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The present paper gives a mathematical, in particular, syntax-independent, formulation

of intensionality and dynamics of computation in terms of games and strategies.

Specifically, we give a game semantics for a higher-order programming language that

distinguishes programs with the same value yet different algorithms (or intensionality),

equipped with the hiding operation on strategies that precisely corresponds to the

(small-step) operational semantics (or dynamics) of the language. Categorically, our

games and strategies give rise to a cartesian closed bicategory, and our game semantics

forms an instance of a generalization of the standard interpretation of functional

programming languages in cartesian closed categories. This work is intended to be the

first step towards a mathematical (both categorical and game-semantic) foundation of

intensional and dynamic aspects of logic and computation; our approach should be

applicable to a wide range of logics and computations.

1. Introduction

In (Girard et al., 1989), J.-Y. Girard mentions the dichotomy between the static and the

dynamic viewpoints in logic and computation; the former identifies terms (i.e., proofs or

programs) with their denotations (i.e., results of their computations in an ideal sense),

while the latter focuses on their senses (i.e., algorithms or intensionality) and dynamics

(i.e., proof-normalization or reduction). This distinction has been certainly reflected in

the two mutually complementary semantics of programming languages: denotational and

operational ones (Amadio and Curien, 1998; Winskel, 1993; Gunter, 1992). He points out

that a mathematical formulation of the former has been well-developed, based on Scott’s

beautiful domain theory (Scott, 1976; Gierz et al., 2003; Abramsky and Jung, 1994), but

it is not the case for the latter; the treatment of senses has been based on ad-hoc syntactic

manipulation. He then emphasizes the importance of mathematics of senses :

The establishment of a truly operational semantics of algorithms is perhaps the most impor-

tant problem in computer science (Girard et al., 1989).

The present work addresses this problem; specifically, it gives an interpretation J KD
of a programming language L with a small-step operational semantics → and a syntax-

independent operationH that satisfy the following dynamic correspondence property

(DCP): M1 → M2 if and only if (a.k.a. iff) JM1KD 6= JM2KD and H(JM1KD) = JM2KD
for any programs M1 and M2 of L. Note that the ‘only if’ and ‘if’ directions correspond

http://arxiv.org/abs/1601.04147v5
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respectively to certain soundness and completeness properties of the interpretation H of

→. Note also that the interpretation J KD is finer than the usual (sound) denotational

semantics because M1 → M2 implies JM1KD 6= JM2KD. Thus, the interpretation J KD and

the operation H capture intensionality and dynamics of computation, respectively.

Although our framework is intended to be a general approach, being applicable to a

wide range of logics and computations, as the first step, we focus on a finite fragment of

the programming language PCF (Scott, 1993; Plotkin, 1977) customized for our aim.

1.1. Game Semantics

Our approach is based on game semantics (Abramsky et al., 1997; Hyland, 1997), a par-

ticular kind of denotational semantics of logic and computation, in which formulas (or

types) and proofs (or programs) are interpreted as games and strategies, respectively.

We employ game semantics for its conceptual naturality and mathematical precision,

which has been demonstrated by various full completeness and full abstraction results

(Curien, 2007) in the literature, leading to a conceptually and mathematically deeper

understanding of logic and computation. Also, game semantics is very flexible: It has

modeled a wide range of formal systems and programming languages by simply varying

constraints on strategies (Abramsky and McCusker, 1999), which enables us to compare

and relate various concepts syntax-independently. We hope that these advantages of game

semantics are true also for intensionality and dynamics of logic and computation.

A game, roughly, is a certain kind of a rooted forest whose branches represent possible

‘developments’ or (valid) positions of a ‘game in the usual sense’ (such as chess, poker,

etc.). Moves of a game are nodes of the game, where some moves are distinguished and

called initial ; only initial moves can be the first element (or occurrence) of a position of the

game. Plays of a game are (finitely or infinitely) increasing sequences (ǫ,m1,m1m2, . . . ) of

positions of the game, where ǫ is the empty sequence. For our purpose, it suffices to focus

on rather standard sequential (as opposed to concurrent (Abramsky and Melliès, 1999)),

unpolarized (as opposed to polarized (Laurent, 2004)) games played by two participants,

Player, representing a ‘computational agent’, and Opponent, representing an ‘environ-

ment’, in each of which Opponent always starts a play (i.e., unpolarized), and then they

alternately and separately perform moves (i.e., sequential) allowed by the rules of the

game. Strictly speaking, a position of each game is not just a finite sequence of moves:

Each occurrence m of Opponent’s or O- (resp. Player’s or P-) non-initial move in a po-

sition is assigned or points to a previous occurrence m′ of P- (resp. O-) move in the

position, representing that m is performed specifically as a response to m′.

A strategy on a game, on the other hand, is what tells Player which move (together with

a pointer) she should make at each of her turns in the game. Hence, a game semantics

J KG of a programming language L interprets a type A of L as a game JAKG that specifies

possible plays between Player and Opponent, and a term M : A† of L as a strategy JMKG
on the game JAKG that describes for Player how to play on JAKG ; an execution of the

term M is then modeled as a play of the game JAKG in which Player follows JMKG .

† For simplicity, here we focus on closed terms, i.e., ones with the empty context.
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Let us consider a simple example. The simplest game is the terminal game T , which

has no moves, and thus it has only the trivial position ǫ.

As another example, consider the natural number game N , which is the following

rooted tree (which is infinite in width):

q

. . .

0
✛

1

✛

2
❄

3

✲

. . .

in which a play starts with Opponent’s question q (‘What is your number?’) and ends

with Player’s answer n ∈ N (‘My number is n!’), where N is the set of all natural numbers,

and n points to q (though this pointer is omitted in the above diagram). A strategy 10

on N , for instance, that corresponds to 10 ∈ N can be represented by the map q 7→ 10

equipped with a pointer from 10 to q (though it is the only choice). In the following,

pointers of most strategies are obvious, and thus we often omit them.

As yet another example, consider the game N ⊸ N of linear functions (Girard, 1987)

(also written informallyN[0] ⊸ N[1]) on natural numbers, whose typical maximal position

is q[1]q[0]n[0]m[1], where n,m ∈ N, and ( )[i] for i = 0, 1 are arbitrary, unspecified ‘tags’

to distinguish the two copies of N (in the rest of the paper, we employ a similar notation

for three or more copies of a game in the obvious manner too), or diagrammatically‡:

N[0] ⊸ N[1]

q[1]
q[0]
n[0]

m[1]

which can be read as follows:

1 Opponent’s question q[1] for an output (‘What is your output?’);

2 Player’s question q[0] for an input (‘Wait, what is your input?);

3 Opponent’s answer, say, n[0] to q[0] (‘OK, here is an input n.’);

4 Player’s answer, say, m[1] to q[1] (‘Alright, the output is then m.’).

A strategy succ on this game that corresponds to the (linear) successor function can

be represented by the map q[1] 7→ q[0], q[1]q[0]n[0] 7→ n + 1[1], where n ranges over N, or

diagrammatically:

N[0]

succ
⊸ N[1]

q[1]
q[0]
n[0]

n+ 1[1]

‡ The diagram is depicted as above only to clarify which component game each move belongs to; it should
be read just as a finite sequence, namely, q[1]q[0]n[0]m[1], equipped with the pointers represented by
the arrows in the diagram.
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1.2. Static Game Semantics

Game semantics is often said to be an intensional, dynamic semantics for a category of

games and strategies is usually not well-pointed, and plays of a game may be regarded

as ‘intensional, dynamic interactions’ between the participants of the game. However, it

has been employed as denotational semantics, and thus it is in particular sound : If two

programs evaluate to the same value, then their denotations in conventional game seman-

tics are identical. Consequently, conventional game semantics J KG is actually extensional

and static in the sense that if there is a reduction M1 → M2 in syntax, then the equation

JM1KG = JM2KG holds in the semantics (i.e., it does not capture the dynamics M1 → M2

or the intensional difference between M1 and M2). In other words, it is not intensional

or dynamic in the sense that it does not satisfy DCPs.

Therefore, to establish mathematics of senses, we need to introduce a more dynamic,

intensional refinement of games and strategies so that it satisfies DCPs for logical systems

and programming languages. To get some insights to develop such games and strategies,

let us see how conventional game semantics fails to be dynamic or intensional. The point

in a word is that ‘internal communication’ between strategies for their composition is a

priori ‘hidden’, and thus the resulting strategy is always in ‘normal form’. For instance,

the composition succ; double : N ⊸ N of strategies succ : N ⊸ N and double : N ⊸ N ,

implementing the successor and the doubling (linear) functions, respectively,

N[0]

succ
⊸ N[1] N[2]

double
⊸ N[3]

q[1] q[3]
q[0] q[2]
m[0] n[2]

m+ 1[1] 2 · n[3]

is formed as follows. First, by ‘internal communication’, we mean that Player plays the

role of Opponent in the intermediate component games N[1] and N[2] just by ‘copy-

catting’ her last moves, resulting in the following play:

N[0]

succ
⊸ N[1] N[2]

double
⊸ N[3]

q[3]
q[2]

q[1]

q[0]
n[0]

n+ 1[1]

n+ 1[2]

2 · (n+ 1)[3]

where each move for ‘internal communication’ is marked by a square box just for clarity,

and the pointer from q[1] to q[2] is added because the move q[1] is no longer initial.

Importantly, it is assumed that Opponent plays on the game N[0] ⊸ N[3], ‘seeing’ only

moves of N[0] or N[3]. The resulting play is to be read as follows:
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1 Opponent’s question q[3] for an output in N[0] ⊸ N[3] (‘What is your output?’);

2 Player’s question q[2] by double for an input in N[2] ⊸ N[3] (‘What is an input?’);

3 q[2] triggers the question q[1] for an output in N[0] ⊸ N[1] (‘What is an output?’);

4 Player’s question q[0] by succ for an input in N[0] ⊸ N[1] (‘Wait, what is an input?’);

5 Opponent’s answer, say, n[0] to q[0] in N[0] ⊸ N[3] (‘Here is an input n.’);

6 Player’s answer n+ 1[1] to q[1] by succ in N[0] ⊸ N[1] (‘The output is then n+1.’);

7 n+ 1[1] triggers the answer n+ 1[2] to q[2] in N[2] ⊸ N[3] (‘Here is the input

n+ 1.’);

8 Player’s answer 2 · (n + 1)[3] to q[3] by double in N[2] ⊸ N[3] (‘The output is then

2 · (n+ 1)!’).

Next, ‘hiding’ means to hide or delete every move with a square box from the play,

resulting in the strategy for the (linear) function n 7→ 2 · (n+ 1) as expected:

N[0]

succ;double
⊸ N[3]

q[3]
q[0]
n[0]

2 · (n+ 1)[3]

Note that it is ‘hiding’ that makes the resulting play a valid one on the game N ⊸ N .

Now, let us plug in the strategy 5T : q[5] 7→ 5[5] on the game T[4] ⊸ N[5], which

coincides with N up to ‘tags’. The composition 5T ; succ; double : T ⊸ N § is computed

again by ‘internal communication’:

T[4]
5T

⊸ N[5] N[0]

succ
⊸ N[1] N[2]

double
⊸ N[3]

q[3]
q[2]

q[1]

q[0]

q[5]

5[5]

5[0]

6[1]

6[2]

12[3]

plus ‘hiding’:

§ Composition of strategies is associative (Abramsky et al., 1997; Hyland, 1997;
Abramsky and McCusker, 1999); thus, the order of applying composition does not matter.
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T[4]
5T ;succ;double

⊸ N[3]

q[3]
12[3]

In syntax, on the other hand, assuming that there are a (ground) type ι of natural

numbers, a numeral n of type ι for each n ∈ N, and constants succ and double of type ι

for the successor and the doubling functions, respectively, equipped with the operational

semantics succ n → n+ 1 and double n → 2 · n for all n ∈ N in an arbitrary functional

programming language, the program p1
df.
≡ λx.(λy. double y)((λz. succ z) x) represents the

syntactic composition succ; double. When it is applied to the numeral 5, we have the

following chain of reductions:

p1 5 →∗ (λx. double (succ x)) 5

→∗ double (succ 5)

→∗ double 6

→∗ 12.

Therefore, it seems that reduction in syntax corresponds in game semantics to ‘hiding

internal communication’. As seen in the above example, however, this game-semantic

normalization is a priori executed and thus invisible in conventional game semantics J KG .

As a result, the two programs p1 5 and 12 are interpreted by J KG as the same strategy.

Moreover, observe that moves with a square box describe intensionality or step-by-step

processes to compute an output from an input, but they are invisible after ‘hiding’. Thus,

e.g., a program p2
df.
≡ λx.(λy. succ y)(λv.(λz. succ z)((λw. doublew) v) x), representing the

same function as p1 yet a different algorithm double; succ; succ is modeled as:

Jp2KG = Jdouble; succ; succKG = Jsucc; doubleKG = Jp1KG .

To sum up, we have observed the following:

1 (Reduction as hiding). Reduction in syntax corresponds in game semantics to

‘hiding intermediate moves (i.e., moves with a square box)’;

2 (A priori normalization). However, the ‘hiding’ process is a priori executed in

conventional game semantics, and thus strategies are always in ‘normal form’;

3 (Intermediate moves as intensionality). Also, ‘intermediate moves’ constitute

intensionality of computation; however, they are not captured in conventional game

semantics again due to the a priori execution of the ‘hiding’ operation.

1.3. Dynamic Games and Strategies

From these observations, we have obtained a promising solution: to define a variant of

games and strategies, in which ‘intermediate moves’ are not a priori ‘hidden’, representing

intensionality of logic and computation, and the hiding operations H on the games and

strategies that ‘hide intermediate moves’ in a step-by-step fashion, interpreting dynamics

of logic and computation. Let us call such a variant of games (resp. strategies) dynamic

games (resp. dynamic strategies).
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In doing so, we shall develop mathematical structures that are conceptually natural and

mathematically elegant. This effort is to inherit the natural, intuitive nature of conven-

tional game semantics so that the resulting interpretation would be insightful, convincing

and useful. Also, mathematics often leads to a ‘correct’ formulation: If a definition gives

rise to neat mathematical structures, then it is likely to succeed in capturing the essence

of concepts and phenomena of concern, and subsume various instances (n.b., recall that

our aim is to establish mathematics of senses). In fact, dynamic games and strategies are

a natural generalization of conventional games and strategies, and they satisfy beautiful

algebraic laws; as a consequence, they form a cartesian closed bicategory (CCB) in the

sense of (Ouaknine, 1997)¶ LDG (Definition 4.1), in which 0- (resp. 1-) cells are certain

dynamic games (resp. dynamic strategies), and 2-cells are the extensional equivalence

between 1-cells; the countably-infinite iteration of the hiding operations H on dynamic

games and strategies induces the 2-functor Hω : LDG → LMG, where the CCC LMG

of conventional games and strategies can be seen as an ‘extensionally collapsed’ LDG.

1.4. Dynamic Game Semantics

We then give, as the main result of the present work, a game semantics J KDG of finitary

PCF (i.e., the simply-typed λ-calculus equipped with the boolean type) in LDG that

together with the hiding operation H satisfies the DCP (Corollary 4.1), which we call

dynamic game semantics as it captures dynamics and intensionality of computation

better than conventional ones. We select finitary PCF as our target language since a

simple language would be appropriate for the first work on dynamic game semantics.

Note that it does not make much sense to ask whether full abstraction holds for

dynamic game semantics as its aim is rather to capture intensionality of computation.

Also, the semantics does not satisfy faithfulness: The semantic equation is of course

finer than β-equivalence but also coarser than α-equivalence, e.g., non-α-equivalent terms

(λx. 0) 1 and (λx. 0) 2 are interpreted to be the same in dynamic game semantics, which

is because the semantic equation captures algorithmic difference of terms, while α-

equivalence distinguishes how they are constructed even if their algorithms coincide (n.b.,

this point calls for (syntax-independent) mathematics of senses).

On the other hand, it makes sense to ask if full completeness holds for dynamic game

semantics. In fact, we shall establish dynamic full completeness (Corollary 4.2).

1.5. Our Contribution and Related Work

To the best of our knowledge, the present work is the first syntax-independent charac-

terization of dynamics and intensionality of computation in the sense of DCPs.

The work closest in spirit is Girard’s geometry of interaction (GoI) (Girard, 1989;

Girard, 1990; Girard, 1995; Girard, 2003; Girard, 2011; Girard, 2013). However, GoI ap-

pears mathematically ad-hoc for it does not conform to the standard categorical semantics

¶ N.b., for the present work, it suffices to know that a CCB is a generalized CCC in the sense that the
equational axioms of CCCs are required to hold only up to 2-cell isomorphisms.
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of type theories (Lambek and Scott, 1988; Pitts, 2001; Crole, 1993; Jacobs, 1999); also,

it does not capture the step-by-step process of reduction in the sense of DCPs. In contrast,

dynamic game semantics refines the standard semantics and does satisfy a DCP.

Next, the idea of exhibiting ‘intermediate moves’ in the composition of strategies is

nothing new ; there are game-semantic approaches (Dimovski et al., 2005; Greenland, 2005;

Ong, 2006) that give such moves an official status. However, because their aims are rather

to develop a tool for program analysis and verification, they do not study in depth math-

ematical structures thereof, give an intensional game semantics that refines the standard

categorical semantics or formulate a step-by-step ‘hiding’ process. Therefore, our contri-

bution for this point is to study algebraic structures of games and strategies when we do

not a priori ‘hide intermediate moves’ and refine the standard categorical semantics in

such a way that satisfies DCPs.

Also, there are several approaches to model dynamics of computation by 2-categories

(Seely, 1987; Hilken, 1996; Mellies, 2005). In these papers, however, the horizontal com-

position of 1-cells is the normalizing one, which is why the structure is 2-categories rather

than bicategories.‖ In addition, the 2-cells of their 2-categories are rewriting, while the

2-cells of our bicategory are the external equivalence between 1-cells; note that 2-cells in

a bicategory cannot interpret rewriting unless the horizontal composition is normalizing

since associativity of non-normalizing composition with respect to such 2-cells does not

hold.†† Thus, although their motivations are similar to ours, our bicategorical approach

seems novel, interpreting an application of terms by non-normalizing composition, the

extensional equivalence of terms by 2-cells and rewriting by the hiding operation H.

Moreover, their frameworks are categorical, while we instantiate our categorical model

by game semantics. Furthermore, neither of the previous work establishes a DCP.

Finally, note that the present work has some implications from theoretical as well as

practical viewpoints. From the theoretical perspective, it enables us to study dynamics

and intensionality of computation as purely mathematical (or semantic) concepts, just

like any concepts in pure mathematics such as differentiation and integration in calculus,

homotopy in topology, etc. Thus, we would be able to rigorously analyze the essence of

these concepts, ignoring superfluous syntactic details. From the practical point, on the

other hand, it might become a useful tool for language analysis and design, e.g., our

variant of finitary PCF would not exist without the present work.

1.6. Structure of the paper

The rest of the present paper proceeds as follows. This introduction ends with fixing

some notations. Then, Section 2 formulates our target programming language and its

bicategorical semantics that satisfies the DCP so that it remains to establish its game-

semantic instance. Next, Section 3 introduces dynamic games and strategies and studies

their basic algebraic structures, and Section 4 gives dynamic game semantics of the

language. Finally, Section 5 draws a conclusion and proposes some future work.

‖ N.b., the unit law on the nose does not hold if the composition is non-normalizing.
†† N.b., there is no rewriting between 1-cells (f ; g); h and f ; (g; h) if the composition is non-normalizing.
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Notation. We use the following notations throughout the paper:

— We use bold letters s, t,u,v, etc. for sequences, in particular ǫ for the empty sequence,

and letters a, b, c, d,m, n, x, y, z, etc. for elements of sequences;

— Given k ∈ N, we write k for the finite set {1, 2, . . . , k } ⊆ N (n.b., 0 = ∅);

— We often abbreviate a finite sequence s = (x1, x2, . . . , x|s|) as x1x2 . . . x|s|, where |s|

denotes the length (i.e., the number of elements) of s, and write s(i), where i ∈ |s|,

as another notation for xi;

— A concatenation of sequences is represented by the juxtaposition of them, but we

often write as, tb, ucv for (a)s, t(b), u(c)v, etc., and also write s.t for st;

— We define sn
df.
= ss · · ·s︸ ︷︷ ︸

n

for a sequence s and a natural number n ∈ N;

— We write Even(s) (resp. Odd(s)) iff s is of even-length (resp. odd-length);

— We define SP df.
= {s ∈ S | P(s)} for a set S of sequences and P ∈ {Even,Odd};

— s � t means s is a prefix of t, i.e., t = s.u for some sequence u, and given a set S of

sequences, we define Pref(S)
df.
= {s | ∃t ∈ S. s � t };

— For a poset P and a subset S ⊆ P , Sup(S) denotes the supremum of S;

— X∗ df.
= {x1x2 . . . xn | n ∈ N, ∀i ∈ n. xi ∈ X } for each set X ;

— For a function f : A → B and a subset S ⊆ A, we define f ↾ S : S → B to be the

restriction of f to S, and f∗ : A∗ → B∗ by f∗(a1a2 . . . an)
df.
= f(a1)f(a2) . . . f(an) ∈

B∗ for all a1a2 . . . an ∈ A∗;

— Given sets X1, X2, . . . , Xn, and i ∈ n, we write πi (or π
(n)
i ) for the ith-projection

function X1 ×X2 × · · · ×Xn → Xi that maps (x1, x2, . . . , xn) 7→ xi;

— ≃ denote the Kleene equality, i.e., x ≃ y
df.
⇔ (x ↓ ∧ y ↓ ∧ x = y) ∨ (x ↑ ∧ y ↑), where

we write x ↓ if an element x is defined, and x ↑ otherwise.

2. Dynamic Bicategorical Semantics

Let us first present a categorical description of how dynamic games and strategies capture

dynamics and intensionality of logic and computation, and show that it is a refinement of

the standard categorical semantics of type theories (Lambek and Scott, 1988; Pitts, 2001;

Crole, 1993; Jacobs, 1999).

2.1. Beta-Categories of Computation

The categorical structure for our interpretation of logic and computation is β-categories

of computation (BoCs), a certain kind of bicategories whose 2-cells are the extensional

equivalence between 1-cells, equipped with an evaluation satisfying certain axioms.

Let us first introduce a more general notion of β-categories, which are categories up to

an equivalence relation on morphisms :

Definition 2.1 (β-categories). A β-category is a pair C = (C,≃) that consists of:

— A class ob(C) of objects, where we usually write A ∈ C for A ∈ ob(C);

— A class C(A,B) of β-morphisms from A to B for each pair A,B ∈ C, where we

often write f : A→ B for f ∈ C(A,B) if C is obvious from the context;
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— A (class) function C(A,B) × C(B,C)
;A,B,C

→ C(A,C), called the β-composition on

β-morphisms from A to B and from B to C, for each triple A,B,C ∈ C;

— A β-morphism idA ∈ C(A,A), called the β-identity on A, for each A ∈ C;

— An equivalence (class) relation ≃A,B on C(A,B), called the equivalence on β-

morphisms from A to B, for each pair A,B ∈ C

where we also write C(B,C) × C(A,B)
◦A,B,C

→ C(A,C) for the β-composition ;A,B,C and

often omit the subscripts on ;A,B,C , ◦A,B,C and ≃A,B, such that it satisfies:

(f ; g);h ≃ f ; (g;h)

f ; idB ≃ f

idA; f ≃ f

f ≃ f ′ ∧ g ≃ g′ ⇒ f ; g ≃ f ′; g′

for any A,B,C,D ∈ C, f, f ′ : A → B, g, g′ : B → C and h : C → D. Moreover, it is

cartesian closed iff:

— There is an object T ∈ C, called a β-terminal object, equipped with a β-morphism

!A : A→ T , called the canonical β-morphism on A, for each A ∈ C that satisfies:

!A ≃ t for any t : A→ T ;

— There is an object A×B ∈ C for each pair A,B ∈ C, called a β-(binary) product of

A and B, equipped with β-morphisms πA,B1 : A×B → A and πA,B2 : A×B → B, called

the first and the second β-projections of A × B, respectively, and an assignment

〈 , 〉 of a β-morphism 〈a, b〉CA,B : C → A × B, called the β-pairing of a and b, to

given C ∈ C, a : C → A and b : C → B, that satisfies:

〈a, b〉CA,B;π
A,B
1 ≃ a

〈a, b〉CA,B;π
A,B
2 ≃ b

〈h;πA,B1 , h;πA,B2 〉CA,B ≃ h for any h : C → A×B

a ≃ a′ ∧ b ≃ b′ ⇒ 〈a, b〉 ≃ 〈a′, b′〉 for any a′ : C → A and b′ : C → B;

— There are an object CB ∈ C and a β-morphism evB,C : CB × B → C, called the β-

exponential and the β-evaluation of B and C, respectively, for each pair B,C ∈ C,

equipped with an assignment Λ of a β-morphism ΛA,B,C(k) : A → CB (also written

ΛB,CA (k) or ΛA(k)), called the β-currying of k, to given A ∈ C and k : A×B → C,

that satisfies:

〈πA,B1 ; ΛA,B,C(k), π
A,B
2 〉A×B

CB ,B
; evB,C ≃ k

ΛA,B,C(〈π
A,B
1 ; l, πA,B2 〉A×B

CB ,B
; evB,C) ≃ l for any l : A→ CB

k ≃ k′ ⇒ ΛA,B,C(k) ≃ ΛA,B,C(k
′) for any k′ : A×B → C

where we often omit the sub/superscripts on πA,Bi , 〈 , 〉CA,B , evB,C and ΛA,B,C .

