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Jets and differential linear logic

James Wallbridge

Abstract

We prove that the category of vector bundles over a fixed smooth manifold and its corresponding
category of convenient modules are models for intuitionistic differential linear logic. The exponential
modality is modelled by composing the jet comonad, whose Kleisli category has linear differential
operators as morphisms, with the more familiar distributional comonad, whose Kleisli category has
smooth maps as morphisms. Combining the two comonads gives a new interpretation of the semantics
of differential linear logic where the Kleisli morphisms are smooth local functionals, or equivalently,
smooth partial differential operators, and the codereliction map induces the functional derivative. This
points towards a logic and hence computational theory of non-linear partial differential equations and
their solutions based on variational calculus.
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1 Introduction

In this paper we study differential linear logic (Ehrhard, 2018) through the lens of the category of
vector bundles over a smooth manifold. We prove that a number of categories arising from the category
of vector bundles are models for intuitionistic differential linear logic. This is part of a larger project
aimed at understanding the interaction between differentiable programming, based on differential
λ-calculus (Ehrhard and Regnier, 2003), and differential linear logic with a view towards extending
these concepts to a language of non-linear partial differential equations. Since morphisms come from
proofs in differential linear logic, and proofs are identified with programs in differential λ-calculus (via
the Curry-Howard correspondence), the denotational semantics here provide tools for differentiable
programming.

From a machine learning perspective, the work here suggests the possibility of a non-linear “dif-
ferential equation search” using gradient based optimization given some input and output boundary
conditions in analogy with continuous “function search”, for example, searching among a subspace of
the space of functional programs to find a program satisfying given constraints. A particular case of
the latter is neural architecture search given input-output data pairs. This data driven programming
has recently received attention in relation to the optimization of neural networks with various ap-
proaches to making the constituent functional blocks “smooth” (see (Graves et al., 2016; Zoph and Le,
2017; Pham et al., 2018) for selected works). More recently, such tools have been used to solve cer-
tain partial differential equations with initial steps towards equation search (see (Lagaris et al., 1998;
Weinan et al., 2017; Long et al., 2019) for selected works).

A more foundational approach to these questions, in the spirit of this paper, was recently proposed
in (Kerjean, 2018). With an eye towards non-linear phenomenon arising in a diverse range of scientific
applications, we move beyond vector spaces to families of vector spaces parametrized by a smooth
manifold.

There exist a number of approaches to the categorical semantics of differential linear logic in the
literature. These include Köthe sequence spaces (Ehrhard, 2002), finiteness spaces (Ehrhard, 2005),
convenient vector spaces (Blute et al., 2012) and vector spaces themselves (Clift and Murfet, 2017).
Our approach begins by considering a smooth generalization of (Clift and Murfet, 2017) where our
underlying objects are vector spaces parametrized by a fixed base manifold M . More precisely, to a
formula A in differential linear logic, we associate the sheaf E of sections of a vector bundle E on M .
When E is the trivial line bundle, then the associated denotation is simply the sheaf C ∞

M of smooth
functions on M .

We prove that there are two natural comonads on the category of vector bundles to model the
exponential modality of linear logic. Firstly, there is the jet comonad !j introduced in (Marvan, 1986)
which sends a sheaf E to the sheaf !jE of infinite jets of local sections of E. An element of the
exponentiation of a formula is an equivalence class of sections of a vector bundle with the same Taylor
expansion at each point of M . The idea of a syntactic Taylor expansion in linear logic and λ-calculus
through the exponential connective (Ehrhard and Regnier, 2003, 2008) is therefore explicity present
here in the semantics of vector bundles. Working in the general setting of infinite jets, as opposed
to r-jets for a fixed r ∈ N, forces us to work in the enlarged category of pro-ind vector bundles
(Güneysu and Pflaum, 2017). The objects in this category are (co)filtered objects in the category of
vector bundles on M .

In fact, to leverage better formal and functional analytic properties of vector bundles, especially
in relation to dual objects, we move from pro-ind vector bundles to the category of convenient C ∞

M -
modules. These are C ∞

M -module objects in the category of sheaves of convenient vector spaces on
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M . Sheaves of convenient vector spaces (see (Frölicher and Kriegl, 1988; Kriegl and Michor, 1997) for
the theory of convenient spaces) are a class of sheaves of infinite dimensional vector spaces which are
general enough to include sections of an arbitrary vector bundle on a smooth manifold but which also
retain excellent formal properties. For example, the category of such objects is complete, cocomplete
and closed symmetric monoidal. The jet comonad !j descends to this category.

The jet construction makes direct contact with the theory of linear differential operators and
linear partial differential equations which enables us to understand these concepts within the setting
of differential linear logic. The Kleisli category for the jet comonad is the category of convenient vector
bundles E on M and whose morphisms !jE → E ′ are linear differential operators. This category is
equivalent to the category of infinitely prolongated linear partial differential equations with M as its
manifold of independent variables. Equivalently, as is always the case for the Kleisli category of a
comonad, the objects are cofree !j-coalgebras. We prove that the category of convenient C ∞

M -modules
with the jet comonad is a symmetric monoidal storage category in the sense of (Blute et al., 2019).

The second comonad we consider will be called the distributional comonad. Providing a symmetric
monoidal storage category, which is moreover additive in an appropriate sense, with a codereliction map
which models the differential in the context of linear logic, defines a model for intuitionistic differential
linear logic. It has been shown in (Blute et al., 2012) that the category of convenient vector spaces is
a model for intuitionistic differential linear logic where the comonad is the map sending a convenient
vector space to the Mackey-closure of the linear span of its Dirac distributions. When the convenient
vector space is finite dimensional, this is simply the space of distributions with compact support. We
extend this result to the category of convenient C ∞

M -modules and continuous linear morphisms.

The Kleisli category of the distributional comonad !δ is the category of convenient C ∞
M -modules

and smooth morphisms. The codereliction

d̄δ
E : E →!δE

sends a section s to limh→0
δhs−δ0

h
. The differential of a smooth functional F : E → E ′ is then the

linear map

dF : E ⊸ (E ⇒ E ′)

sending (s, t) to the functional derivative dF (s, t) of s in the direction t. A familiar example is when
E and E ′ are both the sheaf C ∞

M of smooth functions. Then F is an element of the continuous linear
dual (C ∞

M )⊥. Using the canonical evaluation pairing, this sheaf is isomorphic to the sheaf of compactly
supported distributional densities on M .

Combining the two comonads !j and !δ, which are proved to compose in the appropriate sense,
becomes quite powerful. We prove that the category of convenient C ∞

M -modules with the composite
comonad !δ◦!j is a model for intuitionistic differential linear logic. The codereliction

d̄
jδ
E : E →!jδE

sends a section s to limh→0
δh(j(s))−δ0

h
. In this case we have a logic of smooth local functionals where a

functional is local if and only if the value of its variables at a point x in M depends only on its infinite
jet at that point. These functionals are also known as Lagrangians and the functional derivative of a
Lagrangian L encodes the Euler-Lagrange equations (plus a total derivative). The functional equation
dL = 0 then encodes the space of solutions to the equations of motion. Morphisms !δ!jE → E ′

from the Kleisli category are interpreted as smooth differential operators. The interaction between
these comonads shows how to pass between linear and non-linear objects. More work is needed to
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understand the logic rules underlying this structure. For linear partial differential equations with
constant coefficients, this has been explored in (Kerjean, 2018).

We end the paper by discussing how the above structure arises in the case where our vector bundle
denotation is the trivial line bundle and our local functional is the Lagrangian for a free or self-
interacting scalar field on an aribitrary Riemannian manifold. In this case its convenient C ∞

M -module
is the sheaf of smooth functions on the manifold and the variational calculus leads to the space of
solutions to the scalar field equations.

Remark 1.1. Most categories arising in linear logic (Girard, 1987), objects of which include function
spaces, are non-reflexive, ie. there is no canonical isomorphism between an object and its double dual.
This is also the case in our examples. In (Girard, 1999), Girard explored the denotational semantics
of classical linear logic using the notion of coherent Banach space. Adding coherence solves the issue
of obtaining a monoidal category of reflexive objects. However, one of the shortcomings of that model
is a natural closed structure. Another way of saying this is that coherent Banach spaces do not form
a ∗-autonomous category. Moreover, one cannot take the ∗-autonomous completion of the category
of Banach spaces since they themselves do not form a closed symmetric monoidal category. One
can extend our results to the setting of classical differential linear logic by taking the ∗-autonomous
completion of the closed symmetric monoidal category of convenient C ∞

M -modules. This completion,
whose origins essentially go back to Mackey (Mackey, 1945), is called the Chu-construction (Barr,
1991) and is the universal way of overcoming the problem of reflexivity. This remedy pairs each space
with a subspace of its continuous linear dual in order to obtain the required canonical isomorphism
E ≃ E ⊥⊥.

Relation to other work

We consider vector bundles over a fixed base manifold M . In the case of the distributional comonad
with M = ∗, our results correspond to those of (Blute et al., 2012), ie. the category of convenient
C ∞

M -modules reduces to the category of convenient vector spaces and the models for intuitionistic
differential linear logic agree.

When introducing the jet comonad, we have an interpretation of differential operators and linear
partial differential equations within the logic. Similar structure in the form of linear partial differential
operators with constant coefficients has recently been studied in (Kerjean, 2018) in the case where
M = ∗ and the fiber over ∗ is Euclidean space R

n.

