beginning of the definition of
the interval is as follows:

Fibrations are defined by the following record type:

The statement of the main theorem is very short:

And the statements of the characterizations of Section 10.2 look like this:

See also Figure 6 for an example of term defined using tactics.
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Figure 6. Excerpt of the formalization: transport for identity types.

Remark.We kept track of the uses of the extension rule, which is valid only in the empty context,
as carefully as possible. The extension rule is postulated as an axiom and every lemma depending
on it has been postfixed with __emptyctx. A mechanized check would require a proof assistant
supporting a modality, such as Agda-Flat (Licata et al. 2018).

The axioms on which the formalization is relying on can be obtained with the Coq command
Print Assumptions. This command crawls recursively the environment and looks for the ax-
ioms or admitted lemmas on which a definition is relying. Its output for the Theorem 25 and
the four characterizations is given in Appendix C. The first group is the set of assumptions on
the equality of the meta-theory (Propext, Proof Irrelevance, and Funext). The second group is the
set of axioms used to model ITT. The third group is the set of axioms used to implement strict
quotient types ( for the fibrant replacement and homotopy pushouts). The last assumption is the
extension rule (Proposition 11) and is only valid in the empty context (see the remark above).

12. Conclusion and Future Work
ITT, an extension of the internal language developed by Orton and Pitts (2018a), has been used to
show internally that there is a pre-model structure on the universe of all types. For this work,
we have extended the internal language of Orton and Pitts with a degenerate fibrant replace-
ment, which is definable by a QIT ( for the strict equality). Our results have been formalized in
the Coq proof assistant and, as a by product, we provide a formalization of fibrancy of pushouts,
as developed by Coquand et al. (2018).

There are several lines for future work. First, the comparison with the pre-model structure
(externally) defined by Sattler (2017) remains to be worked out. Our model structure externalizes
as a pre-model structure on the category of cubical sets with connections which seems to corre-
spond to Sattler’s one, although we have not worked out the details. The extension rule remains
to be better understood: is it valid in an non-empty context? Our formalization in Coq does not
check that results only valid in the empty context (such as the extension rule) are not used in
another context. A possible way to remedy this limitation is to use Andrea Vezzosi’s Agda-Flat
as in Licata et al. (2018). About weak factorization systems, one may also wonder how the two
(C,AF) weak factorization systems that we have presented relate to each other. Then, functorial-
ity or algebraicity of our factorization systems also remains to be investigated. Finally, our work
could be generalized to other cube categories using other internal languages, such as in Angiuli
et al. (2019).
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Notes
1 The category of Kan simplicial sets is a model of well-behaved topological spaces.
2 Impredicativity does not seem really necessary in our context (see e.g. Licata et al. 2018) but we choose to stick to Coq
metatheory.
3 As opposed to degenerately fibrant, it has nothing to do with regularity in the sense of “transport along reflexivity is
definitionally the identity”.
4 It comes from degeneracies, see the discussion in Section 4.1.
5 https://github.com/IanOrton/cubical-topos-experiments/blob/master/src/hcomp-trans.agda.
6 In fact, we do not even need that fact that the functor preserves composition, only that it preserves identity maps.
7 https://ncatlab.org/nlab/show/retract+argument
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Appendix A. Prop Universe for Martin-Löf type Theory

� 
A �, x :A
 P : P
� 
 ∀ x :A. P : P ∀ x :A. P �βη �x :A. P

� 
A �, x :A
 P : P
� 
 ∃ x :A. P : P

� 
 t :A � 
 u : P{x := t}
� 
 〈t, u〉 : ∃ x :A. P

� 
 R : P � 
 f : �x :A. P → R
� 
 ∃−elim(R, f ) : ∃ x :A. P → R

� 
 P, Q : P
� 
 P ∧Q : P

� 
 t : P � 
 u :Q
� 
 (t, u) : P ∧Q

� 
 t : P ∧Q
� 
 π1(t) : P

� 
 t : P ∧Q
� 
 π2(t) :Q π1(t, t′)�βη t

π2(t, t′)�βη t′

� 
 P, Q : P
� 
 P ∨Q : P

� 
 t : P
� 
 inl t : P ∨Q

� 
 t :Q
� 
 inr t : P ∨Q

� 
 R : P � 
 f : P → R � 
 f :Q→ R
� 
 ∨−elim(R, f , g) : P ∨Q→ R

∨ −elim(R, f , g) (inl t)�βη f t ∨ −elim(R, f , g) (inr t)�βη g t

� 

� 
 ⊥ : P

� 
A
� 
 ⊥−elim : ⊥ →A

� 

� 
 � : P

� 

� 
 tt : �

Remark. The dependent eliminators for ∃, ∧, and ∨ can be recovered with proof irrelevance.

The logical equivalence of two propositions is the proposition defined by:

P ⇔Q := (P →Q)∧ (Q→ P).

Appendix B. Inconsistency of Regular Fibrant Replacement [Inconsistency.v]
We demonstrate here why a fibrant replacement for full fibrancy would be inconsistent.We replay
for this the proof given on the nLab (Homotopy Type Theory wiki 2014), given there in the context
of Homotopy Type System.
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Let us assume that for any (open) type, there is a fibrant replacement which is fully fibrant and
let us derive a contradiction. In particular, for any fibrant family x. P, the family x. P if regularly
fibrant:

�, x :A
 P
RFib(x :A. P)

Let i. P be the family over the interval given by:

P := λ i : I. i≡ 1

The family i. P has been chosen such that P 0∼= ⊥ and P 1∼= �. There is � := η ( refl≡ 1) an ele-
ment of type P 1. Because the family i. P i is regularly fibrant, we can transport � along the path
between 1 and 0 and get an element of P 0. But there is a map P 0→ ⊥ which is induced by the
map P 0→ ⊥ (⊥ is fibrant), hence a contradiction.

Appendix C. Axioms of the Formalization
The following is the (reordered) output of the Coq command Print Assumptions applied to
the Theorem 25 and the characterizations of Proposition 27.

Axioms about equality in Martin-Löf type theory

Axioms about ITT
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Axioms about the QITs ( fibrant replacement and pushout)
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Extension rule

Remark. Let us remark that our formalization does not use connected (ax1), cof_∀ (ax8), and
strictness (ax9) axioms. They are however hidden behind the extension rule.
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