That is, a (resp. cartesian closed) β-category C = (C,≃) is a (resp. cartesian closed)

category up to ≃ (i.e., the equation = on morphisms is replaced with the equivalence rela-

tion ≃ on 1-cells), where the prefix ‘β-’ signifies the compromise ‘up to ≃’. Alternatively,
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regarding objects and β-morphisms of C as 0-cells and 1-cells, respectively, and defining 2-

cells by C(A,B)(d, c)
df.
=

{
{≃} if d ≃ c;

∅ otherwise
for any A,B ∈ C and d, c : A→ B, where {≃}

is any singleton set, we may identify C with a (resp. cartesian closed (Ouaknine, 1997))

bicategory whose 2-cells are only the trivial one.

We are now ready to define β-categories of computation (BoCs):

Definition 2.2 (BoCs). A β-category of computation (BoC) is a β-category C =

(C,≃) equipped with a (class) function E on β-morphisms of C, called the evaluation

(of computation), that satisfies:

— (Subject reduction). E(f) : A→ B for all A,B ∈ C and f : A→ B;

— (Termination). f ↓ for all A,B ∈ C and f : A→ B;

— (β-identities). idA ∈ VC(A,A) for all A ∈ C;

— (Evaluation). f ≃ f ′ ⇔ ∃v ∈ VC(A,B). f ↓ v ∧ f ′ ↓ v for all A,B ∈ C and

f, f ′ : A→ B

where VC(A,B)
df.
= {v ∈ C(A,B) | E(v) = v }, whose elements are called values from A

to B, and we write f ↓, or specifically f ↓ En(f), if En(f) ∈ VC(A,B) for some n ∈ N.‡‡

It is cartesian closed, which we call a cartesian closed BoC (CCBoC), iff so is C

as a β-category, all the canonical β-morphisms, the β-projections and the β-evaluations

of C are values, and all the β-pairing and the β-currying of C preserve values.

Convention. Since the equivalence ≃ of a BoC C may be completely recovered from

the evaluation E , we usually specify the BoC by a pair C = (C, E). If f ↓ En(f) for some

n ∈ N, then we call En(f) the value of f and also write Eω(f) for it.

The intuition behind Definition 2.2 is as follows. In a BoC C = (C, E), β-morphisms are

(possibly intensional but not necessarily ‘effective’) computations with the domain and

the codomain (objects) specified, and values are extensional computations such as func-

tions (as graphs). The β-composition is ‘non-normalizing composition’ or concatenation

of computations, and β-identities are unit computations (they are just like identity func-

tions). The execution of a computation f is achieved by evaluating it into a unique value

Eω(f), which corresponds to dynamics of computation.§§ In addition, the equivalence

relation ≃ witnesses the extensional equivalence between β-morphisms modulo Eω . The

four axioms then should make sense from this perspective. In this way, a BoC provides

a ‘universe’ of dynamic, intensional computations.

It is easy to see that a BoC C = (C, E) induces the category VC given by:

— Objects are those of C;

— Morphisms A→ B are elements in VC(A,B), i.e., values from A to B in C;

‡‡ Note that if En1(f), En2 (f) ∈ VC(A,B) for any n1, n2 ∈ N, then clearly En1 (f) = En2(f), where En

denotes the n-times iteration of E for all n ∈ N.
§§ In the present work, every dynamic strategy (or β-morphism) becomes a value by a finite iteration of

the hiding operation (or evaluation) due to the axiom on labeling functions (Definition 3.1), and thus
the axiom Termination (Definition 2.2) makes sense. Of course, if we consider another, in particular
finer, evaluation of computations (which is left as future work), then this point may no longer hold.
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— The composition of morphisms u : A→ B and v : B → C is Eω(u; v) : A→ C;

— Identities are β-identities in C.

Regarding the BoC C as the trivial bicategory as already specified above, and the category

VC as the trivial 2-category, the evaluation E induces the 2-functor Eω : C → VC that

maps A 7→ A for 0-cells A, f 7→ Eω(f) for 1-cells f , and ≃ 7→ = for 2-cells≃. Clearly, VC is

cartesian closed if so is C, where canonical morphisms into a terminal object, projections,

evaluations, pairing and currying of VC are respectively the corresponding ‘β-ones’ in C.

The point here is that we may decompose the standard interpretation J KS of functional

programming languages in a CCC VC (Lambek and Scott, 1988; Pitts, 2001; Crole, 1993;

Jacobs, 1999) as a more intensional interpretation J KD in a CCBoC C = (C, E) and the

full evaluation Eω : C → VC , i.e., J KS = Eω(J KD), and talk about intensional difference

between computations: Terms M and M′ are interpreted to be intensionally equal if

JMKD = JM′KD and extensionally equal if JMKD ≃ JM′KD. Also, the one-step evaluation E

is to capture the small-step operational semantics of the target language, i.e., to satisfy

the DCP (see Definition 2.5 for the precise definition specialized to our target language).

2.2. Finitary PCF

Next, let us introduce our target programming language for dynamic game semantics.

First, recall that there is a one-to-one correspondence between PCF Böhm trees (i.e.,

terms of PCF in η-long normal form) (Amadio and Curien, 1998) and innocent, well-

bracketed strategies (Hyland and Ong, 2000; Abramsky and McCusker, 1999; Curien, 2006);

this highlight in the literature of game semantics is called strong definability. Naturally,

we would like to exploit the strong definability result to establish the first instance of

dynamic game semantics as the task would be easier than otherwise.

On the other hand, the higher-order functional programming languagePCF (Scott, 1993;

Plotkin, 1977) has the natural number type and the fixed-point combinators, which make

PCF Böhm trees infinitary in width and depth, respectively. However, we would like to

select, as the first target language for dynamic game semantics, the simplest one pos-

sible because then the idea and the mechanism would be most visible. For this reason,

let us choose finitary PCF, i.e., the finite fragment of PCF that has only the boolean

type as the ground type (or equivalently, the simply-typed λ-calculus (Church, 1940;

Sørensen and Urzyczyn, 2006) equipped with the boolean type).

We then define a simple small-step operational semantics (or reduction strategy) of

finitary PCF whose execution order is obvious from types and has an immediate coun-

terpart in dynamic game semantics.

Remark. Note that an execution of linear head reduction (LHR) (Danos and Regnier, 2004)

corresponds in a step-by-step fashion to an ‘internal communication’ between strategies

(Danos et al., 1996). Hence, one may wonder if it would be better to employ LHR as the

operational semantics of finitary PCF; however, note that:

— The correspondence is not between terms and strategies;

— LHR is executed by linear substitution, which makes the calculus very different from

the usual λ-calculus with β-reduction.
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By these two points, we have conjectured that it would require significantly more work

than the present work to establish a game-semantic DCP with respect to LHR, and

therefore we leave it as future work.

In the following, we give the precise definition of the resulting target programming

language (viz., finitary PCF equipped with the small-step operational semantics).

Notation. We employ the following notations:

— Let V be a countably infinite set of variables, written x, y, z, etc., for which we assume

the variable convention (or Barendregt’s convention (Hankin, 1994)¶¶);

— We use sans-serif letters such as Γ, A and a for syntactic objects and ≡ for syntactic

equality up to α-equivalence, i.e., up to renaming of bound variables.

Definition 2.3 (FPCF). The finitary PCF (FPCF) is a functional programming

language defined as follows:

— (Types). A type A is an expression generated by the grammar:

A
df.
≡ o | A1 ⇒ A2

where o is the boolean type and A1 ⇒ A2 is the function type from A1 to A2 (⇒

is right associative). We write A,B,C, etc. for types. Note that each type A may be

written uniquely of the form A1 ⇒ A2 ⇒ · · · ⇒ Ak ⇒ o, where k ∈ N.

— (Raw-terms). A raw-term M is an expression generated by the grammar:

M
df.
≡ x | tt | ff | case(M)[M1;M2] | λx

A.M | M1M2

where x ranges over variables, and A over types. We call tt, ff, λxA.M and M1M2

respectively the true constant, the false constant, an abstraction and an appli-

cation. We write M,P,Q,R, etc. for raw-terms and often omit A in an abstraction

λxA; an application is always left-associative, e.g.,M1M2M3 may be written informally

(M1M2)M3. The set FV (M) ⊆ V of all free variables occurring in a raw-term M

is defined by the following induction on M:

FV (x)
df.
= {x}

FV (tt)
df.
= FV (ff)

df.
= ∅

FV (case(M)[M1;M2])
df.
= FV (M) ∪ FV (M1) ∪ FV (M2)

FV (λx.M)
df.
= FV (M) \ {x}

FV (M1M2)
df.
= FV (M1) ∪ FV (M2).

— (Contexts). A context is a finite sequence x1 : A1, x2 : A2, . . . , xk : Ak of (variable :

type)-pairs with xi 6= xj if i 6= j, where i, j ∈ k. We write Γ, ∆, Θ, etc. for contexts.

¶¶ I.e., we assume that in any term of concern every bound variable is chosen to be different from any
free variable occurring in that mathematical context.
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— (Terms). A term is an expression of the form Γ ⊢ M : B, where Γ is a context, M

is a raw-term, and B is a type, generated by the following typing rules:

(B)
b ∈ {tt,ff}

Γ ⊢ b : o
(C1)

A ≡ A1 ⇒ A2 ⇒ · · · ⇒ Ak ⇒ o Γ ≡ ∆,Θ

∀i ∈ k. Γ ⊢ Vi : Ai ∧ ♯(Vi) = 0 ∧ x 6∈ FV (Vi)

∀j ∈ 2. Γ ⊢ Wj : o ∧ ♯(Wj) = 0 ∧ x 6∈ FV (Wj)

∆, x : A,Θ ⊢ case(xV1V2 . . .Vk)[W1;W2] : o

(C2)
Γ ⊢ M : o ∀j ∈ 2.Γ ⊢ Pj : o

Γ ⊢ case(M)[P1;P2] : o
(L)

Γ, x : A ⊢ M : B

Γ ⊢ λxA.M : A ⇒ B

(A)
Γ ⊢ M1 : A ⇒ B Γ ⊢ M2 : A

Γ ⊢ M1M2 : B

where ♯(Γ ⊢ M : B) ∈ N, often abbreviated as ♯(M), is the execution number of each

term Γ ⊢ M : B defined by the following induction on Γ ⊢ M : B:

– ♯(b)
df.
= 0 if b ∈ {tt,ff};

– ♯(case(xV1V2 . . .Vk)[W1;W2])
df.
= 0;

– ♯(case(M)[P1;P2])
df.
= 0;

– ♯(λxA.M)
df.
= ♯(M);

– ♯(M1M2)
df.
= max(♯(M1), ♯(M1)) + 1.

We write Γ ⊢ {M}e : B for the term Γ ⊢ M : B such that ♯(M) = e. Also, we often

omit the context and/or the type of a term if it does not bring confusion. A program

(resp. a value) is a term generated by the rules B, C1, L and A (resp. B, C1 and L).

A subterm of a term Γ ⊢ M : B is a term that occurs in the deduction of Γ ⊢ M : B,

where note that a deduction (tree) of each term of FPCF is clearly unique.

Remark. The rules C2 above and ϑ4 below are necessary for ‘intermediate terms’

during an evaluation of a program into a value.

— (βϑ-reduction). The βϑ-reduction →βϑ on terms is the contextual closure, i.e.,

the closure with respect to the typing rules, of the union of the following five rules:

(λx.M)P →β M[P/x]

case(tt)[M1;M2] →ϑ1 M1

case(ff)[M1;M2] →ϑ2 M2

case(case(xV)[W1;W2])[M1;M2] →ϑ3 case(xV)[case(W1)[M1;M2]; case(W2)[M1;M2]]

case(case(M)[P1;P2])[Q1;Q2] →ϑ4 case(M)[case(P1)[Q1;Q2]; case(P2)[Q1;Q2]]

where M[P/x] denotes the capture-free substitution (Hankin, 1994) of P for x in M,

and xV abbreviates xV1V2 . . .Vk of the rule C1. We write nf (M) for the normal form

of each term M with respect to →βϑ, i.e., nf (M) is a term such that M →∗
βϑ nf (M)

and nf (M) 6→βϑ M′ for any term M′, which uniquely exists by Theorems 2.2 and 2.3
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given below. The parallel βϑ-reduction ⇒βϑ on terms evaluates each term M in a

single-step to its normal form nf (M).

— (Operational semantics). The (small-step) operational semantics (or the

reduction strategy) → on programs M is the ‘simultaneous execution’ of ⇒βϑ on

all subterms of M with the execution number 1, or more precisely → is defined by:

M →





V if M ≡ M1M2, ♯(M1M2) = 1 and M1M2 ⇒βϑ V;

M′
1M

′
2 if M ≡ M1M2, ♯(M1M2) > 2 and Mi → M′

i for i = 1, 2;

λxA. M̃′ if M ≡ λxA. M̃ and M̃ → M̃′.

Remark. The operational semantics → of FPCF might appear a bit unusual, but as

we shall see, it has a natural game-semantic counterpart, i.e., it makes sense from the

game-semantic point of view.

Eq(FPCF) is the equational theory that consists of judgements Γ ⊢ M = M′ : B, where

Γ ⊢ M : B and Γ ⊢ M′ : B are terms of FPCF such that nf (M) ≡ nf (M′).

Note that values of FPCF are PCF Böhm trees except that the ‘bottom term’ ⊥ and

the natural number type ι are excluded; the βϑ-reduction →βϑ is essentially taken from

Section 6 of the book (Amadio and Curien, 1998).

Remark. Let A ≡ A1 ⇒ A2 ⇒ · · · ⇒ Ak ⇒ o be an arbitrary type of FPCF. Note that

an expression of the form ∆, x : A,Θ ⊢ x : A is not a term of FPCF, but instead there

is another ∆, x : A,Θ ⊢ xA : A, where xA
df.
≡ λxA1

1 xA2

2 . . . xAk

k . case(xx1
A1x2

A2 . . . xk
Ak)[tt;ff],

which is a term of FPCF. We often write x for xA if it does not bring confusion.

Thus, FPCF computes as follows. Given a program Γ ⊢ {M}e : B, it produces a finite

chain of finitary rewriting

M → M1 → M2 → · · · → Me (1)

where Me is a value. Note that the program M is constructed from values by a finite

number of applications, and the computation (1) is executed in the first-applications-

first-evaluated fashion, e.g., ifM ≡ (V1V2)((V3V4)(V5V6)) and e = 3, where V1,V2, . . . ,V6

are values, then the computation (1) would be of the form

(V1V2)((V3V4)(V5V6)) → V7(V8V9) → V7V10 → V11

where V7 ≡ nf (V1V2), V8 ≡ nf (V3V4), V9 ≡ nf (V5V6), V10 ≡ nf (V8V9) and V11 ≡ nf (V7V10).

The rest of the present section is devoted to showing that the computation (1) of FPCF

in fact correctly works (Corollary 2.1).

First, by the following Proposition 2.1 and Theorem 2.1, it makes sense that →βϑ is

defined on terms (not on raw-terms):

Proposition 2.1 (Unique typing). If Γ ⊢ {M}e : B and Γ ⊢ {M}e′ : B′, then e = e′

and B ≡ B′.

Proof. By induction on the construction of Γ ⊢ M : B.
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Lemma 2.1 (Free variable lemma). If Γ ⊢ M : B, and x ∈ V occurs free in M, then

x : A occurs in Γ for some type A.

Proof. By induction on the construction of Γ ⊢ M : B.

Lemma 2.2 (EW-lemma). If x1 : A1, x2 : A2, . . . , xk : Ak ⊢ {M}e : B, then:

1 xσ(1) : Aσ(1), xσ(2) : Aσ(2), . . . , xσ(k) : Aσ(k) ⊢ {M}e : B for any permutation σ of k;

2 x1 : A1, x2 : A2, . . . , xk : Ak, xk+1 : Ak+1 ⊢ {M}e : B for any variable xk+1 ∈ V and type

Ak+1 such that xk+1 6≡ xi for i = 1, 2, . . . , k.

Proof. By induction on the construction of x1 : A1, x2 : A2, . . . , xk : Ak ⊢ M : B.

Lemma 2.3 (Substitution lemma). If Γ, x : A ⊢ {P}e : B and Γ ⊢ Q : A, then

Γ ⊢ {P[Q/x]}e : B.

Proof. By induction on |P| with the help of Lemmata 2.1 and 2.2.

Theorem 2.1 (Subject reduction). If Γ ⊢ M : B and M →βϑ R, then Γ ⊢ R : B.

Proof. By induction on the structure M →βϑ R with the help of Lemma 2.3.

Next, we show that ⇒βϑ is well-defined (Theorems 2.2 and 2.3).

Lemma 2.4 (Hindley-Rosen). Let R1 and R2 be binary relations on the set T of all

terms, and let us write →Ri
for the contextual closure of Ri for i = 1, 2. If →R1 and →R2

are Church-Rosser, and satisfy ∀M,P,Q ∈ T .M →∗
R1
P ∧M →∗

R2
Q ⇒ ∃R ∈ T .P →∗

R2
R ∧

Q →∗
R1
R, then →R1∪R2 is Church-Rosser.

Proof. By simple ‘diagram chase’; see (Hankin, 1994) for the details.

Theorem 2.2 (Church-Rosser). The βϑ-reduction →βϑ is Church-Rosser.

Proof. First, it is easy to see that the ϑ-reduction →ϑ
df.
=

⋃4
i=1 →ϑi

satisfies the

diamond-property, and thus it is Church-Rosser.

Also, we may show that:

M →β P ∧M →ϑ Q ⇒ ∃R.P →∗
ϑ R ∧Q →β R (2)

for all terms M, P and Q, where note the asymmetry of →ϑ and →β , by a case analysis

on the relation between β- and ϑ-redexes in M:

— If the β-redex is inside the ϑ-redex, then it is easy to see that (2) holds;

— If the ϑ-redex is inside the body of the function subterm of the β-redex, then it suffices

to show that →ϑ commutes with substitution, but it is straightforward;

— If ϑ-redex is inside the argument of the β-redex, then it may be duplicated by a finite

number n, but whatever the number n is, (2) clearly holds;

— If the β- and ϑ-redexes are disjoint, then (2) trivially holds.

It then follows from (2) that:

M →β P ∧M →∗
ϑ Q ⇒ ∃R.P →∗

ϑ R ∧Q →β R (3)
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which in turn implies that:

M →∗
β P ∧M →∗

ϑ Q ⇒ ∃R.P →∗
ϑ R ∧Q →∗

β R (4)

for all terms M, P and Q. Applying Lemma 2.4 to (4) (or equivalently by the well-known

‘diagram chase’ argument on →∗
β and →∗

ϑ), we may conclude that the βϑ-reduction

→βϑ=→β ∪ →ϑ is Church-Rosser, completing the proof.

Now, we show strong normalization of →βϑ, i.e., there is no infinite chain of →βϑ:

Theorem 2.3 (SN). The βϑ-reduction →βϑ is strongly normalizing (SN).

Proof. By a slight, straightforward modification of the proof of strong normalization

of the simply-typed λ-calculus in (Hankin, 1994).

Thus, it follows from Theorems 2.2 and 2.3 that the normal form nf (M) of each term

M of FPCF (with respect to →βϑ) uniquely exists. Moreover, we have:

Theorem 2.4 (Normal forms are values). The normal form nf (M) of every program

M (with respect to →βϑ) is a value.

Proof. It has been shown in (Amadio and Curien, 1998) during the proof to show that

PCF Böhm trees are closed under composition.

Therefore, we have shown that the operational semantics → is well-defined:

Corollary 2.1 (Correctness of operational semantics). If Γ ⊢ {M}e : B is a

program, and e > 1 (resp. e = 1), then there exists a unique program (resp. value)

Γ ⊢ {M′}e−1 : B that satisfies M → M′.

Proof. By Theorems 2.1, 2.2, 2.3 and 2.4.

2.3. Dynamic Bicategorical Semantics of Finitary PCF

Next, we present a general, categorical recipe to give semantics of FPCF in a CCBoC in

such a way that satisfies the DCP.

Definition 2.4 (Structures for FPCF). A structure for FPCF in a CCBoC C =

(C, E) is a tuple S = (B, 1,×, π,⇒, ev , tt ,ff , ϑ) such that:

— B ∈ C;

— 1, (×, π1, π2) and (⇒, ev ) are respectively a β-terminal object, a β-product (with

β-projections) and a β-exponential (with β-evaluations) in C;

— tt ,ff : 1 → B and ϑ : B × (B × B) → B are values in C.

The interpretation J KSC of FPCF induced by S in C assigns an object JAKSC ∈ C to each

type A, an object JΓKSC ∈ C to each context Γ, and a β-morphism JMKSC : JΓKSC → JBKSC to

each term Γ ⊢ M : B as follows:

— (Types). JoKSC
df.
= B and JA ⇒ BKSC

df.
= JAKSC ⇒ JBKSC ;

— (Contexts). JǫKSC
df.
= 1 and JΓ, x : AKSC

df.
= JΓKSC × JAKSC ;
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— (Terms).

JΓ ⊢ tt : oKSC
df.
= Eω(!JΓKS

C
; tt)

JΓ ⊢ ff : oKSC
df.
= Eω(!JΓKS

C
;ff )

JΓ ⊢ λx.M : A ⇒ BKSC
df.
= ΛJΓKSC ,JAKSC ,JBKSC

(JΓ, x : A ⊢ M : BKSC )

JΓ ⊢ MN : BKSC
df.
= 〈JΓ ⊢ M : A ⇒ BKSC , JΓ ⊢ N : AKSC 〉

JΓKSC
JA⇒BKS

C
,JAKS

C

; ev JAKSC ,JBKSC

JΓ ⊢ case(xV)[W1;W2] : oK
S
C

df.
= Eω(〈JΓ ⊢ xV : oKSC , 〈JΓ ⊢ W1 : oK

S
C , JΓ ⊢ W2 : oK

S
C 〉〉;ϑ)

JΓ ⊢ case(M)[P1;P2] : oK
S
C

df.
= Eω(〈JΓ ⊢ M : oKSC , 〈JΓ ⊢ P1 : oK

S
C , JΓ ⊢ P2 : oK

S
C 〉〉;ϑ)

where JΓ ⊢ x : AKSC : JΓKSC → JAKSC (n.b., Γ ⊢ x : A is not a term of FPCF, but we need

it for the application xV) is the obvious (possibly iterated) β-projection.

Moreover, the structure S is standard iff it satisfies the following five axioms:

1 The maps ΛA,B,C and 〈 , 〉CA,B in C are bijections for each triple A,B,C ∈ C;

2 The object B, a β-product and a β-exponential of C are pairwise distinct;

3 Each β-composition that occurs as the interpretation of a term is not a value;

4 A β-currying and a β-composition of C that occur as the interpretations of terms

never coincide;

5 The β-evaluation evA,B for any A,B ∈ C is a mono with respect to the β-composition,

i.e., f ; evA,B = f ′; evA,B ⇒ f = f ′ for any C ∈ C and f, f ′ : C → BA ×A in C.

Clearly, the interpretation J KSC followed by Eω , i.e., Eω(J KSC ), coincides with the stan-

dard categorical interpretation of the equational theory Eq(FPCF) in the CCC VC (Lambek and Scott, 1988;

Pitts, 2001; Crole, 1993; Jacobs, 1999). In this sense, we have refined the standard cate-

gorical semantics of type theories.

At this point, let us recall the DCP (see Section 1) specifically for the interpretation

of FPCF induced by a structure in a CCBoC:

Definition 2.5 (DCP for FPCF). The interpretation J KSC of FPCF induced by a

structure S for FPCF in a CCBoC C = (C, E) satisfies the dynamic correspondence

property (DCP) iff for any programs M1 and M2 of FPCF we have:

M1 → M2 ⇔ JM1K
S
C 6= JM2K

S
C ∧ E(JM1K

S
C ) = JM2K

S
C .