Combining the two comonads introduces a logical interpretation of non-linear differential oper-
ators. A more general extension to non-linear cases, including the full theory of non-linear partial
differential equations, involves considering morphisms of fibered manifolds. To obtain a closed sym-
metric monoidal category in this setting requires moving outside the category of fibered manifolds and
taking advantage of topos-theoretic and homotopical methods. We will not consider this extension
here. However, see (Khavkine and Schreiber, 2017) for the theory of non-linear partial differential
equations in more general synthetic categories.
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2 Models for intuitionistic differential linear logic

In this section we recall what it means for a category to be a model for intuitionistic differential
linear logic (Ehrhard, 2018). To motivate such a definition, we recall some of its basic features. We
emphasise that this is not a complete presentation of the logic. We merely highlight some properties
in order to orient the reader towards the categorical definition at the end of this section.

The syntax for intuitionistic linear logic involves the connectives {×, ⊗, !,⊸} with formulas A

generated by expressions of the form

A ::= ⊤ | 1 | A × B | A ⊗ B | A ⊸ B | !A

where ⊤ and 1 are units for × and ⊗ respectively.
Let Γ and Θ be a (possibly empty) sequence of formulas A1, . . . , An. The connectives satisfy

various rules, which can be split between logic rules and structural rules. The logic rules include,
among others, the rules

Γ, A1, A2, Θ ⊢ B

Γ, A1 × A2, Θ ⊢ B
×

Γ, A1, A2, Θ ⊢ B

Γ, A1 ⊗ A2, Θ ⊢ B
⊗

Γ, A ⊢ B

Γ ⊢ A ⊸ B
⊸

for the additive, multiplicative and implicative connectives. The structural rules are the exchange
rule, identity rule, contraction rule, weakening rule and cut rule.

Differential linear logic symmetrizes the contraction, weakening and dereliction rules

Γ, !A, !A, Θ ⊢ B

Γ, !A, Θ ⊢ B
c

Γ, Θ ⊢ B

Γ, !A, Θ ⊢ B
w

Γ, A, Θ ⊢ B

Γ, !A, Θ ⊢ B
d

for the exponential of linear logic, by adding cocontraction, coweakening and codereliction rules

Γ, !A, Θ ⊢ B

Γ, !A, !A, Θ ⊢ B
c̄

Γ, !A, Θ ⊢ B

Γ, Θ ⊢ B
w̄

Γ, !A, Θ ⊢ B

Γ, A, Θ ⊢ B
d̄

respectively. This is a very natural thing to do in light of the symmetry inherent in the full classical
linear logic (Girard, 1987) of which intuitionistic linear logic is a restriction thereof.

Given a sequent Γ ⊢ B, a proof of Γ ⊢ B is a series of sequents, beginning with basic axioms, and
following various deduction rules which terminate with the sequent Γ ⊢ B. Two proofs are said to be
equivalent if they are equivalent under cut elimination.

The goal of denotational semantics is to construct a category, a categorical semantics of differential
linear logic in our case, faithfully reflecting this structure. See (Mellies, 2009) for an overview of the
subject. More generally, we should allow multicategories which, like categories, consist of a collection
of objects, but allow multimorphisms from a finite sequence of objects to a single target object. If
we denote by JAK the denotation of a formula A, then JAK is an object of the multicategory whilst
JΓK → JBK are multimorphisms for some collection of formulas Γ (Hyland and De Paiva, 1993). More
precisely, the equivalence class of proofs of the sequent Γ ⊢ B under cut-elimination is assigned to the
morphism.

The logical rules for each operation should follow from universal properties in the multicategory.
Working in a multicategory ensures that the connectives, together with their complete coherence data,
satisfy a universal property. For example, the tensor product in a general monoidal category is not
universal. It also illuminates the interpretation of the structural rules categorically. Therefore, the
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discussion above should suggest, at minimum, the structure of a multicategory where the additive
connective corresponds to the product and the multiplicative connective to tensor product.

Forgoing some generality, we will work directly in a symmetric monoidal category C with finite
products where the coherence data is contained in explicit proofs. Note that we deliberately stay close
to the notation used for connectives in linear algebra and make no distinction between the connectives
in logic and those in the semantic model. It should be clear from the context if we are referring to a
multiplicative or additive product of formulas in logic or of objects in C.

Before defining what we mean by a model for differential linear logic C, we give an informal
motivation for some of the various other structure on C which makes up the definition. The denotation
of implication in differential linear logic will correspond to an internal hom object

JA ⊸ BK = JAK ⊸ JBK := Hom(JAK, JBK)

making C a closed symmetric monoidal category with finite products. The contraction and weakening
rules show that exponentiated objects J!AK in our category should satisfy coalgebraic rules, whilst the
cocontraction and coweakening rules shows that algebraic rules should be satisfied. In other words,
we enter the realm of bialgebras in the categorical semantics of the exponentiated formulas.

Finally, if we think of maps JAK → JBK as “linear”, then the map

i : Hom(JAK, JBK) → Hom(J!AK, JBK)

given by composition with the dereliction map d : J!AK → JAK should be thought of as the inclusion of
linear maps into “non-linear” maps. Correspondingly, composition with the codereliction d̄ : JAK →
J!AK induces a map

D : Hom(J!AK, JBK) → Hom(JAK, JBK)

which is interpreted as a linearization map, ie. a differential operator. Then D[f ] is the linear
“Jacobian” transformation. The codereliction should satisfy conditions for D to act like a differential
operator, for example, satisfying the chain rule.

We now make this discussion more formal. In doing so, we drop the bracket notation for the
denotation of a formula for the remainder of this section. The following is just a rewriting of the
conditions found in Section 7 of (Blute et al., 2019) for a symmetric monoidal category with finite
products to be a monoidal storage category (also called a (new) Seely category in the literature)
(Bierman, 1995; Mellies, 2009; Blute et al., 2009).

Definition 2.1. Let (C, ⊗, 1) be a symmetric monoidal category with finite products (×, ∗). A storage
comonad on C is a comonad ! = (!, µ, ǫ) on C, where µ :! →!! is the comultiplication and ǫ :! → idC is
the counit, such that :

1. For all A ∈ C, the object !A is a cocommutative comonoid object in C with comultiplication
cA :!A →!A⊗!A and counit eA :!A → 1 which are both natural transformations.

2. For all A ∈ C, the map µA :!A →!!A is a morphism of comonoid objects in C.

3. For all A, B ∈ C, the induced maps e :!(∗) → 1 and

(
!(π1)⊗!(π2)

)
◦ cA×B :!(A × B) →!A⊗!B

are isomorphisms for the projection maps (πi)i∈{1,2}.
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The isomorphisms in Condition 3 of Definition 2.1 are called Seely isomorphisms.

Definition 2.2. A symmetric monoidal storage category is a symmetric monoidal category with finite
products and a storage comonad.

Some models of logic can be endowed with n linear exponential comonads for some n ∈ N. To
compose comonads, we require extra structure for the composite to remain a comonad. When n = 2,
we have the following definition from (Beck, 1969).

Definition 2.3. Let !1 = (!1, µ1, ǫ1) and !2 = (!2, µ2, ǫ2) be two comonads on a category C. Then
a distributive law of !1 over !2 is a natural transformation λ :!2◦!1 →!1◦!2 such that the following
diagrams

!2◦!1◦!1 !1◦!2◦!1 !1◦!1◦!2

!2◦!1 !1◦!2

!2◦!2◦!1 !2◦!1◦!2 !1◦!2◦!2

λ◦!1 !1◦λ

!2◦µ1

λ

µ2◦!1

µ1◦!2

!1◦µ2

!2◦λ λ◦!2

!1

!2◦!1 !1◦!2

!2

ǫ2◦!1

!2◦ǫ1

λ

!1◦ǫ2

ǫ1◦!2

commute in C.

Let !1 and !2 be endofunctors on C. To simplify notation, set !12 =!2◦!1. If !1 and !2 are comonads
and λ a distributive law of !1 over !2, then there exists a unique composite comonad !12 = (!12, µ12, ǫ12)
where

µ12 :!12
µ2◦µ1

−−−−→!22◦!11
!2◦λ◦!1−−−−→!12◦!12

is the comultiplication and

ǫ12 :!12
ǫ2◦ǫ1

−−−→ idC

the counit. Note that the map λ is left implicit in the notation for the composite comonad !12. The
distributive law λ lifts to a morphism of comonads if the diagrams

!12 !21

!12◦!12 !21◦!21

µ12

λ

µ21

λ◦λ

!12 !21

idC

ǫ12

λ

ǫ21

commute in C. If the distributive law is an isomorphism, then it is an isomorphism of comonads.

The following gives us the conditions on a category C for a composite comonad on C to be a storage
comonad.

Lemma 2.4. Let C be a symmetric monoidal category with finite products. If !1 is a product preserving
comonad, !2 a storage comonad and λ a distributive law of !1 over !2 on C, then the composite comonad
!12 is a storage comonad on C.

Proof. From the conditions in the lemma, let !12 be the unique composite comonad. Consider the
storage comonad !2 acting on the object !1A. Then the object !12A is clearly a cocommutative comonoid
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object in C with comultiplication c12
A :!12A →!12A⊗!12A and counit e12

A :!12A → 1, and µ12
A :!12A →

!12◦!12A a morphism of comonads in C. The Seely isomorphisms follow from the commutative diagrams

!12(A × B) !12(A × B)⊗!12(A × B)

!2(!1A×!1B) !12A⊗!12B

∼

c12
A×B

!12(π1)⊗!12(π2)

∼

!12(∗) 1

!2(∗)

∼

e

∼

owing to the fact that !1 preserves finite products, and !2 is a storage comonad satisfying the Seely
isomorphisms, respectively.

Since many of the categories arising in applications are locally presentable (Adámek and Rosický,
1994), including our own, it is useful to include here another characterization of a symmetric monoidal
storage category.

Proposition 2.5. Let C be a locally presentable strong symmetric monoidal category with finite prod-
ucts. Then C is endowed with a storage comonad if and only if there exists a locally presentable
cartesian category D and a colimit preserving symmetric monoidal functor L : D → C which is bijec-
tive on objects.

Proof. (⇐) By the adjoint functor theorem, the functor L admits a right adjoint R : C → D and
since L is strong symmetric monoidal then R is lax symmetric monoidal. Thus L ⊣ R defines a
linear-non-linear adjunction in the sense of (Mellies, 2009). Since L is moreover bijective on objects,
by Proposition 25 of loc.cit, the pair (C, ! := L ◦ R) define a symmetric monoidal storage category.
(⇒) This follows from Proposition 24 of loc.cit..

The category D in Proposition 2.5 is isomorphic to the Kleisli category C!. In the parlance of
(Mellies, 2009; Benton, 1994), we have a linear-non-linear adjunction which takes the form

C! C

L

R

for the comonad ! = L ◦ R on C.
We need to introduce one more piece of structure which is key to interpreting a model for differential

linear logic as a differential category (Blute et al., 2006), ie. a structure enabling one to “differentiate”
morphisms. We will call a symmetric monoidal category (C, ⊗) a CMon-enriched symmetric monoidal
category if it is enriched over the monoidal category (CMon, +) of commutative monoids such that
the products are compatible in the sense that (f + g) ⊗ h = f ⊗ h + g ⊗ h and 0 ⊗ h = 0 for zero
morphisms 0.

Definition 2.6. A CMon-enriched symmetric monoidal storage category1 is a symmetric monoidal
storage category which is also a CMon-enriched symmetric monoidal category.

By Theorem 7.4 of (Blute et al., 2019), CMon-enriched symmetric monoidal storage categories have
finite biproducts and an additive bialgebra modality. So in addition to the cocommutative coalgebra
(!A, cA, eA), we have a commutative monoid object (!A, c̄A, ēA) for all A ∈ C with multiplication
c̄A :!A⊗!A →!A and unit ēA : 1 →!A. The categorical analogue of the codereliction rule is then the
following.

1These categories are called additive monoidal storage categories in (Blute et al., 2006, 2019). We have decided to
use the above more descriptive terminology and retain the standard use of additivity (Mac Lane, 1971).
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Definition 2.7. Let (C, !) be a symmetric monoidal storage category which is also a CMon-enriched
category. A natural transformation

d̄ : idC →!

is called a codereliction if it satisfies the rules :

• (Constant rule) eA ◦ d̄A = 0 : A → 1.

• (Linear rule) ǫA ◦ d̄A = idA : A → A.

• (Product rule) cA ◦ d̄A = d̄A ⊗ ēA + ēA ⊗ d̄A : A →!A⊗!A.

• (Chain rule) µA ◦ c̄A ◦ (d̄A ⊗ id!A) = c̄!A ◦ (d̄!A ⊗ µA) ◦ (c̄A ⊗ id!A) ◦ (d̄A ⊗ cA) : A⊗!A →!!A.

We now state the main overarching definition of this paper.

Definition 2.8. A model for intuitionistic differential linear logic is a CMon-enriched symmetric
monoidal storage category with a codereliction which is also a closed symmetric monoidal category.

One often finds the notion of a deriving transformation (Ehrhard, 2002; Blute et al., 2006) in place
of a codereliction map in studies of differential categories. Every codereliction induces a deriving
transformation. Furthermore, these two structures are equivalent on a CMon-enriched symmetric
monoidal storage category by combining Theorem 6 and Theorem 3 of (Blute et al., 2019). The
deriving transformation associated to the codereliction d̄A is given by the composition

∂A :!A ⊗ A
id!A⊗d̄A−−−−−→!A⊗!A

c̄A−→!A

in C. Then for any morphism f :!A → B in C, the composite map

df := f ◦ ∂A :!A ⊗ A → B

will represent the derivative of f in C.

We define the n-fold derivative by induction : we set ∂
0
A = id!A and

∂
n+1
A := ∂A ◦ (∂

n
A ⊗ idA) :!A ⊗ A⊗n →!A

and define
dnf := f ◦ ∂

n
A :!A ⊗ A⊗n → B

in C. The notation for intuitionistic implication A ⇒ B :=!A ⊸ B is now revealing since, by
adjunction, the linear differential operator dn is given by

dn : (A ⇒ B) → (A⊗n
⊸ (A ⇒ B))

and should be thought of as sending a “non-linear” morphism f to a “multi-linear” morphism dnf :
A⊗n → (A ⇒ B). The basic example is the following.

Example 2.9. Given a smooth function f : Rn → R
m in the category of vector spaces over R, we

have the linear morphism
df := f ◦ ∂Rn : Rn → (Rn ⇒ R

m)

given by df(x)(y) = dxf(y) = (Jxf)y where Jxf is the Jacobian of f at x, ie. df(x)(y) is the derivative
of f at x in the direction y. This satisfies the chain rule

dx(g ◦ f) = df(x)(g) ◦ dx(f)

in addition to other basic properties of differentiation contained in the definition of a codereliction.
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In the following, Example 2.9 will be generalized to the case where f is a section of an arbitrary
vector bundle over a smooth manifold M from the point of view of differential linear logic. When M

is a point ∗ and the fibers are all of the form R
n for some n ∈ N, we recover the simple example above.

3 Vector bundles and the jet comonad

We will henceforth work over the field R of real numbers and fix a smooth n-dimensional manifold M

over R for the remainder of the article.
We consider the geometric approach to the theory of partial differential equations which begins

with the study of jet bundles (Saunders, 1989). The r-jet of a function f : M → R at a point x of M

can be thought of as the coordinate-free Taylor polynomial

(jr
xf)(z) : f(x) + f ′(x)z + . . . +

1

r!
f (r)(x)zr

for a formal variable z. We go beyond functions f , interpreted as sections of the trivial vector bundle
M × R → M , and consider local sections of a general vector bundle in this paper. The jet bundle
associated to a vector bundle is itself a vector bundle whose coordinates represent the derivatives of
the fiber coordinates.

More precisely, let VBun(M) denote the category of finite rank vector bundles and π : E → M an
object in VBun(M). To the vector bundle E, we associate its vector bundle πr : Jr(E) → M of r-jets
of local sections. For a local section s at x ∈ M , its r-jet is denoted jr

x(s). Two sections are in the
equivalence class jr

x(s) if they have the same rth order Taylor expansion at x.
Consider the sheaf C ∞

M of smooth functions on M and its category Mod(C ∞
M ) of modules. Then

the functor VBun(M) → Mod(C ∞
M ) sending a vector bundle E to its sheaf of sections E := Γ(E) is

fully faithful with essential image the category V(M) of locally free sheaves of finite rank. We also
refer to objects in this equivalent category as vector bundles on M .

The category V(M) is a symmetric monoidal category in two ways. Firstly, via the direct sum
E ⊕ E ′ of sheaves, and secondly, via the tensor product E ⊗C ∞

M
E ′ of sheaves (Serre, 1955). We have

canonical isomorphisms
E ⊗C ∞

M

⊕

i

E ′
i ≃

⊕

i

(E ⊗C ∞

M
E ′

i )

showing that the tensor product distributes over coproducts. If we denote by Hom(E , E ′) the sheaf of
morphisms between E and E ′ which sends U to HomC ∞

M
|U (E |U , E ′|U ), then there exists an isomorphism

HomC ∞

M
(F ⊗C ∞

M
E , E ′) ≃ HomC ∞

M
(F , Hom(E , E ′))

which makes the category of vector bundles (V(M), ⊗, C ∞
M ) a closed additive symmetric monoidal

category for the tensor product. We will also be concerned with the cocartesian monoidal structure
(V(M), ⊕, 0) where 0 is the constant sheaf with value {0} which is a zero object of V(M). We have
an isomorphism

E ⊕ E ′ ≃ E × E ′

of sheaves.
Let J r(E ) denote the sheaf of sections of Jr(E) on M . Given a section s of πr|U , the r-jet

prolongation of s is the smooth section

jr(s) : U → Jr(E)

10



of πr such that jr(s)(x) = jr
x(s) for all x in U ⊆ M . Then jr : E → J r(E ) is a morphism of sheaves of

sets. Consider the endofunctor !jr : V(M) → V(M) sending E to J r(E ) and a morphism f : E → E ′

to its r-jet prolongation J r(f) : J r(E ) → J r(E ′) which elementwise sends jr(s) to jr(f ◦ s). We
will often make the abuse of writing s ∈ E for a local section in E |U .

Recall that a category I is said to be cofiltered (Artin et al., 1972) if it is non-empty; for any pair
of objects i and j in I, there exists an object k together with morphisms k → i and k → j; and for
every pair of morphisms f and g with the same source and target, there exists a morphism h such that
f◦h = g◦h. A cofiltered diagram in a category C is a functor X : I → C indexed by a cofiltered category.
The category Pro(C) of pro-objects in C has cofiltered diagrams in C as objects, and for two objects
X : I → C and Y : I ′ → C, morphisms defined by HomPro(C)(X, Y ) := limi′∈I′colimi∈I Hom(Xi, Yi′).