Now, we reduce the DCP for FPCF to the following:

Definition 2.6 (PDCP for FPCF). The interpretation J KSC of FPCF induced by a

structure S for FPCF in a CCBoC C = (C, E) satisfies the pointwise dynamic corre-

spondence property (PDCP) iff for each term Γ ⊢ {M}e : B it satisfies:

E(JMKSC ) =





Λ ◦ E(JPKSC ) if M ≡ λx.P;

JWKSC such that JWKSC 6= JMKSC if M ≡ UV, e = 1 and UV → W;

〈E(JLKSC ), E(JRKSC )〉; ev if M ≡ LR and e > 1;

JMKSC otherwise.
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Lemma 2.5 (P-lemma). If the interpretation J KSC induced by a standard structure S

for FPCF in a CCBoC C = (C, E) satisfies the PDCP, then E(JMKSC ) 6= JMKSC ⇔ ♯(M) > 1

for all terms M.

Proof. By induction on the construction of M, where the first and the fifth axioms on

standardness of S is essential.

Theorem 2.5 (Standard bicategorical semantics of FPCF). The interpretation

J KSC of FPCF induced by a standard structure S for FPCF in a CCBoC C = (C, E)

satisfies the DCP if it satisfies the PDCP.

Proof. In the following, we abbreviate J KSC as J K. Assume that J K satisfies the PDCP.

We show M → M′ ⇔ JMK 6= JM′K ∧ E(JMK) = JM′K for any programs Γ ⊢ {M}e : B and

Γ ⊢ {M′}e′ : B of FPCF by induction on the construction of M:

— If M ≡ tt or M ≡ ff, then there is no term M′ such that M → M′, and there is no

β-morphism f ′ in C such that JMK 6= f ′ ∧ E(JMK) = f ′ because E(JMK) = JMK.

— If Γ ⊢ M ≡ case(xV1V2 . . .Vk)[W1;W2] : o, then it can be handled in the same manner

as the above case.

— If Γ ⊢ M ≡ λxA.P : A ⇒ C, then we have:

M → M′ ⇔ M′ ≡ λx.P′ ∧ P → P′ for some program P′ and variable x

⇔ M′ ≡ λx.P′ ∧ JPK 6= JP′K ∧ E(JPK) = JP′K for some P′ and x

(by the induction hypothesis)

⇔ JPK 6= Λ−1(JM′K) ∧ E(JPK) = Λ−1(JM′K)

(n.b., for ⇐, Λ−1(JM′K) ↓ implies that M′ must be a currying as S is standard)

⇔ Λ−1(JMK) 6= Λ−1(JM′K) ∧ Λ−1 ◦ E(JMK) = Λ−1(JM′K) (as E(JMK) = Λ ◦ E(JPK))

⇔ JMK 6= JM′K ∧ E(JMK) = JM′K (by the bijectivity of Λ).

— If M ≡ LR, ♯(L) > 1 and ♯(R) > 1, then we have:

M → M′ ⇔ M′ ≡ L′R′ ∧ L → L′ ∧ R → R′ for some programs L′ and R′

⇔ M′ ≡ L′R′ ∧ JLK 6= JL′K ∧ E(JLK) = JL′K ∧ JRK 6= JR′K ∧ E(JRK) = JR′K

for some L′ and R′ (by the induction hypothesis)

⇔ JM′K = 〈E(JLK), E(JRK)〉; ev ∧ JLK 6= E(JLK) ∧ JRK 6= E(JRK)

(n.b., ⇐ holds by the third and the fourth axioms on standardness of S)

⇔ JM′K = E(JLRK) ∧ JLK 6= E(JLK) ∧ JRK 6= E(JRK)

(because the interpretation J K satisfies the PDCP)

⇔ JM′K = E(JMK) (by Lemma 2.5)

⇔ JM′K = E(JMK) ∧ E(JMK) 6= JMK (again by Lemma 2.5).
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— If M ≡ LR, ♯(L) = 0 and ♯(R) > 1, then we have:

M → M′ ⇔ M′ ≡ LR′ ∧ R → R′ for some program R′

⇔ M′ ≡ LR′ ∧ JRK 6= JR′K ∧ E(JRK) = JR′K for some R′

(by the induction hypothesis)

⇔ JM′K = 〈JLK, E(JRK)〉; ev ∧ JRK 6= E(JRK)

(n.b., ⇐ holds as in the above case)

⇔ JM′K = 〈JLK, E(JRK)〉; ev (by Lemma 2.5)

⇔ JM′K = E(JMK) (by Lemma 2.5 and the PDCP of the interpretation J K)

⇔ JM′K = E(JMK) ∧ E(JMK) 6= JMK (again by Lemma 2.5).

— If M ≡ LR, ♯(L) > 1 and ♯(R) = 0, then it is handled similarly to the above case.

— If M ≡ LR, ♯(L) = 0 and ♯(R) = 0, then we have:

M → M′ ⇔ E(JMK) = JM′K (since the interpretation J K satisfies the PDCP)

⇔ E(JMK) = JM′K ∧ E(JMK) 6= JMK (by Lemma 2.5)

which completes the proof.

To summarize the present section, we have defined bicategorical ‘universes’ of dynamic,

intensional computations, viz., (CC)BoCs, presented the simple functional programming

language FPCF, and given an interpretation of the latter in the former as well as a

sufficient condition, namely, the PDCP, for the interpretation to satisfy the DCP. Hence,

our research problem (described in Section 1) has been reduced to giving a standard

structure for FPCF in a game-semantic CCBoC that satisfies the PDCP.

3. Dynamic Games and Strategies

The present section introduces dynamic games and strategies and studies their algebraic

structures. The main idea of dynamic games and strategies is to introduce the distinction

between internal and external moves to conventional games and strategies; internal moves

constitute ‘internal communication’ between dynamic strategies, representing intension-

ality of computation, and they are to be a posteriori ‘hidden’ by the hiding operation,

capturing dynamics of computation. Conceptually, external moves are ‘official’ ones for

the underlying game, while internal moves are supposed to be ‘invisible’ to Opponent for

they represent how Player ‘internally’ computes the next external move.

Dynamic games and strategies are based on the variant given in (Abramsky and McCusker, 1999),

which we call static games and strategies (more generally, to distinguish our ‘dynamic

concepts’ from conventional ones, we add the word static in front of the corresponding no-

tions in (Abramsky and McCusker, 1999), e.g., static arenas, static legal positions, etc.);

this choice is because the variant combines good points of the two best-known variants:

AJM-games (Abramsky et al., 2000) and HO-games (Hyland and Ong, 2000): It inter-

prets the linear decomposition of implication (Girard, 1987), and it is flexible enough to

model a wide range of programming features (Abramsky and McCusker, 1999). We have
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chosen this variant with the hope that our framework is also applicable to various formal

systems and programming languages.

3.1. Dynamic Arenas and Legal Positions

Just like static games (Abramsky and McCusker, 1999), dynamic games are based on

(the ‘dynamic generalizations’ of) arenas and legal positions. An arena defines the basic

components of a game, which in turn induces a set of legal positions that specifies the

basic rules of the game. Let us first introduce these preliminary concepts.

Definition 3.1 (Dynamic arenas). A dynamic arena is a triple

G = (MG, λG,⊢G)

such that:

— MG is a set, whose elements are called moves;

— λG is a function MG → {O,P} × {Q,A} × N, called the labeling function, that

satisfies µ(G)
df.
= Sup({λNG(m) | m ∈MG }) ∈ N;

— ⊢G is a subset of ({⋆}∪MG)×MG, where ⋆ is an arbitrary element such that ⋆ 6∈MG,

called the enabling relation, that satisfies:

– (E1). If ⋆ ⊢G m, then λG(m) = OQ0 and n = ⋆ whenever n ⊢G m;

– (E2). If m ⊢G n and λQA
G (n) = A, then λQA

G (m) = Q and λNG(m) = λNG(n);

– (E3). If m ⊢G n and m 6= ⋆, then λOP
G (m) 6= λOP

G (n);

– (E4). If m ⊢G n, m 6= ⋆ and λNG(m) 6= λNG(n), then λ
OP
G (m) = O

in which λOP
G

df.
= π1 ◦ λG : MG → {O,P}, λQA

G

df.
= π2 ◦ λG : MG → {Q,A} and λNG

df.
=

π3 ◦λG : MG → N. A move m ∈MG is initial if ⋆ ⊢G m, an O-move (resp. a P-move)

if λOP
G (m) = O (resp. if λOP

G (m) = P), a question (resp. an answer) if λQA
G (m) = Q

(resp. if λQA
G (m) = A), and internal or λN

G(m)-internal (resp. external) if λNG(m) > 0

(resp. if λNG(m) = 0). Any s ∈ M∗
G is d-complete if it ends with a move m such that

λNG(m) = 0 ∨ λNG(m) > d, where d ∈ N ∪ {ω}, and ω is the least transfinite ordinal.

Recall that a static arena G (Abramsky and McCusker, 1999) determines possible

moves of a game, each of which is Opponent’s/Player’s question/answer, where the third

parity λNG is not included, and specifies which move n can be performed for each move

m by the relation m ⊢G n (and ⋆ ⊢G m means that m can initiate a play). The axioms

on a static arena are the following:

— (E1). An initial move must be Opponent’s question, and an initial move cannot be

enabled by any move;

— (The first point of E2). An answer must be performed for a question;

— (E3). An O-move must be performed for a P-move, and vice versa.

Thus, a dynamic arena is a static arena equipped with the priority order λNG on

moves that satisfies additional axioms on the priority order; it is called so for it deter-

mines the ‘priority order’ of moves to be ‘hidden’ by the hiding operations on dynamic

games (Definition 3.14) and on dynamic strategies (Definition 3.26). We need all natural
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numbers for λNG, not only the internal/external (I/E) distinction, to define a step-by-step

execution of the hiding operations. Conversely, dynamic arenas are generalized static

arenas: A static arena is equivalent to a dynamic arena whose moves are all external.

The additional axioms for dynamic arenas G are intuitively natural ones:

— We require a finite upper bound µ(G) of the priority orders for it is conceptually nat-

ural and technically necessary for concatenation of dynamic games (Definition 3.21)

to be well-defined and for the hiding operation on dynamic games to terminate;

— The axiom E1 adds the equation λNG(m0) = 0 for allm0 ∈M Init
G

df.
= {m ∈MG | ⋆ ⊢ m}

since Opponent cannot ‘see’ internal moves;

— The second requirement of the axiom E2 states that the priority orders between a

‘QA-pair’ must coincide, which is intuitively reasonable;

— The additional axiom E4 states that only Player can make a move for a previous one

if they have different priority orders for internal moves are ‘invisible’ to Opponent

(as we shall see, if λNG(m1) = k1 < k2 = λNG(m2), then after the k1-many iteration of

the hiding operation, m1 and m2 become external and internal, respectively, i.e., the

I/E-parity of moves is relative, which is why E4 is not only concerned with I/E-parity

but more fine-grained priority orders).

Convention. Henceforth, an arena refers to a dynamic arena by default.

Example 3.1. The terminal arena T is given by T
df.
= (∅, ∅, ∅).

Example 3.2. The flat arena flat(S) on a given set S is given by Mflat(S)
df.
= {q} ∪ S,

where q is any element with q 6∈ S; λflat(S) : q 7→ OQ0, (m ∈ S) 7→ PA0; ⊢flat(S)
df.
=

{(⋆, q)} ∪ {(q,m) | m ∈ S }. For instance, N
df.
= flat(N) is the arena of natural numbers,

and 2
df.
= flat(B), where B

df.
= {tt,ff }, is the arena of booleans.

As already mentioned, interactions between Opponent and Player in a (dynamic or

static) game are represented by certain finite sequences of moves of the underlying

arena, equipped with pointers (Definition 3.3) that specify the occurrence of a move

in the sequence for which each occurrence of a non-initial move in the sequence is per-

formed. Technically, pointers are to distinguish similar but different computations; see

(Abramsky and McCusker, 1999; Curien, 2006) for this point.

Definition 3.2 (Occurrences of moves). Given a finite sequence s ∈ M∗
G of moves

of an arena G, an occurrence (of a move) in s is a pair (s(i), i) such that i ∈ |s|.

More specifically, we call the pair (s(i), i) an initial occurrence (resp. a non-initial

occurrence) in s if ⋆ ⊢G s(i) (resp. otherwise).

Definition 3.3 (J-sequences (Hyland and Ong, 2000; Abramsky and McCusker, 1999)).

A justified (j-) sequence of an arenaG is a pair s = (s,Js) of a finite sequence s ∈M∗
G

and a map Js : |s| → {0} ∪ |s| − 1 such that for all i ∈ |s| Js(i) = 0 if ⋆ ⊢G s(i), and

0 < Js(i) < i∧ s(Js(i)) ⊢G s(i) otherwise. The occurrence (s(Js(i)),Js(i)) is called the

justifier of a non-initial occurrence (s(i), i) in s. We also say that (s(i), i) is justified

by (s(Js(i)),Js(i)), or there is a pointer from the former to the latter.
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The idea is that each non-initial occurrence in a j-sequence must be performed for a

specific previous occurrence, viz., its justifier, in the j-sequence.

Convention. By abuse of notation, we usually keep the pointer structure Js of each

j-sequence s = (s,Js) implicit and often abbreviate occurrences (s(i), i) in s as s(i).

Also, we usually write Js(s(i)) = s(j) if Js(i) = j. This convention is mathematically

imprecise, but it does not bring any serious confusion in practice.

Notation. We write JG for the set of all j-sequences of an arena G. We write s = t for

any s, t ∈ JG if s and t are the same j-sequence of G, i.e., s = t and Js = Jt.

Definition 3.4 (J-subsequences). Given an arena G and a j-sequence s ∈ JG, a

j-subsequence of s is a j-sequence t ∈ JG that satisfies:

— t is a subsequence of s, for which we write t = (s(i1), s(i2), . . . , s(i|t|));

— Jt(s(ir)) = s(il) iff there are occurrences s(j1), s(j2), . . . , s(jk) in s eliminated in t,

where l, r, k ∈ N and 1 6 l < r 6 |t|, such that Js(s(ir)) = s(j1) ∧ Js(s(j1)) =

s(j2) ∧ · · · ∧ Js(s(jk−1)) = s(jk) ∧ Js(s(jk)) = s(il).

We now consider justifiers, j-sequences and arenas from the ‘external point of view’:

Definition 3.5 (External justifiers). Let G be an arena, and assume s ∈ JG and

d ∈ N ∪ {ω}. Each non-initial occurrence n in s has a unique sequence of justifiers

mm1m2 . . .mkn (k > 0), i.e., Js(n) = mk, Js(mk) = mk−1, . . . , Js(m2) = m1 and

Js(m1) = m, such that λNG(m) = 0 ∨ λNG(m) > d and 0 < λNG(mi) 6 d for i = 1, 2, . . . , k.

We call m the d-external justifier of n in s.

Notation. We write J ⊖d
s (n) for the d-external justifier of n in a j-sequence s.

Note that d-external justifiers are a simple generalization of justifiers because 0-external

justifiers coincide with justifiers (as there is no ‘0-internal’ move). More generally, d-

external justifiers are justifiers after the d-times iteration of the hiding operation, as we

shall see shortly.

Definition 3.6 (External j-subsequences). Let G be an arena, s ∈ JG and d ∈

N ∪ {ω}. The d-external j-subsequence Hd
G(s) of s is obtained from s by deleting

occurrences of internal moves m such that 0 < λNG(m) 6 d and equipping it with the

pointers JHd
G
(s) : n 7→ J ⊖d

s (n) (more precisely, JHd
G
(s) is the obvious restriction of J⊖d

s ).

Definition 3.7 (External arenas). Let G be an arena, and d ∈ N ∪ {ω}. The d-

external arena Hd(G) of G is given by:

— MHd(G)
df.
= {m ∈MG | λNG(m) = 0 ∨ λNG(m) > d };

— λHd(G)
df.
= λ⊖dG ↾ MHd(G), where λ

⊖d
G

df.
= 〈λOP

G , λQA
G , n 7→ λNG(n) ⊖ d〉, and n ⊖ d

df.
={

n− d if n > d;

0 otherwise
for all n ∈ N;

— m ⊢Hd(G) n
df.
⇔ ∃k ∈ N,m1,m2, . . . ,m2k−1,m2k ∈ MG \MHd(G). m ⊢G m1 ∧ ∀i ∈

k.m2i−1 ⊢G m2i ∧m2k ⊢G n (⇔ m ⊢G n if k = 0).
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That is, the d-external arena Hd(G) is obtained from the arena G by deleting internal

moves m such that 0 < λNG(m) 6 d, decreasing by d the priority orders of the remaining

moves and ‘concatenating’ the enabling relation to form the ‘d-external’ one.

Convention. Given d ∈ N ∪ {ω}, we regard Hd as an operation on dynamic arenas G,

and Hd
G as an operation on j-sequences s ∈ JG.

Now, let us establish:

Lemma 3.1 (External closure lemma). If G is an arena, then, for all d ∈ N ∪ {ω},

so is Hd(G), and Hd
G(s) ∈ JHd(G) for all s ∈ JG.

Proof. The case d = 0 is trivial; thus, assume d > 0. Clearly, the set MHd(G) of moves

and the labeling function λHd(G) are well-defined. Now, let us verify the axioms for the

enabling relation ⊢Hd(G):

— (E1). Note that ⋆ ⊢Hd(G) m ⇔ ⋆ ⊢G m (because ⇐ is immediate, and ⇒ holds by

E4 on G as initial moves are all external). Thus, if ⋆ ⊢Hd(G) m, then λHd(G)(m) =

λ⊖dG (m) = OQ0, and n ⊢Hd(G) m⇒ n = ⋆.

— (E2). Assume m ⊢Hd(G) n and λQA

Hd(G)
(n) = A. If m ⊢G n, then λQA

Hd(G)
(m) =

λQA
G (m) = Q and λNHd(G)(m) = λNG(m)⊖ d = λNG(n)⊖ d = λNHd(G)(n). Otherwise, i.e.,

there are some k ∈ N
+ df.

= {n ∈ N | n > 0} and m1,m2, . . . ,m2k ∈MG \MHd(G) such

that m ⊢G m1 ∧ ∀i ∈ k.m2i−1 ⊢G m2i ∧m2k ⊢G n, then in particular m2k ⊢G n with

λQA
G (n) = A, but λNG(m2k) 6= λNG(n), a contradiction.

— (E3). Assume m ⊢Hd(G) n and m 6= ⋆. If m ⊢G n, then λOP
Hd(G)(m) = λOP

G (m) 6=

λOP
G (n) = λOP

Hd(G)(n). If ∃k ∈ N
+,m1,m2, . . . ,m2k ∈ MG \MHd(G). m ⊢G m1 ∧ ∀i ∈

k. m2i−1 ⊢G m2i ∧m2k ⊢G n, then λOP
Hd(G)(m) = λOP

G (m) = λOP
G (m2) = λOP

G (m4) =

· · · = λOP
G (m2k) 6= λOP

G (n) = λOP
Hd(G)(n).

— (E4). Assume m ⊢Hd(G) n, m 6= ⋆ and λNHd(G)(m) 6= λNHd(G)(n). Then, we have

λNG(m) 6= λNG(n). If m ⊢G n, then it is trivial; otherwise, i.e., there are some k ∈ N
+,

m1,m2, . . . ,m2k ∈MG \MHd(G) with the same property as in the case of E3 above,

λOP
Hd(G)(m) = λOP

G (m) = O by E3 on G since λNG(m) 6= λNG(m1).

Hence, we have shown that the structure Hd(G) forms a well-defined arena.

Next, let s ∈ JG; we have to show Hd
G(s) ∈ JHd(G). Assume that m is a non-initial

occurrence in Hd
G(s). By the definition, the d-external justifier m0

df.
= JHd

G
(s)(m) occurs

in Hd
G(s). If m is a P-move, then the sequence of justifiers m0 ⊢G m1 ⊢G · · · ⊢G mk ⊢ m

satisfies Even(k) by the axioms E3 and E4 on G, so that m0 ⊢Hd(G) m by the definition.

If m is an O-move, then the justifier m′
0

df.
= Js(m) satisfies λNG(m

′
0) = λNG(m) by the

axiom E4 on G, and so m′
0 ⊢Hd(G) m by the definition. Since m is arbitrary, we have

shown that Hd
G(s) ∈ JHd(G), completing the proof.

Next, let us introduce a useful lemma:

Lemma 3.2 (Stepwise hiding on arenas). Given an arena G, we have H̃i(G) =

Hi(G) for all i ∈ N, where H̃i denotes the i-times iteration of H1.
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Proof. By induction on i.

Thus, we may just focus on H1: Henceforth, we write H for H1 and call it the hiding

operation (on arenas); Hi for each i ∈ N denotes the i-times iteration of H.

We may establish a similar inductive property for j-sequences:

Lemma 3.3 (Stepwise hiding on j-sequences). Given a j-sequence s ∈ JG of an

arena G, we have Hi+1
G (s) = H1

Hi(G)(H
i
G(s)) for all i ∈ N.

Proof. By induction on i, where note that Hi+1
G (s),H1

Hi(G)(H
i
G(s)) ∈ JHi+1(G) by

Lemmata 3.1 and 3.2.

Lemma 3.3 implies that the equation

Hi
G(s) = H1

Hi−1(G) ◦ H
1
Hi−2(G) ◦ · · · ◦ H

1
H1(G) ◦ H

1
G(s) (5)

holds for any arena G, s ∈ JG and i ∈ N (n.b., the equation (5) means s = s if i = 0).

Thus, we may focus on the operation H1
G on j-sequences, where G ranges over all arenas.

Henceforth, we write HG for H1
G and call it the hiding operation on j-sequences of

G; Hi
G for each i ∈ N denotes the operation on the right-hand side of (5).

Now, to deal with external j-subsequences in a mathematically rigorous manner, let us

extend the hiding operation on j-sequences to that on j-subsequences (Definition 3.4):

Definition 3.8 (Point-wise hiding on j-sequences). Let s ∈ JG be a j-sequence

of an arena G. Given an occurrence m in s, we define Ĥm
G (s) to be the j-subsequence of

s that consists of occurrences in s different from m if m is 1-internal, and s otherwise.

Moreover, given a subsequence t = m1m2 . . .mk of (the underlying finite sequence of) s

and a permutation σ on k, we define Ĥt,σ
G (s)

df.
= Ĥ

mσ(k)

G ◦ · · · ◦ Ĥ
mσ(2)

G ◦ Ĥ
mσ(1)

G (s).

The point here is that the hiding operation on j-sequences can be executed in the

‘move-wise’ fashion in any order:

Lemma 3.4 (Move-wise lemma). Let G be an arena, and s ∈ JG.

1 Ĥt,σ1

G (s) = Ĥt,σ2

G (s) for any subsequence t of s and permutations σ1 and σ2 on |t|;

2 Ĥs,σ
G (s) = HG(s) for any permutation σ on |s|.

Proof. Immediate from the definition.

By Lemma 3.4, we have established the ‘move-wise’ procedure to execute the hiding

operation HG on j-sequences of a given arena G, where the order of deleting moves is

irrelevant. Then, e.g., it follows that HG(stuv) = Ĥv,ν
G ◦ Ĥu,µ

G ◦ Ĥt,τ
G ◦ Ĥs,σ

G (stuv) for

any arena G and stuv ∈ JG, where σ, τ , µ and ν are arbitrary permutations on |s|, |t|,

|u| and |v|, respectively, which will be useful in the rest of the paper.

Convention. Thanks to Lemma 3.4, we henceforth dispense with the notation Ĥs,σ
G ,

where G ranges over arenas, s over j-sequences of G, and σ over permutations on |s|,

implicitly admitting any order of ‘move-wise’ execution of the operation HG. Also, we

write, abusing notation, HG(s).HG(t).HG(u).HG(v) for Ĥ
v,ν
G ◦ Ĥu,µ

G ◦ Ĥt,τ
G ◦ Ĥs,σ

G (stuv)

given above, so that HG(stuv) = HG(s).HG(t).HG(u).HG(v).