Let E be a vector bundle on M . We denote by

J (E ) = “lim”
r∈N

(J r(E ))

the pro-object

· · · → J r+1(E )
πr+1,r
−−−−→ J r(E ) → · · · → J 1(E )

π1,0
−−→ J 0(E ) = E

in the category V(M) of vector bundles on M . Here πr+1,r : J r+1(E ) → J r(E ) is the canonical
projection.

Given a pro-vector bundle E : I → V(M), the infinite jet bundle of E is the pro-object J (E ) :
N

op ×I → V(M) given by “lim”r,i(J
r(Ei)) in V(M). Then the infinite jet prolongation j : E → J (E )

lifts to a morphism of pro-sheaves. We have an induced endofunctor !j : Pro(V(M)) → Pro(V(M))
sending E to J (E ) induced from infinite prolongation.

The dual of a pro-object in the category V(M) of vector bundles is an ind-object. The category of
ind-objects in V(M) will be denoted Ind(V(M)) = Pro(V(M)op)op. If E is a vector bundle, then the
dual J (E )⊥ := HomC ∞

M
(J (E ), C ∞

M ) is an ind-object in V(M). Here HomC ∞

M
denotes the sheaf of

continuous linear maps. When E is an ind-object in V(M), then J (E ) is a pro-ind-object in V(M).

Definition 3.1. A pro-ind vector bundle is an object in the category PI(M) := Pro(Ind(V(M))) of
pro-ind-objects in V(M).

We will often identify a vector bundle with its image under the fully faithful map i : V(M) → PI(M)
where V(M) ≃ Pro(V(M)) ∩ Ind(V(M)) ⊂ PI(M) is an equivalence of categories.

Remark 3.2. Pro and Ind objects are often used in practice as presentations of infinite dimensional
objects (Grothendieck, 1960; Artin et al., 1972). For example, the category of vector spaces Vect
is equivalent to the category Ind(Vectfin) of ind-objects in the category Vectfin of finite dimensional
vector spaces. Alternatively, the category Pro(Aff fin

S ) of pro-objects in the category Aff fin
S of affine

schemes of finite type over a quasi-separated base scheme S is equivalent to the category AffS of all
affine schemes.

We have an endofunctor

!j : PI(M) → PI(M)

on the category PI(M) given by infinite prolongation.

Lemma 3.3. The endomorphism !j is a comonad on the category PI(M).

11



Proof. We have a natural comultiplication map µj :!j →!j !j which object-wise µ
j
E :!jE →!j !jE sends

jx(s) to jx(j(s)) and a natural counit map ǫj :!j → id which object-wise ǫ
j
E :!jE → E sends jx(s) to

s(x). The commutativity of the relevant diagrams can be easily verified.

Remark 3.4. Currently !jE and its continuous linear dual !jE
⊥ are defined as formal filtered limits

and colimits. This will be remedied in Section 4 by introducing functional analytic tools.

Remark 3.5. The observation that the infinite jet functor defines a comonad in the smooth setting
goes back to (Marvan, 1986). A far reaching generalization, encompassing many examples, is contained
in (Khavkine and Schreiber, 2017).

Let PI(M)!j denote the Kleisli category of the comonad !j . We have a linear-non-linear adjunction

PI(M)!j PI(M)

X

U

where !j = X ◦ U . The left adjoint X sends a pro-ind-vector bundle E to !jE and a morphism

F :!jE → E ′ to !j(F ) ◦ µ
j
E :!jE →!jE

′. The right adjoint is an identity on objects and sends a

morphism G : E → E ′ to G ◦ ǫ
j
E = ǫ

j
E ′◦!j(G) :!jE → E ′ as a morphism in PI(M). The unit of the

adjunction on E is simply the morphism ηE = id!jE : E →!jE , and the counit is given by ǫ
j
E .

We now give several interpretations of PI(M)!j which includes the theory of linear differential
operators, D-modules, !j-coalgebras and linear partial differential equations. Let E and E ′ be vector
bundles on M and Diffr(E , E ′) the sheaf of linear partial differential operators. It sends U ⊆ M to
the C ∞

M (U)-module whose elements are morphisms PU : E (U) → E ′(U) given by
∑

|α|≤r aα ◦ ∂α for
any trivialization where aα ∈ HomC ∞

M
(U)(E (U), E ′(U)). The functor

Diffr(E , −) : V(M) → Set

is representable by the vector bundle J r(E ). The isomorphism

HomV(M)(J
r(E ), E ′) ≃ Diffr(E , E ′)

is given by the map F 7→ F̂ := F ◦ jr. The ind-object Diff(E , E ′) := “colim”r∈NDiffr(E , E ′) given by
the natural inclusions induce an isomorphism

Diff(E , E ′) ≃ “colim”
r∈N

HomV(M)(J
r(E ), E ′) ≃ HomPI(M)(“lim”

r∈N

J r(E ), E ′)

and so Diff(E , E ′) is represented by J (E ) in PI(M). The result of this discussion is that we can
identify the image of the functor U : V(M) ⊂ PI(M) → PI(M)!j in the Kleisli category of !j with the
category of vector bundles on M with linear partial differential operators as morphisms.

Let F̂ : E → E ′ be a rth order differential operator. We associate to F̂ its corresponding bundle
map F : J (E ) → E ′ and vice-versa. Given a qth order differential operator Ĝ between E ′ and E ′′,
composition with F̂ is given by

G ◦ F : J r+q(E )
µ

r,q

E−−→ J qJ r(E )
J q◦F
−−−−→ J q(E ′)

G
−→ E ′′

12



where µ
r,q
E is the injection sending jr+q

x (s) to jq
xjr(s) (and so µ = µ∞,∞). When they are both of

infinite order, we obtain a linear differential operator Ĝ ◦ F̂ : E → E ′′ and Kleisli composition is well
defined.

The Kleisli category of the jet comonad has a natural interpretation in the language of D-modules
(Kashiwara, 2003). This extension is as follows. Let DM (E , E ) denote the sheaf of linear differential
operators on M and

D∞
M := Diff(C ∞

M , C ∞
M )

the sheaf of linear differential operators between the sheaf of smooth functions. This is a sheaf of non-
commutative C ∞

M -algebras with product given by composition. We denote the symmetric monoidal
category of D-modules by

Mod(D∞
M ) := ModD∞

M
(Mod(C ∞

M ))

where the symmetric monoidal structure is given by tensoring over C ∞
M . If E is a vector bundle, then

endowing E with a D-module structure is equivalent to the choice of flat connection

∇ : E → Ω1
M ⊗C ∞

M
E

on E which characterizes D-modules with an underlying locally free C ∞
M -module.

The sheaf J (E ) is endowed with a canonical D-module structure, the flat connection given by
defining a section ξ in J (E ) to be flat if ξ = j(s) for some s ∈ E , ie. horizontal sections of the
connection are infinite prolongations of sections of E . This is also called the Cartan connection.
Explicitly, after choosing coordinates x1, . . . , xn on U ⊆ M and a trivialization U × E0 of E, we have

J (E )(U) = C ∞
M (U) ⊗R R[[x1, . . . , xn]] ⊗R E0

and the flat connection is given by ∇(f ⊗ g ⊗ v) = df ⊗ g ⊗ v +
∑

i fdxi ⊗ ∂
∂xi

g ⊗ v. Alternatively, it
is defined through the Cartan distribution of tangent planes to sections of the form j(s). This is the
map µ

∞,1
E : J (E ) → J 1J (E ) which is spanned by vector fields of the form

Di =
∂

∂xi
+
∑

k,I

uk
Ii

∂

∂uk
I

for fiber coordinates uk and a multi-index I. Finally, there exists a bijection

HomD∞

M
(J (E ), J (E ′)) ≃ Diff(E , E ′)

which induces a fully faithful functor J : PI(M)!j → Pro(Ind(Mod(D∞
M ))) sending E to J (E ).

Remark 3.6. For the multicategory interpretation of the Kleisli category one takes the multicategory
of vector bundles and polydifferential operators

PolyDiff(E1 ⊗ . . . ⊗ En, E ′) := Diff(E1, C ∞
M ) ⊗C ∞

M
. . . ⊗C ∞

M
Diff(En, C ∞

M ) ⊗C ∞

M
E ′

where the action of C ∞
M on Diff(Ei, C

∞
M ) is given by left multiplication (fD)(s) := f(Ds) for s ∈ Ei.

There exists a bijection

HomD∞

M
(J (E1) ⊗C ∞

M
. . . ⊗C ∞

M
J (En), J (E ′)) ≃ PolyDiff(E1 ⊗ . . . ⊗ En, E ′)

where the left hand side denotes morphisms which are continuous.
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Another interpretation of PI(M)!j is as a full subcategory of the Eilenberg-Moore category of !j-
coalgebras. A !j-coalgebra for the comonad !j is a pair (E , νE ) where E is a pro-ind vector bundle and
νE : E →!jE is a morphism of pro-ind vector bundles such that ǫE ◦νE = idE and µE ◦νE =!j(νE )◦νE .
A morphism between !j-coalgebras (E , νE ) and (E ′, ν ′

E ) is a morphism f : E → E ′ of pro-ind vector
bundles such that !j(f) ◦ νE = ν ′

E ◦ f . The category of !j-coalgebras, often called the Eilenberg-Moore
category, will be denoted PI(M)!j .

The Eilenberg-Moore category of !j is equivalent to a certain category of partial differential equa-
tions introduced in (Vinogradov, 1980) (see (Marvan, 1986)). We first recall some geometric definitions
(Pommaret and Lichnerowicz, 1978).

Definition 3.7. Let π : E → M be a vector bundle. A rth order partial differential equation on E is
a fibered submanifold of πr : Jr(E) → M . An inhomogeneous linear partial differential equation is an
affine subbundle of πr. A homogeneous linear partial differential equation is a vector subbundle of πr.

Let Hr be a rth order linear partial differential equation. In the homogenous case, there exists
a vector bundle E′ = coker(Hr) on M and a morphism of vector bundles f : Jr(E) → E′ such
that Hr = ker(f). This corresponds to the standard interpretation f(xi, uα, uα

I ) = 0 where uα are
coordinates in the fiber of E. A linear partial differential equation will be henceforth considered
homogenous unless otherwise specified. A (local) solution of a rth order partial differential equation
Hr is a section s of πr|U such that jrs(x) ∈ Hr for all x ∈ U .

The qth order prolongation of h : Hr ⊆ Jr(E) is the pullback

Hr,q Jr+q(E)

Jq(Hr) JqJr(E)

µ
r,q
E

Jq(h)

in the category of vector bundles. The infinite prolongation H ⊆ J(E) of Hr is the pro-object

· · · → Hr,k+1
πr

k+1,k
−−−−→ Hr,k → · · · → Hr,1

πr
0,1

−−→ Hr,0 = Hr ⊆ Jr(E)

in the category of vector bundles. It can be interpreted as Hr together with its system of total
derivatives. A morphism between infinitely prolongated linear equations is a morphism of pro-vector
bundles.

These constructions are clearly extended to the case where E itself is a pro-ind-vector bundle. We
obtain a category LPDE(M) of infinitely prolongated linear partial differential equations.

Remark 3.8. In this geometric formulation of partial differential equations, infinitesimal symme-
tries are given by tangent vector fields on the jet bundle whose flows preserve this submanifold
(Pommaret and Lichnerowicz, 1978; Olver, 2012).

The sheaf interpretation of this result is as follows. The vector bundle Hr induces a sheaf H r

of solutions and Hr,q a prolongated sheaf H r,q ⊂ J q+r(E ) of solutions. The infinite prolongation
H ⊆ J (E ) is a pro-object in the category of vector bundles V(M) over M . If E is a pro-ind vector
bundle, then the same is so for H . There is an equivalence H ≃ H r of sheaves, ie. a section of E is
a solution of Hr if and only if it is a solution of the prolonged equation H.

14



We call the map h : H →!jE simply the sheaf of solutions. Given two sheaves of solutions
h : H →!jE and h′ : H ′ →!jE

′, a morphism γ : h → h′ is a commutative diagram

H !jE

H ′ !jE
′

h

h′

in PI(M). We denote by Soln(M) the category of sheaves of solutions and morphisms between them.

Proposition 3.9. There exists a chain of equivalences LPDE(M) ≃ Soln(M) ≃ PI(M)!j of categories.

Proof. This can be deduced from Proposition 2.4 and Proposition 2.5 of (Marvan, 1986) so we only
sketch the proof. The first equivalence is clear. For the second, consider the sheaf of solutions
hr : H r →!jrE to a rth order linear partial differential equation Hr ⊆ Jr(E) and its corresponding
infinite prolongation h : H →!jE . Consider the diagram

!jH
r !j !jrE

H !jE

!j !jH
r !j !j !jrE

!jH !j !jE

!j(hr)

µH r

µ!jr E

h∗

h

h̃

µ
∞,r

E

!j !j(hr)

!jh∗

!j(h)

!jµ
∞,r

E

µE

in PI(M) where h∗ is the morphism making the square in the top face commute and h̃ is the morphism
making the resulting full diagram commute. We have a functor (̃·) sending the solution sheaf h to the
pair (H , h̃ : H →!jH ) and this pair can be shown to be a !j-coalgebra. The right adjoint functor
sends a !j-coalgebra (E , ν : E →!jE ) to the solution sheaf ν : E ⊂!jE satisfying µE =!j(ν) which is
infinitely prolonged. Then composition with (̃·) gives an adjoint equivalence.

There exists a natural inclusion
PI(M)!j →֒ PI(M)!j

sending a pro-ind vector bundle E to (!jE , µ
j
E ) and a differential operator F :!jE → E ′ to the composi-

tion !j(F )◦µ
j
E :!jE →!jE

′. The essential image of this inclusion is the full subcategory of !j-coalgebras
spanned by cofree !j-coalgebras. This follows from the fact that the Kleisli category of any comonad
is equivalent to the subcategory of cofree coalgebras of the comonad in the Eilenberg-Moore category.
Owing to Proposition 3.9, objects in PI(M)!j can be identified with the sheaf of solutions to a cofree
infinitely prolongated linear partial differential equation.

The category PI(M) is not a symmetric monoidal storage category with the monoidal structure
given by the tensor product, since the comonad !j does not satisfy the Seely isomorphisms. However,
for the cocartesian monoidal structure, it is satisfied.

Proposition 3.10. The category of pro-ind vector bundles on M with the jet comonad !j is a sym-
metric monoidal storage category for the cocartesian monoidal structure.
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Proof. The category (V(M), ⊕, 0) of smooth vector bundles is a CMon-enriched symmetric monoidal
category and so we can deduce that the category PI(M) pro-ind objects in V(M) is also CMon-
enriched symmetric monoidal. Let E , E ′ ∈ PI(M) and s be a local section of E . By Lemma 3.3, !j is
a comonad. Since ⊕ is also a product, every object of PI(M) has a unique comonoid structure given
by the diagonal map which is cocommutative. Moreover, any morphism in PI(M) is automatically a
comonoid morphism. Therefore, for a comonoid (!jE , cE , eE ), the comultiplication is given by

cE :!jE →!jE ×!jE ,

the counit is given by eE :!jE → 0 which sends j(s) to zero, and µE :!jE →!j!jE is a morphism of
comonoid objects. Furthermore, the morphism

(
!j(π0)⊕!j(π1)

)
◦ cE ×E ′ :!j(E × E ′) →!jE ⊕!jE

′

is an isomorphism in PI(M) since !j(E × E ′) ≃!j(E ⊕ E ′) and j(s + s′) ≃ j(s) + j(s′). Finally, the
morphism

e :!j(∗) → 0

is an isomorphism since the terminal object ∗ in PI(M) is the pro-ind zero vector bundle 0 and it is
clear that !j(0) ≃ 0. As a result, !j is a storage comonad and PI(M) is a symmetric monoidal storgage
category.

Example 3.11. (Connections). In analogy with a codereliction, we introduce a map

Γ1
E : E →!j1E

in V(M) which is natural in E , such that the linear rule ǫ
j
E ◦ Γ1

E = idE is satisfied for the comonad !j1.
This is simply a (linear) connection. Indeed, consider the canonical map j1 : E → J 1(E ) of sheaves.
Elements in the kernel of this map can be written as df ⊗ s. The covariant derivative associated to
Γ1

E is then the (non C ∞
M -linear) map

∇ : E → Γ(Ω1 ⊗R E)

satisfying the Leibniz rule
∇(fs) = f∇(s) + df ⊗ s

where Ω1 is the vector bundle of one-forms on M . In local coordinates (xi, uk, uk
i )◦Γ1

E = (xi, uk, Γk
i ), its

local expression is ∇ = dxi ⊗ (∂i + Γk
i ∂k). More generally, higher-order connections Γk

E :!jk−1E →!jkE
can be defined (Libermann, 1964) .

Example 3.12. (Tangent vector fields). Let E = T M be the tangent bundle and E = X the sheaf
of vector fields on M . Consider the sequent !A ⊢ B in linear logic with denotation J−KM given by a
first-order map F : J!AKM =!j1X ⊂!jX → JBKM = E ′. Given a vector field s : U → T U on U ⊂ M ,
we have the first-jet

j1(s) : U → J1(T U) ⊂ J(T U)

to s and a commutative diagram

!jXU

∗ XU E ′
U

ǫ
j
XU

FU
j1(s)

s F̂U

in PI(M). Here F̂U : XU → E ′
U , where F̂U (s) ≃ FU (j1(s)), is the first-order linear differential operator

associated to FU .
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4 Convenient sheaves and the distributional comonad

Up until now, we have considered the category of pro-ind objects in V(M). However, there is another
approach which takes advantage of functional analytic properties of the space of sections of a vec-
tor bundle. In particular, the category of pro-ind-vector bundles have several poor formal properties
arising from the category V(M). This can be remedied by embedding PI(M) into an appropriate cat-
egory. We accomplish this by endowing all our function spaces with a complete bornological structure
(Hogbe-Nlend, 1977), or equivalently, a convenient vector space structure (Frölicher and Kriegl, 1988;
Kriegl and Michor, 1997).

There are a number of equivalent ways one can define the category of convenient vector spaces
(Kriegl and Michor, 1997). Our choice is the following. Let Born denote the category of (convex)
bornological vector spaces and bounded linear morphisms and LCTVS the category of locally convex
topological vector spaces and continuous linear morphisms. Consider the adjunction

Born LCTVS

γ

β

where γ is left adjoint to the functor β associating to a locally convex topological vector space the
bornological vector space with its von-Neumann bornology. The functor γ is fully faithful. Therefore,
we have an isomorphism V ≃ β ◦ γ(V ) in Born, ie. every bornological vector space is isomorphic
to a vector space whose bornology comes from some locally convex topological vector space. The
equivalent category of topological bornological vector spaces will be denoted TBorn. A topological
bornological vector space V is said to be c∞-complete if a curve c : R → V is smooth if and only if for
every bounded linear functional f : V → R, the composition f ◦ c : R → R is smooth.