N. Yamada 26

Next, let us recall the notion of ‘relevant part’ of previous moves, called views :

Definition 3.9 (Views (Abramsky and McCusker, 1999)). Given a j-sequence s

of an arena G, the Player (P-) view ⌈s⌉G and the Opponent (O-) view ⌊s⌋G (we

often omit the subscript G) are given by the following induction on |s|:

— ⌈ǫ⌉G
df.
= ǫ;

— ⌈sm⌉G
df.
= ⌈s⌉G.m if m is a P-move;

— ⌈sm⌉G
df.
= m if m is initial;

— ⌈smtn⌉G
df.
= ⌈s⌉G.mn if n is an O-move with Jsmtn(n) = m;

— ⌊ǫ⌋G
df.
= ǫ;

— ⌊sm⌋G
df.
= ⌊s⌋G.m if m is an O-move;

— ⌊smtn⌋G
df.
= ⌊s⌋G.mn if n is a P-move with Jsmtn(n) = m

where the justifiers of the remaining occurrences in ⌈s⌉ (resp. ⌊s⌋) are unchanged if they

occur in ⌈s⌉ (resp. ⌊s⌋), and undefined otherwise. A view is a P- or O-view.

The idea behind Definition 3.9 is as follows. For a j-sequence tm of an arena G such

that m is a P-move (resp. an O-move), the P-view ⌈t⌉ (resp. the O-view ⌊t⌋) is intended

to be the currently ‘relevant part’ of t for Player (resp. Opponent). That is, Player (resp.

Opponent) is concerned only with the last O-move (resp. P-move), its justifier and that

justifier’s P-view (resp. O-view), which then recursively proceeds.

We are now ready to introduce a ‘dynamic generalization’ of static legal positions:

Definition 3.10 (Dynamic legal positions). Given an arena G, a dynamic legal

position of G is a j-sequence s ∈ JG that satisfies:

— (Alternation). If s = s1mns2, then λ
OP
G (m) 6= λOP

G (n);

— (Generalized visibility). If s = tmu with m non-initial, and d ∈ N ∪ {ω} satisfy

λNG(m) = 0∨λNG(m) > d, then J⊖d
s (m) occurs in ⌈Hd

G(t)⌉Hd(G) if m is a P-move, and

it occurs in ⌊Hd
G(t)⌋Hd(G) if m is an O-move;

— (IE-switch). If s = s1mns2 with λNG(m) 6= λNG(n), then m is an O-move.

Notation. LG denotes the set of all dynamic legal positions of a dynamic arena G.

Recall that a static legal position (Abramsky and McCusker, 1999) of a static arena is a

j-sequence of the arena that satisfies alternation and visibility (i.e., generalized visibility

only for d = 0). It specifies the basic rules of a static game in the sense that every

‘development’ or (valid) position of the game must be a legal position of the underlying

arena (but the converse does not necessarily hold):

— In a position of the static game, Opponent always makes the first move by a question,

and then Player and Opponent alternately play (by alternation), in which every non-

initial move must be made for a specific previous move;

— The justifier of each non-initial move occurring in the position must belong to the

‘relevant’ part of previous moves occurring in the position (by visibility).

The additional axioms on dynamic legal positions are conceptually natural ones:
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— Generalized visibility is a generalization of visibility, which requires that visibility

must hold after any iteration of the hiding operation on j-sequences;

— IE-switch states that only Player can change a priority order during a play as internal

moves are ‘invisible’ to Opponent, where the same remark as the one in the axiom

E4 is applied for the finer distinction of priority orders than the I/E-parity.

Note that a dynamic legal position of a static arena, seen as a dynamic arena whose

moves are all external, is clearly a static legal position, and vice versa. Hence, dynamic

legal positions are in fact a generalization of static legal positions.

Convention. Henceforth, a legal position refers to a dynamic legal position by default.

3.2. Dynamic Games

We are now ready to define the central notion of dynamic games :

Definition 3.11 (Dynamic games). A dynamic game is a quintuple

G = (MG, λG,⊢G, PG,≃G)

such that:

— The triple (MG, λG,⊢G) forms an arena (Definition 3.1);

— PG is a subset of LG, whose elements are called (valid) positions of G, that satisfies:

– (P1). PG is non-empty and prefix-closed;

– (DP2). If smn ∈ P Even
G and λNG(n) > 0, then ∃r ∈MG. smnr ∈ PG;

– (DP3). Given tr, t′r′ ∈ POdd
G and i ∈ N such that i < λNG(r) = λNG(r

′), if Hi
G(t) =

Hi
G(t

′), then Hi
G(tr) = Hi

G(t
′r′);

— ≃G is an equivalence relation on PG, called the identification of (valid) positions,

that satisfies:

– (I1). s ≃G t ⇒ |s| = |t|;

– (I2). sm ≃G tn⇒ s ≃G t∧λG(m) = λG(n)∧ (m,n ∈M Init
G ∨ (∃i ∈ |s|.Jsm(m) =

s(i) ∧ Jtn(n) = t(i)));

– (DI3). ∀d ∈ N ∪ {ω}. s ≃dG t ∧ sm ∈ PG ⇒ ∃tn ∈ PG. sm ≃dG tn, where

u ≃dG v
df.
⇔ ∃u′,v′ ∈ PG.u

′ ≃G v′ ∧ Hd
G(u

′) = Hd
G(u) ∧Hd

G(v
′) = Hd

G(v) for all

u,v ∈ PG.

A play of G is an finitely or infinitely increasing sequence of positions (ǫ,m1,m1m2, . . . )

of G. A dynamic game whose moves are all external is said to be normalized.

Recall that a static game (Abramsky and McCusker, 1999) is a quintuple similar to a

dynamic game except that the underlying arena is static, and it only satisfies the axioms

P1, I1, I2 and I3 (i.e., DI3 only for d = 0). The axiom P1 corresponds to the natural

phenomenon that a non-empty ‘moment’ or position of a game must have the previous

‘moment’. Identifications of positions are originally introduced in (Abramsky et al., 2000)

and also employed in Section 3.6 of (McCusker, 1998). They are to identify positions up
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to inessential details of ‘tags’ for disjoint union, particularly for exponential ! (Defini-

tion 3.19); each position s ∈ PG of a game G is a representative of the equivalence class

[s]
df.
= {t ∈ PG | t ≃G s } ∈ PG/≃G which we take as primary. For this underlying idea,

the three axioms I1, I2 and I3 should make sense.

The additional axioms DP2 and DP3 are in order to enable Player to ‘play alone’, i.e.,

Opponent does not have to choose odd-length positions, for the internal part of a play

since conceptually Opponent cannot ‘see’ internal moves; technically, the axiom DP2

is to preserve totality of dynamic strategies under the hiding operation (Corollary 3.4),

and the axiom DP3 is for external consistency of dynamic strategies: A dynamic strategy

behaves always in the same manner from the viewpoint of Opponent, i.e., the external

part of a play by a dynamic strategy does not depend on the internal part (Theorem 3.7).

Note that the axiom DP2 is slightly involved to be preserved under the hiding operation

(Theorem 3.1); it is necessary to generalize the axiom I3 to DI3 for the same reason.

Remark. It is certainly simpler to dispense with the identification ≃G of positions for

each game G by adopting a simpler formulation of exponential ! as in (McCusker, 1998);

however, it would be mathematically ad-hoc because the cartesian closed structure of

games and strategies would not arise via the standard Girard translation. Recall that

the aim of the present work is to establish mathematics of dynamics and intensionality

of logic and computation, where ‘good’ mathematics should be robust and general, not

ad-hoc; also, it is interesting as future work to extend the present work to linear logic

and computation. For these reasons, we have decided to retain ≃G as a structure of each

game G. Moreover, we shall establish various reasonable properties on identification of

positions, which adds credibility of the notions of dynamic games and strategies.

Convention. Henceforth, a game refers to a dynamic game by default.

Example 3.3. The terminal game T
df.
= (∅, ∅, ∅, {ǫ}, {(ǫ, ǫ)}) is the simplest game.

Example 3.4. The flat game flat(S) on a given set S is defined as follows. The triple

flat(S) = (Mflat(S), λflat(S),⊢flat(S)) is the flat arena in Example 3.2, Pflat(S)
df.
= {ǫ, q } ∪

{qm | m ∈ S }, and ≃flat(S)
df.
= {(s, s) | s ∈ Pflat(S) }. For instance, N

df.
= flat(N) is the

game of natural numbers sketched in the introduction, and 2
df.
= flat(B) is the game of

booleans. Also, 0
df.
= flat(∅) is the empty game.

Also, let us define a substructure relation between games:

Definition 3.12 (Subgames). Given games G and H , we say that H is a (dynamic)

subgame of G, written H P G, iff MH ⊆ MG, λH = λG ↾ MH , ⊢H ⊆ ⊢G ∩ (({⋆} ∪

MH)×MH), PH ⊆ PG, ∀d ∈ N ∪ {ω}. ≃dH = ≃dG ∩ (PH × PH) and µ(H) = µ(G).

For H P G, the condition on the identifications of positions is required for all numbers

d ∈ N ∪ {ω} so that the dynamic subgame relation P is preserved under the hiding

operation (Theorem 3.1); the last equation µ(H) = µ(G) is to preserve the relation P

under concatenation of dynamic games (Definition 3.21).

We shall later focus on well-founded games:
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Definition 3.13 (Well-founded games (Clairambault and Harmer, 2010)). A

game G is well-founded if ⊢G is well-founded downwards, i.e., there is no countably

infinite sequence (mi)i∈N of moves mi ∈MG such that ⋆ ⊢G m0 ∧ ∀i ∈ N.mi ⊢G mi+1.

Now, let us define the hiding operation on games:

Definition 3.14 (Hiding operation on games). Given d ∈ N ∪ {ω}, the d-hiding

operation (on games) maps each game G to its d-external game Hd(G) given by:

— The triple (MHd(G), λHd(G),⊢Hd(G)) is the d-external arena Hd(G) of the underlying

arena G (Definition 3.7);

— PHd(G)
df.
= {Hd

G(s) | s ∈ PG };

— Hd
G(s) ≃Hd(G) H

d
G(t)

df.
⇔ s ≃dG t.

Now, we give the first main theorem of the present work:

Theorem 3.1 (External closure of games). Given d ∈ N∪{ω}, (resp. well-founded)

games are closed under the operation Hd, and H P G implies Hd(H) P Hd(G).

Proof. Let G be a game, and assume d ∈ N ∪ {ω}; we have to show that Hd(G) is a

game. By Lemma 3.1, it suffices to show that j-sequences in PHd(G) are legal positions of

the arena Hd(G), the set PHd(G) satisfies the axioms P1, DP2 and DP3, and the relation

≃Hd(G) is an equivalence relation on PHd(G) that satisfies the axioms I1, I2 and DI3.

Since µ(G) ∈ N, we assume d ∈ N.

For alternation, assume s1mns2 ∈ PHd(G); we have to show λOP
Hd(G)(m) 6= λOP

Hd(G)(n).

We have Hd
G(t1mm1m2 . . .mknt2) = s1mns2 for some t1mm1m2 . . .mknt2 ∈ PG, where

Hd
G(t1) = s1, Hd

G(t2) = s2 and Hd
G(m1m2 . . .mk) = ǫ. Note that (λNG(m) = 0∨λNG(m) >

d) ∧ (λNG(n) = 0 ∨ λNG(n) > d) and 0 < λNG(mi) 6 d for i = 1, 2, . . . , k. By the axioms E3

and E4 on G, k must be an even number, and thus λOP
Hd(G)(m) = λOP

G (m) = λOP
G (m2) =

λOP
G (m4) = · · · = λOP

G (mk) 6= λOP
G (n) = λOP

Hd(G)(n).

For generalized visibility, let tmu ∈ PHd(G) with m non-initial. We have to show, for

each e ∈ N ∪ {ω}, that if tm is e-complete, then:

— if m is a P-move, then the justifier (J ⊖d
s )⊖e(m) occurs in ⌈He

Hd(G)(t)⌉He(Hd(G));

— if m is an O-move, then the justifier (J ⊖d
s )⊖e(m) occurs in ⌊He

Hd(G)(t)⌋He(Hd(G)).

Again, for µ(G) ∈ N, we may assume without loss of generality that e ∈ N. Note that

the condition is then equivalent to:

— if m is a P-move, then the justifier J
⊖(d+e)
s (m) occurs in ⌈Hd+e

G (t′)⌉Hd+e(G);

— if m is an O-move, then the justifier J
⊖(d+e)
s (m) occurs in ⌊Hd+e

G (t′)⌋Hd+e(G)

where t′m ∈ PG such that Hd
G(t

′m) = tm. It holds by generalized visibility on G.

For IE-switch, let s1mns2 ∈ PHd(G) such that λNHd(G)(m) 6= λNHd(G)(n). Then, there

is some t1munt2 ∈ PG such that Hd
G(t1munt2) = s1mns2, where note that λNG(m) 6=

λNG(n). Therefore, if u = ǫ, then we clearly have λOP
Hd(G)(m) = O by IE-switch on G;

otherwise, i.e., u = lu′, then we have the same conclusion as λNG(m) 6= λNG(l).

We have established PHd(G) ⊆ LHd(G). Next, we verify the axioms P1, DP2 and DP3:
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— (P1). Because ǫ ∈ PG, we have ǫ = Hd
G(ǫ) ∈ PHd(G); thus, PHd(G) is non-empty. For

prefix-closure, let sm ∈ PHd(G); we have to show s ∈ PHd(G). There must be some

tm ∈ PG such that sm = Hd
G(tm) = Hd

G(t)m. Thus, s = Hd
G(t) ∈ PHd(G).

— (DP2). If smn ∈ P Even
Hd(G) and λ

N

Hd(G)(n) > 0, then there is some tmun ∈ P Even
G such

that Hd
G(tmun) = smn and λNG(n) > d > 0. Hence, by the axiom DP2 on G, there is

some tmunr ∈ PG such that λNG(r) = λNG(n) > d by IE-switch on G. Therefore, we

have found smnr = Hd(tmunr) ∈ PHd(G), establishing DP2 on Hd(G).

— (DP3). Assume tr, t′r′ ∈ POdd
Hd(G) and i ∈ N such that i < λNHd(G)(r) = λNHd(G)(r

′)

and Hi
Hd(G)(t) = Hi

Hd(G)(t
′). We have some ur,u′r′ ∈ PG with Hd

G(u) = t and

Hd
G(u

′) = t′. Then, Hd+i
G (u) = Hi

Hd(G)(H
d
G(u)) = Hi

Hd(G)(t) = Hi
Hd(G)(t

′) =

Hi
Hd(G)(H

d
G(u

′)) = Hd+i
G (u′). Hence, by the axiom DP3 on G, we have r = r′ and

J⊖i
tr (r) = J

⊖(d+i)
ur (r) = J

⊖(d+i)
u′r′ (r′) = J ⊖i

t′r′(r
′), establishing DP3 on Hd(G).

Next, ≃Hd(G) is a well-defined relation on PHd(G) since H
d
G(s) ≃Hd(G) H

d
G(t) does not

depend on the choice of representatives s, t ∈ PG. Also, it is straightforward to see that

≃Hd(G) is an equivalence relation. Now, we show that ≃Hd(G) satisfies the axioms I1, I2

and DI3. Note that I1 and I2 on ≃Hd(G) immediately follow from those on ≃G. For DI3 on

≃Hd(G), if H
d
G(s) ≃

e
Hd(G) H

d
G(t), and Hd

G(s).m ∈ PHd(G), where we may assume e 6= ω,

then ∃s′m ∈ PG.Hd
G(s

′m) = Hd
G(s).m, and so Hd+e

G (s′) = Hd+e
G (s) ≃Hd+e(G) H

d+e
G (t).

By DI3 on ≃G, we may conclude that ∃tn ∈ PG. s
′m ≃d+eG tn, whence we obtain

Hd
G(t).n ∈ PHd(G) such that Hd

G(s).m = Hd
G(s

′m) ≃eHd(G) H
d
G(tn) = Hd

G(t).n.

Finally, the preservation of the dynamic subgame relation P under the operation Hd

is clear from the definition, completing the proof.

Corollary 3.1 (Stepwise hiding on games). For any game G, we have H1(Hi(G)) =

Hi+1(G) for all i ∈ N.

Proof. By Lemmata 3.2 and 3.3, it suffices to show the equation≃H1(Hi(G))= ≃Hi+1(G).

Then, given s, t ∈ PG, we have:

⇔ H1
Hi(G)(H

i
G(s)) ≃H1(Hi(G)) H

1
Hi(G)(H

i
G(t))

⇔ ∃Hi(s′),Hi(t′) ∈ PHi(G).H
i(s′) ≃Hi(G) H

i(t′) ∧H1
Hi(G)(H

i(s′)) = H1
Hi(G)(H

i(s))

∧H1
Hi(G)(H

i(t′)) = H1
Hi(G)(H

i(t))

⇔ ∃s′′, t′′ ∈ PG. s
′′ ≃G t′′ ∧Hi+1

G (s′′) = Hi+1
G (s) ∧Hi+1

G (t′′) = Hi+1
G (t)

⇔ Hi+1
G (s) ≃Hi+1(G) H

i+1
G (t)

which establishes the required equation.

By the corollary, we may just focus on H1:

Convention. We write H for H1 and call it the hiding operation (on games); Hi

denotes the i-times iteration of H for all i ∈ N.

Corollary 3.2 (Hiding operation on legal positions). Given an arena G and a

number d ∈ N ∪ {ω}, we have {Hd
G(s) | s ∈ LG } = LHd(G).
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Proof. Since there is an upper bound µ(G) ∈ N, it suffices to consider the case d ∈ N.

Then, by Lemmata 3.2 and 3.3, we may just focus on the case d = 1.

The inclusion {HG(s) | s ∈ LG} ⊆ LH(G) is immediate by Theorem 3.1. For the other

inclusion, let t ∈ LH(G); we shall find some s ∈ LG such that

1 HG(s) = t;

2 1-internal moves in s occur as even-length consecutive segments m1m2 . . .m2k, where

mi justifies mi+1 for i = 1, 2, . . . , 2k − 1;

3 s is 1-complete.

We proceed by induction on |t|. The base case t = ǫ is trivial. For the inductive step, let

tm ∈ LH(G). Then, t ∈ LH(G), and by the induction hypothesis there is some s ∈ LG

that satisfies the three conditions (n.b., the first one is for t).

If m is initial, then sm ∈ LG, and sm satisfies the three conditions. Thus, assume

that m is non-initial; we may write tm = t1nt2m, where m is justified by n.

We then need a case analysis:

— Assume n ⊢G m. We take sm, where m points to n. Then, sm ∈ LG since:

– (Justification). It is immediate because n ⊢G m.

– (Alternation). By the condition 3 on s, the last moves of s and t just coincide.

Thus, the alternation condition holds for sm.

– (Generalized visibility). It suffices to establish the visibility on sm, as the

other cases are included as the generalized visibility on tm. It is straightforward

to see that, by the condition 2 on s, if the view of t contains n, then so does the

view of s. And since tm ∈ LH(G), the view of t contains n. Hence, the view of s

contains n as well.

– (IE-switch). Again, the last moves of s and t coincide by the condition 3 on s;

thus, IE-switch on tm can be directly applied.

Also, it is easy to see that sm satisfies the three conditions.

— Assume n 6= ⋆ and ∃k ∈ N
+,m1,m2, . . . ,m2k ∈MG \MH(G) such that

n ⊢G m1 ∧ ∀i ∈ k.m2i−1 ⊢G m2i ∧m2k ⊢G m.

We then take sm1m2 . . .m2km, in which m1 points to n, mi points to mi−1 for

i = 2, 3, . . . , 2k, and m points to m2k. Then, sm1m2 . . .m2km ∈ LG because:

– (Justification). Obvious.

– (Alternation). By the condition 3 on s, the last moves of s and t just coincide.

Thus, the alternation condition holds for sm1m2 . . .m2km.

– (Generalized visibility). By the same argument as the above case.

– (IE-switch). It clearly holds by the axiom E4.

Finally, it is easy to see that sm1m2 . . .m2km satisfies the three conditions.

We have completed the case analysis.
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3.3. Constructions on Dynamic Games

Next, we show that dynamic games accommodate all the standard constructions on

static games (Abramsky and McCusker, 1999), i.e., they preserve the additional axioms

for dynamic games, as well as some new constructions. This result implies that the notion

of dynamic games (Definition 3.11) is in some sense ‘correct’.

Convention. For brevity, we usually omit ‘tags’ for disjoint union of sets. For instance,

we write x ∈ A+B iff x ∈ A or x ∈ B (not both); also, given relations RA ⊆ A×A and

RB ⊆ B × B, we write RA +RB for the relation on the disjoint union A+ B such that

(x, y) ∈ RA +RB
df.
⇔ (x, y) ∈ RA ∨ (x, y) ∈ RB (not both).

Let us begin with tensor (product) ⊗. Roughly, a position of the tensor A⊗B of games

A and B is an interleaving mixture of a position of A and a position of B, in which an

AB-parity change is made always by Opponent. Formally:

Definition 3.15 (Tensor of games (Abramsky and McCusker, 1999)). Given

games A and B, the tensor (product) A⊗B of A and B is defined by:

— MA⊗B
df.
= MA +MB;

— λA⊗B
df.
= [λA, λB ];

— ⊢A⊗B
df.
= ⊢A + ⊢B;

— PA⊗B
df.
= {s ∈ LA⊗B | s ↾ A ∈ PA, s ↾ B ∈ PB };

— s ≃A⊗B t
df.
⇔ s ↾ A ≃A t ↾ A ∧ s ↾ B ≃B t ↾ B ∧ ∀i ∈ N. s(i) ∈MA ⇔ t(i) ∈MA

where s ↾ A (resp. s ↾ B) denotes the j-subsequence of s that consists of occurrences of

moves of A (resp. B).

In fact, as explained in (Abramsky et al., 1997), in a position of a tensor A⊗B, only

Opponent can switch between the component games A and B (by alternation).

Example 3.5. Consider the tensor N ⊗ N of the natural number game N with itself,

whose maximal position is either of the following forms:

N[0] ⊗ N[1] N[0] ⊗ N[1]

q[0] q[1]
n[0] m[1]

q[1] q[0]
m[1] n[0]

where n,m ∈ N, and ( )[i] (i = 0, 1) are again arbitrary, unspecified ‘tags’ such that

[0] 6= [1] to distinguish the two copies ofN , and the arrows represent pointers. Henceforth,

however, we usually omit ‘tags’ ( )[i] unless it is strictly necessary.

Theorem 3.2 (Well-defined tensor of games). (Resp. well-founded) games are

closed under tensor ⊗.

Proof. Since static games are closed under tensor ⊗ (Abramsky and McCusker, 1999),

it suffices to show that ⊗ preserves the condition on labeling function and the axioms
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(PI,OE) ✛
A

(OE,OE)
B ✲ (OE,PI)

(OI,OE)

A
❄
✻

A✲ (PE,OE)

✛
A

✲

(OE,PE) ✛
B

✛
B

✲

(OE,OI)

B
❄
✻

Table 1. The double parity diagram for the tensor A⊗B.

E1, E2, E4, DP2, DP3 and DI3 (n.b., ⊗ clearly preserves well-foundedness of games).

However, non-trivial ones are just DP3 and DI3; thus, we just focus on these two axioms.

Let A and B be any games. To verify DP3 on A ⊗ B, let slmn, s′l′m′n′ ∈ POdd
A⊗B and

i ∈ N such that Hi
A⊗B(slm) = Hi

A⊗B(s
′l′m′) and i < λNA⊗B(n) = λNA⊗B(n

′). Note

that λNA⊗B(m) = λNA⊗B(n) = λNA⊗B(n
′) = λNA⊗B(m

′) by IE-switch. At a first glance, it

seems that A ⊗ B does not satisfy DP3 as Opponent may choose to play in A or B at

will. It is, however, not the case for internal moves for slmn ∈ POdd
A⊗B with m internal

implies m,n ∈MA or m,n ∈MB. This property immediately follows from Table 1 which

shows all the possible transitions of OP- and IE-parities for a play of A ⊗ B, where a

state (XY , ZW ) indicates that the next move of A (resp. B) has the OP-parity X (resp.

Z) and the IE-parity Y (resp. W ). Note that m = m′ and J ⊖i
slm(m) = J ⊖i

s′l′m′(m′) as

Hi
A⊗B(sl).m = Hi

A⊗B(slm) = Hi
A⊗B(s

′l′m′) = Hi
A⊗B(s

′l′).m′. Thus, m, n, m′ and n′

belong to the same component game. If m,n,m′, n′ ∈ MA, then (sl ↾ A).mn, (s′l′ ↾

A).m′n′ ∈ POdd
A , Hi

A((sl ↾ A).m) = Hi
A⊗B(slm) ↾ Hi(A) = Hi

A⊗B(s
′l′m′) ↾ Hi(A) =

Hi
A((s

′l′ ↾ A).m′) and i < λNA(n) = λNA(n
′); thus by DP3 on A, we conclude that n = n′

and J ⊖i
slmn(n) = J⊖i

(sl↾A).mn(n) = J ⊖i
(s′l′↾A).m′n′(n′) = J ⊖i

s′l′m′n′(n′). The other case is

completely analogous, showing that A⊗B satisfies DP3.