We will define the category Conv of convenient vector spaces to be the full subcategory of TBorn
spanned by c∞-complete objects. The inclusion functor from Conv to the category TBorn has a left
adjoint

c∞ : TBorn → Conv

called the c∞-completion.
The category Conv is a closed symmetric monoidal category. We will be careful to distinguish the

structure on various function spaces. For convenient vector spaces V and W , then Hom(V, W ) will
denote the set of morphisms, HomR(V, W ) the R-vector space of R-linear morphisms and Hom(V, W )
the convenient vector space of continuous R-linear morphisms. We use the notation V ∨ := HomR(V,R)
for the linear dual of V and V ⊥ := Hom(V,R) for the continuous linear dual.

Let π : E → M be a vector bundle on M . For any U ⊆ M , we endow the vector space E (U)
of sections of E with the structure of a convenient vector space induced from the nuclear Fréchet
topology of uniform convergence on compact subsets in all derivatives seperately. This makes E a
sheaf of convenient vector spaces on M . The same holds for the cosheaf Ec of compactly supported
sections of E. See Lemma 5.1.1 of (Costello and Gwilliam, 2016) for a formal proof.

In particular, C ∞
M is a sheaf of convenient vector spaces and moreover a sheaf of convenient algebras.

An algebra is said to be convenient if it is a commutative monoid object in the symmetric monoidal
category Conv. This makes E a C ∞

M -module object in the category ShConvk
(M) of sheaves of convenient

vector spaces. The category of convenient C ∞
M -modules will be denoted by

ConMod(C ∞
M ) := ModC ∞

M
(ShConvk

(M)).
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We have a fully faithful inclusion

i : PI(M) → ConMod(C ∞
M )

of categories. The inclusion sends a pro-ind vector bundle “lim”r∈N“colimq∈N”E to the genuine limit
limr∈Ncolimq∈NE in ConMod(C ∞

M ). This limit is well defined since the category of convenient C ∞
M -

modules is complete and cocomplete.

The category ConMod(C ∞
M ) is a closed symmetric monoidal category with tensor product ⊗C ∞

M

which we simply denote by ⊗. The C ∞
M -module of continuous linear morphisms between two C ∞

M -
modules E and E ′ will be denoted HomC ∞

M
(E , E ′).

We now describe some important examples of (co)sheaves of convenient spaces. Let T ∞ be the
convenient sheaf of distributions on M and denote by

E := E ⊗C ∞

M
T ∞

the convenient sheaf of distributional sections of E on M . Let T ∞
c be the convenient cosheaf of

compactly supported distributions on M and

E c := Ec ⊗C ∞
c

T ∞
c

the convenient cosheaf of compactly supported distributional sections of E on M . We let Dens(M) :=
∧nT ∗M ⊗ oM denote the vector bundle of densities on M where oM is the orientation line bundle and
DensM the convenient sheaf of sections of Dens(M).

Let E ∀ denote the convenient sheaf of sections of the vector bundle E∀ = E∨⊗Dens(M) on M where
E∨ is the fiberwise linear dual. Likewise, let E ∀

c denote the convenient cosheaf of compactly supported
sections of E∨ ⊗ Dens(M) on M . We define E ⊥ := HomC ∞

M
(E , C ∞

M ) and E ⊥
c := HomC ∞

M
(Ec, C

∞
M ) to

be the continuous linear duals endowed with the strong topology of uniform convergence on bounded
subsets.

The fiberwise evaluation pairing between E and E∨ induces a morphism fib(−, −) : E∀ ⊗ E →
Dens(M) of vector bundles which extends to a pairing

evU : E ∀
c (U) × E (U) → C ∞

M (U)

of convenient C ∞
M (U)-modules given by sending a pair (ω, s) on U ⊆ M to the integral

∫
U fib(ω, s).

This construction induces isomorphisms

E ⊥(U) ≃ E ∀
c (U) E ⊥

c (U) ≃ E ∀(U)

of convenient C ∞
M (U)-modules.

Let V be a convenient vector space. A curve c : R → V is said to be smooth if all derivatives of
c exist in the underlying topological space of V . The set of smooth curves in V is denoted CV . A
morphism f : V → W of convenient vector spaces is said to be smooth if f(CV ) ⊆ CW . Finally, a
morphism f : E → E ′ between convenient C ∞

M -modules is smooth if E (U) → E ′(U) is smooth for all
U ⊆ M . We denote by Homsm

C ∞

M
(E , E ′) the C ∞

M -module of smooth morphisms and

E ∗ := Homsm
C ∞

M
(E , C ∞

M )

the smooth dual.
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Let ConModsm(C ∞
M ) denote the closed symmetric monoidal category of convenient C ∞

M -modules
and smooth morphisms. We deduce from Corollary 2.11 of (Kriegl and Michor, 1997) that a linear
map between convenient C ∞

M -modules is smooth if and only if it is a bornological morphism. Therefore,
we have a natural forgetful functor

U : ConMod(C ∞
M ) → ConModsm(C ∞

M )

which is the identity on objects and forgets the linear structure.

We now define a number of different functionals on the space of sections of a vector bundle.

Definition 4.1. Let E be a vector bundle on M . A linear functional on E is an element of the
continuous linear dual E ⊥. A smooth functional on E is an element of the smooth dual E ∗.

Example 4.2 (Polynomial functions). An intermediate class of smooth functionals are polynomials.
The algebra of polynomial functions on E is given by

OE := SymC ∞

M
(E ⊥) =

∞⊕

n=0

((E ⊥)⊗n)Sn ≃
∞⊕

n=0

((E ∀
c )⊗n)Sn

where the subscript Sn refers to taking coinvariants with respect to the action of the symmetric group
on the n-fold tensor product. The algebra of polynomial functions on Ec is given by

OEc
:= SymC ∞

M
(E ⊥

c ) =
∞⊕

n=0

((E ⊥
c )⊗n)Sn ≃

∞⊕

n=0

((E ∀)⊗n)Sn .

Example 4.3 (Formal power series). A larger class of smooth functionals are those given by formal
power series. That is, the completed symmetric algebra

ÔE := ŜymC ∞

M
(E ⊥) =

∞∏

n=0

((E ⊥)⊗n)Sn ≃
∞∏

n=0

((E ∀
c )⊗n)Sn

and that on compactly supported sections

ÔEc
:= ŜymC ∞

M
(E ⊥

c ) =
∞∏

n=0

((E ⊥
c )⊗n)Sn ≃

∞∏

n=0

((E ∀)⊗n)Sn .

This leads to natural inclusions E ⊥ ⊂ OE ⊂ ÔE ⊂ E ∗ of sheaves and similarly for compactly supported
sections. See (Kerjean and Tasson, 2018) for a detailed discussion of polynomials and power series in
a similar context.

We now describe a comonad which we call the distributional comonad which is a generalization of
that contained in (Blute et al., 2012) to the setting of C ∞

M -modules. Consider the Dirac distributional
density map

δ : E → (E ∗)⊥

sending a section s to δs : F 7→ F (s) where F is a smooth functional. We denote by !δE the c∞-closure
of the linear span of δ(E ) in (E ∗)⊥.

Lemma 4.4. The endomorphism !δ induces a comonad on ConMod(C ∞
M ).
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Proof. We have an inclusion Conv → TBorn of closed symmetric monoidal categories which induces
an inclusion ConMod(C ∞

M ) → TBMod(C ∞
M ) of C ∞

M -modules where

TBMod(C ∞
M ) := ModC ∞

M
(ShTBorn(M)).

The left adjoint γ : TBMod(C ∞
M ) → ConMod(C ∞

M ) of this inclusion is a composition of separation
and completion functors.

We have a natural comultiplication map µδ :!δ →!δ!δ which object-wise µδ
E :!δE →!δ!δE extends

linearly the map δs 7→ δδs
and applies the separation and completion functor γ. The counit map

ǫδ :!δ → id object-wise ǫδ
E :!δE → E extends linearly the map δs 7→ s and applies the functor γ. The

commutativity of the relevant diagrams can be easily verified.

We have a linear-non-linear adjunction

ConMod(C ∞
M )!δ ConMod(C ∞

M )

X

U

and a symmetric monoidal comonad !δ = X ◦U which we call the distributional comonad. The functor
X sends a C ∞

M -module E to the c∞-closure of the linear span of δ(E ) and U is a bijection on objects.

Proposition 4.5. There exists an equivalence

ConMod(C ∞
M )!δ ≃ ConModsm(C ∞

M )

of categories.

Proof. The Dirac distributional density map is smooth. It suffices to check the condition objectwise
and so the result follows from Lemma 5.1 of (Blute et al., 2012).

Consider the sequent !A ⊢ B in differential linear logic with denotation J−KM given by the func-
tional F : J!AKM =!δE → JBKM = E ′ and the diagram

!δE

∗ E E ′

ǫδ
E

Fδs

s F sm

of convenient C ∞
M -modules. From Proposition 4.5, we have the smooth functional F sm : E → E ′ with

F sm(s) ≃ F (δs) associated to F . We also define a map d̄δ
E : E →!δE for the distributional comonad,

following (Blute et al., 2012), by

d̄δ
E (s) = lim

h→0

δhs − δ0

h

where s ∈ E , 0 is the zero section and h the constant sheaf.