Finally, to show that A⊗B satisfies DI3, assume s ≃dA⊗B t and sm ∈ PA⊗B for some

d ∈ N; we have to find some tn ∈ PA⊗B such that sm ≃dA⊗B tn. Assume m ∈ MA

for the other case is symmetric. Since s ≃dA⊗B t, we have some s′ ≃A⊗B t′ such that

Hd
A⊗B(s

′) = Hd
A⊗B(s) and Hd

A⊗B(t
′) = Hd

A⊗B(t). Thus, s
′ ↾ A ≃A t′ ↾ A, Hd

A(s ↾ A) =

Hd
A⊗B(s) ↾ Hd(A) = Hd

A⊗B(s
′) ↾ Hd(A) = Hd

A(s
′ ↾ A) and Hd

A(t ↾ A) = Hd
A⊗B(t) ↾

Hd(A) = Hd
A⊗B(t

′) ↾ Hd(A) = Hd
A(t

′ ↾ A), whence s ↾ A ≃dA t ↾ A. Similarly, s ↾ B ≃dB
t ↾ B with s′ ↾ B ≃B t′ ↾ B, Hd

B(s ↾ B) = Hd
B(s

′ ↾ B) and Hd
B(t ↾ B) = Hd

B(t
′ ↾ B).

Now, since (s ↾ A).m = sm ↾ A ∈ PA, we have some (t ↾ A).n ∈ PA such that

(s ↾ A).m ≃dA (t ↾ A).n, i.e., some u ≃A v such that Hd
A(u) = Hd

A((s ↾ A).m) and

Hd
A(v) = Hd

A((t ↾ A).n). By Table 1, we may obtain a unique s̃ ∈ PA⊗B from u and s′ ↾ B

and a unique t̃ ∈ PA⊗B from v and t′ ↾ B such that s̃ ≃A⊗B t̃, Hd
A⊗B(s̃) = Hd

A⊗B(sm)

and Hd
A⊗B(t̃) = Hd

A⊗B(tn), establishing sm ≃dA⊗B tn.

Next, let us recall linear implication ⊸, which has been illustrated by examples in

Section 1. The linear implication A⊸ B is intended to be the ‘space’ of linear functions

from A to B in the sense of linear logic (Girard, 1987), i.e., they consume exactly one

input in A to produce an output in B (strictly speaking, they consume at most one input

since it is possible that no moves of A are performed at all during a play of A⊸ B).

One additional point for dynamic games is that we need to apply the ω-hiding operation

Hω to the domain A since otherwise the linear implication A ⊸ B may not satisfy the
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axiom DP2 or DP3. It conceptually makes sense too for the roles of Player and Opponent

in A are exchanged, and thus Player should not be able to ‘see’ internal moves of A.

Definition 3.16 (Linear implication between games (Abramsky and McCusker, 1999)).

The linear implication A⊸ B from a game A to another B is defined by:

— MA⊸B
df.
= MHω(A) +MB;

— λA⊸B
df.
= [λHω(A), λB ], where λHω(A)

df.
= 〈λOP

Hω(A), λ
QA
Hω(A), λ

N

Hω(A)〉, and λOP
G (m)

df.
={

P if λOP
G (m) = O;

O otherwise
for any game G;

— ⋆ ⊢A⊸B m
df.
⇔ ⋆ ⊢B m;

— m ⊢A⊸B n (m 6= ⋆)
df.
⇔ (m ⊢Hω(A) n) ∨ (m ⊢B n) ∨ (⋆ ⊢B m ∧ ⋆ ⊢Hω(A) n);

— PA⊸B
df.
= {s ∈ LHω(A)⊸B | s ↾ Hω(A) ∈ PHω(A), s ↾ B ∈ PB };

— s ≃A⊸B t
df.
⇔ s ↾ Hω(A) ≃Hω(A) t ↾ Hω(A) ∧ s ↾ B ≃B t ↾ B ∧ ∀i ∈ N. s(i) ∈

MHω(A) ⇔ t(i) ∈MHω(A)

where pointers from an initial occurrence of Hω(A) to that of B in s are deleted.

Dually to A⊗B, it is easy to see that during a play of A⊸ B only Player may switch

between Hω(A) and B (again by alternation); see (Abramsky et al., 1997) for the details.

Example 3.6. See again the examples of linear implication in Section 1 to see how

Definition 3.16 actually works.

Theorem 3.3 (Well-defined linear implication between games). (Resp. well-

founded) games are closed under linear implication.

Proof. Again, it suffices to show the preservation property of the additional conditions

on the labeling function and the axioms E1, E2, E4, DP2, DP3 and DI3. For brevity,

assume that A is normalized and consider A⊸ B. Again, non-trivial conditions are just

DP3 and DI3, but DI3 may be shown in a way similar to the case of tensor.

To verify DP3, let i ∈ N and slmn, s′l′m′n′ ∈ POdd
A⊸B such that Hi

A⊸B(slm) =

Hi
A⊸B(s

′l′m′) and i < λNA⊸B(n) = λNA⊸B(n
′). Again, m and m′ are both internal, and

so m, n, m′ and n′ all belong to B. Thus, (sl ↾ B).mn, (s′l′ ↾ B).m′n′ ∈ POdd
B such that

Hi
B((sl ↾ B).m) = Hi

A⊸B(slm) ↾ Hi(B) = Hi
A⊸B(s

′l′m′) ↾ Hi(B) = Hi
B((s

′l′ ↾ B).m′)

and i < λNB(n) = λNB(n
′); thus, by DP2 on B, we may conclude that n = n′ and

J ⊖i
slmn(n) = J⊖i

(sl↾B).mn(n) = J ⊖i
(sl↾B).mn(n

′) = J ⊖i
slmn(n

′).

Next, product & forms the categorical product in the categories of static games and

strategies (Abramsky and McCusker, 1999). A position of the product A&B is simply a

position of A or B:

Definition 3.17 (Product of games (Abramsky and McCusker, 1999)). Given

games A and B, the product A&B of A and B is defined by:

— MA&B
df.
= MA +MB;

— λA&B
df.
= [λA, λB];
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— ⊢A&B
df.
= ⊢A + ⊢B;

— PA&B
df.
= {s ∈ LA&B | (s ↾ A ∈ PA ∧ s ↾ B = ǫ) ∨ (s ↾ A = ǫ ∧ s ↾ B ∈ PB) };

— s ≃A&B t
df.
⇔ s ≃A t ∨ s ≃B t.

Example 3.7. A maximal position of the product 2&N is either of the following forms:

2 & N 2 & N

q q

b n

where b ∈ B and n ∈ N.

Now, for our game-semantic CCBoC (given in Section 4), let us generalize product:

Notation. Given a function f : X → Y and a subset Z ⊆ X , we write f ⇂ Z : X\Z → Y

for the restriction of f to the subset X \ Z ⊆ X .

Definition 3.18 (Pairing of games). The pairing 〈L,R〉 of games L and R such

that Hω(L) P C ⊸ A and Hω(R) P C ⊸ B for some normalized games A, B and C is

defined by:

— M〈L,R〉
df.
= MC+(ML \MC)+(MR \MC), where ‘tags’ for the disjoint union is chosen

in such a way that Hω(〈L,R〉) P C ⊸ A&B holds;

— λ〈L,R〉
df.
= [λC , λL ⇂MC , λR ⇂MC ];

— m ⊢〈L,R〉 n
df.
⇔ (att 〈L,R〉(m) = att〈L,R〉(n) ∨ att 〈L,R〉(m) = C ∨ att〈L,R〉(n) = C) ∧

(peel 〈L,R〉(m) ⊢L peel 〈L,R〉(n) ∨ peel 〈L,R〉(m) ⊢R peel 〈L,R〉(n));

— P〈L,R〉
df.
= {s ∈ LL&R | (s ↾ L ∈ PL ∧ s ↾ R = ǫ) ∨ (s ↾ L = ǫ ∧ s ↾ R ∈ PR) };

— s ≃〈L,R〉 t
df.
⇔ (s ↾ L = ǫ ⇔ t ↾ L = ǫ) ∧ s ↾ L ≃L t ↾ L ∧ s ↾ R ≃R t ↾ R

where the map peel 〈L,R〉 : M〈L,R〉 → ML ∪ MR is the obvious left inverse of the

‘tagging’ for M〈L,R〉, s ↾ L (resp. s ↾ R) is the j-subsequence of s that consists of

moves x such that peel 〈L,R〉(x) ∈ ML (resp. peel 〈L,R〉(x) ∈ MR) yet changed into

peel 〈L,R〉(x), and the map att〈L,R〉 : M〈L,R〉 → {L,R,C} is given by att 〈L,R〉(m)
df.
=




L if peel 〈L,R〉(m) ∈ML \MC ;

R if peel 〈L,R〉(m) ∈MR \MC ;

C otherwise (i.e., if peel 〈L,R〉(m) ∈MC).

Pairing of games is indeed a generalization of product for we have 〈T ⊸ A, T ⊸ B〉 =

T ⊸ A&B for any games A and B, where note that each game G coincides with the

linear implication T ⊸ G up to ‘tags’. Also, we shall see that the (generalized) pairing

〈σ, τ〉 of strategies σ : L and τ : R forms a strategy on the pairing 〈L,R〉 (Definition 3.35).

Theorem 3.4 (Well-defined pairing of games). If (resp. well-founded) games L and

R satisfy Hω(L) P C ⊸ A and Hω(R) P C ⊸ B for normalized games A, B and C, then

the pairing 〈L,R〉 is a (resp. well-founded) game that satisfies Hω(〈L,R〉) P C ⊸ A&B.

Proof. Similar to and simpler than the case of tensor.
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Now, let us recall exponential !, which is essentially the countably-infinite iteration of

tensor, i.e., !A and A⊗A⊗ . . . coincide up to ‘tags’. Precisely, it is defined as follows:

Definition 3.19 (Exponential of games (Abramsky et al., 2000; McCusker, 1998)).

Given a game A, the exponential !A of A is defined by:

— M!A
df.
= MA × N;

— λ!A : (a, i) 7→ λA(a);

— ⋆ ⊢!A (a, i)
df.
⇔ ⋆ ⊢A a;

— (a, i) ⊢!A (a′, i′)
df.
⇔ i = i′ ∧ a ⊢A a

′;

— P!A
df.
= {s ∈ L!A | ∀i ∈ N.s ↾ i ∈ PA };

— s ≃!A t
df.
⇔ ∃ϕ ∈ P(N). ∀i ∈ N. s ↾ ϕ(i) ≃A t ↾ i ∧ π∗

2(s) = (ϕ ◦ π2)∗(t)

where s ↾ i is the j-subsequence of s that consists of occurrences of moves of the form

(a, i) yet changed into a, and P(N) is the set of all permutations of natural numbers.

Example 3.8. A typical position of the exponential !2 is as follows:

!2

(q, 10)

(tt , 10)

(q, 100)

(ff , 100)

Now, it should be clear, from the definition of ≃!A, why we have equipped each game

with an identification of positions: A particular choice of the ‘tag’ ( , i) for an exponential

!A should not matter; since this identification may occur locally in games in a nested form,

e.g., !(!A ⊗ B), !A ⊸ B, etc., it gives a neat solution to define a tailored identification

≃G of positions as part of the structure of each game G. It was first introduced by

(Abramsky et al., 2000) and also employed in (McCusker, 1998).

Exponential enables us, via Girard’s translation (Girard, 1987) A⇒ B
df.
= !A⊸ B, to

model the construction ⇒ of the usual implication (or the function space).

Example 3.9. In the linear implication 2&2 ⊸ 2, Player may play at most only in one

2 out of the domain 2&2:

2 & 2 ⊸ 2 2 & 2 ⊸ 2

q q

q q

b(1) b(1)

b(2) b(2)

where b(1), b(2) ∈ B. On the other hand, however, positions of the implication 2&2 ⇒

2 = !(2&2) ⊸ 2 are of the expected form; for instance:
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!(2 & 2) ⊸ 2 !(2 & 2) ⊸ 2

q q

(q, 0) (q, 10)

(b(1), 0) (b(1), 10)

(q, 1) (q, 7)

(b(2), 1) (b(2), 7)

b(3) (q, 4)

(b(3), 4)

(q, 100)

(b(4), 100)

b(5)

where b(1), b(2), b(3), b(4), b(5) ∈ B. Hence, e.g., Player may play as conjunction ∧ : B×B →

B or disjunction ∨ : B × B → B on the implication 2&2 ⇒ 2 in the obvious manner,

but not on the linear implication 2&2 ⊸ 2. This example illustrates why the standard

notion of functions corresponds in game semantics to implication ⇒, not linear one ⊸.

For the game-semantic CCBoC, let us generalize exponential of games as follows:

Definition 3.20 (Promotion of games). Given a game G such thatHω(G) P !A⊸ B

for some normalized games A and B, the promotion G† of G is defined by:

— MG†
df.
= ((MG \M!A)× N) +M!A;

— λG† : ((m, i) ∈ (MG \M!A)× N) 7→ λG(m), ((a, j) ∈M!A) 7→ λG(a, j);

— ⋆ ⊢G† (m, i)
df.
⇔ ⋆ ⊢G m for all i ∈ N;

— (m, i) ⊢G† (n, j)
df.
⇔ (i = j ∧m,n ∈MG \M!A ∧m ⊢G n)

∨ (i = j ∧m ⊢A n) ∨ (m ∈MG \M!A ∧ (n, j) ∈M!A ∧m ⊢G (n, j));

— PG†

df.
= {s ∈ LG† | ∀i ∈ N. s ↾ i ∈ PG };

— s ≃G† t
df.
⇔ ∃ϕ ∈ P(N). ∀i ∈ N. s ↾ ϕ(i) ≃G t ↾ i ∧ π∗

2(s) = (ϕ ◦ π2)∗(t)

where s ↾ i is the j-subsequence of s that consists of moves (m, i) with m ∈ MG \M!A,

or (a, 〈i, j〉) with a ∈MA ∧ j ∈ N, yet changed into m or (a, j), respectively.

Note that we have (T ⊸ A)† = !T ⊸ !A for any game A, and therefore promotion

of games is indeed a generalization of exponential. Also, we shall see later that the

(generalized) promotion φ† of a strategy φ : G forms a strategy on the promotion G†.

Example 3.10. Let us consider the promotion (!A⊸ B)†, where A and B are arbitrary

normalized games. If there is the following position of !A⊸ B:

!A ⊸ B

b(1)

(a(1), i)

(a(2), i)

b(2)
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then there is the following position of the promotion (!A⊸ B)†, where note that j, j′ ∈ N

are arbitrarily chosen by Opponent:

!A ⊸ !B

(b(1), j)

(a(1), 〈i, j〉)

(a(2), 〈i, j〉)

(b(2), j)

(b(1), j′)

(a(1), 〈i, j′〉)

(a(2), 〈i, j′〉)

(b(2), j′)

Theorem 3.5 (Well-defined promotion of games). If a (resp. well-founded) game

G satisfies Hω(G) P !A ⊸ B for some normalized games A and B, then G† is a (resp.

well-founded) game that satisfies Hω(G)† P !A⊸ !B.

Proof. Similar to the case of tensor.

Now, let us introduce a new, central construction on games, which formalizes the

construction for ‘internal communication’ between strategies sketched in Section 1:

Definition 3.21 (Concatenation and composition of games). Given games J and

K that satisfies Hω(J) P A ⊸ B and Hω(K) P B ⊸ C for some normalized games A,

B and C, the concatenation J ‡K of J and K is defined by:

— MJ‡K
df.
= MJ +MK , where ‘tags’ for the disjoint union is chosen in such a way that

Hω(J ‡K) P A⊸ C holds;

— λJ‡K
df.
= [λJ ⇂ MB[1]

, λ+µJ ↾ MB[1]
, λ+µK ↾ MB[2]

, λK ⇂ MB[2]
], where B[1] and B[2] are

the copies ofB that belong to J andK, respectively, λ+µG
df.
= 〈λOP

G , λQA
G , n 7→ λNG(n)+µ〉

(G is J or K), and µ
df.
= max(µ(J), µ(K)) + 1;

— ⋆ ⊢J‡K m
df.
⇔ ⋆ ⊢K m;

— m ⊢J‡K n (m 6= ⋆)
df.
⇔ m ⊢J n ∨m ⊢K n ∨ (⋆ ⊢B[2]

m ∧ ⋆ ⊢B[1]
n);

— PJ‡K
df.
= {s ∈ JJ‡K | s ↾ J ∈ PJ , s ↾ K ∈ PK , s ↾ B[1], B[2] ∈ prB };

— s ≃J‡K t
df.
⇔ (∀i ∈ N. s(i) ∈MJ ⇔ t(i) ∈MJ) ∧ s ↾ J ≃J t ↾ J ∧ s ↾ K ≃K t ↾ K

where prB
df.
= {s ∈ PB[1]⊸B[2]

| ∀t � s. Even(t) ⇒ t ↾ B[1] = t ↾ B[2] }. Moreover, the

composition J ;K (or K ◦ J) of J and K is given by:

J ;K
df.
= Hω(J ‡K).

Example 3.11. A typical maximal position of the concatenation (2 ⊸ 2) ‡ (2 ⊸ 2) is:
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(2[0] ⊸ 2[1]) ‡ (2[2] ⊸ 2[3])

q[3]
q[2]

q[1]

q[0]

b
(1)
[0]

b
(2)
[1]

b
(2)
[2]

b
(3)
[3]

where b(1), b(2), b(3) ∈ B. We have marked internal moves by a square box just for clarity.

We shall see that the ‘non-hiding composition’ or concatenation ι ‡κ of strategies ι : J

and κ : K forms a strategy on the concatenation J ‡K. It generalizes the particular case,

where J = A ⊸ B and K = B ⊸ C, so that ι;κ = Hω(ι ‡ κ) : Hω(J ‡K) = J ;K =

A ⊸ C (as we shall establish shortly), which reformulates conventional composition of

static strategies as concatenation plus hiding of dynamic strategies.

Theorem 3.6 (Well-defined concatenation and composition of games). (Resp.

well-founded) games are closed under concatenation and composition.

Proof. By Theorem 3.1, it suffices to focus on concatenation, where well-foundedness

is clearly preserved under concatenation. We first show that the arena J ‡ K is well-

defined. The set MJ‡K and the function λJ‡K are clearly well-defined, where the finite

upper bounds µ(J) and µ(K) are crucial. For the relation ⊢J‡K , the axioms E1 and E3

clearly hold. For the axiom E2, if m ⊢J‡K n and λQA
J‡K(n) = A, then m,n ∈MK \MB[2]

,

m,n ∈ MB[2]
, m,n ∈ MB[1]

or m,n ∈ MJ \MB[1]
. In either case, λQA

J‡K (m) = Q and

λNJ‡K(m) = λNJ‡K(n).

For the axiom E4, let m ⊢J‡K n, m 6= ⋆ and λNJ‡K(m) 6= λNJ‡K(n). We proceed by

a case analysis. If (m ⊢K n) ∧ (m,n ∈ MK \MB[2]
∨m,n ∈ MB[2]

), then we may just

apply E4 on K. It is similar if (m ⊢J n)∧ (m,n ∈MJ \MB[1]
∨m,n ∈MB[1]

). Note that

the case ⋆ ⊢B[2]
m ∧ ⋆ ⊢B[1]

n cannot happen. Now, consider the case m ⊢K n ∧ m ∈

MK \MB[2]
∧ n ∈MB[2]

. If m is external, then m ∈MC , and so E4 on J ‡K is satisfied

by the definition of B ⊸ C; if m is internal, then we may apply E4 on K. The case

m ⊢K n ∧ n ∈MK \MB[2]
∧m ∈MB[2]

is simpler as m must be internal. The remaining

cases m ⊢J n ∧m ∈MJ \MB[1]
∧ n ∈ MB[1]

and m ⊢J n ∧ n ∈ MJ \MB[1]
∧m ∈ MB[1]

are analogous. Hence, we have shown that the arena J ‡K is well-defined.

Next, we show that PJ‡K ⊆ LJ‡K . For justification, let sm ∈ PJ‡K with m non-initial.

The non-trivial case is when m is initial in J . But in this case, m is initial in B[1], and

so it has a justifier in B[2]. For alternation and IE-switch, similarly to Table 1 for tensor

⊗, we have Table 2 for J ‡ K, in which the first (resp. the second) component of each

state is about the OP- and IE-parities of the next move of J (resp. K). For readability,

some states are written twice, and the dotted arrow indicates two necessarily consecutive
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(OE,OE)
C ✲ (OE,PI)

(PI,OE) ✛..................
B[1]B[2]

(OE,PE)

C
❄

C
✻

✛ K
(OE,OI)

K
❄

K
✻

(OI,OE)

J
❄

J
✻

J ✲ (PE,OE)

B[2]

B[1] ❄

..........

B[2]

B[1]

✻
..........

..................
B[1]B[2]✲ (OE,PI)

K
❄

K
✻

(PI,OE)

J
❄

J
✻

✛ A
(OE,OE)

A
❄

A
✻

Table 2. The double parity diagram for the concatenation J ‡K.

moves of B. Then, alternation and IE-switch on J ‡ K immediately follows from this

diagram and the corresponding axioms on J and K.

For generalized visibility, let sm ∈ PJ‡K with m non-initial and d ∈ N∪{ω} such that

sm is d-complete. Without loss of generality, we may assume d ∈ N as s is finite. It is not

hard to see that Hd
J‡K(sm) ∈ PHd(J)‡Hd(K) if H

d(J ‡K) is not normalized; thus, this case

is reduced to the (usual) visibility onHd(J)‡Hd(K). Otherwise, it is no harm to select the

least d ∈ N
+ such that Hd(J ‡K) is normalized; then Hd−1

J‡K(sm) ∈ P(A⊸B[1])‡(B[2]⊸C),

and thus the visibility of Hd
J‡K(sm) = HHd−1(J‡K)(H

d−1
J‡K(sm)) can be shown completely

in the same way as the proof that shows the composition of strategies is well-defined (in

particular it satisfies visibility) (McCusker, 1998; Harmer, 2004). Consequently, it suffices

to consider the case d = 0, i.e., to show the (usual) visibility.

For this, we need the following:

Lemma 3.5 (Visibility lemma). Assume that t ∈ PJ‡K and t 6= ǫ.

1 If the last move of t is of MJ \MB[1]
, then ⌈t ↾ J⌉J � ⌈t⌉J‡K ↾ J and ⌊t ↾ J⌋J �

⌊t⌋J‡K ↾ J ;

2 If the last move of t is of MK \MB[2]
, then ⌈t ↾ K⌉K � ⌈t⌉J‡K ↾ K and ⌊t ↾ K⌋K �

⌊t⌋J‡K ↾ K;

3 If the last move of t is an O-move of MB[1]
∪ MB[2]

, then ⌈t ↾ B[1], B[2]⌉B[1]⊸B[2]
�

⌊t⌋J‡K ↾ B[1], B[2] and ⌊t ↾ B[1], B[2]⌋B[1]⊸B[2]
� ⌈t⌉J‡K ↾ B[1], B[2].

Proof of the lemma By induction on |t| with case analysis on the last move of t.

Note that we may write sm = s1ns2m, where n justifies m. If s2 = ǫ, then it is trivial;

so assume s2 = s′
2
r. We then proceed by a case analysis on m:

— Assume m ∈ MJ \MB[1]
. Then, n ∈ MJ and r ∈ MJ by Table 2. By Lemma 3.5,

⌈s ↾ J⌉ � ⌈s⌉ ↾ J and ⌊s ↾ J⌋ � ⌊s⌋ ↾ J . Also, for (s ↾ J).m ∈ PJ and visibility on J ,

n occurs in ⌈s ↾ J⌉ if m is a P-move;

n occurs in ⌊s ↾ J⌋ if m is an O-move.

Hence we may conclude that n occurs in ⌈s⌉ (resp. ⌊s⌋) if m is a P- (resp. O-) move.
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— Assume m ∈ MK \MB[2]
. This case can be handled in a completely analogous way

to the above case.

— Assume m ∈ MB[1]
. If m is a P-move, then n, r ∈ MJ and so it can be handled in

the same way as the case m ∈MJ \MB[1]
; thus, assume that m is an O-move. Then,

r ∈ MB[2]
and it is a ‘copy’ of m. Since r is an O-move of B[1] ⊸ B[2], by Lemma

3.5, ⌈s ↾ B[1], B[2]⌉ � ⌊s⌋ ↾ B[1], B[2]. Note that n is a move of B[1] or an initial

move of B[2]. In either case, we have (s ↾ B[1], B[2]).m ∈ PB[1]⊸B[2]
; thus, n occurs in

⌈s ↾ B[1], B[2]⌉. Hence we may conclude that n occurs in ⌊s⌋.

— Assume m ∈ MB[2]
. If m is a P-move, then n, r ∈ MK ; so it can be dealt with in

the same way as the case m ∈MK \MB[2]
. Thus, assume m is an O-move. By Table

2, we have r ∈ MB[1]
, and it is an O-move of B[1] ⊸ B[2]. Thus by Lemma 3.5,

⌈s ↾ B[1], B[2]⌉ � ⌊s⌋ ↾ B[1], B[2]. Then again, (s ↾ B[1], B[2]).m ∈ PB[1]⊸B[2]
; thus, n

occurs in ⌈s ↾ B[1], B[2]⌉, and so n occurs in ⌊s⌋.

Next, we verify the axioms P1, DP2 and DP3. For P1, ǫ ∈ PJ‡K is clear; for prefix-

closure, let sm ∈ PJ‡K . If m ∈ MJ \ MB[1]
, then (s ↾ J).m = sm ↾ J ∈ PJ ; thus,

s ↾ J ∈ PJ , s ↾ K = sm ↾ K ∈ PK and s ↾ B[1], B[2] = sm ↾ B[1], B[2] ∈ prB, whence

s ∈ PJ‡K . The other cases may be handled similarly. For DP2, assume smn ∈ P Even
J‡K and

λNJ‡K(n) > 0. If n 6∈ MB[1]
∪MB[2]

, then we may just apply DP2 on J or K; and the

remaining case is trivial by the definition of J ‡K.

For DP3, let i ∈ N and sm, s′m′ ∈ POdd
J‡K such that i < λNJ‡K(m) = λNJ‡K (m′)

and Hi
J‡K(s) = Hi

J‡K(s′). Without loss of generality, we may assume i = 0 and

λNJ‡K(m) = 1 = λNJ‡K(m′) because if λNJ‡K(m) = λNJ‡K(m′) = j > 1, then we may con-

sider Hj−1
J‡K(sm),Hj−1

J‡K(s′m′) ∈ PHj−1(J)‡Hj−1(K) (n.b., the justifiers of m and m′ have

the same priority order). Thus, s = s′ and m,m′ ∈ MJ ∨m,m′ ∈ MK . If m,m′ ∈ MJ

(resp. m,m′ ∈ MK), then (s ↾ J).m, (s′ ↾ J).m′ ∈ POdd
J (resp. (s ↾ K).m, (s′ ↾ K).m′ ∈

POdd
K ), and so we may just apply DP3 on J (resp. K).

Finally, the axioms I1, I2 and DI3 on ≃J‡K can be verified similarly to the case of

tensor, completing the proof.

For completeness, let us explicitly define the rather trivial currying of games:

Definition 3.22 (Currying of games). Given a game G such that Hω(G) P A⊗B ⊸

C for some normalized games A, B and C, the currying Λ(G) of G is G up to ‘tags’

that satisfies Hω(Λ(G)) P A⊸ (B ⊸ C).

Trivially, (resp. well-founded) games are closed under currying.

Next, we show that these constructions as well as the hiding operation preserve the

subgame relation P (Definition 3.12):

Notation. We write ♣i∈I , where I is {1} or {1, 2}, for any of the constructions on games

introduced so far, i.e., ♣i∈I is either ⊗, ⊸, 〈 , 〉, ( )†, ‡ or Λ.

Lemma 3.6 (Preservation of subgames). Let ♣i∈I be a construction on games, and

assume Hi P Gi for all i ∈ I. Then, ♣i∈IHi P ♣i∈IGi.

Proof. Let us first consider tensor. It is trivial to check the conditions on the sets of
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moves and the labeling functions, and so we omit them. For the enabling relations:

⊢H1⊗H2 = ⊢H1 + ⊢H2

⊆ (⊢G1 ∩ (({⋆} ∪MH1)×MH1)) + (⊢G2 ∩ (({⋆} ∪MH2)×MH2))

= (⊢G1 ∩ (({⋆} ∪MH1⊗H2)×MH1⊗H2)) + (⊢G2 ∩ (({⋆} ∪MH1⊗H2)×MH1⊗H2))

= (⊢G1 + ⊢G2) ∩ (({⋆} ∪MH1⊗H2)×MH1⊗H2)

= ⊢G1⊗G2 ∩ (({⋆} ∪MH1⊗H2)×MH1⊗H2).

For the positions, we have:

PH1⊗H2 = {s ∈ LH1⊗H2 | ∀i ∈ {1, 2}.s ↾ Hi ∈ PHi
}

⊆ {s ∈ LG1⊗G2 | ∀i ∈ {1, 2}.s ↾ Gi ∈ PGi
}

= PG1⊗G2 .

For the identifications of positions, given d ∈ N ∪ {ω}, we have:

s ≃dH1⊗H2
t ⇔ ∃s′, t′ ∈ PH1⊗H2 . s

′ ≃H1⊗H2 t′ ∧Hd
H1⊗H2

(s′) = Hd
H1⊗H2

(s)

∧Hd
H1⊗H2

(t′) = Hd
H1⊗H2

(t)

⇔ ∀j ∈ {1, 2}.∃s′j , t
′
j ∈ PHj

. s′j ≃Hj
t′j ∧Hd

Hj
(s′j) = Hd

Hj
(s ↾ Hj)

∧Hd
Hj

(t′j) = Hd
Hj

(t ↾ Hj) ∧ ∀k ∈ N. sk ∈MH1 ⇔ tk ∈MH1

⇔ ∀j ∈ {1, 2}.s ↾ Hj ≃
d
Hj

t ↾ Hj ∧ ∀k ∈ N. sk ∈MH1 ⇔ tk ∈MH1

⇔ ∀j ∈ {1, 2}.s ↾ Gj , t ↾ Gj ∈ PHj
∧ s ↾ Gj ≃

d
Gj

t ↾ Gj

∧ ∀k ∈ N. sk ∈MG1 ⇔ tk ∈MG1

⇔ s, t ∈ PH1⊗H2 ∧ s ≃dG1⊗G2
t.

Finally, we have µ(H1⊗H2) = max(µ(H1), µ(H2)) = max(µ(G1), µ(G2)) = µ(G1⊗G2),

showing that H1 ⊗H2 P G1 ⊗G2.

Linear implication and promotion are similar, and pairing and currying are even sim-

pler; thus, we omit them. Next, let us consider concatenation. Assume that Hω(H1) P

A⊸ B, Hω(H2) P B ⊸ C, Hω(G1) P D ⊸ E, Hω(G2) P E ⊸ F for some normalized

games A, B, C, D, E and F ; without loss of generality, we assume that these normal-

ized games are the least ones with respect to P. By Theorem 3.1, Hω(H1) P Hω(G1) P

D ⊸ E and Hω(H2) P Hω(G2) P E ⊸ F , which in turn implies A P D, B P E and

C P F . First, we clearly haveMH1‡H2 ⊆MG1‡G2 and λG1‡G2 ↾MH1‡H2 = λH1‡H2 , where

µ(Hi) = µ(Gi) for i = 1, 2 ensures that the priority orders of moves of B coincide.

Next, for the enabling relations, we have:

⋆ ⊢H1‡H2 m⇔ ⋆ ⊢H2 m⇔ ⋆ ⊢C m⇒ ⋆ ⊢F m⇔ ⋆ ⊢G1‡G2 m

as well as:

m ⊢H1‡H2 n⇔ m ⊢H1 n ∨m ⊢H2 n ∨ (⋆ ⊢B[2]
m ∧ ⋆ ⊢B[1]

n)

⇒ m ⊢G1 n ∨m ⊢G2 n ∨ (⋆ ⊢E[2]
m ∧ ⋆ ⊢E[1]

n)

⇔ m ⊢G1‡G2 n
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for any m,n ∈MH1‡H2 . For the positions, we have:

PH1‡H2 = {s ∈ JH1‡H2 | s ↾ H1 ∈ PH1 , s ↾ H2 ∈ PH2 , s ↾ B[1], B[2] ∈ prB }

⊆ {s ∈ JG1‡G2 | s ↾ G1 ∈ PG1 , s ↾ G2 ∈ PG2 , s ↾ E[1], E[2] ∈ prE }

= PG1‡G2 .

Finally, we may show, in the same manner as in the case of tensor, the required

condition on the identifications of positions, completing the proof.

At the end of the present section, we establish the following useful lemma:

Lemma 3.7 (Hiding lemma on games). Let ♣i∈I be a construction on games and

Gi a game for all i ∈ I. For each d ∈ N ∪ {ω}, we have:

1 Hd(♣i∈IGi) = ♣i∈IHd(Gi) if ♣i∈I 6= ‡;

2 Hd((G1) ‡ (G2)) P A ⊸ C if Hd(G1 ‡ G2) is normalized, where A, B and C are

normalized games such that Hω(G1) P A ⊸ B and Hω(G2) P B ⊸ C, and in

particular (A⊸ B); (B ⊸ C) = A⊸ C;

3 Hd(G1 ‡G2) = Hd(G1) ‡ Hd(G2) otherwise.

Proof. Since there is an upper bound of the priority orders of each game, it suffices

to consider the case d ∈ N. But then, as Hi+1 = H ◦ Hi for all i ∈ N, we may focus on

d = 1. We focus on tensor as the other constructions may be handled similarly.

We have to show H(G1 ⊗ G2) P H(G1) ⊗ H(G2). Their sets of moves and labeling

functions clearly coincide. For the enabling relations, we have:

⋆ ⊢H(G1⊗G2) m⇔ ⋆ ⊢G1⊗G2 m⇔ ⋆ ⊢G1 m ∨ ⋆ ⊢G2 m

⇔ ⋆ ⊢H(G1) m ∨ ⋆ ⊢H(G2) m

⇔ ⋆ ⊢H(G1)⊗H(G2) m

as well as:

m ⊢H(G1⊗G2) n (m 6= ⋆)

⇔ (m ⊢G1⊗G2 n) ∨ ∃k ∈ N
+,m1,m2, . . . ,m2k ∈MG1⊗G2 \MH(G1⊗G2).

m ⊢G1⊗G2 m1 ∧ ∀i ∈ k.m2i−1 ⊢G1⊗G2 m2i ∧ ∧m2k ⊢G1⊗G2 n

⇔ (m ⊢G1 n ∨m ⊢G2 n) ∨ ∃i ∈ {1, 2}, k ∈ N
+,m1,m2, . . . ,m2k ∈MGi

\MH(Gi).

m ⊢Gi
m1 ∧ ∀i ∈ k.m2i−1 ⊢G1⊗G2 m2i ∧m2k ⊢Gi

n

⇔ ∃i ∈ {1, 2}.m ⊢Gi
n ∨ ∃k ∈ N

+,m1,m2, . . . ,m2k ∈MGi
\MH(Gi).

m ⊢Gi
m1 ∧ ∀i ∈ k.m2i−1 ⊢G1⊗G2 m2i ∧m2k ⊢Gi

n

⇔ m ⊢H(G1)⊗H(G2) n.

Thus, the arenas H(G1 ⊗G2) and H(G1)⊗H(G2) coincide.
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For the positions, we have:

s ∈ PH(G1⊗G2)

⇔ ∃t ∈ LG1⊗G2 .HG1⊗G2(t) = s ∧ ∀i ∈ {1, 2}. t ↾ Gi ∈ PGi

⇔ ∃t ∈ LG1⊗G2 .HG1⊗G2(t) = s ∧ ∀i ∈ {1, 2}.HGi
(t ↾ Gi) ∈ PH(Gi)

⇔ ∃t ∈ LG1⊗G2 .HG1⊗G2(t) = s ∧ ∀i ∈ {1, 2}.HG1⊗G2(t) ↾ H(Gi) ∈ PH(Gi)

(n.b., ⇐ is by induction on |t|)

⇔ s ∈ LH(G1⊗G2) = LH(G1)⊗H(G2) ∧ ∀i ∈ {1, 2}.s ↾ H(Gi) ∈ PH(Gi)

⇔ s ∈ PH(G1)⊗H(G2).

Finally, for the identifications of positions, given d ∈ N ∪ {ω}, we have:

HG1⊗G2(s) ≃
d
H(G1⊗G2)

HG1⊗G2(t)

⇔ ∃s′, t′ ∈ PG1⊗G2 .HG1⊗G2(s
′) ≃H(G1⊗G2) HG1⊗G2(t

′) ∧Hd+1
G1⊗G2

(s′) = Hd+1
G1⊗G2

(s)

∧Hd+1
G1⊗G2

(t′) = Hd+1
G1⊗G2

(t)

⇔ ∀j ∈ {1, 2}.∃s′j , t
′
j ∈ PGj

.HGj
(s′j) ≃H(Gj) HGj

(t′j) ∧Hd+1
Gj

(s′j) = Hd+1
Gj

(s ↾ Gj)

∧Hd+1
Gj

(t′j) = Hd+1
Gj

(t ↾ Gj) ∧ ∀k ∈ N.Hd+1
G1⊗G2

(s(k)) ∈MHd+1(G1) ⇔ Hd+1
G1⊗G2

(t(k)) ∈MHd+1(G1)

⇔ ∀j ∈ {1, 2}.s ↾ Gj ≃
d+1
Gj

t ↾ Gj ∧ ∀k ∈ N.Hd+1
G1⊗G2

(s(k)) ∈MHd+1(G1) ⇔ Hd+1
G1⊗G2

(t(k)) ∈MHd+1(G1)

⇔ HG1⊗G2(s) ≃
d
H(G1)⊗H(G2)

HG1⊗G2(t) ∧HG1⊗G2(s),HG1⊗G2(t) ∈ PH(G1⊗G2)

which completes the proof.

3.4. Dynamic Strategies

Dynamic strategies, another central notion of the present work, is just static strategies

(Abramsky and McCusker, 1999) on dynamic games :

Definition 3.23 (Dynamic strategies). A dynamic strategy on a (dynamic) game

G is a subset σ ⊆ P Even
G , written σ : G, that satisfies:

— (S1). It is non-empty and even-prefix-closed (i.e., smn ∈ σ ⇒ s ∈ σ);

— (S2). It is deterministic on even-length positions (i.e., smn, s′m′n′ ∈ σ ∧ sm =

s′m′ ⇒ smn = s′m′n′).

A dynamic strategy σ : G is said to be normalized if ∀s ∈ σ, ∀i ∈ |s|. λNG(s(i)) = 0.

Clearly, a normalized dynamic strategy on a normalized dynamic game is equivalent

to a static strategy.

Convention. Henceforth, a strategy refers to a dynamic strategy by default.

As positions of a game G are identified up to ≃G, we must identify strategies on G if

they behave in the same manner up to ≃G, leading to:

Definition 3.24 (Identification of strategies (Abramsky et al., 2000; McCusker, 1998)).
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The identification of strategies on a game G, written ≃G, is the relation between

strategies σ, τ : G given by:

σ ≃G τ
df.
⇔ ∀s ∈ σ, t ∈ τ, sm, tl ∈ PG. sm ≃G tl ⇒ ∀smn ∈ σ. ∃tlr ∈ τ. smn ≃G tlr

∧ ∀tlr ∈ τ. ∃smn ∈ σ. tlr ≃G smn.

We are particularly concerned with strategies identified with themselves:

Definition 3.25 (Validity of strategies). A strategy σ : G is valid if σ ≃G σ.

Since internal moves are conceptually ‘invisible’ to Opponent, a strategy σ : G must be

externally consistent : If smn, s′m′n′ ∈ σ, λNG(n) = λNG(n
′) = 0 andHω

G(sm) = Hω
G(s

′m′),

then n = n′ and J ⊖ω
smn(n) = J ⊖ω

s′m′n′(n′). Moreover, external consistency of strategies

should hold with respect to identification of positions as well. In fact, we now proceed to

establish a stronger property (Theorem 3.7).

Lemma 3.8 (O-determinacy). Let σ, τ : G such that σ ≃G τ , and d ∈ N ∪ {ω}.

1 If sm, s′m′ ∈ PG are d-complete, s, s′ ∈ σ, and Hd
G(sm) = Hd

G(s
′m′), then sm =

s′m′;

2 If sm, tl ∈ PG are d-complete, s ∈ σ, t ∈ τ , and Hd
G(sm) ≃Hd(G) Hd

G(tl), then

sm ≃G tl.

Proof. Let us focus on the first statement for the second one can be proved similarly.

We proceed by induction on |s|. The base case s = ǫ is trivial: For any d ∈ N ∪ {ω}, if

Hd
G(sm) = Hd

G(s
′m′), then Hd

G(s
′m′) = Hd

G(sm) = m, and so s′m′ = m = sm.

For the induction step, let d ∈ N∪{ω} be fixed, and assume Hd
G(sm) = Hd

G(s
′m′). We

may suppose that sm = tlrm, where l is the rightmost O-move occurring on the left of

m in s such that λNG(l) = 0∨λNG(l) > d. Then, Hd
G(s

′m′) = Hd
G(sm) = Hd

G(t).l.H
d
G(rm),

and so we may write s′m′ = t′
1
.l.t′

2
.m′. Now, t, t′

1
∈ σ, tl, t′

1
l ∈ PG, Hd

G(tl) = Hd
G(t

′
1
l),

and tl and t′l′ are both d-complete; thus, by the induction hypothesis, tl = t′
1
l. Thus,

Hd
G(t).l.H

d
G(t

′
2
m′) = Hd

G(s
′m′) = Hd

G(sm) = Hd
G(t).l.H

d
G(rm), whence t′

2
is of the form

rt′′
2

by the determinacy of σ. Hence, sm = tlrm and s′m′ = tlrt′′
2
m′. Finally, if r is

external, then so is m by IE-switch, and so s′m′ = sm; if r is j-internal (j > d), then so

is m, and we apply the axiom DP2 for i = j − 1 to s and s′, whence sm = s′m′.

Theorem 3.7 (External consistency). Let σ, τ : G such that σ ≃G τ , and d ∈ N∪{ω}.

1 If smn, s′m′n′ ∈ σ are d-complete, and Hd
G(sm) = Hd

G(s
′m′), then smn = s′m′n′;

2 If smn ∈ σ, tlr ∈ τ are d-complete, and Hd
G(sm) ≃Hd(G) H

d
G(tl), then smn ≃G tlr.

Proof. Let us first prove the first statement. Let σ : G be a strategy, smn, s′m′n′ ∈ σ

and d ∈ N ∪ {ω}, and assume that smn, s′m′n′ are both d-complete and Hd
G(sm) =

Hd
G(s

′m′). By the first statement of Lemma 3.8, we have sm = s′m′; thus, by the axiom

S2 on σ, we have n = n′ and Jsmn(n) = Js′m′n′(n′), whence J⊖d
smn(n) = J⊖d

s′m′n′(n′).

Similarly, the second statement is proved by the second statement of Lemma 3.8,

completing the proof.

Corollary 3.3 (Stepwise identification of strategies). Any strategies σ, τ : G such
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that σ ≃G τ satisfy σ ≃dG τ for all d ∈ N ∪ {ω}, where:

σ ≃dG τ
df.
⇔ ∀s ∈ σ, t ∈ τ, sm, tl ∈ PG. sm ≃dG tl ⇒ ∀smn ∈ σ. ∃tlr ∈ τ. smn ≃dG tlr

∧ ∀tlr ∈ τ. ∃smn ∈ σ. tlr ≃dG smn.

Proof. Immediate from Theorem 3.7.

Hence, for any strategies σ, τ : G, we have:

σ ≃G τ ⇔ ∀d ∈ N ∪ {ω}. σ ≃dG τ

which will be useful later in the paper.

Let us proceed to show that the relation ≃G on strategies on any game G is a PER.

Lemma 3.9 (PER lemma). Given σ, τ : G such that σ ≃G τ , we have:

(∀s ∈ σ. ∃t ∈ τ. s ≃G t) ∧ (∀t ∈ τ. ∃s ∈ σ. t ≃G s).

Proof. By symmetry, it suffices to show ∀s ∈ σ.∃t ∈ τ.s ≃G t. We prove it by induction

on |s|. The base case is trivial; for the inductive step, let smn ∈ σ. By the induction

hypothesis, there exists some t ∈ τ such that s ≃G t. Then, by the axiom DI3 on ≃G,

there exists some tl ∈ τ such that sm ≃G tl. Finally, since σ ≃G τ , there exists some

tlr ∈ τ such that smn ≃G tlr, completing the proof.

Proposition 3.1 (PERs on strategies). Given a game G, the identification ≃G of

strategies on G is a PER, i.e., a symmetric, transitive relation.

Proof. We just show the transitivity as the symmetry is obvious. Let σ, τ, µ : G such

that σ ≃G τ and τ ≃G µ. Assume that smn ∈ σ, u ∈ µ and sm ≃G up. By Lemma 3.9,

there exists some t ∈ τ such that s ≃G t. By the axiom DI3 on ≃G, there exists some

tl ∈ PG such that sm ≃G tl, whence tl ≃G up. Also, since σ ≃G τ , there exists some

tlr ∈ τ such that smn ≃G tlr. Finally, since τ ≃G µ, there exists some upq ∈ µ such

that tlr ≃G upq, whence smn ≃G upq, completing the proof.

Therefore, given a game G, we may take the equivalence classes [σ]
df.
= {τ : G | σ ≃G τ }

of valid strategies σ : G; these equivalence classes, rather than strategies themselves, have

interpreted proofs and programs (Abramsky et al., 2000; McCusker, 1998).

At this point, let us note that even-length positions are not necessarily preserved under

the hiding operation on j-sequences (Definition 3.6). For instance, let smnt be an even-

length position of a game G such that sm (resp. nt) consists of external (resp. internal)

moves only. By IE-switch onG,m is an O-move, and soHω
G(smnt) = sm is of odd-length.

Taking into account this fact, we define:

Definition 3.26 (Hiding operation on strategies). Let G be a game, and d ∈

N ∪ {ω}. Given s ∈ PG, we define:

s♮Hd
G

df.
=

{
Hd
G(s) if s is d-complete (Definition 3.1);

t otherwise, where Hd
G(s) = tm.
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The d-hiding operation Hd (on strategies) is then given by:

Hd : (σ : G) 7→ {s♮Hd
G | s ∈ σ }.

Let us proceed to establish a beautiful fact: σ : G⇒ Hd(σ) : Hd(G) for all d ∈ N∪{ω}.

For this task, we need the following lemma:

Lemma 3.10 (Asymmetry lemma). Let σ : G be a strategy, and d ∈ N∪{ω}. Assume

that smn ∈ Hd(σ), where smn = tmunv♮Hd
G with tmunv ∈ σ not d-complete. Then,

smn = Hd(tmun) = Hd(t).mn.

Proof. Since tmunv ∈ σ is not d-complete, we may write v = v1lv2r with λNG(l) =

0 ∨ λNG(l) > d, 0 < λNG(r) 6 d and 0 < λNG(x) 6 d for all moves x in v1 or v2. Then, we

have smn = tmunv1lv2r♮Hd
G = Hd

G(t)mHd
G(u)n = Hd

G(t)mn.

We are now ready to establish:

Theorem 3.8 (Hiding theorem). If σ : G, then Hd(σ) : Hd(G) for all d ∈ N ∪ {ω}.

Proof. We first show Hd(σ) ⊆ P Even
Hd(G). Let s ∈ Hd(σ), i.e., s = t♮Hd

G for some t ∈ σ.

Let us write t = t′m as the case t = ǫ is trivial.

— If t is d-complete, then s = t♮Hd
G = Hd

G(t) ∈ PHd(G). Also, since s = Hd
G(t

′)m and

m is a P-move, s must be of even-length by alternation on Hd(G).

— If t is not d-complete, then we may write t = t′′m0m1 . . .mk, where mk = m, t′′m0 is

d-complete, and 0 < λNG(mi) 6 d for i = 1, 2, . . . , k. By IE-switch, m0 is an O-move,

and thus s = Hd
G(t

′′) ∈ PHd(G) is of even-length.

It remains to verify the axioms S1 and S2. For S1, Hd(σ) is non-empty as ǫ ∈ Hd(σ).

For the even-prefix-closure, let smn ∈ Hd(σ); we have to show s ∈ Hd(σ). We have some

tmunv ∈ σ such that tmunv♮Hd
G = smn. By Lemma 3.10, smn = Hd

G(t)mn, whence

s = Hd
G(t). For tm is d-complete, so is t by IE-switch. Thus, s = Hd

G(t) = t♮Hd
G ∈ Hd(σ).

Finally for S2, let smn, smn′ ∈ Hd(σ); we have to show n = n′ and J ⊖d
sm (n) = J ⊖d

sm (n′).

Clearly, smn = tmunv♮Hd
G, smn

′ = t′mu′n′v′♮Hd
G for some tmunv, t′mu′n′v′ ∈ σ.