Theorem 4.6. The category of convenient C ∞
M -modules with the distributional comonad !δ and map

d̄δ is a model for intuitionistic differential linear logic.
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Proof. The category of convenient vector spaces is locally presentable (Wallbridge, 2015) and closed
symmetric monoidal (Kriegl and Michor, 1997). Sheaves with values in a locally presentable closed
symmetric monoidal category themselves form a locally presentable closed symmetric monoidal cate-
gory, as do modules over a commutative monoid object in such a category of sheaves (Mesablishvili,
2014). Therefore the category of convenient C ∞

M -modules is locally presentable closed symmetric
monoidal. It is moreover an additive, and therefore CMon-enriched, symmetric monoidal category.

By Lemma 4.4, the functor !δ is a comonad. For each object E in ConMod(C ∞
M ), we define a

cocommutative comonoid object (!δE , cE , eE ) using the maps eE : δs 7→ 1 and

cE : δs 7→ δs ⊗ δs,

and then extending linearly and applying the separation and completion functor γ (see the proof of
Lemma 4.4). Also, since the diagrams

δs δs ⊗ δs

δδs
δδs

⊗ δδs

cE

µE µE ⊗µE

c!δE

δs δδs

1

µE

eE e!δE

commute, µE :!δE →!δ!δE a morphism of comonoid objects in ConMod(C ∞
M ). Let E and E ′ be

convenient C ∞
M -modules. Then

!δ(E × E ′) ≃!δE ⊗!δE
′

is an isomorphism of sheaves by extending the fiberwise statement of Proposition 5.2.4 of (Frölicher and Kriegl,
1988) and Proposition 5.6 of (Blute et al., 2012).

It remains to show that the map d̄δ satisfies the conditions to be a codereliction. Firstly, the
diagram

E !δE

E ′ !δE
′

d̄δ
E

F !δ(F )

d̄δ
E ′

commutes since limh→0
δhF (s)−δ0

h
= limh→0

δF (hs)−δF (0)

h
owing to the property that F is a morphism of

C ∞
M -modules (explicitly, hs(x) = h(x)s(x) and F (hs)(x) = h(x)F (s)(x)). Therefore, d̄δ is a natural

transformation. By Theorem 6 and Corollary 4 of (Blute et al., 2019), it now suffices to show that
the linear and chain rules of Definition 2.7 are satisfied. The left hand side of the linear rule ǫE ◦ d̄δ

E

given by

s 7→ lim
h→0

δhs − δ0

h
7→ lim

h→0

(1

h
(hs − 0)

)
= s

coincides with the identity due to continuity of ǫE . The multiplication map of the monoid object in
the bialgebra structure is given by c̄E : δs ⊗ δt 7→ δs+t and then extending linearly and applying γ.
Therefore, the left hand side µE ◦ c̄E ◦ (d̄E ⊗ id!δE ) of the chain rule gives

s ⊗ δt 7→

(
lim
h→0

δhs − δ0

h

)
⊗ δt 7→ lim

h→0

δhs+t − δt

h
7→ lim

h→0

δδhs+t
− δδt

h

which corresponds to the right hand side c̄!δE ◦ (d̄!δE ⊗ µ!δE ) ◦ (c̄E ⊗ id!δE ) ◦ (d̄E ⊗ cE ) by

s ⊗ δt 7→

(
lim
h→0

δhs − δ0

h

)
⊗ (δt ⊗ δt) 7→

(
lim
h→0

δhs+t − δt

h

)
⊗ δt 7→
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
 lim

h′,h→0

δ
( h′

h
(δhs+t−δt))

− δδ0

h′


⊗ δδt

7→ lim
h′,h→0

δ
( h′

h
(δhs+t−δt)+δt)

− δδt

h′

using associativity of the tensor product and then taking the limit h = h′ → 0 along the diagonal.

We will call d̄δ the distributional codereliction. Let F :!δE → E ′ be a morphism in ConMod(C ∞
M ).

The deriving transformation ∂E : E ⊗!δE →!δE is given by

∂E : t ⊗ δs

(d̄δ
E

⊗id)
7−−−−−→

(
lim
h→0

δht − δ0

h

)
⊗ δs

c̄E7−→ lim
h→0

δs+ht − δs

h

and the derivative dF := F ◦ ∂E : E ⊗!δE → E ′ of F in ConMod(C ∞
M ) is

dF : t ⊗ δs 7→ lim
h→0

F (δs+ht) − F (δs)

h

for local sections s, t ∈ E . Using the adjunction of Proposition 4.5, we have, by abuse of notation, an
operator

d : Homsm
C ∞

M
(E , E ′) → HomC ∞

M
(E , HomC ∞

M
(E , E ′))

defined by

dF sm(s, t) = lim
h→0

F sm(s + ht) − F sm(s)

h
=

d

dh

∣∣∣∣
h=0

F sm(s + ht).

This derivative operator is linear and bounded and dF sm(s, t) is the functional derivative at the section
s of E in the direction of the section t. When E ′ = C ∞

M , another common notation for dF sm(s, t) is

dF sm(s, t) =

∫

U

δF sm

δs
(x)t(x)dx

for U ⊆ M .

5 Comonad composition and non-linearity

In Section 4, we have shown that the category of convenient C ∞
M -modules is a model for intuitionistic

differential linear logic using the distributional comonad !δ. Combining this result with the extension of
the model in Section 3 to this same category, we obtain a compatible model based on composition with
the infinite jet comonad, ie. these two comonads interact in a natural way so that their composition
induces a model for intuitionistic differential linear logic.

Firstly, we update the finite jet functor by lifting it to an endofunctor !jr : ConMod(C ∞
M ) →

ConMod(C ∞
M ) and leverage the convenient structure to define

J (E ) := lim
r∈N

(J r(E ))

as a genuine limit in ConMod(C ∞
M ). The infinite prolongation thus induces an endofunctor

!j : ConMod(C ∞
M ) → ConMod(C ∞

M )

on the category of convenient C ∞
M -modules. The following result is clear from Lemma 3.3.

Corollary 5.1. The endomorphism !j is a comonad on ConMod(C ∞
M ).
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The category ConMod(C ∞
M ) is endowed with a cocartesian monoidal structure with monoidal

product ⊕ and unit 0. We have a linear-non-linear adjunction

ConMod(C ∞
M )!j ConMod(C ∞

M )

X

U

and a symmetric monoidal comonad !j = X ◦ U which we call the jet comonad. Here X sends a C ∞
M -

module E to J (E ) and the right adjoint U is an object bijection. The jet codereliction d̄j extends to
a natural transformation on ConMod(C ∞

M ). A corollary of Theorem 3.10 is now the following.

Corollary 5.2. The category of convenient C ∞
M -modules with the jet comonad !j is a symmetric

monoidal storage category for the cocartesian monoidal structure.

Owing to the discussion in Section 3, we have an isomorphism

HomConModsm(C ∞

M
)(J (E ), E ′) ≃ Diff sm(E , E ′)

where the right hand side denotes the set of smooth partial differential operators.

We now define a number of different functionals on the space of jets of sections of a vector bundle.

Definition 5.3. Let E be a vector bundle on M . A local linear functional on E is an element of
the continuous linear dual (!jE )⊥. A local smooth functional on E is an element of the smooth dual
(!jE )∗.

Local smooth functionals are also called Lagrangians in certain applications. Lagrangians given
by formal power series are particularly important in the study of perturbative classical and quantum
field theories. This is demonstrated in the following example.

Example 5.4. Building on Example 4.3, the algebra of formal power series of local linear functionals
is given by

O loc
E := ŜymC ∞

M
(!jE

⊥)

elements of which will be called Lagrangian densities. More explicitly, we identify the nth compo-
nent of a Lagrangian density on M with a compactly supported distributional section of the bundle
(J(E)∀)⊠n on Mn. Since local linear functionals depend only on the local nature of a section s at
each point, ie. its jet, then we can interpret its nth component as a finite sum of densities of the form
(D1s)(D2s) . . . (Dns)dΩ where each Di : E → C ∞

M is a differential operator. The natural inclusion

ιU : O loc
E (U) → ÔE (U)

given by integration ιU (L) : s 7→
∫

U L(s) defines the action SU := ιU (L) : E (U) → R of the Lagrangian
distributional density L.

Remark 5.5. Note that the section s in Example 5.4 should be nilpotent since in most cases, the
infinite sum will not converge. Alternatively, we could define a Lagrangian density to be an element
L in O loc

E which factors through
∏r

n=0((!jE ⊥)⊗n)Sn for some finite r.
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From Example 5.4, a Lagrangian sends a section s in E (U) to a formal power series in these
variables, a density which, when evaluated on a point in U depends only on the infinite jet at that
point.

We endow !jE with its canonical D∞
M -module structure. This is the canonical flat connection given

by the Cartan distribution of Section 3. Then the convenient C ∞
M -module !jE

⊥ = HomC ∞

M
(!jE , C ∞

M )
has a canonical D∞

M -module structure. Therefore, a local functional is a D∞
M -module. Again, every

element L of this module takes a section s of E (U) and returns a smooth function L(s) in C ∞
M (U)

with the property that L(s)(x) depends only on the ∞-jet of s at x ∈ U .
Now that the jet comonad is understood as a comonad on the category of convenient C ∞

M -modules,
we combine this result with the distributional comonad of Section 4. Pre-composition with !j gives
the module !jδE :=!δ◦!jE . So !jδE is the c∞-closure of the linear span of δ(!jE ) in (!jE

∗)⊥. The two
comonads interact in the expected way.