Then, by Lemma 3.10, smn = Hd
G(tmu)n and smn′ = Hd

G(t
′mu′)n′. Therefore, by

Theorem 3.7, n = n′ and J⊖d
smn(n) = J⊖d

smn′(n′), completing the proof.

Next, let us review standard constraints on strategies. First, recall that a programming

language is total if its computation always terminates in a finite period of time. This

programming concept is interpreted in game semantics by totality of strategies in the

sense similar to totality of partial functions:

Definition 3.27 (Totality of strategies (Abramsky et al., 1997)). A strategy σ :

G is total if it satisfies ∀s ∈ σ, sm ∈ PG. ∃smn ∈ σ.

Nevertheless, it is well-known that totality of strategies is not preserved under composi-

tion due to the problem of ‘infinite chattering’ (Abramsky et al., 1997; Clairambault and Harmer, 2010).

For this point, one usually imposes a condition on strategies stronger than totality, e.g.,

winning (Abramsky et al., 1997), that is preserved under composition. We may certainly

just apply the winning condition of (Abramsky et al., 1997), but it requires an additional
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structure on games, which may be criticized as extrinsic and/or ad-hoc; thus, we prefer

another, simpler solution. A natural idea is then to require that strategies should not

contain any strictly increasing (with respect to �) infinite sequence of positions. However,

we have to relax this constraint: The dereliction derA (Definition 3.34), the β-identity

on a game A in the game-semantic CCBoC given in Section 4, satisfies it iff so does A,

but we cannot impose it on games as the operation ⇒ = !( ) ⊸ ( ) on games, which is

the β-exponential construction in the CCBoC, does not preserve it.

Thus, instead, we apply the same idea to P-views, arriving at:

Definition 3.28 (Noetherianity of strategies (Clairambault and Harmer, 2010)).

A strategy σ : G is noetherian if it does not contain any strictly increasing (with respect

to �) infinite sequence of P-views of G.

It has been shown in (Clairambault and Harmer, 2010) that total, noetherian static

strategies are closed under composition.

Next, recall that one of the highlights of HO-games (Hyland and Ong, 2000) is to give

a one-to-one correspondence between PCF Böhm trees and innocent, well-bracketed static

strategies (on static games modeling types of PCF). That is, the two conditions narrow

down the hom-sets of the codomain of the interpretation functor, i.e., the category of

HO-games, so that the interpretation becomes full. Roughly, a strategy is innocent if its

computation depends only on P-views, and well-bracketed if every ‘question-answering’

by the strategy is achieved in the ‘last-question-first-answered’ fashion. Formally:

Definition 3.29 (Innocence of strategies (Hyland and Ong, 2000)). A strategy

σ : G is innocent if ∀smn, t ∈ σ, tm ∈ PG. ⌈tm⌉ = ⌈sm⌉ ⇒ tmn ∈ σ ∧ ⌈tmn⌉ = ⌈smn⌉.

Definition 3.30 (Well-bracketing of strategies (Hyland and Ong, 2000)). A

strategy σ : G is well-bracketed (wb) if, given sqta ∈ σ, where λQA
G (q) = Q, λQA

G (a) = A

and Jsqta(a) = q, each occurrence of a question in t′, defined by ⌈sqt⌉G = ⌈sq⌉G.t′, jus-

tifies an occurrence of an answer in t′.

Now, let us show that the standard constraints on strategies except totality are all pre-

served under the hiding operation, which implies that dynamic strategies are a reasonable

generalization of static strategies in a certain sense.

Corollary 3.4 (Preservation of constraints on strategies under hiding). If a

strategy σ : G is valid, innocent, wb or noetherian, then so is Hd(σ) : Hd(G), and if

another τ : G satisfies σ ≃G τ , then Hd(σ) ≃Hd(G) H
d(τ), for all d ∈ N ∪ {ω}.

Proof. Let d ∈ N ∪ {ω} be arbitrarily fixed. We have Hd(σ) : Hd(G) by Theorem 3.8.

— Preservation of validity is by Lemma 3.8, Corollary 3.3 and the axiom DI3 on ≃G;

— Preservation of innocence and noetherianity holds because ⌈Hd
G(sm)⌉Hd(G) is a j-

subsequence of Hd
G(⌈sm⌉G) for any sm ∈ POdd

G ;

— Well-bracketing is preserved under the d-hiding operation Hd because both of the

question and the answer of each ‘QA-pair’ are either deleted or retained.

Finally, preservation of identification of strategies is proved similarly to that of validity,

completing the proof.
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Remark. Totality of strategies is not preserved under the d-hiding operation Hd on

strategies for all d ∈ N ∪ {ω}. For instance, consider any total strategy that always

performs a 1-internal P-move, which is no longer total when H is applied. As we shall see

shortly, it is why totality is preserved under concatenation of strategies but not under

composition (i.e., composition coincides with concatenation plus hiding).

At the end of the present section, we establish an inductive property of the d-hiding

operation on strategies for each d ∈ N ∪ {ω}:

Notation. Given σ : G and d ∈ N ∪ {ω}, we define σd↓
df.
= {s ∈ σ | s is d-complete } and

σd↑
df.
= σ \ σd↓ .

Lemma 3.11 (Hiding and complete positions). Let σ : G. Given i, d ∈ N such that

i > d, we have Hi(σ) = Hi(σd↓)
df.
= {s♮Hi

G | s ∈ σd↓ }.

Proof. Hi(σd↓) ⊆ Hi(σ) is obvious. For the opposite inclusion, let s ∈ Hi(σ), i.e.,

s = t♮Hi
G for some t ∈ σ; we have to show s ∈ Hi(σd↓). If t ∈ σd↓ , then we are done;

thus, assume otherwise. If there is no external or j-internal move with j > i other than

the first move m0 in t, then s = ǫ ∈ Hi(σd↓); so assume otherwise. As a result, we may

write t = m0t1mnt2r, where t2r consists only of j-internal moves with 0 < j 6 i, and

m and n are P- and O-moves, respectively, such that λNG(m) = λNG(n) = 0 ∨ λNG(m) =

λNG(n) > i. Take m0t1m ∈ σd↓ such that m0t1m♮Hi
G = m0Hi

G(t1)m = t♮Hi
G = s, whence

s ∈ Hi(σd↓).

We are now ready to show:

Lemma 3.12 (Stepwise hiding on strategies). Given σ : G, we have Hi+1(σ) =

H1(Hi(σ)) for all i ∈ N.

Proof. We first show the inclusion Hi+1(σ) ⊆ H1(Hi(σ)). By Lemma 3.11, we may

write any element of the set Hi+1(σ) as s♮Hi+1
G for some s ∈ σi+1

↓ . Then observe that:

s♮Hi+1
G = Hi+1

G (s) = HHi(G)(H
i
G(s)) = (s♮Hi

G)♮H
1
Hi(G) ∈ H1(Hi(σ)).

For the opposite inclusion H1(Hi(σ)) ⊆ Hi+1(σ), again by Lemma 3.11, we may write

any element of H1(Hi(σ)) as (s♮Hi
G)♮H

1
Hi(G) for some s ∈ σi↓. We have to show that

(s♮Hi
G)♮H

1
Hi(G) ∈ Hi+1(σ). If s ∈ σi+1

↓ , then it is completely analogous to the above

argument; so assume otherwise. Also, if an external or j-internal move with j > i+ 1 in

s is only the first move m0, then (s♮Hi
G)♮H

1
Hi(G) = ǫ ∈ Hi+1(σ); thus assume othewise.

Now, we may write:

s = s′mnm1m2 . . .m2kr

where λNG(r) = i+1, m1,m2, . . . ,m2k are j-internal with 0 < j 6 i+1, and m and n are
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external or j-internal P- and O-moves with j > i+ 1, respectively. Then,

(s♮Hi
G)♮H

1
Hi(G) = Hi

G(s)♮H
1
Hi(G)

= HHi(G)(H
i
G(s

′)).m

= Hi+1
G (s′).m (by Lemma 3.3)

= s♮Hi+1
G ∈ Hi+1(σ)

which completes the proof.

Thus, as in the case of games, we may focus on the operation H1:

Convention. Henceforth, we write H for H1 and call it the hiding operation (on

strategies); Hi denotes the i-times iteration of H for all i ∈ N.

3.5. Constructions on Dynamic Strategies

Next, let us recall standard constructions on strategies (Abramsky and McCusker, 1999).

Note that since (dynamic) strategies are simply ‘static strategies on (dynamic) games’,

they are clearly closed under all the constructions on static strategies.

Nevertheless, the CCBoC of games and strategies given in Section 4 has normalized

games as 0-cells and strategies φ : G such that Hω(G) P A ⇒ B as 1-cells A → B,

and therefore we need to generalize pairing and promotion of static strategies; in fact,

we have generalized product and exponential of static games respectively to pairing and

promotion of dynamic games for this purpose. Also, we shall decompose and generalize

composition of static strategies as concatenation plus hiding of dynamic strategies, for

which we have introduced concatenation of dynamic games.

Let us begin with recalling tensor ⊗ of strategies:

Definition 3.31 (Tensor of strategies (Abramsky and McCusker, 1999)). Given

games A, B, C and D, and strategies φ : A⊸ C and ψ : B ⊸ D, the tensor (product)

φ⊗ ψ of φ and ψ is given by:

φ⊗ ψ
df.
= {s ∈ LA⊗B⊸C⊗D | s ↾ A,C ∈ φ, s ↾ B,D ∈ ψ }.

Intuitively the tensor φ⊗ ψ : A⊗B ⊸ C ⊗D of φ : A⊸ C and ψ : B ⊸ D plays by

φ if the last O-move is of A or C, and by ψ otherwise.

Example 3.12. The tensor succ⊗double : N⊗N ⊸ N⊗N , where succ, double : N ⊸ N

are given in Section 1, plays, e.g., as follows:
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N ⊗ N
succ⊗double

⊸ N ⊗ N N ⊗ N
succ⊗double

⊸ N ⊗ N

q q

q q

q 5

q 10

2 q

4 q

2 7

3 8

Lemma 3.13 (Well-defined tensor of strategies). Given games A, B, C and D,

and strategies φ : A ⊸ C and ψ : B ⊸ D, φ ⊗ ψ is a strategy on A ⊗ B ⊸ C ⊗D. If

φ and ψ are innocent (resp. wb, total, noetherian), then so is φ⊗ ψ. Given φ′ : A ⊸ C

and ψ′ : B ⊸ D with φ ≃A⊸C φ′ and ψ ≃B⊸D ψ′, φ⊗ ψ ≃A⊗B⊸C⊗D φ′ ⊗ ψ′.

Proof. Straightforward; see (McCusker, 1998; Abramsky et al., 2000).

We proceed to recall pairing of strategies:

Definition 3.32 (Pairing of strategies (Abramsky and McCusker, 1999)). Given

games A, B and C, and strategies φ : C ⊸ A and ψ : C ⊸ B, the pairing 〈φ, ψ〉 of φ

and ψ is defined by:

〈φ, ψ〉
df.
= {s ∈ LC⊸A&B | (s ↾ C,A ∈ φ ∧ s ↾ B = ǫ) ∨ (s ↾ C,B ∈ ψ ∧ s ↾ A = ǫ) }.

That is, the pairing 〈φ, ψ〉 : C ⊸ A&B of φ : C ⊸ A and ψ : C ⊸ B plays by φ if the

play is of C ⊸ A, and by ψ otherwise.

Example 3.13. The pairing 〈succ, double〉 : N ⊸ N&N plays as either of the following:

N
〈succ,double〉

⊸ N & N N
〈succ,double〉

⊸ N & N

q q

q q

n n

n+ 1 2 · n

where n ∈ N, depending on the first O-move.

Lemma 3.14 (Well-defined pairing of strategies). Given games A, B and C, and

strategies φ : C ⊸ A and ψ : C ⊸ B, 〈φ, ψ〉 is a strategy on C ⊸ A&B. If φ and

ψ are innocent (resp. wb, total, noetherian), then so is 〈φ, ψ〉. Given φ′ : C ⊸ A and

ψ′ : C ⊸ B with φ ≃C⊸A φ
′ and ψ ≃C⊸B ψ′, 〈φ, ψ〉 ≃C⊸A&B 〈φ′, ψ′〉.

Proof. Straightforward; see (McCusker, 1998; Abramsky et al., 2000).

Next, let us recall promotion of strategies:

Definition 3.33 (Promotion of strategies (McCusker, 1998)). Given games A
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and B, and a strategy ϕ : !A⊸ B, the promotion ϕ† of ϕ is defined by:

ϕ† df.
= {s ∈ L!A⊸!B | ∀i ∈ N. s ↾ i ∈ ϕ }.

That is, the promotion ϕ† : !A⊸ !B of ϕ : A⇒ B plays, during a play s of !A⊸ !B, as

ϕ for each j-subsequence s ↾ i or thread. We could have defined noetherianity of strategies

in terms of positions, but then it would not be preserved under promotion by the obvious

reason; it is why we have defined it in terms of P-views (Definition 3.28).

Example 3.14. Let succ : N ⇒ N be the successor strategy (n.b., it is on the implication

⇒, not the linear implication ⊸), which specifically selects, say, the ‘tag’ ( , 0) in the

domain !N . Then, the promotion succ† : !N ⊸ !N plays, e.g., as follows:

!N
succ†

⊸ !N

(q, i)

(q, 〈i, 0〉)

(n, 〈i, 0〉)

(n+ 1, i)

(q, j)

(q, 〈j, 0〉)

(q, k)

(q, 〈k, 0〉)

(l, 〈k, 0〉)

(l + 1, k)

(m, 〈j, 0〉)

(m+ 1, j)

where i, j, k, n,m, l ∈ N such that i 6= j, i 6= k and j 6= k, and they are all selected by

Opponent. Note that succ† consistently plays as succ for each thread.

Lemma 3.15 (Well-defined promotion of strategies). Given games A and B, and

a strategy ϕ : !A⊸ B, the promotion ϕ† is a strategy on !A⊸ !B. If ϕ is innocent (resp.

wb, total, noetherian), then so is ϕ†. Given ϕ̃ : !A⊸ B with ϕ ≃!A⊸B ϕ̃, ϕ† ≃!A⊸!B ϕ̃†.

Proof. Straightforward; see (McCusker, 1998; Abramsky et al., 2000).

We proceed to recall a simple kind strategies, which are β-identities of our game-

semantic CCBoC given in Section 4:

Definition 3.34 (Derelictions (Abramsky et al., 2000; McCusker, 1998)). The

dereliction derA : !A⊸ A on a normalized game A is defined by:

derA
df.
= {s ∈ P Even

!A⊸A | ∀t � s.Even(t) ⇒ (t ↾ !A) ↾ 0 = t ↾ A }.

Note that any ‘tag’ ( , i) such that i ∈ N would work; our choice ( , 0) does not matter.

Lemma 3.16 (Well-defined derelictions). Given a normalized game A, derA is a

valid, innocent, wb, total strategy on !A⊸ A. It is noetherian if A is well-founded.
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Proof. We just show that derA is noetherian if A is well-founded for the other points

are trivial, e.g., validity of derA is immediate from the definition of ≃!A⊸A. Given

smm ∈ derA, it is easy to see by induction on |s| that the P-view ⌈sm⌉ is of the form

m1m1m2m2 . . .mkmkm, and thus there is a sequence ⋆ ⊢A m1 ⊢A m2 · · · ⊢A mk ⊢A m

of enabling pairs. Therefore, if A is well-founded, then derA must be noetherian.

Let us proceed to introduce some generalizations of existing constructions. Note that

tensor, pairing and promotion of static strategies have been already generalized slightly

because they allow non-normalized dynamic games and strategies. However, for the game-

semantic CCBoC in Section 4, we need further generalizations:

Definition 3.35 (Generalized pairing of strategies). Given strategies φ : L and

ψ : R such that Hω(L) P C ⊸ A and Hω(R) P C ⊸ B for some normalized games A,

B and C, the (generalized) pairing 〈φ, ψ〉 of φ and ψ is defined by:

〈φ, ψ〉
df.
= {s ∈ L〈L,R〉 | (s ↾ L ∈ φ ∧ s ↾ R = ǫ) ∨ (s ↾ R ∈ ψ ∧ s ↾ L = ǫ) }.

Theorem 3.9 (Well-defined generalized pairing of strategies). Given strategies

φ : L and ψ : R such that Hω(L) P C ⊸ A and Hω(R) P C ⊸ B for some normalized

games A, B and C, 〈φ, ψ〉 is a strategy on 〈L,R〉. If φ and ψ are innocent (resp. wb, total,

noetherian), then so is 〈φ, ψ〉. Given φ′ : L and ψ′ : R such that φ ≃L φ′ and ψ ≃R ψ′,

we have 〈φ, ψ〉 ≃〈L,R〉 〈φ
′, ψ′〉.

Proof. Straightforward.

Convention. Henceforth, pairing of strategies refers to the generalized one.

Definition 3.36 (Generalized promotion of strategies). Given a strategy ϕ : G

such that Hω(G) P !A ⊸ B for some normalized games A and B, the (generalized)

promotion ϕ† of ϕ is defined by:

ϕ† df.
= {s ∈ LG† | ∀i ∈ N. s ↾ i ∈ ϕ }.

Theorem 3.10 (Well-defined generalized promotion on strategies). Given a

strategy ϕ : G such that Hω(G) P !A ⊸ B for some normalized games A and B,

ϕ† is a strategy on G†. If ϕ is innocent (resp. wb, total, noetherian), then so is ϕ†. Given

ϕ′ : G such that ϕ ≃G ϕ′, we have ϕ† ≃G† ϕ′†.

Proof. Straightforward.

Convention. Henceforth, promotion of strategies refers to the generalized one.

Next, let us introduce a new construction on strategies, which plays a fundamental

role in the present work:

Definition 3.37 (Concatenation of strategies). Let ι : J and κ : K be strategies

such that Hω(J) P A⊸ B and Hω(K) P B ⊸ C for some normalized games A, B and

C. The concatenation ι ‡ κ of ι and κ is defined by:

ι ‡ κ
df.
= {s ∈ JJ‡K | s ↾ J ∈ ι, s ↾ K ∈ κ, s ↾ B[1], B[2] ∈ prB }.
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Theorem 3.11 (Well-defined concatenation of strategies). Let ι : J and κ : K

be strategies such that Hω(J) P A ⊸ B and Hω(K) P B ⊸ C, where A, B and

C are normalized games. Then, ι ‡ κ : J ‡ K and Hω(ι);Hω(κ) = Hω(ι ‡ κ) : A ⊸

C, where Hω(ι);Hω(κ) is the composition of Hω(ι) : A ⊸ B and Hω(κ) : B ⊸ C

(Abramsky and McCusker, 1999). If ι and κ are innocent (resp. wb, noetherian, winning),

then so is ι‡κ. Given ι′ : J and κ′ : K with ι ≃J ι′ and κ ≃K κ′, we have ι‡κ ≃J‡K ι′ ‡κ′.

Proof. We just show the first statement as the other ones are straightforward. It then

suffices to prove ι ‡ κ : J ‡ K and Hω(ι ‡ κ) = ι;κ since it implies ι;κ = Hω(ι ‡ κ) :

Hω(J ‡K) P A ⊸ C by Lemmata 3.7 and 3.8. However, Hω(ι ‡ κ) = ι;κ is immediate

from the definition of concatenation; thus, we focus on ι ‡ κ : J ‡K.

First, we have ι ‡ κ ⊆ PJ‡K as any s ∈ ι ‡ κ satisfies s ∈ JJ‡K , s ↾ J ∈ ι ⊆ PJ ,

s ↾ K ∈ κ ⊆ PK and s ↾ B[1], B[2] ∈ prB. It is also immediate that such s is of even-

length. It remains to verify the axioms S1 and S2. For this, we need:

(♦) Each s ∈ ι ‡ κ consists of adjacent pairs mn such that m,n ∈MJ or m,n ∈MK .

Proof of the claim ♦ By induction on |s|. The base case is trivial. For the inductive

step, let smn ∈ ι‡κ. If m ∈MJ , then (s ↾ J).m.(n ↾ J) ∈ σ, where s ↾ J is of even-length

by the induction hypothesis. Thus, we must have n ∈MJ . If m ∈MK , then n ∈MK by

the same argument.

— (S1). Since ǫ ∈ ι ‡ κ, we have ι ‡ κ 6= ∅. For even-prefix-closure, assume smn ∈ ι ‡ κ.

By the claim ♦, either m,n ∈MJ or m,n ∈MK . In either case, it is straightforward

to see that s ∈ PJ‡K , s ↾ J ∈ ι, s ↾ K ∈ κ and s ↾ B[1], B[2] ∈ prB, i.e., s ∈ ι ‡ κ.

— (S2). Assume smn, smn′ ∈ ι ‡ κ. By the claim ♦, either m,n, n′ ∈MJ or m,n, n′ ∈

MK . In the former case, (s ↾ J).mn, (s ↾ J).mn′ ∈ ι. Thus, n = n′ and Jsmn(n) =

J(s↾J).mn(n) = J(s↾J).mn′(n′) = Jsmn′(n′) by S2 on ι, where note that n and n′ are

both P-moves and thus non-initial in J . The latter case may be handled similarly.

Therefore, we have shown that ι ‡ κ : J ‡K.

Note that totality of (dynamic) strategies is not preserved under composition, but it

is preserved under concatenation. This phenomenon is essentially because totality is not

preserved under the hiding operation as already remarked above.

For completeness, let us explicitly define the rather trivial currying of strategies:

Definition 3.38 (Currying of strategies). Given σ : G with Hω(G) P A ⊗ B ⊸ C

for some normalized games A, B and C, the currying Λ(σ) : Λ(G) of σ is σ up to ‘tags’.

Proposition 3.2 (Well-defined currying of strategies). Strategies are closed under

currying, and currying preserves totality, innocence, well-bracketing, noetherianity and

identification of strategies.

Proof. Obvious.

Now, as in the case of games, we establish the hiding lemma on strategies (Lemma 3.18).

We first need the following:
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Lemma 3.17 (Hiding on legal positions in the second form). For any arena G

and number d ∈ N ∪ {ω}, we have LHd(G) = {s♮Hd
G | s ∈ LG }.

Proof. Observe that:

{s♮Hd
G | s ∈ LG } = {s♮Hd

G | s ∈ LG, s is d-complete }

= {Hd
G(s) | s ∈ LG, s is d-complete }

= {Hd
G(s) | s ∈ LG } (by the same argument as above)

= LHd(G) (by Corollary 3.2)

completing the proof.

Notation. We write ♠i∈I , where I is {1} or {1, 2}, for any of the constructions on

strategies introduced so far, i.e., ♠i∈I is either ⊗, ( )†, 〈 , 〉, ‡, ; or Λ.

Lemma 3.18 (Hiding lemma on strategies). Let ♠i∈I be a construction on strate-

gies, and σi : Gi for each i ∈ I. Then, for all d ∈ N ∪ {ω}, we have:

1 Hd(♠i∈Iσi) = ♠i∈IHd(σi) if ♠i∈I is ⊗, ( )†, 〈 , 〉 or Λ;

2 Hd(σ1 ‡ σ2) = Hd(σ1) ‡ H
d(σ2) if H

d(σ1 ‡ σ2) is not normalized;

3 Hd(σ1 ‡ σ2) = Hd(σ1);Hd(σ2) otherwise.

Proof. As in the case of games, it suffices to assume d = 1. Here, we just focus on

pairing since the other constructions may be handled analogously.

Let σi : Gi, i = 1, 2, be strategies such that Hω(G1) P C ⊸ A, Hω(G2) P C ⊸ B for

some normalized games A, B and C. For H(〈σ1, σ2〉) ⊆ 〈H(σ1),H(σ2)〉, observe that:

s ∈ H(〈σ1, σ2〉) ⇒ ∃t ∈ 〈σ1, σ2〉. t♮H
1
〈G1,G2〉

= s

⇒ ∃t ∈ L〈G1,G2〉. t♮H
1
〈G1,G2〉

= s ∧ ((t ↾ G1 ∈ σ1 ∧ t ↾ G2 = ǫ) ∨ (t ↾ G2 ∈ σ2 ∧ t ↾ G1 = ǫ))

⇒ s ∈ LH(〈G1,G2〉) ∧ (s ↾ H(G1) ∈ H(σ1) ∧ s ↾ H(G2) = ǫ)

∨ (s ↾ H(G2) ∈ H(σ2) ∧ s ↾ H(G1) = ǫ)) (by Lemma 3.17)

⇒ s ∈ 〈H(σ1),H(σ2)〉.