Lemma 5.6. The composite comonad !jδ is a storage comonad.

Proof. There is a canonical distributive law of !j over !δ since, by definition, operators act on distri-
butions as 〈s, j(δ)〉 := 〈j(s), δ〉 and therefore !δj ≃!jδ is an isomorphism of comonads. The result now
follows from Lemma 2.4.

The comonad !jδ will be called the jet-distributional comonad. Now consider the map d̄jδ : id →!jδ

given by

d̄
jδ
E (s) = lim

h→0

δh(j(s)) − δ0

h

for s ∈ E .

Theorem 5.7. The category of convenient C ∞
M -modules with the jet-distributional comonad !jδ and

map d̄jδ is a model for intuitionistic differential linear logic.

Proof. By Lemma 5.6, the jet-distributional comonad is a storage comonad. The remainder of the
proof is obtained by applying the corresponding proof in Theorem 4.6 to the convenient C ∞

M -module
!jE .

The map d̄jδ : id →!jδ will be called the jet-distributional codereliction. We have a linear-non-linear
adjunction

ConMod(C ∞
M )!jδ

ConMod(C ∞
M )

X

U

where the functor X sends an object E to the c∞-closure of the linear span of δ(J (E )) and the functor
U is a bijection on objects. Objects on the left hand side are convenient vector bundles and whose
morphisms, owing to Proposition 4.5, include non-linear partial differential operators F̂ sm : E → E ′.
Indeed, let F :!jδE → E ′ be a morphism of C ∞

M -modules and consider the diagram

!jδE

!jE

∗ E E ′

ǫδ
!jE

F

ǫ
j

E

F smj(s)

δj(s)

s F̂ sm
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in ConMod(C ∞
M ). We have F (δj(s)) ≃ F sm(j(s)) ≃ F̂ sm(s). Moreover, taking advantage of the closed

structure and using the notation of linear logic, we have a commutative diagram

!jδE ⊸ E ′ !δE ⊸ E ′

!jE ⊸ E ′ E ⊸ E ′

◦j

◦d
δ

E
◦d

δ

E

◦j

sending the convenient C ∞
M -module of smooth local functionals to the convenient C ∞

M -module of linear
functionals.

The deriving transformation ∂E : E ⊗!jδE →!jδE is defined as the composite

∂E : t ⊗ δj(s)

(d̄jδ

E
⊗1)

7−−−−−→

(
lim
h→0

δh(j(t)) − δ0

h

)
⊗ δ(j(s))

c̄E7−→ lim
h→0

δ(j(s)+h(j(t))) − δj(s)

h

and the derivative dF := F ◦ ∂E : E ⊗!jδE → E ′ of F :!jδE → E ′ in ConMod(C ∞
M ) is given as

dF : t ⊗ δj(s) 7→ lim
h→0

F (δj(s)+hj(t)) − F (δj(s))

h
.

By abuse of notation, we have an operator on smooth differential operators

d : Diff sm(E , E ′) → Hom(E , DM (E , E ′))

defined by

dF̂ sm(s, t) = lim
h→0

F̂ sm(s + ht) − F̂ sm(s)

h
=

d

dh

∣∣∣∣
h=0

F̂ sm
(
s + ht)

which is linear and bounded, ie. dF̂ sm(s, t) is the deriviative of the smooth local functional F̂ sm at s

in the direction t = ds.

When our sheaf is finite dimensional we have the following more explicit description of non-linear
local functionals.

Example 5.8. Let E be a finite dimensional convenient C ∞
M -module. Then there exists an isomor-

phism

!jrδE ≃ (!jrE ∗)⊥

of convenient C ∞
M -modules. This can be deduced from Corollary 5.1.8 of (Frölicher and Kriegl, 1988).

When our smooth functionals are given by formal power series, we also have a more explicit
description. We endow DensM with its right D∞

M -module structure. Then a local density on U ⊆ M

with respect to E is an element ωU ⊗ L in the space

O loc
E (U) ≃ DensM (U) ⊗C ∞

M
(U) ŜymR(!jE (U)∨)

with its canonical D∞
M (U)-module structure where !jE (U)∨ = Hom(!jE (U), C ∞

M (U)). In words, the
element ωU ⊗ L sends a section s in E (U) to a distributional density ωU ⊗ L(s) on U such that
(ωU ⊗ L(s))(x) depends only on the ∞-jet of s at x ∈ U .
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We obtain a sheaf O loc
E on M which is moreover a C ∞

M -module. It is a subsheaf O loc
E ⊂!jE

∗ and
the c∞-closure of the linear span of δ(!jE ) in (!jE

∗)⊥ factors through (O loc
E )⊥. This is a subspace of

!jδE (U). This restricted delta distribution δ sends j(s) to

δj(s) : ωU ⊗ L 7→

∫

U
L(j(s))ωU

where L is a formal power series. In local coordinates on U ⊆ M , and using integration by parts, we
have

dS(s) = d

∫

U
L(j(s))ωU =

∫

U
elα(L)dsα ∧ ωU + DαV α

for some total derivative DαV α where elα =
∑

I(−D)I
∂

∂uα
I

is the Euler-Lagrange operator. Here

(−D)I = (−Di1)(−Di2) . . . for the multi-index I.
Therefore, a Lagrangian is only defined up to a total derivative for compactly supported sections.

This can be exploited by forming the tensor product

Ored
E ≃ DensM ⊗D∞

M
ŜymR(!jE

∨
)

over D∞
M . Therefore dS(s) = 0 if and only if the section s satisfies the Euler-Lagrange equations

elα(L(j(s))) = 0. Symmetries of the action can also be interpreted as vector fields on the jet bundle
(cf. Remark 3.8).

We end by giving a concrete application of this construction.

Example 5.9 (Free and interacting scalar fields). Fix a n-dimensional compact Riemannian manifold
(M, g). Consider the sheaf E of sections of the trivial bundle π : E := M × R → M , ie. E is simply
the sheaf C ∞

M of smooth functions on M . There exists an isomorphism (!jC
∞
M )⊥ ≃ D∞

M of (left) D∞
M -

modules. The elements L̂ in (!jC
∞
M )⊥ are spanned by elements of the form φ(xi)∂I for xi ∈ M and a

partial differential operator ∂I depending on a multi-index I.
Let φ ∈ C ∞

M (M) be a scalar field. We consider the special forms of L̂ given by

L̂(j(φ)) = φDφ, L̂(j(φ)) = φDφ + ηφ, L(δj(φ)) = φDφ + V (φ)

where the Laplacian D is the differential operator D : C ∞
M (M) → C ∞

M (M) sending φ to ∆gφ and the
density is the canonical volume form. The first two functionals are linear local functionals whereas the
last functional is merely smooth in general. The functional derivative of the local action functional S

associated to L is

dS(φ) =

∫

M
dL̂sm(φ)ωM =

∫

M
el(L̂sm(φ))dφ volg

where, for local coordinates (xi, φ, φi), the Euler-Lagrange equations are

el(L̂sm(φ)) =
∂L̂sm

∂φ
−

∂

∂xi

(
∂L̂sm

∂φi

)
.

The principle of least action dS = 0, or equivalently el(L̂sm(φ)) = 0, leads to the partial differential
equations

∆gφ = 0, ∆gφ = η, ∆gφ = −V ′(φ)

which are the Laplace, Poisson and non-linear Poisson equation respectively. These define a vector
subbundle, affine subbundle and fibered submanifold of J2(M × R) respectively.
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To see this, let (xi, φ, φi, φij) be coordinates on J2(M×R) and consider the function f(xi, φ, φi, φij) =∑
1≤i≤n φii on J2(M × R). The preimage of 0, η(x) and −V ′(φ) with respect to f define a fibered

submanifold H2 ⊆ J2(M × R). Taking the infinite prolongation of the equation H2 we obtain the
equation H which, assuming H2 is regular, is a pro-ind vector subbundle, pro-ind affine subbundle
and pro-ind fibered submanifold of J(M × R) respectively. A local section φ of π : M × R → M is a
solution of these equations if and only if j2φ(xi) ∈ H 2 ≃ H .

6 Conclusion

We have shown that the category of convenient sheaves is a model for intuitionistic differential linear
logic. Using the jet comonad for the exponential modality gives an interpretation of linear differential
operators, and hence linear partial differential equations, in linear logic. Alternatively, using the dis-
tributional comonad for the exponential gives an interpretation of smooth morphisms between objects
in these categories. Composing these comonads provides an interpretation of non-linear differential
operators and the variational calculus of smooth local functionals within linear logic.

Some interesting questions remain open. The most pressing item is to elucidate the internal logic
of the model in order to provide a computational interpretation of its structure within differential
λ-calculus. Indeed, the Kleisli category of a model for intuitionistic differential linear logic is a carte-
sian closed differential category and it is these categories, introduced in (Bucciarelli et al., 2010) as
differential λ-categories, that are models of the simply typed differential λ-calculus. See (Manzonetto,
2012; Blute et al., 2015) for more details.

Other interesting questions include the extension to classical differential linear logic (Girard, 1987),
the exploration of antiderivatives and integration from the perspective of (Ehrhard, 2018) and the
application of reverse-mode differentiation from (Cockett et al., 2019). Finally, we would like an
expansion of the category of vector bundles to include “non-smooth” structures. This requires the
introduction of tools from synthetic and derived differential geometry. These more elaborate structures
are needed to make sense of non-linear partial differential equations and their moduli space of solutions
within the context of models of differential linear logic.
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