Next, we show the converse:

s ∈ 〈H(σ1),H(σ2)〉 ⇒ s ∈ LH(〈G1,G2〉) ∧ (s ↾ H(G1) ∈ H(σ1) ∧ s ↾ H(G2) = ǫ)

∨ (s ↾ H(G2) ∈ H(σ2) ∧ s ↾ H(G1) = ǫ))

⇒ (∃u ∈ σ1.u♮H
1
G1

= s ↾ H(G1) ∧ u ↾ G2 = ǫ)

∨ (∃v ∈ σ2.v♮H
1
G2

= s ↾ H(G2) ∧ v ↾ H(G1) = ǫ)

⇒ ∃w ∈ 〈σ1, σ2〉.w♮H
1
〈G1,G2〉

= s

⇒ s ∈ H(〈σ1, σ2〉)

which completes the proof.

Finally, as a technical preparation for the next section, let us define:

Definition 3.39 (Dereliction games). The dereliction game on a game G is the
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subgame ΞG P G ⇒ G given by MΞG

df.
= MG⇒G, λΞG

df.
= λG⇒G, ⊢ΞG

df.
= ⊢G⇒G, PΞG

df.
=

{s ∈ PG[0]⇒G[1]
| ∀t � s.Even(t) ⇒ t ↾ G[0] = t ↾ G[1]}, and ≃ΞG

df.
= ≃G⇒G ↾ PΞG

× PΞG
.

Given normalized games A and B, we define:

— ΠA,B
1 P A&B ⇒ A to be ΞA up to ‘tags’, where we often abbreviate it as Π1;

— ΠA,B
2 P A&B ⇒ B to be ΞB up to ‘tags’, where we often abbreviate it as Π2;

— ΥA,B P BA&A⇒ B to be ΞA⇒B up to ‘tags’, where we often abbreviate it as Υ .

That is, the dereliction game ΞG on a game G is the subgame of G ⇒ G, in which

only plays by the dereliction derG are possible.

Lemma 3.19 (D-lemma). Given normalized games A, B, C, L P C ⇒ A, R P C ⇒ B,

P P C ⇒ A&B, U P A&B ⇒ C and V P A⇒ CB, we have:

〈L,R〉†;ΠA,B
1 = L

〈L,R〉†;ΠA,B
2 = R

〈P †;ΠA,B
1 , P †;ΠA,B

2 〉 = P

〈(ΠA,B
1 )†; Λ(U), ΠA,B

2 〉†;ΥB,C = U

Λ(〈(ΠA,B
1 )†;V,ΠA,B

2 〉†;ΥB,C) = V.

Proof. Straightforward.

4. Dynamic Game Semantics of Finitary PCF

This section is the climax of the present work. We first define a game-semantic CCBoC

LDG (Definition 4.1) and a standard structure SG for FPCF in LDG (Definition 4.2) in

Section 4.1. Then, as the main result, we show that the induced interpretation J KSG

LDG

satisfies the PDCP (Theorem 4.2), and thus the DCP by Theorem 2.5, in Section 4.2,

giving the first instance of dynamic game semantics.

4.1. Dynamic Game Semantics of Finitary PCF

Let us give the CCBoC LDG of dynamic games and strategies:

Definition 4.1 (The CCBoC LDG). The CCBoC LDG = (LDG,H) is defined by:

— Objects are normalized, well-founded games;

— A β-morphisms A → B is a pair (J, [φ]W) of a game J such that Hω(J) P A ⇒ B

and the equivalence class [φ]W
df.
= {ψ : J | ψ is winning, ψ ≃J φ } of a valid, winning

strategy φ : J ;

— The β-composition A
(J,[φ]W)
→ B

(K,[ψ]W)
→ C is the pair (J† ‡K, [φ† ‡ ψ]W);

— The β-identity idA : A→ A on each object A is the pair (ΞA, [derA]W);

— The evaluationHmaps morphisms (J, [φ]W) : A→ B toH(J, [φ]W)
df.
= (H(J), [H(φ)]W);

— The β-terminal object is the terminal game T (Example 3.3);

— β-product and β-exponential are respectively given by A × B
df.
= A&B and BA

df.
=

A⇒ B = !A⊸ B for any objects A,B ∈ LDG;
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— β-pairing is given by 〈(L, [α]W), (R, [β]W)〉
df.
= (〈L,R〉, [〈α, β〉]W) : C → A&B for any

objects A,B,C ∈ LDG, and morphisms (L, [α]W) : C → A and (R, [β]W) : C → B;

— The β-projections π1 : A&B → A and π2 : A&B → B are respectively the pairs

(ΠA,B
1 , [̟A,B

1 ]W) and (ΠA,B
2 , [̟A,B

2 ]W) for any objects A,B ∈ LDG, where ̟A,B
1 :

ΠA,B
1 and ̟A,B

2 : ΠA,B
2 are respectively the derelictions derA and derB up to ‘tags’;

— β-currying is given by Λ(G, [ϕ]W)
df.
= (Λ(G), [Λ(ϕ)]W) : A→ (B ⇒ C) for any objects

A,B,C ∈ LDG, and morphism (G, [ϕ]W) : A&B → C;

— The β-evaluation evB,C : CB&B → C for any objects B,C ∈ LDG is the pair

(ΥB,C , [υB,C ]W), where υB,C : ΥB,C is the dereliction derB⇒C up to ‘tags’.

Note that we have made the underlying game of each β-morphism in LDG explicit in

order to take the equivalence class of strategies. Also, we have focused on well-founded

games and winning strategies for the full completeness result (Corollary 4.2), where note

that games must be well-founded for derelictions to be noetherian (Lemma 3.16).

Theorem 4.1 (Well-defined LDG). The structure LDG forms a CCBoC.

Proof. First, for β-composition, let A,B,C ∈ LDG, (J, [φ]W) : A→ B and (K, [ψ]W) :

B → C in LDG. Then, φ† : J† by Theorem 3.10, and Hω(J†) P !A⊸ !B by Theorem 3.5;

thus, we may form φ† ‡ ψ : J† ‡ K such that Hω(J† ‡ K) P A ⇒ C by Theorem 3.11.

Also, promotion and concatenation both preserve validity and winning of strategies (by

Theorems 3.10 and 3.11). Hence, the pair (J† ‡K, [φ† ‡ ψ]W) is a β-morphism A→ C in

LDG. Note that the composition does not depend on the representatives φ and ψ.

Moreover, β-composition preserves ≃: For any A,B,C ∈ LDG, (J, [ι]W), (J̃ , [ι̃]W) :

A → B and (K, [κ]W), (K̃, [κ̃]W) : B → C in LDG, if Hω(J, [ι]W) = Hω(J̃ , [ι̃]W) and

Hω(K, [κ]W) = Hω(K̃, [κ̃]W), then Hω(J† ‡K) = Hω(J)†;Hω(K) = Hω(J̃)†;Hω(K̃) =

Hω(J̃† ‡K̃) by Lemma 3.7, and Hω(ι† ‡κ) ≃Hω(J†‡K) H
ω(ι̃† ‡ κ̃) by Corollary 3.4, whence

Hω(J† ‡K, [ι† ‡ κ]W) = Hω(J̃† ‡ K̃, [ι̃† ‡ κ̃]W).

Then clearly, associativity of β-composition up to ≃ holds: Given D ∈ LDG, and

(G, [ϕ]) : C → D in LDG, by Lemma 3.7 we have:

Hω((J† ‡K)† ‡G) = (Hω(J†);Hω(K))†;Hω(G)

= (Hω(J)†;Hω(K)†);Hω(G)

= Hω(J)†; (Hω(K)†;Hω(G))

= Hω(J†); (Hω(K†);Hω(G))

= Hω(J† ‡ (K† ‡G))

as well as by Lemma 3.18:

Hω((φ† ‡ ψ)† ‡ ϕ) = (Hω(φ†);Hω(ψ))†;Hω(ϕ)

= (Hω(φ†);Hω(ψ)†);Hω(ϕ)

= (Hω(φ†); (Hω(ψ†);Hω(ϕ))

= Hω(φ† ‡ (ψ† ‡ ϕ))

whence ((J, [φ]W); (K, [ψ]W)); (G, [ϕ]W) ≃ (J, [φ]W); ((K, [ψ]W); (G, [ϕ]W)).
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Similarly, unit law up to ≃ holds; we leave the details to the reader.

Also, H clearly satisfies the four axioms of BoC (Definition 2.2), having shown that

LDG is a BoC. It remains to verify its cartesian closed structure up to ≃.

The universal property of the β-terminal game T up to ≃ is obvious, where we define

!A
df.
= (A ⇒ T, [{ǫ}]W) : A → T for each A ∈ LDG. The β-projections are clearly values

in LDG. Given β-morphisms (L, [α]W) : C → A and (R, [β]W) : C → B in LDG, i.e.,

α : L, β : R, Hω(L) P C ⇒ A and Hω(R) P C ⇒ B, we may obtain the valid, winning

pairing 〈α, β〉 : 〈L,R〉 such that Hω(〈L,R〉) P C ⇒ A&B by Theorem 3.4. Hence, the

pair (〈L,R〉, [〈α, β〉]W) is a β-morphism C → A&B in LDG, which does not depend on

the representatives α and β. Note also that the β-pairing clearly preserves values in LDG.

Also, we have by Lemmata 3.7 and 3.19:

Hω(〈L,R〉† ‡ΠA,B
1 ) = 〈Hω(L),Hω(R)〉†;ΠA,B

1 = Hω(L)

as well as by Lemma 3.18:

Hω(〈α, β〉† ‡̟A,B
1 ) = 〈Hω(α)†,Hω(β)†〉;̟A,B

1

= Hω(α).

Similarly, Hω(〈L,R〉† ‡ ΠA,B
2 ) = Hω(R) and Hω(〈α, β〉† ‡ ̟A,B

2 ) = Hω(β). Hence,

〈(L, [α]W), (R, [β]W)〉;π1 ≃ (L, [α]W) and 〈(L, [α]W), (R, [β]W)〉;π2 = (R, [β]W) hold.

Next, given any β-morphism (P, [ρ]W) : C → A&B in LDG, we have:

Hω(〈P † ‡ΠA,B
1 , P † ‡ΠA,B

2 〉) = 〈Hω(P )†;ΠA,B
1 ,Hω(P )†;ΠA,B

2 〉

= Hω(P )

again by Lemmata 3.7 and 3.19, as well as by Lemma 3.18:

Hω(〈ρ† ‡̟A,B
1 , ρ† ‡̟A,B

2 〉) = 〈Hω(ρ)†;̟A,B
1 ,Hω(ρ)†;̟A,B

2 〉

= Hω(ρ).

Hence, 〈(P, [ρ]);π1, (P, [ρ]);π2〉 ≃ (P, [ρ]) holds.

It is also straightforward to check that β-pairing in LDG preserves ≃: Given any β-

morphisms (L, [α]W), (L̃, [α̃]W) : C → A and (R, [β]W), (R̃, [β̃]W) : C → B in LDG such

that Hω(L, [α]W) = Hω(L̃, [α̃]W) and Hω(R, [β]W) = Hω(R̃, [β̃]W), we have:

Hω(〈(L, [α]W), (R, [β]W)〉) = (Hω(〈L,R〉), [Hω(〈α, β〉)]W)

= (〈Hω(L),Hω(R)〉, [〈Hω(α),Hω(β)〉]W)

= (〈Hω(L̃),Hω(R̃)〉, [〈Hω(α̃),Hω(β̃)〉]W)

= (Hω(〈L̃, R̃〉), [Hω(〈α̃, β̃〉)]W)

= Hω(〈(L̃, [α̃]W), (R̃, [β̃]W)〉).

Finally, the requirements for β-exponentials, β-currying and β-evaluations are proved

more or less similarly to the case of β-products, β-pairing and β-projections, and thus

we leave the details to the leader.

We proceed to give a standard structure (Definition 2.4) for FPCF in LDG:
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Definition 4.2 (Standard structure in LDG). The standard structure

SG = (2, T,&, π,⇒, ev , tt ,ff , ϑ)

of games and strategies for FPCF in LDG is given by:

— 2 is the game of booleans (Example 3.4), and T is the terminal game (Example 3.3);

— & is product of games, and πA,B1
df.
= (ΠA,B

1 , [̟A,B
1 ]W) (i = 1, 2) for any A,B ∈ LDG;

— ⇒ is function space of games, and evA,B
df.
= (ΥA,B , [υA,B]W) for any A,B ∈ LDG;

— tt
df.
= (T ⇒ 2, [Pref({q.tt})Even]W),ff

df.
= (T ⇒ 2, [Pref({q.ff })Even]W) : T → 2;

— ϑ
df.
= (2&(2&2) ⇒ 2, [case]W) : 2&(2&2) → 2, where case : 2&(2&2) ⇒ 2,

is the standard game semantics of the case-construction (Hyland and Ong, 2000;

Abramsky and McCusker, 1999) modified to a normalized strategy in the obvious

manner.

Lemma 4.1 (Standardness of SG). The structure SG for FPCF in LDG is standard

in the sense defined in Definition 2.4.

Proof. Straightforward.

4.2. Game-Semantic Dynamic Correspondence Property for FPCF

At last, we are now ready to prove that our game semantics satisfies a DCP:

Theorem 4.2 (PDCP-theorem). The interpretation J KSG

LDG of FPCF (Definitions 2.4

and 4.1) satisfies the PDCP (Definition 2.6).

Proof. To establish the PDCP, the only non-trivial case is to show for any reduction of

FPCF of the form (λxA.V)W → U, where V, W and U are values, H(J(λxA.V)WKSG

LDG) =

JUKSG

LDG (n.b., J(λxA.V)WKSG

LDG 6= JUKSG

LDG is immediate from the first component of each

β-morphism in LDG and the third axiom on standardness of SG); the other conditions

for the PDCP follow from Lemmata 3.7 and 3.18. Let us focus on the non-trivial case, for

which we define the height Ht(B) ∈ N of each type B by Ht(o)
df.
= 0 and Ht(B1 ⇒ B2)

df.
=

max(Ht(B1)+1,Ht(B2)). We proceed by induction on the height of the type A of W.

Below, given β-morphisms (H, [τ ]W) : C → (A ⇒ B) and (G, [σ]W) : C → A in LDG,

we define the β-morphism (H, [τ ]W)⌊(G, [σ]W)⌋
df.
= (〈G,H〉† ‡ ΥA,B, [〈τ, σ〉† ‡ υA,B]W) :

C → B in LDG. If (H, [τ ]W) : C → (A1 ⇒ A2 ⇒ · · · ⇒ Ak ⇒ B) and (Gi, [σi]W) : C →

Ai for i = 1, 2, . . . , k, then we write (H, [τ ]W)⌊(G1, [σ1]W), (G2, [σ2]W), . . . , (Gk, [σk]W)⌋

for (H, [τ ]W)⌊(G1, [σ1]W)⌋⌊(G2, [σ2]W)⌋ . . . ⌊(Gk, [σk]W)⌋ : C → B. We abbreviate in this

proof the interpretation J KSG

LDG as J K. Let Γ be the context of (λxA.V)W (as well as U).

In the following, we abbreviate each β-morphism (G, [σ]W) in LDG as [σ] for brevity,

and focus on the second components (i.e., the equivalence classes of strategies); the

corresponding equations on the first components (i.e., games) may be obtained, thanks

to Lemmata 3.7 and 3.19, similarly to the ways for the first components shown below.

For the base case, assume Ht(A) = 0, i.e., A ≡ o. By induction on |V|, we have:

— If V ≡ tt, then (λxA. tt)W → tt, and clearly H(J(λxA. tt)WK) = 〈Λ(JttK), JWK〉†; [υ] =

JttK. The case of V ≡ ff is analogous.
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— If V ≡ λyC.V′, then (λxAyC.V′)W → λyC.U′ with (λxA.V′)W → U′ (for nf ((λxAyC.V′)W) ≡

nf (λyC.V′[W/x]) ≡ λyC.nf (V′[W/x]) ≡ λyC. nf ((λxA.V′)W)). Then, we have, by the

induction hypothesis, H(J(λxA.V′)WK) = JU′K. Hence, we get:

H(JVWK) = H(〈ΛJAK(ΛJCK(JV
′K)), JWK〉† ‡ [υ])

= 〈ΛJAK(ΛJCK(JV
′K)), JWK〉†; [υ] (by Lemma 3.18)

= ΛJCK(〈ΛJAK(JV
′K), JWK〉†; [υ])

= ΛJCK(H(〈ΛJAK(JV
′K), JWK〉† ‡ [υ]))

= ΛJCK(H(J(λxA.V′)WK))

= ΛJCK(JU
′K)

= JλyC.U′K.

— If V ≡ case(yV1 . . .Vk)[Ṽ1; Ṽ2] with x 6= y, then (λxA.V)W → U, where

U ≡ case(ynf (V1[W/x]) . . . nf (Vk[W/x]))[nf (Ṽ1[W/x]); nf (Ṽ1[W/x])].

By the induction hypothesis and the interpretation of the variable y, we have:

J(λxA.V)WK

= Hω(ΛJAK(〈JyK⌊JV1K, . . . , JVkK⌋, 〈JṼ1K, JṼ2K〉〉
† ‡ [case])⌊JWK⌋)

= Hω(〈ΛJAK(JyK)⌊JWK⌋⌊ΛJAK(JV1K)⌊JWK⌋, . . . ,ΛJAK(JVkK)⌊JWK⌋⌋, 〈ΛJAK(JṼ1K)⌊JWK⌋,

ΛJAK(JṼ2K)⌊JWK⌋〉〉† ‡ [case])

= Hω(〈J(λx. y)WK⌊J(λx.V1)WK, . . . , J(λx.Vk)WK⌋, 〈J(λx. Ṽ1)WK, J(λx. Ṽ2)WK〉〉† ‡ [case])

= Hω(〈JyK⌊Jnf (V1[W/x])K, . . . , Jnf (Vk[W/x])K⌋, 〈Jnf (Ṽ1[W/x])K, Jnf (Ṽ2[W/x])K〉〉† ‡ [case])

= JUK.

— If V ≡ case(x)[Ṽ1; Ṽ2], then (λxA.V)W → U, where

U ≡ case(W)[nf (Ṽ1[W/x]); nf (Ṽ2[W/x])].

By the same reasoning as the above case, we get H(J(λxA.V)WK) = JUK.

Next, for the inductive step, assume Ht(A) = h + 1. We may proceed in the same

way as the base case, i.e., by induction on |V|, except that the last case is generalized to

V ≡ case(xV1 . . .Vk)[Ṽ1; Ṽ2], where A ≡ A1 ⇒ A2 ⇒ · · · ⇒ Ak ⇒ o (k > 0). We have to

consider the additional case of k > 1; then we have (λxA.V)W → U, where

U ≡ case(nf (W(V1[W/x]) . . . (Vk[W/x])))[nf (Ṽ1[W/x]); nf (Ṽ2[W/x])].
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We then have the following chain of equations:

HJ(λx.V)WK

= H(Λ(Hω(〈JxK⌊JV1K, . . . , JVkK⌋, 〈JṼ1K, JṼ2K〉〉
† ‡ [case]))⌊JWK⌋)

= Hω(〈Λ(JxK)⌊JWK⌋⌊Λ(JV1K)⌊JWK⌋, . . . ,Λ(JVkK)⌊JWK⌋⌋, 〈Λ(JṼ1K)⌊JWK⌋,Λ(JṼ2K)⌊JWK⌋〉〉† ‡ [case])

= Hω(〈J(λx. x)WK⌊J(λx.V1)WK, . . . , J(λx.Vk)WK⌋, 〈J(λx. Ṽ1)WK, J(λx. Ṽ2)WK〉〉† ‡ [case])

= Hω(〈JWK⌊Jnf (V1[W/x])K, . . . , Jnf (Vk[W/x])K⌋, 〈Jnf (Ṽ1[W/x])K, Jnf (Ṽ2[W/x])K〉〉† ‡ [case])

(by the induction hypothesis with respect to |V|)

= Hω(〈Jnf (W(V1[W/x]) . . . (Vk[W/x]))K, 〈Jnf (Ṽ1[W/x])K, Jnf (Ṽ2[W/x])K〉〉† ‡ [case])

(by the induction hypothesis (applied k-times) with respect to the hight of types A)

= Jcase(nf (W(V1[W/x]) . . . (Vk[W/x])))[nf (Ṽ1[W/x]); nf (Ṽ2[W/x])]K

= JUK

which completes the proof.

Corollary 4.1 (Dynamic game semantics of FPCF). The interpretation J KSG

LDG of

FPCF and the hiding operation H satisfy the DCP in the sense of Definition 2.5.

Proof. By Lemma 4.1, and Theorems 2.5, 4.1 and 4.2.

The relation between the syntax and the semantics of FPCF is actually tighter than

Corollary 4.1: Exploiting the strong definability result (Amadio and Curien, 1998; Hyland and Ong, 2000),

FPCF can be seen as a formal calculus for computations in the CCBoC LDG. In ad-

dition, FPCF represents every computation in LDG by the following full completeness

result (Curien, 2007): Any strategy on a game that interprets a type of FPCF is the

denotation of some term of FPCF:

Corollary 4.2 (Dynamic full completeness). Let G be a game such that for some

strategy σ : G the pair (G, [σ]W) is the interpretation JΓ ⊢ M : BKSG

LDG of a program

Γ ⊢ M : B of FPCF. Then, for any strategy σ̃ : G, there is a program Γ ⊢ M̃ : B of FPCF

such that JΓ ⊢ M̃ : BKSG

LDG = (G, [σ̃]W).

Proof. Note that the game G is constructed along with the construction of type B of

FPCF. We proceed by induction on the construction of G (or B).

First, since values of FPCF are PCF Böhm trees except that the natural number type

ι is replaced with the boolean type o, and the bottom term ⊥ is deleted, the conventional

full completeness and the strong definability hold for values of FPCF in the same way as

that of the conventional game semantics of PCF, where the winning condition on strate-

gies excludes the denotation of the bottom term ⊥; see (Abramsky and McCusker, 1999;

Curien, 2006) for the details.

It remains to consider the rule A for applications, i.e., the case where G is of the form

〈U, V 〉† ‡ Υ . But then, note that only plays by the dereliction (up to ‘tags’) are possible

in Υ (Definition 3.39), and therefore we may just apply the induction hypothesis.
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5. Conclusion and Future Work

We have presented a mathematical (and syntax-independent) formulation of dynamics

and intensionality of computation in terms of bicategories as well as games and strategies.

From the opposite angle, we have developed bicategorical and game-semantic frameworks

for dynamic, intensional computation with a convenient formal calculus.

Let us emphasize that the dynamic, intensional nature of our semantics stands in sharp

contrast to the static, extensional nature of conventional (categorical or game) semantics.

In particular, our semantics satisfies the highly non-trivial DCP with respect to FPCF.

Note also that the present work refines and generalizes standard categorical and game

semantics of type theories. For instance, composition of static strategies is decomposed

and generalized as concatenation plus hiding of dynamic strategies. Also, standard con-

structions and constraints on static games and strategies are naturally accommodated in

the framework of dynamic games and strategies. Moreover, from the category-theoretic

point, the present work refines the standard CCC-interpretation of type theories by

the CCBoC-interpretation. In this sense, our approach is natural and general, achieving

mathematics of dynamics and intensionality of computation as promised in Section 1.

Let us remark that our result does not contradict the standard result (Danos et al., 1996),

i.e., the correspondence between the execution of linear head reduction (LHR) and the

step-by-step ‘internal communication’ between conventional strategies. In fact, LHR is a

finer reduction strategy than the operational semantics of FPCF (Definition 2.3), and the

work by Danos et al. implies that LHR corresponds in conventional game semantics what

should be called a ‘move-wise’ execution of the hiding operation. On the other hand, our

operational semantics is executed in a much coarser, ‘type-wise’ fashion, and thus it may

be seen as executing at a time a certain ‘chunk’ of LHR in a specific order. Our dynamic

game semantics captures such a coarser dynamics of computation, and therefore it does

not contradict the work (Danos et al., 1996). Of course, it is highly interesting to refine

the present work to capture LHR or another, finer reduction strategy such as explicit

substitution (Rose, 1996) and the differential λ-calculus (Ehrhard and Regnier, 2003),

which we leave as future work.

More generally, the most immediate future work is to apply the framework of dy-

namic game semantics to various logics and computations as in the case of conventional

game semantics. Also, it would be interesting to see how accurately our game-semantic

approach can measure the computational complexity of (higher-order) programming.

Finally, the notion of (CC)BoCs can be a concept of interest in its own right. For

instance, it might be fruitful to develop it further to accommodate various models of

computations in the same spirit of (Longley and Normann, 2015) but on computation,

not computability. Also, it might be interesting to consider their relation with computa-

tions as monads in the sense introduced by Eugenio Moggi (Moggi, 1991).
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